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Extracellular vesicles (EVs) are membranous structures containing bioactive molecules,
secreted by most cells into the extracellular environment. EVs are classified by
their biogenesis mechanisms into two major subtypes: ectosomes (enriched in large
EVs; lEVs), budding directly from the plasma membrane, which is common in both
prokaryotes and eukaryotes, and exosomes (enriched in small EVs; sEVs) generated
through the multivesicular bodies via the endomembrane system, which is unique
to eukaryotes. Even though recent proteomic analyses have identified key proteins
associated with EV subtypes, there has been no systematic analysis, thus far, to
support the general validity and utility of current EV subtype separation methods, still
largely dependent on physical properties, such as vesicular size and sedimentation.
Here, we classified human EV proteomic datasets into two main categories based on
distinct centrifugation protocols commonly used for isolating sEV or lEV fractions. We
found characteristic, evolutionarily conserved profiles of sEV and lEV proteins linked
to their respective biogenetic origins. This may suggest that the evolutionary trajectory
of vesicular proteins may result in a membership bias toward specific EV subtypes.
Protein–protein interaction (PPI) network analysis showed that vesicular proteins formed
distinct clusters with proteins in the same EV fraction, providing evidence for the
existence of EV subtype-specific protein recruiters. Moreover, we identified functional
modules enriched in each fraction, including multivesicular body sorting for sEV, and
mitochondria cellular respiration for lEV proteins. Our analysis successfully captured
novel features of EVs embedded in heterogeneous proteomics studies and suggests
specific protein markers and signatures to be used as quality controllers in the isolation
procedure for subtype-enriched EV fractions.
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INTRODUCTION

Extracellular vesicles (EVs) are membrane-bound particles that
are secreted by cells across the evolutionary spectrum (Gill et al.,
2019). EVs enable the export of proteins, RNAs, lipids, and other
biomolecules (Oliveira et al., 2010), protected from degradation
by proteases and RNases in the extracellular fluid (O’Brien
et al., 2020). EVs mediate communications systemically between
organs or locally between cells (Al-Nedawi et al., 2008). However,
EVs are immensely heterogeneous and our understanding of how
their different subtypes are formed and how specific cargoes are
selected for transport and delivered remains limited. Thus, it is
important to differentiate the heterogeneous populations of EVs
to understand the physiology of vesicles and their potential use,
including specific biomarkers in disease.

There are two major subtypes of EVs based on their
biogenesis and size (Cocucci and Meldolesi, 2015): (i) Ectosomes
(100–1000 nm in diameter) bud from the cellular surface and are
frequently referred to as microvesicles in eukaryotes, or as outer
membrane vesicles in prokaryotes and (ii) exosomes (30–100 nm)
arise within endosome-related intraluminal vesicles, which are
then released from cells upon recruitment of multivesicular
bodies to the inner layer of the plasma membrane (Colombo
et al., 2014; van Niel et al., 2018). Both prokaryotic and
eukaryotic cells secrete EVs, even though the biogenesis of
exosomes is thought to be specific to eukaryotic cells due
to the requirement for endosomal compartment (Deatherage
and Cookson, 2012). However, the impact of evolutionary
characteristics of biogenesis mechanisms on the vesicular cargo
composition has not been explored.

To uncover mechanisms of EV biogenesis, a myriad of EV
proteomic studies have been conducted under various conditions,
from different cellular sources, and on different subtypes of
EVs. EV subtypes may have different physiological roles and
compositions (Kanada et al., 2015; Kowal et al., 2016), but it is
difficult to dissect their differences on an empirical basis. Indeed,
current isolation methods are limited in separating EV subtypes
exclusively (Li et al., 2019), and the true predicted heterogeneity
of EVs probably exceeds the traditional classification by orders
of magnitude (Choi et al., 2019). Differential ultracentrifugation
(DUC) is most commonly used to pre-clear debris and unwanted
EV subtypes and/or concentrate the target EV subtype (Choi
et al., 2013, 2015; Meldolesi, 2018). Although it is recommended
to combine DUC methods with other purification methods,
such as size-exclusion chromatography and affinity purification
(Jeppesen et al., 2019), the choices of molecular markers used
to pull down the desired EV subpopulations are often arbitrary
and result in biased sampling that might introduce experimental
artifacts and skew EV profiles. This emerging challenge may be
addressed by integrating multiple datasets from various sources
to validate common isolation methods and markers.

We hypothesize that the proteomic composition of ectosomes
and exosomes fundamentally differs in an evolutionary,
functional, and network-topological manner, due to their
distinct core biogenesis mechanisms. We classified EV proteomic
datasets available in the EVpedia database (Kim et al., 2013,
2015a,b) into two datasets – a smaller exosome-enriched

fraction (small EV; sEV) and a larger ectosome-enriched fraction
(large EV; lEV) – using the frequently used DUC cutoffs for
analyzing specific EV subtypes. We validated our approach by
comparing the identification frequency of popular exosomal
and ectosomal markers in our classified sEV and lEV datasets.
Moreover, our findings demonstrate that sEV and lEV datasets
exhibit significant differences in: (i) degree of evolutionary
conservation of proteins, (ii) topology of protein–protein
interactions (PPIs), and (iii) enrichment in biological functions.
While EVs are more readily secreted by cancer cells and represent
a promising diagnostic analyte (Kosaka et al., 2019; Hoshino
et al., 2020; Kalluri and LeBleu, 2020), differential expression
of biomarkers between a diseased and normal cell may arise
from cross-contamination between EV subtypes. Therefore, an
integrated computational approach for analyzing their larger
protein networks not only validates isolation methods but
may also reveal a more comprehensive understanding of EV
subtypes beyond the detection of individual protein markers,
enabling discovery of novel cancer signatures and potential
therapeutic targets.

MATERIALS AND METHODS

Classification of Extracellular Vesicle
Proteomic Datasets Into Small
Extracellular Vesicle and Large
Extracellular Vesicle Datasets Based on
Differential Ultracentrifugation Methods
We constructed an integrated EV proteomic dataset by
compiling the entire list of shotgun proteomic datasets
(Supplementary Table 1A) from EVpedia (Kim et al., 2013,
2015a,b), updated on April 30, 2018. We classified 485 human
datasets based on DUC conditions used for purifying the EV
samples. Given several methods to enrich lEVs at 10,000 × g
(Kowal et al., 2016), we assumed that if the EV fraction has
undergone pre-clearing of 10,000 × g or more, the sample
has been cleared of most lEVs. We set the ultracentrifugation
speed cut-off under 20,000 × g for sedimenting lEVs and
over 100,000 × g for sEVs. Standards for classification can be
found in detail in Supplementary Table 1B, and methods that
did not meet these standards were excluded (Supplementary
Table 1C). Common Tree tool from NCBI taxonomy database
(latest updated on August 22, 2021) (Schoch et al., 2020) was used
to generate a phylogenetic tree of species included in the EVpedia
database (Kim et al., 2013, 2015a,b) and further visualized with
the iTOL tool (version 5) (Letunic and Bork, 2021).

Analysis of Exosomal and Ectosomal
Markers in Large Extracellular Vesicle
and Small Extracellular Vesicle
Proteomes
We identified 10 conventional molecular markers each for
human ectosomes and exosomes from an extensive literature
search (Muralidharan-Chari et al., 2009; Lee et al., 2012;
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Surman et al., 2017; Meldolesi, 2018; Jeppesen et al., 2019; Rogers
et al., 2020). We defined “Identification frequency in sEV datasets
(fsEV)” and “Identification frequency in lEV datasets (flEV)”
of every vesicular protein in the integrated dataset, which
is the number of times that the protein was identified in a
particular subset, divided by the total number of sEV or lEV
studies in the subset, respectively (Supplementary Table 2). We
used Fisher’s exact test in MatLab (version 2016a) to compare
individual markers between the datasets and Mann–Whitney
U test to compare the identification of all the markers via
GraphPad Prism (version 8.2). A scatter plot of fsEV and flEV
was visualized in MatLab.

Evaluation of Evolutionary Conservation
of Small Extracellular Vesicle and Large
Extracellular Vesicle Protein
Components
To evaluate the evolutionary conservation of proteins enriched in
sEV and lEV, we used identification counts (ICs) of orthologous
proteins in prokaryotes and eukaryotes across the entire dataset
from EVpedia (Supplementary Table 2). ICeu (identification
count in eukaryotic EV datasets) and ICpro (identification count
in prokaryotic EV datasets) for proteins that showed higher
identification frequency in each subset [log2(fsEV/flEV) > 0.1
for sEV; log2(fsEV/flEV) < -0.1 for lEV] were used for analysis.
Statistical analysis was performed using Mann–Whitney U test in
GraphPad Prism (version 8.2).

Protein–Protein Interaction Network
Analysis of Vesicular Proteins
To construct a unified protein–protein interactome network,
we integrated Affinity Purification-Mass Spectrometry (AP-
MS)-based network from the BioPlex project (version 3.0)
based on two distinct cell lines of HEK293T and HCT112
(Huttlin et al., 2015, 2017, 2021) and Yeast Two-Hybrid (Y2H)-
based network from Human Reference Interactome (HuRI)
project (Rual et al., 2005; Rolland et al., 2014; Luck et al.,
2020; Supplementary Table 3). The Spearman correlation of
fsEV/flEV ratio between bait and prey proteins of interacting
pairs and their P-value were calculated by MatLab (version
2016a). The network was visualized by Cytoscape (version 3.8.2)
(Shannon et al., 2003).

Functional Enrichment by Gene Set
Enrichment Analysis
We constructed two separate gene lists ranked by (i) relative
identification in sEV and lEV datasets [log2(fsEV/flEV)] or
(ii) relative identification counts in human vesicular proteomes
(IChuman - an average of IChuman) for proteins that were equally
abundant [| log2(fsEV/flEV)| < 0.1] in sEV and lEV datasets.
Biological functions enriched in each classification category were
determined using Gene Set Enrichment Analysis (GSEA; version
4.1.0) (Subramanian et al., 2005). Functional annotations that
were significantly enriched (false discovery rate < 0.05) were
visualized using Cytoscape (version 3.8.2) (Shannon et al., 2003)

apps, EnrichmentMap (version 3.3.2) (Merico et al., 2010), and
AutoAnnotate (version 1.3.3) (Kucera et al., 2016).

RESULTS

Small Extracellular Vesicle and Large
Extracellular Vesicle Datasets Exhibit a
Differential Separation of Exosomal and
Ectosomal Markers
DUC is a widely used purification method to separate exosome-
or ectosome-enriched EV fractions (Kowal et al., 2016).
Ectosome-enriched lEV fraction is often sedimented under
10,000 × g centrifugal force and exosome-enriched sEVs require
over 100,000 × g preceded by pre-clearance of lEVs (Greening
et al., 2015; Jeppesen et al., 2019). To maximize the size of input
data for proper statistical testing, we set slightly more permissive
standards of≥100,000× g with≥10,000× g of pre-clearance for
sEV datasets and ≤20,000 × g and <10,000 × g pre-clearance
for lEV datasets (Figure 1A and Supplementary Tables 1B,C).
We performed our analyses on human datasets to account for
variability of size and density between EVs of different species.
A total of 485 human proteomic datasets have been classified into
51 lEV and 203 sEV datasets (Supplementary Table 1A). We
then defined “Identification frequency in sEV datasets (fsEV)”
and “Identification frequency in lEV datasets (flEV)” of every
vesicular protein identified in the integrated 254 human datasets
in which the number of datasets that identified the protein
divided by the whole number of sEV or lEV datasets, respectively.
These measures might provide us with a systematic evaluation of
each protein’s tendency to be present in sEVs or lEVs.

With an intent to validate our classification strategy while
also evaluating the robustness of the common markers used,
we examined enrichments of previously known exosomal and
ectosomal markers in each fraction (Muralidharan-Chari et al.,
2009; Lee et al., 2012; Surman et al., 2017; Meldolesi, 2018;
Jeppesen et al., 2019; Kalluri and LeBleu, 2020; Rogers et al.,
2020). Exosomal markers are generally restricted to the endocytic
pathway. However, ectosomal markers are more diverse and
the enriched proteins depend heavily on the samples and cell
types from which they have originated (Lee et al., 2012; Liu
and Williams, 2012; Sluijter et al., 2014). Markers representing
exosomes included tetraspanins (CD63, CD81, and CD9),
endomembrane network-associated proteins (FLOT1, PDCD6IP,
SDCBP, TSG101, and YWHAE), and heat shock proteins (HSPA8
and HSP90AA1). Although molecular markers that distinguish
ectosomes are less well defined, we selected actins (ACTB and
ACTN4), myosins (MYLK and TPM3), selectin (SELP), lipid
membrane remodeling molecule (ARF6), protease (MMP9),
integrin (ITGB1), mitochondrial protein (IMMT), and annexin
(ANXA1) as relatively ectosome-specific markers. Overall, we
saw significant differences in the expression of markers between
sEV and lEV fractions (Figure 1B). We showed that the
most common exosome-specific markers were more readily
identified in sEV datasets (Figure 1B and Supplementary
Figure 1A). Some ectosomal markers such as TPM3 showed
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FIGURE 1 | Protein markers of ectosomes and exosomes show different identification frequencies in human small extracellular vesicle (sEV) and large EV (lEV)
proteomic datasets. (A) Schematic of DUC criteria shows how we classified human proteomic datasets into sEV and lEV datasets. (B) Identification frequency of
literature-surveyed EV protein markers in sEV (fsEV) and lEV (flEV) datasets supports the validity of our classification methods. *P < 0.05; ***P < 0.001. (C) A scatter
plot comparing fsEV and flEV of all human vesicular proteins deposited in EVpedia shows that known exosomal and ectosomal markers correctly identify EV subtype
enriched in each fraction. Protein markers with the 10 highest differences between their identification frequencies in sEV and lEV are highlighted by red and blue for
fsEV and flEV, respectively.

higher identification in lEV datasets (Figure 1B), but the
overall identification frequency of 10 ectosomal markers was
not significantly enriched in lEV compared to sEV datasets
(Supplementary Figure 1B). Surprisingly, CD81 and ARF6,
which are among the most common markers for exosomes and
ectosomes, respectively, did not show a statistical difference
between the datasets. While CD63 and TPM3 show high
exclusivity in their respective datasets, they have a low frequency
of identification. Therefore, we propose that multiple markers
should be considered together when isolating EVs using affinity
purification, as there are no good stand-alone markers that ensure
high identification and specificity across sample sets.

We next compared fsEV and flEV for all the vesicular proteins
deposited in EVpedia (Figure 1C). Among the top 10 proteins
enriched in lEVs (colored blue in Figure 1C; P < 0.001 by
Fisher’s exact test), only two proteins were previously known as
ectosomal markers: ARHGDIB (Cocucci and Meldolesi, 2011;
Surman et al., 2017; Meldolesi, 2018) and PECAM1 (Kalra
et al., 2016; Meldolesi, 2018; Słomka et al., 2018). CALU is

a calcium-binding protein, which has been shown to regulate
ectosomal budding at the plasma membrane (Surman et al.,
2017). All seven remaining proteins are mitochondrial proteins
(ATP5F1B, HSPD1, ATP5F1A, GOT2, ATP5PO, DLD, and
UQCRC2), previously reported to be loaded into ectosomes
(Mittelbrunn and Sánchez-Madrid, 2012; Phinney et al., 2015;
Torralba et al., 2016). Among the top 10 enriched proteins in
exosomes (colored red in Figure 1C), we found five endosomal
pathway regulators (PDCD6IP, SDCBP, ANXA11, TSG101, and
VPS37B) which are pivotal for exosome biogenesis, and CD63,
a widely known exosomal tetraspanin marker. LGALS3BP has
been found in diverse cancer-derived exosomes (Escrevente et al.,
2013; Ung et al., 2014; Dutta et al., 2015; Gomes et al., 2015;
Song et al., 2021), and APOE has been found in exosomes
released from macrophages (Zheng et al., 2018) and neurons
(Nikitidou et al., 2017; Mathews and Levy, 2019; Peng et al.,
2019). This comparative analysis shows that our classification
pipeline can successfully categorize proteomic datasets and
suggests that systematic analysis of published proteomic studies
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is a valuable approach for discovering novel markers for
ectosome and exosomes.

Proteins Enriched in Large Extracellular
Vesicles and Small Extracellular Vesicles
Have Differential Evolutionary
Conservation Profiles
Exosome forms in the late endosome, an organelle unique to
eukaryotes, and transmits small intraluminal vesicle contents
to the lysosome or the plasma membrane (Harris, 1986;
Edgar, 2016). In contrast, ectosomes bud directly from the
plasma membrane (Cocucci and Meldolesi, 2011), a mechanism
used by both eukaryotes and prokaryotes (Deatherage and
Cookson, 2012). Therefore, we hypothesized that the biogenesis
mechanisms of EV subtypes correlate with kingdom-specific
evolutionary conservation of proteins that are secreted via EVs
(Figure 2A). To define a measure for the kingdom-specific
evolutionary conservation, we used the identification count
provided by EVpedia of proteins that had a higher tendency to
be in sEV or lEV fraction. For example, “identification count
in prokaryotes (ICpro)” indicates the number of prokaryotic
EV proteomic datasets that had identified a particular protein’s
orthologs, as defined by the EggNOG database (Jensen et al.,
2008; Supplementary Table 2). A higher identification count
indicates that the EV protein is more conserved within the
EVs of eukaryotes or prokaryotes. The phylogenetic tree shows
how species that have EV proteomes available in EVpedia

are evolutionarily related (Figure 2A, right). In general,
identification counts for prokaryotic proteins are lower, meaning
that most human EV proteins were not well conserved in
prokaryotes. As we predicted, ectosome-enriched lEV proteins
show higher conservation in prokaryotes (Figure 2B) and lower
conservation in eukaryotes (Figure 2C). Conversely, exosome-
enriched sEV proteins are conserved more in eukaryotes and
less in prokaryotes (Figures 2B,C). Despite being significantly
different, the differences may be small due to EV proteins
that do not participate in biogenesis mechanisms being
conserved in both sEV and lEV fractions. Nevertheless, our
result demonstrates that the current purification methods for
EV subtypes provide us with the evolutionarily distinct EV
proteomes and further suggests that evolutionary trajectories of
vesicular proteins may be an important determinant influencing
cargo selection.

Network Analyses Reveal That
Protein–Protein Interaction Networks of
Small Extracellular Vesicles and Large
Extracellular Vesicles Proteins Have High
Intra-Fractional and Low Inter-Fractional
Enrichment of Interactions
A biased PPI network resulting from the over-representation of
popular genes may limit our ability to explore new biological
information (Gillis et al., 2014). However, recent systematic

FIGURE 2 | Protein components of sEVs and lEVs show different evolutionary conservation. (A) Schematic diagram of EV evolutionary conservation (left two panels).
EVs derived from different biogenesis mechanisms show different availability in two different kingdoms. Phylogenetic tree (right panel) illustrates the evolutionary
trajectory of species included in the EVpedia database. The topology is based on EVpedia (Kim et al., 2013, 2015a,b). Branch lengths are proportional to the number
of non-synonymous substitutions per site. Red and blue branches represent eukaryotes and prokaryotes, respectively. (B) Proteins that are more frequently identified
in lEV fractions are more conserved in the prokaryotic (ICpro/141 prokaryotic datasets) kingdom, (C) while proteins that are more frequently identified in sEV fraction
are more conserved within the eukaryotic (ICeu/656 eukaryotic datasets) kingdom. ***P < 0.001, n = 3361 and 3028 proteins specifically enriched in small and large
EV fractions, respectively.
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approaches to explore PPI via AP-MS called BioPlex (Huttlin
et al., 2015, 2017, 2021) and Y2H called HuRI (Rual et al.,
2005; Rolland et al., 2014; Luck et al., 2020) have enabled
an unbiased proteome-wide analysis of PPIs (Supplementary
Table 3). BioPlex and HuRI are highly valuable interactomes for
analyzing EV PPIs as they appear to have a lower localization
bias compared to other networks (Luck et al., 2020). This work
identified a PPI “community” of vesicular proteins, which are
unbiased subnetworks significantly enriched for EV localization
(Luck et al., 2020). We hypothesized that key control elements
in EV biogenesis or recruitment of specific cargo would be
the possible “seed protein” candidates, which exist as hub
proteins that link their interacting proteins within the same EV
subtypes. We predict that if these “seed proteins” exist, PPI may
occur more frequently between exosomal proteins and between

ectosomal proteins, than between the two of them (Figure 3A).
We showed that protein interaction partners share a similar
tendency to be included in sEV or lEV, showing a positive
correlation between fsEV/flEV ratios of bait and prey proteins
of interacting protein pairs (Figure 3B; Spearman correlation
ρ = 0.1319 with P < 10−42). Moreover, a network analysis
of EV proteins (proteins identified more than 50 times in
EVpedia) shows that sEV proteins and lEV proteins clusters
are significantly separated in space, sEV (red) and lEV (blue)
proteins located in the left upper corner and right lower corner,
respectively (Figure 3C). In particular, we found two examples
of “seed proteins,” whose PPI subnetworks are enriched with
proteins that have a higher tendency to exist in corresponding
EV subtypes: SDCBP for sEVs (Figure 3D) and ATP5ME for
lEVs (Figure 3E).

FIGURE 3 | Network analysis shows enrichment of protein–protein interactions (PPIs) among the same EV fractions. (A) The schematic figure shows how EV
fraction-specific “seed proteins” affect the PPI enrichment among the components of each EV fraction. (B) PPIs are enriched among the components in the same
EV fraction, not between the different fractions; Spearman correlation ρ = 0.1319; P < 10-42. (C) Integrated PPI network shows an exclusive cluster of EV proteins
enriched in sEVs and lEVs. We have two examples of “seed protein” candidates: SDCBP for sEVs (D) and ATP5ME for lEVs (E).
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In our previous interactome study (Luck et al., 2020),
we validated SDCBP as a hub protein whose knock-out can
downregulate the abundance of its interactors in EVs, alluding
to the notion that SDCBP is involved in the recruitment of other
proteins into EVs. Further, there were several SDCBP-interacting
proteins whose expressions were downregulated by SCDBP
knockout. These downregulated proteins included CEP55, which
interacts with TSG101 (Lee et al., 2008) and CALM1, and HPRT1
that were proposed as novel EV cargoes recruited by PDZ
domains of SDCBP (Garrido-Urbani et al., 2016). Meanwhile,
ARF proteins (especially ARF6) – which are related to ectosome
biogenesis – remain enriched in EV isolates (sedimented at
100,000 × g without pre-clearance) after SDCBP knockout,
further supporting our “seed protein” hypothesis. In conclusion,
these proteomic analyses suggest that overall proteomic profiles
of each EV subtype are influenced by interactions of recruiter
proteins involved in biogenesis.

The Components of Small Extracellular
Vesicles and Large Extracellular Vesicles
Have a Specific Biological Signature in
Functional Enrichment
The difference in biogenesis mechanism between exosomes and
ectosomes also explains the changes in the functional enrichment
in their proteomes. We sorted EV proteins according to a
rank score [log2(fsEV/flEV)] that describes the tendency of
vesicular proteins to be identified in sEV (positive score) or
lEV (negative score) datasets. Despite the differences in EV-
secreting cell types, there are specific protein cargoes enriched
within each EV fraction, suggesting a functional divergence
between ectosomes and exosomes (Figure 4, Supplementary
Figure 2A, and Supplementary Tables 4A,B). sEV proteins
showed enrichment for functions relevant to their biogenesis
such as multivesicular body sorting and vacuolar transport,
while also showing enrichment for cell division and extracellular
signaling pathways. Proteins in lEV showed strong enrichment
for mitochondrial functions (Figure 4), further supporting
their previously proposed role in supplying energy to tumor
microenvironments (Lazar et al., 2018). The differences in
functional enrichment raise a need of studying the physiological
functions of the subtypes separately, thus further highlighting a
necessity for establishing robust isolation methods of EVs to fully
understand their biological roles.

We also performed a functional enrichment analysis of
equally abundant proteins in both lEV and sEV to reveal
common biological functions shared by all EVs (Supplementary
Figure 3). We filtered the dataset for proteins that showed
relatively similar identifications [| log2(fsEV/flEV)| ≤ 0.1]
and ranked them by their abundance in the human datasets
(IChuman). Interestingly, nucleoside metabolic processes and
immune-related functional modules were highly enriched which
were also independently enriched for sEV and lEV proteins
along with other functions like viral protein processing (lEV)
and viral transport (sEV). This finding aligns with the previously
proposed dual role of EVs during viral infection in increasing
host immune responses as well as the virulence of viruses

(Rybak and Robatzek, 2019; Ipinmoroti and Matthews, 2020).
The EV proteins were also enriched in functions such as protein
folding, localization to ER, and translation (Supplementary
Table 4C), suggesting that ER proteins may be loaded into EVs
through interactions with common “seed proteins” related to
EV secretion. Consistent with previous findings, EVs showed
enrichments for exocytosis (Lin et al., 2019), secretion, and
signal transduction pathways including EGF and WNT signaling
pathways (Al-Nedawi et al., 2008; Li et al., 2012; Latifkar
et al., 2019; Supplementary Figure 2B). Altogether, functional
enrichment analysis of proteomic data can be used to investigate
the underlying biological role of EVs. Furthermore, our findings
suggest that we may be able to identify specific biomarkers
that are upregulated in a particular disease by analyzing the
differential expression in sets of functionally related proteins,
rather than single target proteins.

DISCUSSION

Recent studies suggest that the biological properties of EVs could
be exploited as a new strategy for novel biomarkers and treatment
of diseases, and yet a systematic approach to validate molecular
classifications of EV subtypes has been lacking. To address
this need, we performed a systemic analysis of the available
EV datasets to explore defining proteomic characteristics of
lEVs and sEVs. Our analysis suggests that we can infer unique
functions and biogenesis elements of EV subtypes from published
EV proteomes, questions which were rarely explored in related
studies. These results also revealed several other core features
of EVs such as (i) evolutionary conservation, (ii) functional
categories, and (iii) PPI networks that could be demonstrated
using extensive statistical and systematic approaches.

We defined the identification frequency of proteins in sEV
and lEV according to differential ultracentrifugation (DUC)
speeds (Figure 1A). We used centrifugation speeds that are
commonly used for separating and concentrating EVs (Kowal
et al., 2016), which are referred to as sEV and lEVs instead
of more specific subtypes. Although the protocols used in each
proteomics study are not consistent including centrifugation
steps, the ultracentrifugation speeds successfully divided datasets
into sEV and lEV fractions, which had statistically significant
differences in the expression of several exosome markers. There
are only a handful of datasets that combined other methods
along with centrifugation; therefore, it was not possible to
perform meaningful analysis on this material. Instead, to allow
us to use datasets to discover general characteristics of sEV and
lEV proteins, we validated our classification system using the
identification of the most common exosome-specific markers
in the datasets (Figure 1). However, the remaining challenge
of this work is that due to availability of relevant details in
pertinent publications, we have not been able to include EV
proteome datasets dealing exclusively with DUC or validate the
status of EV quality controls mentioned in a recent publication
(Théry et al., 2018).

While our method does not define EV biogenesis mechanisms,
it allows a separation of EV subsets that are clearly different,
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FIGURE 4 | sEV and lEV proteomes are enriched with distinct biological functions and processes. Each node represents a functional annotation, where node size
reflects the enrichment score. Overlapping terms are further grouped using EnrichmentMap. Functions enriched for higher identification frequencies in sEVs and lEVs
are colored with red and blue, respectively.

a notion which has been supported by respective enrichment
of known exosomal and ectosomal markers (Figures 1B,C).
Despite this consistency, DUC still carries remaining limitations
as an independent method to separate the EV subtypes (Witwer
et al., 2013). While newer Absolute Protein Expression (APEX)
Quantitative Proteomics Tool might show significant differences
in the relative inclusion of markers between sEV and lEV
fractions, protein concentrations are often not considered
in recovered EV fractions (Braisted et al., 2008). Another
impediment posed by the current purification schemes is
the protein overlap between sEV and lEV fractions which is
evident from our functional annotation analysis (Supplementary
Figure 3). Therefore, there is a need for additional criteria to
identify markers that could distinguish EV subtypes more clearly.

Little is known about the role of vesiculation in the
evolutionary leap from a simple prokaryotic cell to a more
complex eukaryotic cell (Embley and Martin, 2006). Indeed,
mitochondria are likely evolved from engulfed prokaryotes
that once lived as independent organisms (Gray et al.,
1999). This hypothesis is supported by our evolutionary and
functional enrichment analysis that demonstrated the inclusion
of prokaryotic and mitochondrial proteins in ectosomes.
Likewise, the export of cellular fragments, such as EVs, has
evolved from a primordial and conserved membrane budding
mechanism to a more complex pathway of exosome biogenesis
(van Niel et al., 2018). We suggest that the current EV purification
method, even as simple as DUC, is sufficiently robust to capture
the salient differences in protein networks that separate distinct
EV subtypes and their evolutionary trajectory (Figure 2). In

this regard, we show that lEVs contain conserved proteins
characteristic of both prokaryotes and eukaryotes, as is the
process of membrane budding. In contrast, sEV proteins are
characterized as being mostly eukaryotic, reflecting a more
recent emergence of the endosomal vesiculation process. These
correspond to our functional annotation of sEV and lEV
fractions (Figure 4). Indeed, lEVs comprise proteins involved
in mitochondrial function, including energy synthesis, and
sEV proteins mostly function in the synthesis of intracellular
building blocks and signaling pathways (Figure 4). Recent
studies using TEM showed that mitochondria are transferred
through microvesicles (ectosome) (Phinney et al., 2015; Liu
et al., 2021). Moreover, it is also known that damaged
mitochondria are transported into migrasomes to maintain
the quality of the mitochondrial pool (Jiao et al., 2021).
Indeed, our data demonstrate that large vesicles may contain
and transfer mitochondria. Interestingly, the genes related
to cellular homeostasis and stress response including control
of cellular proliferation and death and control of metabolic
function (protein localization, biosynthetic and processes of
organic compounds, regulation of catabolic processes, and
actin reorganization) are not changed between sEV and lEV
(Supplementary Figure 3). This functional segregation of
proteins among EV subtypes and across a large population
of databases demonstrates that our method may offer a new
explanation to the emergence of different classes of EVs,
some of which may be relevant to the evolutionary hypothesis
of an endosymbiotic relationship between cellular as well as
extracellular organelles.
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Due to significant differences in fsEV versus flEV, we believe
that there is an apparent set of EV type-specific recruiters
that divide ectosomal and exosomal components. By extensive
network analysis, we showed the existence of recruiter candidates
and proposed mutually exclusive EV markers, some of which
were previously reported. The limitation of this work is that we
have integrated EV proteomics from various cellular contexts,
thereby making it difficult to apply to all EV types from all cells
and organisms of origin. Since EV composition is dependent
on several factors, such as the cell of origin, metabolic activity,
and health and pathologic conditions, a more focused EV
analysis method is needed to control for known covariates. We
highlight that we can utilize distinctive proteomic characteristics
of exosomes and ectosomes as an alternative to using specific
molecular markers for assessing the relative abundance of the EV
subtypes in the purified EV sample and validating its purity.

Due to the fundamentally divergent biogenesis of exosomes
and ectosomes, it is highly probable that a set of EV subtype-
specific recruiters may distinguish ectosomal and exosomal
components and is subject to evolutionary changes. By extensive
network analysis, we showed the existence of recruiter candidates
and identified mutually exclusive EV markers (Figure 3), some
of which were shown by an independent experimental study
(Kugeratski et al., 2021). We demonstrate that distinctive
characteristics of the sEV and lEV proteomes can offer a high
granularity alternative to traditionally used singular molecular
markers in assessing EV subtypes and their functions. Taken
together, this method can be applied to developing new
analytical approaches that, in concert with metabolomics and
transcriptomics, may offer unprecedented insights into the
biology, functions, and clinical applications of EVs.
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