

Development of a new tool for pest management in fruit arboriculture using essential oils applied by trunk injection

PIERRE-YVES WERRIE, MARIE-LAURE FAUCONNIER LABORATORY OF CHEMISTRY OF NATURAL MOLECULES, GEMBLOUX AGRO-BIO TECH, UNIVERSITY OF LIÈGE, GEMBLOUX, BELGIUM

Plan

Context

- Current pest management strategies of Dysaphis plantaginea in orchards
- The case for essential oils (EO) in insect pest management

Objectives

Methods & Results

- Systemicity of Cinnamomum cassia EO trunk injection
- Biochemical and physiological impact of EO application
- Impact of C. cassia injection on population dynamics
- Discussion & Perspectives

Questions

Diectives

> Discussion & perspectives

3 Context : Current pest management strategies of Dysaphis plantaginea in orchards

- Sap sucking insects
- Leave deformation /fruits loss
- Honeydew (fungi development)
- Main pest (20% yield loss)
- Chemicals control (synthetic pesticides)
- Environmental risks
- Pesticide-resistant populations
- Public demand for environmentally friendly products

Bangels, E.; Alhmedi, A.; Akkermans, W.; Bylemans, D.; Belien, T. Towards a Knowledge-Based Decision Support System for Integrated Control of Woolly Apple Aphid, Eriosoma lanigerum, with Maximal Biological Suppression by the Parasitoid Aphelinus mali. Insects 2021, 12, 479. https://doi.org/10.3390/insects12060479

Obiectives

ethods Results

Discussion & perspectives

4

Context : The case for essential oils in insect pest management

- Neurotoxic mode of action (GABA, AChE)
- Low toxicity on mammalian species
- Compatible with integrated pest management (IPM)
- Rapid degradation and volatilization
- Low specificity
- Cost
- Alternative plant delivering system- Trunk injection
- Target sap sucking pest
- Lower application rate
- Reduced environment load

Tripathi, A. K., & Mishra, S. (2016). Plant Monoterpenoids (Prospective Pesticides). In Ecofriendly Pest Management for Food Security. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803265-7.00016-6

Wise, J., VanWoerkom, A., Aćimović, S., Sundin, G., Cregg, B., & Vandervoort, C. (2014). Trunk Injection: A Discriminating Delivering System for Horticulture Crop IPM. Entomology, Ornithology & Herpetology: Current Research, 03(02), 3–9. https://doi.org/10.4172/2161-0983.1000126

Objectives

 $s > \sum_{s} Discussion 8$

Characterize the biochemical and physiological impact of EO

Research objectives

Demonstrate the systemicity of EO injection

applications on apple tree (phytotoxicity)

▶ Investigate the insecticidal properties on D. plantaginea

ectives

Methods Discussion & Perspectives

Systemicity of Cinnamomum cassia EO trunk injection

► EO systemicity assayed by:

- targeted Trans-cinnamaldehyde (EO main compound)
- Untargeted Volatile organic compounds (VOCs) analysis
- leaf-emitted VOCs: Thermal desorption TDU-GC-MS

leaf-contained Dynamic headspace sampling DHS-GC-MS

Werrie P-Y, Burgeon C, Le Goff GJ, Hance T and Fauconnier M-L (2021) Biopesticide Trunk Injection Into Apple Trees: A Proof of Concept for the Systemic Movement of Mint and Cinnamon Essential Oils. Front. Plant Sci. 12:650132

Systemicity of Cinnamomum cassia EO trunk injection

Untargeted volatile organic compounds (VOCs) analysis

- VOC profile emissions alteration
- Increase in α-farnescene production
 - Aphid repellent
 - ► Produced during systematic acquired resistance (SAR) elicitation

ectives

Discussion & perspectives

8

Biochemical and physiological impact of EO application

- Plant responses to abiotic stress
- **Reactive oxygen species** (ROS)
- toxic by-products AND key regulators of growth/defense pathways
- Molecular mechanism investigated by:
 - Redox state alteration (GSH)
 - Oxidative damage (MDA)
 - Defense gene induction (RT-PCR)

Xia, X. J., Zhou, Y. H., Shi, K., Zhou, J., Foyer, C. H., & Yu, J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. In Journal of Experimental Botany (Vol. 66, Issue 10, pp. 2839–2856). https://doi.org/10.1093/jxb/erv089

ctives 🔪

9

Biochemical and physiological impact of EO application

Glutathione = tripeptide, non-enzymatic antioxidant in plant cell (GSH/GSSG)

Role in:

- ► ROS scavenging
- Stress perception/signalling
- Defence reactions

 Glutathione redox status rapid alteration at high EO concentration !

ectives 💙

10

Biochemical and physiological impact of EO application

	Lipid Peroxidation Breakdown Products PUFAs LOO- LOOH UOOH JA JA JA JA JA JA JA JA JA JA JA JA JA				
orales & Munné-Bosch 2019					

- Malondialdehyde = secondary product of lipid peroxidation
- Marker of oxidative damages

- Oxidative damages occur at high concentration
- Dose-dependent phytotoxicity of C. cassia

Weber, H., Chételat, A., Reymond, P., & Farmer, E. E. (2004). Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. Plant Journal, 37(6), 877–888. https://doi.org/10.1111/j.1365-313X.2003.02013.x

Discussio perspecti

11

Biochemical and physiological impact of EO application

Defence Classes and Subclasses		Defence Genes		
		Gene Codes	Complete Names	
	PR proteins	PR-1	Pathogenesis-related protein 1	 qRT-PCR decipher the potential elicitor properties RNA Transcripts from major pathways:
		PR-2	Pathogenesis-related protein 2 (glucanases)	
		PR-4	Pathogenesis-related protein 4 (hevein-like)	
		PR-5	Pathogenesis-related protein 5 (thaumatin-like, osmotin)	
		PR-8	Pathogenesis-related protein 8 (class III chitinase)	
		PR-14	Pathogenesis-related protein 14 (lipid transfer protein)	
		PR-15	Pathogenesis-related protein 15 (oxalate oxidase)	
		PAL	Phenylalanine ammonia-lyase	
	or Phenylpropanoids rs	CHS	Chalcone synthase	PR proteins
Chamien 1 and / an		DFR	Dihydroflavonol reductase	
Chemical and/or		ANS	Anthocyanidin synthase	
physical barriers		PPO	Polyphenol oxidase	Phenylpropanoids
		HMGR	Hydroxymethyl glutarate-CoA reductase	
	Isoprenoids	FPPS	Farnesyl pyrophosphate synthase	
		Far	(E,E)-alpha-farnesene synthase	Isoprenoids
	Cysteines	CSL	Alliinase	
		APOX	Ascorbate peroxidase	N Ovidativo stross
	Oxidative stress	GST	Glutathion S-transferase	
		POX	Peroxidase	
	Parietal modification	CalS	Callose synthase	Parietal modifications
		Pect	Pectin methyl esterase	
		CAD	Cinnamyl alcohol dehydrogenase	
	Agglutinin	AGG	Agglutinin synthetase	Hormonal signalization (SA, JA, EI)
	Salicylic acid (SA)	EDS1	Disease resistance protein EDS 1	
Hormonal signalling		WRKY	WRKY transcription factor 30	
	Jasmonic acid (JA)	LOX2	Lipoxygenase AtLOX2	
		JAR	Jasmonate resistant 1	
	Ethylene (ET)	ACCO	1-aminocyclopropene-1-carboxylate oxidase	
		EIN3	EIN3-BINDING F BOX PROTEIN 1	

Dugé de Bernonville, T., Marolleau, B., Staub, J., Gaucher, M., & Brisset, M. N. (2014). Using molecular tools to decipher the complex world of plant resistance inducers: An apple case study. Journal of Agricultural and Food Chemistry, 62(47), 11403–11411. https://doi.org/10.1021/jf504221x

jectives

Methods Disc & Results Ders

12

Biochemical and physiological impact of EO application

- Induction of defense gene expression by C. cassia during 3 days
- Pathway different of SAR elicitor bion

ectives 🔪

Methods & Results

Discussion perspective

13

Impact of C. cassia injection on population dynamics

- Injection affects survival and growth
- GLM modelling on aphids population
- Effects of time and injection significant(p-values < 0.001)</p>

 Generation of oxidative burst- other oxidative damage marker to consider (protein/DNA)

Hormonal imbalance - Long term phytotoxicity ?

Population control sufficient to prevent economical impact (yield)

Perspectives

- ► Field efficiency ?
- ► Fruit residue ?

Defence against other pathogens (scab, oidium) ?

ves $\sum_{n=1}^{n}$

Discussion & perspectives

Contact: Pierre-Yves.Werrie@Uliege.be