CENTER FOR BIOTECH DATA SCIENCE CENTER FOR FOOD CHEMISTRY AND TECHNOLOGY

Developing a Segmentation Model for Microscopic Images of Microplastics Isolated from Clams

Ho-min Park | 01-10-2021 | MAES Workshop @ ICPR

Ji Yeon Baek, Maria Krishna de Guzman, Ho-min Park, Sanghyeon Park, Boyeon Shin, Tanja Cirkovic Velickovic, Arnout Van Messem, and Wesley De Neve

MICROPLASTIC (MP) - CHARACTERIZATION

Туре	Size
Macroplastic	> 5 cm
Mesoplastic	5 cm - 5 mm
Microplastic	5 mm - 0.1 μm
- Large MP	5 mm - 1 mm
- Small MP	1 mm - 0.1 μm
Nanoplastic	$<$ 0.1 μ m

MICROPLASTIC CONCENTRATION IN FOOD

MP derived from plastics

Ingestion by marine biota

Concentration by food chain

Concentration by food chain

MP monitoring via Manila clams
Needs 8 phases

WET LAB PHASE (PHASE 1 – 4)

DRY LAB PHASE (PHASE 5 – 8)

Type: particle Size: $12\mu m$

Type: particle Size: 20μm

P6: High-resolution fluorescent image (stitched together)

GHENT UNIVERSITY

GLOBAL CAMPUS

P7: Binarized image (ground truth mask)

Magnified image

Ground truth

DRY LAB PHASE

Prata, J. C., Reis, V., Matos, J. T., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. (2019). A new approach for routine quantification of microplastics using Nile Red and automated software (MP-VAT). *Science of The Total Environment*, 690, 1277-1283.

Takes 10 – 30 min for labeling

GLOBAL CAMPUS

DEEP SEGMENTATION MODEL

Original image

Binarized image

DATASET

- 99 fluorescent microscopy images and corresponding masks
 - resolution: 1280×960 7140×5424

- Use of a sliding window, cropping, and random selection to generate 100,000 patches with a resolution of 256×256
 - organized into 5 datasets of 20,000 patches
 - 4 datasets for 4-fold cross-validation
 - 1 dataset for testing

DEEP SEGMENTATION MODEL

- Use of U-Net (pre-trained on ImageNet)
 - initially developed for biomedical image segmentation
 - now often used in other domains

QUANTITATIVE RESULTS

TP: # of true positives
TN: # of true negatives
FP: # of false positives

FN: # of false negatives

QUANTITATIVE RESULTS

MP-VAT

U-Net

- (1) high number of true negatives (background pixels can be predicted well)
- (2) reduced number of false positives

QUALITATIVE RESULTS (HALO DETECTION)

white and black pixels: correctly predicted

red pixels: false positives

green pixels: false negatives

QUALITATIVE RESULTS (NOISE REMOVAL)

white and black pixels: correctly predicted

red pixels: false positives

green pixels: false negatives

QUALITATIVE RESULTS (LOSS FUNCTIONS)

U-Net (1)
BCE with logits loss and SGD

U-Net (2)
Dice loss and Adam

U-Net (3) BCE with dice loss and Adam

BCE: Binary cross-entropy

SUMMARY

- MP monitoring using marine biota (i.e., Manila clams)
- MP detection in microscopic images
 - MP-VAT (manual intervention, prone to errors)
 - U-Net (deep learning, highly automated)
- Better results in terms of false positive detection ($F_{0.5}$, precision)
- Alternative to already existing methods

FUTURE WORK

Model improvement

- reduction of false positives
- comparison to other segmentation models
- optimization of hyperparameter values (vs. default ones)

Better accessibility & usefulness

- GUI interface or ImageJ macro
- integration of support for counting and finding size and shape

Thank you for your attention! Any questions?

Ho-min Park

E homin.park@ghent.ac.kr

M +82 32 626 4326

