Generalized Vandermonde determinants

Motivation:

The problem of polynomial interpolation is that of finding a polynomial function $p: \mathbf{R} \longrightarrow \mathbf{R}$ with degree $\leqslant n$ whose values coincide with those of a function f at distinct abscissae $x_{0}, x_{1}, \ldots, x_{n}$. The well-known solution, rather ingenious, is given by:

$$
p(x)=\sum_{0 \leqslant k \leqslant n} f\left(x_{k}\right) \prod_{\substack{0 \leqslant j \leqslant n \\ j \neq k}} \frac{x-x_{j}}{x_{k}-x_{j}}
$$

(this is LAGRANGE interpolation polynomial). But if we don't know this tricky solution, we look for the polynomial under the form $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$; the coefficients have to fulfill the system

$$
\left\{\begin{array}{c}
a_{0}+a_{1} x_{0}+\cdots+a_{n} x_{0}^{n}=f\left(x_{0}\right) \\
a_{0}+a_{1} x_{1}+\cdots+a_{n} x_{1}^{n}=f\left(x_{1}\right) \\
\cdots \\
a_{0}+a_{1} x_{n}+\cdots+a_{n} x_{n}^{n}=f\left(y_{n}\right)
\end{array}\right.
$$

(with unknowns a_{k}). This is a linear system with as many equations as unknowns; it has a unique solution if and only if its coefficient matrix has non-zero determinant. This matrix is a VANDERMONDE matrix:

$$
\left(\begin{array}{cccc}
1 & x_{0} & \ldots & x_{0}^{n} \tag{1}\\
1 & x_{1} & \ldots & x_{1}^{n} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \ldots & x_{n}^{n}
\end{array}\right)
$$

Classically, its determinant can be factored as

$$
\prod_{0 \leqslant j<k \leqslant n}\left(x_{k}-x_{j}\right)
$$

and we observe that it is non-zero since the given abscissae are assumed to be distinct: the problem of polynomial interpolation has a unique solution.

Another problem about determining a polynomial function $p: \mathbf{R} \longrightarrow \mathbf{R}$ with degree $\leqslant n$ is that of the TAYLOR polynomial: given a function f, n times differentiable at some point x_{0}, we want that $p\left(x_{0}\right)$ coincide with $f\left(x_{0}\right)$, that $p^{\prime}\left(x_{0}\right)$ coincide with $f^{\prime}\left(x_{0}\right), \ldots$, that $p^{(n)}\left(x_{0}\right)$ coincide with $f^{(n)}\left(x_{0}\right)$; there is only one abscissa, but "higher order" conditions. The coefficients of p are now subject to:

$$
\left\{\begin{aligned}
a_{0}+a_{1} x_{0}+\cdots+a_{n} x_{0}^{n} & =f\left(x_{0}\right) \\
a_{1}+\cdots+n a_{n} x_{0}^{n} & =f^{\prime}\left(x_{0}\right) \\
\cdots & \\
a_{n} & =\frac{1}{n!} f^{(n)}\left(x_{0}\right)
\end{aligned}\right.
$$

The situation is simpler than in the first problem, since the matrix of this system is an upper triangular matrix with only ones on its diagonal: hence the determinant is 1 and this problem has always a unique solution.

We also might have to find a polynomial function subject to mixed conditions. For instance, if f is a real function and x_{1}, x_{2}, x_{3} three abscissae, we want to find a polynomial p (as simple as possible, i.e. of lowest degree), such that

$$
\left\{\begin{align*}
p\left(x_{1}\right) & =f\left(x_{1}\right) \tag{2}\\
p^{\prime}\left(x_{1}\right) & =f^{\prime}\left(x_{1}\right) \\
p\left(x_{2}\right) & =f\left(x_{2}\right) \\
p\left(x_{3}\right) & =f\left(x_{3}\right) \\
p^{\prime}\left(x_{3}\right) & =f^{\prime}\left(x_{3}\right) \\
p^{\prime \prime}\left(x_{3}\right) & =f^{\prime \prime}\left(x_{3}\right) ;
\end{align*}\right.
$$

in other words, we ask that p coincide with f at all three abscissae, but also that the derivatives coincide at x_{1} and x_{3} and that the second derivatives coincide at x_{3}. Since there are six conditions, it is reasonable
to search for p among polynomials with six coefficients, i.e. whose degree is $\leqslant 5$. If we note $p(x)=$ $=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}$, the coefficients have to fullfill the conditions

$$
\left\{\begin{aligned}
a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3}+a_{4} x_{1}^{4}+a_{5} x_{1}^{5} & =f\left(x_{1}\right) \\
a_{1}+2 a_{2} x_{1}+3 a_{3} x_{1}^{2}+4 a_{4} x_{1}^{3}+5 a_{5} x_{1}^{4} & =f^{\prime}\left(x_{1}\right) \\
a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3}+a_{4} x_{2}^{4}+a_{5} x_{2}^{5} & =f\left(x_{2}\right) \\
a_{0}+a_{1} x_{3}+a_{2} x_{3}^{2}+a_{3} x_{3}^{3}+a_{4} x_{3}^{4}+a_{5} x_{3}^{5} & =f\left(x_{3}\right) \\
a_{1}+2 a_{2} x_{3}+3 a_{3} x_{3}^{2}+4 a_{4} x_{3}^{3}+5 a_{5} x_{3}^{4} & =f^{\prime}\left(x_{3}\right) \\
a_{2}+3 a_{3} x_{3}+6 a_{4} x_{3}^{2}+10 a_{5} x_{3}^{3} & =\frac{1}{2} f^{\prime \prime}\left(x_{3}\right) .
\end{aligned}\right.
$$

Again, with respect to the unknowns $a_{0}, a_{1}, \ldots, a_{5}$, this is a square linear system; its matrix is now

$$
\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & x_{1}^{4} & x_{1}^{5} \tag{3}\\
0 & 1 & 2 x_{1} & 3 x_{1}^{2} & 4 x_{1}^{3} & 5 x_{1}^{4} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & x_{2}^{4} & x_{2}^{5} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & x_{3}^{4} & x_{3}^{5} \\
0 & 1 & 2 x_{3} & 3 x_{3}^{2} & 4 x_{3}^{3} & 5 x_{3}^{4} \\
0 & 0 & 1 & 3 x_{3} & 6 x_{3}^{2} & 10 x_{3}^{3}
\end{array}\right)
$$

This time, the computation of its determinant is neither classical nor immediate. But we would like to be sure that it is non-zero, in such a way that the function p exist and be unique.

Let us now formulate the problem in full generality and abstraction.
Let \bar{k} be a multi-index, i.e. a list $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of natural numbers; n will be its length and $k=k_{1}+k_{2}+$ $+\cdots+k_{n}$ its weight. Let furthermore A be a commutative ring; we shall work with matrices with entries in the ring $A\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ of polynomials with n indeterminates. Our goal is to prove the following

Theorem. Let

$$
L_{k}\left(X_{i}\right)=\left(\begin{array}{llllll}
1 & X_{i} & X_{i}^{2} & X_{i}^{3} & \ldots & X_{i}^{k-1}
\end{array}\right), \quad V_{i}^{\bar{k}}=\left(\begin{array}{c}
L_{k}\left(X_{i}\right) \\
\partial_{i} L_{k}\left(X_{i}\right) \\
\frac{1}{2} \partial_{i}^{2} L_{k}\left(X_{i}\right) \\
\vdots \\
\frac{1}{\left(k_{i}-1\right)!} \partial_{i}^{k_{i}-1} L_{k}\left(X_{i}\right)
\end{array}\right) \quad \text { and } \quad V^{\bar{k}}=\left(\begin{array}{c}
V_{1}^{\bar{k}} \\
V_{2}^{\bar{k}} \\
\vdots \\
V_{n}^{\bar{k}}
\end{array}\right)
$$

(∂_{i} being the derivation with respect to the i ith indeterminate). In these conditions,

$$
\begin{equation*}
\text { dét } V^{\bar{k}}=\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)^{k_{i} k_{j}} . \tag{4}
\end{equation*}
$$

For instance (using, for simplicity, $X=X_{1}, Y=X_{2}, Z=X_{3}$),

$$
V^{(2,1,3)}=\left(\begin{array}{cccccc}
1 & X & X^{2} & X^{3} & X^{4} & X^{5} \\
0 & 1 & 2 X & 3 X^{2} & 4 X^{3} & 5 X^{4} \\
1 & Y & Y^{2} & Y^{3} & Y^{4} & Y^{5} \\
1 & Z & Z^{2} & Z^{3} & Z^{4} & Z^{5} \\
0 & 1 & 2 Z & 3 Z^{2} & 4 Z^{3} & 5 Z^{4} \\
0 & 0 & 1 & 3 Z & 6 Z^{2} & 10 Z^{3}
\end{array}\right) \quad \text { and } \quad \text { dét } V^{(2,1,3)}=(Y-X)^{2}(Z-X)^{6}(Z-Y)^{3}
$$

This is the matrix (3) that arises in the resolution of problem (2). When $\bar{k}=(1,1, \ldots, 1)$,

$$
V^{(1,1, \ldots, 1)}=\left(\begin{array}{cccc}
1 & X_{1} & \ldots & X_{1}^{n} \tag{5}\\
1 & X_{2} & \ldots & X_{2}^{n} \\
\vdots & \vdots & & \vdots \\
1 & X_{n} & \ldots & X_{n}^{n}
\end{array}\right)
$$

this matrix is merely the classical VANDERMONDE matrix, as it appears in the polynomial interpolation problem. Furthermore, when $\bar{k}=(n)$,

$$
V^{(n)}=\left(\begin{array}{ccccc}
1 & X_{1} & X_{1}^{2} & \ldots & X_{1}^{n} \tag{6}\\
0 & 1 & 2 X_{1} & \ldots & n X_{1}^{n-1} \\
0 & 0 & 1 & \ldots & \frac{n(n-1)}{2} X_{1}^{n-2} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

is the matrix that appears in the problem of the TAYLOR polynomial. In this case, the right hand side of (4) is 1 , since the product is empty when the length of \bar{k} is 1 .

Let us note that one of the k_{i} 's may be equal to zero; however, in such a case, the corresponding group of lines, in $V^{\bar{k}}$, is empty: the only effect is to shift the numbering of the following indeterminates. For instance,

$$
V^{(2,1)}=\left(\begin{array}{ccc}
1 & X_{1} & X_{1}^{2} \\
0 & 1 & 2 X_{1} \\
1 & X_{2} & X_{2}^{2}
\end{array}\right), \quad \text { while } \quad V^{(2,0,1)}=\left(\begin{array}{ccc}
1 & X_{1} & X_{1}^{2} \\
0 & 1 & 2 X_{1} \\
1 & X_{3} & X_{3}^{2}
\end{array}\right)
$$

Considering multi-indices with null components is thus pointless, although it is not forbidden.
Before proving the theorem, we have to state and justify two lemmas.
Lemma 1. If $P \in A[X]$, then

$$
P^{\prime}=\left.\frac{P(X+H)-P}{H}\right|_{H=0}
$$

The right-hand side of this equality must be understood as follows: $P(X+H)$ is the two-indeterminate (X and H) polynomial obtained by the substitution of $X+H$ to X in P; the difference $P(X+H)-P=$ $=P(X+H)-P(X)$ vanishes when $H=0$; hence, after the polynomial remainder theorem, it is divisible by H; it follows that $(P(X+H)-P) / H$ is a polynomial (rather than a fraction), again with two indeterminates X and H); finally, $(P(X+H)-P) /\left.H\right|_{H=0}$ is the result of the substitution of 0 to H in this polynomial; it is a polynomial in X.
PROOF: Since both maps from $A[X]$ into itself

$$
P \mapsto P^{\prime} \quad \text { and } \quad P \mapsto(P(X+H)-P) /\left.H\right|_{H=0}
$$

are linear, it is enough to prove the equality when P is one of the elements of the basis $\left(1, X, X^{2}, \ldots\right)$ of $A[X]$. But, for any natural number n,

$$
\begin{array}{r}
\left.\frac{(X+H)^{n}-X^{n}}{H}\right|_{H=0}=\left.\frac{\sum_{0 \leqslant i \leqslant n}\binom{n}{i} X^{n-i} H^{i}-X^{n}}{H}\right|_{H=0}=\left.\frac{\sum_{0<i \leqslant n}\binom{n}{i} X^{n-i} H^{i}}{H}\right|_{H=0}=\left.\sum_{0<i \leqslant n}\binom{n}{i} X^{n-i} H^{i-1}\right|_{H=0}= \\
=\binom{n}{1} X^{n-1}=n X^{n-1}=\left(X^{n}\right)^{\prime}
\end{array}
$$

Lemma 2. If $P \in A[X]$, then

$$
P^{(d)}=\left.\frac{1}{H^{d}} \sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j} P(X+(d-j) H)\right|_{H=0}
$$

This result generalizes lemma 1 , which is the particular case $d=1$.
FIRST PROOF: We can work by induction, just as when we prove the binomial formula (see [2]) or the general LeIbNIZ' rule for the nth derivative of a product (see [3]). We have here to cope with questions of sign, but everything is ok.
SECOND PROOF: As for the first lemma, it is sufficient to prove the result when $P=X^{n}(n \in \mathbf{N})$. In this case, the right-hand side becomes

$$
\begin{aligned}
\left.\frac{1}{H^{d}} \sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(X+(d-j) H)^{n}\right|_{H=0} & =\left.\frac{1}{H^{d}} \sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j} \sum_{0 \leqslant i \leqslant n}\binom{n}{i} X^{n-i}((d-j) H)^{i}\right|_{H=0} \\
& =\left.\sum_{0 \leqslant i \leqslant n}\binom{n}{i} X^{n-i}\left(\sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(d-j)^{i}\right) H^{i-d}\right|_{H=0}
\end{aligned}
$$

The sum in the parentheses is something that we recognise: $\sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(d-j)^{i}$ is the number of onto maps from a i element set to a d element set (see for instance [1]); this number is also d ! times the STIRLING number of the second kind $S(i, d)$. This number is obviously zero when $i<d$ (hopefully!): so in the last sum, the negative powers of H disappear and we have, as expected, a polynomial in H - not a rational fraction. It follows that the principal sum is null when $n<d$, since in this case all the terms disappear. Next, if $n \geqslant d$, the value at $H=0$ of this polynomial is its constant term, obtained when $i=d$; the sum $\sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(d-j)^{d}$, in this case, is the number of onto maps from a d element set to a d element set, i.e. d!. And

$$
\begin{aligned}
\left.\frac{1}{H^{d}} \sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(X+(d-j) H)^{n}\right|_{H=0}=\binom{n}{d} & X^{n-d}\left(\sum_{0 \leqslant j \leqslant d}(-1)^{j}\binom{d}{j}(d-j)^{d}\right)=\binom{n}{d} X^{n-d} d!= \\
& =\frac{n!}{(n-d)!} X^{n-d}=n(n-1) \cdots(n-d+1) X^{n-d}=\left(X^{n}\right)^{(d)}
\end{aligned}
$$

PROOF OF THE THEOREM: In matrix $V^{\bar{k}}$, the i th group of lines can be rewritten, thanks to the lemmas:

$$
V_{i}^{\bar{k}}=\left.\left(\begin{array}{c}
L_{k}\left(X_{i}\right) \\
\frac{1}{H}\left(L_{k}\left(X_{i}+H\right)-L_{k}\left(X_{i}\right)\right) \\
\frac{1}{2 H^{2}}\left(L_{k}\left(X_{i}+2 H\right)-2 L_{k}\left(X_{i}+H\right)+L_{k}\left(X_{i}\right)\right) \\
\vdots \\
\frac{1}{\left(k_{i}-1\right)!H^{k_{i}-1}}\left(\sum_{0 \leqslant j \leqslant k_{i}-1}(-1)^{j}\binom{k_{i}-1}{j} L_{k}\left(X_{i}+\left(k_{i}-1-j\right) H\right)\right)
\end{array}\right)\right|_{H=0} .
$$

In the computation of dét $V^{\bar{k}}$, we shall factor out $1 / H$ in the first line of each such group, $1 /\left(2 H^{2}\right)$ in the second one, $\ldots, 1 /\left(\left(k_{i}-1\right)!H^{k_{i}-1}\right.$ in the last one; so we have divided the determinant by

$$
\begin{equation*}
\Delta:=\left(1!\cdot 2!\cdots\left(k_{1}-1\right)!\right) \cdots\left(1!\cdot 2!\cdots\left(k_{n}-1\right)!\right) H^{\left(k_{1}-1\right) k_{1} / 2+\cdots+\left(k_{n}-1\right) k_{n} / 2} \tag{7}
\end{equation*}
$$

The i th group of lines becomes:

$$
\left.\left(\begin{array}{c}
L_{k}\left(X_{i}\right) \\
L_{k}\left(X_{i}+H\right)-L_{k}\left(X_{i}\right) \\
L_{k}\left(X_{i}+2 H\right)-2 L_{k}\left(X_{i}+H\right)+L_{k}\left(X_{i}\right) \\
\vdots \\
\sum_{0 \leqslant j \leqslant k_{i}-1}(-1)^{j}\binom{k_{i}-1}{j} L_{k}\left(X+\left(k_{i}-1-j\right) H\right)
\end{array}\right)\right|_{H=0}
$$

In this new group of lines, we add the first line to the second one, we substract it from the third one, and so on, to get

$$
\left.\left(\begin{array}{c}
L_{k}\left(X_{i}\right) \\
L_{k}\left(X_{i}+H\right) \\
L_{k}\left(X_{i}+2 H\right)-2 L_{k}\left(X_{i}+H\right) \\
\vdots \\
\sum_{0 \leqslant j \leqslant k_{i}-2}(-1)^{j}\binom{k_{i}-1}{j} L_{k}\left(X+\left(k_{i}-1-j\right) H\right)
\end{array}\right)\right|_{H=0}
$$

these operations left the determinant unchanged. We add now twice the second line to the third one, we substract it three times to the fourth line, etc., whigh gives

$$
\left.\left(\begin{array}{c}
L_{k}\left(X_{i}\right) \\
L_{k}\left(X_{i}+H\right) \\
L_{k}\left(X_{i}+2 H\right) \\
\vdots \\
\sum_{0 \leqslant j \leqslant k_{i}-3}(-1)^{j}\binom{k_{i}-1}{j} L_{k}\left(X+\left(k_{i}-1-j\right) H\right)
\end{array}\right)\right|_{H=0}
$$

again, the determinant remains unchanged. Going on the same way, we obtain at last

$$
\left(\left.\begin{array}{c}
L_{k}\left(X_{i}\right) \\
L_{k}\left(X_{i}+H\right) \\
L_{k}\left(X_{i}+2 H\right) \\
\vdots \\
L_{k}\left(X+\left(k_{i}-1\right) H\right)
\end{array}\right|_{H=0}\right.
$$

and the matrix

$$
W^{\bar{k}}=\left.\left(\begin{array}{c}
L_{k}\left(X_{1}\right) \\
L_{k}\left(X_{1}+H\right) \\
\vdots \\
L_{k}\left(X_{1}+\left(k_{1}-1\right) H\right) \\
\vdots \\
L_{k}\left(X_{n}\right) \\
L_{k}\left(X_{n}+H\right) \\
\vdots \\
L_{k}\left(X_{n}+\left(k_{n}-1\right) H\right)
\end{array}\right)\right|_{H=0}
$$

formed by these n groups of lines still has the same determinant as the former. In other words,

$$
\begin{equation*}
\operatorname{dét} V^{\bar{k}}=\left.\frac{1}{\Delta} \operatorname{dét} W^{\bar{k}}\right|_{H=0} \text {, } \tag{8}
\end{equation*}
$$

where Δ is defined by (7). But the determinant of $W^{\bar{k}}$ is a classical VANDERMONDE determinant; its value is

$$
\left(\left(X_{1}+H\right)-X_{1}\right)\left(\left(X_{1}+2 H\right)-X_{1}\right) \cdots\left(\left(X_{1}+\left(k_{1}-1\right) H\right)-X_{1}\right)\left(X_{2}-X_{1}\right) \cdots\left(\left(X_{n}+\left(k_{n}-1\right) H\right)-\left(X_{n}+\left(k_{n}-2\right) H\right)\right),
$$

i. e. the product of all differences

$$
\left(X_{j}+j^{\prime} H\right)-\left(X_{i}+i^{\prime} H\right)
$$

where $1 \leqslant i \leqslant j \leqslant n, 0 \leqslant i^{\prime}<k_{i}, 0 \leqslant j^{\prime}<k_{j}$ and, when $i=j, i^{\prime}<j^{\prime}$. Formally:

$$
\begin{equation*}
\text { dét } W^{\bar{k}}=\prod_{\substack{1 \leqslant i \leqslant n \\ 0 \leqslant i^{\prime}<j^{\prime} \leqslant k_{i}}}\left(\left(X_{i}-j^{\prime} H\right)-\left(X_{i}-i^{\prime} H\right)\right) \cdot \prod_{\substack{1 \leqslant i<j \leqslant n \\ 0 \leqslant i^{\prime}<k_{i} \\ 0 \leqslant j^{\prime}<k_{j}}}\left(\left(X_{j}-j^{\prime} H\right)-\left(X_{i}-i^{\prime} H\right)\right) \tag{9}
\end{equation*}
$$

For a fixed i,

$$
\prod_{0 \leqslant i^{\prime}<j^{\prime}<k_{i}}\left(\left(X_{i}-j^{\prime} H\right)-\left(X_{i}-i^{\prime} H\right)\right)=\prod_{0 \leqslant i^{\prime}<j^{\prime}<k_{i}}\left(i^{\prime}-j^{\prime}\right) H=1!\cdots\left(k_{i}-1\right)!H^{\left(k_{i}-1\right)+\cdots+1}=1!\cdots\left(k_{i}-1\right)!H^{\left(k_{i}-1\right) k_{i} / 2}
$$

The first product in the right-hand side of (9) is thus:

$$
\begin{aligned}
\prod_{\substack{1 \leqslant i \leqslant n \\
0 \leqslant i^{\prime}<j^{\prime}<k_{i}}}\left(\left(X_{i}-j^{\prime} H\right)-\left(X_{i}-i^{\prime} H\right)\right) & =\prod_{1 \leqslant i \leqslant n} 1!\cdots\left(k_{i}-1\right)!H^{\left(k_{i}-1\right) k_{i} / 2} \\
& =\left(1!\cdot 2!\cdots\left(k_{1}-1\right)!\right) \cdots\left(1!\cdot 2!\cdots\left(k_{n}-1\right)!\right) H^{\left(k_{1}-1\right) k_{1} / 2+\cdots+\left(k_{n}-1\right) k_{n} / 2} \\
& =\Delta
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \text { dét } V^{\bar{k}}=\left.\prod_{\substack{1 \leqslant i<j \leqslant n \\
0 \leqslant i^{\prime}<k_{i} \\
0 \leqslant j^{\prime}<k_{j}}}\left(\left(X_{j}-j^{\prime} H\right)-\left(X_{i}-i^{\prime} H\right)\right)\right|_{H=0}=\left.\prod_{\substack{1 \leqslant i<j \leqslant n \\
0 \leqslant i^{\prime}<k_{i} \\
0 \leqslant j^{\prime}<k_{j}}}\left(X_{j}-X_{i}+\left(i^{\prime}-j^{\prime}\right) H\right)\right|_{H=0}= \\
&=\prod_{\substack{1 \leqslant i<j \leqslant n \\
0 \leqslant i^{\prime}<k_{i} \\
0 \leqslant j^{\prime}<k_{j}}}\left(X_{j}-X_{i}\right)=\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)^{k_{i} k_{j}},
\end{aligned}
$$

and the proof is complete.

References

[1] Pascal DupOnt, Surjections, Losanges 15 (2011), 29-36.
[2] https://en.wikipedia.org/wiki/Binomial_theorem (viewed on November 5, 2021)
[3] https://en.wikipedia.org/wiki/General_Leibniz_rule (viewed on November 5, 2021)

