

Effect of switches in brain states on calcium-based plasticity rules: a computational study for sleep-dependent memory consolidation

Kathleen Jacquerie, Caroline Minne and Guillaume Drion

Department of Electrical Engineering and Computer Science, University of Liege, Belgium

Switches in network rhythms during sleep and wakefulness

Synaptic plasticity: calcium-based rules

Model sleep-dependent memory consolidation

Network rhythms during sleep and wakefulness

Switch in firing activity from tonic to burst

Conductance-based model

- ✓ Robust to neuromodulation
- ✓ Robust to plasticity

Which synaptic plasticity rule is compatible with switches?

- Using pre- and post- spike time to compute Δw
- Can involve complex mathematical models
 - → Spike-time dependent plasticity, triplet model, ...

- Model the biological machinery
- Degree of biological details can vary

Calcium-dependent plasticity rules

Model

[Graupner, 2016; Deperrois, 2020]

$$\tau_w \dot{w} = \gamma_p (1 - w)\Theta(Ca - \theta_p) - \gamma_d w\Theta(Ca - \theta_d)$$

[Shouval, 2002]

$$\tau_w(Ca)\dot{w} = \Omega(Ca) - w$$

Calcium influx governs the synaptic change

Validation on experimental data in wakefulness

at a given frequency

[Sjostrom,2001; Graupner,2016]

We reproduced the pairing protocol experiment with the 3 calcium-dependent rules in a robust conductance-based model

Fitting completed ✓

Calcium-based rules tested during sleep

10 sec

Experiment

How does connectivity strength change during sleep?

Whatever we have learnt the connection is restored to a given value.

No learning, nor consolidation, nor down-selection is shown.

Evolution of the connection strength during a sleep rhythm

Calcium-based rules tested during sleep

10 sec

Experiment

Varying the bursting activity (bursting freq., #spk/burst,...)

Changing the bursting rhythm does not affect the ability to consolidate

Evolution of the connection strength during a sleep rhythm

Conclusions & Perspectives

- The classical calcium-dependent plasticity rules are not appropriate to study plasticity during bursting activity
- Same result is demonstrated with phenomenological models [Poster P113.07 from C.Minne]

Next step: building a calcium-dependent rule robust to neuromodulation

