

Technical Research Presentations

IEA EBC - Annex 86 (09/07/2021)

IMPACTS OF CLIMATE CHANGE ON THE INDOOR AIR OF RESIDENTIAL BUILDINGS IN BELGIUM

(OCCuPANt Project - Uliège - 2020-23)

Content

- Introduction
- Research Questions
- Material and Methods
 - IAQ-CC Data
 - Index Development
 - Modelling
- Conclusions

Introduction

Effects of Climate Change (Global Warming) on Indoor Air Quality (IAQ)

Climatological Effect Indoor Environmental Effect Indoor temperature rises, Outdoor temperature rise Increased use of air conditioning, & Potential for increased off-gassing of VOCs, Extreme heat waves Inability of air conditioning to condition indoor air, Extreme heat stress. Increased PM & O₃ indoor, etc. Increased outdoor pollution O₃ can induce byproducts (indoor chemistry). Indoor RH, Increased mean outdoor humidity Indoor condensation, and mold growth, & Damp conditions, building damage. Extreme precipitation episodes Pressure to reduce energy use All existing indoor pollutants rise in inverse proportion to lower GHG (reduced air ventilation) to reduced ventilation.

Introduction

IAQ in the context of Indoor Environmental Quality (IEQ) and Climate Change (CC)

- outdoor pollutants
- ground level O₃ (affected by T, SI)
- dispersion properties of contaminant around the building
- season of the year

- building materials
- HVAC systems
- building airtightness
- ventilation rate
- infiltration rate
- spatial layout

Building Design and Construction

Occupant and Indoor Condition

- combustion sources and cooking activities
- chemical-rich products
- occupancy
- tobacco smoke
- human metabolism
- office machines
- opening of windows
- extractor fans
- occupancy pattern
- secondary pollutants
- pet

Research Questions

Research Central Questions

- 1. What are the most influential factors of CC on the IAQ of residential buildings?
- 2. What are the links between heatwaves/urban-overheating and outdoor air pollution and IAQ?
- 3. How to combine thermal comfort and healthy IAQ?
- 4. How to adapt selected existing IAQ evaluation approaches to provide a useful tool in the context of CC?

Objectives and Aims

- The project aims to investigate the climate change impacts on the IAQ.
- A decision supporting tool (IAQ-CC index) considering both conditions of indoor and outdoor environments is being developed for supporting the reduction of CC effects on the IAQ levels.

Correlated CC-Indoor air data

Difficulties and Limitations:

- Variety of parameters
- Diversity of links to the CC

	Study		Region	Test Location	Measurement Interval	Measurement Duration		Measurement parameters	Data points
	A. I. <u>Dou</u> 1996	A. I. Dounis 1996		office	30 s	24 h day	out	internal air and surface temperatures door temperature, solar radiation, wind direction and velocity	2880
	S. C. Sekhar	N. Ç	anha, 2015	France	17 schools	10 min	5 days in each	PM, VOC, T, RH, CO ₂	630*3
80 70 60 50	Att 7.6 ariyakı	Zorpa	Zorpas, et al. 2016		2 museums	Sampling	4 days each	CO, CO ₂ , PM, RH, O ₃ , NO, NO ₂ , SO ₂ , VOC, NH ₃ , H ₂ S	64 for each parameter
			tti, et al. 2017	Belgium	Museum	15 min	12 months	T, HR	35136
		Salamo	ne et. Al 2017	Italy	2 offices	1 min	9 hr for 10 days	T, RH, CO ₂	5400*3
	M candrea	Belyakh	Belyakhina, et al. 2017		3 room	30 s	24 <u>br</u>	T, RH, PM ₁₀	2880*3
	13 K. \ 1/ui, et		M. Derbez2017		72 building	10 min +sampling	2 weeks	CO ₂ , NO ₂ , T, RH, PM, NO, VOC	2016*3
4d		_ l⊽larche	etti, et al. 2017	Belgium	Museum	15 min	30 days	T, HR, CO ₂	8640
30 20 10 0	t al	agd	31 20	26 Ē 216 ° -	9 rooms 23 22 2	8hr sampling	8 hr per day in 2 months	VOCs, PM _{2.5} , PM ₁₀ , T, RH	2880*3
		ong	al. 2 3	S 1	Office	116 ⁱⁿ 13	8 hr per day in 2 months	CO ₂ , indoor climate	2880*3
		.ei e	l, 20	(a	12 nts in all		10 12 0x*2 day	8 7 6 4 T,RH, CO ₂ , TVOC	1726*4
	, et Pereira, et a	uta	et al 19	K ait	9 ts	in	mi	H ₂ S_CO ₂ , CO_VOC, NO ₂	135*5
	Glm, et St.	Yuan	et al. 2019	China	11 rooms in office	300 ci 3	45 days 2 months	SC CO CO2, MH3, O3HCHOCPPM30, TVOC, BIJ. Microbe 12	1485*9
	galos et a	Marqù	es, et dr. 2019	Portugal	Taboratory	30% (V	2 months	, cos 1 41 MIL COO AL	172800
	<u>Fassio</u> , et al	Sharm	a, et al. 2019	India	10 houses		10 days/24 bx	T, RH, CO ₂ , PM ₁₀ , CO	300*5
	Cao, et al.	Ras	togi, et al.	India	3 rooms	1 min	14 months	T, RH, CO ₂ , PM ₁₀ , CO PM ₁₀ , PM ₂₅ , CO	
	Karaca20	,	2020						604000*3
	Saad, et al.		et al. 2020	Pyeongtaek	8 Capartments	5 min	15 months	T, RH, PM _{2.5} , CO ₂	129600*3*8
	Mihaja, et al Li, et al. 2		wers		t para	amet	eǥş"ir	n the literature	31680*2
	<mark>Mainka</mark> e		, et al. 2020	China	81 houses*3 points	10 min	120days	TVOC, PM _{2.5} , CO ₂	51840*3*81
		Zhang	g, et al. 2020	China	9 shopping malls		2*15 days	Formaldehyde, PM10, CO2, TVOC, CO	

Different measurement approaches:

- ➤ Data Points: [42 3,112,000]
- ➤ Measurement time Intervals: [30s 8hr]
- ➤ Measurement Duration: [20 min 15 months]

Developed IAQ monitoring device / Uliège – SAM

Selection Criteria:

- Most effective based on trends observed in experiments
- Cost and time efficiency
- Practically feasible

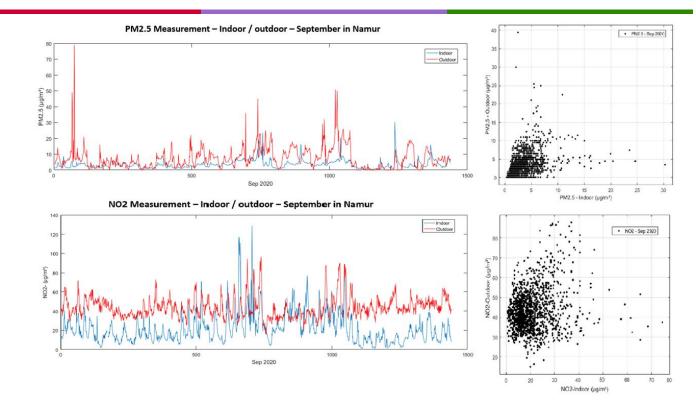
Parameters and sensors calibration:

VOC, CO, CO₂, O₃, NO, NO₂, PM_{2.5}, PM₁₀, T, RH

Measurement Time Interval:

• 1 min

Material and Methods Data Collection

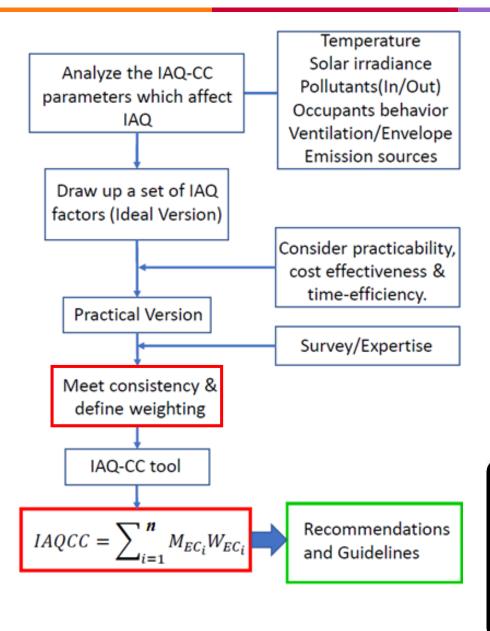

IAQ data collection (2020-21)

Measurement locations:

- 2020: Liege/Namur (2 houses)
- 2021: Habay/Arlon (4 houses)

Data recording time:

Summer 2020, 2021



1st evaluation of 2020 measurement campaign

The Occupant-Building Comprehensive **Questionnaire**:

- Questionnaire regarding fixed parameters,
- Daily time table of the occupants activities (occupancy pattern, activities, ventilations)

Index Development

- Low (Undesirable quality)
- Moderate (Ordinary quality)
- Desired (High quality)

IAQ Modeling - CONTAM

Analysis:

- Calculating Airflows: assessing building air change rates and interzonal airflow rates
- Analyzing Ventilation Strategies: Design and compare
- **Simulating Contaminant Transport**: contaminant source isolation, IAQ investigations, and occupant exposure analysis.

5 tasks to perform a multizone analysis with CONTAM:

- 1. Representing the building as a set of zones and airflow paths
- 2. Schematic representation (a floor plan)
- 3. Define building components
- 4. Simulations
- 5. Review results.

Conclusions

- In order to evaluate the effects of CC on the IAQ, a decision supporting tool (index) is being developed.
- Practical parameters of IAQ was selected for the monitoring, based on the selection criteria .
- To find the proper weights for the index, measurement campaigns with the developed IAQ devices was carried
 out in selected test locations.
- The most influential IAQ parameters is being employed to design the IAQ-CC index.
- The IAQ model for the test locations will be developed in the next step.
- With the input data of <u>future weather models</u> for the <u>designed IAQ model</u> and help of <u>IAQ-CC index</u> the impacts of CC on IAQ will be examined.

Thanks for Your Attention

Mohsen Pourkiaei

