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A B S T R A C T   

Calibration, the estimation of model parameters based on fitting the model to experimental data, is among the 
first steps in many applications of process-based models and has an important impact on simulated values. We 
propose a novel method of developing guidelines for calibration of process-based models, based on development 
of recommendations for calibration of the phenology component of crop models. The approach was based on a 
multi-model study, where all teams were provided with the same data and asked to return simulations for the 
same conditions. All teams were asked to document in detail their calibration approach, including choices with 
respect to criteria for best parameters, choice of parameters to estimate and software. Based on an analysis of the 
advantages and disadvantages of the various choices, we propose calibration recommendations that cover a 
comprehensive list of decisions and that are based on actual practices.   

1. Introduction 

Calibration is an important part of the modeling process, since it 
enables the numerical model results and their reliable use in model 
applications. It is undertaken in many fields that use process-based 
models, including environmental models (Jakeman et al., 2006), hy
drological models (Badham et al., 2019), atmospheric models (Steele 
and Werndl, 2013), models of pest and disease dynamics (Donatelli 
et al., 2017), and agricultural models (Seidel et al., 2018). Essentially, 
model calibration involves adjusting model parameters to reduce the 
error between the model results and the measured data. We will talk of 
“calibrating” a model, which involves “estimating” the values of the 
model parameters. The majority of simulation studies involve some type 
of calibration prior to model application. Calibration is often necessary 
because parameter values are usually not universally valid, as explained 
by Fath and Jorgensen (2011) in the context of ecological models, and as 
explained in the context of crop models, based on statistical principles 
(Wallach, 2011). Calibration of nonlinear models is a major area of 
study in statistics (Seber and Wild, 1989; Sen and Srivastava, 1990), but 
process-based models have several features which make calibration 
particularly challenging (Wallach et al., 2019). Firstly, process-based 
models often have a large number of parameters, often many more 
than the number of observed data, which means estimation of values for 
all parameters, or even just for those parameters that might have a 
sizeable impact on the simulated results, is often not possible. So one 
must decide which parameters to estimate (Doherty and Hunt, 2009; 
Necpálová et al., 2015). Even when one estimates a subset of the model 
parameters, there is often a problem of equifinality, meaning that 
various different combinations of parameter values can give the same 
results, and so calibration does not lead to unique parameter values 
(Beven and Freer, 2001). Furthermore, process-based models usually 
simulate multiple different variables which can be compared with 
observed data, leading to the problem of combining information about 
the fit of the different variables into a single criterion for calibration, or 
possibly of defining multiple criteria (Wöhling et al., 2013b). Software 
used for the calibration is an additional problem. Often one ‘externally’ 
couples the existing model software to calibration software (Buis et al., 
2011; He et al., 2010; Hunt et al., 1993), but this can require substantial 
effort. As a result, calibration for crop models is often done by manual 
trial and error without using an automated routine (Seidel et al., 2018), 
though this could also be a deliberate choice to exert more supervision 
over the calibration. A further difficulty is that the observed data might 

have substantial errors. 
In response to these and other difficulties, there have been numerous 

studies published concerning calibration recommendations for process- 
based models in multiple disciplines. One type of study focuses on a 
particular model; it identifies the most important parameters in that 
model, and explains how they can be estimated from data (Ahuja et al., 
2011). Other studies have focused on the implementation of a Bayesian 
approach or on the comparison of frequentist and Bayesian approaches 
(Gao et al., 2020; Jansen and Hagenaars, 2004; Sexton et al., 2016; Van 
Oijen et al., 2005), on numerical methods of seeking best parameter 
values (Bhar et al., 2020; Franchini and Galeati, 1997; Madsen et al., 
2002), on the choice of parameters to estimate (Angulo et al., 2013), on 
the definition of multiple objective functions as a way of handling 
multiple simulated responses (Efstratiadis and Koutsoyiannis, 2010) or 
on which observed data to use for calibration (Hunt et al., 2001). There 
do not seem to be calibration recommendations based on a holistic view 
of model calibration for process-based models, such that the recom
mendations cover the full range of decisions that calibration involves, 
and that are based on actual practice. A holistic treatment is of impor
tance, because potentially any or all of the decisions involved in the 
calibration process might have an important impact on the results. It is 
important to base recommendations on the range of actual practices, to 
ensure that a wide range of feasible approaches is considered. 

The specific process-based models considered here are crop models, 
which consist of a set of mathematical equations representing physically 
based or (semi)empirical processes that describe plant development and 
growth as well as soil conditions as affected by weather, soil charac
teristics and crop management. Crop models are widely used to study, 
understand, and optimize crop production in current and future envi
ronments (Ewert et al., 2015; Keating and Thorburn, 2018; Tsuji et al., 
1998). In our study, we focus specifically on the use of crop models to 
simulate crop phenology i.e. the cycle of biological events in plants, 
because matching the phenology of crop varieties to the climate in 
which they grow is a critical crop production strategy (Hunt et al., 2019; 
Rezaei et al, 2015, 2018). In general, the simulation of crop phenology is 
an essential part of crop models and implemented as a phenological 
model component (or submodel) in the crop model. In many crop 
modeling studies, the focus is specifically on simulating phenology (Gao 
et al., 2020; Kawakita et al., 2020; Wu et al., 2017) but also calibration 
of crop models using just phenological observations can be a first step in 
crop simulation studies (Kimball et al., 2019; Li et al., 2015). Modeling 
plant phenology is also important in understanding ecosystem response 
to global warming (Piao et al., 2019). 

The objective of the present study is to define a novel approach to 
developing recommendations for calibration of process-based models, 1 Co-leaders of the AgMIP calibration activity. 
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and to apply it to derive recommendations for calibration of phenology 
simulation using crop models. The approach considers the full range of 
decisions involved in the calibration process and is based on information 
about the actual choices made by multiple modeling groups. The pro
posed approach involves three steps. First, one or more multi-model 
simulation studies are organized, where all participating modeling 
teams are given the same data for calibration and asked to provide 
simulated values for the same outputs using their usual calibration 
technique. Secondly, each team is asked to complete a detailed ques
tionnaire about the choices made for each calibration decision. This 
provides information about the range of choices that are made in 
practice. Finally, the advantages and disadvantages of the different 
choices for each calibration decision are analyzed, which provides the 
basis for a set of recommended practices. 

2. Materials and methods 

This study is based on two multi-model simulation studies. The 
studies were organized within the framework of the Agricultural 
Modeling Intercomparison and Improvement Project (AgMIP, Rose
nzweig et al. (2013)). The co-leaders of the calibration activity designed 
the studies as a way of obtaining information on crop model calibration 
practices, when the objective is simulation of crop phenology. They 
invited crop modeling groups to participate by announcements on the 
AgMIP website and in messages to the mailing lists of several widely 
used models. All modeling groups that asked to participate were 
accepted. 

We use here the term “model structure” to designate a specific set of 
model equations. The model structures used by the participants are 
listed in Supplementary Table S1. We speak of modeling group to 
designate the group of researchers that implemented the model struc
ture in a specific case. The modeling group was responsible for deter
mining all aspects of the calibration procedure and also for choosing the 
values of fixed parameters, i.e. those not determined by calibration. 
Twenty-seven modeling groups participated in the first simulation 
study, based on data from wheat fields in France. Twenty-six of those 
groups, and two additional groups, participated in the second simulation 
study, based on data from wheat fields in Australia. Thus overall 29 
different groups participated in at least one of the studies. The modeling 
groups are identified as M1-M29 and the same identifier is used for the 
same modeling group working with the French and Australian data. The 
name of the model structure used by each group is not given, since this 
might give the erroneous impression that the calibration approach and 
simulation results are specific to that model structure, while in fact they 
depend on both the model structure and the decisions made by the 
modeling group. Three of the model structures, coded as S1, S2, and S3, 
were used by multiple groups. Structure S1 was used by four (French 
dataset) or three (Australian dataset) groups, structure S2 by three 
groups and structure S3 by two groups. Comparisons within these three 
groups provide information about the variability as to calibration 
approach between different modeling groups calibrating the same 
model structure. 

In each study, participants were given the input data usually 
required for running a crop model, namely daily weather data, infor
mation on crop management, and information on soil characteristics, for 
multiple environments. An “environment” refers to a specific combina
tion of site and sowing date. The modeling teams were also given data on 
wheat phenology from a subset of those environments for calibration 
(the “calibration” environments) and asked to provide simulated 
phenology for the remaining environments, the “evaluation” 
environments. 

In each study, the calibration and evaluation environments were 
drawn from the same target population (fields with conventional wheat 
management in typical wheat growing regions in France or in Australia). 
The split between the calibration and evaluation data was made so that 
the two sets were roughly of equal size and included multiple sites and 

years, subject to the major constraint that none of the sites or years 
represented in the evaluation environments occurred in the calibration 
environments. While the participants were given full information about 
all the environments, at no point did they have access to the evaluation 
results. Thus this was a rigorous evaluation of how well the modeling 
groups were able to simulate wheat phenology for new environments. 
Details for the evaluation results are provided in (Wallach et al. (2021b, 
2021a). The prediction errors are also summarized in Fig. 1 and Sup
plementary Table S7. 

The observations in the French dataset were for days from sowing to 
two phenological stages, namely beginning of stem elongation (growth 
stage 30 on the BBCH and Zadoks scales (Zadoks et al., 1974)) and 
middle of heading (growth stage 55 on the BBCH and Zadoks scales) 
(Table 1). These two stages are of practical importance because they can 
easily be determined visually and are closely related to the recom
mended dates for the second and third N fertilizer applications in 
France. Observed data were provided for two varieties, namely Apache 
and Bermude. In all cases, the modeling groups used the same calibra
tion approach for both varieties. Therefore, in this study we only report a 
single calibration approach for each modeling group for the French 
dataset. The modeling groups were asked to provide simulated values 
for those same two growth stages for the evaluation environments. 

The Australian data set had a different structure. Each environment 
was visited once every two weeks, and the Zadoks stage in that envi
ronment was recorded. The data were then interpolated, to give days 
from sowing to every integer Zadoks stage from the first to the last 
observed stage, for each environment. These were the data provided to 
each modeling group for the calibration environments. For the evalua
tion environments, participants were asked to provide the simulated 
values for the number of days from sowing to stages Z30 (Zadoks stage 
30, pseudostem, i.e. youngest leaf sheath erection), Z65 (Zadoks stage 
65, anthesis half-way, i.e. anthers occurring half way to tip and base of 
ear), and Z90 (Zadoks stage 90, grain hard, difficult to divide). These 
stages are often used for management decisions or to characterize 
phenology. 

In both simulation exercises, each participating modeling group was 
asked to calibrate the model in their “usual” way, using the calibration 
data provided. Each group estimated one set of parameters based on the 

Fig. 1. Boxplots of mean absolute error for the evaluation environments of the 
French and Australian data sets. Boxes indicate the lower and upper quartiles. 
The solid line within the box is the median. Whiskers indicate the most extreme 
data point which is no more than 1.5 times the interquartile range from the box, 
and the outlier dots are those observations that are beyond that range. 
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data from the French calibration environments, and a second set based 
on the data from the Australian calibration environments, and then used 
those parameters to simulate results for the French and Australian 
evaluation environments respectively. Each group was also asked to 
complete a questionnaire, detailing how the calibration was conducted 
(Table 2). The questions were chosen to cover as completely as possible 
the full set of the decisions that are associated with the calibration 
approach, and to provide information about the underlying reasoning 
for the choice of modeling approach (see questions 3 and 6). 

3. Results 

The decisions required for calibration can be divided into three 
groups. I) decisions related to the criterion that defines the best 
parameter values, II) decisions related to the choice of parameters to be 
estimated, and III) decisions related to the numerical calculation of the 
best parameter values. The more detailed decisions within each group 
are shown in Figs. 2 and 3, which also indicate the choices made by the 
participating modeling groups and the number of groups that made each 
particular choice. Details for each individual modeling group are shown 
in Supplementary Tables S3, S4, and S5 for choices concerning the cri
terion of best parameter values, the parameters to estimate, and the 

algorithm and software, respectively. 

3.1. Criterion for best parameters 

A first calibration decision in this category is which variables to use 
in the criterion that defines the best parameter values, and in particular 
whether to use only those variables for which predictions are sought, or 
also additional observed variables. By variable, we mean the type of 
data. For example, days to flowering and days to heading would be two 
different variables. The French dataset only had observations for two 
variables, namely days to phenological stages BBCH30 and BBCH55 (see 
Table 1), and groups were requested to report the simulated values for 
those same two variables, for both the calibration and evaluation envi
ronments. Thus, it was a logical consequence that for almost all groups 
the criterion of best parameters included observations of both those 
variables. Two groups (M9 and M18) used model structures that did not 
simulate the number of days to stage BBCH30, so these groups only used 
a subset of the observed variables (i.e. the observations of days to stage 
BBCH55) in the criterion defining best parameters. The Australian 
dataset, on the other hand, had many observed variables (i.e., days to 
many phenology stages), while evaluation was based just on simulated 
days to three stages (Z30, Z65, and Z90). Here, the choice of variables to 
include in the criterion was not so straightforward. For the Australian 
dataset about 40% of the groups used only the variables to be simulated 
(days to Z30, Z65, and Z90 or a subset if the model structure did not 
simulate all those variables), while about 60% of the modeling groups 
included other observed variables in the criterion of best parameters. 
Different groups that used the same model structure did not necessarily 
make the same choice here. Considering structure S1, used by groups 
M2, M3, and M4 and the Australian dataset, all three groups used 
minimum sum of squared errors as the criterion defining the best 
parameter values. However, group M2 included additional variables in 
addition to the variables to be simulated in their sum of squared errors. 
Group M3 used only squared errors for Z65 and Z90, and group M4 used 
squared errors for Z30, Z65, and Z90. 

A second decision concerns the definition of error. Almost all groups 
expressed error in terms of days to reach a specified stage (Table S3). 
However, it is also possible to express error in terms of phenological 
stage. In the simplest case, suppose that a model structure calculates 
Zadoks stage each day (i.e., the internal counter each day is directly or is 
translated into a value for Zadoks stage). Suppose that for a particular 
environment it is observed that stage Z30 is attained on day 45, but the 
simulated day is 40. The error in days is 5 days. Suppose that the 
simulated stage on day 45 is Z33.4. Then the error in terms of devel
opment stage is 30–33.4 = − 3.4. For the French dataset all groups 
calculated error in days, but for the Australian dataset three groups 
expressed error in terms of development stage rather than days. 

A third decision is whether to use a frequentist or Bayesian 
perspective. If a frequentist perspective is chosen, one must define the 
mathematical form of the objective function. If a Bayesian perspective is 
chosen, one must define the form of the likelihood and the prior dis
tributions for the parameters. The large majority of groups followed a 
frequentist approach, where the estimated parameter values are those 
values that minimize some measure of error between the simulated and 
observed values (Table S3). Most of the frequentist groups sought to 
minimize the sum of squared errors, where the sum is over calibration 
environments and over all variables included in the criterion. This is the 
ordinary least squares (OLS) criterion. One (French data) or four 
(Australian data) groups used a different measure of distance between 
observed and simulated values, namely the sum of root mean squared 
errors for the different variables, or a weighted sum of squared errors. 
Two groups chose to minimize the sum of absolute errors. This is the 
least absolute value criterion (LAV). Four groups for the French dataset, 
and the same four groups for the Australian dataset, did not define an 
explicit objective function to be minimized, but rather sought parameter 
values to give a “best fit” to the data, where “best fit” was determined 

Table 1 
Description of datasets. The French dataset was repeated for two varieties 
(Apache and Bermude). The numbers shown represent the days from sowing to 
the indicated stages on BBCH or Zadoks scale. An environment corresponds to a 
specific combination of site and sowing date.  

Dataset Calibration data Evaluation data 

Number of 
environments 

Observed or 
interpolated 
phenological 
stages 

Number of 
environments 

Observed or 
interpolated 
phenological 
stages 

French 
(repeated 
for 
varieties 
Apache 
and 
Bermude) 

14 BBCH30, 
BBCH55 

8 BBCH30, 
BBCH55 

Australian 
(variety 
Janz) 

24 Each integral 
Zadoks stage 
from first to 
last observed 
Zadoks stage 

18 Z30, Z65, Z90  

Table 2 
The questions related to calibration approach in the questionnaire filled out by 
all participating groups. The full questionnaire is presented in Supplementary 
Table S2.   

1. How many parameters did you estimate (i.e. change from initial default values)?  
2. Which parameters did you estimate (please give the name and a short explanation 

and units of each)?  
3. Why did you choose those particular parameters to calibrate? Why that number of 

parameters to estimate (i.e. why not more or fewer parameters)?  
4. Which of the measured variables did you use for calibration (e.g. both date of stem 

elongation and of heading)?  
5. Describe your calibration approach. For example, did you define a criterion to 

minimize, like 
∑14

i=1 [(yobs
i,BBCH30 − ysim

i,BBCH30)
2
+(yobs

i,BBCH55 − ysim
i,BBCH55)

2
] i.e. the total 

sum of squared errors for days to BBCH30 and BBCH55, where 14 is the number of 
training environments. The variables specified in response to question 6, and no 
others, should appear here.   

6. Did you set lower and upper limits to the parameter values, or use other prior 
information about the parameter values? If so, please give the values for each 
parameter. How did you decide on those limits or that prior distribution?  

7. What software did you use to find the values of the parameters?  
8. Did you estimate parameter uncertainty? If so, please give the uncertainty values 

for your parameters (for example, standard deviation for each parameter), and 
indicate how you estimated the uncertainty.  
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visually or by some subjective combination of mean squared error, R2, or 
other fit metrics. Groups using the same model structure did not 
necessarily make the same decisions. For example, among the three 
groups that used model structure S2, for the Australian dataset, one used 
the OLS criterion and two had no explicit objective function. 

Another decision for the frequentist perspective is whether to fit all 
the observed variables in a single calculation step or to use multiple 
steps, adjusting parameters to different variables in each step. Almost all 
groups estimated all parameters simultaneously (Table S3). However, 
two (French data) or four (Australian data) groups estimated parameters 
in more than one step, fitting for example three parameters to the 
BBCH30 data in the French dataset, and then fixing those parameters at 
their estimated values and fitting another parameter to the BBCH55 
data. Again, groups using the same model structure did not always make 
the same decisions. For example, among the two groups that used model 
structure S3, for the Australian dataset, group M23 estimated all pa
rameters simultaneously, while group M24 estimated parameters in two 
steps. 

Of the total of six Bayesian calibrations (two for the French dataset, 
four for the Australian dataset), three assumed a normal distribution of 
errors and one a Student’s t distribution. One group worked with the 
concentrated likelihood, which replaces the model variance for each 
variable by its maximum likelihood value. In all cases, errors were all 
assumed to be independent. For the Bayesian groups, parameters were 
assumed to have either uniform or truncated normal prior distributions. 

No group took correlations of errors for different variables in the 
same environment into account. That is, all groups treated all the errors 

as though they were independent. Only two groups (M19, M21, see 
Table S3) took into account the possibility of different error variances 
for different variables, M21 by using the method of concentrated like
lihood (Seber and Wild, 1989) and M19 by dividing the likelihood for 
each variable by the number of observations of that variable. 

3.2. Choice of parameters to estimate 

Each model structure is parameterized differently, so it is not 
possible to directly compare names of parameters between model 
structures. It is, however, possible to identify the role of estimated pa
rameters in the model and base the comparison between groups on that. 
Details related to the choice of parameters by each group are given in 
Supplementary Table S4. 

Most groups estimated at least some parameters that concern the 
physiological time required to attain one or more phenological stages. 
Fifteen groups for both datasets estimated one or more parameters 
related to vernalization, and 13 groups for both datasets estimated one 
or more parameters related to photoperiod sensitivity. A smaller number 
of groups estimated parameters related to the temperature response 
function (for example minimum temperature or optimum temperature 
for development) or to tillering or leaf appearance rate (phyllochron). 
Two groups for each dataset estimated parameters related to the effect of 
stress on the development rate, and two (French dataset) or three 
(Australian dataset) groups estimated parameters related to time to 
emergence. 

The number of estimated parameters ranged from one to nine for the 

Fig. 2. The calibration decisions related 
to the criterion for best parameter 
values, and the choices made by multi
ple modeling groups in two studies. 
Each box corresponds to a decision 
required for calibration. The arrows 
indicate a possible temporal order for 
the decisions. The numbers in paren
theses are the numbers of groups that 
made the indicated choice for the 
French and Australian data sets, 
respectively. Note that there were many 
more observed variables in the Austra
lian data set. Choices recommended 
here are underlined.   
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French dataset and from two to ten for the Australian dataset. In most 
cases, the choice of parameters to estimate was based on expert opinion, 
but four groups for each dataset combined expert opinion with data- 
based information (for example, testing various combinations of pa
rameters to see which gives the best fit). Five (French dataset) or four 
(Australian dataset) groups based the choice of parameters to estimate 
on sensitivity analysis. We have identified the use of expert knowledge 
and data-based choice of parameters to estimate as two separate cate
gories, but it should be noted that expert knowledge by itself usually 
adapts the choice of parameters to estimate to the data, at least to some 
extent. This can be seen from the fact that almost every group that based 
the choice of parameters on expert knowledge estimated a different (and 
in most cases larger) set of parameters based on the Australian dataset, 
with more observed variables, than based on the French dataset (Fig. 4). 

The specific parameters estimated by each group depend of course on 
the way the model is parameterized. It is therefore not possible to make 
general recommendations about which parameters to estimate, even 
within the limits of phenology modeling. On the other hand, the un
derlying rationale for deciding which parameters to estimate is appli
cable in general for process-based models and could be the object of 
recommendations. It is thus the different possible choices of rationale 
that are shown in Fig. 3. There were differences even between groups 
using the same model structure. Consider for example structure S2. The 
three groups that used this model structure (M7, M12, and M13) esti
mated respectively four, three, and two parameters for the French 
dataset and nine, four, and two parameters for the Australian dataset. 
Two of those groups based the choice on expert opinion, while group M7 
made a partially data-driven choice. 3.3. Numerical methods 

The basic decision here is the algorithm to use for estimating the 
parameters (Fig. 3). A second, practical decision is the software to use to 
implement that algorithm. The choices made by each modeling group 

Fig. 3. Possible choices of rationale for choosing which parameters to estimate (top) and algorithm for calculating the parameters (bottom), with the choices made 
by multiple modeling groups in two studies. The numbers in parentheses are the numbers of groups that made the indicated choice for the French and Australian data 
sets, respectively. The choice recommended here is underlined. 

Fig. 4. Number of parameters estimated by each modeling group, for the 
French and Australian datasets. The modeling groups that used model struc
tures S1–S3 are identified. 
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are shown in Supplementary Table S5, and information about the spe
cific software used is given in Supplementary Table S6. Among the 
groups that chose a frequentist approach, slightly over half used trial 
and error to search for the optimal parameter values. In some of those 
cases, available software was used as an aid, but the final values were 
found by simply trying different parameter values. The remaining half 
was split between groups that used a derivative-free search algorithm, 
usually an algorithm designed to find a global optimum, and those that 
used a gradient-based algorithm. Many different software solutions were 
used, including multi-purpose software packages as well as software 
written expressly for calibration of that particular model structure. Four 
groups (French data) or six groups (Australian data) used a Markov- 
Chain Monte-Carlo (MCMC) algorithm to estimate the posterior distri
bution, using various software packages. That included one group that 
used an MCMC algorithm though the objective was to minimize the sum 
of absolute errors. The groups that used the same model structure, in 
general, did not use the same algorithm and software. For example, 
considering the two groups using model structure S3, group M23 used a 
combination of global and local search algorithms and available soft
ware packages, while group M24 used trial and error and no software 
packages. 

3.4. Level of error 

Table S7 shows mean absolute error (MAE), where the average is 
over the calibration data or the evaluation data, for each modeling 
group, for the French and Australian datasets. MAE can be quite 
different, even for different groups using the same model structure. For 
example, four modeling groups used model structure S1 for the French 
dataset, and had MAE for the calibration data of 3.9, 4.9, 6.8 and 12.8 
days, respectively. 

4. Discussion 

There is substantial variability in calibration approach between 
modeling groups, even between groups that use the same model struc
ture. Thus, a first overall conclusion is that we are far from having a 
consensus on how to calibrate crop models, even for a given model 
structure and dataset, and even for the relatively simple case which 
focuses just on phenology. In the following, we discuss the advantages 
and drawbacks of each choice for each calibration decision, and on that 
basis make recommendations for good practices. We do not base these 
recommendations on the levels of error of the different modeling groups, 
because there is no simple relation between calibration approach and 
resulting error. Differences in error could be due to differences in model 
structure, to differences in parameter values for those parameters not 
estimated by calibration, as well as to differences in any or all of the 
calibration decisions made by the individual groups. 

4.1. Criteria for best parameters 

A major calibration decision is the list of observed variables (here 
observed development stages) to include in the criterion of best fit. From 
a modeling point of view, using as many variables as possible for fitting 
the model reduces the risk of “getting the right answer for the wrong 
reason”, i.e. getting a good fit for some variables while other variables, 
that describe other aspects of system behavior, are poorly simulated 
(Meyer Oliveira et al., 2021; Wang et al., 2011). Fitting the model to 
more variables will reduce the aspects of the system that could un
knowingly be poorly simulated. This is important, since the same cali
brated model might be used for more than one specific purpose. More 
generally, process-based crop models are argued to be meaningful tools 
for understanding crop growth and production in response to climate 
variability and change (Keating and Thorburn, 2018), particularly as 
they cover interconnections of different system variables in their 
structures (Ewert et al., 2015). Calibration using multiple observed 

variables should improve the representation of these interconnections. 
From a statistical point of view, more data in general leads to predictors 
with smaller variance, which argues for using all the available data. 
However, this assumes that the model is correctly specified in the sta
tistical sense, meaning that model errors have expectation zero for all 
values of the explanatory variables. It has been argued that crop models 
are most likely statistically incorrectly specified, and as a result, the best 
parameters for predicting one variable may be different than the best 
parameters for predicting a different variable (Wallach, 2011). In that 
case, using additional variables in the objective function may degrade 
predictive accuracy for the variables of primary interest. This was found 
to be the case in the study of Guillaume et al. (2011). In fact, it has been 
suggested that the differences in calibration results using different 
observed variables could be a diagnostic tool for model structural errors 
(Wöhling et al., 2013a). If, however, one is willing to assume that sta
tistical misspecification is not too extreme, then it seems worthwhile to 
include as many of the observed variables as possible in the objective 
function, so here this is the recommended practice. This does not imply 
that all variables should have equal weight in the criterion for best pa
rameters. Statistical theory shows that if different variables have 
different error variances, then that should be taken into account. 

Most groups defined error as the difference between the simulated 
and observed days to reach a given phenological stage, but in a few cases 
error was defined as the difference between the simulated development 
stage and the observed stage, on the day of observation. This option 
requires that the model include some internal counter whose observed 
and simulated values at observed phenological stages are known, but 
this is often the case. It has been argued that the problem of minimizing 
errors is much better behaved numerically when errors are in terms of 
development stage rather than days (Wallach et al., 2018). On the other 
hand, one is usually interested in how large the error is in days so this is a 
more intuitive error measure. Furthermore, this does not require that the 
model have an internal measurement of development stage. We suggest 
then to measure error in days. 

For the groups that adopted a frequentist perspective, the large 
majority framed the problem as an ordinary least squares (OLS) prob
lem. Two modeling groups chose parameters by minimizing the sum of 
absolute errors, which has been argued to have advantages over OLS, as 
it is less sensitive to outliers (Willmott and Matsuura, 2005). However, if 
evaluation is based on squared error, then OLS is the more logical choice 
and is recommended. Four groups did not have an explicit objective 
function. One obvious disadvantage of this approach is its subjectivity, 
adding uncertainty in the definition of best-fit to other uncertainties in 
calibration. A second disadvantage is that one cannot automate the 
search for the best parameters. 

In most cases, a single objective function, combining all errors, was 
used. In a few cases, however, parameters were fitted sequentially (first 
to one variable then to the next etc.). This sequential technique has often 
been recommended for full crop models (L.R. Ahuja et al., 2011; Anothai 
et al., 2008). This simplifies the mechanics of finding the best parameter 
values, but it will lead to sub-optimal results with respect to an overall 
objective function. If the objective is to minimize the total sum of 
squared errors, for example, the best parameter values are those that 
minimize exactly that objective function. Necpálová et al. (2015) simi
larly recommended simultaneous estimation even for multiple observed 
variables, for an ecosystem biogeochemical model. 

A few groups chose a Bayesian rather than a frequentist perspective. 
There are fundamental differences between frequentist and Bayesian 
approaches (Berger and Bayarri, 2004). However, for the practical 
prediction problem here, there are also important similarities. A major 
difference is that the Bayesian approach focuses on the posterior dis
tribution, which is a distribution of predicted values, while the fre
quentist approach focuses on point predictions, i.e. one single predicted 
value. Here, however, all groups were asked for point predictions, so the 
groups that used Bayesian approach had to choose a single result from 
the posterior distribution. In all cases, they chose the parameter values 
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that maximized the posterior distribution, which then plays the same 
role as the objective function for the frequentist approach. Another 
important difference is that for the Bayesian approach the prior infor
mation about parameter values is included in the calculation, while this 
is not in general included in a frequentist approach. However, in almost 
all cases here, the frequentist approach included lower and upper 
bounds on the parameter values (Table S5), which is also based on prior 
information. In fact, a Bayesian approach with normal likelihood and 
uniform priors leads to exactly the same criterion for best fit, namely 
minimum squared error subject to the constraints on the parameters, as 
OLS with bounds on the parameter values. 

If the main objective is to obtain a point predictor, then we suggest 
using a frequentist approach, since adopting a Bayesian approach and 
calculating a posterior distribution may require unnecessarily long 
calculation times. If one is also interested in uncertainty information, as 
it is often the case, then a Bayesian approach has advantages as far as 
parameter uncertainty is concerned, since the posterior distribution is 
directly a representation of the uncertainty in the parameter vector. 
However, it is important to keep in mind that parameter uncertainty is 
only part of overall uncertainty, and in fact it has been found in several 
cases that parameter uncertainty is quite a bit less than structure un
certainty (Zhang et al., 2017). 

In almost all cases, the calibration approach was directly based on 
regression methods in statistics, either frequentist or Bayesian. This 
seems logical, insofar as these statistical methods have desirable prop
erties. However, these properties in general require that certain as
sumptions be satisfied. The standard assumptions for the OLS method 
are that the model errors be independent and identically distributed, 
with expectation 0 (Seber and Wild, 1989; Sen and Srivastava, 1990). 
For the Bayesian methods, one must make explicit assumptions about 
the distribution of errors, including whether all errors have the same 
distribution and whether errors for different variables are correlated. In 
the case of crop models, with multiple observed variables in each 
environment, the assumptions of independent identically distributed 
errors with expectation 0 are not likely to be satisfied (Wallach et al., 
2019). Most obviously, errors for different variables in the same envi
ronment (e.g., days to development stages Z30 and Z65) may be corre
lated, since any particularities of the environment affect all variables for 
that environment. Furthermore, the errors for different variables may 
have different variances, which violates the assumption that all errors 
have the same distribution. No group took correlations of errors into 
account and only two groups took into account the possibility of 
different variances for errors of different variables. 

In general, it would be worthwhile to go a step further in applying 
statistical methods, beyond employing standard techniques, in order to 
examine whether the standard assumptions about model error are 
satisfied. To detect unacceptably large violations of the standard as
sumptions, one should examine the model residuals (observed minus 
simulated values) after calibration, as is standard procedure in regres
sion (see for example NIST/SEMATECH, 2013). One should examine 
overall bias of model residuals, which should be zero, the variances of 
residuals for different variables, which should be similar, and correla
tions between residuals for different variables in the same environment, 
which should be small. 

Only phenology data were available in the datasets here, and thus all 
errors had the same units (days or phenological stage). In cases where 
variables with different units are observed, for example days to pheno
logical stages and yield, it is meaningless to simply combine errors. In 
that case, a first step could be to divide all simulated and observed values 
by an estimated standard deviation of error for that variable, as in 
weighted least squares (Seber and Wild, 1989). Then all errors would be 
unitless and could be combined. However, it would still be important to 
test residuals after calibration. 

4.2. Choice of parameters to estimate 

Of particular interest is the rationale behind the choice of parameters 
to estimate, and what this implies for the adaptation of the choice of 
parameters to the dataset. In most cases, the choice of parameters to 
estimate was based on “expert knowledge” of the model. To some extent, 
this takes into account the dataset. However, expert knowledge only 
takes the amount and type of observed data into account approximately. 
An alternative, which we recommend, would be to formally consider the 
choice of parameters to estimate as a problem of model selection, where 
the selection is of the subset of parameters to estimate by calibration, 
while the other parameters retain their default values. For example, one 
could use the Akaike Information Criterion (AIC; Akaike (1973)), which 
has been widely used for model choice in ecology (Burnham et al., 2011) 
to choose the parameters to estimate. The use of a model selection rule 
would automatically adapt the choice of parameters to estimate to the 
calibration dataset. Consider, for example, the question of whether or 
not to estimate parameters related to water stress for those models that 
include effects of water stress on phenology. A model selection rule 
would include such a parameter if it had a relatively large effect on 
improving the fit to the calibration data, and would not include it 
otherwise. However, given the large number of possible parameters to 
estimate, it would probably be necessary to combine expert knowledge, 
in order to choose a fairly small number of candidate parameters, with a 
formal model selection criterion. 

All parameters that are not estimated using the calibration data 
retain their default values, and this, in general, concerns the majority of 
model parameters. While some parameters will not have an effect on the 
simulated values, many others will have an effect. It is clear, then, that 
the choice of these default values is extremely important, and should 
reflect whatever information one has about the cultivars and environ
ments of interest. The choice of default values probably merits more 
attention than it usually receives. 

4.3. Algorithm and software 

There are several disadvantages to the trial and error approach 
which was used by somewhat over a third of groups. It is time- 
consuming, it is likely to end in a non-optimal solution, especially if 
several parameters are estimated, and it cannot be replicated for 
example to estimate prediction error using cross-validation. 

A wide range of algorithms and software was used by the remaining 
groups. The problem of choosing a calibration algorithm and software to 
search for optimal parameter values has received much attention in the 
field of hydrological modeling (Skahill and Doherty, 2006). Gradient 
based algorithms are, in general, very efficient, but may converge to a 
local rather than global optimum (Blasone et al., 2006). Also, simulated 
values are often non-continuous functions of the parameters. As a result, 
it may not be possible to calculate a gradient. Removing the disconti
nuities may be possible, but at the price of detailed intervention in the 
model code (Liu et al., 2018). Global search algorithms, such as a grid 
search or genetic algorithms, may avoid converging to a local optimum 
but in general require many more model runs. A third possibility is a 
gradient-free search algorithm such as the simplex method (Nelder and 
Mead, 1965), which seems to be a good choice for calibration of crop 
models. 

There is calibration software that has been developed specifically for 
some crop models (Buddhaboon et al., 2018; Buis et al., 2011; Hunt 
et al., 1993), and also some software that is designed to be easily coupled 
to any model (Doherty et al., 2010). Coupling parameter estimation 
software to a crop model is not simple and so modeling groups tend to 
use available software or even no software rather than developing new 
calibration software themselves. This implies that for the improvement 
of calibration approaches for crop models it is not sufficient to propose 
guidelines for good calibration practices. For the guidelines to be 
effective, they must include software solutions that can be used by any 
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model. 

4.4. Summary of recommendations and of the overall approach 

Based on an analysis of calibration approach by multiple modeling 
groups, we propose the following guidelines for calibration of the 
phenology component of crop models:  

• Before calibration, one should pay careful attention to the choice of 
default values for all parameters. 

• If the objective is, as here, to make point predictions, then a fre
quentist approach to calibration is fully justified.  

• One can use an OLS criterion initially, based on errors in units of 
days, but the statistical assumptions underlying OLS should be 
checked by analyzing residuals after calibration.  

• The choice of parameters to estimate should be adapted to the 
available data, for example using the AIC criterion. However, the 
choice of parameters also requires knowledge of the model and the 
environments studied, as well as of the reliability of the data. This 
suggests that a fully automatic calibration procedure may not be 
advisable.  

• For the calculations, a derivative free but efficient search algorithm 
like the simplex is recommended. These are guidelines, and the 
detailed implementation will depend on the crop model. 

These recommendations are specific to calibration of the phenology 
component of crop models, even though many of them are no doubt 
more widely applicable. Calibration of process-based models in other 
fields may involve aspects specific to those fields, requiring somewhat 
different recommendations. These could be developed by following the 
same three steps followed here, namely a multi-model calibration ex
ercise, then detailed description of the calibration approach by each 
modeling group and finally analysis of the calibration choices. A 
simplified version would simply document hypothetical choices by each 
group, without actually requiring the groups to perform the calibration. 
This would greatly simplify the study, but might not truly represent 
what each group would do in practice. 

5. Conclusions 

Calibration of crop models involves multiple decisions, which can be 
grouped into choice of criteria for defining the best parameter values, 
choice of parameters to estimate and choice of algorithm and software. 
Different modeling groups make quite different decisions, even for 
modeling groups using the same model structure. It seems that we are far 
from having a consensus on how to calibrate crop models, even in the 
relatively simple case with only phenology data, which emphasizes the 
need for calibration guidelines such as those suggested here. 

We propose an original approach to development of crop model 
calibration recommendations and apply it to develop recommendations 
for calibration of the phenology component of crop models. One original 
aspect is that we consider a very broad range of decisions involved in 
calibration whereas other studies usually concentrate on one or two 
specific calibration decisions. This is important because each of these 
decisions can have an important impact on calibration. Secondly, our 
starting point for recommendations is the choices made in practice by 
multiple modeling teams. This ensures that we consider a wide range of 
possible choices for each of the calibration decisions, and that the 
choices considered are anchored in actual practice. The recommenda
tions are then based on analyzing the advantages and disadvantages of 
the different choices that are made. Of course it will be important in the 
future to test these recommendations as to their ability to improve 
model predictions. In developing recommendations for calibration in 
other fields, we suggest that a procedure similar to ours could be of 
interest. 
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