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Abstract 

Background: Magnetic resonance imaging (MRI) acquisition/processing techniques assess brain 

volumes to explore neurodegeneration in Alzheimer’s disease (AD).  

Objective: We examined the clinical utility of MSmetrix and investigated if automated MRI volumes 

could accurately discriminate between groups covering the entire AD continuum and could be used as 

a possible predictor for clinical progression. 

Methods: The Belgian Dementia Council initiated a retrospective, multi-center study and analyzed 

whole brain (WB), grey matter (GM), white matter (WM), cerebrospinal fluid (CSF), cortical GM (CGM) 

volumes, and WM hyperintensities (WMH) using MSmetrix in an AD population. Baseline (n=887) and 

follow-up (FU, n=95) T1-weighted brain MRIs and time-linked neuropsychological data were available.  

Results: The cohort consisted of cognitively healthy controls (HC, n=93), subjective cognitive decline 

(SCD, n=102), mild cognitive impairment (MCI, n=379), and AD dementia (n=313). Baseline WB and GM 

volumes could accurately discriminate between clinical diagnostic groups and were significantly 

decreased with increasing cognitive impairment. MCI patients had a significantly larger change in WB, 

GM, and CGM volumes based on two MRIs (n=95) compared to HC (FU >24months, p=0.020).  

Single variable linear regression models showed that baseline atrophy of WB, GM, CGM, and increased 

CSF volumes predicted cognitive impairment. Moreover, the prediction of cognitive impairment based 

on decline in MMSE score divided by the follow-up time was also correlated with WB, GM, and CGM. 

Conclusion: WB and GM volumes extracted by MSmetrix could be used to define the clinical spectrum 

of AD accurately and along with CGM, they are able to predict cognitive impairment based on (decline 

in) MMSE scores. Therefore, MSmetrix can support clinicians in their diagnostic decisions, is able to 

detect clinical disease progression, and is of help to stratify populations for clinical trials. 
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Introduction 

In Alzheimer’s disease (AD), the spread of neurodegeneration, and especially tau pathology and 

synapse loss, is the most important pathological substrate of clinical symptoms [1]. Biomarkers of 

neurodegeneration, including volumetric analyses of relevant brain regions on magnetic resonance 

imaging (MRI), correlate better with the degree of cognitive impairment in AD patients as compared 

to biomarkers of amyloid-β (Aβ) deposition [1-3]. Volumetric brain imaging should include areas in 

which the neuropathological process of AD is prominent, such as the medial temporal lobe (MTL) that 

includes the hippocampus. The atrophy can often be detected at the stage of mild cognitive 

impairment (MCI) [4-15]. Therefore, hippocampal volume has been proposed as a neuroimaging 

biomarker for early AD diagnosis in the revised diagnostic criteria of AD [16-20]. Other neuro-

anatomical structures, such as the entorhinal cortex [7, 9, 21, 22] and cerebral cortex [23] are also 

prone to AD pathology. Their morphological characteristics such as volume, shape, and thickness can 

be used as biomarkers of the extent of neurodegeneration as well [24, 25]. Nevertheless, measuring 

brain atrophy has some limitations because evolution of disease-related regional atrophy does not 

necessarily follow the anatomical boundaries of structures. To overcome these limitations, the whole 

brain (WB) and the (whole) grey matter (GM) volumes have been used as neuroimaging biomarkers 

for AD diagnosis and evolution [3, 26-33]. Since these anatomical structures are considerably larger 

than the hippocampus or cortex, the automated quantification of their volumes is, in general, less 

prone to measurement errors.  

To date, different MRI acquisition and processing techniques have been developed to measure 

volumes of specific brain regions. However, their accuracy is still limited by a moderate sensitivity and 

a rather low specificity for AD [34]. Manual segmentation approaches, which are time consuming, have 

been widely used and are considered a standard approach by experts in neuroanatomy [35, 36], 

though large-scale studies are limited [4, 37]. Semi-automated techniques are less time consuming, 

however a priori information such as user-defined landmarks is needed, which also limits their 

usefulness for large clinical studies [38-40]. To date, an increasing number of studies have investigated 
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structural brain changes in AD populations with an automated image-based brain morphometry 

analysis, as this is less time consuming and does not suffer from large intra- and inter-observer 

variability compared to manual and semi-automated approaches. This trend relates to both the 

widespread availability of brain imaging equipment in clinical routine and research, and the concurrent 

development of image analysis software packages released over the past years [41-46]. MSmetrix, is 

another fully automated and European Conformity (CE)-labelled and Food and Drug Administration 

(FDA)-cleared tool, specifically designed to measure atrophy in patients with multiple sclerosis (MS) 

and has been validated in these patients (we refer to Supplemental data for more detailed information 

of the validation process) [47-51]. As this method uses clinical brain MRI scans in contrast to many 

other tools that apply MRI scans from selected clinical trial/research cohorts, we decided to use the 

output of MSmetrix, which included WB, (whole) GM, white matter (WM), cerebrospinal fluid (CSF), 

cortical GM (CGM) volumes, and WM hyperintensities (WMH), in a ‘retrospective Belgian multi-center 

MRI biomarker study in dementia’ (REMEMBER). We examined whether MSmetrix is an accurate and 

reproducible segmentation approach to differentiate between healthy controls and AD patients, 

covering the entire AD continuum, and thus is of clinical utility for the diagnostic work-up and for 

clinical trials. Therefore, we set up a study to assess the diagnostic value of automated volumetry using 

MSmetrix in a population comprising the entire AD continuum (AD, MCI, subjective cognitive decline 

(SCD)), as well as cognitively healthy elderly (primary objective). The secondary objective of this study 

was to investigate if automated volumetry using MSmetrix is an early diagnostic marker for AD and as 

a possible predictor for clinical progression.  

 

Materials and Methods 

Study design  

The retrospective Belgian multi-center study cohort consists of participants who underwent a baseline 

brain MRI scan, in combination with a clinical neurological and neuropsychological evaluation for 
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diagnostic purposes. A neuropsychological evaluation, at least consisting of a screening instrument 

such as the Mini-Mental State Examination (MMSE) test was sufficient to be included in the study.  

A subset of the population underwent a repeat brain MRI scan with or without a neuropsychological 

evaluation (time interval between baseline and follow-up investigations, for both MRI and 

neuropsychological evaluations, was at least three months). 

The study was approved by the ethics committee of University of Antwerp / Universitair Ziekenhuis 

Antwerpen (N°16/2/18), Antwerp and by the ethics committees of Algemeen Ziekenhuis Sint-Jan 

Brugge-Oostende, Brugge (N°1992); Centre Hospitalier Universitaire Brugmann (CHU Brugmann), 

Brussels (N°2016/84); Centre Hospitalier Universitaire Liège (CHU Liège), Liège (N°2012/274); Cliniques 

Universitaires de Bruxelles (ULB), Hôpital Erasme, Brussels (N°P2016/187); Cliniques Universitaires 

Saint-Luc (UCL), Brussels (N°2016/07jui/261); Cliniques St-Pierre Ottignies, Ottignies (N°OM045); 

Universitair Ziekenhuis Brussel, Brussels (N°2016/183); and Ziekenhuis Netwerk Antwerp (ZNA), 

Antwerp (N°4730). 

 

Study population 

Patients and cognitively healthy controls were selected from existing cohorts in several memory clinics 

that are members of the Belgian Dementia Council (BeDeCo). SCD, MCI, and dementia due to AD 

patients were included in this retrospective multi-center study. The group of cognitively healthy elderly 

was selected amongst available (research) cohorts, like spouses of patients who visited the memory 

clinic and community-dwelling volunteers. 

 

Clinical diagnostic criteria 

In order to avoid a selection bias, all patients were considered for inclusion, irrespective of the severity 

of cognitive deterioration. The patients were diagnosed by an experienced clinician in each center. 

Diagnosis of dementia due to AD was based on NIA-AA criteria [17, 19]. At baseline, MCI due to AD 

was diagnosed by applying the NIA-AA criteria [16-18, 20]. When sufficient neuropsychological data 
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were available, MCI patients were divided into four subgroups. MCI patients were categorized in 

single-domain (sd) and multi-domain (md) MCI based on the neurocognitive domains scoring below 

1.5 SD on their respective z-scores. Z-scores were used from population-based norms and were age-

adjusted. In addition, MCI patients were also categorized as amnestic MCI (aMCI) and non-amnestic 

MCI (naMCI) based on z-scores below -1.5 SD per cognitive domain. In case the delayed memory 

domain was below a z-score of 1.5 SD, a patient was classified as aMCI, whereas naMCI was based on 

z-scores from one of the other cognitive domains, such as immediate memory, 

visuospatial/constructional abilities, language or attention. SCD patients were diagnosed by the 

Jessen’s et al. criteria in the same way as the MCI patients but without an objective cognitive 

impairment, so all neuropsychological subtests having a z-score above -1.5 [52]. All control subjects 

underwent at least a cognitive screening test to rule out cognitive impairment. The control subjects 

did not meet the Jessen’s et al. criteria of SCD [52].  

Exclusion criteria for the total population consisted of brain tumors, large cerebral infarction/bleeding, 

strategic infarctions, other neurodegenerative diseases, severe head trauma, epilepsy, brain 

infections, severe depression, unregulated diabetes mellitus, untreated thyroid disorders, or any 

severe somatic co-morbidity that interferes with study participation.  

 

Imaging 

Image acquisition 

All MRI scans were obtained from respective Neuroimaging Departments, to which subjects were 

referred. MRI scans from all scanner types were accepted. The minimal requirements for the MRI 

protocol included a T1-weighted image with a preferred voxel size of the 3D T1 (1x1x1mm). A FLAIR 

image was optional, with the same preferences as the above described T1-weighted image.  

 

Image analyses  
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The MRI data were processed using the CE-labelled and FDA-cleared software called MSmetrix, to 

extract WB, GM, WM, CSF (intra- and inter-ventricular CSF), CGM, and WMH volumes (MSmetrix-

cross). Thereto, the T1-weighted MRI images were segmented into WM, GM, and CSF using a 

probabilistic model, including bias field correction. In case a FLAIR image was available, WMH were 

extracted using an outlier model and lesion filling of the T1-weighted image was performed prior to 

segmentation into WM, GM, and CSF [50]. Finally, WB was computed as WM and GM, while CGM was 

extracted from the GM segmentation based on prior knowledge of the shape and appearance of the 

cortical area. The duration was approximately less than 30 minutes per individual. This includes on 

average 22 minutes processing and 7 minutes QC per subject. 

If a repeat brain MRI was available a longitudinal registration based approach was used, using the 

cross-sectional segmentations as an input to extract brain atrophy and lesion changes (MSmetrix-long). 

This ensures a low measurement error of the brain atrophy measurements [47] and a more consistent 

evaluation of lesion changes [49].  

All extracted measures were corrected for head size, as a consequence only normalized measures were 

used in further analyses. Head size was normalized by scaling the measured volume of the image with 

the determinant of the affine transformation matrix that describes the transformation between the 

Montreal Neurological Institute (MNI) atlas and the image. 

A quality control (QC) of the extracted measurements was performed per center by E.N. and H.S.. 

Moreover, a visual assessment of the segmentations was performed for all ‘outlier’ measurements. 

The ‘outliers’ included scans with volumes below the 10th and above the 90th percentile within the 

cohort of the center. Volumes that were not correctly segmented were completely rejected or 

approved with remarks. In detail, in case the segmentation approach completely failed, volumes were 

not trustworthy and values were excluded for further analyses. If the volumetric approach was in part 

correctly segmented and the WB volumetric analysis could be trusted, the scans were classified as 

approved with remarks. All other scans, with a correct segmentation were subdivided as approved. 

WMH underwent the same ‘outlier QC’ and were divided into two groups, namely approved or 
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rejected. The QC of the scans was always dependent on the protocol used in each center. Therefore, 

scans were often rejected due to a low quality of the scans and/or large slice thickness (>3mm) that 

led to missegmentation of the volumes. 

 

Statistical analyses 

Distribution of categorical variables, such as gender, within subject groups were analyzed with a Chi-

Square test, and percentages were reported. Demographic comparisons and other analyses including 

MRI measures were based on ANOVA and/or ANCOVA tests with post hoc Bonferroni tests. ANCOVA 

tests were performed to analyze the extracted MRI measures and were corrected for center and age 

at baseline (date of MRI acquisition) in cross-sectional analyses. Longitudinal analyses, performed by 

ANCOVA tests to analyze the differences in volumes between two MRI scans were corrected for center, 

age at baseline, and time between the MRI scans. In case neuropsychological test scores were used as 

outcome variable, ANCOVA tests corrected for years of education, age at baseline, and baseline clinical 

diagnoses were used (based on baseline MRI scans). Field strength was not included as a covariate, as 

the study of Lysandropoulos et al. detected no significant difference for this variable when MSmetrix 

was used [48]. Area under the curves (AUCs) of receiver operating characteristics (ROC) curves were 

calculated for volumetric measurements and cut-offs were determined. A single variable linear 

regression model was used to analyze the relationship between volumetric measures and the MMSE 

scores. In the first model, the relationship of each volume (independent variable) with MMSE score 

(dependent variable) was assessed (model 1). In a second model, the same relationships were assessed 

after controlling for age and baseline clinical diagnosis (model 2). Results are represented as 

standardized regression coefficients (β-values) with 95% CI and p-values to allow comparisons of effect 

sizes. 

For all analyses, two-tailed p-values below 0.05 were considered significant. All statistical analyses 

were performed using GraphPad Prism 6 and IBM SPSS Statistics 24. 
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Results 

Overview of the REMEMBER cohort 

The study cohort from eight Belgian centers, included cognitively healthy controls (n=93), SCD (n=102), 

MCI (n=379), and AD dementia patients (n=313), and represented a total of 887 subjects 

(Supplemental Table 1).  

Baseline brain MRI scans were available for all subjects and volumetric analyses were performed 

(MSmetrix-cross). Baseline scans were acquired at 1.5T (Siemens, n=126; GE, n=90; Philips, n=119) and 

3T scanners (Siemens, n=313; GE, n=50; Philips, n=189; we refer to Supplemental Table 2 and 3 for 

more detailed information). In total, 746 scans (84%) were approved after QC and all volumes (WB, 

GM, WM, CSF, CGM) were included for further analyses. Fifty-eight MRI scans were approved with 

remarks after QC as the volumes were not correctly segmented but WB volumes were still accurate 

and were included in the analyses of WB volume. This led to a total of 804 subjects (91%) with an 

approved WB volume. Eighty-three scans were excluded for analysis due to large slice thickness 

(>3mm) and/or missegmentation of volumes due to low quality of scans. To analyze WMH, 629 FLAIR 

sequences were available of which 170 scans were rejected after QC, and further analysis was 

performed on a total of 459 MRI scans (73%).  

Follow-up brain MRI scans were available in 95 subjects (11%) and all volumetric analyses were 

approved, for both MSmetrix-cross and MSmetrix-long. Follow-up scans were acquired at 

1.5T(Siemens, n=4; Philips, n=7) and 3T scanners (Siemens, n=75; ] Philips, n=9). The cohort consisted, 

based on baseline diagnosis, of a group of cognitively healthy controls and SCD, abbreviated as HC-SCD 

(n=25), MCI (n=50), and AD dementia patients (n=20).  

 

Study population 

The demographic and clinical characteristics of the different diagnostic subgroups are given in Table 1. 

The AD dementia group consisted of significantly more females than males. Age at baseline was 
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significantly different between all groups (p=0.001), except between cognitively healthy controls and 

SCD patients. AD dementia patients were the oldest patient group followed by MCI, SCD, and controls. 

Time between baseline MRI and neuropsychological examination was in most cases short (mean 

[interquartile range (IQR)] 2.7 [0.0-2.1] months). In total, 633 subjects were clinically followed-up with 

a mean total follow-up of 2.1 [IQR: 0.6-3.2] years (Table 1). The time interval between baseline MRI 

scan and last clinical visit was only significantly different between MCI and AD dementia patients, 

which was shorter for AD dementia patients compared to the MCI group. In case an SCD subject 

developed MCI/AD dementia (n=15/n=2, 17%) or in case an MCI patient progressed to dementia 

(n=101, 27%), the time between baseline MRI and diagnostic conversion was not different between 

those two groups (mean [IQR] 1.8 [0.9-2.4] years, p=0.066). MMSE scores were significantly different 

between all groups, except between cognitively healthy controls and SCD patients, with the lowest 

scores in AD dementia patients and highest scores in the control and SCD subjects. Cognitively healthy 

controls and SCD patients were significantly more educated than MCI and AD dementia patients. 

In total, 95 subjects had a follow-up MRI scan (Table 2). Gender, time between scans, and time 

between baseline and last clinical follow-up/conversion were not significantly different between the 

clinical diagnostic groups. The MCI and AD dementia patients were significantly older compared to the 

HC-SCD subjects (respectively, p=0.006 and p=0.009). MMSE scores were significantly different 

between all clinical diagnostic groups (p=0.001). Individuals with a follow-up MRI scan had higher 

MMSE scores compared to subjects without a follow-up scan, however this was only significantly 

different in the MCI patients (p=0.004). HC-SCD subjects were higher educated compared to AD 

dementia subjects (p=0.018). 

 

Imaging analyses 

Cross-sectional MSmetrix analyses in the total population  

All volumes and WMH discriminated AD dementia patients and cognitively healthy controls with a high 

diagnostic accuracy (sensitivity and specificity), as shown in Table 3 (for cut-offs, see Supplemental 
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Table 4). Cross-sectional analyses, corrected for age at baseline and center, showed significant 

differences between all clinical diagnostic groups for WB (Fig. 1A). GM was significantly different 

between all groups, except between cognitively healthy controls and SCD patients (Fig. 1B). WM and 

CSF volumes were significantly different between controls and all other groups, and CSF volumes of 

AD dementia patients were significantly larger than SCD and MCI patients. MCI and AD dementia 

patients showed a significant smaller CGM volume compared to controls and SCD (Fig. 1C). The largest 

WB, GM, WM, and CGM volumes were detected in the control group and decreased by cognitive 

impairment (SCD<MCI<AD dementia), whereas the opposite was found for the CSF volume. No 

significant differences were detected for the WMH between the different clinical diagnostic groups. 

Stable MCI patients (n=162) and MCI patients that progressed to AD dementia (n=101) were not 

significantly different for any of the volumetric measurements and WMH on baseline MRI scans. 

 

Cross-sectional MSmetrix analyses in the MCI patients 

By dividing the MCI patients in sd MCI (n=129) and md MCI (n=211), significantly larger volumetric 

measurements were detected between HC and all other diagnostic groups, SCD and md MCI patients 

or AD dementia, and sd MCI and AD dementia patients. In case aMCI and naMCI were taken into 

account, both sd MCI subgroups (sd aMCI, n=84; sd naMCI, n=45) had significantly larger volumes (all 

volumetric measurements) compared to AD dementia, whereas no significant differences were 

detected between both md MCI groups (md aMCI (n=191) and md naMCI (n=20)) and AD dementia. In 

addition, the only MCI subgroup that had significantly smaller volumes (all volumetric measurements) 

compared to SCD was the md aMCI group. WMH were not significantly different between any MCI 

patient subgroup. 

 

Longitudinal MSmetrix analyses (Table 2) 

Longitudinal data analyses (n=95), of two MRI scans for the same subject, corrected for center, age at 

baseline MRI scan, and time between MRI scans showed no significant differences between clinical 
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diagnostic groups for the change in volumes over time. However, in case the interval between two 

scans was more than 24 months (n=31) there was a significant difference between the HC-SCD (n=10) 

and MCI (n=16) patients for the change in WB (mean difference of 2.130, p=0.019), GM (mean 

difference of 2.524, p=0.038), and CGM (mean difference of 2.475, p=0.048). The largest changes were 

detected in the AD dementia group and the smallest changes in the HC-SCD for WM, GM, and CGM.  

 

Neuropsychological data analyses in combination with volumetric MRI measures 

An MMSE score was available for 93% of all subjects. Linear regression models per volume (model 1), 

significantly predicted the MMSE scores for all volumes (Table 4). When age and clinical diagnosis at 

baseline were introduced to the analyses (model 2), WB, GM, CSF, and CGM could significantly predict 

MMSE score.  

Follow-up MMSE scores, with at least three months between baseline and last follow-up MMSE score, 

were available in 429 subjects (2.4 [1.1-3.4] years). The MMSE slopes were calculated based on the 

difference in MMSE scores and were divided by the follow-up time. Subjects were divided in four 

groups: (1) subjects with an improvement in MMSE score (n=117, improvers: MMSE slope< 0), (2) with 

no change in MMSE score (n=71, stable: MMSE slope=0), (3) with a slow decline (n=182, slow 

decliners), and (4) with a fast decline in MMSE score (n=59, fast decliners). Subjects were categorized 

as slow decliners in case the MMSE slope was smaller than three, and if the slope was equal or larger 

than three subjects were categorized as fast decliners. Significant differences were found for the 

baseline measurements of WB, GM, and CGM between fast and slow decliners, with smaller baseline 

volumes in the fast decliners (Fig. 2). 

 

Discussion 

In the present large multi-center study, including 887 subjects, we analyzed volumetric brain 

measurements with the CE-labeled and FDA-approved software pipeline MSmetrix that has been 

developed for clinical use in MS and has proven high accuracy for longitudinal analyses at the individual 
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patient level [47-51]. Moreover, this study used this fully automated segmentation approach to further 

decrease the observer dependency as well as the time needed from the expert (<30min/subject), and 

standardize the quantification of MRI readings. Thus, the fully automated procedure has reduced 

reliance on anatomical expertise and provide rapid results compatible with clinical practice. In 

addition, MSmetrix uses clinical brain MRI scans in contrast to many other tools that apply MRI scans 

from selected clinical trial/research cohorts. Another advance of MSmetrix is the use of Digital Imaging 

and Communications in Medicine (DICOM) format images, which are ideal to create a fast clinical 

workflow. Therefore, MSmetrix translates the volumetric measures from a research setting to routine 

clinical practice. Nevertheless, in differential dementia diagnosis the usefulness of these MRI measures 

is limited due to effect that atrophy is not AD-specific. 

By applying this software in the AD continuum and cognitively healthy elderly, we found that the 

volumetric volumes were significantly smaller with increased cognitive impairment. In addition, WB 

and GM accurately discriminated between clinical diagnostic groups, whereas WM, CSF, and CGM 

were less accurate. For this reason, the output measures of MSmetrix are able to support the clinical 

diagnostic work-up of AD. The diagnostic accuracies of the volumetric measures are comparable or 

better compared to the current literature [3, 26, 53-55]. WMH were not significantly different between 

diagnostic groups. A higher degree of WMH is known to be associated with poorer cognitive function 

[56, 57]. However, the lack of significant differences could be explained by the reflection of low 

variability, as a trend was found in the expected direction with more WMH by more cognitive 

impairment (Table 1). 

In addition, the method failed to distinguish stable MCI patients from MCI patients that progressed to 

AD dementia as no significant differences were detected for baseline volumetric measurements. A 

possible explanation is that volume change of specific brain regions over time may be more indicative 

than a static cross-sectional assessment. Moreover, the brain is affected by normal aging and disease 

progression, and there is individual variation in brain anatomy, which makes it difficult to discriminate 

between groups. Especially the MCI subgroups are difficult to distinguish as they are in the same 



16 
 

disease stage of the continuum. Longitudinal data could avoid the limitations of cross-sectional 

analyses [58-61], however in our cohort also no differences between the stable MCI patients and MCI 

converters were detected in the longitudinal analyses. Probably, this is due to a small sample size of 

available longitudinal MRI scans in MCI patients (n=50, of which 9 converters). In general, brain volume 

changes over time correlate with and predict deterioration of cognitive performance [34] and seem 

more sensitive to AD-like brain atrophy features than CSF measures or β-amyloid deposition measured 

with positron emission imaging (PET) [62]. Thus, longitudinal assessment of MSmetrix-long is relevant 

in the setting of chronic and progressive neurologic conditions, such as AD and MS. Another solution 

to differentiate the MCI subgroups is to consider analyzing specific brain regions, such as the 

hippocampus [13-15]. Nevertheless, our longitudinal data analyses (interval between MRI scans >24 

months) showed a significant decrease in WB, GM, and CGM volumes in MCI patients compared to the 

HC-SCD patients. As the sample size of longitudinal data was small we should interpret the results with 

caution. However, these results are in line with ADNI data, however in those studies a significant 

difference after 12 months interval was also detected [63, 64]. 

The primary objective of this study was to identify which atrophy measures accurately discriminate 

between groups by using MSmetrix. Our cross-sectional data confirm that a high diagnostic accuracy 

was observed between AD dementia patients and cognitively healthy controls for the extracted 

volumes. However, when corrected for age and center, WB and GM were the most robust MRI 

biomarkers to distinguish between clinical groups. Those volumetric measures can support disease 

diagnosis and thus, may assist clinicians in their decisions. The secondary objective was to investigate 

MSmetrix as a possible predictor for clinical progression. The single variable linear regression models 

showed that increased CSF volumes and atrophy of WB, GM, and CGM predicted cognitive impairment, 

independent of age and baseline diagnosis, which is confirmed by other studies [65-67]. Next, the 

prediction of disease evolution based on the decline in MMSE score was also detected in WB, GM, and 

CGM where slow and fast MMSE decliners showed significant differences for those volumes, with 

smaller baseline volumes in the fast decliners, in line with the literature [3, 30-32]. In here, the 
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volumetric measures are of help to the clinicians to track the clinical progression of the disease, as 

increased CSF volumes and brain atrophy correlate with clinical decline. 

This study focused on the output measurements of MSmetrix, which are large volumes (WB, GM, WM, 

CSF, CGM) that can overcome the limitations of disease-related regional atrophy. Nevertheless, many 

groups investigated regional atrophy and especially MTL, including hippocampal atrophy, as this is a 

sensitive AD biomarker [18, 34]. A potential benefit of these specific AD-pathological regions is that 

they possibly allow the discrimination between sd MCI and md MCI patients [13-15, 55]. This possible 

discrimination was not observed in the current study, as expected by the proposed models [18, 20]. 

Indeed, sd MCI patients and SCD subjects had comparable volumes and also no significant difference 

was found between md MCI and AD dementia patients. A possible explanation could be that the 

neuropsychological examinations showed inter- and intra-rater and/or center variability as the 

neuropsychological tests were administered in different centers by different neuropsychologists. To 

take this limitation into account a correction for center was applied in the statistical analyses. 

Another limitation of this study was the significant difference in age for diagnostic groups at baseline, 

although we corrected the statistical analyses to overcome this problem. Next, few follow-up MRI 

scans were available which probably led to less significant differences in the longitudinal volumetric 

measurements. Lastly, analyzing the different volumes based on only T1 images versus T1 in 

combination with FLAIR sequences could be seen as another limitation of this study, as differences in 

results could be found in case larger WMH volumes were present. Those WMH volumes could be 

wrongly detected as GM volumes. Nevertheless, the WB volume is usually robust because WMH 

volumes are classified as CSF, as has been observed in the validation of MSmetrix in MS patients [47-

51]. Despite these disadvantages, the large amount of data included in this multi-center study, the 

short time between baseline measures, and the mean clinical follow-up time of 2.1 years [IQR: 0.6-3.2] 

are certainly strengths of this study. Even though we have used MRI scans that were acquired in routine 

clinical practice, and thus from different scanner types which could be seen as a limitation, only 15.9% 

of the scans were rejected, which demonstrates the clinical usefulness of this method. Moreover, 
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MSmetrix can be integrated easily in the clinical workflow as it uses DICOM images from all scanner 

types without any restrictions of the image sequences and produces results in an accurate and rapid 

way.  

In conclusion, volumes measured with a fully automated tool (MSmetrix) accurately discriminated 

between clinical diagnostic groups in an AD population, and thus can support clinicians in their 

decisions. Especially WB and GM, and CGM are MRI biomarkers that distinguished between clinical 

diagnostic groups and were possible predictors for clinical progression based on (decline in) MMSE 

scores. Those volumes could therefore be used to define the clinical spectrum of AD more accurately, 

are able to track clinical progression of disease, are of help to select appropriate populations for clinical 

trials, and can be applied for assessment of the efficacy of (future disease-modifying) treatments. 
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Tables and Figures 

Table 1 REMEMBER baseline study population 

 Controls (n=93) SCD (n=102) MCI (n=379) AD dementia (n=313) p-value 

Gender (%male/female) 47/53 46/54 51/49 39/61 0.018 

Age at BL (years) 67.3±8.5 

[61.2-74.2] ^,# 

68.6±9.8 

[61.1-76.3] ^,# 

74.6±8.0 

[69.4-80.3] *,#,‡ 

77.5±8.0 

[72.6-83.9] *,^,‡ 

0.001 

Time between BL NPE 

and last clinical visit 

(years) (n) 

2.5±1.6 (43) 

[2.0-2.0] 

2.2±2.2 (73) 

[0.3-4.1] 

2.3±1.8 (305) 

[0.9-3.6] # 

1.8±1.8 (212) 

[0.4-2.7] ^ 

0.020 

Time between BL and 

conversion (years) (n) 

- 1.9±1.5 (17) 

[0.7-3.7] 

1.8±1.3 (101) 

[0.9-2.4] 

- 0.066 

MMSE from 0-30 (n) 29.3±0.9 (72) 

[29.0-30.0] ^,# 

28.6±1.4 (94) 

[28.0-30.0] ^,# 

25.1±3.3 (361) 

[23.0-28.0] *,#,‡ 

20.6±4.7 (300) 

[18.0-24.0] *,^,‡ 

0.001 

YOE (years) 14.9±3.8 (60) 

[12.0-17.0] ^,# 

15.1±4.0 (94) 

[12.0-18.0] ^,# 

13.0±4.1 (353) 

[10.0-17.0] *,#,‡ 

10.9±4.0 (277) 

[8.0-14.0] *,^,‡ 

0.001 

WB (mL) 1442.3±63.6 (90) 

[1396.6-1491.4] *,^,# 

1392.4±72.6 (97) 

[1344.0-1440.5] ^,#,‡ 

1353.9±71.2 (340) 

[1308.1-1401.7] 

*,#,‡ 

1319.6±82.4 (277) 

[1263.2-1365.6] *,^,‡ 

0.001, 

0.013¶ 

 

GM (mL) 844.3±42.8 (89) 

[819.5-872.9] ^,# 

817.2±55.7 (96) 

[778.6-857.9] ^,# 

793.7±60.2 (334) 

[754.3-837.9] *,#,‡ 

779.2±69.4 (227) 

[735.1-824.1] *,^,‡ 

0.001, 

0.003, 

0.043¥ 

 

WM (mL) 597.1±47.6 (89) 

[564.8-633.1] *,^,# 

575.3±45.2 (96) 

[539.9-614.1] ‡ 

559.6±48.0 (334) 

[525.8-593.8] ‡ 

549.8±52.4 (227) 

[517.3-587.0] ‡ 

0.001, 

0.018£ 

 

CSF (mL) 534.2±77.0 (89) 

[481.8-572.8] *,^,# 

600.7±101.6 (96) 

[533.5-663.0] #,‡ 

640.0±114.0 (334) 

[558.7-704.7] #,‡ 

675.9±134.3 (227) 

[572.6-754.2] *,^,‡ 

0.001, 

0.008, 

0.007± 

 

CGM (mL) 796.8±40.1 (89) 

[774.9-819.8] ^,# 

770.7±53.2 (96) 

[736.1-807.2] ^,# 

749.8±56.6 (334) 

[713.9-789.9] *,‡ 

737.1±64.6 (277) 

[695.4-779.8] *,‡ 

0.001§  

WMH (mL) 5.1±6.5 (43) 

[1.7-5.1] 

11.8±14.4 (66) 

[2.6-15.0] 

15.1±13.7 (202) 

[5.6-20.8] 

19.3±15.5 (148) 

[6.5-29.0] 

0.121 
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Legend: data are mean±SD and [IQR], percentages (%), and numbers (n). P-values are general Chi-Square for gender or 

ANCOVA test results (for all other measures), whereas the p-values described below are based on the differences of post hoc 

analyses. Normalized brain volumes (WB, GM, WM, CSF, CGM, and WMH) are reported. 

¶ SCD vs. MCI p=0.013. Other comparisons: p=0.001. ¥ SCD vs. MCI p=0.003; MCI vs. AD dementia p=0.043. Other comparisons: 

p=0.001. £ Controls vs. SCD p=0.018. Other comparisons: p=0.001. ± Controls vs. SCD p=0.008; MCI vs. AD dementia p=0.007. 

Other comparisons: p=0.001. § SCD vs. MCI p=0.004. Other comparisons: p=0.001. 

* Significantly different compared to SCD. ^ Significantly different compared to MCI. # Significantly different compared to AD 

dementia. ‡ Significantly different compared to controls. 

Abbreviations: AD Alzheimer’s disease; BL baseline; CGM cortical grey matter; CSF cerebrospinal fluid; FU follow-up; GM grey 

matter; IQR interquartile range; MCI mild cognitive impairment; MMSE Mini-Mental State Examination; NPE 

neuropsychological examination; REMEMBER retrospective Belgian multi-center MRI biomarker study in dementia; SCD 

subjective cognitive decline; SD standard deviation; WB whole brain; WM white matter; WMH white matter hyperintensities; 

YOE years of education. 
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Table 2 REMEMBER based on follow-up MRI: study population 

 HC-SCD (n=25) MCI (n=50) AD dementia (n=20) p-value 

Gender (%male/female) 40/60 46/54 55/45 NS 

Age at BL (years) 66.0 [60.2-70.6] ^,# 72.2 [67.8-77.3] ‡ 72.9 [67.7-78.7] ‡ 0.006, 0.009¶ 

Time between scans (months) 23.5 [12.5-27.0] 20.9 [12.4-24.7] 17.9 [11.7-24.1] ‡ NS 

Time between BL and last FU (years) 

(n) 

2.0 [1.0-2.5] (21) 2.0 [1.0-3.3] (45) 2.1 [1.0-2.6] (20) NS 

Time between BL and conversion 

(years) (n) 

1.1 [0.9-1.2] (5) 1.8 [1.0-2.1] (17) - NS 

MMSE from 0-30 28.7 [27.5-30.0] ^,# 25.7 [23.0-28.0] #,‡ 22.0 [20.3-24.0] ^,‡ 0.001 

YOE (years) (n) 16.8 [12.8-20.3] (24) # 15.1 [12.0-19.0] (43) 14.1 [12.0-16.0] (19) ‡ 0.018 

WB (%) -1.26 [-2.31 : -0.41] -1.62 [-2.66 : -0.81] -1.64 [-2.79 : -0.64] NS  

GM (%) -0.83 [-1.73 : -0.20] -1.26 [-2.78 : -0.46] -1.37 [-2.59 : -0.49] NS 

WM (%) -1.85 [-2.78 : -1.26] -2.14 [-3.52 : -0.49] -2.01 [-3.00 : -0.70] NS 

CSF (%) 4.66 [1.73 : 7.91] 4.78 [2.38 : 7.20] 4.09 [2.26 : 5.96] NS 

CGM (%) -0.88 [-1.82 : -0.19] -1.28 [-2.90 : -0.38] -1.42 [-2.64 : -0.27] NS 

WMH (mL) -0.31 [-0.99 : 1.37] -0.75 [-2.31 : 1.03] 2.22 [-0.05 : 2.22] NS 

Legend: data are mean and [IQR], percentages (%), and numbers (n). P-values are general ANCOVA test results, whereas the 

p-values described below are based on the differences of post hoc analyses. Changes in normalized brain volumes (WB, GM, 

WM, CSF, and CGM) at two time points are reported in percentages (%). WMH volume changes at two time points are 

reported in mL. 

¶ HC-SCD and MCI p=-0.006; HC-SCD and AD dementia p=0.009. ^ Significantly different compared to MCI. # Significantly 

different compared to AD dementia. ‡ Significantly different compared to HC-SCD.  

Abbreviations: AD Alzheimer’s disease; BL baseline; CGM cortical grey matter; HC-SCD group of controls and subjective 

cognitive decline; CSF cerebrospinal fluid; FU follow-up; GM grey matter; IQR interquartile range; MCI mild cognitive 

impairment; MMSE Mini-Mental State Examination; NS not significant; REMEMBER retrospective Belgian multi-center MRI 

biomarker study in dementia; WB whole brain; WM white matter; WMH white matter hyperintensities; YOE years of 

education.
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Table 3 Diagnostic performance of volumetric measurements between cognitively healthy controls and AD dementia patients  

 Versus SCD stage  Versus MCI stage  Versus AD dementia stage 

 AUC Sens(%) Spec(%) 95% CI  AUC Sens(%) Spec(%) 95% CI  AUC Sens(%) Spec(%) 95% CI 

WB               

HC 0.700 81.1 52.6 0.626-0.775  0.820 84.4 67.4 0.774-0.865  0.882 85.6 78.8 0.847-0.918 

SCD       0.645 67.0 57.1 0.584-0.706  0.750 67.0 73.3 0.697-0.804 

               

GM               

HC  0.655 78.7 54.2 0.576-0.735  0.753 82.0 63.2 0.702-0.804  0.795 79.8 71.4 0.746-0.844 

SCD      0.613 63.5 57.5 0.552-0.674  0.674 86.5 47.1 0.614-0.735 

               

WM               

HC  0.629 78.7 44.8 0.549-0.709  0.703 78.7 52.4 0.643-0.764  0.746 78.7 59.9 0.688-0.805 

SCD       0.585 31.3 85.9 0.520-0.649  0.636 70.8 50.2 0.571-0.701 

               

CSF               

HC  0.706 58.4 77.1 0.631-0.780  0.783 597.5 67.4 0.732-0.834  0.824 85.4 70.9 0.776-0.872 

SCD       0.615 63.5 59.3 0.552-0.677  0.673 71.9 59.5 0.612-0.735 

               

CGM               
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HC  0.656 79.8 56.3 0.577-0.736  0.749 85.4 59.3 0.698-0.800  0.791 79.8 72.2 0.741-0.841 

SCD      0.607 79.2 39.8 0.545-0.669  0.664 85.4 47.6 0.603-0.726 

               

WMH               

HC 0.678 83.7 51.1 0.576-0.779  0.811 83.7 74.8 0.737-0.885  0.852 81.4 84.5 0.787-0.916 

SCD      0.628 62.1 63.4 0.545-0.711  0.684 48.5 84.5 0.604-0.764 

Legend: data are AUC, sensitivity, specificity, and 95% CI. AUCs were determined by ROC for all volumetric measurements. Highest accuracies were detected between HC and AD dementia 

(0.746-0.882) or MCI patients (0.703-0.820) and between SCD and AD dementia patient (0.629-0.706), with the highest accuracies for WB. However, differentiating in the earlier stages of the 

disease showed lower accuracies (HC vs. SCD 0.629-0.796; SCD vs. MCI 0.558-0.645) for all volumetric measurements. 

Abbreviations: AD Alzheimer’s disease; AUC area under the curve; CGM cortical grey matter; CI confidence interval; CSF cerebrospinal fluid; GM grey matter; HC cognitively healthy controls; MCI 

mild cognitive impairment; ROC receiver operating characteristic; SCD subjective cognitive decline; sens sensitivity; spec specificity; WB whole brain; WM white matter; WMH white matter 

hyperintensities.
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Table 4 Prediction of disease severity based on extracted MRI measures by the MMSE score 

 Model 1 - volume Model 2 – volume: age and clinical diagnosis at BL 

 R2 β [95% CI] p-value R2 β [95% CI] p-value 

WB (n=804) 0.165  0.406 [0.34 : 0.47] 0.001 0.422 0.150 [0.08 : 0.22] 0.001 

GM (n=746) 0.115 0.339 [0.27 : 0.41] 0.001 0.449 0.156 [0.10 : 0.21] 0.001 

WM (n=746) 0.047 0.216 [0.14 : 0.29] 0.001 0.428 0.012 [-0.05 : 0.07] 0.706 

CSF (n=746) 0.111 -0.333 [-0.40 : -0.26] 0.001 0.439 -0.119 [-0.18 : -0.06] 0.001 

CGM (n=746) 0.107 0.327 [0.26 : 0.40] 0.001 0.447 0.148 [0.09 : 0.21] 0.001 

WMH (n=459) 0.063 -0.252 [.034 : -0.16] 0.001 0.426 -0.044 [-0.12 : 0.04] 0.280 

Legend: data are R square (R2), standardized regression coefficients (β-values) with 95% confidence intervals [95% CI], and p-

values. Model 1 predicted the MMSE score significantly for all volumes, whereas model 2 showed a significant difference for 

WB, GM, CSF, and CGM when age and clinical diagnosis at baseline were introduced to the analysis. 

Abbreviations: BL baseline; CGM cortical grey matter; CI confidence interval; CSF cerebrospinal fluid; GM grey matter; MMSE 

Mini-Mental State Examination; WB whole brain; WM white matter; WMH white matter hyperintensities. 
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Figure 1 WB, GM, and CGM volumes across the different clinical diagnosis 

Scatterplots of WB (A), GM (B), and CGM (C) volumes in mL per clinical diagnostic category with their corresponding mean±SD. 

Significant differences were reported between clinical diagnoses, p=0.001* or p<0.05 (a-d). Volumes were significantly 

different between a clinical diagnostic group and cognitively healthy controls (a), to SCD (b), to MCI (c), or to AD dementia 

patients (d). WB was significantly different between all diagnostic groups. GM was significantly different between all 

diagnostic groups, except between controls and SCD. The CGM was significantly different between controls and SCD vs. MCI 

and AD dementia.  

Abbreviations: AD Alzheimer’s disease; CGM cortical grey matter; GM grey matter; MCI mild cognitive impairment; SCD 

subjective cognitive decline; SD standard deviation; WB whole brain. 
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Figure 2 WB, GM, and CGM volumes across slow and fast decliners in the total population based on 

MMSE 

Scatterplots of WB (A), GM (B), and CGM (C) volumes in mL at baseline with their corresponding mean ±SD. The MMSE slopes 

were calculated based on the difference in MMSE scores and were divided by the follow-up time. Subjects were categorized 

as slow decliners in case the MMSE slope was smaller than three, and if the slope was equal or larger than three a subject 

was categorized as a fast decliner. Significant differences were found for all volumes showed.  

 

Abbreviations: CGM cortical grey matter; GM grey matter; MMSE Mini-Mental State examination; SD standard deviation; WB 

whole brain. 
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Supplemental Data 

 

Validation process of MSmetrix 

MSmetrix has been specifically designed to measure atrophy in patients with multiple sclerosis (MS) 

and has been validated in these patients [47-51]. Within this validation process test-retest scans were 

obtained in 18 MS patients, which were scanned on two Philips Healthcare systems (Philips, Best, The 

Netherlands) on the same day; 1.5Tesla (T, Intera) and 3T (Achieva) [48]. This study showed that 

MSmetrix was more robust compared to SIENA (FSL, http://www.fmrib.ox.ac.uk/fsl), as the median 

percentage error of WB volume measurements between 1.5T and 3T scanners was 0.35%, as compared 

to 2.99% for SIENA.  

Next, test-retest scans were obtained in 10 MS patients, which were scanned twice per scanner at 

three different scanners (General Electric (GE) Medical Systems Discovery MR750w, n=8; SIEMENS 

Skyra, n=8; Philips Medical Systems Achieva, n=7) [47]. This study demonstrated a small measurement 

error across the three 3T scanners with a median value of 0.13% (MSmetrix) and 0.17% (SIENA), which 

was not significantly different between the two different segmentation methods. The daily 

physiological processes were evaluated in three subjects scanned two times on 20 different days within 

a 31-day period, and a significantly smaller overall error for WB atrophy was detected when measures 

were analyzed by MSmetrix (0.19%) compared to SIENA (0.31%). In addition, no significant differences 

were observed between MSmetrix and SIENA with regard to the confidence interval (CI) of WB atrophy 

for 6-month intervals compared to the one year interval.  

The usage of T1 only versus T1 over FLAIR with MSmetrix was investigated in 33 MS patients. The 

difference between the two image protocols, and thus analyzing techniques, was 5.74mL (median) 

with a Pearson R of 1.00 (unpublished data).  

Moreover, studies have shown it is robust for different scanners without parameter tuning and 

provides accurate segmentations with a good reproducibility [49, 50]. The accuracy was evaluated by 

comparing the output from MSmetrix-cross with Lesion Segmentation Tool (LST) [68] and Lesion-

http://www.fmrib.ox.ac.uk/fsl


34 
 

Topology-preserving Anatomical Segmentation (TOADS) [69], two expert reference segmentations, in 

20 MS patients. In here, spatial overlap had a mean ±standard deviation (SD) of 0.67 ±0.11 and an 

interclass correlation coefficient equals 0.8, indicating a good volumetric agreement between 

MSmetrix and expert labelling [50]. Next, MSmetrix-long was evaluated by LST, and the median Dice 

score was 0.63 with a Pearson correlation coefficient equals to 0.96 [49]. Again a good agreement, and 

thus, MSmetrix-long is able to accurately and reproducibly measure new, enlarging, disappearing, 

shrinking, and static volumes in MS populations.  

When MSmetrix, FreeSurfer, SIENA, and Statistical Parametric Mapping (SPM) were compared, 

differences in atrophy measurements were larger compared to typical atrophy rates observed in MS, 

even at WB level [51]. MSmetrix-cross behaved similar to SPM and MSmetrix-long to SIENA, both in 

terms of mean volume difference as well as proportional error.  

In conclusion, MSmetrix is a robust method to analyze different MRI scans with different protocols 

and/or acquired at different scanner types.  
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Table 1 Overview of the REMEMBER study population based on quality control (QC) of obtained 

volumes by MSmetrix. 

  Controls SCD MCI AD dementia Total 

Center 1 45 43 139 96 323 

Center 2 

 

2 13 15 30 

Center 3 

 

34 48 14 96 

Center 4 

   

58 58 

Center 5 27 18 39 

 

84 

Center 6 

 

2 100 77 179 

Center 7 21 

 

40 45 106 

Center 8 

 

3 

 

8 11 

Total cohort 93 102 379 313 887 

  

    

  

Rejected after QC 3 5 39 36 83 

WB volumes - approved 90 97 340 277 804 

Approved with remarks  1 1 6 50 58 

GM, WM, CSF, CGM volumes - 

approved 89 96 334 227 746 

  

    

  

No FLAIR available 35 23 118 82 258 

Rejected after QC 15 13 59 83 170 

WMH - approved 43 66 202 148 459 

Legend: overview of the total REMEMBER cohort (eight centers), including cognitively healthy controls, SCD, MCI and AD 

dementia patients (n=887). Volumetric measurements were approved for all volumes (n=746) or MRI scans were completely 

(n=83) or partly rejected (n=58). Therefore, WB volumes could be analyzed in 804 subjects and the other volumes (GM, WM, 

CSF, CGM) in 746 subjects. For WMH a FLAIR sequence should be available (n=629) and approved by QC (n=459).  

Abbreviations: AD Alzheimer’s disease; CGM cortical grey matter; CSF cerebrospinal fluid; GM grey matter; MCI mild cognitive 

impairment; MRI magnetic resonance imaging; QC quality control; REMEMBER retrospective Belgian multi-center MRI 

biomarker study in dementia; SCD subjective cognitive decline; WB whole brain; WM white matter; WMH white matter 

hyperintensities. 
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Table 2 Detailed information of MRI scanner and image sequences. 

  HC (n=93) SCD (n=102) MCI (n=379) AD (n=313) Total (n=887) 

Scanner type       

 GE medical systems  21 [95.2] 64 [78.1] 55 [83.6] 140 [82.9] 

                     1.5T   16 [93.8] 37 [83.8] 37 [83.8] 90 [85.6] 

                     3.0T  5 [100.0] 27 [70.4] 18 [83.3] 50 [78.0] 

 Philips  27 [96.3] 52 [96.2] 142 [94.4] 87 [71.3] 308 [88.3] 

                     1.5T  22 [90.9] 62 [90.3] 35 [80.0] 119 [87.4] 

                     3.0T 27 [96.3] 30 [100.0] 80 [97.5] 52 [65.4] 189 [88.9] 

 SIEMENS 66 [95.5] 29 [89.7] 173 [86.7] 171 [69.6] 439 [81.5] 

                     1.5T  6 [83.3] 45 [73.3] 75 [41.3] 126 [54.8] 

                     3.0T 66 [95.5] 23 [91.3] 128 [91.4] 96 [91.7] 313 [92.3] 

       

Field strength       

 1.5T  44 [90.9] 144 [83.3] 147 [61.2] 335 [74.6] 

 3.0T 93 [95.7] 58 [96.6] 235 [91.1] 166 [82.5] 552 [89.9] 

       

Voxel size       

 3D T1 93 [95.7] 97 [95.9] 367 [90.7] 300 [74.3] 857 [86.1] 

 2D T1  5 [60.0] 12 [8.3] 13 [30.8] 30 [26.7] 

 Slice thickness ≤3mm 93 [95.7] 95 [97.9] 333 [95.2] 266 [78.6] 787 [90.0] 

 Slice thickness >3mm  7 [42.9] 46 [40.0] 47 [38.3] 100 [38.0] 

       

 3D FLAIR 45 [95.6] 23 [95.7] 85 [90.6] 58 [93.1] 211 [92.9] 

 2D FLAIR 13 [0.0] 56 [78.6] 176 [71.0] 173 [54.3] 418 [62.9] 

 Slice thickness ≤3mm  10 [100.0] 11 [90.9] 21 [81.0] 42 [88.1] 

 Slice thickness >3mm 58 [74.1] 69 [81.2] 250 [76.8] 210 [62.4] 587 [71.9] 

 Legend: data are numbers and between brackets the percentage (%) of subjects with approved volumetric measurements 

based on the visual QC. Information about the MRI scanner types, field strengths, and voxel sizes per clinical diagnostic group, 

including cognitively healthy controls, SCD, MCI and AD dementia patients (n=887).  

Scanner types were GE medical systems; 1.5T (Signa) or 3.0T (Discovery), Philips; 1.5T (Achieva, Interna) or 3.0T (Achieva, 

Ingenia), and SIEMENS; 1.5T (Aera, Avanto, Symphony) or 3.0T (Allegra, TrioTim, Skyra, Prisma). 
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The 3T scanners had more approved scans compared to the 1.5T scanners, in which less cognitive impairment showed a 

higher percentage of approved scans (HC>SCD>MCI>AD dementia). For the different scanner types, this phenomenon was 

also detected, as less cognitive impairment had a higher percentage of approved scans for both the Philips and SIEMENS 

scanners. This trend was found for GE scanners as well, however the MCI patients had a lower percentage of approved scans 

compared to the AD dementia patients.  

Smaller slice thickness (≤3mm) and 3D T1/FLAIR sequences had a higher percentage of approved scans compared to larger 

slice thickness (>3mm) and 2D T1/FLAIR sequences. Again, with a higher percentage of approved scans in less cognitive 

impaired subjects (HC>SCD>MCI>AD dementia). 

Abbreviations: AD Alzheimer’s disease; GE general electric; HC cognitively healthy controls; MCI mild cognitive impairment; 

MRI magnetic resonance imaging; QC quality control; REMEMBER retrospective Belgian multi-center MRI biomarker study in 

dementia; SCD subjective cognitive decline; T Tesla. 

 

 

  



38 
 

Table 3 Overview of analyzes based on T1 or T1 in combination with FLAIR. 

  Controls SCD MCI AD  Total 

T1 only  35 23 108 68 234 

 WB volumes - 

approved 

34 22 99 61 216 

 GM, WM, CSF, CGM 

volumes - approved 

33 22 96 60 211 

 %Rejected scans 2.8 4.3 8.3 10.3 7.7 

       

T1 and FLAIR  58 79 271 245 653 

 WB volumes - 

approved 

56 75 241 216 588 

 GM, WM, CSF, CGM 

volumes - approved 

56 74 238 167 535 

 %Rejected scans 3.4 5.1 11.1 11.8 9.9 

       

Total cohort  93 102 379 313 887 

Legend: overview of the distribution of image sequences (T1 or T1/FLAIR) per clinical diagnostic group, including cognitively 

healthy controls, SCD, MCI and AD dementia patients (n=887). Volumetric measurements based on only T1 (n=234) or T1 in 

combination with FLAIR (n=653). Clinical diagnostic groups were divided bases on the visual QC (see Table 1); approved, 

approved with remarks, and rejected. The percentage of rejected scans per clinical diagnosis, and also in the total cohort, 

were for both analyses (T1 only or T1 and FLAIR) comparable. No difference in the usage of T1 only versus T1 in combination 

with FLAIR was detected, as both analyzing methods had less than 10% rejected scans, respectively 7.7% and 9.9%. 

Abbreviations: AD Alzheimer’s disease; CGM cortical grey matter; CSF cerebrospinal fluid; GM grey matter; MCI mild cognitive 

impairment; MRI magnetic resonance imaging; QC quality control; REMEMBER retrospective Belgian multi-center MRI 

biomarker study in dementia; SCD subjective cognitive decline; WB whole brain; WM white matter; WMH white matter 

hyperintensities. 
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Table 4 Cut-off values of the volumetric measurements. 

  Cut-off (mL)   

  Versus SCD stage Versus MCI stage Versus AD dementia stage 

WB     

 HC 1390.0 1383.2 1379.9 

 SCD   1359.9 1359.7 

     

GM     

 HC 816.6 809.9 814.4 

 SCD   799.5 764.3 

     

WM     

 HC 563.2 563.9 563.9 

 SCD   605.5 550.4 

     

CSF     

 HC 531.9 597.5 600.8 

 SCD   617.1 637.2 

     

CGM     

 HC 770.6 760.1 769.9 

 SCD   733.7 723.9 

     

WMH     

 HC 5.9 5.8 5.4 

 SCD   8.0 5.4 

Legend: data are cut-off values (mL).  

Abbreviations: AD Alzheimer’s disease; CGM cortical grey matter; CSF cerebrospinal fluid; GM grey matter; HC cognitively 

healthy controls; MCI mild cognitive impairment; SCD subjective cognitive decline; WB whole brain; WM white matter; WMH 

white matter hyperintensities. 

 


