
Synthetic Dataset  Synthetic Black-Box Model (SBBM)

Real Dataset (Magana-Mora et al., 2012)  Real Black-Box Model (RBBM)

Combined Dataset  Combined Black-Box Model (CBBM)

Generated by combining the synthetic and real datasets in a 1:1 ratio.

Results

Accuracy and F1 score of SBBM, RBBM,
and CBBM have been recorded.

Occlusion

Perturbance: (a) occluding an unimportant area or (c) occluding all areas except for an 
important area keeps prediction stable while (b) occluding an important area influences 

prediction greatly.

Occlude only the feature of interest Occlude all featues but the feature of interest
The lower the value, The higher the value,

the more influential the feature.                    the more influential the feature.

– Nucleotide frequency and consensus sequence are the most positively 
influencing features.

– Downstream stop codon has a slight positive influence on TIS prediction.

– Upstream ATG and donor splice site are neutrally influencing or slightly 
negatively influencing features.

– Codon usage is a negatively influencing feature.

Sequence Logo (Integrated Gradients)

Important consensus nucleotides of SBBM are similar to those of RBBM, albeit in 
different magnitudes.

Equalized Loss of Accuracy (ELA)

(Sàez et al., 2016)

Class Noise (Misclassification)

Switch positive and negative datasets.

Attribute Noise (Incorrect Features)

Synthetic features are considered as ‘incorrect.’
Results

The lower the ELA value, the better the model deals with noise.

– CBBM behaves similarly to RBBM and does not show a high spike like SBBM.

– Consensus sequence is the most contributing feature.

The previously trained models (SBBM, RBBM, CBBM) were used as pre-trained 
models, with some of their layers frozen, to train on human data (Chen et al., 
2014), whose small size causes overfitting.

Results

– CBBM and RBBM increased prediction effectiveness and reduced overfitting

– RBBM gives better results than CBBM.

– CBBM has the potential of being made into a general model for TIS prediction, 
making it possible to cover other data-insufficient species.
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Conclusions and Future Work

− SBBM learns similar features as RBBM, albeit in different magnitudes.

− CBBM has a similar effectiveness as RBBM, with its usage reducing overfitting when training on small data.

− Consensus sequence and nucleotide frequency have the most significant (positive) influence on TIS 

prediction.

− Codon usage has a negative influence on prediciton effectiveness, which could be further investigated.

− In future research, a more sophisticated and generalized synthetic dataset could be generated, to be used 

effectively for data-insufficient use cases.

− Furthermore, new data-efficient strategies may be unlocked for data-hungry models in genomics.

Introduction and Motivation
Building a prediction model for translation initiation sites (TISs) and determining their important features may aid in uncovering new translation mechanisms and give
emphasis to already existing ones. However, interpretation is difficult, as many machine learning models are black box in nature. Therefore, to better understand the
relevant features, we investigate the use of synthetic data in the context of TIS prediction for A. thaliana and, through transfer learning, for H. sapiens.

Feature Analysis

Noise Analysis

ELAx% =
100 − Ax%

A0%

Transfer Learning
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Evaluation of all models (in %)

Models Accuracy F1 score

Mean SD Mean SD

SBBM 85.53 0.099 85.42 0.122

RBBM 90.74 0.120 90.64 0.160

CBBM 90.68 0.126 90.68 0.163

– CBBM learns features from both the 
real and synthetic datasets.

– The features of SBBM may be 
overlapping with those of RBBM.

Evaluation of SBBM with missing features.

Missing feature F1 score (%)

Mean SD

Consensus sequence 83.45 0.099

Upstream ATG 85.84 0.212

Downstream stop codon 84.42 0.273

Donor splice site 85.78 0.104

Evaluation of SBBM with single features.

Single feature F1 score (%)

Mean SD

Nucleotide frequency 80.89 0.369

Consensus sequence 84.75 0.252

Upstream ATG 79.22 0.705

Downstream stop codon 83.46 0.199

Donor splice site 81.92 0.205

Codon usage 62.90 0.840

Evaluation of models trained with human data (in %)

Pre-trained models Accuracy F1 score

Mean SD Mean SD

None 78.40 1.744 81.37 1.180

SBBM 78.80 2.384 81.28 1.513

RBBM 85.40 0.860 86.16 0.613

CBBM 83.75 0.316 84.90 0.184

SBBM RBBM CBBM

In the sequence logo, 
only the consensus 
sequence (positions -5 to 
+7) are shown, with 
positions 0 to 2 denoting 
the TIS

ELA of SBBM, RBBM, and CBBM ELA of SBBM with different features as noise


