
Generalized Vandermonde determinants

Motivation:
The problem of polynomial interpolation is that of finding a polynomial function p : R −→ R with degree
6 n whose values coincide with those of a function f at distinct abscissae x0, x1, . . . , xn. The well-known
solution, rather ingenious, is given by:

p(x) =
∑

06k6n

f (xk)
∏

06j6n
j,k

x − xj
xk − xj

(this is Lagrange interpolation polynomial). But if we don’t know this tricky solution, we look for the
polynomial under the form p(x) = a0 + a1x+ · · ·+ anx

n; the coefficients have to fulfill the system
a0 + a1x0 + · · ·+ anx

n
0 = f (x0)

a0 + a1x1 + · · ·+ anx
n
1 = f (x1)

· · ·
a0 + a1xn + · · ·+ anx

n
n = f (yn)

(with unknowns ak). This is a linear system with as many equations as unknowns; it has a unique
solution if and only if its coefficient matrix has non-zero determinant. This matrix is a Vandermonde
matrix: 

1 x0 . . . xn0
1 x1 . . . xn1
...

...
...

1 xn . . . xnn

 . (1)

Classically, its determinant can be factored as∏
06j<k6n

(xk − xj ),

and we observe that it is non-zero since the given abscissae are assumed to be distinct: the problem of
polynomial interpolation has a unique solution.

Another problem about determining a polynomial function p : R −→ R with degree 6 n is that of
the Taylor polynomial: given a function f , n times differentiable at some point x0, we want that p(x0)
coincide with f (x0), that p′(x0) coincide with f ′(x0), . . . , that p(n)(x0) coincide with f (n)(x0); there is only
one abscissa, but “higher order” conditions. The coefficients of p are now subject to:

a0 + a1x0 + · · ·+ anx
n
0 = f (x0)

a1 + · · ·+nanx
n
0 = f ′(x0)

· · ·
an = 1

n! f
(n)(x0).

The situation is simpler than in the first problem, since the matrix of this system is an upper triangular
matrix with only ones on its diagonal: hence the determinant is 1 and this problem has always a unique
solution.

We also might have to find a polynomial function subject to mixed conditions. For instance, if f is a
real function and x1, x2, x3 three abscissae, we want to find a polynomial p (as simple as possible, i.e. of
lowest degree), such that 

p(x1) = f (x1)
p′(x1) = f ′(x1)
p(x2) = f (x2)
p(x3) = f (x3)
p′(x3) = f ′(x3)
p′′(x3) = f ′′(x3);

(2)

in other words, we ask that p coincide with f at all three abscissae, but also that the derivatives coincide
at x1 and x3 and that the second derivatives coincide at x3. Since there are six conditions, it is reasonable
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to search for p among polynomials with six coefficients, i.e. whose degree is 6 5. If we note p(x) =
= a0 + a1x+ a2x

2 + a3x
3 + a4x

4 + a5x
5, the coefficients have to fullfill the conditions

a0 + a1x1 + a2x
2
1 + a3x

3
1 + a4x

4
1 + a5x

5
1 = f (x1)

a1 + 2a2x1 + 3a3x
2
1 + 4a4x

3
1 + 5a5x

4
1 = f ′(x1)

a0 + a1x2 + a2x
2
2 + a3x

3
2 + a4x

4
2 + a5x

5
2 = f (x2)

a0 + a1x3 + a2x
2
3 + a3x

3
3 + a4x

4
3 + a5x

5
3 = f (x3)

a1 + 2a2x3 + 3a3x
2
3 + 4a4x

3
3 + 5a5x

4
3 = f ′(x3)

a2 + 3a3x3 + 6a4x
2
3 + 10a5x

3
3 = 1

2 f
′′(x3).

Again, with respect to the unknowns a0, a1, . . . , a5, this is a square linear system; its matrix is now

1 x1 x2
1 x3

1 x4
1 x5

1

0 1 2x1 3x2
1 4x3

1 5x4
1

1 x2 x2
2 x3

2 x4
2 x5

2

1 x3 x2
3 x3

3 x4
3 x5

3

0 1 2x3 3x2
3 4x3

3 5x4
3

0 0 1 3x3 6x2
3 10x3

3


. (3)

This time, the computation of its determinant is neither classical nor immediate. But we would like to
be sure that it is non-zero, in such a way that the function p exist and be unique.

Let us now formulate the problem in full generality and abstraction.
Let k be a multi-index, i.e. a list (k1, k2, . . . , kn) of natural numbers; n will be its length and k = k1 +k2 +

+ · · ·+ kn its weight. Let furthermore A be a commutative ring; we shall work with matrices with entries
in the ring A [X1,X2, . . . ,Xn] of polynomials with n indeterminates. Our goal is to prove the following

Theorem. Let

Lk(Xi) =
(

1 Xi X2
i X3

i . . . Xk−1
i

)
, V k

i =



Lk(Xi)

∂iLk(Xi)
1
2∂

2
i Lk(Xi)
...

1
(ki−1)!∂

ki−1
i Lk(Xi)


and V k =



V k
1

V k
2
...

V k
n


(∂i being the derivation with respect to the ith indeterminate). In these conditions,

détV k =
∏

16i<j6n

(Xj −Xi)
kikj . (4)

For instance (using, for simplicity, X = X1, Y = X2, Z = X3),

V (2,1,3) =



1 X X2 X3 X4 X5

0 1 2X 3X2 4X3 5X4

1 Y Y 2 Y 3 Y 4 Y 5

1 Z Z2 Z3 Z4 Z5

0 1 2Z 3Z2 4Z3 5Z4

0 0 1 3Z 6Z2 10Z3


and détV (2,1,3) = (Y −X)2(Z −X)6(Z −Y )3.

This is the matrix (3) that arises in the resolution of problem (2). When k = (1,1, . . . ,1),

V (1,1,...,1) =


1 X1 . . . Xn

1
1 X2 . . . Xn

2
...

...
...

1 Xn . . . Xn
n

 : (5)
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this matrix is merely the classical Vandermondematrix, as it appears in the polynomial interpolation
problem. Furthermore, when k = (n),

V (n) =



1 X1 X2
1 . . . Xn

1
0 1 2X1 . . . nXn−1

1
0 0 1 . . . n(n−1)

2 Xn−2
1

...
...

...
...

0 0 0 . . . 1


(6)

is the matrix that appears in the problem of the Taylor polynomial. In this case, the right hand side
of (4) is 1, since the product is empty when the length of k is 1.

Let us note that one of the ki ’s may be equal to zero; however, in such a case, the corresponding
group of lines, in V k , is empty: the only effect is to shift the numbering of the following indeterminates.
For instance,

V (2,1) =

 1 X1 X2
1

0 1 2X1
1 X2 X2

2

 , while V (2,0,1) =

 1 X1 X2
1

0 1 2X1
1 X3 X2

3

 .
Considering multi-indices with null components is thus pointless, although it is not forbidden.

Before proving the theorem, we have to state and justify two lemmas.
Lemma 1. If P ∈ A[X], then

P ′ =
P (X +H)− P

H

∣∣∣∣∣
H=0

.

The right-hand side of this equality must be understood as follows: P (X+H) is the two-indeterminate
(X and H) polynomial obtained by the substitution of X + H to X in P ; the difference P (X + H) − P =
= P (X+H)−P (X) vanishes when H = 0; hence, after the polynomial remainder theorem, it is divisible by
H ; it follows that (P (X+H)−P )/H is a polynomial (rather than a fraction), again with two indeterminates
X and H); finally, (P (X +H)− P )/H |H=0 is the result of the substitution of 0 to H in this polynomial; it is
a polynomial in X.
Proof: Since both maps from A[X] into itself

P 7→ P ′ and P 7→ (P (X +H)− P )/H |H=0

are linear, it is enough to prove the equality when P is one of the elements of the basis (1,X,X2, . . .)
of A[X]. But, for any natural number n,

(X +H)n −Xn

H

∣∣∣∣∣
H=0

=

∑
06i6n

(n
i

)
Xn−iH i −Xn

H

∣∣∣∣∣∣∣∣∣
H=0

=

∑
0<i6n

(n
i

)
Xn−iH i

H

∣∣∣∣∣∣∣∣∣
H=0

=
∑

0<i6n

(
n
i

)
Xn−iH i−1

∣∣∣∣∣∣∣∣
H=0

=

=
(
n
1

)
Xn−1 = nXn−1 = (Xn)′ .

Lemma 2. If P ∈ A[X], then

P (d) =
1
Hd

∑
06j6d

(−1)j
(
d
j

)
P (X + (d − j)H)

∣∣∣∣∣∣∣∣
H=0

.

This result generalizes lemma 1, which is the particular case d = 1.
First proof: We can work by induction, just as when we prove the binomial formula (see [2]) or the
general Leibniz’ rule for the nth derivative of a product (see [3]). We have here to cope with questions
of sign, but everything is ok.

Second proof: As for the first lemma, it is sufficient to prove the result when P = Xn (n ∈ N). In this
case, the right-hand side becomes

1
Hd

∑
06j6d

(−1)j
(
d
j

)
(X + (d − j)H)n

∣∣∣∣∣∣∣∣
H=0

=
1
Hd

∑
06j6d

(−1)j
(
d
j

) ∑
06i6n

(
n
i

)
Xn−i((d − j)H)i

∣∣∣∣∣∣∣∣
H=0

=
∑

06i6n

(
n
i

)
Xn−i

( ∑
06j6d

(−1)j
(
d
j

)
(d − j)i

)
H i−d

∣∣∣∣∣∣∣∣
H=0

.
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The sum in the parentheses is something that we recognise:
∑

06j6d
(−1)j

(d
j

)
(d − j)i is the number of onto

maps from a i element set to a d element set (see for instance [1]); this number is also d! times the
Stirling number of the second kind S(i,d). This number is obviously zero when i < d (hopefully!): so
in the last sum, the negative powers of H disappear and we have, as expected, a polynomial in H — not
a rational fraction. It follows that the principal sum is null when n < d, since in this case all the terms
disappear. Next, if n > d, the value at H = 0 of this polynomial is its constant term, obtained when
i = d; the sum

∑
06j6d

(−1)j
(d
j

)
(d − j)d , in this case, is the number of onto maps from a d element set to a d

element set, i.e. d!. And

1
Hd

∑
06j6d

(−1)j
(
d
j

)
(X + (d − j)H)n

∣∣∣∣∣∣∣∣
H=0

=
(
n
d

)
Xn−d

( ∑
06j6d

(−1)j
(
d
j

)
(d − j)d

)
=

(
n
d

)
Xn−dd! =

=
n!

(n− d)!
Xn−d = n(n− 1) · · · (n− d + 1)Xn−d = (Xn)(d).

Proof of the theorem: In matrix V k , the ith group of lines can be rewritten, thanks to the lemmas:

V k
i =



Lk(Xi)
1
H

(Lk(Xi +H)−Lk(Xi))
1

2H2 (Lk(Xi + 2H)− 2Lk(Xi +H) +Lk(Xi))
...

1
(ki − 1)!Hki−1

( ∑
06j6ki−1

(−1)j
(ki−1

j

)
Lk(Xi + (ki − 1− j)H)

)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

.

In the computation of détV k , we shall factor out 1/H in the first line of each such group, 1/(2H2) in
the second one, . . . , 1/((ki − 1)!Hki−1 in the last one; so we have divided the determinant by

∆ ..= (1! · 2! · · · (k1 − 1)!) · · · (1! · 2! · · · (kn − 1)!)H (k1−1)k1/2+···+(kn−1)kn/2. (7)

The ith group of lines becomes:

Lk(Xi)
Lk(Xi +H)−Lk(Xi)

Lk(Xi + 2H)− 2Lk(Xi +H) +Lk(Xi)
...∑

06j6ki−1
(−1)j

(ki−1
j

)
Lk(X + (ki − 1− j)H)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

.

In this new group of lines, we add the first line to the second one, we substract it from the third one,
and so on, to get 

Lk(Xi)
Lk(Xi +H)

Lk(Xi + 2H)− 2Lk(Xi +H)
...∑

06j6ki−2
(−1)j

(ki−1
j

)
Lk(X + (ki − 1− j)H)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

;

these operations left the determinant unchanged. We add now twice the second line to the third one,
we substract it three times to the fourth line, etc., whigh gives

Lk(Xi)
Lk(Xi +H)
Lk(Xi + 2H)

...∑
06j6ki−3

(−1)j
(ki−1

j

)
Lk(X + (ki − 1− j)H)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

;
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again, the determinant remains unchanged. Going on the same way, we obtain at last
Lk(Xi)

Lk(Xi +H)
Lk(Xi + 2H)

...
Lk(X + (ki − 1)H)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

,

and the matrix

W k =



Lk(X1)
Lk(X1 +H)

...
Lk(X1 + (k1 − 1)H)

...

Lk(Xn)
Lk(Xn +H)

...
Lk(Xn + (kn − 1)H)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
H=0

formed by these n groups of lines still has the same determinant as the former. In other words,

détV k =
1
∆

détW k
∣∣∣∣∣
H=0

, (8)

where ∆ is defined by (7). But the determinant of W k is a classical Vandermonde determinant; its
value is

((X1 +H)−X1)((X1 + 2H)−X1) · · · ((X1 + (k1 − 1)H)−X1)(X2 −X1) · · · ((Xn + (kn − 1)H)− (Xn + (kn − 2)H)),

i. e. the product of all differences
(Xj + j ′H)− (Xi + i′H)

where 1 6 i 6 j 6 n, 0 6 i′ < ki , 0 6 j ′ < kj and, when i = j, i′ < j ′ . Formally:

détW k =
∏

16i6n
06i′<j ′6ki

(
(Xi − j ′H)− (Xi − i′H)

)
·

∏
16i<j6n

06i′<ki
06j ′<kj

(
(Xj − j ′H)− (Xi − i′H)

)
(9)

For a fixed i,∏
06i′<j ′<ki

(
(Xi − j ′H)− (Xi − i′H)

)
=

∏
06i′<j ′<ki

(i′ − j ′)H = 1! · · · (ki − 1)!H (ki−1)+···+1 = 1! · · · (ki − 1)!H (ki−1)ki /2

The first product in the right-hand side of (9) is thus:∏
16i6n

06i′<j ′<ki

(
(Xi − j ′H)− (Xi − i′H)

)
=

∏
16i6n

1! · · · (ki − 1)!H (ki−1)ki /2

= (1! · 2! · · · (k1 − 1)!) · · · (1! · 2! · · · (kn − 1)!)H (k1−1)k1/2+···+(kn−1)kn/2

= ∆.

Hence,

détV k =
∏

16i<j6n

06i′<ki
06j ′<kj

(
(Xj − j ′H)− (Xi − i′H)

)∣∣∣∣
H=0

=
∏

16i<j6n

06i′<ki
06j ′<kj

(
Xj −Xi + (i′ − j ′)H

)∣∣∣∣
H=0

=

=
∏

16i<j6n

06i′<ki
06j ′<kj

(Xj −Xi) =
∏

16i<j6n

(Xj −Xi)
kikj ,

and the proof is complete.
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