Generalized VANDERMONDE determinants

MOTIVATION:

The problem of polynomial interpolation is that of finding a polynomial function p : R — R with degree
< n whose values coincide with those of a function f at distinct abscissae xg, x1, ..., x,. The well-known
solution, rather ingenious, is given by:

p= Y o [] :k__fjj

0<k<n 0<j<n
j=k

(this is LAGRANGE interpolation polynomial). But if we don’t know this tricky solution, we look for the
polynomial under the form p(x) = ag +a;x +--- + a,x"; the coefficients have to fulfill the system

ag+ayxo+--+ayxg = f(xp)
ag+a;xy +---+a,xy = f(x)

ao+ﬂ1xn+"'+ﬂnxﬂ=f(3/n)

(with unknowns a;). This is a linear system with as many equations as unknowns; it has a unique
solution if and only if its coefficient matrix has non-zero determinant. This matrix is a VANDERMONDE
matrix:

I x ... xp
1 x ... xf

: : (1)
1 x, X

Classically, its determinant can be factored as

I_I (x = x;)),

0<j<k<n

and we observe that it is non-zero since the given abscissae are assumed to be distinct: the problem of
polynomial interpolation has a unique solution.

Another problem about determining a polynomial function p : R — R with degree < # is that of
the TAYLOR polynomial: given a function f, n times differentiable at some point xy, we want that p(x)
coincide with f(x), that p’(x) coincide with f’(xy), ..., that p(x,) coincide with f{"(x,); there is only
one abscissa, but “higher order” conditions. The coefficients of p are now subject to:

ap +a1x0+---+anx6‘ :f(XO)
ay +---+na,x; = f'(xp)

ap = %f(n)(x0)~

The situation is simpler than in the first problem, since the matrix of this system is an upper triangular
matrix with only ones on its diagonal: hence the determinant is 1 and this problem has always a unique
solution.

We also might have to find a polynomial function subject to mixed conditions. For instance, if f is a
real function and x;, x,, x5 three abscissae, we want to find a polynomial p (as simple as possible, i.e. of
lowest degree), such that

(x1) = f(x1)
p'(x1) = f'(x1)
p(x2):f(x2) (2)
p(x3) = f(x3
p'(x3) = f'(x3)
p”(x3) = f"(x3);

in other words, we ask that p coincide with f at all three abscissae, but also that the derivatives coincide
at x; and x3 and that the second derivatives coincide at x3. Since there are six conditions, it is reasonable



to search for p among polynomials with six coefficients, i.e. whose degree is < 5. If we note p(x) =

2

=ap+ta1x+arx +a3x3 +agx

Again, with respect to the unknowns ay, a;, .

+as5x°, the coefficients have to fullfill the conditions

apg+aypx; + [123(% + (13Xi)’ + {14XiL + [153(? = f(xl)
ay +2ax; +3a3x? +dagx’ + 5a5x‘11 =f'(x1)
ag+ayx; + azxg + a3x§’ + a4x‘21 + asxg = f(x;)
apg+aypxs+ a2x§ + a3x§’ + (14X§ + ﬂ5X?5) = f(X3)
a +2apxs3 + 3a3x§ + 4u4x§’ + 5a5x§ = f’(x3)

ay +3a3x;3 + 6a4x3 + 10asx3 = S f(x3).

2 3 4 5
1 x xp x X x]
0 1 2x 3x) 4x 5x}
2 3 4 5
1 x x5 x5 X x5
2 3 4 5
1 x5 x5 x3 X5 X3
0 1 2x3 3x3 4x} 5x3
0 0 1 3x3 6x3 10x;

.., as, this is a square linear system; its matrix is now

This time, the computation of its determinant is neither classical nor immediate. But we would like to
be sure that it is non-zero, in such a way that the function p exist and be unique.

Let us now formulate the problem in full generality and abstraction.

Let k be a multi-index, i.e. a list (k;, k,,...,k,) of natural numbers; 1 will be its length and k = ky +k, +
+---+k,, its weight. Let furthermore A be a commutative ring; we shall work with matrices with entries
in the ring A[Xy, X5, ..., X,,] of polynomials with n indeterminates. Our goal is to prove the following

Theorem. Let

Li(X;)
9;Li(X;)
xk-1 ), vk = %Q?Lk(X,-) and V=

ki—1
(kilj)[ai Li(X;)

(d; being the derivation with respect to the ith indeterminate). In these conditions,

detvi= [ (-8
1<i<j<n

For instance (using, for simplicity, X = X, Y = X5, Z = X3),

V(2,1,3)

O O = = O =

X

1
Y
Z
1
0

X2
2X
YZ
ZZ
27
1

X+ x5

4x3 5x*

vyt  ys

74 55 and détVPd) = (Y -X)2(Z-X)%(Z-Y)>.
473 574

622 1073

This is the matrix (3) that arises in the resolution of problem (2). When k = (1,1,...,1),

1 Xy ... X

n

Sy |1 X X
1 X, X



this matrix is merely the classical VANDERMONDE matrix, as it appears in the polynomial interpolation
problem. Furthermore, when k = (n),

1 X, X2 .. X
0 1 2X; .. nxp!
-1 —
vi={ o o 1 .. Hlxn (6)
00 0 .. 1

is the matrix that appears in the problem of the TAYLOR polynomial. In this case, the right hand side
of (4)is 1, since the product is empty when the length of k is 1.
Let us note that one of the k;’s may be equal to zero; however, in such a case, the corresponding

group of lines, in vk, is empty: the only effect is to shift the numbering of the following indeterminates.
For instance,

1 X, X? 1 X, X?

(21) — ; (2,0,1) _
veb=1 0 1 2X; |, while V =lo 1 2X4
1 X, X3 1 X5 X3

Considering multi-indices with null components is thus pointless, although it is not forbidden.

Before proving the theorem, we have to state and justify two lemmas.
Lemma 1. If P € A[X], then
P(X+H)-P

H H=0

The right-hand side of this equality must be understood as follows: P(X+H) is the two-indeterminate
(X and H) polynomial obtained by the substitution of X + H to X in P; the difference P(X + H) - P =
= P(X+H)-P(X) vanishes when H = 0; hence, after the polynomial remainder theorem, it is divisible by
H; it follows that (P(X+H)—P)/H is a polynomial (rather than a fraction), again with two indeterminates
X and H); finally, (P(X + H) — P)/H|g~¢ is the result of the substitution of 0 to H in this polynomial; it is
a polynomial in X.
PROOF: Since both maps from A[X] into itself

PP and P (P(X+H)-P)/Hly-o

P’ =

are linear, it is enough to prove the equality when P is one of the elements of the basis (l,X,XZ,...)
of A[X]. But, for any natural number #,

Z ((I)sz—iHi_Xn Z (ﬂ)Xn—iHi
(X+H)"-X" _ 0<isn ' _ 0<i<n ' _ Z n X1 -1 _
H H=0 H H - ]
0<ign _
H=0 H=0 H=0
= (’;)X"—l — X"l = (X", =

Lemma 2. If P € A[X], then

1 d :
P = =7 Z (—1)J(j)P(X+(d—])H)
0<j<d H=0
This result generalizes lemma 1, which is the particular case d = 1.
FIRST PROOF: We can work by induction, just as when we prove the binomial formula (see [2]) or the
general LEIBNIZ’ rule for the nth derivative of a product (see [3]). We have here to cope with questions
of sign, but everything is ok. u

SECOND PROOE: As for the first lemma, it is sufficient to prove the result when P = X" (n € N). In this
case, the right-hand side becomes

(d {d . 4
g 2 en(ocea-pmr = n Y eoll) (e

0<j<d H=0 0<j<d oign H=0
n ) Md . .
— ‘ Xn—l( —1)/ d—i I)Hl—d
Y (iper{ X (-
0<ign 0gj<d H=0



The sum in the parentheses is something that we recognise: ) (—1)j(’j)(d —j)! is the number of onto
0<j<d

maps from a i element set to a d element set (see for instance [1]); this number is also d! times the

STIRLING number of the second kind S(i,d). This number is obviously zero when i < d (hopefully!): so

in the last sum, the negative powers of H disappear and we have, as expected, a polynomial in H — not

a rational fraction. It follows that the principal sum is null when n < d, since in this case all the terms

disappear. Next, if n > d, the value at H = 0 of this polynomial is its constant term, obtained when

i=d;thesum ) (—l)j(‘]?)(d — ), in this case, is the number of onto maps from a d element set to a d
0<j<d
element set, i.e. d!. And

i et L L e

oGa H=0 0<G<d

=—— X" =num-1)-(n-d+1)X"4 = (x4, u

PROOF OF THE THEOREM: In matrix V¥, the ith group of lines can be rewritten, thanks to the lemmas:

, Ly(X;)
(L, + H) = LX)
E Sz (L4 2H) = 21X, + H) + LX)

1 ( .4 ki—1 .
(Y YL+ (k=1 H))
In the computation of dét VE, we shall factor out 1/H in the first line of each such group, 1/(2H2) in
the second one, ..., 1/((k; — 1)!Hk1"1 in the last one; so we have divided the determinant by

A= (1120 (ky = 1)) (11 2 (K, — 1)) HF1 =Dkt /2 (k= Dka/2. (7)
The ith group of lines becomes:

Ly (X;)
Li(X; + H) — Lg(X;)
Lk(Xi + ZH) - 2Lk(Xi +H)+Lk(Xi)

L (L + (k= 1= )H)
0<j<ki-1

H=0

In this new group of lines, we add the first line to the second one, we substract it from the third one,
and so on, to get
Ly (X;)
Ly(X; + H)
Lk(Xi + ZH) - 2Lk(Xi + H)

. k17 : .
L DTHLX + (ki -1~ )H)
Ogjgkifz H=0
these operations left the determinant unchanged. We add now twice the second line to the third one,

we substract it three times to the fourth line, etc., whigh gives
Li(X;)

Ly(X;+H)
Li(X; +2H)

T WOHLX + (ki -1 - j)H)
0<j<ki-3

H=0



again, the determinant remains unchanged. Going on the same way, we obtain at last

and the matrix

Ly(X;)
Lk(Xi + H)
Lk(Xi + 2H)

Lo(X + (ki — 1)H)

H=0

Li(Xy)
Li(Xy +H)

Li(X, + (ki — 1)H)

Lk(Xn)
Li(X,+H)

Li(Xo + (k= DH) Mg

formed by these n groups of lines still has the same determinant as the former. In other words,

— 1 —
détvk= —detwk| (8)
A
H=0

where A is defined by (7). But the determinant of WF is a classical VANDERMONDE determinant; its

value is
(X1 +H) = X)(Xy +2H) = Xq) - ((Xq + (kg = 1)H) = X1 )(Xo = X1) -+ (X, + (k, = DH) = (X, + (k, = 2)H)),
i. e. the product of all differences
(X] +j/H) — (XZ + Z’H)
where 1 <i<j<n 0<i"<k;,0<j' < k]- and, when i = j, i’ < j’. Formally:
deewr= [ (Xi-jH)-x;=i'H) - [ (X-i'H)-(X;-i'H)) 9)
1<i<n 1<i<j<n
0<i’'<j’<k; 0<i’<k;
0<j'<kj

For a fixed i,

((X; - j'H)— (X; - i'H)) =

0<i’<j'<k;

(i'=j)H = 11 (k; — 1) HK= D1 = 11k — 1)1 K Dki/2

0<i’<j'<k;

The first product in the right—hand side of (9) is thus:

[T (xi-jH)-

1<i<n
0<i'<j’<k;

Hence,

detvi= [ (x
1<i<j<n
0<i’<ki
0<j’<kj

and the proof is complete.

—j'H)—

X;=i'H))= [ ] 10 (k= 1HEDk2
1<ign
( (kl _ 1)|) (1; (k _ 1) )H(klfl)k1/2+---+(kn71)kn/2
=A.
(X; —i’H))|H_O - (X -X; + (i’—j’)H)'H_O -
- 1<i<j<n -

0<i’<ki
0<j'<kj

= ]—[ (Xj-Xi) =
1<i<j<n
0<1"<ki
0<j’<k]‘
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