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A 3-D Finite Element Method (FEM) mesh is converted to a reluctance network through an original magnetostatic formulation
based on facet shape functions interpolation of the magnetic induction. This network is coupled with a standard reluctance network,
characterizing a 0-D system and solved by a circuit solver approach.
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I. INTRODUCTION

O
PTIMIZING electromagnetic devices can require a large

amount of data which, if obtained by means of numerical

analysis, can be a time-consuming task. Sometimes, only an-

alyzing large size problems might be time-consuming, mainly

when the models have high aspect ratio, for instance, the large

electrical machines or actuators with small air gaps.

Many numerical methods [1] are available for a wide range

of applications. The FEM (Finite Element Method) and the

Reluctance Network Method (RNM) are the most widely used

for magnetostatic modeling.

The FEM is well known for its flexibility and generality,

since the mathematical formulations are solved based on a

mesh. Furthermore, the literature available for this method is

noticeable, for instance [2] [3]. However, it can lead to a high

number of degrees of freedom and so quite long computation

times [4].

On the other hand, the RNM is one of the most primitive

methods for magnetic modeling and its application is based on

a reluctance network. This method has remained useful due to

its coherent results obtained with low computational effort and

computational simulation time [5]. It has largely been applied

to model power transformers [4], [6]–[8], rotating electrical

machines [9]–[11] and transmission lines [12]. In general, the

reluctance networks are defined manually, which is usually a

hard, long and non-general task.

A methodology for coupling both methods would thus be

of importance. Some portions of the studied domain could be

described by lumped analytical reluctances, i.e., RNM, and

the more complex regions could be automatically discretized

and refined as necessary with FEM. This kind of method is

known to offer a good trade-off between simulation accuracy

and problem size, requiring less time if compared with the

fully discretized method [13].
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In [14], a methodology that couples classical nodal/edge

3-D FEM with external reluctance networks is presented. It

requires the definition of cuts along the flux tubes to manage

the surface jumps of derived scalar potentials as well as

the application of a gauge condition using the tree/co-tree

technique. Furthermore, in [15], an approach is presented

to couple reluctance networks with an FEM magnetic scalar

potential formulation, which requires cuts to deal with multiply

connected domains.

The conversion of an FEM mesh into an equivalent network

has been discussed since [16]. It is presented using nodal,

edge and facet elements in [16]–[22]. The FFEM (FEM with

Whitney facet basis functions) is also applied in [23] and

[24] to model static fields and seems to be an appropriate

solution for the coupling with the RNM, since its application

considering a magnetostatic formulation [24]–[26] generates

an FFEM stiffness matrix that can be interpreted as a magnetic

circuit [27] [28].

Considering all the complexities of applying the classical

3-D FEM formulations in complex domains and coupling

these formulations with external reluctance networks, this

paper aims to present an alternative solution. Once the FFEM

matrix can be interpreted as a magnetic circuit and easily

coupled with the RNM, this entire system, fully compatible

with both numerical approaches, i.e., FEM and RNM, can be

solved by a single 0-D circuit solver that unifies the magnetic

induction free divergence constraint. This network can be

solved considering magnetomotive force (mmf ) sources from

permanent magnets, coils or from external magnetic circuits.

The flux sources are allowed in the external circuits and can

also be used to impose magnetic induction fields along the

boundaries of the discretized domain.

For this purpose, the FFEM formulation, the way to apply its

boundary conditions (BCs) following the circuit formalism and

the coupling of the network obtained through the FFEM with

the external one are presented. The nodal and independent loop

circuit approaches are analyzed and the FFEM formulation is
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compared with the classical edge A-formulation.

Finally, one simple case is used to illustrate the FFEM

matrix and the coupling process. Then, the results of modeling

an actuator with the classical FEM A-formulation and with the

proposed methodology are compared.

II. MAGNETOSTATIC FACET FEM METHODOLOGY

A. Basis equations

The magnetostatic fields are described by the Ampere (1)

and Gauss (2) equations, together with the magnetic constitu-

tive relation for linear and isotropic materials (3), i.e.,

curlH = Js (1) divB = 0 (2)

B = µH+Br (3)

where H is the total magnetic field, Js is the source current

density, B is the magnetic induction, µ is the magnetic

permeability and Br is the remnant magnetic induction of

permanent magnets.

Total field H can be split into two terms,

H = Hs +Hr (4)

where reaction field Hr is obtained from the reduced magnetic

scalar potential ψ,

Hr = −gradψ (5)

and magnetic source field Hs, satisfying

curlHs = Js (6)

can be obtained with the Biot-Savart equation, possibly

adapted for particular geometries [29]–[32]. The source of

field Hs can thus be outside the studied domain. If it is

partially or completely inside the domain, conformal meshes

are not required. Besides that, it is possible to use higher order

elements for the integration process, increasing the accuracy

of Hs.

Applying (5) in (4), one has

H+ gradψ = Hs (7)

Applying (3) in (7), one obtains the strong formulation based

on B, i.e.,
1

µ
B+ gradψ = Hs +

1

µ
Br (8)

B. Facet shape functions

The shape function spaces are defined using the Whitney

forms [33] [25], where W 0, W 1, W 2 and W 3 are the

nodal, edge, facet and volume function spaces, respectively.

The relations between these spaces are given by the Rham’s

diagram [25],

W 0 grad f
−−−→W 1 curl F

−−−→W 2 div F
−−−→W 3 (9)

(a) Facet shape function (b) Normal component

Fig. 1. Facet shape functions obtained for tetrahedral element

The facet shape function is plotted for the face parallel to

the XZ-plane on a reference tetrahedral element, where the

dimensions are unitary and the referred face has an area of 0.5.

Its behavior is depicted in Fig. 1a and its normal component

is presented in Fig. 1b.

As illustrated in Fig. 1b, the flux is equal to 1 for a given

face i

Wi · ni =
1

Si

(10)

and null along the other faces, Fig. 1a. Si is the surface area

of face i.
Another important aspect of the facet function is that its

divergence in an element is equal to the inverse of the volume

Ve of this element (for first order elements):

divWi =
1

Ve
(11)

C. Magnetostatic formulation based on facet shape func-

tions

Projecting (8) on a domain Ω (Fig. 2) by the Galerkin

method, with the facet shape functions B
′ ∈ W 2 as test

functions, leads to (12)

∫

Ω

1

µ
B ·B′ dΩ+

∫

Ω

gradψ ·B′dΩ−

∫

Ω

Hs ·B
′dΩ−

∫

Ω

1

µ
Br ·B

′dΩ = 0

(12)

Since the magnetic induction B is given by

B =

nf
∑

i=1

B
′

i Φi (13)

for first order elements, the first term of the left side of (12)

can be rewritten as:

∫

Ω

1

µ
B ·B′dΩ =

nf
∑

j=1





∫

Ω

1

µ
Bj ·B

′

i dΩ



Φi (14)
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where j and i are the faces indices, nf is the number of faces

and Φi is the magnetic flux through the face i. It is important

to notice that (14) results in a self-reluctance for i = j and in

a mutual reluctance between faces i and j for i 6= j.
The second term of (12) is solved using the following vector

identity

div (fA) = grad f ·A+ f divA (15)

resulting in:

∫

Ω

gradψ ·B′dΩ =

∫

Ω

div (ψB
′) dΩ−

∫

Ω

ψ divB′dΩ (16)

Applying the divergence theorem in the second term of (16),

one obtains

∫

Ω

gradψ ·B′dΩ =

∫

Γ

ψB
′ · n dΓ−

∫

Ω

ψ divB′dΩ (17)

where Γ is the boundary of Ω, Fig. 2.

The surface integral term of (17) is null and needs to be

analyzed in the following cases (See Fig. 2):

• External surface ΓB : imposes that field B only has

tangential components on this surface;

• Internal faces of Ω: in accordance with the facet functions

definitions, B′ is null everywhere except inside the two

elements that share the face i;

• Γl ∪ Γm: This second case allows to limit Ω to the sum

of Ωl to Ωm, Fig. 2 and (18). However, B′ · n is null

along Γl ∪ Γm, except along Γl ∩ Γm;

• Γl ∩Γm: The shape functions B
′

l and B
′

m have opposite

directions along these faces, canceling each other out.

∫

Ωl+Ωm

gradψ ·B′dΩ =

∫

Γl+Γm

ψB
′ · nΓ dΓ−

∫

Ωl+Ωm

ψ divB′dΩ

(18)

n

Ωl
Ωm

Γm

Γ
Ω

Γl Face i

ΓHΓB

Fig. 2. The complete domain Ω with its outer surface Γ = ΓH ∪ ΓB and
two adjacent elements Ωl and Ωm, with their faces Γl and Γm.

Thus, considering that inside each element Ωl or Ωm, the

reduced scalar potential ψl or ψm are constants since each

of the elements represents one vertice in the dual mesh, i.e.

one node in the reluctance network, and also defining the flux

direction from Ωl to Ωm, (18) becomes

∫

Ωl+Ωm

gradψ ·B′dΩ = ψl

∫

Ωl

divB′dΩl−

ψm

∫

Ωm

divB′dΩm

(19)

The divergence of B
′ being the inverse of the element

volume, as given in (18), equation (19) becomes

∫

Ωl+Ωm

gradψ ·B′dΩ = ψl − ψm (20)

Finally, (12) is rewritten as

nf
∑

j=1





∫

Ω

1

µ
Bj ·B

′

idΩ



Φi + ψa − ψb =

∫

Ω

Hs ·B
′dΩ+

∫

Ω

1

µ
Br ·B

′dΩ

(21)

or in a matrix form:

[ℜ] [Φ]− [ψm] = [ψ0] (22)

where [ℜ] is the FFEM matrix, physically known as a re-

luctance matrix, [Φ] is the unknown flux matrix, [ψm] is the

magnetic potential between each reluctance and [ψ0] contains

the mmf branch sources, defined by means of Hs and Br.

Another possibility to obtain this term would be to describe

the conductors as stranded current loops, as presented in [18].

Even though the magnetic induction free divergence (2) has

not been used to obtain the matrix system (22), it will be

considered by solving this matrix system as a magnetic circuit,

i.e., a 0-D system where its free divergence is imposed by the

Kirchhoff’s current law here applied to the magnetic flux.

D. Implementation of n ·B|
ΓB

= 0 BCs

The n ·B|
ΓB

= 0 BC, discussed in Section II-C, implies

a zero magnetic flux through surface ΓB . From the circuit

standpoint, this means that the branches that represent the

element surfaces on ΓB are open. So, they can be suppressed

from the equations system, i.e., from the magnetic circuit. This

process is exemplified in Fig. 6, where the gray reluctances

are not taken into account.

E. Implementation of n×H|
ΓH

= 0 BCs

The n×H|
ΓH

= 0 BC can be used to apply symmetry

planes and define the BC along coupling surfaces.

This is achieved by creating one external node P ( Fig. 3)

and connecting it with all the elements along ΓH , which

consists in imposing a constant magnetic scalar potential on

this boundary, (23).

n×H|
ΓH

= −n× grad ψ|
ΓH

= 0 (23)
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Ω
ΓH

P

Fig. 3. BC n×H|
ΓH

= 0

If the node P is not connected to any other external branch,

as presented in Fig. 3, it leads to the magnetic induction free

divergence along this surface.

F. Coupling with the external network

The node P (Fig. 3) can be used to connect the meshed

domain Ω (converted into a reluctance network) to the external

magnetic circuit, as depicted in Fig. 4, where Γc is the

connection surface. As Γc is defined in the same manner as

ΓH (Fig. 3 and (23)), the n×H|
ΓH

= 0 BC is also applied

on Γc.

In terms of implementation, this coupling is performed by

adding the external network branches/nodes into the incidence

matrix that represents the FFEM system, as well as by adding

the external sources and reluctances into their respective

matrices presented in (22).

This appears as an easy process, due to the circuit formal-

ism. Thus, with both networks coupled, i.e., Ω + external

network, the entire model can be solved as a single 0-D

system.

Ω

External network

Γc

P

External network

Γc

P

Ω

Fig. 4. Connection between the networks

G. Circuit modeling

The resulting circuit can be solved using both independent

loop and nodal approaches [34]. Given a tetrahedral mesh with

n elements and ef external surfaces, the circuit characteristics

can be analyzed through

b = 2n+
ef
2

(24) b = i+ n− 1 (25)

where b, (24), is number of branches in the dual mesh, i.e.,

faces in the mesh [35]. Thus, thanks to (24) and (25), the

number of independent loops i can be obtained,

i = n+
ef
2

+ 1 (26)

So, we may remark that, depending on the BCs, the

independent loop approach can generate only a few more

unknowns, i, than the nodal approach, which generates n
unknowns. Nonetheless, the independent loop approach re-

quires an algorithm capable of defining the tree/co-tree, for

instance, the Welsh algorithm [2] or the method proposed

in [36]. As mentioned in [26], this process can be time-

consuming in larger meshes. Whereas, the nodal approach

does not require any other algorithm to find the tree/co-tree,

but it requires the inversion of the reluctance matrix, which can

be computationally heavy. Furthermore, since this inversion

generates a full matrix, it would impact the performance of

sparse matrix tools possibly applied.

After evaluating the solving time, the nodal approach has

been used to solve the magnetic circuits, thereby corroborating

with the conclusion presented in [16]. In the future, this

analysis will be extended to nonlinear materials, where the

circuit approach impacts on the number of iterations of the

nonlinear solvers [37].

H. Comparison with A-formulation

The A-formulation based on edge elements is very common

in magnetostatic modeling and its comparison with the B-

formulation used in this work is of importance. For this

purpose, the A weak formulation, with test function A′ ∈W 1,

is

∫

Ω

1

µ
curl A · curlA′dΩ−

∫

Ω

1

µ
Br · curlA′dΩ+

∫

Γ

(n×H) ·A′ dΓ =

∫

Ω

J ·A′ dΩ

(27)

Through the functional spaces relation curl A′ = B′ and (1),

(27) can be rewritten as:

∫

Ω

1

µ
curl A ·B′dΩ−

∫

Ω

1

µ
Br ·B′dΩ+

∫

Γ

(n×H) ·A′ dΓ =

∫

Ω

curlH ·A′ dΩ

(28)

Expressing A in terms of B (B = curl A), leads to

∫

Ω

1

µ
B ·B′dΩ−

∫

Ω

1

µ
Br ·B′dΩ+

∫

Γ

(n×H) ·A′ dΓ =

∫

Ω

curlH ·A′ dΩ

(29)

In the surface integral term, one may rewrite (n×H) ·A′ as

−(n×A′) ·H that is null because of the BC n×A
′|
ΓB

= 0.

So, considering the boundaries conditions for the magnetic in-

duction B, the formulations are equivalent, since n×A
′|
ΓB

=
n ·B′|

ΓB
= 0.

Regarding the last term of (29), it is possible to apply the

Green equation of type curl− curl and curl A′ = B′,
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∫

Ω

curlH ·A′ dΩ =

∫

Ω

H · B′dΩ+

∫

Γ

(A′ × n) ·H dΩ (30)

where the last term is null and the source field Hs is obtained

with the Biot-Savart equation, curl Hr = 0,
∫

Ω

curlH ·A′ dΩ =

∫

Ω

Hs · B
′dΩ (31)

Both formulations appear to be equivalent, but considering

that they are implemented in different ways, it is worthwhile

analyzing others aspects: a) considering the number of edges

in a regular tetrahedral mesh [35] and the number of unknowns

per edge of the A-formulation [38], it was found out that the

total number of unknowns are similar in both formulations,

b) A-formulation requires tree gauge conditions while B-

formulation requires the incidence matrix.

III. MODELS AND RESULTS

The models used to verify the proposed methodology follow

an order of complexity. The first one is related to a simple 2-

D triangular mesh of an air gap without leakage flux. Then a

3-D trivial model is used to compare the convergence of both

formulations. The last two are 3-D magnetic devices, where the

magnetic core is simplified using the RNM, i.e. it is modeled

by a simple magnetic circuit manually defined, and only the

air gap regions are meshed and solved with FFEM. The results

are compared with those obtained through FFEM considering

the complete model.

The geometries and meshes are generated with the Gmsh

program [39] and the A-formulation is solved using the GetDP

[40] code.

A. Air gap without leakage flux

As presented in Fig. 5, the 2-D air gap model is defined

by one region with the same dimensions and without leakage

flux. This is coupled with an external network, where the

reluctances are neglected (ℜ = 0). For the sake of simplicity,

the relative magnetic permeability is considered unitary and

the mmf source is arbitrarily defined as 2500A, resulting in

a magnetic flux of 2500Wb.

mmf

ℜ

Air gap

d

d

n
·B
| Γ

B
=

0

n×H|
ΓH

= 0

Fig. 5. Connection between the networks

The internal network obtained using FFEM is shown in

Fig. 6. This network is then coupled to an external one,

resulting in a single circuit.

mmf

ℜ = 0

M12

M34

M41 M23

ℜ0

ℜ2

ℜ3

ℜ1

ℜ4

ℜ5

M01 M02

M45 M35

Fig. 6. Meshed domain coupled with the external network

The magnetic circuit is solved and the fluxes values are

presented in Table I. The flux values and directions are in

accordance with the circuit presented in Fig. 6.

TABLE I
MAGNETIC FLUXES

Reluctance index
Magnetic flux [Wb]

× 103

0 -2.50
1 1.25
2 1.25
3 1.25
4 1.25
5 2.50

B. Convergence comparison

As presented in Section II-H, the B and A-formulations

are similar, consequently presenting the same level of con-

vergence. For the sake of comparison, a simple 3-D model

composed by two cubes is created and the dimensions are

given in Fig. 7. The inner cube is a PM (permanent magnet)

with a coercive field of 890000A/m and relative permeability

of 1.09978, while the outer one is a surrounding air domain.

15

20

15

All dimensions are in mm.

PM

Fig. 7. Geometry for the convergence test
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The convergence is analyzed considering the magnetic en-

ergy calculated for a range of different meshes, from 96 up to

14482 elements, and comparing these values with the energy

calculated with a very refined mesh, with 524175 elements.

The results are presented in Fig. 8.

Fig. 8. Convergence comparison

C. Magnetic device

A more realistic 3-D magnetic device is now considered.

It is composed of one winding and two magnetic regions

separated by an air gap (Fig. 9). The magnetic permeability

of the core is µ = 2000µ0 and the winding is excited with

NI = 3000A. The depth of the magnetic parts, air gap regions,

and the outer air domain are 20, 50 and 60mm, respectively.

One probe line is placed at mid-thickness of the air gap region.

Y
Z

15

15

5

20

5

Y
Z

Winding
Magnetic parts

Air gap regions

All dimensions are in mm.

15

20

X
Z

2020 40 20 201010

32 36

Probe line

Fig. 9. Geometry - horizontal winding

As an additional convergence test, the problem is solved

considering a coarse and a fine meshes made of 4151 and

14928 tetrahedral elements respectively. For the fine mesh,

the magnetic inductions calculated with both formulations are

shown in Fig. 10 and Fig. 11. For the coarse and fine meshes,

their Z-components are plotted along the probe line, showing

a good matching (Fig. 12). B and A-formulations generate

practically the same number of unknowns, 14928 and 14921,

respectively, for the fine mesh.

Fig. 10. Magnetic induction distribution - FFEM (B-formulation)

Fig. 11. Magnetic induction distribution - FEM (A-formulation)

Fig. 12. Bz along the probe line

The magnetic circuit is then simplified as a coupling of a

classical reluctance network and the air gap regions (defined in
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ℜ1

ℜ4 mmf

ℜ2 ℜ3

ℜ5

(a) Coupling 1

ℜ1

ℜ4 mmf

ℜ2 ℜ3

ℜ5

(b) Coupling 1

Fig. 13. Coupling between FFEM and RNM

Fig. 9), the latter asking for a more accurate model, here with

FFEM, due to the leakage flux. Two cases with different levels

of simplifications are considered (Fig. 13), taking account of

some core portions or not:

• coupling 1 (Fig. 13a): some core portions are kept in

the FFEM model and their connection surfaces with the

RNM model are the core cross-sections intersected by the

boundary of the reduced FFEM domain;

• coupling 2 (Fig. 13b): the core portions are removed

from the FFEM model and their connection surfaces are

the core outer surfaces used in coupling 1; only the air

regions are discretized.

In Fig. 13, the connection surfaces Γc are represented by

continuous red lines and the surfaces with n ·B|
ΓB

= 0 BC

are represented by the dashed blue lines. The reluctances ℜ1...4

are for the core portions not considered in the FFEM domains

and ℜ5 approximates the winding leakage flux path.

The meshes used for these models (Fig. 14) are clones of

the fine mesh of the related portions in the complete model.

Both coupled problems are solved and compared in terms

of the relative computational effort and accuracy. The number

of unknowns, solution time and the magnetic flux through the

upper magnetic part are compared in Tables II and III. In the

complete model, the flux is obtained integrating the magnetic

induction along the cross section of the upper magnetic part,

while the flux through ℜ1 is considered for the problems

(a) Coupling 1

(b) Coupling 2

Fig. 14. Meshes of the air gap regions (with clipping)

coupling 1 and 2.

TABLE II
COMPUTATIONAL EFFORTS OF RNM-FFEM COUPLED MODELS

COMPARED TO THE FULL FFEM MODEL

Method
Number of Number of Solution
unknowns unknowns [%] time [%]

FFEM (Fine) 14928 Ref. Ref.
Coupling 1 8257 55.31 17.09
Coupling 2 5295 35.47 6.96

TABLE III
ACCURACY OF RNM-FFEM COUPLED MODELS COMPARED TO THE FULL

FFEM MODEL

Method
Magnetic flux [Wb]

Dif. [%]
× 10−4

FFEM (Fine) 2.5310 Ref.
Coupling 1 2.520 0.553
Coupling 2 2.515 0.632

As a local comparison, the Z-component of B along the

probe lines (Fig. 13) is shown in Fig. 15 for all models. The

relative differences of this solution between the coupled and

full models are shown in Fig. 16.
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Fig. 15. Bz obtained with the FFEM+RNM coupling

Fig. 16. Relative comparison of Bz

The differences are small in the region of interest (around

0.1%). However, they increase when the analysis point goes

towards the n ·B|
ΓB

= 0 BC, which is a natural consequence

since the leakage flux is not totally in the Z-direction. Even

though a weak field is computed close to those regions, this

behavior cannot be desirable and can be minimized by increas-

ing the X dimensions of the air regions, possibly unifying the

domains. A more interesting and definitive solution would be

to apply the ”infinite” finite elements theory [41] in the X

direction on those surfaces.

As expected, the ’coupling 2’ problem presents higher

differences, but the results are still coherent and acceptable.

As the solution along the meshed domains is obtained with

the FFEM, it is possible to post-process the fields. So, the

magnetic induction distribution is obtained in those domains

and a zoom in the air gap is presented in Fig. 17. Once the

plots are in the same color scale, it is possible to see that the

Coupling 2 problem is properly modeling the leakage flux in

the air gap.

(a) Coupling 1

(b) Coupling 2

Fig. 17. Magnetic induction distribution along the discretized domains - Zoom
in the air gap

In these coupled models, the winding is completely outside

the meshed domain. However, it is possible to consider the

windings inside or even partially inside of it. This last possibil-

ity is achievable because the SF is calculated independently, in

this case using Biot-Savart, and thanks to the circuit coupling.

It allows reducing the studied domain even when it does not

have symmetry, needing only the connection surfaces. This is

an important advantage over the classical formulations.

In order to illustrate this possibility, the model presented in

Fig. 9 is modified as shown Fig. 18, where the windings are

arranged vertically. The dimensions are the same as the model

shown in Fig. 9, except the height of the windings which is

22mm.

X
Z

Fig. 18. Geometry - Vertical windings

Because the source field cannot be neglected on the connec-

tion surfaces Γc used in the cut of the upper magnetic part (Fig.
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17a), an mmf distribution can appear in the elements adjacent

to these surfaces. Consequently, gradψ|ΓH
6= 0, which does

not respect the assumption defined in Section II-D.

This model is thus simplified as shown in Fig. 19, where

the half of the windings are inside the meshed domains and

the others halves of the Ampere-turns are considered as mmf
sources in the external circuit.

ℜ3

mmf

ℜ2

mmf

ℜ1

Fig. 19. Coupling FFEM+RNM

The source field is obtained along the entire domain and

considering both parts of the windings. This problem is solved

with the proposed coupling methodology and the magnetic

induction distribution is presented in Fig. 20. Then, it is com-

pared with the results obtained with the FEM A-formulation

solved in the complete model, showing a good correlation in

the regions of interest (Fig. 21).

Fig. 20. Magnetic induction distribution

Fig. 21. Bz along the probe line

The number of unknowns was reduced from 19982 (FEM

A-formulation) to 13717 (FFEM+RNM).

IV. CONCLUSION

A methodology capable of converting an FEM mesh into

a reluctance network, allowing its easy coupling with the

RNM, has been presented. As the circuit works as a gauge

condition and the formulations are equivalent, it has been

possible to keep the accuracy obtained with the A-formulation,

but without worrying about the cuts needed to deal with

multiply connected domains.

The FFEM analyzed regions have been discretized with a

mesh fine enough to ensure the accuracy level and the other

outer regions have been simplified using the RNM. Even

though only one type of flux tube was used in this work,

it allows to use all the range of flux tubes available for this

method [42]–[45].

Even if the representation of an FEM mesh in terms of

a reluctance network has already been shown before, [16]

for instance, a didactic case (Fig. 6) has been presented in

order to show the coupling of this network with an external

one, contributing to a different and simpler way to understand

the numerical analysis. Additionally, two real cases with

different windings arrangements, i.e. horizontal and vertical,

were studied. In the last one, only part of the windings was

considered inside the studied domain. Such capability allows

a wide range of new possibilities to apply this coupling.

With the proposed methodology, the modeling domain can

be drastically reduced, meshing only the regions with complex

magnetic flux behavior. Two levels of simplifications have

been presented, reducing the number of unknowns to 35%

and the solving time to 7% in comparison with the complete

model, keeping the quality of the results along the region of

interest.

This methodology seems to provide more flexibility when

dealing with the trade-off simulation time vs. accuracy, mainly

for optimizations processes and even when analyzing large

models.

It can easily be applied to other static physics with electric

circuit analogy, like heat and current conduction [23].
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