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Plasmodesmata pores control the entry and exit of molecules

at cell-to-cell boundaries. Hundreds of pores perforate the

plant cell wall, connecting cells together and establishing direct

cytosolic and membrane continuity. This ability to connect cells

in such a way is a hallmark of plant physiology and is thought to

have allowed sessile multicellularity in Plantae kingdom.

Indeed, plasmodesmata-mediated cell-to-cell signalling is

fundamental to many plant-related processes. In fact, there are

so many facets of plant biology under the control of

plasmodesmata that it is hard to conceive how such tiny

structures can do so much. While they provide ‘open doors’

between cells, they also need to guarantee cellular identities

and territories by selectively transporting molecules. Although

plasmodesmata operating mode remains difficult to grasp, little

by little plant scientists are divulging their secrets. In this

review, we highlight novel functions of cell-to-cell signalling and

share recent insights into how plasmodesmata structural and

molecular signatures confer functional specificity and plasticity

to these unique cellular machines.
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Introduction
All forms of multicellularity depend on two fundamental

pillars: cell-to-cell contact and cell-to-cell communication.

Both functions have emerged independently and multiple

times throughout evolution, resulting in the development

of different forms of connections with diversified molecular
Current Opinion in Plant Biology 2020, 53:80–89 
strategies [1]. In plants, cell-to-cell communication is

largely assisted by plasmodesmata intercellular pores,

which ensure concerted cellular actions during tissue

growth, development and response to environmental cues

[2]. In concert with the vascular system, plasmodesmata

support long-range signalling to integrate local responses at

the organism level [3�,4–6]. These unique cellular

machines can be viewed as gates through the plant cell

wall, providing cytosolic and membrane continuity from

cell-to-cell and eventually throughout the whole plant

body. They are involved in multiple tasks like conveying

organic nutrients [7�,8�], regulating crucial steps during

organ initiation and growth [9,10], assisting tissue pattern-

ing by conveying positional information [11��], acting as

signalling hubs and contributing to defence response

[12�,13�,14–17]. Despite their central role in plant physiol-

ogy, their operating mode remains elusive. Yet, they

keep on fascinating and intriguing scientists. In this review,

we recapitulate recent and significant advances in our

understanding of plasmodesmata-mediated cell-to-cell

communication and their central function for plant biology.

Reaching out further: new insights into
plasmodesmata-mediated short-distance and
long-distance signalling
A wide range of developmental and physiological processes

depends on symplastic communication. Examples include

shoot meristem maintenance [18–21], tissue patterning and

organ growth [9,10], bud dormancy [22], defence signalling

[5,6,16], adaptation to environmental stresses [12�,13�,14,15]
and exchange of nutrients between cells and organs

[7�,8�,23]. In the last two years, the realm of symplastic

communication has grown even bigger and it now embraces

symbiotic interaction [24�], calcium-based long-distance

signalling [6] and unfolded protein response (UPR) [3�].

Transcription factors (TFs) were amongst the first endoge-

nous factors to be shown to act non-cell autonomously

through plasmodesmata, a decisive condition for both tissue

patterning and meristem maintenance [10,11��,18,21]. Since

then, a growing number of signalling molecules, from RNAs

[4,25,26] to hormones [27] and even lipids [5,16], were

reported to move through plasmodesmata. In all cases,

and regardless of the trafficking mechanisms (selective or

passive), these signalling gradients are tightly controlled

both spatially and temporally. A recent study, by Helariutta

and De Rybel’s teams [11��], illustrates how, through a

complex feed-back loop between TFs, miRNAs and
www.sciencedirect.com
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hormones, spatial information can be generated to create

sharp boundaries. During radial growth initiation in root

procambial tissues, cytokinin promotes the expression of the

mobile PHLOEM EARLY DOF (PEAR) TFs, which then

form a short-range gradient and activate genes promoting

radial growth at protophloem sieve elements. PEAR action

is in turn antagonised by class III HOMEODOMAIN

LEUCINE ZIPPER (HD-ZIP III) transcription factors,

their expression being controlled by auxin, miRNA165/

166 and PEAR TFs [11��]. Not only movement but also

the transcription of PEARs must be regulated to achieve

proper growth pattern. This work perfectly illustrates

the complexity of intercellular communication networks

where both intra-cellular and inter-cellular processes are

integrated at a multiscale level, and where symplastic

trafficking is only one of the many key components.

Information exchange between distant organs is crucial to

prime integrated responses at the body level. This is often

achieved by combining cell-to-cell transport through

plasmodesmata and long-distance trafficking via the phloem

[4–6,16,26,28,29].Awell-established example is theflorigen,

Flowering Locus T, which moves from the leaves into the

phloem to reach out the shoot apex and reprogram leaf

production into flowers [28–32]. Failure in moving through

plasmodesmata results in late flowering [29–32]. Plant stress

responses also rely on long-distance communication.

Herbivore feeding triggers glutamate-dependent calcium

signalling at the wounded site, which rapidly propagates to

distant leaves to presumably activate defence responses in

non-damaged regions [6]. Calcium itself is unlikely to

move long distances. Instead, calcium waves may require

a relay-based system, potentially coupled with reactive

oxygen species (ROS) [33]. Likewise, the ER-embedded

UPR response, which until recently has been regarded as a

cell-autonomous process, acts systemically through non-cell

autonomous signalling and long-range movement of bZIP60

TF [3�]. By combining short-range and long-distance

movement, plants can perceive and prime stress responses

in regions far away from initiation sites. Plasmodesmata

crucial functions also rely on their capacity to integrate a

wide range of environmental and developmental signals

and accordingly regulate the movement of many different

classes of molecules at specific interfaces. The molecular

mechanisms regulating transport across plasmodesmata rely,

for a large part, on their structural and functional plasticity.

Plasmodesmal structure defines
plasmodesmal function
Plasmodesmata bridge cells across the wall creating physical

continuity between three compartments: the plasma

membrane (PM), the cytoplasm and the endoplasmic

reticulum (ER) (Figure 1) [2,34]. Distinguished by its lipid

profile, membrane curvature, and protein composition,

the PM lining plasmodesmata is considered as a specialized

microdomain, which dictates plasmodesmata-specific

function. For example, enrichment of distinctive sterol and
www.sciencedirect.com 
sphingolipid species participate in the recruitment ofcell-wall

remodelling enzymes which create a unique cell wall

environment and impacts on plasmodesmata permeability

[35]. InappositiontothePM,andas itenters thepores, theER

becomes tightly constricted into a highly differentiated ER

subdomain called the desmotubule. Constriction of the ER

inside plasmodesmata presumably restricts cell-to-cell

diffusion of ER-associated molecules. Inside and at the entry

of the pores, the desmotubule/ER establishes contacts

with the PM through tethering elements, which function

and molecular identity have remained unknown until

recently (see next section) [35,37]. Altogether, membranes

and the immediate wall environment present a unique

molecular signature, supporting plasmodesmata function

[12�,13�,14,16,31,35,36��,37–39].

So far, no consensus plasmodesmata targeting motif has

been identified and the emerging picture is that plants

rely on a diversity of strategies to regulate symplastic

trafficking. Both passive and selective transports occur,

with the latter implying direct interaction between

mobile factors and plasmodesmata ‘receptors’ to facilitate

movement [16,30,31,39–41]. Dynamic cell-to-cell

communication is also achieved through the controlled

opening or closure of plasmodesmata. In canonical

models, molecules traffic through the cytoplasmic sleeve

and the size exclusion limit (SEL) of the pores is defined

by the ER-PM gap [42]. In other words, the wider is the

gap, the more transport there is. This model has however

been recently challenged by two independents studies

[7�,34]. Using electron tomography Nicolas et al. showed

that post-cytokinesis plasmodesmata (called Type I),

previously shown to offer high transport capacity, present

a very narrow cytoplasmic sleeve not exceeding 2–3 nm.

Later during cell growth/differentiation, the ER-PM

gap extends to 8–10 nm leading to open-sleeved

Type II plasmodesmata. Arabidopsis plants missing the

Phloem Unloading Modulator (PLM) gene, present a defect

in Type I to Type II transition at the phloem-

pole-pericycle/endodermis interface, which results in

higher symplastic unloading capacity. These data indi-

cate that very narrow-sleeved plasmodesmata are actually

more conductive than wide-sleeved ones, questioning the

current trafficking model.

Over the years, callose has emerged as a chief regulator of

plasmodesmata SEL and dynamically modulates the pore

conductivity  in response to environmental and developmen-

tal cues [13�,14,15,22,24�,37,42]. Although its mode of action

remains poorly understood, the current model proposes that

local callose synthesis at the plasmodesmata neck region

forms an extracellular ring, which squeezes the PM against

the ER, contracting the cytoplasmic sleeve [37]. This model,

however, implies that the PM can accommodate rapid local

deformation through stretching, an unlikely event for lipid

bilayers, which present limited elastic properties [43]. Such

local deformation would imply membrane remodelling
Current Opinion in Plant Biology 2020, 53:80–89
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Figure 1
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Plasmodesmata viewed by electron tomography. 3D segmentation (a, b) and reconstructed sections (c) of a branched plasmodesma at the

phloem pole pericycle-endodermis interface in Arabidopsis root. (a) Plasmodesmata are embedded within the cell wall (CW) and create PM

(yellow) and ER (blue) continuity from cell-to-cell. Tethering elements (red) are visible between the ER and the PM within and outside the pores.

Inset represents a reconstructed micrograph section showing tether elements (red arrowheads) at the entrance of the pore. (b) Different views of

Current Opinion in Plant Biology 2020, 53:80–89 www.sciencedirect.com



The dynamics of plant plasmodesmata-mediated cell-to-cell communication Petit et al. 83
through lipid redistribution and possibly the action of

membrane-shaping proteins. Callose accumulation could

also lead to the re-organisation of PM-located callose-

binding proteins and their interacting partners, thus

changing not only immediate PM environment but also

the ER-PM interface.

Using callose-cellulose biopolymer mixture, Abou-Saleh

et al. recently suggested that, at certain concentrations,

callose could in fact increase the elasticity rather than

rigidify the wall matrix, leaving open the question of

how this polymer could influence the properties of the cell

wall at plasmodesmata and the conductive properties of the

pores [44�]. Aside from callose, the ‘I’ shape ER that passes

through the pore has recently been proposed to control

rapid plasmodesmata closure upon osmotic pressure

through mechanosensing [45�]. According to this model,

the tether elements bridging the ER to the PM offer

physical elasticity which in turn determines the sensibility

to the pressure-induced movement of the desmotubule.

This interesting piece of work revealed an alternative

option for plasmodesmata regulation that directly take into

account the mechanics associated with the desmotubule

positioning in the context of cell–cell junction.

Besides plasmodesmata SEL, many additional elements

influence symplastic trafficking. These include, plasmo-

desmata density at cellular interface [8�,46], wall thickness

[47], expression level of mobile factors [11��], ability for a

given molecule to ‘enter’ the symplastic pathway, which

can be influenced by complex formation [19,20,48] or

binding to a membrane-compartment [49,50�]. Ultimately,

these diversified strategies, which rely on both the

structural and functional properties of plasmodesmata,

need to operate synergistically to precisely regulate

symplastic trafficking and integrate a complex network

of signalling pathways.

Acting at the ER-PM interface: the multiple C2
domains transmembrane region protein family
An additional way of considering plasmodesmata is to

view them as specialised ER-PM membrane contact sites

[2,51]. The gap between the two membranes inside the

pore is remarkably flexible and presumably impacts

intercellular trafficking (Figure 2) [7�,34]. Now, to the

questions as to what elements regulate this structural

plasticity, we still have no answer. Historically the molec-

ular identity of the elements bridging the ER to the PM

was in favour of cytoskeletal proteins such as actin or

myosin, but their function in membrane tethering still

remains hypothetical [34,51]. Recently, the Multiple C2

domains and Transmembrane region Proteins (MCTPs)
(Figure 1 Legend Continued) the 3D segmentation depicted in (a) showing

desmotubules are connected. (c) Reconstructed sections through the volum

along the pore and in the central cavity (red arrowheads). PD: plasmodesm

www.sciencedirect.com 
have emerged as plasmodesmata-specific ER-PM tethers

[36��]. MCTPs are a conserved family in higher

eukaryotes, yet, while Homo sapiens and Drosophila spp.

only have two members, the Arabidopsis genome contains

16 members, suggesting a larger functional diversity. At

least six members of the Arabidopsis family cluster at

plasmodesmata, where they seem to serve different

functions detailed below [8�,31,36��,38,39,52]. MCTPs

present the structural organisation of a typical tether,

with a C-terminal transmembrane region, which inserts

into the ER and three to four C2 domains, which act as

PM docking sites through anionic lipid-binding [36��]
(Figure 2). Unlike other tethers, MCTPs are not

only involved in bridging membranes, they also regulate

intercellular trafficking of non-cell autonomous signals.

AtMCTP1/FT-interacting protein 1 (FTIP1) interacts

with Flowering locus T to promote its transfer at the

companion cell-sieve element interface [31]. AtMCTP3

and AtMCTP4 antagonise the movement of the TF

SHOOT MERISTEM LESS, although here it is not

clear whether they act from endosomes or directly at

plasmodesmata [36��,50�]. Nevertheless, loss-of-function

mctp3/4 Arabidopsis mutants display pleiotropic develop-

mental defects [36��,50�], reduced SEL and altered plas-

modesmata protein composition [36��]. In Arabidopsis,
MCTP15/QUIRKY regulates CAPRICE movement

and root epidermis patterning by directly modulating

the activity and stability of the receptor-like kinase

STRUBBELIG/ SCRAMBLED and downstream cell-

to-cell signalling [39]. In maize, the AtMCTP15

homologue, Carbohydrate Partitioning Defective 33,

promotes symplastic transport of carbohydrates into sieve

elements, possibly by regulating plasmodesmata forma-

tion at the companion cell–sieve element interface [8�].
From their optimal position at the ER-PM interface,

MCTPs appear to control multiple aspects of plasmodes-

mata-mediated cell-to-cell communication, including 1)

selective transport of mobile factors, 2) activation of

receptor-mediated cell-to-cell signalling, 3) plasmodes-

mata SEL, hence passive transport and 4) formation/

stabilisation of the pores. This multifaceted function of

MCTPs may partially be attributable to the diversity

of actions of their multiple C2 domains. Similar to other

ER-PM tethers [53�,54], the C2 domains of AtMCTP4

and 15/QUIRKY most likely interact with anionic lipids,

potentially in a calcium-dependant manner. This implies

that the surface charges of the plasmodesmal PM and/or

calcium could influence membrane docking inside

the pores in a conditional and reversible manner, which

in turn could change the cytoplasmic sleeve conducting

properties (Figure 2). Furthermore, the same C2

cytosolic regions of AtMCTP15/QUIRKY, AtMCTP3/4
 the branched-structure with a central cavity where the two

e of the tomogram shown in panels (a, b). Tether elements are visible

ata, CW: cell wall, Dt: desmotubule. Scale bar is 50 nm.

Current Opinion in Plant Biology 2020, 53:80–89
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Figure 2
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(a)

(c) (d)

(b)

Hypothetical model of MCTP operating mode at the plasmodesmal ER-PM interface. (a, c) Two reconstructed sections at a �2.5 nm interval of an electron

tomogram of a plasmodesma in Arabidopsis root tip. The spacing between the desmotubule (Dt) and the PM varies from very close contacts with no

observable electron-lucent cytoplasmic sleeve (CS) (inset in panel (a)), to larger gap with electron-lucent readily identifiable CS and spoke-like tethering

elements connecting the two membranes (inset in panel (c), pink arrowheads indicate tethers). Scale bar is 20 nm.

(b, d) Molecular representation of MCTP with three C2 domains (pink) connecting the Dt to the PM inside the pores in tight �2 nm (b) and ‘open’ �8–

10 nm (d) CS configurations. MCTPs insert into the ER/Dt membrane through their transmembrane region and interact with the PM in the presence of

anionic lipids. The molecular re-arrangement of MCTP cytoplasmic tail in response to calcium (orange beads) and/or changes in membrane lipid

composition influences the ER-PM gap inside the pore and the conductive properties of the CS. (b) Upon elevated local calcium concentration and the

presence of anionic lipids, all C2 domains dock to the PM, restricting the ER-PM gap. C2 domains interaction with the PM could then stabilise/re-enforce

anionic lipid nanodomains, changing the PM surface charge inside plasmodesmata and recruiting/activating/stabilising receptor proteins (blue). Note that

calcium could also compete with C2 domains by shielding the polar heads of anionic lipids (not represented). (d) Upon low calcium concentration, PM lipid

modification or binding to mobile factors (green), some C2 domains dissociate from the PM leading to the opening of the ER-PM gap.
and AtMCTP1/FTIP are known to be involved in

protein–protein interactions [30,31,38,39,50�]. By analogy

with Extended-Synaptotagmins [53�], it is tempting to

speculate that MCTPs protein-binding and lipid docking
Current Opinion in Plant Biology 2020, 53:80–89 
functions work together to regulate transport (Figure 2).

By uniting intercellular and inter-organellar functions,

MCTPs are one-of-a-kind tethers, playing a master

regulator function at plasmodesmata.
www.sciencedirect.com
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Figure 3

(a)

(b)
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Putative model illustrating signal-triggered dynamic re-organisation of receptor-complexes induces local and distinct responses at plasmodesmata

versus the PM. (a) The PM lining the plasmodesmata pores and the PM nanodomains provide a membrane environment distinct from the bulk

PM, with a unique set of lipids and proteins, including protein receptors, and function as signalling platforms. (b) Biotic and abiotic-derived signals

induce a re-organisation of PM protein receptors, which includes changes in localisation, protein-protein interactions, and clustering in

www.sciencedirect.com Current Opinion in Plant Biology 2020, 53:80–89
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Plasmodesmata define membrane
nanoterritories, which serve as dynamic
signalling platforms
Plasmodesmata act at the interface between intra-cellular

and extra-cellular compartments. As such, they are ideally

located to integrate apoplastic, symplastic and endomem-

brane signalling to coordinate cellular responses. The PM

lining plasmodesmata hosts receptor-like activities, which

sense developmental and environmental apoplastic signals

and regulate symplastic exchanges [12�,13�,14,15,17,55].
Some receptors are shared components between the PM

and plasmodesmata, but they orchestrate distinct signalling

pathways by assembling into different complexes depend-

ing on their localisation. For example, the receptor-kinases

CLAVATA1 (CLV1) and CRINKLY4 (ACR4), which

function in stem cell maintenance, have variable complex

composition depending on if they locate at the bulk PM or

plasmodesmata [55]. Likewise, STRUBBELIG/ SCRAM-

BLED associates with the PM but only forms heteromeric

complex with AtMCTP15/QUIRKY at plasmodesmata,

from where it initiates non-cell autonomous signalling [38].

Conventionally, plasmodesmata-signalling was believed to

be exerted exclusively by plasmodesmata-located recep-

tors. However, recent studies show that PM receptors can

conditionally relocate to plasmodesmata to trigger local

response (Figure 3). The Cysteine-Rich Receptor-like

kinase 2 (CRK2), strictly located at the PM, associates to

plasmodesmata within 30 min after salt treatment and

promotes callose deposition [13�]. CRK2 re-organisation

depends on Phospholipase D a1, indicating that changes in

membrane lipid composition is instrumental to recruit

receptors to plasmodesmata [13�]. Upon osmotic stress,

the PM-associated Leucine-Rich repeat RLKs Qian Shou

Kinase 1 (QSK1) and Inflorescence Meristem Kinase 2

(IMK2) rapidly relocalise, within less than 2 min, to

plasmodesmata and into PM-nanodomains [12�]. Similar

to CRK2, the recruitment of QSK1 to plasmodesmata is

correlated with callose-accumulation and also partially

depends on its phosphorylation [12�]. Stimuli-dependant

re-organisations of receptor-like activities at plasmodes-

mata are therefore frequent events and may in fact be a

common strategy to modulate symplastic trafficking. In a

similar fashion, the immune fungal elicitor chitin

induces redistribution of the chitin-receptor complex at

both PM and plasmodesmata [14]. Upon chitin sensing at

the PM, the CHITIN ELICITOR RECEPTOR KINASE

1 (CERK1) interacts with LysM receptor-like kinase

LYK5, which initiates intracellular defence responses

[14,17]. Simultaneously, LYSIN MOTIF DOMAIN

CONTAINING
(Figure 3 Legend Continued) microdomains. Alongside, a specific set of P

plasmodesmata where they accumulate and interact with plasmodesmal rec

With the receptor protein moving between the PM and plasmodesmata, per

cascades at the PM (green arrow) and local plasmodesmata responses (pin

Plasmodesmata, Dt: Desmotubule, ER: Endoplasmic Reticulum, PM: Plasm
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GLYCOSYLPHOSPHATIDYLINOSITOL-

ANCHORED PROTEIN (LYM2) accumulates to

plasmodesmata, where it associates with LYK4 to promote

localised callose synthesis [14]. Taken together, these data

indicate that the molecular composition of plasmodesmata

is rapidly modified through either biotic or abiotic stresses

to induce cellular responses.

Inherent to its role as a barrier, the PM constitutes an

optimal interface for signal perception and intracellular

signal transduction. The nanoscale composition and

segregation of the PM contribute to the emergence of

distinct membrane territories, which not only directly

impact on receptor activation/deactivation, but also dif-

ferentiate signalling pathways sharing common compo-

nents[56–58]. Likewise, plasmodesmata create PM

subdomains with a unique protein/lipid signature and

facilitate localised and specific responses. In addition,

signalling events triggered at the PM also need to be

coordinated with local responses at plasmodesmata to

specifically and independently regulate cell-to-cell

communication. Until now, callose deposition-mediated

plasmodesmata closure has been the main signalling

output but other local responses could also be triggered

in parallel. These could include changes in plasmodes-

mata membrane electrostatic signature, re-arrangement

of plasmodesmata tethers which could then change the

cytoplasmic sleeve conducting properties. Furthermore,

we can wonder what are the molecular mechanisms

underlying the rapid mobility of receptors between PM

and plasmodesmata, but also how the system deactivates

such processes.

Concluding remarks
Recent years have seen remarkable progress in our structural

and functional understanding of plasmodesmata-mediated

cell-to-cell communication and how these structures can

create dynamic areas of cell-to-cell connectivity in response

to a wide range of developmental and environmental signals.

They have also highlighted the complexity of plant inter-

cellular communication and the intricacies of short and long-

range communication networks, where hormone-signalling,

receptor-signalling and symplastic-signalling pathways

intersect in a very dynamic manner to create coherent

responses at the organism level. Challenges in studying

plasmodesmata also lie in their nanoscale dimensions and

their high plasticity, making it hard to pin down particular

morphological states and link them to functional/physiolog-

ical states. A comprehensive understanding of symplastic

transport will benefit from multidisciplinary approaches that

combine emerging fields and technologies such as in silico
M-associated receptors are rapidly and actively recruited to

eptor proteins to induce local responses, such as callose deposition.

ception of one signal can translate into both intracellular signalling

k arrow), facilitated by the local protein interactors. PD:

a Membrane.

www.sciencedirect.com
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molecular dynamics, electron microscopy, super resolution

light microscopy and in vitro biophysical analyses with

more classical genetics and cell biology approaches.

Without doubt, future research will continue to uncover

the fascinating and multifaceted mechanisms that govern

plasmodesmata intercellular communication.
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