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Impact of Deep Learning Models on Computer Vision Problems

Deep learning methods drastically improved the state-of-the-art
results in computer vision problems.
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Impact of Deep Learning Models on Machine Learning Problems

After their success on ImageNet and other datasets, the deep learning

models are, at an increasing rate, being adopted on solving various
machine learning problems such as:

Facial recognition problems (e.g., personal identification)
Problems related to Self-driving cars (e.g., lane detection)
Problems related to smart-housing (e.g., voice commands)
Medical imaging problems (e.g., tumor detection)
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Problems with Deep Learning Models

Although deep learning models are praised for their results on

accuracy for complex problems, they are not perfect. A number of
problems present in those models can be summarized as follows:

- Computational cost of training a model

- Reproducibility problems related to randomness
- Interpretability

- Adversarial examples
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What are Adversarial Examples?

Adversarial examples are carefully crafted data points which force

machine learning models into misclassification during testing phase.
These malicious samples are often undetectable by humans.
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Real World Consequences of Adversarial Examples
Adversarial examples with malicious intent reduce trust in automated
systems (self-driving cars).

Roadway Segmentation

Vehicle Detection

(a) Image

(b) Prediction
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Real World Consequences of Adversarial Examples

Adversarial examples with malicious intent reduce trust in automated
systems (Healthcare).
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Do Adversarial Examples Exist in Segmentation Models?

Dense Adversary
Universal Perturbation (UP) Generation(DAG)

(a) Image

(b) Prediction

(c) Adversarial Example (d) Prediction
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Downsides of Existing Methods for Adversarial Example
Generation for Segmentation
Segmentation models provide more information on the prediction
than classification models. Thus, coming up with a defense for

segmentation is much easier than classification (based on the shape
of the prediction).

Existing attacks do not pose a threat because:

- DAG aims to misclassify all pixels, which leads to random-looking
segmentations shapes.

- UP is proposed as a method to change segmentation prediction to
a single target mask.
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So... Are Adversarial Examples are a threat to

Segmentation Models?
Adaptive Segmentation Mask Attack (ASMA)*

Segmentation mask Segmentation mask
of the source image Source image (Enhanced for visibility) Generated adversarial example

Segmentation mask of Target image Adaptive optimization mask Segmentation prediction
the target image of the adversarial example

* Impact of Adversarial Examples on Deep Learning Models for Biomedical Segmentation, U. Ozbulak et al.
22nd International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI-19

Optimization
Performance

Iteration: O

L dist.: 0.00

L.. dist.: 0.00

IOU: 19.82%

P. acc.:88.08%
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So... Are Adversarial Examples are a threat to
Segmentation MOdelS? Generated Generated

‘§ogmentation ) Source perturbation adversarial example
mask of (a) unago (Enhanced x 100) L, = 2.3, L, = 0.16

Segmentation Target Adapt ive Predicted
mask of (b) 1mage optimization segmentation for the
(Target mask) masks adversarial example 11

IOU =98%, PA = 99%
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Quantitative Results of Our Approach

(Glancoma Dataset

[SIC Skin Lesion Dataset

Modification Accuracy Modification Accuracy

Optimization Lo Frsa [oU PA Lo s loU PA
SSM 4.60 0.22 47% 94% 11.76 0.24 43% 88%
+1.76 +0.09 +18% +2% +4.11 0.05 £15% +2%

ASM 2.82 0.17 94% 99% 4.11 0.16 89% 98%
+1.29 +0.09 7% +1% ££2.23 +0.10 +9% +1%

ASM + DPM 247 0.17 97 % 99% 3.88 0.16 89% 98%
(ASMA)  +1.05 +0.09 +2% +1% +1.99 +0.09 +10% +1%
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Thank you for listening!

Adversarial potato!

Any questions?
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