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Abstract

We present extensive empirical evidence show-
ing that current Bayesian simulation-based
inference algorithms are inadequate for the fal-
sificationist methodology of scientific inquiry.
Our results collected through months of ex-
perimental computations show that all bench-
marked algorithms — (S)NPE, (S)NRE, SNL
and variants of ABC — may produce overconfi-
dent posterior approximations, which makes
them demonstrably unreliable and dangerous
if one’s scientific goal is to constrain param-
eters of interest. We believe that failing to
address this issue will lead to a well-founded
trust crisis in simulation-based inference. For
this reason, we argue that research efforts
should now consider theoretical and method-
ological developments of conservative approx-
imate inference algorithms and present re-
search directions towards this objective. In
this regard, we show empirical evidence that
ensembles are consistently more reliable.

1 Introduction

Many scientific disciplines rely on computer simulations
to study complex phenomena under various conditions.
Although modern simulators can generate realistic syn-
thetic observables through detailed descriptions of their
data generating processes, they are unfortunately not
suitable for statistical inference. The computer code
describing the data generating processes defines the like-
lihood function p(x | ) only implicitly, and its direct
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evaluation requires the often intractable integration of
all stochastic execution paths. In this problem setting,
statistical inference based on the likelihood becomes
impractical. However, approximate inference remains
possible by relying on likelihood-free approximations
thanks to the increasingly accessible and effective suite
of methods and software from the field of simulation-
based inference (Cranmer et al., 2020).

While simulation-based inference targets domain sci-
ences, advances in the field are mainly driven from a
machine learning perspective. The field, therefore, in-
herits the quality assessments (Lueckmann et al., 2021)
customary to the machine learning literature, such as
the minimization of classical divergence criteria. De-
spite recent developments of post hoc diagnostics to
inspect the quality of likelihood-free approximations
(Cranmer et al., 2015; Brehmer et al., 2018, 2019; Her-
mans et al., 2021; Lueckmann et al., 2021; Talts et al.,
2018; Dalmasso et al., 2020), assessing whether ap-
proximate inference results are sufficiently reliable for
scientific inquiry remains largely unanswered whenever
fitting criteria are not globally optimized or whenever
the data is limited. In fact, domain sciences, and more
specifically the physical sciences, are not necessarily
interested in the ezactness of an approximation. In-
stead, in the tradition of Popperian falsification, they
often seek to constrain parameters of interest as
much as possible at a given confidence level. Scientific
examples include frequentist confidence intervals on the
mass of the Higgs boson (Aad et al., 2012), Bayesian
credible regions on cosmological parameters (Gilman
et al., 2018; Aghanim et al., 2020), or constraints on the
intrinsic parameters of binary black hole coalescences
(Abbott et al., 2016). From a Bayesian perspective, this
implies that statistical approximations in simulation-
based inference should ideally come with conservative
guarantees to not produce credible regions smaller than
they should be. Incorrectly constraining model param-
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eters would otherwise impede scientific inquiry.

In this work, we measure the quality of the credible
regions computed through various Bayesian techniques
in simulation-based inference. We frame our main
contribution as the collection of extensive empirical
evidence that required months of computation. Our
results demonstrate that all benchmarked techniques
can produce non-conservative credible regions, high-
lighting the need for a new class of conservative ap-
proximate inference algorithms. The structure of the
paper is outlined as follows. Section 2 describes the sta-
tistical formalism, necessary background and includes
a thorough motivation for coverage. Section 3 high-
lights our main results. Section 4 presents several av-
enues of future research to enable drawing reliable
scientific conclusions with simulation-based infer-
ence. All code related to this manuscript is available
at github.com/montefiore-ai/crisis-in-sbi.

2 Background

2.1 Statistical formalism

We evaluate posterior estimators that produce approx-
imations p(¢ | ) with the following semantics.

Target parameters 9 denote the parameters of inter-
est of a simulation model, and are sometimes referred
to as free or model parameters. The precise definition
of ¥ depends on the problem setting. We make the
reasonable assumption that the prior p(19) is tractable.

An observable x denotes a synthetic realization of
the simulator. Observed data x, is the observable we
would like to do inference on, under the assumption
that the simulation model is correctly specified.

The likelihood model p(x | ¢) implicitly defined by the
simulator’s computer code. While we cannot evaluate
the density p(x |19), we can simulate samples.

The ground truth 9" specified to the simulation
model whose forward evaluation produced the observ-
able x,, i.e., z, ~ p(x |9 =9").

A credible region is a space © within the target
parameter domain that satisfies

/p(t?|m:sco)d19:1—o¢ (1)
S}

for some observable x, and confidence level 1 — «. Be-
cause many such regions exist, we compute the credible
region with the smallest volume. In the literature this
credible region is known as the highest posterior density
region (Box and Tiao, 1973; Hyndman, 1996).

2.2 Statistical quality assessment

Common metrics for evaluating the quality of a poste-
rior surrogate include the Classifier Two-sample Test
(Lehmann and Romano, 2006; Lopez-Paz and Oquab,
2017) and Maximum Mean Discrepancy (Gretton et al.,
2012; Bengio et al., 2014; Dziugaite et al., 2015). The
main problem with these metrics is that they assess
eractness of an approximation through a divergence
with respect to a posterior that is intractable in prac-
tice. Even if such evaluations would hypothetically be
possible, there are no criteria to what constitutes an
acceptable estimator. Moreover, it is not possible to be
certain whether the classifier or kernel used to measure
the divergence are expressive enough to differentiate
between the true posterior and its approximation.

To clarify these points, consider the demonstration in
Figure 1. A binary classifier is trained to discriminate
between samples from a posterior approximation and
the true posterior. The discriminative performance
of the classifier is expressed through Area Under the
Receiver Operating Characteristics curve (AUROC) and
serves as a measure for divergence between both densi-
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Figure 1: A classifier-based metric measures the diver-
gence between posterior approximations and a ground
truth by means of evaluating the classifier’s discrimi-
native performance through Area Under the Receiver
Operating Characteristics curve (AUROC). In this case,
the metric argues that both the conservative and over-
confident approximations are equally accurate as it
yields AUROC = 0.7 for both approximations. From an
inference perspective however, the conservative approx-
imation is more suitable because it produces credible
regions larger than they should be.
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ties. An AUROC = 0.5 suggests an approximation that is
indistinguishable from the true posterior, while AUROC
= 1.0 implies that both distributions do not overlap.
Although both approximations in our demonstration
are equally accurate according to the AUROC, the over-
confident approximation illustrates the potential trust
crisis in simulation-based inference: producing credible
regions that are biased or smaller than they should be,
potentially leading to erroneous scientific conclusions.
For this reason, we take the position that posterior
approximations should, irrespective of the available
simulation budget, produce inflated credible regions.
They do not have to closely match the true posterior
to draw meaningful inferences.

Instead of measuring exactness of approximations with
respect to an intractable posterior, this work directly
probes the quality of credible regions through the no-
tion of expected coverage, which determines whether
posterior approximations are well-calibrated with re-
spect to the specified prior. It is a quantity that can be
estimated in practice and has a threshold to determine
whether a posterior estimator is acceptable.

Definition 1. The expected coverage probability
of the 1 — « highest posterior density regions derived
from the posterior estimator p(d|x) is

Ep.a) [1 [0 € O o) (1 — )], (2)
where the function ©p9|2)(1 — a) yields the 1 — «
highest posterior density region of p(¥|x).

Note that Equation 2 can be expressed as either

Ep0)Epe|9) [1 [0 € Opw ) (1 —a)]],  (3)

which is the ezpected frequentist coverage probability,
or alternatively as the expected Bayesian credibility

Ep@)Epw ) [1 [0 € Op01ay(1 —)]],  (4)

whose inner expectation reduces to 1 — o whenever the
posterior estimator p(¢ | x) is well-calibrated.

Definition 2. The empirical expected coverage
probability of the 1 — « highest posterior density re-
gions derived from the posterior estimator p(¥ | x) given

a set of n i.i.d. samples (9}, x;) ~ p(¥,x) is
1 — .
-~ Z]l ["91‘ IS 913(19|wi)(1 — Oé)] . (5)
i=1

Definition 3. The nominal expected coverage
probability is the expected coverage probability of the
true posterior and is equal to the confidence level.

Definition 4. A posterior estimator is deemed ac-
ceptable if it has coverage at the confidence level of
interest, 1.e., whenever the empirical expected coverage
probability is larger or equal to the nominal expected
coverage probability.

Definition 5. A conservative posterior estima-
tor has coverage for all confidence levels.

While coverage is a necessary metric to assess conser-
vativeness, it is limited in its ability to determine the
information gain a posterior (approximation) has over
its prior. To clarify this point, consider an estimator
whose posteriors are identical to the prior. In this
case, there is no gain in information and the empirical
expected coverage probability is equal to the nominal
expected coverage probability. For this reason, a com-
plete analysis should be complemented with measures
such as the mutual information or expected informa-
tion gain Iy z) [log p(¥ | x) — log p(¥)]. This work is
however concerned with conservative inference and
will therefore limit the analysis to the evaluation of
expected coverage. Finally, it should be noted that
expected coverage is a statement about the credible
regions in expectation and therefore does not make any
statement about the quality of an individual posterior.

3 Experimental observations

This section covers our main contribution: the collec-
tion of empirical evidence to determine whether ap-
proaches in simulation-based inference are conservative
by nature. We are particularly interested in determin-
ing whether certain approaches should be favoured over
others. We do so by measuring the coverage of posterior
estimators produced by these approaches across a broad
range of hyperparameters and benchmarks of varied
complexity, including two real problems from the field
of astronomy. As in real use-cases, the true posteriors
associated with these benchmarks are unknown.

3.1 Methods

We make the distinction between two paradigms. Non-
amortized approaches are designed to approximate a
single posterior, while amortized methods aim to learn
a general purpose estimator that attempts to approxi-
mate all posteriors supported by the prior. The archi-
tectures of all techniques, including hyperparameters,
are listed in Appendix B.

3.1.1 Amortized

Neural Posterior Estimation (NPE) is concerned
with directly learning an amortized posterior estimator
Py (V| ) with normalizing flows. Normalizing flows de-
fine a class of probability distributions py(-) built from
neural network-based bijective transformations (Dinh
et al., 2015, 2017) parameterized by . They are usually
optimized via argminy, ) [KL(p(9 | ) || py (9| 2)],
which is equivalent to arg max,, £, (s 2 [log py (9 | z)].
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Once trained, the density of the modeled distribution
can be evaluated and sampled from.

Neural Ratio Estimation (NRE) is an established
approach in the simulation-based inference literature
both from a frequentist (Cranmer et al., 2015) and
Bayesian (Thomas et al., 2016; Hermans et al., 2020)
perspective. In a Bayesian analysis, an amortized esti-
mator 7(x | 9) of the intractable likelihood-to-evidence
ratio r(x |9¥) can be learned by training a binary dis-
criminator d(¥9, z) to distinguish between samples of
the joint p(¥, &) with class label 1 and samples of the
product of marginals p(9¥)p(x) with class label 0 using
a criterion such as the binary cross entropy. Similar to
the density-ratio trick (Sugiyama et al., 2012; Goodfel-
low et al., 2014; Cranmer et al., 2015; Hermans et al.,
2020), the Bayes optimal discriminator d(, ) models

p(9, ) (o p(¥,x)
p(¥,z) +p(I)p(x) (l gPW)P(@) » (©

where o(-) is the sigmoid function. Given a tar-
get parameter 9 and an observable & supported by
p(¥) and p(x) respectively, the learned discrimina-
tor d(ﬂ, x) approximates the log likelihood-to-evidence
ratio logr(x|¥) through the logit function because
logit(d(¥9, z)) ~ logr(x|¥). The approximate log pos-
terior density function is log p() + log #(x | ).

Ensembles of models constitute a standard method
to improve predictive performance. In this work, we
consider an ensemble model that averages the approxi-
mated posteriors of n independently trained posterior
estimators. While this formulation is natural for NPE,
averaging likelihood-to-evidence ratios is equivalent

since p(9) 5 Y0, Fi(® |9) = & S0, pi(9 | ®).
3.1.2 Non-amortized

Rejection Approximate Bayesian Computation
(ABC) (Rubin, 1984; Pritchard et al., 1999) numeri-
cally estimates a single posterior by collecting samples
¥ ~ p(¥) whenever x ~ p(x|9) is similar to x,. Sim-
ilarity is expressed by means of a distance function p.
For high-dimensional observables, the probability den-
sity of simulating an observable x such that x = x, is
extremely small. For this reason, ABC uses a summary
statistic s and an acceptance threshold e. Using these
components, ABC accepts samples into the approxi-
mate posterior whenever p(s(x),s(x,)) < e. In our
experiments we use the identity function as a sufficient
summary statistic. Finally, we emphasize that ABC
approximations are only eract whenever the summary
statistic is sufficient and the acceptance threshold e
tends to 0 (Sisson et al., 2018).

Sequential methods aim to approximate a single poste-
rior by iteratively improving a posterior approximation.

These methods alternate between a simulation and ex-
ploitation phase. The latter being designed to take
current knowledge into account such that subsequent
simulations can be focused on parameters that are more
likely to produce observables x similar to x,.

Sequential Monte-Carlo ABC (smc-ABC) (Toni
and Stumpf, 2009; Sisson et al., 2007; Beaumont et al.,
2009) iteratively updates a set of proposal states to
match the posterior distribution. At each iteration,
accepted proposals are ranked by distance. The rank-
ings determine whether a proposal is propagated to the
next iteration. New candidate proposals are generated
by perturbing the selected ranked proposals.

Sequential Neural Posterior Estimation (SNPE)
(Papamakarios and Murray, 2016; Lueckmann et al.,
2017; Greenberg et al., 2019) directly models the pos-
terior. Our evaluations will specifically use the SNPE-C
(Greenberg et al., 2019) variant.

Sequential Neural Likelihood (SNL) (Papamakarios
et al., 2019) models the likelihood p(x | ¢). A numerical
approximation of the posterior is obtained by plugging
the learned likelihood estimator into a Markov Chain
Monte Carlo (McMC) sampler as a surrogate likelihood.

Sequential Neural Ratio Estimator (SNRE) (Her-
mans et al., 2020; Durkan et al., 2020) iteratively im-
proves the modelled likelihood-to-evidence ratio.

3.2 Benchmarks

Our evaluations consider 7 benchmarks, ranging from
toy problems to real applications in astrophysics.

The SLCP simulator models a fictive problem with 5
parameters. The observable @ is composed of 8 scalars
which represent the 2D-coordinates of 4 points. The
coordinate of each point is sampled from the same mul-
tivariate Gaussian whose mean and covariance matrix
are parametrized by 9. We consider an alternative
version of the original task (Papamakarios et al., 2019)
by inferring the marginal posterior density of 2 of those
parameters. In contrast to its original formulation, the
likelihood is not tractable due to the marginalization.

The Weinberg problem (Cranmer et al., 2017) concerns
a simulation of high energy particle collisions ete™ —
. The angular distributions of the particles can be
used to measure the Weinberg angle @ in the standard
model of particle physics. From the scattering angle,
we are interested in inferring Fermi’s constant 9.

The Spatial SIR model involves a grid-world of sus-
ceptible, infected, and recovered individuals. Based
on initial conditions and the infection and recovery
rate 19, the model describes the spatial evolution of
an infection. The observable x is a snapshot of the
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grid-world after some fixed amount of time.

M/G/1, originally introduced by Papamakarios et al.
(2019), models a processing and arrival queue. The
problem is described by 3 parameters 9 that influence
the time it takes to serve a customer, and the time
between their arrivals. The observable x is composed
of 5 equally spaced quantiles of inter-departure times.

The Lotka-Volterra population model (Lotka, 1920;
Volterra, 1926) describes a process of interactions be-
tween a predator and a prey species. The model is
conditioned on 4 parameters ¥ which influence the
reproduction and mortality rate of the predator and
prey species. We infer the marginal posterior of the
predator parameters from time series representing the
evolution of both populations over time.

Stellar Streams form due to the disruption of spherically
packed clusters of stars by the Milky Way. Because of
their distance from the galactic center and other visible
matter, distant stellar streams are considered to be
ideal probes to detect gravitational interactions with
dark matter. The model (Banik et al., 2018) evolves the
stellar density x of a stream over several billion years
and perturbs the stream over its evolution through
gravitational interactions with dark matter subhaloes
parameterized by the dark matter mass .

Gravitational Waves (GW) are ripples in space-time
emitted during events such as the collision of two black-
holes. They can be detected through interferometry
measurements & and convey information about celestial
bodies, unlocking new ways to study the universe. We
consider inferring the masses 19 of two black-holes col-
liding through the observation of the gravitational wave
as measured by L1GO’s dual detectors (LIGO Scientific
Collaboration, 2018; Biwer et al., 2019).

3.3 Setup

Our evaluations consider simulation budgets ranging
from 2'° up to 2'7 samples and confidence levels from
0.05 up to 0.95. Within the amortized setting we train,
for every simulation budget, 5 posterior estimators for
100 epochs. The empirical expected coverage probabil-
ity is computed on at least 5,000 unseen samples from
the joint p(¥,x) and for all confidence levels under
consideration. In addition, we repeat the expected cov-
erage evaluation for ensembles of 5 estimators as well.
Special care for non-amortized approaches is necessary
because they only approximate a single posterior and
can therefore not reasonably evaluate expected cover-
age. Our experiments estimate expected coverage of
these methods by proxy by repeating the inference pro-
cedure on 300 distinct observables for a given simulation
budget. The empirical expected coverage probabilities
are estimated using the 300 approximated posteriors.

Our experiments with NPE, SNPE, SNL, SNRE, REJ-ABC
and SMC-ABC rely on the implementation in the sbi
package (Tejero-Cantero et al., 2020), while we use a
custom implementation for NRE.

Computational cost We would like to emphasize
the computational requirements necessary to generate
our main contribution: the experimental observations,
whose generation took months of computation. The av-
erage CPU time for evaluating an amortized procedure
on all non-astrophysical benchmark problems is in order
of 200 CPU days, while for a non-amortized approach it
increases to 2800 CPU days. The bulk of the cost was
associated with the repeated optimization procedure
and the constant resampling of the simulator.

3.4 Results

Figures 2 and 3 highlight our main results. Through
these plots we can directly assess the conservativeness
at a given confidence level and simulation budget. The
figures should be interpreted as follows: a perfectly
calibrated posterior has an empirical expected coverage
probability equal to the nominal expected coverage
probability. Plotting this relation produces a diago-
nal line. Conservative estimators on the other hand
produce curves above the diagonal and overconfident
models underneath. The plots highlight an unsettling
observation: all benchmarked approaches produce non-
conservative posterior approximations. In general, this
pathology is especially prominent in non-amortized ap-
proaches with a small simulation budget; a regime they
have been specifically designed for. A large simulation
budget does not guarantee conservativeness either.

In sequential approaches, this behaviour could be ex-
plained by the alternating exploitation and simula-
tion phase. One potential failure mode is that a non-
conservative posterior approximation at a previous iter-
ation forces the next simulation phase to not produce
observables that should be associated with a higher
posterior density, causing the estimator to increase its
non-conservativeness at each iteration.

Despite the fact that all ABC approaches use a suffi-
cient summary statistic (the identity function), our
results demonstrate that this alone is no guarantee for
conservative posterior approximations. In fact, using
a sufficient summary statistic with € > 0 does not al-
ways correspond to conservative approximations. In
such cases, ABC accepts samples with larger distances,
permitting the procedure to shift the mass of the ap-
proximated posterior elsewhere. In addition, a limited
number of posterior samples can negatively affect the
quality of the credible regions, e.g., when approximat-
ing the posterior density function with kernel density
estimation. Both cases could cause the observed be-
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Figure 2: Evolution of expected coverage w.r.t simulation budget. A perfectly calibrated posterior has an empirical
expected coverage probability equal to the nominal expected coverage probability and produces a diagonal line.
Conservative estimators on the other hand produce curves above the diagonal and overconfident models underneath.
All algorithms can lead to non-conservative estimators. This pathology tends to be accentuated for small simulation
budgets and non-amortized methods. Finally, the intractable results indicate that the computational requirements
did not allow for a coverage analysis. In the case of SNL, this was mostly due to the high dimensional observables.
We did not train an embedding network as that is outside of the scope of this work. For the astronomy applications,
the simulation model was simply too expensive to reasonably evaluate coverage for non-amortized methods.

haviour. Scientific applications should therefore be
cautious. Even though a handcrafted, albeit sufficient,
summary statistic provides some insight into the ap-
proximated posterior, it does not imply that ABC ap-
proximations are conservative whenever € > 0.

In Figure 3 we observe that the empirical expected
coverage probability of ensemble models is consistently
larger than the empirical expected coverage probability
of the expected individual posterior estimator. Current
applications of simulation-based inference can therefore
rely on ensembling to build more conservative posterior

estimators. However, the ensemble model can still be
non-conservative. We hypothesize that the increase in
coverage is linked to the added uncertainty captured
by the ensemble model, leading to inflated credible
regions. In fact, individual estimators only capture data
uncertainty, while an ensemble is expected to capture
part of the model uncertainty as well. Surprisingly,
we find that ensembles built using bagging do not
always produce higher coverage than individual models
while they should also capture part of the epistemic
uncertainty. Although a deeper understanding of this
effect is required, this behaviour could be explained by
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Figure 3: Analysis of coverage between ensemble and individual models w.r.t various simulation budgets. The blue
line represents the mean empirical expected coverage of individual models over 5 runs, the shaded area represents
its standard deviation. The black line represents the empirical expected coverage of a single ensemble composed of
5 models. We observe that ensembles consistently have a higher empirical expected coverage probability compared
to the average individual model. A similar effect is not always observed with bagging, indicated by the red line.

Ensembles are only considered on amortized approached.

the fact that bagging reduces the effective dataset size
used to train each member of the ensemble. Appendix
C shows a positive effect with respect to ensemble size.

Not evident from Figures 2 and 3 are the computational
consequences of a coverage analysis on non-amortized
methods. Although the figures mention a certain sim-
ulation budget, the total number of simulations for

non-amortized methods should be multiplied by the
number of approximated posteriors (300) to estimate
coverage, highlighting the simulation cost associated
with diagnosing non-amortized approaches. This issue
is not limited to coverage. Simulation-Based Calibra-
tion (sBC) (Talts et al., 2018) relies on samples of
arbitrary posterior approximations. Diagnosing non-
amortized estimators with SBC therefore requires a
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similar approach as we have taken in our coverage anal-
yses. In fact, Lueckmann et al. (2021) also mention that
SBC is computationally prohibitive for non-amortized
approaches and therefore restrain from evaluating it.

Our results illustrate a clear distinction between the
amortized and non-amortized paradigms. Amortized
methods do not require retraining or new simulations to
determine the empirical expected coverage probability
of a posterior estimator, while non-amortized methods
do. A coverage analysis of non-amortized approaches
therefore only measures the quality of the training pro-
cedure. In contrast to amortized approaches, where the
posterior estimator is diagnosed. This has severe impli-
cations on the applicability of non-amortized methods,
because their reliability cannot be practically deter-
mined. In addition, non-amortized approaches have to
repeat the approximation procedure whenever archi-
tectural or hyperparameter changes are made, while
amortized methods reuse previously simulated datasets.
In particular, sequential methods cannot do this as new
simulations depend on the posterior approximation at
a previous state. This is often overlooked in stud-
ies on simulation efficiency and raises questions about
whether sequential approaches should still be consid-
ered simulation efficient over their amortized counter-
parts, considering that amortized approaches produce
trustworthier posterior approximations in expectation.

All of the above leads us to conclude that currently,
amortization should be favoured over non-amortized
approaches because their reliability cannot practically
be determined. Our results further suggest that even
for small simulation budgets amortized methods, on
average, produce more conservative estimators; a strik-
ing result, given that non-amortized, and sequential
methods in particular, dedicate the available simulation
budget to accurately approximate a single posterior.

Observation 1 All benchmarked algorithms pro-
duce non-conservative posterior approximations.
This pathology tends to be accentuated with small
simulation-budgets in both paradigms.

Observation 2 Amortized approaches have the ten-
dency to be more conservative in comparison to
non-amortized approaches.

Observation 3 The empirical expected coverage
probability of an ensemble model is larger than
the average individual model. The ensemble size
positively affects the empirical expected coverage
probability as well.

Observation 4 Amortized methods are simulation-
efficient, especially when taking hyper-parameter
tuning and the evaluation of the expected coverage
diagnostic into account.

4 Discussion

As demonstrated empirically, simulation-based infer-
ence can be unreliable, especially when its approxima-
tions cannot be diagnosed. The problem of determining
whether a posterior approximation is correct is in fact
not restricted to simulation-based inference specifically,
the concern occurs in all of approximate Bayesian infer-
ence. The McMC literature deals with this exact same
problem in the form of determining whether a set of
Markov chain samples have converged to the target
distribution (Lin, 2014; Hogg and Foreman-Mackey,
2018). In this regard, empirical diagnostic tools have
been proposed over the years (Geweke et al., 1991; Gel-
man and Rubin, 1992; Raftery and Lewis, 1991; Dixit
and Roy, 2017; Talts et al., 2018) and have helped
practitioners using MCMC properly. Nonetheless, there
is currently no clear solution to determine convergence
with absolute certainty (Dixit, 2018; Roy, 2020), even
if the likelihood function is here tractable.

We are of the opinion that theoretical and method-
ological advances within the field of simulation-based
inference will strengthen its reliability and promote
its applicability in sciences. First, although all bench-
marked algorithms recover the true posterior under
specific optimal conditions, it is generally not possi-
ble to know whether those conditions are satisfied in
practice. Therefore, the study of new objective func-
tions that would force posterior estimators to always
be conservative, regardless of their optimal conditions,
is worth investigating. From a Bayesian perspective,
Rozet and Louppe (2021) propose using the focal and
the peripheral losses to weigh down easily classified
samples as a means to tune the conservativeness of a
posterior estimator. Dalmasso et al. (2021) consider
the frequentist setting and introduce a theoretically-
grounded algorithm for the construction of confidence
intervals that are guaranteed to have perfect coverage,
regardless of the quality of the used statistic. Second,
in light of our results that ensembles produce more
conservative posteriors, model averaging constitutes
another promising direction of study, as a simple and ef-
ficient method to produce reliable posterior estimators.
However, a deeper understanding of the behaviour we
observe is certainly first required to further develop
these methods. Third, post-training calibration can be
used to improve the reliability of posterior estimators
and should certainly be considered as a way towards
more conservative inference. To some extent, this has
already been considered for amortized methods (Cran-
mer et al., 2015; Brehmer et al., 2018; Hermans et al.,
2021) and would be worth exploring further, especially
for non-amortized approaches.

In summary, we show that current algorithms for
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simulation-based inference may all produce overconfi-
dent posterior approximations, making them demon-
strably unreliable if one’s scientific goal is to constrain
parameters of interest or reject theoretical models. Nev-
ertheless, we remain confident and optimistic and ad-
vocate that this result is only a stepping stone towards
more reliable simulation-based inference, its wider adop-
tion, and eventually better science.
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Appendix

A Expected simulation times

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR. GW Streams

0.22+0.002 0.20£0.002 0.20£0.002 19.08+£0.964 9.18 £0.280 545.13 £23.631 39,369 £ 584.43

Table 1: Expected simulation time to produce 1000 simulations for all benchmark problems on a single CPU core.
The expected time and standard deviation are reported in seconds.

B Architectures & hyperparameters

In this section we describe the neural architectures and hyperparameters associated with our experiments. Our
descriptions are complemented with the actual number of coverage evaluations. As evident from the tables
describing both amortized and non-amortized approaches, the number of coverage evaluations for amortized
approaches is substantially larger. It should be noted that, a coverage analysis consisting of 300 posteriors of the
non-amortized approaches took months on these relatively simple problems. While for the amortized methods, a
coverage analysis of 100,000 samples was a matter of hours to a few days depending on the dimensionality of 1.

B.1 Amortized

B.1.1 Neural Posterior Estimation

The MLP embeddings are 3 layer MLP’s with 64 hidden units and a final latent space of 10, which is fed to
the normalizing flow. The CNN architecture in the Gravitational Waves benchmark consists of a 13-layer deep
convolutional head of 1D convolutions with a dilation factor of 2¢. Where d corresponds to the depth of the
convolutional head. The SELU (Klambauer et al., 2017) function is used as an activation function.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Embedding MLP MLP MLP MLP MLP CNN MLP
Batch-size 128 128 128 128 128 64 128
Coverage samples individual 100,000 5,000 100,000 100,000 100,000 10,000 100,000
Coverage samples ensemble 20,000 5,000 20,000 20,000 20,000 5,000 20,000
Epochs 100 100 100 100 100 100 100
Model NSF NSF NSF NSF NSF NSF NSF
Transforms 3 3 1 3 3 3 3
Learning-rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 2: Architectures and hyperparameters associated with Neural Posterior Estimation.

B.1.2 Neural Ratio Estimation

Our experiments use the ADAMW (Kingma and Ba, 2015; Loshchilov and Hutter, 2019) optimizer. Accross all
benchmarks, the MLP architectures constitute of 3 hidden layers with 128 units and SELU (Klambauer et al.,
2017) activations. The Gravitational Waves benchmark uses the same convolutional architecture as in NPE. The
resulting embedding is flattened and fed to a MLP in which the dependence on the target parameter 9 is added.
As before, the MLP consists of 3 hidden layers with 128 units.

B.2 Non-amortized

All our implementations of non-amortized approaches rely on the reference implementation in sbi (Tejero-Cantero
et al., 2020). We use the recommended defaults unless stated otherwise. Whenever available, the same MLP
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SLCP  M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams

Architecture MLP MLP MLP MLP MLP CNN MLP
Batch-size 128 128 128 128 128 64 128
Coverage samples individual 100,000 100,000 100,000 100,000 100,000 10,000 100,000
Coverage samples ensemble 20,000 20,000 20,000 20,000 20,000 10,000 20,000
Epochs 100 100 100 100 100 100 100
Learning-rate 0.001 0.001 0.001 0.001 0.001 0.001  0.001

Table 3: Architectures and hyperparameters associated with Neural Ratio Estimation.

embedding network is used. It consists of 3 hidden layers with 64 units and SELU (Klambauer et al., 2017)
activations. The latent space has a dimensionality of 10 features. For all sequential methods, we use 10 rounds to
iteratively improve the posterior approximation.

B.2.1 SNPE

Our evaluations with SNPE specifically use the SNPE-C (Greenberg et al., 2019) variant, as suggested by sbi
(Tejero-Cantero et al., 2020). To minimize inconsistencies between experiments, we use the defaults suggested by
the sbi authors unless states otherwise. Specific changes are highlighted in Table 4.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams
Batch-size 128 128 128 128 32 Intractable Intractable
Coverage samples 300 300 300 300 300 Intractable Intractable
Embedding MLP MLP MLP MLP MLP Intractable Intractable
Epochs 100 100 100 100 100 Intractable Intractable
Features 64 64 64 64 64 Intractable Intractable
Model NSF NSF NSF NSF NSF Intractable Intractable
Transforms 3 3 1 3 3 Intractable Intractable
Rounds 10 10 10 10 10 Intractable Intractable
Learning-rate 0.001  0.001 0.001 0.001 0.001 Intractable Intractable

Table 4: Architectures and hyperparameters associated with Sequential Neural Posterior Estimation.

B.2.2 SNL

In contrast to other sequential methods, our evaluations with sNL (Papamakarios et al., 2019) add two additional
intractable benchmarks. At the root of this issue lies the dimensionality of the observable. In both cases, the
dimensionality of observables caused memory issues in SNL. In addition, training a seperate embedding model
(that requires additional simulations) is outside of the scope of this work. For this reason, we consider the
Lotka-Volterra en Spatial SIR benchmark to be intractable.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR  GW Streams
Batch-size 128 128 128 Intractable Intractable Intractable Intractable
Coverage samples 300 300 300 Intractable Intractable Intractable Intractable
FEpochs 100 100 100 Intractable Intractable Intractable Intractable
Features 64 64 64 Intractable Intractable Intractable Intractable
Model NSF NSF NSF Intractable Intractable Intractable Intractable
Transforms 3 3 1 Intractable Intractable Intractable Intractable
Rounds 10 10 10 Intractable Intractable Intractable Intractable
Learning-rate 0.001  0.001 0.001 Intractable Intractable Intractable Intractable

Table 5: Architectures and hyperparameters associated with Sequential Neural Likelihood.
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B.2.3 SNRE
SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams
Architecture MLP MLP MLP MLP MLP Intractable Intractable
Batch-size 128 128 128 128 128 Intractable Intractable
Coverage samples 300 300 300 300 300 Intractable Intractable
Epochs 100 100 100 100 100 Intractable Intractable
Features 64 64 64 64 64 Intractable Intractable
Rounds 10 10 10 10 10 Intractable Intractable
Learning-rate 0.001  0.001 0.001 0.001 0.001 Intractable Intractable

Table 6: Architectures and hyperparameters associated with Sequential Neural Ratio Estimation.

B.2.4 Approximate Bayesian Computation

Our ABC implementation relies on the MCABC and SMCABC classes in the sbi (Tejero-Cantero et al., 2020) package.
The specific settings from Rejection ABC and SMC-ABC are described in Tables 7 and 8 respectively. The quantile
specifically refers to the proportion of closest samples that were kept in the final posterior. Because our specific
implementation of coverage requires the ability to describe the posterior density function, we relied on Kernel
Density Estimation to estimate the posterior density from the accepted samples.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams
Coverage samples 300 300 300 300 300 Intractable Intractable
Quantile 0.01 0.01 0.01 0.01 0.01 Intractable Intractable

Table 7: Hyperparameters associated with Rejection Approximate Bayesian Computation.

SLCP M/G/1 Weinberg Lotka-V. Spatial SIR GW Streams
Coverage samples 300 300 300 300 300 Intractable Intractable
€ decay 0.5 0.5 0.5 0.5 0.5 Intractable Intractable
Quantile 0.01 0.01 0.01 0.01 0.01 Intractable Intractable

Table 8: Hyperparameters associated with Sequential Monte Carlo Approximate Bayesian Computation.
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C Additional results
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Figure 4: Evolution of the empirical expected coverage probability with respect to ensemble size for various
confidence levels. The results are obtained by training 100 ratio estimators (NRE) on the SLCP benchmark. A
positive effect is observed in terms of empirical expected coverage probability and ensemble size, i.e., a larger
ensemble size correlates with a larger empirical expected coverage probability. This is unsurprising, because a
larger ensemble is expected to capture more of the uncertainty that stems from the training procedure.
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