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Résumé

Cette thèse de doctorat investigue d’un point de vue théorique la génération d’états in-
triqués avec des atomes bosoniques ultrafroids. Elle se focalise plus spécifiquement sur les
états NOON dans un double puits de potentiel, qui représentent la superposition cohérente
et équivalente de |N, 0〉 et |0, N〉 avec N atomes, et également sur les états triple-NOON
dans un piège optique à trois sites, qui représentent la superposition cohérente et équivalente
de |N, 0, 0〉, |0, N, 0〉 et |0, 0, N〉. Ces états peuvent être vus comme des manifestations à
larges échelles de l’intrication quantique. L’effet tunnel collectif des atomes dans le régime
d’auto-piégeage est rendu possible par les interactions atome-atome. Par exemple, l’état
NOON est formé après la moitié du temps d’effet tunnel, c’est-à-dire le temps nécessaire
pour obtenir un transfert total des atomes vers l’autre site. Le message principal que ce doc-
ument voudrait faire passer est que l’échelle de temps requise pour générer cette transition
peut être considérablement réduite via une perturbation périodique externe sans modifier
qualitativement la dynamique quantique. De plus, des indications de cette réduction sont
clairement visible dans l’espace des phases correspondant. La présence de résonances non-
linéaires au niveau classique induit des couplages perturbatifs au niveau quantique. Il en
résulte une réorganisation du spectre quantique qui permet d’expliquer la modification du
temps d’effet tunnel. Ces modifications peuvent aussi être produites par une proéminente
mer chaotique connue pour accueillir des états fortement connectés. Bâtie sur les caractéris-
tiques de l’espace des phases, l’effet tunnel assisté par résonance et par chaos est une théorie
semiclassique qui peut être utilisée comme un guide dans la quête des paramètres idoines.
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Abstract

The present dissertation theoretically investigates the generation of entangled states with
ultracold bosonic atoms. Specifically, that focuses on the NOON states in a double-well
potential, which are the coherent and equivalent superposition of |N, 0〉 and |0, N〉 with N
atoms, and on the triple-NOON states in a three-site optical trap, which are the coherent
and equivalent superposition of |N, 0, 0〉, |0, N, 0〉 and |0, 0, N〉. These states can be seen as
large manifestations of entanglement. The collective tunneling in the self-trapping regime
is made possible by the atom-atom interactions. For example, the NOON state is formed
after half the tunneling time, i.e. the time needed to obtain a total transfer of population
to the other site. The main message of this dissertation is that the timescale required
to generate this transition can be considerably reduced by means of an external periodic
driving without qualitatively altering the quantum dynamics. Moreover, indications of this
speedup are available in the corresponding classical phase space. The presence of nonlinear
resonances at the classical level induces perturbative couplings at the quantum level. The
subsequent reorganization of the eigenspectrum enables one to explain the modifications of
the tunneling time. These modifications can also be produced by prominent chaotic layer
known to welcome strongly connected states. Built upon the phase space features, resonance-
and chaos-assisted tunneling is a semiclassical theory which can be used as a guideline in
the quest of suitable parameters.
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Introduction

Entanglement is an astonishing manifestation of quantum mechanics. This very counterintu-
itive phenomenon mainly takes place at the microscopic level. If two particles are entangled,
it means that a measurement of one of them projects the other one on a specific state
depending on the result of this measurement. Quite surprisingly, this phenomenon is non-
local, meaning that this interaction is instantaneous and doesn’t depend on the distance
between the two particles. To take the measure of how strange the entanglement is, some
well-known physicists were doubtful about this phenomenon, like Einstein who called this
non-local interaction a "spooky action at distance" [1]. Instead of assuming that there exist
instantaneous interactions between particles, one can imagine the existence of hidden vari-
ables. These are related to a lack of knowledge of the underlying mechanisms at stake with
entanglement and even with the superposition of states. This was the idea of the Einstein-
Podolsky-Rosen (EPR) paradox formulated in 1935 [2]. Nevertheless, the experiments of
Freedman and Clauser in 1972 [3] and Aspect in 1981 [4] demonstrated the non-local behav-
ior of entangled photons. These experiments were based on that of Kocher and Commins
realized in 1967 [5] and confirmed the phenomenon of non-locality through the violation of
the Bell inequalities [6]. Moreover, entanglement has been experimentally demonstrated in
various systems including electrons separated by 1.3 km [7], an atom and a molecule [8], and
macroscopic diamonds [9], to mention some examples.

In practice, we have no intuition of entanglement at the macroscopic level. An open
question is the realization of this phenomenon at larger scale. For instance, two spatially
separated millimeter-sized diamonds have been entangled in some of their vibrational states
[9]. This kind of entanglement is giant in a sense that the material supports, namely the
diamonds, are macroscopic. Another kind of giant entangled state is built when the number
of entangled quanta is significant. This is the case of the NOON states, where two bosonic
modes are entangled in such a way that one of them is totally full with N quanta while
the other one is empty. It has been experimentally demonstrated in bosonic systems using
photons [10,11] and phonons [12], for example.

This dissertation theoretically investigates the generation of entangled states with a Bose-
Einstein condensate by focusing on large entanglement. A Bose-Einstein condensate is in
general made of ultracold atoms. It can be seen as a new state of matter which behaves like
a coherent wave. From an experimental point of view, this coherent matter wave can have a
macroscopic scale with a spatial extension of the order of a millimeter [13, 14]. Historically,
Bose-Einstein condensation was theoretically predicted in 1924-1925 by Einstein [15, 16] in
the wake of the work of Bose on photons published in 1924 [17]. Seventy years later, the first
experimental realizations were performed with the atomic species 87Rb in the Wieman and
Cornell group [13] and with 23Na in the Ketterle group [14]. Section 1.1 will give a general
overview about the different experimental realizations of the Bose-Einstein condensation by
emphasizing the typical length, temperature and density scales.
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Optical lattices

Once a Bose-Einstein condensate is created, it can be loaded in a periodic configuration of
potential wells, which can be generated by an optical lattice [18, 19]. With this potential,
it becomes possible to conceive protocols to entangle the spatially separated parts of the
ultracold gas. Contrary to laser cooling based on cycles of absorption-spontaneous emission
of photons by the atom, an optical lattice is made of lasers where frequencies are sufficiently
detuned away from an atomic transition in order to avoid these cycles, but sufficiently close to
this transition to modify substantially the ground state energy of the atoms [20]. This leads
to a spatially periodic trapping of the Bose-Einstein condensate. The lattice parameters, such
as for example the laser intensities, determine the coupling between wells and the degree of
confinement of the atoms on a site. An additional harmonic trap can produce a dimer [21].
An alternative is based on the superlattice techniques where the multiple periodicities of
the lattice can lead to, for example, dimers or trimers relatively well separated from each
other [22–24]. In this context, it is possible to conceive a spatial entanglement between the
different sites of the dimer or the trimer in which the Bose-Einstein condensate is trapped.

Historically, the Hubbard model was introduced in order to model interacting electrons
in a solid [25]. Like a crystal, the optical lattice is a periodic potential. In the crystal, the
electrons are trapped by the electromagnetic potential produced by the spatially periodic
atomic nuclei while, in the optical lattice, the atoms are trapped because of the laser fields.
That is why the Hubbard model was adapted to describe spinless interaction atoms, leading
to the Bose-Hubbard model [26, 27]. This model is able to explain the quantum phase
transition at zero temperature between the superfluid phase to the Mott-insulator phase
[27–29]. Thus, there is an analogy between the optical lattice and the crystal and between
the ultracold atoms and the electrons. Nevertheless, the scales are very different. The
temperature scale is 1 µK for the optical lattice compared to 104 K for solid, the mass scale
is 10−25 kg for an atom and 9.1 × 10−31 kg for an electron. The lattice spacing is typically
500 nm for an optical lattice compared to 0.1 nm for a crystal. Moreover, the optical lattices
are easily controllable by means of the intensities and the wavelengths of the lasers, and they
present almost no defect which constitutes an asset over crystals.

NOON states

Entangled states are very fragile, which explains why it is almost impossible (for the moment)
to observe them at the mesoscopic or macroscopic scale. The NOON states are a specific
class of entangled states. They are made of two bosonic modes where one of them is totally
full of N quanta while the other is empty. The NOON state made up of the two quantum
states |N, 0〉 and |0, N〉 can be written as

|NOON〉 = eiϕ1|N, 0〉+ eiϕ2|0, N〉. (0.0.1)

This kind of state becomes more and more impressive as the number of quanta increases.
Indeed, if N is sufficiently large, it could potentially lead to a mesoscopic manifestation
of entanglement. The usefulness of this state is related to the field of quantum metrology
[30, 31]. Although the NOON states are very unstable toward any interaction with the
environment, they have been experimentally observed with the nuclear spins of a molecule
[32], with two optical paths of photons [10], with the two polarization states of photons [11],
with qubits in superconducting circuits [33], and with phonons in ions traps [12].
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When describing Bose-Einstein condensation, the atom-atom interactions must in general
be taken into account. These interactions are far from being a nuisance as they allow one
to conceive protocols for the generation of entangled states that are based on the internal
dynamics of the ultracold atoms. Several proposals have been made to build a NOON state
with a Bose-Einstein condensate. With attractive ultracold atoms, the NOON state is the
ground state. In this context, it could be possible to build it by adiabatically decreasing the
hopping between both modes [34]. Nevertheless, two problems arise. As it is the ground
state, it requires very low temperature to reach that. Moreover, an attractive condensate
is unstable as it can collapse on itself [35], and the contraction on itself [36] leads to the
proliferation of inelastic scattering [37]. That is why several other proposals have been made
for repulsive condensates, based on the dynamical redistribution of atoms after applying
a suitable phase shift [38–44]. The NOON state could also be produced by some specific
measurement processes [45–47], via an adiabatic passage from an excited state [48], with a
two-component Bose-Einstein condensate in a double-well potential [49] or via the scattering
of solitonic wave packet [50,51].

The idea proposed in our work [52] consists in loading all atoms on any site of a symmetric
double-well potential. At the transition time, all atoms tunnel to the other site. At half
this waiting time, called the NOON time, the large coherent superposition of states, i.e. the
NOON state, is obtained. This can be achieved in the self-trapping regime [21,53–61] where
the effective on-site interaction energy is much larger than the coupling between both parts
of the dimer. In this regime, the atoms tunnel collectively and not individually. This
phenomenon is due to the mismatch of the chemical potentials in the two wells. Besides
the need of a perfect symmetry, the problem in collective tunneling is the extremely long
timescale required [62]. Moreover, this time increases with the population imbalance, which
makes it more complicated to reach entanglement at a mesoscopic scale.

Resonance- and chaos-assisted tunneling

We claim that it is possible to speed up the production of the NOON states by means of
an additional periodic modulation of the double-well potential [63, 64]. This modulation is
expected to modify significantly the NOON time for some parameters. The Bose-Hubbard
model describes from a pure quantum point of view the dynamics of ultracold atoms trapped
in an optical lattice. As this model focuses on spinless particles, one can define a classical
counterpart as shown in Sec. 1.3.4. An appealing idea is to use the related classical dynamics
as a guideline for the choice of suitable driving parameters. The purpose is to build nonlinear
resonances [65,66] in the phase space via the periodic driving. A nonlinear resonance induces
perturbative couplings of the states |N, 0〉 and |0, N〉 with other states |n1, n2〉. These
couplings can lead to a reduction of the NOON time by several orders of magnitude via the
phenomenon of resonance-assisted tunneling [67–71] valid for near-integrable systems. In the
framework of this theory, the NOON time τ can be semiclassically evaluated in terms of the
energies ε(0)

q of the unperturbed system and the corresponding unperturbed entanglement
times τ (0)

q , i.e. the times required to produce perfectly balanced entangled states between
|n1, n2〉 and |n2, n1〉. For a one-step process, it reads

τ ∼ ε
(0)
n − ε(0)

m − l~ω
A

τ (0)
m , (0.0.2)

where n is an integer labeling the NOON state, m and l are integers depending, among
others, on the rank of the nonlinear resonance. Here ω is the frequency of the periodic
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perturbation and A depends on the characteristics of the resonance, such as its size in phase
space.

The perturbed NOON time is evaluated by means of the unperturbed parameters, using
standard perturbation theory. What is remarkable with Eq. (0.0.2) is that its evaluation
can be performed exclusively with the characteristics of the underlying classical dynamics.
The constant A depends only on the phase-space features of the resonance [67, 68], the
unperturbed energies can be evaluated by means of the canonical perturbation theory [66],
and the unperturbed entanglement times by means of analytic continuations of the phase-
space tori in the complex domain [68,72].

The transition related to the NOON state can also be sped up by means of a prominent
layer of chaotic motion in the phase space. The perturbative couplings of the regular |N, 0〉
and |0, N〉 states to the strongly connected chaotic states lead to the phenomenon of chaos-
assisted tunneling [73–77]. In the framework of this theory, the NOON time is determined
by means of the coupling V to the chaotic sea,

τ ∼ 1

V 2
. (0.0.3)

Both phenomena can be combined in order to obtain the semiclassical theory of resonance-
and chaos-assisted tunneling [71, 72, 78–83]. In this theory, the coupling to the chaotic sea
in Eq. (0.0.3) becomes an effective coupling taking into account the contributions of the
different resonance paths.

Due to the particle conservation, the classical counterpart of the driven two-site Bose-
Hubbard model is an effective periodically driven one degree-of-freedom system, such that the
phase space has two dimensions. Resonance-assisted tunneling has been extensively studied
for this kind of low-dimensional system. In the near-integrable regime, it was applied to the
kicked Harper model [67, 68] and in deformed optical microcavities [70, 71], for example. In
the mixed regime, i.e. the regime where there is a coexistence between regular and chaotic
trajectories in the phase space, it was applied to molecular systems [69], the kicked Harper
model [79], the periodically-driven pendulum [84], the standard map [72,81–83] and optical
microcavities [71,80].

Resonance-assisted tunneling in high-dimensional systems

Concerning the classical counterpart of the three-site Bose-Hubbard model, the phase space
has four dimensions as it is an effective periodically-perturbed two degree-of-freedom system.
In this context, some complications arise due to additional connections between different
parts of the phase space. Even if it is no longer possible to have a global visualization of the
dynamics by means of a 2D plane, the phase space can still be visualized by slicing the 4D
phase space to extract a 3D subspace [85,86]. The 3D phase space slices can be obtained by
projecting the orbits (q1, q2, p1, p2) on a 2ε width around an arbitrary point p̄2,

{(q1, q2, p1, p2) | |p2 − p̄2| 6 ε} . (0.0.4)

Indeed, before studying resonance- and chaos-assisted tunneling, it is valuable to know which
regions in phase space are chaotic and which tori are still preserved. Moreover, the set of
resonances, called the Arnold web, must be known in order to determine which perturbative
couplings are dominant. The Arnold web can be computed through frequency-analysis tech-
niques, and it has been applied, for example, in the case of two coupled standard maps [85,86].
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In the case of a 4D phase space with a periodic perturbation (meaning that stroboscopic
sections must be done to obtain the 4D space), the resonance lines k0:k1:m, coming from the
destruction of an ensemble of tori, are given by [87]

k0Ω0 + k1Ω1 = mω, (0.0.5)

where (Ω0,Ω1) are the frequencies of the tori and ω is the external frequency. Here k0, k1 and
m are integers of which at least one of them is non-zero. Equation (0.0.5) determines the set
of resonances. With the Arnold web, resonance-assisted tunneling has been studied in a three
degree-of-freedom Hamiltonian [88]. Another technique to compute the Arnold web is called
the fast Lyapunov indicator [89, 90]. With this kind of technique, resonance- and chaos-
assisted tunneling has been studied in high-dimensional molecular systems in the context
of intramolecular vibrational energy redistribution [91–93] or in a three-site Bose-Hubbard
model weakly coupled with an additional fourth site [94]. In Ref. [95], resonance-assisted
tunneling mechanisms were investigated in four-dimensional normal-form Hamiltonians. As
these latter Hamiltonians are time independent, it is possible to perform 3D slices for ε = 0.

Except for the work cited above, resonance- and chaos-assisted tunneling has not yet been
studied much for high-dimensional systems. We will add our contribution to this research
field by studying this phenomenon for the three-site Bose-Hubbard model by focusing on the
effect of an external driving on tunneling.

Triple-NOON states

In a three-site Bose-Hubbard model, a natural way to study entanglement is by introducing
three modes. From a general point of view, a triple-NOON state is an entangled state where
one mode is totally populated with N quanta while the other ones are empty. It is formally
written as

|t-NOON〉 = eiϕ1|N, 0, 0〉+ eiϕ2|0, N, 0〉+ eiϕ3|0, 0, N〉. (0.0.6)

In the specific case of the trimer, theN quanta are assimilated to the total number of particles
and a measurement of the system will give an equal probability to obtain all particles on
one of the three sites.

Few proposals have been made for realizing this kind of state with a Bose-Einstein con-
densate confined on three sites. In Ref. [96], it was proposed to produce the triple-NOON
state by an adiabatic decrease of the coupling between sites. This protocol is possible with
an attractive condensate for which the triple-NOON state is the ground state. Nevertheless,
the same problems arise as for the double-NOON state case, namely the potential collapse
of the condensate on itself [35] and the extremely low temperatures and slow parameter
variations required.

Our proposal here is the same as for the NOON states in a dimer. All atoms are loaded
on one of the three sites of the symmetric optical trap, and the triple-NOON state is gen-
erated after the triple-NOON time. This protocol must be performed in the self-trapping
regime where the strong effective on-site interactions force the atoms to tunnel as a whole.
Nevertheless, the time required to observe such a transition is prohibitively long. The idea
is then to add a periodic perturbation of the trimer which preserves its symmetry. In this
context, nonlinear resonances and chaos are produced by the periodic driving in the related
classical phase space. From resonance and chaos-assisted tunneling theory, these phase space
modifications are expected to reduce by several orders of magnitude the NOON time. Thus,
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the classical counterpart of the three-site Bose-Hubbard model is used as a guideline in the
quest of suitable parameters.

Outline of the chapters

Chapter 1 is devoted to the general Bose-Hubbard model describing a Bose-Einstein con-
densate trapped in an optical lattice. This model can be derived through second quanti-
zation procedure, and when the total number of particles is pretty high, the classical limit
is enough to capture the features of the dynamics. The beginning of this chapter gives a
general overview about the experiments related to the Bose-Einstein condensation as well as
the typical length, temperature, and density scales.

Chapter 2 is devoted to the two-site Bose-Hubbard model. It focuses on the case of weak
coupling between sites for which the spectrum displays a doublet structure. The addition of
a periodic tilting of the double-well potential can be dealt with within Floquet theory. At
the end of this chapter, it is shown how it is feasible to prevent the formation of an entangled
state by means of a periodic perturbation.

Chapter 3 introduces the classical counterpart of the two-site Bose-Hubbard model.
While the mean-field approximation is not able to explain the formation of entangled states,
some features of the dynamics can still be captured with this model, namely the self-trapping
dynamics and the Josephson oscillations. These two qualitatively different dynamics are dis-
played through the phase space for which the canonical perturbation theory is applied in
order to obtain an analytical approximation of its structure.

Chapter 4 introduces the notion of NOON state in the two-site Bose-Hubbard model.
As the unperturbed two-site Bose-Hubbard model is integrable, the tunneling rate (the
inverse of the NOON time) is expected to decrease exponentially with the semiclassical
parameter, i.e. the total number of particles as shown in Secs. 3.5.2 and 4.1. With the periodic
driving, chaos and nonlinear resonances arise in the phases space. The semiclassical theory
of resonance- and chaos-assisted tunneling is developed by highlighting the mechanisms that
boost the NOON state production.

Chapter 5 is devoted to the production of NOON states in the unperturbed three-site
Bose-Hubbard model. The 3D slices of a 4D phase space enable one to obtain a global visu-
alization of the classical dynamics. The non-congruent third site introduces new resonance
channels clearly visible in phase space leading to the speedup of the NOON-state production.

Chapter 6 introduces the notion of triple-NOON state in the symmetric three-site Bose-
Hubbard model. A part of its spectrum displays a triplet organization for which the three-
level approximation is valid in the weak coupling regime. An additional periodic driving
preserving the symmetries of the system can lead to substantial decrease of the triple-NOON
time through resonance- and chaos-assisted tunneling mechanisms.



Chapter 1

Bose-Einstein condensate in an optical
lattice

The experiments and the typical orders of magnitude related to Bose-Einstein condensation
are presented at the beginning of this chapter. It is possible to trap a Bose-Einstein conden-
sate in an optical lattice, which produces spatial separations of its different parts enabling
one to develop protocols for entanglement. Historically, the introduction of the Hubbard
model was motivated by the study of interacting electrons in a solid [25]. The Bose-Hubbard
model was developed in order to describe interacting ultracold atoms trapped in a periodic
potential [27–29]. This periodic potential, called an optical lattice, can be produced by lasers
whose frequency is slightly detuned from an atomic transition. The subsequent modifica-
tions of the ground state energy lead to a periodic lattice of sites [18–20]. The addition of a
harmonic confinement is able to produce, for example, a two-site optical trap [21]. An alter-
native is the superlattices which are optical lattices characterized by different periodicities.
This can produce dimers or trimers well separated from each other [22–24].

The Bose-Hubbard model is one of the simplest model describing interacting ultracold
atoms trapped in a periodic potential. As the gas is very dilute, only the two-atom interaction
is taken into account while the three-body collisions are neglected. The assumption of a dilute
gas also allows one to model the atom-atom interaction by a two-atom contact potential.
Moreover, the combination of a low temperature gas with a deep optical-lattice potential
enables one to only consider the first energy band of the system.

1.1 Bose-Einstein condensation

In 1905, Einstein describes the photoelectric effect by assuming that light behaves not only
like a wave but is made of particles called photons [97]. Conversely, de Broglie postulated in
1924 in his well-known thesis [98] that matter presents also a wave behavior. This leads to
the concept of wave-particle duality for which each particle is characterized by a wavelength
given by λdB = h/p, where h is the Planck constant and p is the momentum of the particle.
This theory was able to explain the experiment of Davisson and Germer conducted in 1927
concerning the diffraction of electrons through a crystal [99, 100]. Based on the work of de
Broglie, Schrödinger proposed in 1926 the eponymous equation describing the wave behavior
of massive particles in the context of the first quantization [101].

There are two classes of quantum particles, namely the bosons and the fermions. The
former are described by a totally symmetric wave function while the latter by a totally anti-

7
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symmetric wave function. It means that the permutation between two identical particles in
the wave function ψ(r1, r2, . . . , rN) describing N particles leads to a prefactor ±1, respec-
tively, in the symmetric and antisymmetric case. By assuming that rl is the position of the
particle l (which takes into account its possible spin), this condition leads to

ψ(r1, . . . , ri, . . . , rj, . . . , rN) = ±ψ(r1, . . . , rj, . . . , ri, . . . , rN). (1.1.1)

This matter property leads to the fact that two fermions cannot share the same position with
the same spin. In other terms, the exclusion principle stipulates that two fermions cannot
occupy the same quantum state.

In practice, an ensemble of particles that are sufficiently far from each other can be de-
scribed without introducing a common wave function and the wave functions of the particles
can be treated separately. The de Broglie wavelength λdB gives a measure of the spatial
extension of a particle of mass m at the temperature T ,

λdB =

√
2π~2

mkBT
. (1.1.2)

At high temperature, the typical particle interdistance is very large in comparison to the
de Broglie wavelength. This condition, which can be formally written as λdB � (V/N)1/3

with V the volume, is fulfilled in a gas for normal temperature and pressure. Thus, the
particles can be seen as points and the Maxwell-Boltzmann distribution is applicable. At
low temperature, the wave spatial extensions of particles begin to overlap and the quantum
properties of matter must be taken into account. For a de Broglie wavelength reaching the
particle interdistance such that

λdB &

(
V

N

)1/3

, (1.1.3)

the Maxwell-Boltzmann distribution must be replaced by the either Bose-Einstein distribu-
tion in the bosononic case or the Fermi-Dirac distribution in the fermionic case.

Figure 1.1.1: Sketch of the Bose-Einstein condensation that takes place when the
wave spatial extensions of the bosonic particles are sufficiently overlapped. The Bose-
Einstein condensate is a wave manifestation of matter that appears at low temperature.
This image comes from Ref. [102].
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In an ideal bosonic gas, the Bose-Einstein distribution gives the mean number of occupa-
tions 〈nk〉 of the energy level εk, which is controlled by the temperature T and the chemical
potential µ,

〈nk〉 =
1

exp

(
εk − µ
kBT

)
− 1

. (1.1.4)

Unlike fermions, several bosons can occupy the same quantum state. This means that for
low temperature, an important part of the particles occupies the ground state energy ε0.
Moreover, as the temperature decreases the chemical potential tends to reach ε0, and a
singularity arises at the critical temperature Tc. For µ → ε0, the occupancy of the ground
state begins to diverge. This is the signature of the Bose-Einstein condensation. In this
context, the particles lose their individuality and condense into the ground state to form a
giant coherent matter wave as illustrated in Fig. 1.1.1.

The first Bose-Einstein condensates were realized in 1995 with a 87Rb cloud of 2 × 104

atoms characterized by a density of 2.6×1012 cm−3 and a temperature of 170 nK [13] as well
as a 23Na cloud of 5× 105 atoms characterized by a density of 1014 cm−3 and a temperature
of 2 nK [14]. The same year, indirect evidence was also obtained for the atomic species
7Li [103]. Other condensates have also been obtained for the spin-polarized hydrogen [104],
for the 4He in a metastable state [105] and for the species 41K [106], to mention some
examples. The alkalis are an interesting class of atoms for experimental construction of a
Bose-Einstein condensate. Indeed, they display one valence electron whose magnetic moment
of spin can interact with an external magnetic field leading to the possibility to realize a
Ioffe-Pritchard trap [20]. This electron can be treated to a certain measure independently of
the filled electronic inner shells. Moreover, these atoms have in general an optical transition
in the visible or in the infrared, i.e. the range in which lasers are available for optical traps.
For instance, some intra-atomic transitions from the electronic ground state exploitable for
cooling are given by roughly 780 nm for Rubidium [13] or 671 nm for Lithium [103].

A Bose-Einstein condensate is obtained by means of a dilute gas of ultracold particles.
The fact of being dilute prevents the phase change toward the liquid or solid configuration
even at small temperature. The typical particle density of an ultracold atomic gas amounts
to 1013–1015 cm−3. To compare, the density of molecules in the air at room temperature is
about 1019 cm−3, about 1022 cm−3 for liquid and solid while it amounts to 1038 cm−3 for
nucleons in atomic nuclei.

Bose-Einstein condensates are obtained for temperature scales below 10 µK. Before reach-
ing condensation, the standard technique is first to use laser cooling to trap an atomic cloud.
The laser cooling refers to the trapping techniques based on cycles of absorption of a pho-
ton by an atom and spontaneous emission [20] which enables one to reach temperature of
roughly 10 µK. Unfortunately, this temperature is not enough to produce a Bose-Einstein
condensate. That is why a second step is needed, which consists in the evaporative cooling.
This cooling technique is used after turning off the lasers by replacing them by a purely
magnetic trap. Then, the more energetic atoms are removed from the trap by means of
radio-frequency radiations [20]. This enables one to reach temperature below 10 µK. To
compare, the quantum effect related to electrons in a metal is below the Fermi tempera-
ture, i.e. below 104–105 K in general, and for the phonons in a solid, it is below the Debye
temperature i.e. below 102 K. The superfluidity of the 4He is obtained for roughly 1 K, and
the degeneracy temperature for the atomic nuclei is roughly 1011 K owing to their higher
density.
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Below a certain critical temperature Tc, the atoms condense in the ground state and form
a coherent matter wave. By treating correctly the divergence when the chemical potential
tends to the ground state energy, the evaluation of N =

∑
k〈nk〉 in a non-interacting bosonic

gas leads to the condensed population [20,107],

N0 = N

(
1−

(
T

Tc

)α)
. (1.1.5)

In 3D without an external trapping, we have α = 3/2, and the critical temperature reads

Tc =
2π~2

mkB

(
N

V ζ(3/2)

)2/3

. (1.1.6)

Here ζ(x) is the Riemann zeta function for which ζ(3/2) ' 2.612. The evaporative cooling
that enables one to reach the Bose-Einstein condensation consists in removing the more en-
ergetic atoms. The subsequent decrease of the atomic density N/V implies a decrease of the
critical temperature. This contradictory effect required an atomic cloud that is sufficiently
dense before performing the evaporative cooling in order to produce a Bose-Einstein con-
densate. For the first realization of a Bose-Einstein condensate in the Cornell and Wieman
experiment [13], Eq. (1.1.6) leads to Tc ≈ 35 nK and λdB(Tc) ≈ 1 µm knowing that the cloud
density is 2.6×1012 cm−3 and the mass of 87Rb is m = 1.443× 10−25 kg.

In the case of a 3D harmonic trapping mω2(x2 + y2 + z2)/2, which is closer to the
experimental context, the critical temperature reads [20,107]

Tc =
~ω
kB

(
N

ζ(3)

)1/3

, (1.1.7)

with α = 3. Equation (1.1.7) is obtained with the assumption kBT � ~ω, meaning that the
typical energy scale related to the temperature is larger than the typical distance between
the levels in the discrete spectrum. Equation (1.1.7) becomes then valid for N � 1. In a
typical experiment, the atomic cloud is composed of N ∼ 105 particles and the frequency
trap amounts to ω ∼ 104 s−1. These values correspond to ~ω/kB of few nK and Tc ∼ 102 nK,
which is the typical critical temperature for the condensation of an ultracold atomic cloud.

Because the fermions are subjected to the Pauli exclusion principle, it is not possible
to perform a Bose-Einstein condensate with the fermionic atomic species. Nevertheless, the
combination of two fermionic atoms leads to a bosonic molecule. The first realization of Bose-
Einstein condensates with molecules were performed with 40K2 [108] and with 6Li2 [109,110].
On the other hand, the ultracold properties of fermionic atoms can also be studied. In this
context, it is possible to build a degenerate fermionic gas. The Fermi pressure resulting from
the exclusion principle tends to induce a broader spatial extension of the fermionic atomic
cloud than the one of a bosonic atomic cloud [111]. The same phenomenon avoids, at another
length and density scale, the gravitational collapse of a white dwarf or a neutron star into
a black hole [111, 112]. The Fermi degeneracy was observed for the first time in gas of 40K
where two hyperfine states were represented [113, 114] and in a gas mixing two isotopes of
lithium, namely the fermions 6Li with the bosons 7Li [111,115]. The sympathetic cooling is
the term used to refer to the cooling with several atomic species.

A specific feature of the Bose-Einstein condensate is its coherence at long length scales.
The idea is to introduce the one-body density matrix in order to characterize the long-range
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Figure 1.1.2: Time-of-flight absorption images of ultracold atomic clouds of 87Rb for
different temperatures. These distributions can also be seen as distributions in the
reciprocal space. The Bose-Einstein condensation is obtained below a certain critical
temperature from which the ultracold atoms follow a bimodal distribution roughly
given by Eq. (1.1.11) characterized by a zero-momentum peak. These measures were
experimentally obtained in the experiment of Cornell and Weiman [13,116]. This image
comes from Ref. [116].

order of the condensate. This one-body density matrix is defined as [107]

n(1)(r, r′) = 〈ψ̂†(r)ψ̂(r′)〉. (1.1.8)

Here ψ̂(r) is the field operator that destroys a particle in r while ψ̂†(r) creates a particle
in r. This quantity gives a measure of the coherence between the creation of particle at
a certain point and a destruction of particle of another place. If the φk(r) constitutes an
orthonormal basis of the one-body Hamiltonian, the field operator can be expressed in terms
of the ladder operators

ψ̂(r) =
∑
k

φk(r)âk. (1.1.9)

Here âk destroys a particle characterized by the orbital φk(r) while â†k creates a particle
characterized by this orbital. Let us assume that we have a non-interacting gas without
external trapping. Therefore, the one-body orbitals are plane waves, φk(r) = 1/

√
V eik·r.

Moreover, the covariance between the ladder operators is given by 〈â†kâk′〉 = 〈nk〉δkk′ where
〈nk〉 is the mean number of particles in the orbital φk(r). If p is the momentum, 〈nk〉 can
also be written as n(p), and the one-body density matrix reads

n(1)(r, r′) =
1

V

∫
d3p n(p) e

i
~p·(r−r

′). (1.1.10)

The result depends only on the interdistance r − r′.

If n(p) is a smooth function as it is the case for the Maxwell-Boltzmann statistics or the
Bose-Einstein statistics above Tc, the one-body density matrix vanishes for |r − r′| → ∞.
Nevertheless, a divergence arises at Tc and below for the Bose-Einstein distribution. It means
that n(p) contains a delta function,

n(p) = N0δ(p) + ñ(p). (1.1.11)
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This bimodal distribution is peaked at zero-momentum where the condensed particles ac-
cumulate with N0 the number of condensed particles. The second part ñ(p) is a smooth
function. In the context of the Bose-Einstein statistic, ñ(p) is Gaussian in the free space.
This bimodal distribution is illustrated in Fig. 1.1.2. The one-body density matrix becomes
a non-zero value asymptotically below Tc,

lim
|r−r′|→∞

n(1)(r, r′) =
N0

V
. (1.1.12)

This long-range behavior is called the off-diagonal long-range order and was highlighted by
Penrose and Onsager in 1956 [117].

The result (1.1.12) highlights the long-range order of the ultracold atoms below the critical
temperature. This coherence is the key to understand the difference with the Maxwell-
Boltzmann statistics. For this one, it is possible to have almost all particles in the ground
state at very low temperature. Nevertheless, the long-range order vanishes meaning that
there is no coherence between particles. Conversely, for the Bose-Einstein statistics case, the
one-body density matrix tends to the density of condensed bosonic atoms below the critical
temperature. This indicates that a Bose-Einstein condensate is a coherent matter wave. The
ultracold bosonic atoms become a useful resource for studying atomic interference and atom
optics as illustrated in Fig. 1.1.3.

Figure 1.1.3: Interference fringes obtained with two expanding condensates of sodium
after a time-of-flight of 40 ms [102]. The distance between two fringes is 15 µm and the
width of the picture is 1.1 mm. The interference pattern suggests that the coherence
is conserved on a long range. This image comes from Ref. [102].

1.2 Optical (super)lattice

1.2.1 Interaction between an atom and an electric field

The ground state of an atom can be modified by the presence of an external electric field,
E(r, t). Here the time-dependent part of the electrical field is determined by the frequency
ω. The general Fourier decomposition of an electrical field characterized by one mode is
given by

E(r, t) = Eω eiωt + E∗ω e−iωt. (1.2.1)

In the framework of time-dependent perturbation theory the shift of the ground state energy
reads [20]

∆Eg = −1

2
α(ω) < E(r, t)2 >t, (1.2.2)



1.2. Optical (super)lattice 13

where < · · · >t= ω/(2π)
∫ 2π/ω

0
dt is the temporal mean. The atoms subjected to an external

electric field will display an electric dipole moment d. The ground state shift is due to the
coupling between this dipole and the electrical field. The laser frequency is assumed to be
close to the transition between the ground state |g〉 and an excited state |e〉, which leads to
the polarizability in the second order of the time-dependent perturbation theory with the
following form [20],

α(ω) ' |〈e|d̂ · ε|g〉|2

(Ee − Eg)− ~ω
. (1.2.3)

Here ε is the polarization vector. Note that the expression (1.2.3) is valid when the rate of
spontaneous emission from the excited state is much smaller than the laser frequency [20].

In the case of an electrical field modeled by a plane wave, we have Eω = E0ε exp(−ik · r)
with E0 the amplitude and k the wavevector. There are two qualitatively different behaviors
which depend on the sign of the polarizability according to the relation (1.2.2).

1. Red-shift: Ee − Eg > ~ω. As ∆Eg is negative, the laser tends to attract the atom.

2. Blue-shift: Ee − Eg < ~ω. As ∆Eg is positive, the laser tends to repel the atom.

This energy shift is known as the AC Stark effect. The resulting energy gradient enables one
to build optical traps for neutral atoms.

1.2.2 Double-well potential

An electrical field is able to attract an atom by inducing a level shift of its ground state. The
key mechanism of this phenomenon is related to the interaction between the electric dipole
moment and the electrical field as displayed in Eq. (1.2.3). When the electrical field is time-
dependent, this phenomenon is called the AC Stark effect. The combination of different
sources can create an optical lattice. The resulting electrical field of two opposite lasers
linearly polarized along the same direction leads to a standing wave,

E(x, t) = E0 cos(kx− ωt) + E0 cos(−kx− ωt) = 2E0 cos(kx) cos(ωt), (1.2.4)

with k = 2π/λ. The ground state energy shift of the atom is determined by the temporal
mean of the square of the electric field,

< E(x, t)2 >t= 2E2
0 cos2(kx). (1.2.5)

This evaluation enables one to determine the effective potential that acts on the atom,

V (x) = V0 cos2(kx) = V0 cos2(2πx/λ), (1.2.6)

with V0 = −1
2
α(ω)E0. This is a periodic potential with a period λ/2.

As displayed in Fig. 1.2.1(a), a standing wave can be added in the y direction in order
to create a square lattice [19],

V (x, y) = Vx cos2(kxx) + Vy cos2(kyy). (1.2.7)

One way to achieve a two-site optical trap is to create a square lattice according to the previ-
ous relation by adding a harmonic confinement. This type of confinement can be achieved, for
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example, by means an optical dipole trap, for which a focusing lens creates a local maximum
of the laser intensity [21].

Another way to reach a double-well potential is to use the superlattice techniques, which
consist in superimposing lasers with different wavelengths [24, 118]. In the case of square
lattice, a two-site system can be generated by adding a second standing wave along the x
direction.

V (x, y) = Vx cos2(kx,1x) + Vx cos2(kx,2x) + Vy cos2(kyy) (1.2.8)

Figure 1.2.1(b) shows the superlattice generated by the previous relation for kx,2 = kx,1/2.
The different dimers are relatively well separated from each other. In this context, if an
atom is trapped in one of them, the description of the dynamics can be restricted to this
dimer.

(a) (b)

Figure 1.2.1: (a) Square optical lattice obtained with the relation (1.2.7) for kx = ky
and Vx = Vy. (b) Optical superlattice obtained with the relation (1.2.8) for kx,2 = kx,1/2
and Vx = 0.57Vy.

1.2.3 Triple-well potential

The temporal mean in Eq. (1.2.2) can also be evaluated for a general configuration of lasers
with arbitrary polarizations and wavevectors. The total electric field created by a set of
lasers having the same frequency is given by the superposition of the individual fields,

E(r, t) =
∑
i

E i cos(ki · r − ωt+ δi), (1.2.9)

where δi is the phase shift of the laser i and E i contains its amplitude and its polarization.
The temporal mean reads1

< E(r, t)2 >t=
1

2

∑
i

E2
i +

∑
i<j
j

E i · Ej cos[(ki − kj) · r + δi − δj]. (1.2.10)

One can thus play with the relative orientations and the number of lasers to create some
specific optical lattices.

1The mean of cos2(ki · r−ωt+ δi) over one period is equal to 1/2. To compute the other terms, we have
to use cos a cos b = 1

2 (cos(a+ b) + cos(a− b)) before the temporal mean.
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A triangular lattice (see Fig. 1.2.2(a)) is built by using three lasers in a plane with a
120° angle between each wavevector. Their polarization must be perpendicular to this plane.
The expressions of the wavevectors read k1 = k(cos(π

6
), sin(π

6
), 0) = k(

√
3/2, 1/2, 0), k2 =

k(cos(5π
6

), sin(5π
6

), 0) = k(−
√

3/2, 1/2, 0), k3 = k(0,−1, 0). The amplitudes are assumed to
be equal to E i = (0, 0, E0). The temporal mean of the square of the electric field reads

< E(r, t)2 >t=
3

2
E2

0 + E2
0 (cos[(k1 − k2) · r] + cos[(k1 − k3) · r] + cos[(k2 − k3) · r]) ,

(1.2.11)
for the triangular lattice. The previous expression enables one to evaluate the effective
potential which acts on the atom.

V (r) = V0 (cos[(k1 − k2) · r] + cos[(k1 − k3) · r] + cos[(k2 − k3) · r])

= V0

cos

k√3

1
0
0

 · r
+ cos

k√3

 −1
2

−
√

3
2

0

 · r
+ cos

k√3

−1
2√
3

2

0

 · r
 .

(1.2.12)

The potential pattern of Eq. (1.2.12) would have been the same with a scale factor and
with a global rotation if the initial configuration of kj had been used. In this case, the
potential would read V0

∑3
j=1 cos(kj · r). This remark is also true, again with a scale factor,

for a potential of the form

V (r) = V0

3∑
j=1

cos2(kj · r). (1.2.13)

In this context, the potential (1.2.13) is a triangular lattice and is generated by means of
three standing waves separated by a 120° angle from each other.

(a) (b)

Figure 1.2.2: (a) Triangular optical lattice obtained with the relation (1.2.13). (b)
Triangular optical superlattice obtained with the relation (1.2.14) for φ = 3π/2.

The generation of the triangular superlattice in Fig. 1.2.2(b) is more technical. That can
be achieved by using the superlattice techniques. It consists in substituting each standing
wave cos2(kj · r) of the triangular lattice by [cos(ki · r + 3σiφ/2) + 2 cos(ki · r/3 + σiφ/2) +
4 cos(ki ·r/9 +σiφ/6)]2 with σ = (1,−1, 1) [22,23]. The kj are the same as in the triangular
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lattice case. The triangular superlattice potential reads

V (r) = V0

3∑
i=1

[cos(ki · r + 3σiφ/2) + 2 cos(ki · r/3 + σiφ/2) + 4 cos(ki · r/9 + σiφ/6)]2 .

(1.2.14)
In practice, there are three standing waves with an angle of 120° between each other. Each
standing wave is generated by three lasers in a configuration explained in Ref. [22, 23]. The
main advantage of the optical superlattice is to directly produce trimers well separated from
each other. In this context, if an atom is trapped in one trimer, its dynamics will take place
only on this trimer.

1.3 Bose-Hubbard model

1.3.1 Scattering at low energy

In an ultracold gas the typical distance between atoms is d =100 nm. In this section, we
will characterize the typical length scale over which the atoms interact. In a dilute gas,
this typical length scale is much smaller than d. That is why the three-body interactions
and more can be safely neglected, and the two-body interaction is modeled by a potential
of the form U(r, r′) depending on the position r of the first particle and the position r′ of
the second one. In practice, this interaction depends only on the relative distance between
both particles r̄ = r − r′ such that U(r, r′) = U(r̄). To deal with a two-body problem,
it is convenient to study the dynamics in the center of mass coordinate (r + r′)/2 and in
the relative coordinate r̄. On one hand, the wave function related to the center of mass
coordinate behaves like a free particle such that it is characterized by plane waves. On the
other hand, the wave function related to the relative coordinate is described by a typical one-
body Schrödinger equation where U(r̄) is treated like an external potential. In the context
of the two-body scattering, it is possible to write the wave function as an incident plane
wave (assumed to be oriented along the z̄ axis) plus a scattering part such that2 [20, 107]

ψ = eikz̄ + f(θ)
eikr̄

r̄
(1.3.1)

for r̄ → ∞. Here the potential characterizing the atom-atom interaction is supposed to be
spherically symmetric, U(r̄) = U(r̄), such that the scattering amplitude f(θ) depends only
on the scattering angle θ. This is the angle between the incident motion and the motion
after the scattering.

At very low energies, the wave function is delocalized in comparison to the spatial ex-
tension of U(r̄). In this context, it is enough considering that f(θ) amounts to a constant
−as [20]. The wave function becomes

ψ = 1− as
r̄

(1.3.2)

for k → 0, r̄ → ∞ and kr̄ → 0. The constant as, called the s-wave scattering length,
describes entirely the collisions at very low temperature between two atoms for a dilute gas.

2Equation (1.3.1) is valid if the particles are distinguishable. As it not the case, the exact form should be
ψ = eikz ± e−ikz + |f(θ)± f(π − θ)| e

ikr

r respectively for bosons and fermions. If the f(θ) is a constant as it
is the case at low energy scattering, the scattering part of the wave function vanishes for identical fermions.
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The alkali atoms are characterized by one electron on the valence shell. When two atoms
interact, their interaction can take place with respect to the singlet spin state or the triplet
spin state of the two valence electrons. That is why there are s-wave scattering lengths
related to the singlet and to the triplet. Some typical s-wave scattering lengths can be found
in Table 1.1.

a
(s)
s /aB a

(t)
s /aB

H 0.41 1.2
7Li 33 −27

23Na 19 65
41K 85 65

85Rb 2400 −370
87Rb 90 106
133Cs 280 2400

Table 1.1: S-wave scattering lengths for different atomic species. Here a(s)
s makes

reference to the singlet spin state while a(t)
s to the triplet spin state of the two valence

electrons. The values are given in unit of the Bohr radius, aB = 5.29×10−2 nm. These
values come from [20].

The s-wave scattering length is the typical distance on which the atoms interact by pair.
Thus, as is compared to the typical interdistance d, and the dilute gas condition is written
as

|as| � d. (1.3.3)

For typical d separation, atoms don’t see each other. In the context of a dilute gas, it is
convenient to get rid of all specific details concerning the atom-atom interaction and to
model this one by a contact potential such that

U(r, r′) = gδ(r − r′). (1.3.4)

From this assumption, it is possible to derive the relation between the coupling g and the
s-wave scattering length [19,20,58,119],

g =
4π~2as
m

, (1.3.5)

where m is the mass of the atomic species. A negative as leads to effectively attractive
atoms while a positive as leads to repulsive ones. Although it is possible experimentally to
cool attractive atoms to a Bose-Einstein condensate [103], the contraction on itself of the
ultracold atomic cloud can lead to the collapse of the condensate with atomic losses [35,36].
That is why the gases with an attractive inter-atomic interaction are more unstable than the
repulsive one.

1.3.2 Derivation of the Bose-Hubbard model via second quantiza-
tion

The idea of this section is to build a model to describe a gas of atoms trapped in optical
lattice characterized by the one-body potential V (r) = V (r+R). Here R is the periodicity
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of the optical lattice. Moreover, there is an additional trap potential VT (r). The gas is
assumed to be diluted in order to only take into account the two-body interaction U(r, r′).
In the framework of second quantization, the Hamiltonian of a sufficiently dilute ultracold
atomic gas is given by [28,120]

Ĥ =

∫
d3r ψ̂†(r)

(
−~2

2m
∆ + V (r) + VT (r)

)
ψ̂(r)

+
1

2

∫
d3r

∫
d3r′ ψ̂†(r)ψ̂†(r′)U(r, r′)ψ̂(r′)ψ̂(r), (1.3.6)

where ψ̂(r) and ψ̂†(r) are the field operators. The former destroys a spinless particle at the
position r while the latter creates a spinless particle at the position r. They are characterized
by the commutation relations [ψ̂(r), ψ̂†(r′)] = δ(r− r′) and [ψ̂†(r), ψ̂†(r′)] = [ψ̂(r), ψ̂(r′)] =
0 ∀r, r′ ∈ R3. These operators are able to count the total number of particles.∫

R3

d3r ψ̂†(r)ψ̂(r) = N̂p (1.3.7)

The one-body potential V (r) + VT (r) is separated in two parts, one representing the
periodic optical lattice potential V (r) and the other one the trap potential VT (r). In the
framework of the tight-binding approximation [20], the depth of the potential is sufficiently
large that the system can be described by focusing only on the first energy band. Indeed, as
the temperature is assumed to be very low, the energy of the particles is much smaller than
the energy gap to the first excited band. The destructive field operator can be expanded
in terms of the annihilation operators by means of the orthonormal single-particle basis
{wj(r)| j = 1, . . . , Ns} restricted to the first energy band,

ψ̂(r) =
Ns∑
j=1

wj(r)âj, (1.3.8)

where Ns is the number of sites on the lattice. By assuming that the function wj(r) is
relatively well localized on site j3, the ladder operator âj can be associated to the destruction
of one particle on site j.

In the framework of the scattering of two atoms at low energy, the collisions are mainly
determined by the s-wave component of the eigenfunctions of the radial equation (knowing
that the two-body interaction is modeled by a spherically symmetric potential). With the low
energy assumption, it follows that the collisions can be characterized by an unique parameter,
namely the s-wave scattering length as [19, 20]. As the atomic gas is strongly diluted, the
two-body interaction is modeled by a contact potential according to Eq. (1.3.4) [20,119].

By using the previous assumptions, the Hamiltonian (1.3.6) can now be expressed in
terms of the ladder operators,

Ĥ =
Ns∑
i,j=1

Jij â
†
i âj +

1

2

Ns∑
i,j,k,l=1

Uijklâ
†
i â
†
j âkâl +

Ns∑
i,j=1

Vij â
†
i âj, (1.3.9)

3In the literature the Wannier functions are often used [19, 28, 120], which depend only on the relative
distance r − rj with rj the position of the lattice site j, such that wj(r) = w(r − rj).
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with

Jij =

∫
d3r w∗i (r)

(
−~2

2m
∆ + V (r)

)
wj(r), (1.3.10)

Uijkl = g

∫
d3r w∗i (r)w∗j (r)wk(r)wl(r), (1.3.11)

Vij =

∫
d3r w∗i (r)VT (r)wj(r). (1.3.12)

The terms Jii represents a part of the on-site energy of site i as it will be discussed below.
In order to obtain the Bose-Hubbard Hamiltonian, several assumptions are introduced.

• The hopping is restricted to the nearest neighbor sites. If the lattice is one dimensional,
this assumption leads to Ji,i+1 6= 0 and Ji,i+l = 0 ∀ l > 2,∀i.

− Ji ≡ Ji,i+1 =

∫
d3r w∗i (r)

(
−~2

2m
∆ + V (r)

)
wi+1(r) (1.3.13)

• The two-body interactions are restricted to the particles on a same site. The non-local
interactions are neglected meaning that Uijkl 6= 0 if and only if i = j = k = l.

Ui ≡ Uiiii = g

∫
d3r |wi(r)|4 (1.3.14)

• The trap potential varies slowly. It is constant on a site: Vij ≈ VT (ri)
∫
d3r w∗i (r)wj(r).

By defining Vi = VT (ri), we obtain

Vij ≈ Viδij. (1.3.15)

The on-site energy is then defined as ξi = Jii + Vi. The previous assumptions give rise to
the Bose-Hubbard Hamiltonian,

Ĥ = −
Ns∑
l=1

Jl(â
†
l âl+1 + â†l+1âl) +

1

2

Ns∑
l=1

Ulâ
†
l â
†
l âlâl +

Ns∑
l=1

ξlâ
†
l âl. (1.3.16)

In the case of periodic boundary conditions, we have âNs+1 = â1. If the boundary conditions
are fixed, the sum for the hopping goes to Ns − 1 instead of Ns.

In a homogeneous optical lattice made of ultracold atoms, there are two main parameters
which will lead to different qualitative dynamics, namely the on-site interaction U and the
hopping J4. On one hand, the former describing the interaction of two atoms on a same site
tends to localize the system. On the other hand, the latter describing the tunneling of atoms
one by one tends to delocalize the system over the entire lattice. It means that the system
may stay in its initial configuration for U/J � 1 [19, 27, 29, 121, 122]. This configuration is
called a Mott state for an infinite lattice. The phenomenon by which interactions between
atoms leads to a localization is also called self-trapping. In this case, the phases of the sites
are uncorrelated. On the other hand, the giant matter wave displays a superfluid behavior
for U/J � 1, where all atoms are delocalized over the entire lattice [19, 27,29,121,122].

4The lattice is assumed to be homogeneous according to U and J such that Jl = J and Ul = U ∀l.
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1.3.3 Bose-Hubbard parameters in the laboratory units

An atom trapped in an optical lattice made of a standing wave defined along the x direction
(see Eq. (1.2.6)) will be subjected to the potential

V (x) = V0

~2k2
ϕ

2m
sin2(kϕx) = V0

~2k2

m
(1− cos(kx)), (1.3.17)

where m is the mass of the atom, kϕ = 2π/λ is the wavevector of the laser photons and
k = 2π/d the wavevector of the lattice for which the distance between two successive sites
is given by d = λ/2 leading to k = 2kϕ. The typical energy scale is the recoil energy
Er = ~2k2

ϕ/(2m), which represents the kinetic energy of an atom, initially at rest, after the
emission of a photon.

The addition of a harmonic confinement along the two other directions gives rise to the
following Hamiltonian,

H = − ~2

2m
∆ + V0

~2k2

m
(1− cos(kx)) +

1

2
mω2

⊥(y2 + z2). (1.3.18)

As H = Hx +Hy +Hz is separable, the different parts of the Hamiltonian read

Hx = − ~2

2m

∂2

∂x2
+ V0

~2k2

m
(1− cos(kx)), (1.3.19)

Hy = − ~2

2m

∂2

∂y2
+

1

2
mω2

⊥y
2, (1.3.20)

Hz = − ~2

2m

∂2

∂z2
+

1

2
mω2

⊥z
2. (1.3.21)

If the oscillations inside the well are small, a harmonic approximation can be made and
the ground state on site l reads wl(r) = w(r − l 2π

k
ex), where

w(r) ' 1√√
πσ‖

exp

(
− x2

2σ2
‖

)
1√
πσ⊥

exp

(
−y

2 + z2

2σ2
⊥

)
, (1.3.22)

with σ‖ = 1/(kV
1/4

0 ) and σ⊥ =
√
~/(mω⊥). In the tight-binding approximation the potential

is sufficiently deep such that the wl(r) are approximately orthonormal,∫
R3

d3r w∗(r)w(r − l2π/kex) = exp

(
−
(
lπ

kσ‖

)2
)

σ‖→0
−−−→ 0 ∀l 6= 0. (1.3.23)

Still in the harmonic approximation, the longitudinal trap frequency takes the form
ω‖ =

√
V0~k2/m with σ‖ =

√
~/(mω‖). Within this approximation, the ground state energy
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E0 = E0,x + E0,y + E0,z can be evaluated analytically.

E0,x =

∫
R3

w∗(r)Hxw(r) d3r '
√
V0(1− η)~ω‖ (1.3.24)

E0,y =

∫
R3

w∗(r)Hyw(r) d3r =
~ω⊥

2
(1.3.25)

E0,z =

∫
R3

w∗(r)Hzw(r) d3r =
~ω⊥

2
(1.3.26)

Here η = exp
(
−1/(4

√
V0)
)
− 1/(4

√
V 0). By means of Eq. (1.3.14), the evaluation of the

on-site interaction is given by

U = g

∫
R3

|w(r)|4d3r = 2~ω⊥kas

√√
V 0

2π
, (1.3.27)

with as the s-wave scattering length, g = 4π~2as/m [119] and ω⊥ the transverse trap fre-
quency.

The use of Eq. (1.3.13) is a way to evaluate the hopping. An alternative is the semi-
classical theory called WKB (Wentzel-Kramers-Brillouin) [66] enabling one to calculate the
transmission coefficient through a potential barrier for a particle in its ground state. This
transmission coefficient can be related to the hopping parameter [123–125],

J =
~ω‖√
eπ

exp

(
−2

~

∫ π/k

a

√
2m(V (x)− E0,x) dx

)
(1.3.28)

=

√
V0

eπ

~2k2

m
exp

(
−2
√

2V0

∫ π

arccos η

√
η − cosφ dφ

)
, (1.3.29)

with V (a) = E0,x the ground state energy of the one dimensional system. By assuming ω⊥
= ω‖, V0 can be determined by solving

U

J
=

√
2e
√
V0kas exp

(
2
√

2V0

∫ π

arccos η

√
η − cosφ dφ

)
. (1.3.30)

The energy scale is then obtained by means of Eqs. (1.3.27) or (1.3.29).

The wavelength of the laser is assumed to be equal to λ=1064 nm. The s-wave scattering
length and the mass of 87Rb are as = 5.313 nm and m =1.443×10−25 kg, respectively. The
solution of Eq. (1.3.30) for U/J = 20 gives V0 = 0.8586. This leads to ω‖ = ω⊥ = 9.4× 104

s−1 and ~/J = 4.4 × 10−3 s. Figure 1.3.1 illustrates the increase of the tunneling timescale
~/J of a particle as a function of the on-site interaction. A harmonic approximation of the
energy bands takes the form

En,x ≈
√
V0

(
n+

1

2

)
~2k2

m
, (1.3.31)

with n the band index. Knowing that the strength of the potential is 2V0 ' 1.7, the system
displays two binding states inside a well, namely E0,x ≈ 0.46~2k2/m and E1,x ≈ 1.39~2k2/m.

So far we have assumed that the atomic cloud is diluted such that the frequency of the
collisions is relatively small. In this context, it is possible to take only into account the
two-body collisions, which occur much more often than the three-body ones. The dilute gas
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Figure 1.3.1: The tunneling timescale, here in seconds, tends to increase with the
on-site interaction. This plot was obtained for a typical optical lattice of wavelength λ
filled with 87Rb atoms.

condition reads [126,127]
|as| � d, (1.3.32)

where d = 1/n̄1/3 is the typical interdistance between two atoms and n̄ = Np/((
√

2πσ⊥)2
√

2πσ‖)
is the average density of atoms. Here Np is the total number of particles on the lattice. As
calculated previously, ω‖ = 9.4 × 104 s−1, which leads to σ‖ =

√
~/(mω‖) = 88 nm for the

oscillator length for 87Rb atoms.

To simplify the calculus, we can assume ω‖ = ω⊥ such that σ‖ = σ⊥. In some results
of the next chapters, the scale of the number of particles is Np ∼ 10. It corresponds to a
density of n̄ = 9.3× 1014 cm−3 and to d = 100 nm, which is the typical orders of magnitude
encounters in experiments with ultracold atoms. The dilute gas condition (1.3.32) can be
used to set an upper limit on the number of atoms. This gives rise to

Np �
√

2π
3
σ3
⊥

a3
s

' 72000. (1.3.33)

Thus, this assumption can be safely done for roughly 10 atoms.

1.3.4 Mean-field approximation

Before taking the classical limit of the Bose-Hubbard Hamiltonian (1.3.16), we will explain
how this can be achieved with the harmonic oscillator. Its Hamiltonian reads

Ĥho = ~ω
(
â†â+

1

2

)
. (1.3.34)

One way to obtain the classical limit is to replace the ladder operators by complex numbers
such that

〈â〉 ∼ ψ =
√
I/~ eiθ,

〈â†〉 ∼ ψ∗ =
√
I/~ e−iθ.

(1.3.35)
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Nevertheless, the Hamiltonian must be symmetrized before replacing the ladder operators
by complex numbers. Knowing that the commutator is [â, â†] = 1, this can be achieved by
ordering the ladder operators according to

Ĥho = ~ω
(
â†â+ ââ†

2

)
. (1.3.36)

With the expression (1.3.36), the classical limit of Ĥho reads

Hho = ωI. (1.3.37)

A rapid way to compute the spectrum is to use the semiclassical method called the Bohr-
Sommerfeld quantization (n ∈ N) [65, 66],

1

2π

∫ 2π

0

Idθ = ~
(
n+

1

2

)
, (1.3.38)

where I is the conjugate momenta and θ is the generalized coordinate. In this case, the
spectrum of the harmonic oscillator is reproduced with the correct zero-point energy.

E = ~ω
(
n+

1

2

)
(1.3.39)

The ordering of the operators is crucial to obtain the correct classical equivalent. The
goal of this section is to take the classical limit of the Bose-Hubbard Hamiltonian (1.3.16),

Ĥ = −
Ns∑
l=1

Jl(â
†
l âl+1 + â†l+1âl) +

1

2

Ns∑
l=1

Ulâ
†
l â
†
l âlâl +

Ns∑
l=1

ξlâ
†
l âl, (1.3.40)

while keeping the correct zero-point energy. The parts that must be ordered are the on-site
interaction part and the on-site energy part. By realizing that this term can be expressed
as Ulâ†l â

†
l âlâl = Uln̂l(n̂l − 1) with n̂l = â†l âl, the Hamiltonian becomes

Ĥ =
1

2

Ns∑
l=1

Ul

(
â†l âl + âlâ

†
l

2
− 1

2

)(
â†l âl + âlâ

†
l

2
− 1

2
− 1

)

−
Ns∑
l=1

Jl(â
†
l âl+1 + â†l+1âl) +

Ns∑
l=1

ξl

(
â†l âl + âlâ

†
l

2
− 1

2

)
. (1.3.41)

In Ref. [128], the classical limit is obtained by introducing the quadrature operators,
which can be seen as a Cartesian representation of the system. Another way to achieve that
is to replace the ladder operators by complex numbers [129, 130] in the limit of an infinite
amount of particles, which is called the mean-field approximation,

〈âl〉 ∼ ψl =
√
Il e

iθl ,

〈â†l 〉 ∼ ψ∗l =
√
Il e

−iθl ,
(1.3.42)

where the ψl represents the condensate amplitude on site l, θl the phase on the site l and
Il is proportional to nl, the number of particles on site l such that Il = nl + 1/2. As Np is
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conserved, the sum of the Il amounts to a constant N = Np +Ns/2.

Ns∑
l=1

Il = N (1.3.43)

Those preliminary explanations lead to the classical limit of (1.3.40).

H(ψl, ψ
∗
l ) = −

Ns∑
l=1

Jl(ψ
∗
l ψl+1 + ψ∗l+1ψl) +

1

2

Ns∑
l=1

Ul

(
|ψl|4 − 2|ψl|2 +

3

4

)
+

Ns∑
l=1

ξl

(
|ψl|2 −

1

2

)
(1.3.44)

The ordering of the ladder operators reproduces the correct zero-point energy and the inter-
action terms at the classical limit lead to a contribution to the on-site energy through the
term Ul|ψl|2. The discrete Gross-Pitaevskii equation is then calculated by the Hamiltonian
equations of (1.3.44) with l = 1, 2, · · · , Ns.

i~
dψl
dt

= −(Jlψl+1 + Jl−1ψl−1) + Ul(|ψl|2 − 1)ψl + ξlψl (1.3.45)

Note that ψ0 corresponds to ψNs and ψNs+1 corresponds to ψ1 for periodic boundary condi-
tions.

The variables (θ, I) are known as the action-angle canonical variables, and can be used
as a representation of the classical dynamics. This representation makes a clear distinc-
tion between the angle-independent part H(I) and the angle-dependent part V (θ, I) of the
Hamiltonian such that H(θ, I) = H(I) + V (θ, I).

H(θ, I) =
1

2

Ns∑
l=1

Ul

(
I2
l − 2Il +

3

4

)
−2

Ns∑
l=1

Jl
√
IlIl+1 cos(θl−θl+1)+

Ns∑
l=1

ξl

(
Il −

1

2

)
(1.3.46)

Here INs+1 corresponds to I1 for periodic boundary conditions.

The total number of particles is a conserved quantity such that the sum of each action is
a constant amounting to N . Therefore, it becomes possible to reduce the number of degrees
of freedom by performing a canonical transformation to a set of variables where N plays the
role of a conjugate momentum. For example, the third class generating function F (I,φ)
can perform this process and generates the identity for the other action variables. This
generating function accomplishes the transformation (θ, I)→ (φ, z) and reads

F (I,φ) =
Ns−1∑
j=1

Ijφj +

(
Ns∑
j=1

Ij

)
φNs . (1.3.47)

From this generating function, the link between the old and the new canonical variables is
obtained through (l = 1, 2, · · · , Ns)

θl =
∂F (I,φ)

∂Il
; zl =

∂F (I,φ)

∂φl
. (1.3.48)
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This leads to the new set of canonical variables expressed in terms of the old ones.

φl = θl − θNs l = 1, 2, · · · , Ns − 1

φNs = θNs
zl = Il l = 1, 2, · · · , Ns − 1

zNs =
Ns∑
j=1

Ij = N

(1.3.49)

In this case, the new momentum zNs is a constant of motion amounting to N such that φNs is
a cyclic variable. Therefore, the new Hamiltonian is given by H(φ1, · · · , φNs−1, z1, · · · , zNs)
where zNs is treated like a parameter.

That kind of transformation demands an analytic treatment. Nevertheless, that enables
one to visualize the whole dynamics from an easier point of view. For example, the two-site
system is an effective one degree-of-freedom system such that the phase space has two di-
mensions. The unperturbed one is an integrable system5 owing to the energy conservation.
If the two-site system is periodically driven, it is still possible to visualize the dynamics in
a plane with the stroboscopic map as it will be described in Eq. (3.3.3). A canonical trans-
formation similar to Eq. (1.3.47) will be particularized to the two-site system in Eq. (3.1.8).
The three-site one is an effective two-degree-freedom system owing to the conservation of the
number of particles. It is a non-integrable system as it possesses two constants of motion for
three degrees of freedom. However, it is still possible to visualize the dynamics by means of
Poincaré section [66]. A canonical transformation similar to Eq. (1.3.47) will be particular-
ized to the three-site system in Eq. (5.2.13). The stroboscopic map of the periodically-driven
three-site system can be designed in order to have a 4D phase space. Then, the dynamics
can be visualized in 3D by means of slices introduced in Eq. (0.0.4). This will be discussed
in Sec. 6.4.

5An integrable system is system where there exists as many independent constants of motion as degrees
of freedom. In this context, it becomes possible to define a canonical transformation to the action-angle
variables where all generalized coordinates are cyclic. For more details, see [66].





Chapter 2

Periodically driven two-site
Bose-Hubbard model

The general Bose-Hubbard Hamiltonian introduced in the previous chapter is particularized
here to the symmetric two-site case. In the framework of weak coupling between both sites
in comparison to the on-site interaction, the atoms are no longer able to tunnel one by one
because of the mismatch of chemical potentials of the two sites. Nevertheless, collective tun-
neling can occur because of the quasidegeneracy between the symmetric and antisymmetric
combination of |n1, n2〉 and |n2, n1〉, namely 1/

√
2(|n1, n2〉±|n2, n1〉), respectively. For a Fock

state |n1, n2〉, nl represents the number of particles on site l. The energetic signature of this
phenomenon is the doublet structure of the eigenspectrum where each group of two levels
are relatively well separated from each other such that the standard two-level approximation
is applicable.

An additional external periodic driving can be treated in the framework of Floquet the-
ory [131]. For a time-independent Hamiltonian, the system is characterized by means of these
eigenvalues and eigenvectors. Although the energy is not conserved in the time-dependent
one, it is still possible to build an eigenvalue Schrödinger equation in terms of the quasiener-
gies and of the time-periodic Floquet eigenvectors. Even if the dimension is infinite in the
Floquet space, it is possible to focus only on a frequency-size block of the eigenspectrum
owing to the periodicity of the quasienergies. The Floquet spectrum is made of an infinite
number of frequency-shifted unperturbed spectra coupled by the amplitude of the periodic
perturbation. The subsequent modification of the unperturbed eigenspectrum is expected
to play a role on the quantum dynamics, especially the tunneling between sites. The end
of this chapter will present original results concerning the total suppression of tunneling by
means of the periodic driving.

2.1 Two-site Bose-Hubbard Hamiltonian

A collection of spinless atoms can be trapped in a double-well potential, whose representation
is shown in Fig. 1.2.1(b). In the optical superlattice case, the plaquettes are well separated
without an additional harmonic confinement such that the system can be seen as a two-mode
system in which the atoms are either trapped on site 1 or on site 2. For example, Fig. 2.1.1
represents a Bose-Einstein condensate with 2 atoms on site 1 and 4 atoms on site 2. A
site coupling, modeled by J , enables the atoms to tunnel from one site to the other. In
the context of a dilute atomic gas the on-site two-body interaction U is enough to model

27
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the collisions between atoms. If the temperature is sufficiently low, the atoms stay on the
lowest-energy band and the Hamiltonian of the two-site system reads [54,58,132]

Ĥ0 = −J(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2), (2.1.1)

where âl and â†l are respectively the annihilation and the destruction operators of a particle
on site l. In addition to the conservation of energy, the Hamiltonian (2.1.1) describes a
system where the total number of particles Np is a conserved quantity,

[N̂p, Ĥ0] = 0. (2.1.2)

Here we have N̂p = â†1â1 + â†2â2. As the system is time-independent and the total amount
of particles is constant, the two-site Bose-Hubbard model is integrable owing that there are
two constants of motion for two degrees of freedom (one degree of freedom for each site). A
more detailed derivation of the Hamiltonian (2.1.1) is presented in Sec. 1.3.2. Incidentally,
the Hamiltonian (2.1.1) is a specific case of the Hamiltonian (1.3.16) for Ns = 2, Ul = U ,
Jl = J and ξl = 0 ∀l.

Figure 2.1.1: Contour plot of the potential landscape of an optical superlattice in-
troduced for the first in time in Fig. 1.2.1(b). Two ultracold atoms are trapped on the
first site while four ones are trapped on the second site. The atoms are able to tunnel
to the other site via the hopping parameter J while the on-site interaction U tends to
localize the atoms.

2.1.1 Discrete symmetry

One of the simplest basis choice for the decomposition of the Hamiltonian (2.1.1) is the Fock
basis according to the one-body site basis,

{|n1, n2〉 | n1 = 0, 1, · · · , Np; n2 = Np − n1} . (2.1.3)

Here nl is the number of particles on site l. From this basis, the dimension of the Hilbert
space is directly obtained,

dimĤ0 = Np + 1. (2.1.4)

Nevertheless, in some circumstances, it could be valuable to choose an unperturbed basis
that takes into account the symmetries of the system, which enables one to decrease the size
of the matrix to diagonalize. As the double-well potential is symmetric, the system must be
invariant under the permutation of both sites. That is why the permutation operator, P̂ ,
which inverts the site 1 and the site 2 such that

P̂ |n1, n2〉 = |n2, n1〉, (2.1.5)
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is introduced. An eigenbasis of this operator are the symmetric, |ψ+〉, and antisymmetric
states, |ψ−〉.

P̂ |ψ±〉 = ±|ψ±〉 (2.1.6)

In the context of the Bose-Hubbard Hamiltonian (2.1.1), the basis of the symmetric and
antisymmetric states (for Np odd1) reads{

. . . ,
1√
2

(|n1, n2〉+ |n2, n1〉), . . . ,
1√
2

(|n1, n2〉 − |n2, n1〉), . . .
∣∣∣∣ n1 = 0, 1, ..., (Np − 1)/2

}
,

(2.1.7)
with n2 = Np − n1.

The Hamiltonian (2.1.1) is invariant under the discrete symmetry P̂ . From a physical
point of view, it means that this operation has no influence on the underlying dynamics.
From a mathematical point of view, if the Hamiltonian commutes with a discrete operator,
this Hamiltonian is block diagonal in the operator’s eigenbases [66] such that

[Ĥ0, P̂ ] = 0 (2.1.8)

=⇒ (Ĥ0) =

(
S 0
0 A

)
. (2.1.9)

Here S and A are respectively the symmetric and antisymmetric blocks. This property can
for instance be used from a numerical point of view. In this context, the matrices that must
be diagonalized are twice smaller than that one decomposed in the Fock basis (2.1.3).

2.1.2 Structure of the spectrum

The site permutation operator (2.1.5) turns out to be a symmetry of the unperturbed Hamil-
tonian (2.1.1). That means that each eigenbasis {|ψ±n1,n2

〉} of the Hamiltonian are made of
symmetric and antisymmetric states obeying the Schrödinger eigenvalue equation,

Ĥ0|ψ±n1,n2
〉 = ε±n1,n2

|ψ±n1,n2
〉, n1 = 0, 1, . . . , d±, (2.1.10)

n2 = Np − n1,

with |ψ±n1,n2
〉 = ±|ψ±n2,n1

〉. Here we have d+ = d− = (Np − 1)/2 for Np odd and d+ = Np/2
and d− = Np/2 − 1 for Np even (more details are given in Appx. A.3). If U = 0 in the
Hamiltonian (2.1.1), then the atoms do not see each other. There is no interaction and
the ultracold gas can be seen as an ideal gas. If J = 0, there site no transfer of particles
from a site to another one. The system is totally frozen. In this framework, the Fock
basis (2.3.5) is an eigenbasis of the Hamiltonian as well as the symmetric and antisymmetric
basis (2.1.7). Each eigenvalue of the spectrum, which is solely determined by the non-
interacting term U/2(â†1â

†
1â1â1 + â†2â

†
2â2â2), is twice degenerate, meaning that the states

1/
√

2(|n1, n2〉 ± |n2, n1〉) have the same eigenvalue.

ε±n1,n2
(J = 0) =

U

2
(n1(n1 − 1) + n2(n2 − 1)) (2.1.11)

If the hopping is slightly turned on, such that (Np + 1)U/J � 1, the symmetric and
antisymmetric basis (2.1.7) becomes an approximation of the exact eigenbasis {|ψ±n1,n2

〉}
1To build a basis for Np even, one must add the state |Np/2, Np/2〉 as shown in Eq. (A.3.5). The following

reasoning is also correct in this basis.
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such that

|ψ±n1,n2
〉 =

Np∑
n′1=0

c±n′1
|n′1, n′2〉 (2.1.12)

' 1√
2

(|n1, n2〉 ± |n2, n1〉). (2.1.13)

In this configuration, the coupling matrix elements related to J give rise to non-zero (but
small) coefficients for n′1 6= n1 and n′1 6= n2. These non-zero coefficients lead to transitions
between the Fock states. Incidentally, as the system is unchanged under the site inversion,
we have c±n = ±c±Np−n. The coupling between sites removes the degeneracy of each pair of
levels. For example, the unperturbed spectrum for Np = 5 and U/J = 20 is numerically
given by

ε−0,5 = 200.06250456J,

ε+0,5 = 200.06250196J,

ε−1,4 = 120.1527J,

ε+1,4 = 120.1229J,

ε−2,3 = 82.78J,

ε+2,3 = 76.81J.

(2.1.14)

In this context, the eigenvalues are organized by doublets relatively well separated from
each other for which the two-level approximation is still valid. If the system is initially in
|φ(0)〉 = |n1, n2〉, then it will oscillate between the states |n1, n2〉 and |n2, n1〉. One can thus
use the formalism introduced in Appx. C and write the following time evolution,

|φ(t)〉 = cos

(
∆εn1,n2

2~
t

)
|n1, n2〉+ i sin

(
∆εn1,n2

2~
t

)
|n2, n1〉, (2.1.15)

with the splitting ∆εn1,n2 = ε−n1,n2
− ε+n1,n2

. Figure 2.1.2 gives an example for which the
dynamics is largely dominated by |0, 5〉 and |5, 0〉. The time τn1,n2 required to obtain a
perfectly balanced entangled state,

|φ(τn1,n2)〉 =
1√
2

(|n1, n2〉+ i|n2, n1〉), (2.1.16)

is given by

τn1,n2 =
π~

2|∆εn1,n2 |
. (2.1.17)

This time is called the entanglement time.

The unperturbed spectrum (2.1.14) shows that the higher the energies are, the smaller
the doublet splitting is. It means that the greater the particle difference between sites is,
the greater τn1,n2 is. Moreover, this time can be expressed in laboratory units for the atomic
species 87Rb whose mass is m = 1.443× 10−25 kg and s-wave scattering length is as = 5.313
nm. If the wavelength of the lasers used to build the optical lattice is λ = 1064 nm, we
obtain

~
J

= 4.4× 10−3 s. (2.1.18)
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Figure 2.1.2: The numerical detection probabilities are computed for the unper-
turbed two-site Bose-Hubbard Hamiltonian (2.1.1). This indicates that the two-level
approximation is suitable for describing the dynamics. For this example, we have
Jτ0,5/~ = 6.0× 105.

For the derivation of the result (2.1.18), see Sec. 1.3.3. The evaluations of the entanglement
times τn1,n2 for spectrum (2.1.14) read

τ0,5 = 6.0× 105~/J −→ τ0,5 = 2.6× 103 s

τ1,4 = 53~/J −→ τ1,4 = 0.23 s

τ2,3 = 0.26~/J −→ τ2,3 = 1.1× 10−3 s

(2.1.19)

These evaluations illustrate the difficulty to build giant entangled state as τn1,n2 increases
exponentially with the particle imbalance |n1 − n2|. Moreover, there is an additional expo-
nential increase with the total number of particles as it will be explained in Sec. 4.2. In a
typical optical lattice experiment, the lifetime of a Bose-Einstein condensate has the order
of magnitude of 10 s [133]. It means that the entangled states related to τ2,3 and τ1,4 could
be observable, but it is definitely not the case for τ0,5. Sections 4.3–4.5 will deal with this
problem by studying the effect of an external coupling on the tunneling rate.

2.1.3 Periodically-driven two-site Bose-Hubbard Hamiltonian

A periodic tilting of the double-well potential (see Fig. 2.1.3) characterized by an amplitude
δ and a frequency ω is an external perturbation breaking the energy conservation and,
thus, breaking the integrability of the system. From an experimental point of view this can
be achieved by introducing a periodic modulation of the frequency difference of the lasers
designing the optical lattice [131,134–136],

Ĥ(t) = Ĥ0 + δ cos(ωt)(â†1â1 − â†2â2). (2.1.20)

As shown in the relations (2.1.19), the entanglement time τ0,5 is prohibitively large in
comparison to the lifetime of a condensate. One of the goals of this periodic driving is to
reduce substantially this entanglement time. This can be achieved by finding the appropriate
parameters for the frequency and the amplitude. This question is addressed in Secs. 4.3–4.5.
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Figure 2.1.3: Schematic representation of the periodic tilting of the double-well po-
tential. Ultracold atoms trapped in this potential are described by the Hamiltonian
(2.1.20).

On the opposite side, the external perturbation can be used to prevent the formation of
an entangled state, meaning that the entanglement time becomes infinite. This question is
addressed in Sec. 2.4.

2.2 Floquet theory

Floquet theory was developed for the first time in 1883 by Floquet [137]. It is a suitable
framework to solve the Schrödinger equation with a time-dependent periodic Hamiltonian
Ĥ(t) = Ĥ0 + V̂ (t),

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉. (2.2.1)

Knowing that T is the periodicity of the Hamiltonian such that Ĥ(t+ T ) = Ĥ(t), it can be
decomposed in Fourier series,

Ĥ(t) =
∞∑

k=−∞

Ĥk e
ikωt, (2.2.2)

Ĥk =
1

T

∫ T/2

−T/2
Ĥ(t) e−ikωtdt, (2.2.3)

where ω = 2π/T is the frequency, and Ĥk are the Fourier coefficients.

The periodicity insures that the solutions of (2.2.1) (denoted with ν ∈ Z) are given by
the combination of an imaginary exponential and a function, |uν(t)〉 = |uν(t+ T )〉, with the
periodicity of Ĥ(t) [138] (see Appx. A.1 for a demonstration),

|ψν(t)〉 = e−iενt/~|uν(t)〉, (2.2.4)

with εν the quasienergies, which perform the time translation over one period through
|ψν(t+ T )〉 = e−iενT/~|ψν(t)〉. The Schrödinger equation becomes [131](

Ĥ(t)− i~ d
dt

)
|uν(t)〉 = εν |uν(t)〉. (2.2.5)

By means of the following Fourier series, |uν(t)〉 =
∑∞

k=−∞ e
ikωt|ũν,k〉, the time-dependent

Schrödinger equation becomes a time-independent eigenvalue problem,

+∞∑
k′=−∞

(
Ĥk−k′ + k~ωδkk′ 1̂

)
|ũν,k′〉 = εν |ũν,k〉. (2.2.6)
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The knowledge of the Fourier coefficients Ĥk makes it possible to calculate the quasiener-
gies εν and the associated eigenvectors (|fν〉) = (. . . , (|ũν,−1〉), (|ũν,0〉), (|ũν,1〉), . . . )T. It cor-
responds to the diagonalization of the Floquet matrix.

(F̂ ) =
(
Ĥk−k′ + k~ωδkk′ 1̂

)

=



. . . ...
...

...
. . . (Ĥ0) + (k − 1)~ω (Ĥ1) (Ĥ2) . . .

. . . (Ĥ−1) (Ĥ0) + k~ω (Ĥ1) . . .

. . . (Ĥ−2) (Ĥ−1) (Ĥ0) + (k + 1)~ω . . .
...

...
... . . .

 . (2.2.7)

By using the expression of the Hermitian Floquet matrix (2.2.7), the eigenvalue problem
(2.2.6) can be expressed in a more concise way,

F̂ |fν〉 = εν |fν〉. (2.2.8)

If |uν(t)〉 solves Eq. (2.2.5) with the eigenvalue εν , then einωt|uν(t)〉 is also a solution with
the eigenvalue εν + n~ω. The following equation,(

Ĥ(t)− i d
dt

)
einωt|uν(t)〉 = (εν + n~ω)einωt|uν(t)〉, (2.2.9)

highlights the fact that the Floquet spectrum has a ~ω periodicity. Inside a ~ω range there
are d quasienergies (d is assumed to be a finite number) such that εν+nd = εν + n~ω and
|uν+nd(t)〉 = einωt|uν(t)〉. For the previous property, the quasienergies must be organized in
ascending order. Moreover, the following expansion,

|uν+nd(t)〉 =
∞∑

k=−∞

ei(k+n)ωt|ũν,k〉 (2.2.10)

=
∞∑

k=−∞

eikωt|ũν,k−n〉, (2.2.11)

indicates that |uν(t)〉 and |uν+nd(t)〉 are the same except that the Fourier coefficients are
shifted of n elements. The structure of the matrix (2.2.7) shows that d is the dimension of
the Hilbert space related to the unperturbed Hamiltonian Ĥ0 such that d = dimĤ0.

The Floquet eigenvectors |fν〉 are orthonormal by construction such that

〈fν |fν′+nd〉 =
∞∑

k=−∞

〈ũν,k|ũν′,k−n〉 = δν,ν′δn,0. (2.2.12)

The indices ν and ν ′ refer to eigenvectors of a same block while the index nd enables one to
make jump between these blocks. This leads to the equation

〈uν(0)|uν′(0)〉 =
∞∑

k,k′=−∞

〈ũν,k|ũν′,k′〉 = δν,ν′ . (2.2.13)

This implies that the eigenvectors |uν(nT )〉 satisfy the orthonormality relation with n integer.
To obtain the orthonormality relation for all t, it is convenient to introduce the extended
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Hilbert space H ⊗ T made of H, the Hilbert space, and T , the space of all time-periodic
functions with the period T [139]. In this extended Hilbert space, the time is regarded as
a coordinate such that the scalar product in this space is defined as 〈〈·|·〉〉 = 1/T

∫ T
0
〈·|·〉dt.

In this framework, the eigenvectors |uν(t)〉 obey the orthonormality relation in the extended
Hilbert space. This reads

〈〈uν(t)|uν′(t)〉〉 =
1

T

∫ T

0

dt
∞∑

k,k′=−∞

ei(k
′−k)ωt〈ũν,k|ũν′,k′〉 = δν,ν′ . (2.2.14)

Floquet theory consists in solving the time-independent Floquet equation (2.2.8) in order
to solve the time-dependent Schrödinger equation (2.2.1). This eigenvalue problem gives rise
to the quasienergies εν and the Floquet eigenstates |fν〉 enabling to build the solutions |uν(t)〉.
While the Floquet spectrum is infinite, it displays a ~ω periodicity, and dimĤ0 is the number
of quasienergies inside a range ~ω. Moreover, two ~ω-related quasienergies have the same
Floquet eigenstate with a shift. A time-periodic basis of solution of (2.2.5) is thus given by{

|uν(t)〉 =
+∞∑

k=−∞

eikωt|ũν,k〉

∣∣∣∣∣ ζ 6 εν < ~ω + ζ

}
, (2.2.15)

where ζ ∈ R is an arbitrary constant. In this framework, any |φ(t)〉 can be decomposed in
the time-periodic basis (2.2.15),

|φ(t)〉 =
d∑

ν=1

cν(t)|uν(t)〉 (2.2.16)

=
d∑

ν=1

cν(t0) e−iεν(t−t0)/~|uν(t)〉, (2.2.17)

with cν(t0) = 〈uν(t0)|φ(t0)〉 and t0 the initial time.

2.3 Floquet theory for a periodic tilting of the double-
well potential

The time-dependent Hamiltonian (2.1.20) describes a two-mode system with a periodic os-
cillation of the double-well potential. It reads

Ĥ(t) = Ĥ0 + δ cos(ωt)(â†1â1 − â†2â2). (2.3.1)

In this case, the Fourier decomposition is determined by the only mode ω,

Ĥ(t) = Ĥ0 + Ĥ1e
iωt + Ĥ−1e

−iωt, (2.3.2)

Ĥ1 = Ĥ−1 =
δ

2
(â†1â1 − â†2â2). (2.3.3)
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The non-zero blocks of the Floquet matrix (2.2.7) are only the diagonal blocks and the blocks
just above and under the diagonal.

(F̂ ) =



. . . ...
...

...
. . . (Ĥ0) + (k − 1)~ω (Ĥ1) 0 . . .

. . . (Ĥ−1) (Ĥ0) + k~ω (Ĥ1) . . .

. . . 0 (Ĥ−1) (Ĥ0) + (k + 1)~ω . . .
...

...
... . . .

 . (2.3.4)

In order to build the Floquet matrix, a basis of the unperturbed system must be chosen.
A simple basis is the collection of Fock states that take into account the conservation of the
number of particles,

{|n,Np − n〉 | n = 0, 1, 2, . . . , Np} . (2.3.5)

Here the Fock state |n1, n2〉 represents a state with n1 particles on site 1 and n2 particles on
site 2. Appendix A.2 presents the representations of the Fourier coefficients Ĥk inside this
basis.

2.3.1 Discrete symmetry and Floquet matrix

As in the unperturbed case, one can take advantage of the discrete symmetry of the system
to simplify the Floquet matrix to diagonalize. Actually, the Hamiltonian (2.3.1) becomes
invariant under the site permutation P̂ if this transformation is followed by the time trans-
lation t→ t+ T/2. As in the unperturbed case, we will see in this section that the Floquet
matrix is still separable in two blocks.

The idea is to use the symmetry-adapted basis (2.1.7) to decompose the different Floquet
modes. As shown previously in Sec. 2.1.1 the unperturbed system is invariant under P̂
leading to

[Ĥ0, P̂ ] = 0 (2.3.6)

=⇒ (Ĥ0) =

(
S 0
0 A

)
. (2.3.7)

The first mode (2.3.3) of the perturbed Hamiltonian anticommutes with P̂ , meaning that
Ĥ1 is block counterdiagonal.

{Ĥ1, P̂} = 0 (2.3.8)

=⇒ (Ĥ1) =

(
0 C
C† 0

)
(2.3.9)

Here the block C couples the symmetric and antisymmetric states. As the matrix (Ĥ1) is
symmetric, we have C† = C.

By combining the different Fourier coefficients Ĥ0 and Ĥ1, the Floquet matrix (2.3.4) is
formed, and it conserves the same shape as Eq. (2.3.6) after the reorganization of the blocks,

(F̂ ) =

(
FS 0
0 FA

)
, (2.3.10)
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with

FS =



. . . . . .

. . . S−2 C
C A−1 C

C S0 C
C A1 C

C S2
. . .

. . . . . .


, (2.3.11)

FA =



. . . . . .

. . . A−2 C
C S−1 C

C A0 C
C S1 C

C A2
. . .

. . . . . .


. (2.3.12)

Here we have Sk = S + k~ω1 and Ak = A+ k~ω1. By taking into account the symmetry, it
is now possible to performing a separate diagonalization of the Floquet matrix. Appendix
A.3 presents in more details the decomposition of the Floquet matrix of the two-site Bose-
Hubbard Hamiltonian (2.1.20) into the symmetric and antisymmetric basis

2.3.2 Structure of the Floquet spectrum

A time-dependent perturbation breaks the conservation of energy. Nevertheless, if the per-
turbation is time periodic, it is still possible to define an eigenvalue Schrödinger equation in
terms of the quasienergies εν as shown in Eq. (2.2.5). The quasienergies are obtained through
the diagonalization of the Floquet matrix (2.3.4) and display a periodicity ~ω. A basis of
the perturbed system can be built by focusing only on the Floquet eigenvectors related to
the quasienergies of a Floquet block. This block is characterized by a width ~ω. The unper-
turbed block is now coupled with other blocks through the amplitude of the driving. In this
context, one expect that the unperturbed spectrum (2.1.14), for instance, will be modified
owing to the presence of the other frequency-shifted Floquet blocks.

In the strong on-site interaction regime with a small perturbation, the Floquet eigenvec-
tors can still be associated to the elements of the symmetry-adapted basis,

|u±n1,n2
(t)〉 ∼ 1√

2
(|n1, n2〉 ± |n2, n1〉). (2.3.13)

Here the symbol ± refer to the two symmetric block of the Floquet matrix. Here + refers to
FS, for which the symmetric unperturbed block S is centered, and − refers to FA, for which
the antisymmetric unperturbed A block is centered. In this context, the quasienergies ε±ν
can be denoted by ε±n1,n2

(we keep the same symbols as those for the unperturbed energies
to not overload the notations). Therefore, the two-level approximation Eq. (2.1.15) is still
valid. The question now is how the driving parameters, namely δ and ω will influence the
tunneling rate ∆εn1,n2 . This modification will modify the typical timescale required to form
an entangled state.
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2.4 Coherent renormalization and destruction of tunnel-
ing

2.4.1 High-frequency regime

In Refs. [131, 135], it is shown that an external coupling applied to an optical lattice of any
number of sites is able to perform a phase transition between Mott insulator and superfluid
regime. The cosinusoidal driving produces a linear shaking of the optical lattice potential.
A sufficiently large frequency of the driving induces a renormalization of the hopping such
that the Bose-Hubbard system is now described by an effective hopping,

Jeff = JJ0

(
2δ

~ω

)
, (2.4.1)

where J0 is the Bessel function of order 02. The periodic system is still described by the
same model as the unperturbed one with the transformation J → Jeff . The external coupling
is able to totally destroy tunneling. This destruction is given by the zeros of the Bessel
function and can be tracked in the Floquet spectrum when different bunches of quasienergies
become degenerate [131, 134, 140]. In the two-site Bose-Hubbard case, the signature of this
phenomenon is the degeneracies of the quasienergies of each doublet. Prior to these studies,
the phenomenon of dynamic localization due to an external driving was studied for charged
particle in a discrete lattice [141] and for a quartic double-well potential [142], to mention
two examples.

The renormalization (2.4.1) is obtained when the periodic perturbation of the optical
lattice is applied to the level of the on-site energies. Different renormalizations can be
achieved for other configurations of the optical lattice. For instance, some specific linear tilts
of the optical lattice potential beside the periodic modulation of the on-site energies lead to a
renormalization with Bessel functions of different orders such that Jeff ∼ Jn(2δ/(~ω)) [136].
On the other side, the periodic modulation of the on-site interaction leads to Bessel functions
with an argument depending on the population imbalance such that Jeff ∼ J0(u(n1 − n2)),
where u is a constant depending on the on-site interaction [140, 143, 144]. This kind of
periodic modulation can be achieved for instance by tuning a magnetic field close to a
Feshbach resonance [19,144]. All of these articles deal with the coherent control of tunneling
in high frequency regime. We will derive the renormalization (2.4.1) in our case of interest,
namely the two-site Bose-Hubbard model. Then, we will present our original contribution
into this research field by showing how it is possible to coherently switch on and off an
entangled state.

The representation of the Hamiltonian (2.1.20) in the Fock basis {|n1, n2〉} reads

(
Ĥ(t)

)
=


. . . −J

√
n1(n2 + 1) 0

−J
√
n1(n2 + 1) (n1 − n2)δ cos(ωt)

+U/2 [n1(n1 − 1) + n2(n2 − 1)]
−J
√
n2(n1 + 1)

0 −J
√
n2(n1 + 1)

. . .

 .

2The Bessel function of order N is defined as

JN (x) =
1

2π

∫ 2π

0

dt e−i(Nt−x sin t), (2.4.2)

with the property J0(−x) = J0(x).
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The temporal evolution of any state through the action of the Hamiltonian can be decom-
posed in the Fock basis as follows

|ψ(t)〉 =

Np∑
n1=0

ψn1,n2(t)|n1, n2〉. (2.4.3)

In this framework, the Schrödinger equation can be written in terms of the coefficients
ψn1,n2(t), which gives rise to Np + 1 coupled equations,

i~
∂

∂t
ψn1,n2(t) =− J

(√
n1(n2 + 1) ψn1−1,n2+1(t) +

√
n2(n1 + 1) ψn1+1,n2−1(t)

)
+ (n1 − n2)δ cos(ωt)ψn1,n2(t)

+
U

2
[n1(n1 − 1) + n2(n2 − 1)]ψn1,n2(t), (2.4.4)

with n1 = 0, 1, ..., Np and n2 = Np − n1. The following gauge transformation is used,

ψn1,n2(t) = φn1,n2(t) exp

(
− iδ

~ω
(n1 − n2) sin(ωt)

)
, (2.4.5)

in order to obtain

i~
∂

∂t
φn1,n2(t) =− J

(√
n1(n2 + 1) exp

(
iδ

~ω
2 sin(ωt)

)
φn1−1,n2+1(t)

+
√
n2(n1 + 1) exp

(
− iδ

~ω
2 sin(ωt)

)
φn1+1,n2−1(t)

)
+
U

2
[n1(n1 − 1) + n2(n2 − 1)]φn1,n2(t). (2.4.6)

This local gauge transformation doesn’t change the experimental expectation values as
|〈n1, n2|ψ(t)〉|2 = |〈n1, n2|φ(t)〉|2 with |φ(t)〉 =

∑Np
n1=0 φn1,n2(t)|n1, n2〉.

In the high-frequency regime, there are two time-evolution scales given by the fast oscil-
lation of the sinus in the argument of the exponential and the slow oscillation of φn1,n2(t),
which is roughly constant on the time-interval T = 2π/ω. This leads to3

1

T

∫ t+T

t

φn1,n2(t
′)dt′ ' φn1,n2(t). (2.4.7)

Therefore, T is infinitesimal from the timescale point of view of φn1,n2(t). The integration of
Eq. (2.4.6) on a period of the driving by taking into account Eq. (2.4.7) leads to

i~
∂

∂t
φn1,n2(t) =− Jeff

(√
n1(n2 + 1) φn1−1,n2+1(t) +

√
n2(n1 + 1) φn1+1,n2−1(t)

)
+
U

2
[n1(n1 − 1) + n2(n2 − 1)]φn1,n2(t),

with Jeff = JJ0( 2δ
~ω ). These equations are exactly the same as those obtained in the unper-

turbed case with the transformation J → Jeff.

3For any integrable function f(t), we have lim
T→0

1
T

∫ t+T
t

f(t′)dt′ = f(t).
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Therefore, as announced above, the perturbed system in the high-frequency regime is
described like the unperturbed one with the transformation J → Jeff. The Hamiltonian in
the high-frequency regime reads

Ĥ(ω�) = −Jeff(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2). (2.4.8)

This Hamiltonian takes a specific form in the Fock basis,

(
Ĥ(ω�)

)
=


U
2
Np(Np − 1) −Jeff

√
Np

−Jeff
√
Np

U
2

(Np − 1)(Np − 2) −Jeff
√

2(Np − 1)

−Jeff
√

2(Np − 1)
. . .

 , (2.4.9)

which is symmetric and displays a discrete symmetric with respect to the counterdiagonal.

In the strong interaction regime (Np + 1)U/J � 1, the eigenvalues are largely deter-
mined by the on-site interaction term such that ε±n1,n2

' U/2(n1(n1 − 1) + n2(n2 − 1)). In
the repulsive interaction case, the maximal eigenvalues correspond to the states where all
particles are located on a site. By contrast, the minimum eigenvalues are the states where
the particle difference is minimal. It becomes possible to approximately compute the width
of the unperturbed spectrum,

L(U) = ε0,Np − εNp/2,Np/2 ' N2
p

U

4
. (2.4.10)

When the perturbation is turned on, the Floquet blocks will be mixed if the frequency is
smaller than the width of the spectrum, i.e. ~ω . L(U). By contrast, the high-frequency
regime can be defined when the Floquet blocks are relatively well separated, i.e. when the
frequency is larger than the width, ~ω & L(U).

The modification of the splitting ∆εn1,n2 in the context of a fast driving will depend on
the number of steps to reach |n2, n1〉 from |n1, n2〉. As the hopping transfers the particles
one by one, the most direct path for n1 < n2 reads

|n1, n2〉 → |n1 + 1, n2 − 1〉 → · · · → |n2, n1〉. (2.4.11)

The matrix (2.4.9) can be truncated by taking into account the dominant path which con-
nects |n1, n2〉 with |n2, n1〉.

• Splitting of the population imbalance one, ∆εn,n+1

An analytical result for the splitting ∆εn,n+1 = ε−n,n+1−ε+n,n+1 can be derived. To achieve that,
the matrix (2.4.9) is truncated by keeping the dominant path which connects |n, n+ 1〉 with
|n+ 1, n〉, meaning that its decomposition in the truncated subspace {|n, n+ 1〉, |n+ 1, n〉}
reads (

U1 J1

J1 U1

)
. (2.4.12)

The eigenvalues are ε±n,n+1 = U1 ± J1, which leads to the splitting ∆εn,n+1 = −2J1.

In the specific case of n = 2, we have U1 = 4U and J1 = −3Jeff such that

∆ε2,3(δ) = 6JJ0

(
2δ

~ω

)
. (2.4.13)
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This relation is coherent with Eq. (2.4.1), which both describe the transfer of only one par-
ticle. The results of Fig. 2.4.1 is obtained through the diagonalization of the Floquet matrix
(2.3.4) for Np = 5, U/J = 20 and ~ω/J = 200. It enables one to compare the analytical
result in orange with the numerical computation of the splitting ∆ε2,3 in black.

• Splitting of the population imbalance two, ∆εn,n+2

There are two steps to connect |n, n + 2〉 to |n + 2, n〉 with n = Np/2− 1. In this case, the
truncation of the matrix (2.4.9) in the symmetric and antisymmetric subspace {1/

√
2(|n, n+

2〉+ |n+ 2, n〉), |n+ 1, n+ 1〉, 1/
√

2(|n, n+ 2〉 − |n+ 2, n〉)} readsU1 J1

J1 U2

U1

 . (2.4.14)

The only antisymmetric eigenvalue reads ε−n,n+2 = U1. Owing to the strong inter-atomic
interaction, (Np + 1)U/J � 1, the eigenvalues for the symmetric block can be evaluated up
to the order one,

ε+± ' U1,2 ±
J2

1

U1 − U2

, (2.4.15)

with ε++ = ε+n,n+2. The splitting gives rise to

∆εn,n+2 ' −
J2

1

U1 − U2

. (2.4.16)

In the specific case of n = 2, we have U1 = 7U , U2 = 6U and J1 = −
√

12Jeff such that

∆ε2,4(δ) = −12J2

U
J 2

0

(
2δ

~ω

)
. (2.4.17)

• Splitting of the population imbalance three, ∆εn,n+3

There are three steps to connect |n, n + 3〉 to |n + 3, n〉. In this case, the truncation of
the matrix (2.4.9) in the symmetric and antisymmetric subspace {1/

√
2(|n, n + 3〉 + |n +

3, n〉), 1/
√

2(|n− 1, n+ 2〉+ |n+ 2, n− 1〉), 1/
√

2(|n, n+ 3〉 − |n+ 3, n〉), 1/
√

2(|n− 1, n+
2〉 − |n+ 2, n− 1〉)} reads 

U1 J1

J1 U2 + J2

U1 J1

J1 U2 − J2

 . (2.4.18)

The four eigenvalues can be calculated,

ε+± =
U1 + U2 + J2

2
±
√

(U1 − U2 − J2)2

4
+ J2

1 (2.4.19)

ε−± =
U1 + U2 − J2

2
±
√

(U1 − U2 + J2)2

4
+ J2

1 , (2.4.20)
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with ε++ = ε+n,n+3 and ε−+ = ε−n,n+3. Owing to the strong inter-atomic interaction, (Np +
1)U/J � 1, and U1 > U2, the eigenvalues of interest can be evaluated up to the order one,

ε±n,n+3 ' U1 +
J2

1

U1 − U2 ∓ J2

. (2.4.21)

The splitting at leading order is given by

∆εn,n+3 ' −
2J2

1J2

(U1 − U2)2
. (2.4.22)

In the specific case of n = 1, we have U1 = 6U , U2 = 4U , J1 = −
√

8Jeff and J2 = −3Jeff

such that
∆ε1,4(δ) =

12J3

U2
J 3

0

(
2δ

~ω

)
. (2.4.23)

Figure 2.4.1 obtained through the diagonalization of the Floquet matrix (2.3.4) for Np = 5,
U/J = 20 and ~ω/J = 200 illustrates this result valid in the high-frequency regime.
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Figure 2.4.1: Energy splittings as a function of the amplitude of the perturbation.
Panel (b) represents the absolute values of the energy splittings |∆ε2,3(δ)|, |∆ε1,4(δ)|
and |∆ε0,5(δ)| in black, red and green respectively. The dashed orange curves are the
analytical functions (2.4.24). In the high-frequency regime, the splittings behave like
Bessel functions with different exponents depending on the occupation number as dis-
played in the relation (2.4.24). This figure was obtained by computing the quasienergies
associated to the time-periodic two-site Bose-Hubbard Hamiltonian (2.1.20).

• Splitting of the population imbalance k, ∆εn,n+k

When generalizing the splitting to ∆εn,n+k, it appears that it behaves like a Bessel function
whose exponent is equal to the number of steps to connect |n, n + k〉 with |n + k, n〉, i.e. k
steps. Therefore, the above results can be generalized as follows

∆εn,n+k(δ)

∆εn,n+k(0)
' J k

0

(
2δ

~ω

)
. (2.4.24)

This relation describes how the creation of the entangled states is influenced through the
application of an external driving in the high-frequency regime. By contrast, the renormal-
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ization (2.4.1) describes how the tunneling will be effected globally. Obviously, both results
are not contradictory as Jeff = 0 implies automatically that all splittings will be equal to
zero.

The unperturbed parameters (Np and U/J) related to Fig. 2.4.1 are the same as those
used to compute the unperturbed spectrum (2.1.14). By means of the relation (2.1.17), it
is possible to compute the entanglement time τn1,n2 , which are displayed in Eq. (2.1.19).
Here τ2,3(0) and τ1,4(0) are smaller than one second. That is why it could be possible to
experimentally reproduce Fig. 2.4.1, except for ∆ε0,5(0) for which τ0,5(0) exceeds largely 10
s. This order of magnitude corresponds roughly to the lifetime of a Bose-Einstein condensate
in an optical lattice [133].

2.4.2 Low-frequency regime

The heuristic result presented in this section was guessed from the numerical simulations.
Further exploration and a better understanding of the low-frequency regime should lead
to a more solid derivation. In the low-frequency regime (i.e. L(U) � ~ω/J), there is no
global renormalization like the one displayed in Eq. (2.4.1). Nevertheless, Fig. 2.4.2 seems to
indicate that, for some range of parameters, the splittings still behave like Bessel functions
as follows

∆εn,n+k(δ)

∆εn,n+k(0)
' J0

(
k

2δ

~ω

)
. (2.4.25)

In this case, the zeros of the different Bessel function do not appear for the same δ, meaning
that some transitions are prohibited and others are possible for a same amplitude of the
perturbation.
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Figure 2.4.2: Energy splittings as a function of the amplitude of the perturbation.
Panel (b) represents the absolute values of the energy splittings |∆ε2,4(δ)|, |∆ε1,5(δ)|
and |∆ε0,6(δ)| in black, red and green respectively. The dashed orange curves are the
analytical functions (2.4.25). In the low-frequency regime, the splittings seem to behave
like Bessel functions whose argument depends on the occupation number as displayed
in the relation (2.4.25). This figure was obtained by computing the quasienergies
associated to the time-periodic two-site Bose-Hubbard Hamiltonian (2.1.20).

We are going to present a model able to reproduce the result (2.4.25). We assume that
we are in the strong interaction regime (Np + 1)U/J � 1, where the two states |n, n + k〉
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and |n + k, n〉 are coupled by an effective coupling matrix element V . This coupling takes
into account all perturbations of the other Fock states. The truncated Hamiltonian in the
basis {|n, n+ k〉, |n+ k, n〉} reads(

−kδ cos(ωt) V
V kδ cos(ωt)

)
. (2.4.26)

Any state is decomposed in this basis according to |ψ(t)〉 = ψ−k(t)|n, n+k〉+ψ+k(t)|n+k, n〉,
and the Schrödinger is given by

i~ψ̇−k(t) = V ψ+k(t)− kδ cos(ωt)ψ−k(t),

i~ψ̇+k(t) = V ψ−k(t) + kδ cos(ωt)ψ+k(t).
(2.4.27)

If the following gauge transformation is performed,

ψ∓k(t) = φ∓k(t) exp

(
±k iδ

~ω
sin(ωt)

)
, (2.4.28)

then the Schrödinger equation becomes

i~φ̇−k(t) = V exp

(
−k i2δ

~ω
sin(ωt)

)
φ+k(t),

i~φ̇+k(t) = V exp

(
+k

i2δ

~ω
sin(ωt)

)
φ−k(t).

(2.4.29)

The time variations of φ∓k(t) are determined by V . If the coupling V is sufficiently weak,
the coefficients φ∓k(t) are constant on a period T = 2π/ω. In this sense, the frequency is
high. But we have to bear in mind that we are here in the low-frequency regime in the sense
that ~ω is small in comparison to the width of the unperturbed spectrum L(U). In this
context, the integration over one period of the Schrödinger equation (2.4.29) leads to

i~φ̇−k(t) = V J0

(
k

2δ

~ω

)
φ+k(t),

i~φ̇+k(t) = V J0

(
k

2δ

~ω

)
φ−k(t),

(2.4.30)

where J0(x) are the Bessel function of order 0. The splitting related to the underlying
effective Hamiltonian of Eq. (2.4.30) gives rise to the relation (2.4.25). Figure 2.4.2(b)
compares the analytical results in dashed orange with numerical results |∆ε2,4(δ)| in black,
|∆ε1,5(δ)| in red and |∆ε0,6(δ)| in green. There are visible deviations for the case |∆ε2,4(δ)|
while it is not the case for the two others. Therefore, the results match better for large k.
Indeed, in these cases, the coupling V is weaker as it is displayed in Fig. 2.4.2(b) by the
values of those splittings in δ = 0.

The entanglement time τn1,n2 are inversely proportional to the tunneling rate ∆εn1,n2

according to Eq. (2.1.17). Moreover, this time can be expressed in physical units for the
atomic species 87Rb whose the mass is m = 1.443 × 10−25 kg and the s-wave scattering is
as = 5.313 nm. If the wavelength of the lasers used to build the optical lattice is λ = 1064
nm, we obtain

~
J

= 5.2× 10−3 s, (2.4.31)



44 Periodically driven two-site Bose-Hubbard model

for U = 25J . For the derivation of the result (2.4.31), see Sec. 1.3.3. The evaluations of the
unperturbed entanglement times τn1,n2(δ = 0) read

τ2,4 = 1.7~/J −→ τ2,4 = 9.0× 10−3 s,

τ1,5 = 3.7× 103~/J −→ τ1,4 = 20 s,

τ0,6 = 1.5× 108~/J −→ τ0,6 = 7.9× 105 s.

(2.4.32)

The amount of time is prohibitive for τ0,6. Nevertheless, τ2,4 reaches the criteria for an
experimental observation. A way to diminish this time would be to decrease the total
number of particles. Decreasing the ratio U/J is another possibility, but we have to bear in
mind that the approximation of strong effective on-site interactions limits this possibility.



Chapter 3

Mean-field analysis of the two-site
Bose-Hubbard model

The classical limit for the general Bose-Hubbard model was presented in Sec. 1.3.4. The
present chapter focuses on the specific two-site Bose-Hubbard model. For the unperturbed
one, they are two main dynamics [21, 53]. If there is no on-site interaction, all phase space
trajectories lead to Josephson oscillations. Conversely, if the coupling between sites is zero,
the system is frozen and the atoms are in the self-trapping regime. Between both cases, there
is a coexistence of Josephson oscillations for small population imbalances and self-trapping
trajectories for significant population imbalances.

In the self-trapping regime, the atoms will be subjected, on a long timescale, to a collective
tunneling while the mismatch between chemical potentials of the two sites prevents individual
transfers of particles. Unfortunately, the mean-field approximation is not able to reproduce
this phenomenon. Nevertheless, a careful analysis of the phase space indicates with which
underlying mechanisms this collective tunneling takes place. These mechanisms lead to the
production of entangled states.

3.1 Classical limit

The mean-field approximation of the general Bose-Hubbard Hamiltonian was developed in
Sec. 1.3.4. This section will investigate the particular case of a two-site system [54,58,132],
where the classical limit can be represented by a 2D phase space. Some features of the
dynamics can be captured with the classical equivalent of the Hamiltonian

Ĥ(t) = −J(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2) + δ cos(ωt)(â†1â1 − â†2â2), (3.1.1)

which appears for the first time in Eq. (2.1.20). In Ref. [128], the classical limit is obtained by
introducing the quadrature operators, which can be seen as a Cartesian representation of the
system. Otherwise, in the limit of an infinite number of particles the ladder operators can be
replaced by complex numbers [129,130], which corresponds to the mean-field approximation,

〈âl〉 ∼ ψl =
√
Il e

iθl , (3.1.2)

〈â†l 〉 ∼ ψ∗l =
√
Il e

−iθl , (3.1.3)

45
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where the ψl (l = 1, 2) represents the condensate amplitude on site l, with θl the phase of the
site l and Il is proportional to nl, the number of particles on site l, such that Il = nl + 1/2.
As Np is conserved, the sum of the Il amounts to a constant N = Np + 1,

I1 + I2 = N. (3.1.4)

Therefore, the constant N is equal to the dimension of the Hilbert of the unperturbed two-
site Bose-Hubbard Hamiltonian as shown in Eq. (2.1.4). In this case, we will see that there
is one quantum eigenstate in each unit cell of the phase space.

In this framework, the classical limit of the Hamiltonian (3.1.1) reads1

H(ψl, ψ
∗
l , t) = −J (ψ∗1ψ2 + ψ∗2ψ1) +

U

2

(
|ψ1|4 + |ψ2|4

)
+ δ cos(ωt)(|ψ1|2 − |ψ2|2). (3.1.5)

The temporal evolution of the mean-field system is determined by the discrete Gross-
Pitaevskii equation for a two-site optical lattice. This can be derived from the Hamiltonian
equations of (3.1.5),

i~
dψ1

dt
= −Jψ2 + U |ψ1|2ψ1 + δ cos(ωt)ψ1,

i~
dψ2

dt
= −Jψ1 + U |ψ2|2ψ2 − δ cos(ωt)ψ2.

(3.1.6)

The variables (θ, I) are known as the action-angle canonical variables, and can be used as
a representation of the classical dynamics. It enables one to separate the angle-independent
part H(I) from the rest of the Hamiltonian, such that H(θ, I, t) = H(I) + V (θ, I, t) with

H(θ, I, t) =
U

2

(
I2

1 + I2
2

)
− 2J

√
I1I2 cos(θ1 − θ2) + δ(I1 − I2) cos(ωt). (3.1.7)

As the total number of particles is a constant of motion, it could be valuable to perform a
canonical transformation in order to use N as a new conjugate momentum. In this case, the
generalized coordinate associated to N is cyclic, and the dynamics behaves like an effective
one degree-of-freedom system. The phase space has then two dimensions, and it becomes
possible to visualize it in a plane. To achieve this purpose, the third class generating function
that performs the transformation (θ, I) 7→ (φ, z) is introduced,

F (I,φ) =
1

2
(I1 − I2)φ+ (I1 + I2)φ2, (3.1.8)

characterized by the following relations,

θl =
∂F

∂Il
; zl =

∂F

∂φl
. (3.1.9)

Here we introduce the notations z = z1 and φ = φ1.
1The constants in the Hamiltonian were removed. The general version with the constants of motion is

stated in Eq. (1.3.44).
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The new canonical variables can be derived from the generating function.

θ1 = φ2 +
1

2
φ

θ2 = φ2 −
1

2
φ

I1 = z +
z2

2

I2 = −z +
z2

2

⇔



φ = θ1 − θ2

φ2 =
1

2
(θ1 + θ2)

z =
1

2
(I1 − I2)

z2 = I1 + I2 = N

(3.1.10)

The constants are removed, and the Hamiltonian reads

H(φ, z, t) = Uz2 − 2J
√

(N/2)2 − z2 cos(φ) + 2δ cos(ωt)z. (3.1.11)

As φ2 doesn’t appear in the new Hamiltonian, z2 = N is a constant of motion. This
representation leads to a global visualization of the dynamics in two dimensions. The phase
space can be built by propagating the Hamiltonian equations,

φ̇ = 2Uz +
2Jz√

(N/2)2 − z2
cos(φ) + 2δ cos(ωt),

ż = −2J
√

(N/2)2 − z2 sin(φ).

(3.1.12)

In the mean-field approximation the total number of particles is not relevant. That is
why it becomes possible to write a dimensionless Hamiltonian where the factor N is no
longer present,

H̃(φ̃, z̃, t̃) =
H

NJ
=

Λ

4
z̃2 −

√
1− z̃2 cos(φ̃) + δ̃ cos

(
ω̃t̃
)
z̃. (3.1.13)

Here we have φ̃ = φ, z̃ = 2z/N and t̃ = 2Jt. The Hamiltonian (3.1.13), depending only on
the parameter Λ, δ̃ and ω̃, describes the same physical reality as (3.1.11). The three relevant
parameters describing the dynamics are then given by

Λ =
NU

J
, δ̃ =

δ

J
, ω̃ =

ω

2J
. (3.1.14)

A modification of the parameters N , U , J , δ and ω that leaves the parameters Λ, δ̃ and ω̃
unchanged leads to the same phase space and, therefore, leads to the same classical dynamics.

3.2 Josephson oscillations to self-trapping regime

Some features of the dynamics can be captured through the mean-field approximation. That
is why the unperturbed Hamiltonian, given by

H(φ, z) = Uz2 − 2J
√

(N/2)2 − z2 cos(φ), (3.2.1)

is introduced [21, 53]. This is the unperturbed version of Eq. (3.1.11). It represents a kind
of pendulum Hamiltonian where the prefactor of the cos(φ) depends on the conjugate mo-
mentum. To some extent, it can be seen as a pendulum where the gravitational acceleration
depends on the momentum. As displayed in Fig. 3.2.1, the term

√
(N/2)2 − z2 limits the

phase space in the interval z ∈ [−N/2;N/2]. Those phase spaces were obtained for Np = 5.
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Figure 3.2.1: These phase-space plots were generated by means of the Hamiltonian
(3.2.1) for Np = 5. There is a coexistence in the case (b) between the self-trapping
regime for high population imbalances and the Josephson oscillations for small popu-
lation imbalances. By contrast, the case (a) displays only Josephson oscillations while
the case (c) displays only self-trapping trajectories.

The green tori in Fig. 3.2.1 represent the classical counterparts of the Fock states |n1, n2〉,
i.e. the tori on which those Fock states are anchored. As the energy is conserved, the one
degree-of-freedom system (3.2.1) is integrable. In the case of a repulsive gas, the torus with
the minimal energy is located at the center of the phase space, i.e. at the position of the
central fixed point. On the other hand, the more significant the particle imbalance z is, the
more energetic the torus is. Therefore, the most energetic tori are situated at the extremities
of the phase space. Two kinds of dynamics can be distinguished.

• In the case of U/J = 0, particles are transferred one by one. The atoms do not
see each other, and all initial conditions lead to Josephson oscillations [21, 53, 145,
146] characterized by a bounded phase difference φ as shown in Fig. 3.2.1(a). At the
quantum level, the eigenstates display strong admixtures between the Fock states.

• In the case of no coupling between both orbitals (J = 0 or U/J = ∞), the transfer
of particles is prohibited. That is why all tori in Fig. 3.2.1(c) are flat. The tori are
characterized by unbounded phase differences. At the quantum level, the Fock states
are an eigenbasis of the Hamiltonian.

Between these both extreme cases, there are intermediate phase spaces characterized by
Josephson oscillations for low population imbalances and self-trapping trajectories for high
population imbalances as displayed in Fig. 3.2.1(b).

In the self-trapping regime (or Fock regime) [21, 53–61, 147], there are few transfers of
particles. At the quantum level, it is due to the mismatch between the particle removal
energy on site 1 (or 2) and the particle additional energy on site 2 (or 1). By defining nj the
number of particles on site j = 1, 2, the particle removal energy is given by U(nj − 1) while
the particle additional energy is given by Unj. Both quantities, namely the particle removal
energy and the particle additional energy, are equivalent to the chemical potential when Np

is large. In the strong interaction case, (Np + 1)U/J � 1, the chemical potential on site j is
largely dominated by U and is given by

µj ' U(nj − 1/2). (3.2.2)



3.3. Phase space and coherent destruction of tunneling 49

Those mismatches inhibit the atomic transfer one by one. From the Fock state |n1, n2〉,
there will be no transition to another state, except to the |n2, n1〉 because there exists a
quasidegeneracy between the symmetric and antisymmetric superposition of |n1, n2〉 and
|n2, n1〉 as explained in Sec. 2.1.2. This phenomenon of collective transfers of particles is not
reproduced by the mean-field approximation. For example, Figs 3.2.1(b) and (c) indicate that
5 particles initially on site 1 will stay indefinitely on this site. Nevertheless, when U/J =∞,
the eigenvalues related to the states 1/

√
2(|n1, n2〉+|n2, n1〉) and 1/

√
2(|n1, n2〉−|n2, n1〉) are

degenerate, meaning that, even at the quantum level, there is no giant transfer of particles
contrary to the U/J finite case. This remark enables one to interpret the central island
in Fig 3.2.1(b) as the classical indicator for the presence of dynamical tunneling between
|n1, n2〉 and |n2, n1〉 in the quantum dynamics. This constitutes the starting point of the
semiclassical theory of resonance- and chaos-assisted tunneling, which will be discussed in
Chap. 4.

3.3 Phase space and coherent destruction of tunneling

From a general perspective, a time-dependent Hamiltonian can be formally seen as a time-
independent system with an additional degree of freedom [66,87]. This additional degree of
freedom is modeled by an extended phase space characterized by two additional canonical
variables, namely the time and the energy. That is why a one degree-of-freedom time-
dependent system is sometimes called a one-and-a-half degrees of freedom system. From
a general point of view, a time-dependent Hamiltonian reads H(φi, zi, t) with φi and zi,
respectively, the generalized coordinates and the conjugate momenta (i = 1, . . . , f). In
practice, the purpose is to get rid of the temporal parameter by performing a canonical
transformation H(φi, zi, t)→ H̄(φ̄j, z̄j) to the extended phase space with

φ̄i = φi,

φ̄f+1 = t,

z̄i = zi, i = 1, . . . , f,

z̄f+1 = −H.
(3.3.1)

The Hamiltonian equations in the new representation are given by

dφ̄j
dt̄

=
∂H̄

∂z̄j
,

dz̄j
dt̄

= −∂H̄
∂φ̄j

, j = 1, . . . , f + 1. (3.3.2)

The new Hamiltonian must be defined as H̄(φ̄j, z̄j) = H(φi, zi, t)−H with t̄ = t in order to
preserve the structure of the Hamiltonian equations.

The stroboscopic map is a suitable way to visualize the phase space of a time-periodic
system by taking a snapshot of the dynamics at each multiple of the period T . The idea
behind the stroboscopic map is the same as for the Poincaré sections [65, 66], i.e. to fix a
variable in order to see the dynamics on a hyperplane. Each time the trajectory in phase
space passes through this hyperplane, a point is drawn. In the case of the Poincaré sections,
we have to take into account some sign ambiguities that can arise on a fixed energy subshell
[66]. In the case of a time-periodic system, a natural way to build the stroboscopic map is
to fix the time modulo the period T . For a one degree-of-freedom system, the stroboscopic
map is then defined as

{(φ, z, t) ∈ R3 | t = t0 + nT, n ∈ N}, (3.3.3)

where t0 is an arbitrary constant in [0, T [. Stroboscopic sections are valuable tools as it
enables one to have a global vision of the dynamics by means of a 2D plane. Indeed,
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a continuous system can be explored by means of the stroboscopic map or the Poincaré
sections, where the area are preserved according to the Poincaré-Cartan theorem [65,66].

The following Hamiltonian is time-dependent, implying that the phase space cannot be
directly built in a 2D plane,

H(φ, z, t) = Uz2 − 2J
√

(N/2)2 − z2 cos(φ) + 2δ cos(ωt)z. (3.3.4)

Nevertheless, the stroboscopic map of this system can be designed as the system is time-
periodic. Figure 3.3.1(b) is an example of stroboscopic sections. At the quantum level, the
splitting, which determines the oscillations between the Fock states |n1, n2〉 and |n2, n1〉,
behaves like a Bessel function in the high-frequency regime as indicated by Eq. (2.4.24).
This means that the transitions between |n1, n2〉 and |n2, n1〉 can be coherently destroyed by
choosing a suitable amplitude of the driving δ. If the zeros of the Bessel function of order 0
are given by jm (m = 1, 2 . . . ), the amplitudes that destroy the oscillations between the two
symmetrically-related Fock states read

δm =
jm
2
~ω. (3.3.5)

As the first zero is given by j1 ' 2.4048, we have δ1/J ' 240.48 for ~ω/J = 200. As
indicated in Fig. 3.3.1(b), there is a signature of the destruction of tunneling at the classical
level. This signature is related to the absence of the central resonance. The tori being almost
flat, there is almost no exchange of particles concerning the mean field dynamics, and we
obtain again the qualitatively same phase space as in Fig. 3.2.1(c).
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Figure 3.3.1: (a) Phase space generated by means of the unperturbed Hamiltonian
(3.2.1). (b) Stroboscopic map numerically computed from the perturbed Hamiltonian
(3.3.4). It is possible to coherently destroy tunneling between two weakly linked Bose-
Einstein condensates by means of an external perturbation. In the stroboscopic sections
(b), the central resonance is not present. This is the classical trigger for the absence of
dynamical tunneling in the corresponding quantum dynamics.
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3.4 Canonical perturbation theory

The canonical perturbation theory is useful for Hamiltonian systems composed of a solvable
part H0(z) and a small additional perturbation εH1(φ, z),

H(φ, z) = H0(z) + εH1(φ, z). (3.4.1)

In the strong interaction case NU/J � 1, the two-mode Bose-Hubbard Hamiltonian
(3.2.1) can be separated in two different parts,

H0(z) = Uz2, (3.4.2)

εH1(φ, z) = −2J

√(
N

2

)2

− z2 cosφ. (3.4.3)

The perturbation εH1(φ, z) is assumed to be small in comparison to H0(z). This assumption
is fulfilled for high population imbalances, i.e. 0 � |z| ≤ N/2, as well as for J small in
comparison to NU . For the latter condition, the formal parameter ε is introduced and can
be associated to 1/Λ = J/NU as shown by the dimensionless Hamiltonian (3.1.13). This
parameter is supposed to be small.

The idea to solve the problem is to find a new set of canonical variables (α, Y ) such
that the new Hamiltonian has the form of K(Y ). The canonical variables (α, Y ) become
the new action-angle variables. To achieve this purpose, the generating function S(φ, Y ),
which performs the canonical transformation (φ, z) 7→ (α, Y ), is developed from the identity
transformation φY to which small corrections are added,

S(φ, Y ) = φY + S̄(φ, Y ), (3.4.4)

with S̄(φ, Y ) = S̄(φ+ 2π, Y ) in order to preserve the periodicity of α. The link between the
old and the new canonical variables is determined by the generating function according to

α(φ, Y ) =
∂S(φ, Y )

∂Y
= φ+

∂S̄(φ, Y )

∂Y
, (3.4.5)

z(φ, Y ) =
∂S(φ, Y )

∂φ
= Y +

∂S̄(φ, Y )

∂φ
. (3.4.6)

The generating function S(φ, Y ) and the new HamiltonianK(Y ) are developed in a power
series in ε,

K(Y ) = K0(Y ) + εK1(Y ) + ε2K2(Y ) +O(ε3), (3.4.7)
S(φ, Y ) = φY + εS1(φ, Y ) + ε2S2(φ, Y ) +O(ε3). (3.4.8)
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By computingK(Y ) = H

(
z =

∂S(φ, Y )

∂φ
, φ

)
, it is possible to obtain the different corrections

to K0(Y ) by identifying the same power of ε [65, 66],

O(ε0) : H0(Y ) = K0(Y ), (3.4.9)

O(ε1) : ~Ω0(Y )
∂S1(φ, Y )

∂φ
+H1(φ, Y ) = K1(Y ), (3.4.10)

O(ε2) : ~Ω0(Y )
∂S2(φ, Y )

∂φ
+

~
2

∂Ω0(Y )

∂Y

(
∂S1(φ, Y )

∂φ

)2

+
∂H1(φ, Y )

∂Y

∂S1(φ, Y )

∂φ
= K2(Y ),

(3.4.11)

with ~Ω0(Y ) = ∂H0(Y )/∂Y = 2UY . Here the Planck constant ~ is introduced in order to
have ~Y with the unit of an action. By using the periodicity of S̄, the corrections of the
Hamiltonian can be computed,

K0(Y ) = UY 2, (3.4.12)

K1(Y ) =
1

2π

∫ 2π

0

H1(φ, Y ) dφ (3.4.13)

= 0, (3.4.14)

K2(Y ) =
~
2

∂Ω0(Y )

∂Y

1

2π

∫ 2π

0

(
∂S1(φ, Y )

∂φ

)2

dφ+
1

2π

∫ 2π

0

∂H1(φ, Y )

∂Y

∂S1(φ, Y )

∂φ
dφ (3.4.15)

=
J2

ε22U

(
N2

4Y 2
+ 1

)
. (3.4.16)

The total Hamiltonian included terms up to order 2 becomes

K(Y ) = UY 2︸︷︷︸
O(ε0)

+
J2

2U

(
N2

4Y 2
+ 1

)
︸ ︷︷ ︸

O(ε2)

+O(ε3). (3.4.17)

In this context, ~ times the frequency of the torus Y reads

~Ω(Y ) =
∂K(Y )

∂Y
(3.4.18)

= 2UY︸︷︷︸
O(ε0)

− J2

UY 3

N2

4︸ ︷︷ ︸
O(ε2)

+O(ε3). (3.4.19)

The previous results enable one to calculate the derivative of the generating function
with respect to φ,

∂S1(φ, Y )

∂φ
= −H1(φ, Y )

~Ω0(Y )
(3.4.20)

=
J

εUY

√(
N

2

)2

− Y 2 cosφ, (3.4.21)
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∂S2(φ, Y )

∂φ
=

1

~Ω0(Y )

[
K2(Y )− ~

2

∂Ω0(Y )

∂Y

(
∂S1(φ, Y )

∂φ

)2

− ∂H1(φ, Y )

∂Y

∂S1(φ, Y )

∂φ

]
(3.4.22)

=
−J2

ε24U2Y

(
N2

4Y 2
+ 1

)
cos(2φ). (3.4.23)

The tori z(φ, Y ) of the phase space can be analytically approximated. The following parametriza-
tion is obtained up to the order ε2 included,

z(φ, Y ) = Y +
∂S̄(φ, Y )

∂φ
(3.4.24)

= Y + ε
∂S1(φ, Y )

∂φ
+ ε2

∂S2(φ, Y )

∂φ
+O(ε3) (3.4.25)

= Y︸︷︷︸
O(ε0)

+
J

UY

√(
N

2

)2

− Y 2 cosφ︸ ︷︷ ︸
O(ε1)

− J2

4U2Y

(
N2

4Y 2
+ 1

)
cos(2φ)︸ ︷︷ ︸

O(ε2)

+O(ε3). (3.4.26)

Note that Y is the action variable of the system such that

Y =
1

2π

∫ 2π

0

z(φ, Y )dφ. (3.4.27)

Equation (3.4.26) makes possible to associate an action Y to each torus z(φ, Y ). This formula
indicates that the action is the phase-space area of the region inside the torus divided by 2π.

It becomes also possible to compute the different terms of the generating function by
means of the relations (3.4.21) and (3.4.23),

S(φ, Y ) = φY︸︷︷︸
O(ε0)

+
J

UY

√
(N/2)2 − Y 2 sinφ︸ ︷︷ ︸

O(ε1)

+
−J2

8U2Y

(
N2

4Y 2
+ 1

)
sin(2φ)︸ ︷︷ ︸

O(ε2)

+O(ε3). (3.4.28)

From the relation (3.4.28), the parametrization of the new angle is obtained,

α(φ, Y ) = φ︸︷︷︸
O(ε0)

+
−J

U
√

(N/2)2 − Y 2

(
N

2Y

)2

sinφ︸ ︷︷ ︸
O(ε1)

+
3J2

8U2Y 2

(
N2

4Y 2
+

1

3

)
sin(2φ)︸ ︷︷ ︸

O(ε2)

+O(ε3).

(3.4.29)

As previously explained, the small parameter ε can be associated to 1/Λ. To make
it clear, the dimensionless relations and parametrizations are written for, respectively, the
energy, ~ times the frequency, the generating function, the population imbalance and the
new angle with Λ = NU/J , φ̃ = φ and Ỹ = 2Y/N ,

K̃(Ỹ ) =
K

NJ
=

ΛỸ 2

4︸︷︷︸
O(ε0)

+
1

2Λ

(
1

Ỹ 2
+ 1

)
︸ ︷︷ ︸

O(ε2)

+O(ε3), (3.4.30)
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Ω̃(Ỹ ) =
∂K̃(Ỹ )

∂Ỹ
=

~Ω

2J
=

Λ

2
Ỹ︸︷︷︸

O(ε0)

+
−1

ΛỸ︸︷︷︸
O(ε2)

+O(ε3), (3.4.31)

S̃(φ̃, Ỹ ) =
2S

N
= φ̃Ỹ︸︷︷︸
O(ε0)

+
2

ΛỸ

√
1− Ỹ 2 sin φ̃︸ ︷︷ ︸
O(ε1)

+
−1

2Λ2Ỹ

(
1

Ỹ 2
+ 1

)
sin(2φ̃)︸ ︷︷ ︸

O(ε2)

+O(ε3), (3.4.32)

z̃(φ̃, Ỹ ) =
2z

N
= Ỹ︸︷︷︸
O(ε0)

+
2

ΛỸ

√
1− Ỹ 2 cos φ̃︸ ︷︷ ︸
O(ε1)

+
−1

4Λ2Ỹ

(
1

Ỹ 2
+ 1

)
cos(2φ̃)︸ ︷︷ ︸

O(ε2)

+O(ε3), (3.4.33)

α̃(φ̃, Ỹ ) = α = φ̃︸︷︷︸
O(ε0)

+
−2 sin φ̃

ΛỸ 2
√

1− Ỹ 2︸ ︷︷ ︸
O(ε1)

+
3

2Λ2Ỹ 2

(
1

Ỹ 2
+

1

3

)
sin(2φ)︸ ︷︷ ︸

O(ε2)

+O(ε3). (3.4.34)

As these equations suggest it, the higher the ratio Λ and the action Ỹ are, the safer we are
to neglect the terms of superior orders.

3.5 Toward mean-field approximation: semiclassical limit

3.5.1 Husimi functions

In quantum mechanics, the wave function is represented either in the configuration space or
in the momentum space, but it is not possible to specify the generalized coordinates and the
conjugate momenta at the same time. This implies that it is not possible to directly represent
the wave function in the phase space. This fact is due to the Heisenberg indeterminacy
principle related to the wave behavior of matter. Nevertheless, the Husimi function [66,148],
which depends on all canonical variables, can be used in order to achieve an indirect phase
space representation of the wave function. This function is defined as the scalar product of
the wave function |ψ〉 with a coherent state of the harmonic oscillator |α〉,

H|ψ〉(φ0, z0) = |〈α|ψ〉|2. (3.5.1)

It is common to choose the coherent state that corresponds to the ground state of the har-
monic oscillator [95] centered in (φ0, z0). In z representation, this coherent state correspond
to

〈z|α〉 =
1√√
πσg

e−(z−z0)2/(2σg) eiφ0(z−z0), (3.5.2)

where σg is the variance parameter enabling one to control the relative projection onto φ0

and z0.

In the specific case of the two-site Bose-Hubbard system, z = n−Np/2 is the population
imbalance such that ẑ|n,Np− n〉 = z|n,Np− n〉, where n is the population on site 1 and Np

the total number of particles. If the Floquet eigenstate |uσν (t)〉 is decomposed into the Fock
basis (2.3.5),

|uσν (t)〉 =
+∞∑

k=−∞

eikωt
Np∑
n=0

F σ
ν,k,n|n,Np − n〉, (3.5.3)
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its projection into the phase space by means of the Husimi function reads

H|uσν (t)〉(φ0, z0) =

∣∣∣∣∣
∞∑

k=−∞

eikωt
Np∑
n=0

F σ
ν,k,n gn(φ0, z0)

∣∣∣∣∣
2

, (3.5.4)

where

g∗n(φ0, z0) ≡ 〈z|α〉 =
1√√
πσg

exp

(
−(n−Np/2− z0)2

2σg

)
exp

(
iφ0

(
n− Np

2
− z0

))
.

(3.5.5)
The symbol σ = ± is added and makes reference to the two possible symmetry blocks (see
Sec. 2.3.1), and ν labeled the different eigenstates inside a same symmetry block.

Figure 3.5.1: Husimi projections H|uσν (t)〉(φ, z) of the eigenstates |uσν (t)〉 in the strong
interaction regime (Np + 1)U/J � 1 without perturbation, i.e. δ/J = 0. The ground
state is given by |u+

2 (t)〉 while the highest excited state is |u−0 (t)〉. The eigenstates are
relatively well localized in z, which justifies the approximation (3.5.6).

In the strong interaction regime (Np + 1)U/J � 1, the unperturbed eigenstates stay
close to the computational basis (see Eq. (2.1.13)). Concerning the perturbed eigenstates,
this characteristic stays still valid as long as the perturbation δ is not too strong and the
frequency of the driving ω not to small,

|u±ν (t)〉 ∼ 1√
2

(|ν,Np − ν〉 ± |Np − ν, ν〉). (3.5.6)

For example, Fig. 3.5.1 displays the Husimi functions of the eigenstates for Np = 5, U/J = 20
and δ/J = 0. As it is an unperturbed case, the shown projections of |uσν (t)〉 are valid for
all t. The repulsive interaction induces a ground state near the central fixed point of the
phase space corresponding to a state where the population imbalance is low. The more the
state is excited, the more the state is situated near the extremities of the phase space where
the population imbalance is high. The eigenstates are relatively well localized in z, which
justifies the approximation (3.5.6).
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Incidentally, it is also possible to derive an expression of the Husimi function with the
decomposition of |uσν (t)〉 in the symmetric and antisymmetric basis (A.3.9)2,

|uσν (t)〉 =
+∞∑

k=−∞

eikωt
Dσk−1∑
n=0

F σ
ν,k,n

1√
2

(|n,Np − n〉+ pσk |Np − n, n〉). (3.5.7)

In this framework, the Husimi function reads

H|uσν (t)〉(φ0, z0) =

∣∣∣∣∣∣
∞∑

k=−∞

eikωt
Dσk−1∑
n=0

F σ
ν,k,n

1√
2

(
gn(φ0, z0) + pσk gNp−n(φ0, z0)

)∣∣∣∣∣∣
2

. (3.5.8)

3.5.2 Np as the semiclassical parameter

Figure 3.5.2 investigates the semiclassical limit. The Husimi functions of the centered eigen-
states (in both symmetric parts of the phase space) are displayed for various values of Np.
As (Np+1)U/J is fixed, the system stays the same at the classical level. Nevertheless, eigen-
states have a certain width in the phase space at the quantum level. This width decreases
as the total number of particles increases. At the limit Np →∞, the Husimi function tends
to correspond to a specific torus. This constitutes a graphical visualization of the mean-field
approximation.

From a general point of view, an expansion in ~ of the quantum mechanics can be done,
and the 0th order gives rise to the classical dynamics. That is why the Planck constant
can be seen as the semiclassical parameter. The classical system is obtained for the limit
~ → 0. To demonstrate that, the Schrödinger equation in the framework of the position
representation,

i~
∂ψ(q, t)

∂t
= H(q̂, p̂, t)ψ(q, t), (3.5.9)

is introduced where q̂ ≡ q and p̂ ≡ (~/i)∂/∂q. In the context of the semiclassical theory
[66,149], the following ansatz is used,

ψ(q, t) = A(q, t) e
i
~S(q,t). (3.5.10)

Up to the order 0 in ~, the Hamilton-Jacobi equation is obtained,

H

(
q,
∂S(q,P , t)

∂q
, t

)
+
∂S(q,P , t)

∂t
= K(Q,P , t). (3.5.11)

Here S(q,P , t) is the generating function of the canonical transformation (q,p)→ (Q,P ).

Solving the Hamilton-Jacobi equation consists in finding the function S(q,P , t) by solving
a partial differential equation. In general, the goal is to reach a simpler system by assuming
that the new HamiltonianK(Q,P , t) is equal to 0. The generating function can be expressed
with an integral along a trajectory γ where q0 = q(t0) is the starting point and q = q(t) is
the endpoint [65,66]

S(q,P , t) =

∫ q

q0

∑
j

pj(q
′,P )dq′j +

∫ t

t0

(K −H)dt′. (3.5.12)

2See Appx. A.3.3 for the definitions of Dσ
k and pσk .
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Note that in the case of K(Q,P , t) = 0, the generating function becomes the action of the
system.

As the Hamilton-Jacobi equation is an alternative to the Hamiltonian equations, the
classical system is reproduced at ~0, i.e. for ~ → 0. By taking into account higher orders
of ~, some corrections of S(q, t) and an approximated expression of A(q, t) can be obtained
[66,149]. In the specific case of the Bose-Hubbard model, Np is the semiclassical parameter
such that it becomes formally related to 1/~.

Figure 3.5.2: Husimi projections located on the same classical torus for various num-
ber of particles Np. These Husimi projections H|uσν (t)〉(φ, z) are obtained for the eigen-
states |u+

1 (t)〉, |u+
2 (t)〉 and |u+

5 (t)〉 (see Eq. (3.5.6)) related to Np = 5, 9, 21 respectively.
The mean-field approximation is reached when Np tends to infinity.





Chapter 4

NOON states via resonance- and
chaos-assisted tunneling

From a general point of view, a NOON state is entangled state made of two modes, namely
|N, 0〉 and |0, N〉, one of which is totally full ofN quanta while the other is totally empty. This
highly entangled state can be formally written as eiϕ1|N, 0〉 + eiϕ2|0, N〉. Even though this
kind of state is very fragile, it has been realized with qubits in superconducting circuits [33],
with photons [10,11] and with phonons in ion traps [12], for example.

One theoretical proposal to build such a state with ultracold atoms is based on a adiabatic
loading to the ground state [34], which is the NOON state for attractive atom-atom interac-
tion. Nevertheless, the contraction of the Bose-Einstein [36] leads to some instabilities via
the proliferation of inelastic collisions [37]. Moreover, it requires an extremely low tempera-
ture to reach the ground state. In this context, several other proposals have been formulated
for repulsive atoms. For example, a phase shift is applied to the Bose-Einstein condensate,
which consists in turning on the Josephson coupling during a certain period of time, and the
subsequent dynamical redistribution of atoms reaches the NOON states [38–44]. The giant
superposition of states can also be created by some specific measurement processes [45–47],
via an adiabatic passage from an excited state [48], with a two-component Bose-Einstein
condensate in a double-well potential [49] and through the scattering of a solitonic wave
packet [50,51].

Our proposal, which shares some similarities with [150], is to load all the atoms in one
of the two wells and to wait half of the transition time in order to obtain the giant coherent
superposition of states. Actually, the time evolution of the NOON state is a specific case of
Eq. (2.1.15),

|NOON〉 = cos

(
∆ε

2~
t

)
|0, Np〉+ i sin

(
∆ε

2~
t

)
|Np, 0〉. (4.0.1)

Here the tunneling rate is given by ∆ε = ε− − ε+, the NOON time by τ = π~/(2|∆ε|) and
the total number of particles by Np. The eigenvalue ε− is related to the eigenvector roughly
given by the antisymmetric combination of |0, Np〉 and |Np, 0〉 while the eigenvector of ε+ is
roughly given by the symmetric combination (see Sec. 2.1.2). This state can be produced
in the self-trapping regime, where the inter-atomic repulsion prevents transfer of particles
one by one. The problem, besides the requirement of a perfect symmetry of the two-site
optical trap, is that the timescale of the NOON time is extremely long [62]. As indicated in
Eq. (2.1.19), the higher the population imbalance is, the more time it takes to produce the
entangled state. Moreover, Sec. 4.2 will show that the NOON time is characterized by an

59
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exponential increase with the semiclassical parameter (i.e. Np) as it is expected for integrable
system.

The idea to speed up the process is to add a periodic modulation of the optical lattice [63,
64]. Section 4.3 investigates the decrease of the NOON time by means of resonance-assisted
tunneling [67–69]. In the framework of near-integrable phase spaces, the quantization of the
nonlinear resonances leads to coupling matrix elements boosting the transition. Moreover,
the presence of a prominent chaotic layer in the classical phase space indicates the existence
of strongly mixed eigenvectors, which can lead to chaos-assisted tunneling [73–77]. Section
4.5 will explain how it is possible to combine both phenomena to obtain transitions through
resonance- and chaos-assisted tunneling [71,72,78,79,81–84].

4.1 Semiclassical evaluation of the wavefunction

When there is no inter-site hopping in the optical trap, the Fock basis {|n1, n2〉} and the
symmetry-adapted basis {1/

√
2|n1, n2〉 ± |n2, n1〉} are two possible eigenbases of the Bose-

Hubbard Hamiltonian as explained in Sec. 2.1.2. Indeed, a zero-hopping system doesn’t
induce coupling matrix element between them.

When the hopping is turned on such that J 6= 0, the symmetry-adapted basis and the
Fock basis are no longer eigenbases. Nevertheless, the former stays close to the exact basis for
small J in comparison to (Np+1)U while the latter does not. Actually, the symmetries in the
Hamiltonian induces symmetries throughout all the mathematical description of the system.
For J = 0, the two sites can be treated separately. For J 6= 0, the Hamiltonian presents
either symmetric eigenvectors or antisymmetric ones with respect to the permutation of both
sites.

A discrete symmetry is an additional difficulty when the semiclassical eigenfunction of
the problem is evaluated. From the semiclassical theory [65,66,68,149,151], it is possible to
quantize a classical torus Γ of the phase space characterized by an action Y . Imagine that
the system is integrable such that there exists a canonical transformation (φ, z)→ (α, Y ) to
the action-angle coordinates by means of the generating function S(φ, Y ). The semiclassical
eigenfunction for the action variable Y reads

ψY (φ) =
1√
2π

√
∂2S(φ, Y )

∂Y ∂φ
exp (iS(φ, Y )) . (4.1.1)

In the case of the two-site Bose-Hubbard model, the generating function can be found
in Eq. (3.4.28). The semiclassical eigenfunctions is defined for the actions that fulfill the
following quantization condition,

Y =
1

2π

∫
Γ

z(φ, Y )dφ =
(
m+ λNp

)
≡ Ym, (4.1.2)

where λNp is the Maslov index [66, 68, 149] and is given by λNp = 1/2 for Np odd1,2. Here
m are the integers bounded by the condition −N/2 < Ym < N/2 where N = Np + 1 is

1The Np even case will be introduced in Eq. (4.3.59).
2For the dimensionless system introduced in Eq. (3.1.13) and at the end of Sec. 3.4, the action reads

Ỹ = 2Y/N with N = Np + 1 the dimension of the Hilbert space. In this case, the quantization rule reads

Ỹm = ~eff(m+ λNp
), (4.1.3)
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the dimension of the Hilbert space. This leads to m = −(Np − 1)/2, . . . , (Np − 1)/2. Note
that each action is associated to its symmetric equivalent such that Y−m = −Ym. This is
related to the fact that each torus z(φ, Y ), for which an analytical approximation is given
by Eq. (3.4.26), of the upper part of the phase space is symmetrically related to the torus
z(φ,−Y ) of the lower part according to z(φ,−Y ) = −z(φ, Y ). Up to the order 1 of the
canonical perturbation theory, the following parametrizations read for the two-site Bose-
Hubbard Hamiltonian (see Eq. (3.4.28))

S(φ, Y ) =

∫ φ

z(φ′, Y )dφ′ ' Y φ+
J

UY

√
(N/2)2 − Y 2 sinφ, (4.1.4)

∂2S(φ, Y )

∂Y ∂φ
=
∂z(φ, Y )

∂Y
' 1− J cosφ

U
√

(N/2)2 − Y 2

(
N

2Y

)2

. (4.1.5)

Equation (4.1.2) indicates that each quantum eigenstate will occupy a phase-space volume
amounting to 2π. When the number of particles increases, the total phase-space volume
Vps = 2π(Np + 1) becomes larger and larger such that 2π/Vps → 0 for Np →∞. In this case,
the classical limit is reached. For the dimensionless system (see Eq. (4.1.3)), the phase-space
volume is fixed to 4π, and the quantization of the phase space admits an elementary cell of
2π~eff volume for each eigenstate. In this case, the classical limit is obtained for ~eff → 0,
which corresponds to Np →∞.

It is still possible to refine the approximation (4.1.1) by using the semiclassical theory,
but there is no guarantee that it will converge to the exact eigenfunction. It is particularly
striking when the system is constrained by a global symmetry. In the specific case of the two-
site Bose-Hubbard system, the symmetry with respect to the inversion operator, P : z 7→ −z,
implies that the eigenfunctions must be either symmetric or antisymmetric with respect to
P . Incidentally, the Husimi plots (3.5.1) illustrate this symmetry relation for the eigenstates.
In this context, the wavefunction ψY (φ) is called a local quasimode [68] and its symmetric
equivalent is given by ψ−Y (φ). A correct approximation of the eigenfunctions are then give
by the (anti)symmetric linear combination of both quasimodes,

ψ±(φ) =
1√
2

(ψY (φ)± ψ−Y (φ)) . (4.1.6)

Incidentally, the semiclassical evaluation (4.1.1) up to the order 0 of the canonical perturba-
tion theory reads

ψY (φ) ' 1√
2π

eiY φ = 〈φ|n1, n2〉, (4.1.7)

with Y = z ≡ (n1 − n2)/2. The Fock states are then local quasimodes too.

The eigenspectrum can be approximated by means of the new Hamiltonian in terms
of the action-angle coordinates, K(Y ). By using the classical relation (3.4.17), it becomes
possible to evaluate the eigenvalues of the unperturbed two-site system with Np = 5 and
U/J = 20 for the quantized action Y2 = 2.5, Y1 = 1.5 and Y0 = 0.5,

K(Y = ±Y2) + c = 200.061J,

K(Y = ±Y1) + c = 120.125J,

K(Y = ±Y0) + c = 80.925J.

(4.1.8)

with ~eff = 2/N is the effective Planck constant. In this case, the dimensionless generating function reads
S̃ = ~effS as shown in Eq. (3.4.32).
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As the constants in the Hamiltonian were removed when taking the classical limit, c =
−UN + 3U/4 + UN2/4 is added in order to reproduce the zero-point energy3. Energies
(4.1.8) are close to the eigenspectrum (2.1.14). Nevertheless, the same energies are obtained
by performing the transformation Y → −Y . It means the doublets are still degenerate,
which reflects the fact that no collective tunneling occurs in the mean-field approximation.

4.2 Tunneling rate in integrable systems

The two-mode Bose-Hubbard model described by the unperturbed Hamiltonian (3.2.1) has
a global symmetry with respect to the sign inversion4 of z. This means that H(φ, z) stays
unchanged under the operation P : z → −z. In this context, the two symmetrically related
tori Γ and Γ′ are not necessarily connected in the phase space even if they have the same
energy. They are separated by a dynamical barrier. For example, it is the case for the high
population imbalance trajectories in the phase space 3.2.1(b) and for all trajectories in the
phase space 3.2.1(c).
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Figure 4.2.1: Analytic continuation of the canonical variable φ = φr + iφi into the
complex domain for various Np. This enables one to connect the two symmetrically-
related parts of the phase space. Each path connect the two classical tori related to
the NOON state for a given Np.

If the initial conditions are chosen on the torus Γ, the temporal evolution will never reach
Γ′. Nevertheless, an analytic continuation of the canonical variables into the complex plane
is an elegant way to bypass this problem [68,152],

φ = φr + iφi,

z = zr + izi,

t = iti.

(4.2.1)

Here labels r and i make reference to the real and imaginary part respectively. By choosing
initially the real part of the phase equal to π and the conjugate momentum purely real

3Section (1.3.4) derives the classical limit for the general Bose-Hubbard Hamiltonian with the correct
zero-point energy.

4Concerning the time-periodic case (3.1.11), the Hamiltonian is symmetric under this operation if a
temporal translation by an amount of T/2 is performed.
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such that φ(0) = π + iφi(0) and z(0) = zr(0), then zi(t) and φr(t) will stay constant5, i.e.
zi(t) = zi(0) and φr(t) = φr(0) = π. In this case, the analytic continuation will be able to
connect Γ and Γ′. To demonstrate that, the Hamiltonian equations (3.1.12) (with δ = 0) are
written for that initial conditions6,

dφr
d(iti)

∣∣∣∣
ti=0

+ i
dφi
d(iti)

∣∣∣∣
ti=0

= 2Uzr(0)− 2Jzr(0)√
(N/2)2 − zr(0)2

coshφi(0),

dzr
d(iti)

∣∣∣∣
ti=0

+ i
dzi
d(iti)

∣∣∣∣
ti=0

= i 2J

√
(N/2)2 − zr(0)2 sinhφi(0).

(4.2.2)

By matching the real parts on one side and the imaginary part on the other side, we
obtain dφr/dti = dzi/dti = 0, and the temporal evolution reads

dφi
dti

= 2Uzr −
2Jzr√

(N/2)2 − z2
r

coshφi,

dzr
dti

= −2J

√
(N/2)2 − z2

r sinhφi.

(4.2.3)

The propagation of this system gives rise to the complex path Γ → Γ′ that connects both
tori normally disconnected at the classical level. Figure 4.2.1 illustrates this connection. It is
worth to realize that in the non-integrable case (for δ 6= 0), it is not guaranteed to have this
smooth analytic continuation as the continuation from Γ does not necessarily reach Γ′ [68].

The disconnection between Γ and Γ′ at the classical level means that the splitting ∆ε is
equal to 0, leading to no dynamical tunneling. Nevertheless, there exists at the quantum
level a coupling matrix element C = |〈ψY |Ĥ0|ψ−Y 〉| between the two symmetrically related
quasimodes, which gives rise to a level splitting according to C = ∆ε/2. In the context of
the Wentzel-Kramer-Brillouin (WKB) semiclassical method [65, 66, 151], the tunneling rate
is expected to decrease exponentially with the action integral characterizing the barrier. In
the framework of an imaginary path Γ → Γ′ connecting the two symmetrically related tori
Γ and Γ′, the splitting reads [68,72,151,152]

∆ε =
~|Ω|
π

exp(−σ), (4.2.4)

with the action integral of the analytic continuation given by

σ = =
(∫

Γ→Γ′
φ(z)dz

)
. (4.2.5)

Here Ω is the classical frequency on the torus Γ.

4.2.1 Size-varying phase space

As seen previously in Eq. (3.2.1), the size of the phase space with respect to the momentum
is given by the dimension of the Hilbert space N = Np + 1. This means that the size in the
phase space of each eigenstate with respect to the momentum is equal to 1. If φ = π + iφi

5It remains true also for φ(0) = iφi(0).
6cos(ix) = cosh(x) and sin(ix) = i sinh(x) for x ∈ C.
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and z = zr, the Hamiltonian (3.2.1) will determine the energy of the system according to

E = Uz2 + 2J

√
(N/2)2 − z2 coshφi, (4.2.6)

leading to the parametrization of the imaginary part of the phase difference,

φi(z) = arccosh

 E − Uz2

2J
√

(N/2)2 − z2

 . (4.2.7)

Figure 4.2.1 displays complex paths emerging from the phase space for various Np. These
paths connect the two symmetrically-related parts of the phase space.

As the evaluation of σ becomes σ =
∫

Γ→Γ′
φidz, the expression of the splitting takes the

following form for the integrable case,

∆ε =
~|Ω(Y )|

π
exp

−∫ z(π,Y )

−z(π,Y )

arccosh

 E(Y )− Uz2

2J
√

(N/2)2 − z2

 dz

 , (4.2.8)

where Y is the action of the torus Γ′ parametrized by z(φ, Y ). By means of the canonical per-
turbation theory developed in Sec. 3.4, it is possible to obtain an analytical evaluation, from
the classical mechanics, of the energy E(Y ), the frequency Ω(Y ) and the parametrization
z(φ, Y ) of the torus characterized by an action Y . Up to the order 1, it reads

E(Y ) ' UY 2, (4.2.9)
~Ω(Y ) ' 2UY, (4.2.10)

z(φ, Y ) ' Y +
J

UY

√
(N/2)2 − Y 2 cosφ. (4.2.11)
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Figure 4.2.2: Tunneling rate of the NOON state defined in Eq. (4.0.1) for various
Np calculated from Eq. (4.2.8) for the red curve. The exact calculation is obtained
through the diagonalization of the Hamiltonian (2.1.1).

In Fig. 4.2.2, the semiclassical limit of the NOON state defined in Eq. (4.0.1) is investi-
gated in the integrable regime. As expected, the tunneling rate decreases exponentially with
the total number of particles Np. It means that the observation of a NOON state becomes
harder and harder as the NOON time increases exponentially. The analytic continuation
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was performed from the classical tori related to the quantum NOON state. In the above
part of the phase space, its action reads

YNOON =
N

2
− 1

2
. (4.2.12)

4.2.2 Fixed phase space

Equation (3.1.13) presents the dimensionless Hamiltonian characterized by the dimensionless
parameters (we assume δ̃ = 0),

Λ = NU/J ; φ̃ = φ; z̃ = 2z/N. (4.2.13)

In the previous section, the size of the phase space changes with N . The idea is to express
Eq. (4.2.8) in terms of a fixed phase space defined by that dimensionless Hamiltonian. In
this framework, the tunneling rate reads

∆ε̃ =
∆ε

NJ
=

~eff |Ω̃(Ỹ )|
π

exp

(
−1

~eff

∫ z̃(π,Ỹ )

−z̃(π,Ỹ )

arccosh

(
Ẽ(Ỹ )− Λ

4
z̃2

√
1− z̃2

)
dz̃

)
, (4.2.14)

with Ỹ = 2Y/N , ~eff = 2/N and N = Np + 1. The different dimensionless functions read up
to the order 1

Ẽ(Ỹ ) =
E

NJ
' Λ

4
Ỹ 2, (4.2.15)

Ω̃(Ỹ ) =
∂Ẽ(Ỹ )

∂Ỹ
' Λ

2
Ỹ , (4.2.16)

z̃(φ̃, Ỹ ) ' Ỹ +
2

ΛỸ

√
1− Ỹ 2 cos φ̃. (4.2.17)

The prefactor of the exponential (4.2.14) was obtained by realizing that Ω(Y ) = 2JΩ̃(Ỹ )/~.
Equation (4.2.14) confirms that Np is the semiclassical parameter as the effective Planck con-
stant is given by ~eff = 2/(Np + 1). The tunneling rate ∆ε̃ is calculated from a fixed phase
space. Nevertheless, as Np increases, the number of quantum eigenstates contained inside
the phase space increases. The widths of the Husimi function decrease with respect to z (see
Fig. 3.5.2) such that, in the limit Np → ∞, the mean-field approximation becomes exact
and ∆ε→ 0.

The corresponding classical action of the NOON state reads in the upper part of the
phase space

ỸNOON = 1− 1

N
. (4.2.18)

This changing action implies that the frequency and the integral in Eq. (4.2.14) are not
constant, but tend to be as N increases. Nevertheless, we have to bear in mind that we
could have studied a fixed action (for example Ỹ = 0.5 in the case of Husimi plots in
Fig. 3.5.2) for which the frequency and the integral would have been constant.
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4.3 Resonance-assisted tunneling

The addition of a time-periodic perturbation induces modifications of the dynamics, which
leads to a modification of the structure of the phase space. In this context, the Kolmogorov-
Arnold-Moser (KAM) theorem [153–156] states that the tori with incommensurable winding
numbers β ≡ ω/Ω are preserved with slight deformations if the perturbation is not too
strong. Here ω is the external driving frequency while Ω is the frequency of the torus.
Conversely, the Poincaré-Birkhoff theorem [157,158] states that a torus with commensurable
winding numbers β = r/s, with integers r and s, is destroyed. This torus gives rise to a
nonlinear resonance with r stable and r unstable fixed points and chaos close to the unstable
fixed points. In this context, the nonlinear resonance is called a r:s resonance.

Figure 4.3.1 illustrates both theorems. Some tori are preserved in the perturbed case
(panel (b)) in comparison to the unperturbed case (panel (a)) as it is demonstrated by
the KAM theorem. Conversely, some structures like resonance chains emerge due to the
Poincaré-Birkhoff theorem. In the specific case of panel (b), a nonlinear 2:1 resonance is
present in the two symmetrically-related subregions. It is also possible to see a part of the
1:1 resonance in the extremities of the stroboscopic map.

For the two-site Bose-Hubbard model in the mean-field approximation, the frequency of
the torus characterized by an action Y reads up to the order 1 (see Eq. (3.4.19))

Ω(Y ) =
1

~
∂K(Y )

∂Y
' 2UY/~. (4.3.1)

As explained just previously the commensurable winding number leads to the following
condition for the destroyed tori,

ω

Ωr:s

=
r

s
, (4.3.2)

where Ωr:s = Ω(Yr:s) is the frequency of the torus Yr:s. From this relation, the action of the
torus that gives rise to the resonance chain r:s, and thus, its location in the phase space,
reads

Yr:s '
s

r

~ω
2U

, (4.3.3)

The relation (4.3.3) makes possible to place at the wanted locations the nonlinear resonances
in phase space by means of the external driving perturbation characterized by the frequency
ω. In the case of Fig. 4.3.1(b), we obtain Y2:1 = 1.5 meaning that the 2:1 resonance is
approximately situated in z = 1.5.

In the framework of resonance-assisted tunneling, the tunneling rate is determined semi-
classically through the structure of the phase space. The positions of the r:s resonances lead
to coupling matrix elements between the local quasimodes. This is the key ingredient to ex-
plain why the tunneling rate will display plateaus and peaks instead of a smooth exponential
decrease as illustrated in Fig. 4.3.4. In what follows, the Hamiltonian is assumed to be time-
periodic, H(φ, z, t+ T ) = H(φ, z, t) with T = 2π/ω. Moreover, the phase space is expected
to display a global symmetry such that the transition between two symmetrically-related
quasimodes is determined by the splitting ∆ε between the symmetric and antisymmetric
eigenenergies. In the case of the two-site Bose-Hubbard Hamiltonian (3.1.11), this symme-
try takes the form H(φ,−z, t+ T/2) = H(φ, z, t).
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Figure 4.3.1: (a) Phase space computed from the unperturbed two-site Bose-Hubbard
Hamiltonian (3.2.1). (b) Stroboscopic map computed from the periodically-driven
Bose-Hubbard Hamiltonian (3.1.11). The stroboscopic sections of panel (b) display
some conserved structures in comparison to the unperturbed panel (a) according to
KAM theorem. Conversely, resonance chains emerge at some precise locations from
destroyed tori according to Poincaré-Birkhoff theorem.

4.3.1 Secular perturbation theory

The purpose of the secular perturbation theory [66,68,72,79] is to describe from an analytical
point of view, the dynamics of the system near a nonlinear r:s resonance. Incidentally, the
canonical perturbation theory is not adapted for this purpose because of divergences close
to separatrices, for example. For the moment, we restrict ourselves to the one resonance
case, where the frequency of the destroyed torus satisfies the relation (4.3.2). The system is
assumed to be described by an integrable part and a weak time-periodic perturbation,

H(α, Y, t) = K(Y ) + V (α, Y, t), (4.3.4)

where (α, Y ) are the action-angle variables and V (α, Y, t+ T ) = V (α, Y, t) with T = 2π/ω.

If the canonical transformation to the angle coordinate that cororates with the r:s reso-
nance is performed such that

αc = α− Ωr:st, (4.3.5)

the Hamiltonian must be modified according toH 7→ H(αc, Y, t) = H(αc+Ωr:st, Y, t)−~Ωr:sY
with αc conjugated to Y . In this case, the new Hamiltonian takes the form

H(αc, Y, t) = K(Y ) + V(αc, Y, t), (4.3.6)

with

K(Y ) = K(Y )− ~Ωr:sY, (4.3.7)
V(αc, Y, t) = V (αc + Ωr:st, Y, t). (4.3.8)

The time variation of the corotating angle is given by the related Hamiltonian equation,

α̇c =
1

~
∂H
∂Y

= Ω(Y )− Ωr:s +
1

~
∂V
∂Y

. (4.3.9)
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As the perturbation is relatively weak, the variation ∂V/∂Y is expected to be weak too.
This leads to slow variations of the corotating angle close to the nonlinear resonance, i.e. for
Y ' Yr:s. Incidentally, αc is fixed at the resonance in the unperturbed case. That is why
V(αc, Y, t) varies rapidly in comparison to αc such that the corotating angle can be seen as
constant on a period of V . These two significantly different timescales justify the application
of the adiabatic perturbation theory [66, 68, 87]. As the periodicity of V (αc + Ωr:st, Y, t) is
rT = 2πs/Ωr:s, the application of the adiabatic theory gives rise to the following Hamiltonian
equation of the corotating angle,

α̇c '
1

rT

∫ rT

0

α̇cdt =
1

~
∂

∂Y

(
1

rT

∫ rT

0

H(αc, Y, t)dt

)
. (4.3.10)

In this framework, it is justified to work with a time-independent Hamiltonian,

H(αc, Y ) = K(Y ) + V(αc, Y ), (4.3.11)

where the time-periodic part is integrated over one of its own period,

V(αc, Y ) =
1

rT

∫ rT

0

V(αc, Y, t)dt. (4.3.12)

As the perturbation V (α, Y, t) is periodic with respect to the angle and the time such that
V (α + 2π, Y, t) = V (α, Y, t) and V (α, Y, t + T ) = V (α, Y, t), respectively, this perturbation
can be developed in Fourier series according to

V (α, Y, t) =
∞∑

l,m=−∞

Vl,m(Y ) eilαeimωt. (4.3.13)

As the perturbation is real, we have Vl,m(Y ) = V ∗−l,−m(Y ). The following calculation is
obtained,

V(αc, Y ) =
1

rT

∫ rT

0

V (αc + Ωr:st, Y, t)dt (4.3.14)

= V0,0(Y ) +
∞∑
k=1

2Vk(Y ) cos (krαc + ϕk) , (4.3.15)

with
Vk(Y )eiϕk ≡ Vrk,−sk(Y ), (4.3.16)

such that Vk(Y ) is real. By defining Hres(αc, Y ) = 1/(rT )
∫ rT

0
H(αc, Y, t)dt and by neglecting

the term V0,0(Y ), which does not depend on the corotating angle, the Hamiltonian that
describes the dynamics close to the r:s resonance is given by

Hres(αc, Y ) = K(Y )− ~Ωr:sY +
∞∑
k=1

2Vk(Y ) cos(krαc + ϕk). (4.3.17)

In the two-mode Bose-Hubbard case, we have already computed in a perturbative way
K(Y ) in Eq. (3.4.17), and Ωr:s can be deduced from Eq. (4.3.2). The Fourier coefficients
can be obtained by performing a Fourier analysis of V (α, Y, t) = 2δ cos(ωt)z(φ(α), Y ). This
solution implies to have a clear representation of φ(α). Nevertheless, there is a more practical
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way to obtain the different parameters, which is based on the phase space generated by
H(φ, z, t).

4.3.2 Pendulum approximation

By adding another approximation, the nonlinear resonance can be described by an effective
pendulum Hamiltonian. The resonance chains of Fig. 4.3.1(b) suggest that all Fourier co-
efficients of V (α, Y, t) can be neglected except V1(Y ) in order to model a resonance by a
pendulum-like Hamiltonian. The justification of that will be introduced during the quan-
tization process, in Sec. (4.3.3) at the end of the part called Action-independent case. By
defining Vr:s(Y ) ≡ V1(Y ) and ϕr:s ≡ ϕ1, the Hamiltonian (4.3.17) becomes

H(r:s)
res (αc, Y ) = K(Y )− ~Ωr:sY + 2Vr:s(Y ) cos (rαc + ϕr:s) , (4.3.18)

which constitutes a pendulum-like Hamiltonian.

Action-independent case

As the secular perturbation theory describes the dynamics near the nonlinear r:s resonance,
it is interesting to develop the unperturbed Hamiltonian around Yr:s,

K(Y ) ' K(Yr:s) + ~Ωr:s(Y − Yr:s) +
1

2mr:s

(Y − Yr:s)2, (4.3.19)

with 1/mr:s = d2K(Y )/dY 2|Y=Yr:s . Moreover, the amplitude Vr:s(Y ) is assumed for the
moment to be independent of the action Y and to be equal to Vr:s(Yr:s) ≡ Vr:s. By neglecting
the constant, the Hamiltonian (4.3.18) takes the form of a pendulum Hamiltonian,

H(r:s)
res (αc, Y ) ' (Y − Yr:s)2

2mr:s

+ 2Vr:s cos(rαc + ϕr:s). (4.3.20)

It is notable that the Hamiltonian (4.3.20) provides a general way to describe any non-
linear resonance. Let us define S±r:s as the areas below the outer and inner separatrices,
respectively, of the r:s resonance (see Fig. 4.3.2 as an example) in the (φ, z) representation.
Moreover, Mr:s denotes the monodromy matrix (see Appx. B) of the r-order stable fixed
point of the nonlinear resonance. As both areas and the trace of the monodromy are pre-
served under the canonical transformations (φ, z) → (α, Y ) → (αc, Y ), they can be used in
the following relations derived from the dynamics generated by H(r:s)

res [72, 159],

Yr:s =
1

4π
(S+

r:s + S−r:s), (4.3.21)√
2mr:sVr:s =

1

16
(S+

r:s − S−r:s), (4.3.22)√
2Vr:s
mr:s

=
~
r2T

arccos (Tr(Mr:s)/2) . (4.3.23)

In this framework, the different parameters of the pendulum Hamiltonian (4.3.20) can be
extracted from the phase space of H(φ, z, t). This constitutes an alternative to the computa-
tion ofK(Y ) with the canonical perturbation theory and to the Fourier analysis of V (α, Y, t).
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In the context of the two-site Bose-Hubbard model, the canonical perturbation analysis has
been already done for the unperturbed Hamiltonian K(Y ) through Eq. (3.4.17).
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Figure 4.3.2: Upper half part of the phase space of the two-site Bose-Hubbard system
for Np = 5. The central 2:1 resonance is characterized by an outer separatrix in red and
an inner separatrix in green. The areas below these separatrices are denoted by S±r:s
respectively. By using Eqs. (4.3.21)-(4.3.23), the characteristics of the 2:1 resonance are
obtained leading to Y2:1 = 1.5014, V2:1 = 0.02390J and m2:1 = 0.02497J−1. In the right
margin, the specific locations of the quasimodes are displayed such that |2〉 ↔ |5, 0〉,
|1〉 ↔ |4, 1〉 and |0〉 ↔ |3, 2〉.

Action-dependent case

If the dynamics is not directly near the r:s resonance, the independence of the amplitude
of the perturbation toward the action can be a crude approximation. In order to evalu-
ate the action dependence of Vr:s(Y ), the Birkhoff-Gustavson normal-form coordinates (or
quadrature variables) are introduced,

Q =
√

2Y cosαc, (4.3.24)

P = −
√

2Y sinαc, (4.3.25)

with Y = (Q2 + P 2)/2. These conjugate canonical variables can be obtained through a
canonical transformation from (φ, z) by assuming that H(φ, z, t)7 is analytic in φ and z in
the vicinity of the resonance [72]. It becomes possible to derive

e±iαc =
Q∓ iP√

2Y
, (4.3.26)

7A canonical transformation from the action-angle variable (αc, Y ) must be done carefully because there
is a singularity in Y = 0 for the derivatives.
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from which the perturbed part of the Hamiltonian (4.3.18) is transformed,

H(r:s)
res (αc, Y ) = K(Y )− ~Ωr:sY +

Vr:s(Y )

(2Y )r/2
(
(Q− iP )reiϕr:s + (Q+ iP )re−iϕr:s

)
. (4.3.27)

By assuming that H(r:s)
res is analytic in Q and P , the amplitude must at least be scaled in

such manner that the divergence is avoided, i.e. Vr:s(Y ) ∝ Y r/2 at least. In this framework,
the following ansatz Vr:s(Y ) = Y r/2ṽ [81] is done, which assumes no action dependence of ṽ,
and it leads to

Vr:s(Y ) = Vr:s

(
Y

Yr:s

)r/2
. (4.3.28)

The action-independent case is obtained exactly at the resonance such that Vr:s(Yr:s) = Vr:s.
The action dependence gives in principle a better description in the vicinity of the resonance.
Nevertheless, corrections of higher order of Y have been neglected, which could lead to an
underestimation or an overestimation of the amplitude Vr:s(Y ) far from the resonance.

Equation (4.3.28) leads to the reformulation of the Hamiltonian (4.3.18),

H(r:s)
res (αc, Y ) = K(Y )− ~Ωr:sY + 2Vr:s

(
Y

Yr:s

)r/2
cos (rαc + ϕr:s) . (4.3.29)

Incidentally, this Hamiltonian for r = 1 is to some extent similar to the unperturbed Bose-
Hubbard Hamiltonian (3.2.1), except that the former does not display a global symmetry
with respect to the conjugate momentum.

4.3.3 Quantization of the pendulum Hamiltonian

Action-independent case

In this section, the amplitude Vr:s(Y ) is first assumed to be independent of the action and
is replaced by Vr:s ≡ Vr:s(Yr:s). In this framework, the quantization of the pendulum Hamil-
tonian (4.3.18) is given by

Ĥ(r:s)
res = K(Ŷ )− ~Ωr:sŶ + 2Vr:s cos (rα̂c + ϕr:s) . (4.3.30)

The quantization of the action-angle variable must obey the following commutation rule
[α̂c, Ŷ ] = i such that

α̂c ≡ αc, Ŷ ≡ 1

i

∂

∂αc
. (4.3.31)
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The local quasimodes denoted by |n〉8 represent plane waves in αc representation, leading to
〈αc|n〉 = 1/

√
2π exp(i(n+ 1/2)αc). The quantization of the action reads9,10

Ŷ |n〉 = Yn|n〉 =

(
n+

1

2

)
|n〉. (4.3.32)

Figure 4.3.2 displays an example of quantization of the action for three quasimodes related
to the upper symmetric part of the phase space.

The perturbed part of the Hamiltonian introduces some admixture between the quasi-
modes [67, 79],

〈n± r|Ĥ(r:s)
res |n〉 = Vr:se

±iϕr:s . (4.3.33)

As the perturbation is relatively weak, an accurate description of the eigenvectors can be
obtained by means of the quantum perturbation theory [79],

|ψn〉 = |n〉+
∑
l=±1

〈n+ lr|Ĥ(r:s)
res |n〉

ε
(0)
n − ε(0)

n+lr + ls~ω
|n+ lr〉

+
∑
l=±1

〈n+ 2lr|Ĥ(r:s)
res |n+ lr〉

ε
(0)
n − ε(0)

n+2lr + 2ls~ω
〈n+ lr|Ĥ(r:s)

res |n〉
ε

(0)
n − ε(0)

n+lr + ls~ω
|n+ 2lr〉+ . . . (4.3.34)

It becomes possible to couple the quasimodes |n〉 and |n+kr〉 by implying the r:s resonance
in a k-step process. This relation can be written in a more concise way,

|ψn〉 =
∑
k

A(r:s)
n,n+kr|n+ kr〉, (4.3.35)

with

A(r:s)
n,n+kr =

k∏
j=sgn(k)

〈n+ jr|Ĥ(r:s)
res |n+ (j − sgn(j))r〉

ε
(0)
n − ε(0)

n+jr + js~ω
k 6= 0. (4.3.36)

Here we have A(r:s)
n,n = 1 for k = 0. Note that if k < 0, then we have j = −1,−2, . . . , k.

Moreover, the unperturbed energies are given by ε
(0)
n = K(Yn). The number of terms in

Eq. (4.3.35) is finite for a bounded phase space.

The admixture between |n〉 and |n + kr〉 becomes significant if the denominator of
Eq. (4.3.36) is close to zero. With the help of the quadratic expansion (4.3.19), the de-
nominator can be expressed as

ε(0)
n − ε

(0)
n+jr + js~ω ' 1

2mr:s

(Yn − Yn+jr)(Yn + Yn+jr − 2Yr:s). (4.3.37)

It is thus expected to obtain a strong admixture between |n〉 and |n+jr〉 if the r:s resonance
is symmetrically located between both coupled quasimodes.

8For the two-site Bose-Hubbard system, the link is given by |n1, n2〉 ↔ |n〉 = | |n1−n2|
2 − 1/2〉 for Np odd

with n = 0, 1, 2, . . . ConcerningNp even, the link is given by |n1, n2〉 ↔ |n〉 = | |n1−n2|
2 −1〉 with n = 0, 1, 2, . . .

The case n = −1 corresponds to the state |n1, n1〉 that doesn’t have the antisymmetric equivalent. This case
is omitted.

9The quantization can be applied to the dimensionless system such that ˆ̃Y |n〉 = ~eff(n + 1/2)|n〉 with
~eff = 2/(Np + 1).

10The additional factor 1/2 is there to reproduce the zero-point energy for the Np odd case. In the Np
even case, the eigenvalues read Yn = (n+ 1) with n = 0, 1, 2, . . . .
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All Fourier coefficients have been neglected in the Hamiltonian (4.3.30) except the first
one V1 ≡ Vr:s such that the only way to couple |n〉 with |n + kr〉 is through a k-step path.
It would have been possible to have a one-step coupling with Vk such that 〈n+ kr|Ĥ(r:s)

res |n〉
becomes a non-vanishing coupling matrix element. Nevertheless, it has been shown that
Vk decreases exponentially with k and that this process is negligible compared to the one
implying V1, especially in the semiclassical limit ~eff → 0 [68, 72,79].

Action-dependent case

In order to compute the coupling matrix elements that take into account the action depen-
dence of the coupling coefficient Vr:s(Y ), the Hamiltonian (4.3.29) is quantized in terms of
the normal-form coordinates,

Ĥ(r:s)
res = K(Ŷ )− ~Ωr:sŶ +

Vr:s
(2Yr:s)r/2

((
Q̂− iP̂

)r
eiϕr:s +

(
Q̂+ iP̂

)r
e−iϕr:s

)
. (4.3.38)

In this context, the ladders operators are expressed as a function of the normal-form operators
according to

â =
1√
2

(Q̂+ iP̂ ), (4.3.39)

â† =
1√
2

(Q̂− iP̂ ). (4.3.40)

This procedure of quantization is similar to the one used in Sec. 3.1 (in the opposite
direction, i.e. the mean-field approximation). It consisted in replacing the ladder operators
by complex numbers. In our present case, we would have 〈â〉 ∼ ψ =

√
Y e−iαc and 〈â〉 ∼

ψ∗ =
√
Y eiαc . The quantization in terms of the ladder operators reads

Ĥ(r:s)
res = K(Ŷ )− ~Ωr:sŶ + Vr:s

(
1

Yr:s

)r/2 ((
â†
)r
eiϕr:s + âre−iϕr:s

)
, (4.3.41)

with Ŷ = (â†â+ 1/2). The coupling matrix elements become modified in comparison to the
action-independent relation (4.3.33) [81],

〈n+ r|Ĥ(r:s)
res |n〉 = Vr:s

(
1

Yr:s

)r/2
eiϕr:s

√
(n+ r)!

n!
, (4.3.42)

〈n− r|Ĥ(r:s)
res |n〉 = Vr:s

(
1

Yr:s

)r/2
e−iϕr:s

√
n!

(n− r)!
. (4.3.43)

If the resonance is symmetrically located between both quasimodes |n〉 and |n−r〉 such that
Yr:s ' (n− r/2), the difference of outcome with the coupling (4.3.33) is not expected to be
significant. Nevertheless, important deviations arise when the resonance becomes close to
either |n〉 or |n− r〉. The reasoning with |n〉 and |n+ r〉 leads to the same conclusion.

By defining
V

(r:s)
n+jr ≡ 〈n+ jr|Ĥ(r:s)

res |n+ (j − sgn(j))r〉, (4.3.44)
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the expressions (4.3.42) and (4.3.43) can be generalized according to [81]

V
(r:s)
n+jr =


Vr:s

(
1

Yr:s

)r/2
eiϕr:s

√
(n+ jr)!

(n+ (j − sgn(j))r)!
j > 0

Vr:s

(
1

Yr:s

)r/2
e−iϕr:s

√
(n+ (j − sgn(j))r)!

(n+ jr)!
j < 0

. (4.3.45)

4.3.4 Tunneling rate modification via resonance-assisted tunneling

The unperturbed energy in the corotating frame ε̃(0)
n = ε

(0)
n − ~Ωr:sYn (where ε(0)

n = K(Yn)

is the unperturbed energy) is modified by the coupling matrix elements V (r:s)
n+jr, which are

supposed to be weak. Moreover, we have to bear in mind that there are two symmetric parts
in the phase space. Quantum mechanically speaking |n〉 possesses a symmetrically-related
quasimode with the same eigenvalue. In this case, the matrix modeling the eigenenergy
modification must be centrosymmetric, i.e. symmetric with respect to the counterdiagonal,

ε̃
(0)
n V

(r:s)
n−r ∆n

V
(r:s)∗

n−r ε̃
(0)
n−r V

(r:s)
n−2r ∆n−r

V
(r:s)∗

n−2r ε̃
(0)
n−2r

. . . ∆n−2r

. . . . . . ...
... . . . . . .

∆n−2r
. . . ε̃

(0)
n−2r V

(r:s)
n−2r

∆n−r V
(r:s)∗

n−2r ε̃
(0)
n−r V

(r:s)
n−r

∆n V
(r:s)∗

n−r ε̃
(0)
n


, (4.3.46)

with ε̃(0)
q = ε

(0)
q − ~Ωr:sYq, and the unperturbed splittings are given by 2∆q = ∆ε

(0)
q . If the

index n in the matrix (4.3.46) refers to the highest energy state, i.e. the NOON state in
the repulsive two-mode Bose-Hubbard case, this one is exact. If n is lower, the matrix is
still a good approximation as the unperturbed splittings ∆ε

(0)
l are expected to be weak in

comparison to ∆ε
(0)
n for l > n.

By assuming that the perturbation is weak, the modification of the tunneling rate through
the presence of a r:s resonance in the phase space reads [67,79]

∆εn =
0∑

k=kc

∣∣∣A(r:s)
n,n+kr

∣∣∣2 ∆ε
(0)
n+kr, (4.3.47)

where kc ≤ 0 takes into account the finite number of quantum eigenstates in the phase space.
The definition of A(r:s)

n,n+kr is given by the expression (4.3.36). If ε(0)
0 is assumed to be the

lower unperturbed energy, the expression of kc will read

kc = −
[n
r

]
, (4.3.48)

where the square brackets represent the integer part of the expression.

The unperturbed parameters ε(0)
q and ∆ε

(0)
q can be extracted from the phase space. On one

hand, the unperturbed energies can be computed through the canonical perturbation theory
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through ε(0)
q = K(Yq). On the other hand, the unperturbed splitting ∆ε

(0)
q can be computed

by means of an analytic continuation of the symmetrically-related tori in the complex domain.
This can be achieved by applying Eq. (4.2.4). An alternative is the unperturbed energies
computed in terms of the unperturbed quantum Hamiltonian Ĥ0. Moreover, the spectrum
of the eigenvalue equation (2.1.10) gives directly rise to the unperturbed splittings.

4.3.5 NOON states in near-integrable phase spaces

The ultimate purpose of this section is to generate a NOON state in a reasonable time. The
entanglement time is known to increase exponentially with the number of particles, which
plays the role of the semiclassical parameter. Moreover, as illustrated in the evaluations
(2.1.19), the higher the population imbalance is, the longer is the time τn1,n2 required to
produce an entangled state with the same probability for |n1, n2〉 and |n2, n1〉. Concerning
the NOON state, its entanglement time, also called the NOON time, is higher than all
other entanglement times of the states with smaller population imbalances. For Np = 5
and U/J = 20, the NOON time amounts to 6.0× 105~/J , which corresponds to 2.6× 103 s
for a typical optical lattice filled with 87Rb (see the relations (2.1.19) and the explanations
above). This time is prohibitively large knowing that the typical lifetime of a condensate in
an optical lattice is roughly 10 s [133].

The idea is to add a time-periodic modulation of the double well as indicated in Eq. (2.1.20).
This perturbation is able to produce nonlinear resonances in the mean-field approximation.
The Poincaré-Birkhoff theorem leads to Eq. (4.3.3), which links the external frequency ω
with the action Yr:s of the destroyed torus. This equation can be rewritten as

~ω ' r

s
2UYr:s, (4.3.49)

which indicates the frequency that must be applied in order to produce a r:s resonance
at the position z ' Yr:s in phase space. Moreover, in the context of resonance-assisted
tunneling, the positions of resonances in phase space have a huge impact on the transition
amplitude A(r:s)

n,n+kr between quasimodes |n〉 and |n + kr〉 as displayed in Eq. (4.3.36). As
indicated by development (4.3.37), the resonance must be symmetrically located between
both quasimodes in order to have a maximal effect on the tunneling rate.

Concerning the Np = 5 case, the equivalence between both notations of quasimodes reads

|2〉 ←→ |5, 0〉,
|1〉 ←→ |4, 1〉,
|0〉 ←→ |3, 2〉.

Figure (4.3.3) displays the positions of the quasimodes in phase space. Equation (4.3.49)
indicates that the frequency giving rise to a huge coupling for the coupling path

|2〉 2:1−→ |0〉 (4.3.50)

amounts to ω = 120 J/~ for U/J = 20. Indeed, as Y2 = 2.5 and Y0 = 0.5, the action Y2:1

must be equal to 1.5 to be symmetrically located between Y2 and Y0. The amplitude of the
perturbation δ/J = 75 is chosen such that the NOON time is minimal, which gives rise to

τ2 = 2.4× 103~/J → τ2 = 11 s. (4.3.51)
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The NOON time decreases by two orders of magnitude thanks to resonance-assisted tunneling
induced by a suitably tuned perturbation. The typical lifetime of a condensate in an optical
lattice presents the same order of magnitude, which may still be too long for an experimental
observation. That is why chaos in phase space will be introduced later, in order to gain some
more orders of magnitude.

In Fig. 4.3.3(b), the peak at Np = 5 is explained by the 2:1 resonance situated symmetri-
cally between |2〉 and |0〉. If Np continues to increase, the number of quantum eigenstates in
the phase space changes leading to a non-symmetrical position of the 2:1 resonance between
some quasimodes. For Np smaller than 5, there is no coupling matrix element implying the
2:1 resonance because of too few number of quasimodes.
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Figure 4.3.3: (a) Upper part of the phase space of the two-site Bose-Hubbard Hamil-
tonian in the mean-field approximation which displays a central 2:1 resonance. (b)
Tunneling rate as a function of the number of particles. The pure quantum calculation
of the tunneling rate (brown curve) is relatively well reproduced by the resonance-
assisted tunneling (RAT) theory (blue curve) taking into account the 2:1 resonance. A
peak is present for Np = 5 and is due to the fact that the 2:1 resonance is symmetrically
located between |2〉 and |0〉.

To model semiclassically the peak in Np = 5, resonance-assisted tunneling can be de-
scribed in terms of a matrix of the form

ε̃
(0)
2 V

(2:1)
0 0 ∆2

V
(2:1)∗

0 ε̃
(0)
0 ∆0 0

0 ∆0 ε̃
(0)
0 V

(2:1)
0

∆2 0 V
(2:1)∗

0 ε̃
(0)
2

 , (4.3.52)

with ε̃(0)
q = ε

(0)
q − ~Ω2:1Yq, V

(2:1)
0 = 〈0|H(2:1)

res |2〉 and the unperturbed splittings are given by
2∆q = ∆ε

(0)
q . In the case of weak perturbations, the modification of tunneling rate reads

∆ε2 ' ∆ε
(0)
2 +

∣∣∣〈0|H(2:1)
res |2〉

∣∣∣2∣∣∣ε(0)
2 − ε

(0)
0 − ~ω

∣∣∣2 ∆ε
(0)
0 . (4.3.53)



4.3. Resonance-assisted tunneling 77

This tunneling rate can be computed by using the characteristics of the 2:1 resonance,
i.e. Y2:1 = 1.5014, V2:1 = 0.02390J and m2:1 = 0.02497J−1. Moreover, the unperturbed
energies of the antisymmetric block, for example, can be used for the denominator. In this
context, the semiclassical evaluation of the NOON time reads

τ2 =
π~

2∆ε2
' 3.8× 103~/J, (4.3.54)

compared to the exact result τ2 = 2.4× 103~/J .

4.3.6 Multiple resonance case

The number of quantum eigenstates in phase space increases with 1/~eff , the semiclassi-
cal parameter. For the one-resonance processes, it will favor the multistep transitions for
large 1/~eff as it enables one to reach states that exhibit larger unperturbed tunneling rate
(characterized by small q in expression ∆ε

(0)
q ). More important, processes implying several

resonances will appear and will be more and more frequent in the semiclassical limit ~eff → 0
as the number of paths increases.

The generalization of the single-resonance Hamiltonian (4.3.29) is obtained by adding the
contributions of the other resonances. Introducing new resonances will introduce new cou-
pling matrix elements, some of them implying several resonances. If there are m resonances
denoted by r1:s1, r2:s2, . . . , rm:sm, then the modification of the tunneling rate follows [72]

∆εn =
∑

k1,k2,...,km

∣∣∣A(r1:s1)
n,n+k1r1

∣∣∣2 ∣∣∣A(r2:s2)
n+k1r1,n+k1r1+k2r2

∣∣∣2 . . . ∣∣∣A(rm:sm)
n+Km,n+Km+kmrm

∣∣∣2 ∆ε
(0)
n+Km+kmrm

+ perm(1, 2, . . . ,m), (4.3.55)

with Km = k1r1 + k2r2 + · · ·+ km−1rm−1. The perm(1, 2, . . . ,m) term takes into account all
terms generated by the permutations between r1:s1, r2:s2, . . . , rm:sm. For perm(1, 2, . . . ,m),
the terms with at least one kl = 0 are removed in order to avoid multiple counting. Never-
theless, the perm(1, 2, . . . ,m) term is in general negligible if the rl:sl are sorted according to
their consecutive order of apparition in the phase space, i.e. according to their actions. The
amplitudes read

A(rl:sl)
n+Kl,n+Kl+klrl

=

kl∏
j=sgn(kl)

〈n+Kl + jrl|Ĥ(rl:sl)
res |n+Kl + (j − sgn(j))rl〉

ε
(0)
n − ε(0)

n+Kl+jrl
+ (k1s1 + k2s2 + · · ·+ kl−1sl−1 + jsl)~ω

kl 6= 0,

(4.3.56)
with Kl = k1r1 + k2r2 + · · ·+ kl−1rl−1 and the prescription A(rl:sl)

ν,ν = 1.

The number of terms in Eq. (4.3.55) can be discouragingly large, especially in the semi-
classical limit. Fortunately, there is in general one dominant contribution that drives the
transition process. Equation (4.3.55) is mainly suitable to describe the tunneling rate in the
near-integrable regime, i.e. a regime where chaos is almost absent from the phase space.

4.3.7 Application to the two-site Bose-Hubbard system

Resonance-assisted tunneling (RAT) has been extensively studied for the one degree-of-
freedom systems, for which the phase space has the dimension two. In the near-integrable
regime, it was applied in particular to the kicked Harper model [67,68] and for the deformed
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Figure 4.3.4: (a) Upper part of the phase space of the dimensionless two-site Bose-
Hubbard Hamiltonian in the classical limit. Two main resonances are shown in red,
namely the 2:1 and the 3:1 resonances. (b) Tunneling rate related to the NOON state as
a function of the total number of particles. The semiclassical blue curve was obtained
through resonance-assisted tunneling (RAT) by taking into account the 2:1 and the 3:1
resonances drawn in red in panel (a). This curve is able to reproduce the tunneling rate
peaks of the exact results in brown. The text above each peak in panel (b) represents
the dominant contribution to the tunneling rate.

optical microcavities [70,71]. In the mixed regime, i.e. the regime where there is a coexistence
between regular and chaotic trajectories in the phase space, it was applied to molecular
system [69], the kicked Harper model [79], periodically-driven pendulum [84], the standard
map [72,81–83] and optical microcavities [71, 80].

This section proposes to add to this list the Bose-Hubbard system, here in the near-
integrable regime as displayed in Fig. 4.3.4. In the quantum regime (Np low), the transitions
imply only one resonance. As one goes further in the semiclassical limit, the multiresonant
processes cannot be put aside. The unperturbed case (δ/J = 0) gives rise to an exponential
decrease as specified in Eqs. (4.2.8) and (4.2.14). In the perturbed case, the average slope of
the exponential curve decreases, and there are peaks in the tunneling rate, as indicates the
brown and blue curves of Fig. 4.3.4(b). Above each peak is specified the dominant coupling
path between the quasimodes concerned.

Figure 4.3.5 displays semiclassical computations implying only one resonance, namely the
2:1 for (a) and the 3:1 for (b). The one-resonance processes are able to reproduce some peaks
but not all of them. Moreover, even if they reproduce the peak, they are not necessarily the
dominant processes. That is why the multiresonance processes must be taken into account,
especially in the semiclassical limit.

In order to determine the dominant path that enables one to reduce by several orders of
magnitude the NOON time, the action of the NOON state (denoted by n) in the fixed-size
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Figure 4.3.5: Both panels represents the tunneling rate of the NOON state as a func-
tion of the number of particles. The resonance-assisted tunneling (RAT) blue curves
were obtained by taking only into account (a) the 2:1 resonance, (b) the 3:1 resonance.
The exact calculation is represented by the brown curves. If the multiresonant pro-
cesses are neglected, some peaks are missed or partially reproduced, especially in the
semiclassical limit, i.e. for large Np.

phase space (see Eq. (4.2.18))

Ỹn = 1− 1

Np + 1
(4.3.57)

must be connected with the quasimodes characterized by the actions (see Eq. (4.1.2))

Ỹm = ~eff

(
m+

1

2

)
m = 0, 1, 2, . . . ,

Np − 1

2
; Np odd, (4.3.58)

Ỹm = ~eff(m+ 1) m = 0, 1, 2, . . . ,
Np

2
− 1; Np even. (4.3.59)

Here we have ~eff = 2/(Np + 1). The case m = −1 for Np even corresponds to the Fock state
|n1, n1〉. This case is not taken into account as there is no antisymmetric counterpart and
so no unperturbed tunneling rate associated11.

These connections are determined by the external frequency ω. The relation (4.3.3) claims
that ω is able to produce a r:s resonance with the action Ỹr:s. By fixing the frequency, the
positions of all resonances are fixed. From one r1:s1 resonance it becomes possible to find
the position of another r2:s2 resonance through

r1

s1

Ỹr1:s1 =
r2

s2

Ỹr2:s2 . (4.3.60)

11Actually, the coupling to the quasimode |n1, n1〉 would require modeling tunneling via a matrix (4.3.46)
with an odd dimension where the central element would be the unperturbed energy of this quasimode. In
this case, Eq. (4.3.47) must be modified. We didn’t take into account this very specific coupling for the
modeling of the tunneling rate.
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In the case (Np + 1)U/J = 120 and ~ω/J = 180, the dimensionless actions produced by the
external frequency read

Ỹ3:2 = 1,

Ỹ5:3 =
9

10
,

Ỹ2:1 =
3

4
,

Ỹ5:2 =
3

5
,

Ỹ3:1 =
1

2
,

Ỹ4:1 =
3

8
.

(4.3.61)

The respective areas of these resonances will depend on the amplitude of the external per-
turbation δ. Clearly, the two prominent resonances in the phase space 4.3.4(a) are 2:1 and
3:1.

Concerning Fig. 4.3.4(b) for Np = 14, the dominant coupling path reads

|6〉 2:1−→ |4〉 3:1−→ |1〉 (4.3.62)

such that the dominant term in the sum (4.3.55) is given by

∆ε6 '
∣∣∣A(2:1)

6,4

∣∣∣2 ∣∣∣A(3:1)
4,1

∣∣∣2 ∆ε
(0)
1 . (4.3.63)

In this specific case, the 2:1 resonance with an action Ỹ2:1 = 5.625~eff is more or less sym-
metrically located between the quasimodes Ỹ6 = 7~eff and Ỹ4 = 5~eff . Moreover, the 3:1
resonance with an action Ỹ3:1 = 3.75~eff is more or less symmetrically located between the
quasimodes Ỹ4 = 5~eff and Ỹ1 = 2~eff .

The arrangement of the action variables can be translated in terms of the arrangement
of the unperturbed spectrum. Here only the antisymmetric eigenvalues are displayed for
practical purpose,

ε−6 = 728.135J,

ε−5 = 624.161J,

ε−4 = 536.205J,

ε−3 = 464.286J,

ε−2 = 408.465J,

ε−1 = 368.877J,

ε−0 = 341.871J.

(4.3.64)

In this case, the energy difference ε−6 − ε−4 = 191.93J is roughly equal to ~ω = 180J as well
as the energy difference ε−4 − ε−1 = 167.328J . This means that ε−6 − ε−1 = 359.258J ' 2~ω,
leading to a large value for the prefactor |A(3:1)

4,1 | in Eq. (4.3.63). Moreover, this two-resonance
transition enables one to connect to the unperturbed tunneling rate ∆ε

(0)
1 = 0.297J which

is much higher than ∆ε
(0)
6 = 8.167× 10−21J , the direct transition. Note that the conclusion

would have been the same with the symmetric eigenenergies or those obtained through the
canonical perturbation theory with the quantization.

4.4 Beyond weak perturbations

Perturbations were assumed to be weak in order to obtain the tunneling rate modifications
(4.3.47) and (4.3.53). Because the transition matrix elements between quasimodes are not too
strong, the tunneling rate modification can be obtained perturbatively. This means that the
dynamics will be overwhelmingly determined by the two symmetrically-related quasimodes.
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The purity of a NOON state is introduced in order to verify if the two-level approximation
is still holding. This is defined as

p = M0 +MNp , (4.4.1)

with

Mn =
1

2T

∑
σ=±

∫ T

0

|〈n,Np − n|uσν (t)〉|2 dt, (4.4.2)

where |u±ν (t)〉 are the eigenstates which refers to the NOON state. For more details, see
Appx. A.2.2 for the Fock basis and Appx. A.3.4 for the symmetry-adapted basis. This
definition of purity can formally be identified with the time average of the expectation
value Tr[P̂ ρ̂] of the projector to the NOON doublet with respect to the density matrix
ρ̂ = |u+

ν (t)〉〈u+
ν (t)| + |u−ν (t)〉〈u−ν (t)|, meaning that we have p = 1/(2T )

∫ T
0
dt Tr[P̂ ρ̂] with

P̂ = |0, Np〉〈0, Np|+ |Np, 0〉〈Np, 0|

As indicated in Fig. 4.4.1(c) the purity for the 2:1 resonance stays close to 1 (p ' 0.999)
indicating that the two-levels approximation is still holding. Note that (a), (c) and (e),
which form a column, refer to the same combination of parameters. The two-level dynamics
between |0, 5〉 and |5, 0〉 is corroborated by Fig. 4.4.1(e), which represents the temporal
evolutions of the detection probabilities to obtain |n1, n2〉 knowing that the system was
initially in |φ(t0)〉 = |0, 5〉,

P|n1,n2〉(t) = |〈n1, n2|φ(t)〉|2. (4.4.3)

For the detailed expressions, see Appx. A.2.1 for the Fock basis and Appx. A.3.3 for the
symmetry-adapted basis.

If the coupling matrix element between two quasimodes is sufficiently strong, the two-level
approximation is no longer correct. For example, Fig. 4.4.1(d) indicates that the eigenvectors
display a strong admixture between 1/

√
2(|0, 5〉 ± |5, 0〉) and 1/

√
2(|1, 4〉 ± |4, 1〉) for the set

of parameters Np = 5, U/J = 20, δ/J = 12 and ~ω/J = 80. This has consequences for the
detection probabilities as seen in Fig. 4.4.1(f), where the oscillations take place between four
levels. There are fast oscillations between |0, 5〉 and |1, 4〉, and slow oscillations between |0, 5〉
and |5, 0〉. The trigger in phase space of this phenomenon is the presence of a prominent
1:1 resonance with the action Y1:1 ' 2, i.e. symmetrically located between |5, 0〉 and |4, 1〉 as
displayed in Fig. 4.4.1(b).

The idea behind the modeling of this phenomenon is to introduce a four-by-four matrix,
which is centrosymmetric in order to reproduce the site-permutation symmetry,

H =


E0 V 0 V0

V E1 V1 0
0 V1 E1 V
V0 0 V E0

 . (4.4.4)

In order to not overload the notation, the unperturbed energies in the absence of tunneling
are denoted by Em. The effective unperturbed couplings are given by Vm, and the coupling
caused by the external perturbation is denoted by V .

As the system is centrosymmetric, it is common to introduce a symmetry-adapted basis,

1√
2




1
0
0
1

 ,


0
1
1
0

 ,


1
0
0
−1

 ,


0
1
−1
0


 , (4.4.5)
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Figure 4.4.1: NOON states in the near-integrable regime. (a,b) Stroboscopic sections
of the phase space. (c,d) Admixtures of quasimodes. (e,f) Time evolution of the
detection probabilities. The left column represents the case where a 2:1 resonance
situated in z2:1 ' 1.5 couples the quasimodes |5, 0〉 and |3, 2〉 while the right column
represents the case where the 1:1 resonance located in z1:1 ' −2 couples the quasimodes
|0, 5〉 and |1, 4〉. For the latter, the two-level approximation does not hold and the
dynamic takes place on two timescales (see the relation (4.4.26) and the panels (d) and
(f)). For the 2:1 resonance case, the NOON time is given by τ = 2.4 × 103~/J , with
an excellent purity p = 0.999, while τs is equal to 112.3~/J in the 1:1 case. The tori in
red represent the classical trajectories related to the NOON state.
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to decompose the matrix in it,

H =

(
S 0
0 A

)
, (4.4.6)

S =

(
E0 + V0 V
V E1 + V1

)
, A =

(
E0 − V0 V
V E1 − V1

)
. (4.4.7)

Here S represents the symmetric block while A is the antisymmetric block. The eigenvalues
are given by12

ε−1 =
E1 + E0 − (V1 + V0)

2
−
√

(E1 − E0 − (V1 − V0))2

4
+ V 2 (block A), (4.4.8)

ε+2 =
E1 + E0 + (V1 + V0)

2
−
√

(E1 − E0 + (V1 − V0))2

4
+ V 2 (block S), (4.4.9)

ε−3 =
E1 + E0 − (V1 + V0)

2
+

√
(E1 − E0 − (V1 − V0))2

4
+ V 2 (block A), (4.4.10)

ε+4 =
E1 + E0 + (V1 + V0)

2
+

√
(E1 − E0 + (V1 − V0))2

4
+ V 2 (block S). (4.4.11)

For example, the case shown in Fig. 4.4.1(f) can be approximately described by oscilla-
tions between the quasimodes |0, 5〉, |1, 4〉, |4, 1〉 and |5, 0〉. By assuming that

|0, 5〉 ↔


1
0
0
0

 , |1, 4〉 ↔


0
1
0
0

 , |4, 1〉 ↔


0
0
1
0

 , |5, 0〉 ↔


0
0
0
1

 , (4.4.12)

we have

E0 = ε
(0)
0,5, (4.4.13)

E1 = ε
(0)
1,4 + ~ω. (4.4.14)

Here ε(0)
n1,n2 refers to the quasimode |n1, n2〉 or the quasimode |n2, n1〉. The eigenvectors take

the following form for E1 − E0 ± (V1 − V0) > 0,

|1〉 = cos θ−
(

1√
2

(|0, 5〉 − |5, 0〉)
)
− sin θ−

(
1√
2

(|1, 4〉 − |4, 1〉)
)
, (4.4.15)

|2〉 = cos θ+

(
1√
2

(|0, 5〉+ |5, 0〉)
)
− sin θ+

(
1√
2

(|1, 4〉+ |4, 1〉)
)
, (4.4.16)

|3〉 = sin θ−
(

1√
2

(|0, 5〉 − |5, 0〉)
)

+ cos θ−
(

1√
2

(|1, 4〉 − |4, 1〉)
)
, (4.4.17)

|4〉 = sin θ+

(
1√
2

(|0, 5〉+ |5, 0〉)
)

+ cos θ+

(
1√
2

(|1, 4〉+ |4, 1〉)
)
, (4.4.18)

with
tan(2θ±) =

2V

E1 − E0 ± (V1 − V0)
. (4.4.19)

12The assumptions E1 − E0 ± (V1 − V0) > 0 (⇒ E1 > E0), V1 > V0 and V0 > 0 can be made in order to
have ε−1 < ε+2 < ε−3 < ε+4 . Note that the index m of ε±m doesn’t refer to a specific quasimode as there are
strong admixtures.
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In the strong coupling case |V | � 1
2
|E1−E0±(V1−V0)|, the eigenvalues can be developed

in series according to

ε−1,3 =
E1 + E0 − (V1 + V0)

2
∓ |V |

(
1 +

1

8

(E1 − E0 − (V1 − V0))2

V 2
+O

(
1/V 4

))
(4.4.20)

ε+2,4 =
E1 + E0 + (V1 + V0)

2
∓ |V |

(
1 +

1

8

(E1 − E0 + (V1 − V0))2

V 2
+O

(
1/V 4

))
. (4.4.21)

This leads to

ε+2 + ε−3 ' ε−1 + ε+4 (4.4.22)
|θ±| ' π/4. (4.4.23)

Hence, with the additional assumption V > 0, we obtain13

θ± ' π/4. (4.4.24)

From an initial state |φ(0)〉 = |0, 5〉 ' 1
2
(|1〉+ |2〉+ |3〉+ |4〉), the time evolution reads14,15

|φ(t)〉 '1

2

(
e−iε

−
1 t/~|1〉+ e−iε

+
2 t/~|2〉+ e−iε

−
3 t/~|3〉+ e−iε

+
4 t/~|4〉

)
=

1

4
[e−iε

−
1 t (|0, 5〉 − |5, 0〉 − |1, 4〉+ |4, 1〉)

+ e−iε
+
2 t (|0, 5〉+ |5, 0〉 − |1, 4〉 − |4, 1〉))

+ e−iε
−
3 t (|0, 5〉 − |5, 0〉+ |1, 4〉 − |4, 1〉)

+ e−iε
+
4 t (|0, 5〉+ |5, 0〉+ |1, 4〉+ |4, 1〉)]

' cos

(
Ωs

2
t

)[
cos

(
Ωf

2
t

)
|0, 5〉 − i sin

(
Ωf

2
t

)
|1, 4〉

]
− i sin

(
Ωs

2
t

)[
cos

(
Ωf

2
t

)
|5, 0〉 − i sin

(
Ωf

2
t

)
|4, 1〉

]
, (4.4.26)

13If E0 = E1 and V0 = V1, the results ε2 + ε3 = ε1 + ε4 and θ± = π/4 are exact. Nevertheless, it is
expected to have V1 � V0 in the two site-optical lattice as the tunneling rate decreases significantly with
the population imbalance.

14In summary, this result is valid if the following assumption is fulfilled,

V � 1

2
(E1 − E0 ± (V1 − V0)) > 0. (4.4.25)

15If we had assumed V < 0, we would have had θ± ' −π/4 and the temporal evolution would have been

|φ(t)〉 ' cos

(
Ωs
2
t

)[
cos

(
Ωf
2
t

)
|0, 5〉+ i sin

(
Ωf
2
t

)
|1, 4〉

]
− i sin

(
Ωs
2
t

)[
cos

(
Ωf
2
t

)
|5, 0〉+ i sin

(
Ωf
2
t

)
|4, 1〉

]
.

Note that the detection probabilities are the same for both signs of V .
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where the frequencies Ωs and Ωf refer respectively to the slow and the fast oscillations,

Ωs =
ε+4 − ε−3 + ε+2 − ε−1

2~
, (4.4.27)

Ωf =
ε+4 − ε+2 + ε−3 − ε−1

2~
. (4.4.28)

The probabilities of detection for the quasimodes, P|n1,n2〉(t) = |〈n1, n2|φ(t)〉|2, exhibit
the two timescales of the dynamics, which enables one to model the numerical results in
Fig. 4.4.1(f),

P|0,5〉(t) = cos2

(
Ωs

2
t

)
cos2

(
Ωf

2
t

)
,

P|1,4〉(t) = cos2

(
Ωs

2
t

)
sin2

(
Ωf

2
t

)
,

P|5,0〉(t) = sin2

(
Ωs

2
t

)
cos2

(
Ωf

2
t

)
,

P|4,1〉(t) = sin2

(
Ωs

2
t

)
sin2

(
Ωf

2
t

)
.

For the parameters Np = 5, U/J = 20, δ/J = 12 and ~ω/J = 80, the perturbed
quadruplet obtained through the exact diagonalization reads

ε+4 = 200.4351J,

ε−3 = 200.4197J,

ε+2 = 199.7674J,

ε−1 = 199.7548J,

(4.4.29)

which enables one to measure the degree of deviation from the assumption (4.4.22),

ε+4 + ε−1 − ε−3 − ε+2 = 2.713× 10−3J. (4.4.30)

The spectrum (4.4.29) determines the characteristic times of the slow oscillations, τs, and
the fast oscillations, τf ,

τs =
π

2|Ωs|
= 112.3~/J,

τf =
π

2|Ωf |
= 2.357~/J.

(4.4.31)

Here τs represents the time required to obtain a NOON state, i.e. the NOON time. For
typical optical lattice parameters filled with 87Rb atoms (see Eq. (2.1.18)), the NOON time
corresponds to τs = 0.49s.

In order to obtain a perfectly balanced NOON state without impurities, i.e. with P|0,5〉 =
P|5,0〉 = 0.5, on time τs, the frequency ratio Ωf/Ωs must by divisible by four according to
Eq. (4.4.26). Fine-tuning of the amplitude of the driving δ is a way to achieve this purpose,
but this may become very difficult in practice. Alternatively, if Ωf/Ωs is not exactly a
multiple of four (such as Ωf/Ωs = 47.62 in our case), it is possible to create a NOON state
without impurities (P|0,5〉 + P|5,0〉 = 1), but with a small bias between P|0,5〉 and P|5,0〉. By
inspecting the zoom around τs shown in Fig. 4.4.2, the measurement time, tm, can be chosen
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Figure 4.4.2: Close-up around τs of the detection probabilities for the 1:1 resonance
case (see Fig. 4.4.1(f)). Even though this configuration is not able to produce a perfectly
unbiased NOON state (P|0,5〉 = P|5,0〉 = 0.5), a slightly biased NOON state with almost
no impurity, i.e. P|0,5〉 + P|5,0〉 ' 1 and P|0,5〉 − P|5,0〉 = 8.5 × 10−3, can be realized
by choosing the measurement time slightly larger than τs = 112.3~/J , namely tm =
113.25~/J .

"by hand" in order to meet these criteria. For example, if we choose a tm = 113.25~/J
slightly larger than τs, we obtain P|0,5〉 ≈ P|5,0〉 ≈ 0.5 with P|0,5〉 − P|5,0〉 = 8.5 × 10−3 and
P|4,1〉 ≈ P|1,4〉 ≈ 10−3.

4.4.1 Semiclassical evaluation of the four-level oscillations

Even in the strong perturbation regime, the framework of resonance-assisted tunneling can
still be used, as far as the matrix modeling (4.3.46) is concerned. Nevertheless, it becomes
no longer possible to associate specific quasimodes to the results of the diagonalization,
rendering invalid the relation (4.3.47).

More specifically, the effect of the 1:1 resonance (see Fig. 4.4.1(b)) on the new eigenvalues
can be modeled by 

ε̃
(0)
2 V

(1:1)
1 0 ∆2

V
(1:1)∗

0 ε̃
(0)
1 ∆1 0

0 ∆1 ε̃
(0)
1 V

(1:1)
1

∆2 0 V
(1:1)∗

1 ε̃
(0)
2

 , (4.4.32)

where V (1:1)
1 is defined in Eq. (4.3.44) and ε̃(0)

m = ε
(0)
m − ~ωYm. The unperturbed energies and

splittings are respectively given by ε(0)
m and ∆ε

(0)
m = 2∆m. The exact diagonalization of this
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matrix leads to the following eigenvalues,

ε−1,3 =
ε̃

(0)
1 + ε̃

(0)
2 − (∆1 + ∆2)

2
∓

√√√√(ε̃(0)
1 − ε̃

(0)
2 − (∆1 −∆2)

)2

4
+
∣∣∣V (1:1)

1

∣∣∣2, (4.4.33)

ε+2,4 =
ε̃

(0)
1 + ε̃

(0)
2 + (∆1 + ∆2)

2
∓

√√√√(ε̃(0)
1 − ε̃

(0)
2 + (∆1 −∆2)

)2

4
+
∣∣∣V (1:1)

1

∣∣∣2. (4.4.34)

The purpose is to reproduce the two exact characteristic times (4.4.31) by means of the
features of the phase space 4.4.1(b), especially the features of the 1:1 resonance.

Y1:1 = 2.0014 (4.4.35)
V1:1 = 0.3285J (4.4.36)
m1:1 = 0.02506J−1 (4.4.37)

Moreover, the expression of the coupling matrix element V (1:1)
1 obtained from Eq. (4.3.44)

reads

V
(1:1)

1 = V1:1

√
2

Y1:1

e−iϕ1:1 . (4.4.38)

The unperturbed splittings are computed either from the analytic continuation of the clas-
sical trajectories in the complex domain (4.2.8) or from the spectrum of the unperturbed
system (2.1.14).

By using the antisymmetric block for the unperturbed energies, the timescales of the
slow and the fast oscillations read respectively

τs = 105.5~/J, τf = 2.369~/J, (4.4.39)

which reproduce relatively well the exact results (4.4.31).

4.4.2 Improvement of the resonant condition

As pointed out in Eqs. (4.4.22) and (4.4.23), the strong coupling condition must be fulfilled
in order to observe four-level oscillations. One method to reach that is to tune the driv-
ing frequency to an exact resonance in the Floquet spectrum. The canonical perturbation
theory is a way to determine the frequency that will couple some specific quasimodes (see
Eq. (4.3.49)). Another way is to choose a frequency that is a multiple of the energy difference
between the unperturbed energies ε(0)

n and ε(0)
n−kr according to [72]

~ω =
ε

(0)
n − ε(0)

n−kr

ks
, (4.4.40)

where r:s is the nonlinear resonance that couples both levels, and k is the number of steps
to connect them. This relation is obtained by canceling the denominator of Eq. (4.3.36).

In this context, a precise determination of the unperturbed energies can help to obtain
an ω that will fulfill the resonant condition. By using Eqs. (4.1.8) obtained in the framework
of the canonical perturbation theory up to the second order, the unperturbed energies for
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Figure 4.4.3: (a) Numerical detection probabilities as a function of time. (b) Zoom
around tm = 113.7~/J , the time related to the formation of the NOON state. By
tuning an external frequency as exact as possible to a resonance in the Floquet spec-
trum, it is possible to improve the strong coupling assumption (4.4.25), which leads
to an improvement of the four-level oscillations as indicated by this figure and by the
computation (4.4.41).

the parameters Np = 5 and U/J = 20 read

ε
(0)
2 = 200.061J,

ε
(0)
1 = 120.125J,

ε
(0)
0 = 80.925J.

The assumption of strong perturbation for the 1:1 resonance of Fig. 4.4.1 can be improved
with ~ω = ε

(0)
2 − ε

(0)
1 = 79.936J leading to an improvement of condition (4.4.22) such that

ε+4 + ε−1 − ε−3 − ε+2 = 2.429× 10−5J, (4.4.41)

for δ/J = 12. Figure 4.4.3 displays the improved four-level oscillations with a driving
frequency slightly different from 80J/~. Thanks to Fig. 4.4.3(b), which shows a zoom around
the NOON time, it is possible to choose by hand a time, tm, for the detection probabilities.
With tm = 113.7~/J , we have P|5,0〉+P|0,5〉 ≈ 0.999 and P|4,1〉+P|1,4〉 ≈ 10−3, which is similar
to the results of the previous frequency. Nevertheless, the bias is more important and is
equal to P|5,0〉−P|0,5〉 ≈ 1.86× 10−2. Actually, we use the same amplitude δ to compute this
case as the other one in Fig. 4.4.2. By fine-tuning the amplitude while adjusting tm, it is
possible to decrease the bias and the impurities. Moreover, the improvement of the condition
ε+4 + ε−1 − ε−3 − ε+2 = 0 in Eq. (4.4.41) guarantees us that the purity can be enhanced.
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4.5 Resonance- and chaos-assisted tunneling

4.5.1 NOON states in mixed phase spaces

Besides the resonances, chaos in phase space is expected to play a role on the tunneling
rate. As shown Fig. 4.5.1 the combination between nonlinear resonances and chaos induces
a significant decrease of the NOON time τ . Figure 4.5.1(d), (e) and (f) are the mean-field
dynamics associated with panels (a), (b) and (c) respectively. The latter show the results of
numerically simulated in situ measurements as a function of time of spinless bosonic atoms
trapped in a double-well potential.

For the non-interacting conditions (U = 0), tunneling occurs through individual atomic
transfer in a periodic way leading to Josephson oscillations [145,146]. The mean-field dynam-
ics of Fig. 4.5.1(d) displays huge variations for the population imbalance. At the quantum
level, it means that the eigenstates display non-negligible admixtures in terms of the quasi-
modes. In this configuration, it is impossible to build a NOON state.

A regime of self-trapping [21, 53–61], also called Fock regime, appears with sufficiently
interacting atoms for high population imbalances as displayed in Figs. 4.5.1(e) and (f).
In the case of Fig. 4.5.1(e), there is a coexistence between Josephson oscillations, where the
hopping term dominates, and self-trapping, where the effective on-site interaction dominates,
namely for low and high population imbalances respectively. In the self-trapping regime, the
mismatches between the chemical potentials of both sites inhibit the one by one transition.
Nevertheless, after a sufficiently long time, the system will experience a collective transfer of
particles. This giant transfer of matter is due to the quasidegeneracy between the symmetric
and antisymmetric superposition of |Np, 0〉 and |0, Np〉, i.e. the almost eigenstates related to
the NOON state.

The dynamics schematized in Figs. 4.5.1(b) and (c) are qualitatively the same. Never-
theless, the order of magnitude of the NOON time is quite different: τ(δ = 0) = 6.0×105~/J
in the unperturbed regime, and τ(δ = 19.5J) = 1.9 × 102~/J in the perturbed one char-
acterized by δ/J = 19.5 and ~ω/J = 20. It is consistent with an abundant amount of
literature [67, 68, 71–79, 81–84] which suggests that nonlinear resonances and chaos have a
huge impact on the tunneling rate. For a typical optical lattice characterized by a wave-
length λ = 1064 nm filled with 87Rb characterized by a mass m = 1.443 × 10−25 kg and a
s-wave scattering length as = 5.313 nm, we obtain ~/J = 4.4× 10−3 s (see Sec. 1.3.3 for the
derivations). This leads to the NOON time τ(δ = 19.5J) = 0.84 s while we obtained in the
unperturbed case τ(δ = 0) = 2.6× 103 s.

In the next section, the combined effects of the 1:4 resonance located at z1:4 ' ±2, the
1:3 resonance at z1:3 ' ±1.5 and the central chaotic sea (where the quasimodes displays
strong admixture) will be able to explain semiclassically that decrease of the NOON time.
The dominant path that speeds up the transition to the NOON states will be given by

|2〉 1:4−→ |1〉 1:3−→ chaotic sea, (4.5.1)

where |2〉 and |1〉 correspond respectively to |5, 0〉 and |4, 1〉.

To build the phase space 4.5.1(f), the relation (4.3.49) was used to determine the fre-
quency producing a 1:4 resonance in z1:4 ' ±2 symmetrically located between |2〉 and |1〉,
i.e. ~ω = 20J . Moreover, the interplay between the central unperturbed island in the phase
space 4.5.1(e) and the 1:1 resonance in z1:1 ' ±0.5 leads to the central chaotic layer.
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Figure 4.5.1: Sequential (a) and collective tunneling (b and c) of ultracold bosonic
atoms in a double-well potential, in the absence (a and b) and in the presence (c) of a
periodic driving. In the upper panels (a-c), a measurement process of the number of
atoms within individual wells is numerically simulated for various evolved times, based
on the numerical time evolution generated by the Hamiltonian (2.1.20). The lower
panels (d-f) represent the corresponding phase spaces in the mean-field approximation
(see the Hamiltonian (3.1.11)). The population imbalance and the phase difference
between site 1 and 2 are respectively z = (N1 − N2)/2 and φ = θ1 − θ2. The red
trajectories are the classical counterparts of the upper quantum dynamics. (a,d) In the
absence of interaction, tunneling occurs one by one, leading to Josephson oscillations.
(b,e) In the presence of interaction (U = 20J), collective tunneling takes place, but on
a very long timescale, τ = 6.0 × 105~/J . The phase space displays two qualitatively
different dynamics, namely Josephson oscillations for low population imbalances and
self-trapping for high population imbalance. (c,f) In the presence of a periodic shaking
characterized by an amplitude δ/J = 19.5 and a frequency ~ω/J = 20, collective
tunneling occurs on a much shorter timescale, τ = 1.9 × 102~/J . The presence of a
central chaotic layer, a 1:4 resonance roughly situated at z = ±2 and a 1:3 one in
z ' ±1.5 is able to explain the decrease of the NOON time.
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Figure 4.5.2: NOON doublet in the Floquet spectrum as a function of the driving
amplitude. Panel (a) represents a block of the periodic Floquet spectrum (with even-
parity levels being marked in black and odd-parity levels in red). Panel (b) displays a
close-up of the block in (a) and panel (c) shows the NOON time calculated from panel
(b) and the relation (2.1.17). The minimal τ appears roughly in δ/J ' 19.5, which was
used to produce Figs. 4.5.1(c) and (f). This result is robust in the sense that a range
between δ/J ' 12 and 22 can be chosen to observe the reduction by several orders of
magnitude of the NOON time.

In order to find an optimal value of δ, all other parameters are fixed and the NOON time
is computed as a function of δ. Figure 4.5.2(c) suggests that the a NOON-time minimum is
reached for δ/J ≈ 19.5. This result is robust, meaning that there is a range between approx-
imately δ/J = 12 and 22 where the decrease of the NOON time is observable. This range
begins roughly at a level repulsion near δ/J = 10 for which the doublet of the symmetric and
antisymmetric combination of |0, 5〉 and |5, 0〉 is crossed by the antisymmetric combination
of |1, 4〉 and |4, 1〉 (see the dashed line of Fig. 4.5.2(b)). After that, the splitting gains several
orders of magnitude. The more δ/J is increased, the larger the chaotic sea is. For δ/J > 25,
the quasimodes |0, 5〉 and |5, 0〉 begin to be diluted in the central chaotic layer. Beyond this
point, the notions of splitting and NOON time are no longer meaningful.

In view of the latter considerations, a legitimate preoccupation could be the implication
of the external driving on the purity of the NOON state. Indeed, the driving tends to
decrease the NOON time, but tends also to increase the admixture between the NOON
state and the other quasimodes. A time-independent indicator of the purity of the NOON
state is given by the time-average (4.4.1). The time average over one driving period allows
one to eliminate small periodic oscillations of the purity related to micromotions, which
are not of interest here. Figure 4.5.3(b) suggests that the resulting purity is roughly equal
to p = 0.99. Therefore, the two-level approximation seems to hold. Nevertheless, it is
true that the introduction of the perturbation decreases the purity as this one is better for
the unperturbed case (see Fig. 4.5.3(a)), i.e. p = 0.999. Figure 4.5.3 shows that the time
evolution of the transition probabilities can be described in terms of two-state dynamics
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Figure 4.5.3: Overlap between the quasimodes |n,Np − n〉 (n = 0, 1, 2, 3, 4, 5) and
the Floquet eigenstates according to Eq. (4.4.2). Even for the perturbed system (b)
and (d), the two-level approximation can still be justified as M0 = MNp ≈ 0.5. Panels
(c) and (d) display the detection probabilities knowing that the system is prepared in
|0, 5〉. While (a) and (c) show the unperturbed case, (b) and (d) display the situation
with a frequency ~ω/J = 20 that produces a chaotic layer and prominent 1:4 and 1:3
resonances as displayed in Fig. 4.5.1(f).

in both cases. This constitutes the advantage of the mixed phase space in comparison to
the 1:1 resonance case in the near-integrable regime, Fig. 4.4.1(f), for which there are more
constraints concerning the time precision of the NOON-state measure.

Figure 4.5.4: Evolution of the phase space with Np. The nonlinear parameter (Np +
1)U/J and ~ω/J are kept constant in order to preserve the phase space for δ = 0. Here
δ/J is chosen such that a minimum of the NOON time is reached for Np = 5, 6, 7. We
choose δ/J = 19.5, 50, 44 respectively. Note that for Np = 6 and 7 the NOON states
(highlighted by red shading on the phase space) are separated from the chaotic sea by
partial barriers [72,75,76].
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As pointed out in Eq. (4.2.14), the splitting between two related quasimodes is known
to decrease exponentially with Np, leading to an exponential increase of the NOON time.
This is also the case for δ 6= 0, but the increase is not so extreme. In Fig. 4.5.4, Np is
increased while keeping the nonlinear parameter (Np + 1)U/J and ~ω/J constant. From an
experimental point of view, this particular scaling can be achieved by an adaptation of the
lattice parameters without the need of modifying the s-wave scattering length as. Keeping
the nonlinear parameter constant enables one to preserve the same phase space for δ = 0.

Np Jτδ=0/~ Jτδ 6=0/~ pδ 6=0

5 6.0× 105 1.9× 102 0.988
6 2.3× 107 5.5× 102 0.968
7 9.2× 108 1.4× 103 0.987

Table 4.1: Comparison of the behaviors of the NOON time as a function of the
total number of particles Np in the unperturbed and perturbed systems. The NOON
time is expected to exponentially increase with the semiclassical parameter Np. The
third column shows that this increase is softened by the external perturbation, suitably
tuned in order to reach a minimum of the NOON time. These minima are obtained at
δ/J = 19.5, 50, 44 for Np = 5, 6, 7 respectively. As shown in the fourth column, the
purities stay reasonable in the perturbed case.

Figure 4.5.4 represents three phase spaces for Np = 5, 6, 7 with δ/J = 19.5, 50, 44,
respectively, which correspond to minima of the NOON time τ . For Np=6 and 7, the NOON
states (in red) appear to be inside the chaotic region. However, they are still isolated from
the chaotic part of the Floquet spectrum by the presence of partial barriers in the phase
space [72,75,76]. As shown in Table 4.1, the NOON time with a perturbation increases with
Np as expected. Nevertheless, this increase is slowed down in comparison to the one in the
unperturbed case. In addition to the reduction the NOON time, the external perturbation
is also able to decrease the slope of τ as a function of Np (see Table 4.1). Resonance- and
chaos-assisted tunneling therefore opens interesting perspectives to create increasingly big
entangled states.

4.5.2 Modeling of the chaotic sea

In the framework of resonance-assisted tunneling, the coupling matrix elements between the
quasimodes are introduced as a function of the features of the nonlinear resonances. The
chaotic sea can be modeled by introducing a block inside the matrix (4.3.46) describing the
modification of the tunneling rate [72,78,79,84] such that

Heff =



ε
(0)
n Veff 0 · · · 0 ∆n

Veff 0

0 chaos
...

... 0
0 Veff

∆n 0 · · · 0 Veff ε
(0)
n


, (4.5.2)

where Veff is the effective coupling to the chaotic sea. This matrix must be compatible
with the global symmetry of the system, i.e. it must commute with the operator associated
with the discrete symmetry. In the case of the site-inversion symmetry, the matrix must be
centrosymmetric.
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The effective coupling Veff takes into account all paths enabling to reach the chaotic sea
with the m resonances r1:s1, r2:s2, . . . , rm:sm [72],

V 2
eff =

m∑
l=1

∑
k1,k2,...,km

∣∣∣A(r1:s1)
n,n+k1r1

∣∣∣2 ∣∣∣A(r2:s2)
n+k1r1,n+k1r1+k2r2

∣∣∣2 . . . ∣∣∣A(rm:sm)
n+Km,n+Km+kmrm

∣∣∣2 ∣∣∣V (rl:sl)
n+Km+kmrm−rl

∣∣∣2
+ perm(1, 2, . . . ,m). (4.5.3)

Here we have Km = k1r1 + k2r2 + · · · + km−1rm−1. If n̄ is the index of the last state inside
the regular region, the last step to reach the chaotic sea must obey n + Km + kmrm − rl <
n̄ and n + Km + kmrm > n̄16. The perm(1, 2, . . . ,m) term takes into account all terms
generated by the permutations between r1:s1, r2:s2, . . . , rm:sm. For perm(1, 2, . . . ,m), the
terms with at least one kl = 0 are removed in order to avoid multiple counting. Nevertheless,
the perm(1, 2, . . . ,m) term is in general negligible if the rl:sl are sorted according to their
consecutive order of apparition in phase space. The amplitudes read

A(rl:sl)
n+Kl,n+Kl+klrl

=

kl∏
j=sgn(kl)

〈n+Kl + jrl|Ĥ(rl:sl)
res |n+Kl + (j − sgn(j))rl〉

ε
(0)
n − ε(0)

n+Kl+jrl
+ (k1s1 + k2s2 + · · ·+ kl−1sl−1 + jsl)~ω

kl 6= 0,

(4.5.4)
with Kl = k1r1 +k2r2 + · · ·+kl−1rl−1 and with the prescription A(rl:sl)

ν,ν = 1. Equation (4.5.3)
can rapidly display numerous terms, especially with a lot of resonances for a high dimension
of the Hilbert space. Nevertheless, is is still possible to have good insight as there exists in
general one dominant coupling path.

Figure 4.5.5 displays the phase space studied in the preceding section, for which Np = 5,
U = 20J , δ = 19.5J and ~ω = 20J . This phase space displays two prominent resonances,
namely r1:s1 = 1:4 and r2:s2 = 1:3 characterized by the actions Yrl:sl , the amplitudes Vrl:sl
and the effective masses mrl:sl (see the Hamiltonians (4.3.20) and (4.3.29)),

Y1:4 = 2.004,

V1:4 = 0.06857J,

m1:4 = 0.02491J−1,

Y1:3 = 1.511,

V1:3 = 0.3017J,

m1:3 = 0.02491J−1.

(4.5.5)

The effective coupling to chaos (4.5.3) can be approximated by the term which contributes
the most,

V 2
eff '

∣∣∣V (r1:s1)
n−r1

∣∣∣2∣∣∣ε(0)
n − ε(0)

n−r1 − s1~ω
∣∣∣2
∣∣∣V (r2:s2)
n−r1−r2

∣∣∣2 . (4.5.6)

The transition (4.5.6) can be schematically represented by the coupling path

|2〉 1:4−→ |1〉 1:3−→ chaos, (4.5.7)

illustrated by the green and orange arrows in the phase space (4.5.5) while the red one
represents the direct transition.

Visibly the quasimode |1〉 of Fig. 4.5.5 is embedded in the chaotic layer. However, there
exists in mixed systems a kind of "gray zone", defined by the partial barriers [72, 74, 75],
between the regular and the chaotic part of the phase space. The partial transport barriers

16This prescription is valid for the two-site Bose-Hubbard system for which Km is negative. For some
other systems (for example the standard map), the inequality symbols must be inverted [72].
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are made of weakly connected chaotic subregions, where resonance chains, embedded in
the chaotic part of the phase space, prevent the abrupt transition to the chaotic sea. In
our specific case, the homoclinic tangle [65, 66] of the 1:3 resonance defines the innermost
position of the partial barriers.

-π -π/2 0 π/2 π

φ

-3

-2

-1

0

1

2

3

z

N
p
=5; U=20J

δ=19.5J; h
_ 
ω=20J

|2〉

|1〉

|0〉

Figure 4.5.5: Stroboscopic map of the periodically-driven two-site Bose-Hubbard
Hamiltonian. The red arrow represents the direct transition between both quasimodes
related to the NOON state (red tori). The path defined by the green and orange arrows
represents the dominant transition to chaos by means of the 1:4 resonance (in green)
and the 1:3 (in orange).

Before describing a model of the chaotic block, the matrix (4.5.2) can be separated in its
symmetric H+

eff and antisymmetric part H−eff ,

H±eff =

(
ε

(0)
n Veff

Veff H±chaos

)
. (4.5.8)

Here the direct transition ∆n is neglected. The chaotic block is characterized by the eigen-
values E±j and the eigenvectors |Φ±j 〉,

Ĥ±chaos|Φ
±
j 〉 = E±j |Φ±j 〉. (4.5.9)

A way presented in [76, 77] to model the chaotic sea is to replace each chaotic block of
(4.5.8) by a random matrix of the Gaussian orthogonal ensemble (GOE),

H±chaos −→ GOE .

The (H±chaos)ij are the elements of the chaotic blocks, and, according to GOE, they are chosen
randomly while preserving the symmetric structure of the Hamiltonian with real entries such
that (H±chaos)ij = (H±chaos)ji. This assumption gives rise to the following modification of the
eigenenergies [72, 79],

ε±n = ε(0)
n +

Nc∑
j=1

∣∣∣〈Φ±j |V̂ ±|n〉∣∣∣2
ε

(0)
n − E±j

. (4.5.10)
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The splitting is obtained with ∆εn = |ε−n − ε+n |. Here (V̂ ±) is the coupling matrix after the
prediagonalization of H±chaos,

(V̂ ±) =


0 v±1 · · · v±Nc
v±1 0 · · · 0
...

... . . . ...
v±Nc 0 · · · 0

 , (4.5.11)

with Nc the number of chaotic states of a given parity and H±eff = diag(ε
(0)
n , E±1 , . . . , E±Nc) +

(V̂ ±). The chaotic eigenvectors display strong admixture such that the transition to the
chaotic sea cannot favor a specific eigenstate from a statistical point of view. By performing a
random matrix average concerning the eigenvectors, we obtain v±j = |〈Φ±j |V̂ ±|n〉|2 ∼ V 2

eff/Nc.
The chaotic eigenstates are coupled in a same way with |n〉 in average. From the phase space
point of view, the chaotic eigenstates tend to be delocalized into the entire chaotic sea.

By performing a random matrix average over the chaotic eigenvalues E±j , it was demon-
strated in [77] that the splitting follows a Cauchy distribution,

P (∆εn) =
2

π

∆εn

∆ε2n + ∆εn
2 , (4.5.12)

with ∆εn = 2πV 2
eff/(Nc∆c). Here ∆c is the mean-level spacing in the chaotic block. This

distribution is valid for ∆εn � Veff and displays a cutoff at ∆εn ∼ 2Veff in order to avoid
divergences [77, 78]. In this framework, it is possible to infer that the geometric mean
〈∆εn〉g ≡ exp(〈ln(∆εn)〉) is equal to ∆εn [72, 78,79],

〈∆εn〉g =
2πV 2

eff

Nc∆c

. (4.5.13)

In a time-periodic system, the chaotic eigenvalues are distributed on a Floquet block, i.e.
ζ < E±j 6 ~ω+ζ with ζ ∈ R arbitrary, with level repulsion related to the GOE modeling [66].
This leads to the following expression for the mean-level spacing,

∆c =
~ω
Nc

, (4.5.14)

which gives rise to

〈∆εn〉g =
2πV 2

eff

~ω
. (4.5.15)

By computing the coupling matrix element with the chaotic block, it becomes possible to
access the tunneling rate.

A relation similar to Eq. (4.5.15), which determines the direct tunneling to chaos, was
derived in Ref. [160] by using Fermi golden rule. In Ref. [81], they generalized this approach
for transitions combining resonances and chaos. The approach presented here (largely in-
spired by [72,79]) is also able to model this combining effect. An alternative approach which
doesn’t use perturbative developments (such as Eqs. (4.3.35) or (4.3.47)) was proposed in
Ref. [82]. This is based on another class of integrable approximation built from a series of
canonical transformations in order to coincide the tori of the mixed phase space with the
tori of the integrable approximation [161]. This opened the way to an evaluation of the
resonance- and chaos-assisted tunneling by means of complex path [83]. We have to bear in
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mind that our main purpose here in this thesis is to use semiclassical theory as a prescrip-
tion for the quantum parameters in order to speed up tunneling. In this case, the variety of
approaches to model resonance- and chaos-assisted tunneling are useful to obtain an insight
of the main features of the quantum dynamics by means of the classical one.

For the combination of parameters Np = 5, U = 20J , δ = 19.5J and ~ω = 20J , the
semiclassical evaluation of the NOON time reads

τ =
π~

2〈∆ε2〉g
= 140~/J. (4.5.16)

Note that the semiclassical prediction reproduces quite well the exact result τ = 190~/J
even though the dimension of the chaotic block is only equal to two.





Chapter 5

Unperturbed three-site Bose-Hubbard
model

In the context of systems with one effective degree of freedom, the phase space has two
dimensions, leading to the possibility to visualize the whole dynamics on a plane. An insight
of the main resonance-assisted mechanisms can then be obtained by means of the global
visualization of the classical dynamics. A detailed analysis of the phase space is even able to
determine quantitatively the dominant coupling path for tunneling as exposed in Sec. 4.3.7.

In the context of system with at least two effective degree of freedom, some complications
arise due to additional connections between the different parts of the phase space. In Ref. [88],
resonance-assisted tunneling was studied in a three degree-of-freedom system by identifying
the main resonances. Indeed, before studying resonance-assisted tunneling, a good insight
into the classical dynamics, especially concerning the set of resonances, called the Arnold
web, is required. Frequency analysis is a way to achieve that. This technique was used, for
example, in the case of two coupled standard maps [85, 86]. Another technique to compute
the Arnold web is called the fast Lyapunov indicator [89, 90] enabling one to discriminate
between regular and chaotic dynamics. From this technique, resonance-assisted tunneling
has been studied in high-dimensional molecular system in the context of intramolecular
vibrational energy redistribution [91–93] or in the three-site Bose-Hubbard model weakly
coupled with an additional fourth site [94].

An important breakthrough has been achieved with the 3D phase space slice on a 4D
phase space [85, 86]. The idea is to project the orbits (q1, q2, p1, p2) on a reduced 3D space
by defining a 2ε width around an arbitrary point p̄2,

{(q1, q2, p1, p2) | |p2 − p̄2| 6 ε} . (5.0.1)

The time-independent three-site Bose-Hubbard Hamiltonian presents two effective degrees
of freedom owing to the conservation of the total number of particles on the lattice. That
is why the phase space has four dimensions, and it can still be visualized through Poincaré
section [66], knowing that the dynamics lies on a hypersurface of constant energy of three
dimensions. Nevertheless, this representation is not very useful for our purpose because we
are interested in the couplings between quasimodes characterized by different energies. In
this context, the approach of 3D slice is suitable to obtain an insight into the underlying
classical dynamics. Actually, as the system is time independent, the slices can be performed
for ε = 0. In this case, a kind of Poincaré section is built according to a coordinate (here
the coordinate p2). This kind of visualization of 4D phase space by means of 3D space was
obtained in Ref. [95] by fixing one coordinate to zero as the four-dimensional normal-form
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Hamiltonians were time independent. The double-resonance structure studied in Ref. [95]
had an impact on the proliferation of the resonance-assisted peaks in the tunneling rate. In
the context of time-dependent system, finite size slices (ε 6= 0) are necessary for visualization.
This case will be discussed in Chap. 6 when the perturbation will be turned on.

In the continuity of Chap. 4, the purpose here is to characterize tunneling between two
congruent sites, meaning that the Hamiltonian is symmetric under the permutation of both
sites. In the preceding sections, an additional time-periodic perturbation drove the system
toward a destruction or an enhancement of tunneling. Here an alternative is proposed by
the addition of a non-congruent third site, called the site 0, connected with site 1 and 2
through the coupling constant κ. This site is characterized by an on-site interaction γU
and an on-site energy ξ. This chapter investigates the way the third site creates resonant
channels, leading again to substantial modifications of the NOON time.

Figure 1: Contour plot of the triangular superlattice potential that was previously
presented in Fig. 1.2.2(b). The on-site interaction γU and the on-site energy ξ of site
0 are different from the other sites. There is also a different coupling κ to the site 0.
These differences can be introduced by a bias in the laser intensities used to generate
the optical superlattice. The sites 1 and 2 are characterized by the on-site interaction
U and no on-site energy. They are connected to each other via the hopping parameter
J . The red dots represent ultracold atoms with two atoms on site 0, three atoms on
site 1 and one atom on site 2.

5.1 Classical limit

The mean-field approximation of the general Bose-Hubbard Hamiltonian was developed in
Sec. 1.3.4. This section investigates the particular case of a three-site system [162]. The
Bose-Hubbard Hamiltonian describing Fig. 1 reads

Ĥ =− κ
(
â†0â1 + â†1â0

)
− J

(
â†1â2 + â†2â1

)
− κ

(
â†2â0 + â†0â2

)
+
U

2

(
γâ†0â

†
0â0â0 + â†1â

†
1â1â1 + â†2â

†
2â2â2

)
+ ξâ†0â0.

(5.1.1)

This Hamiltonian is invariant with respect to the inversion of the sites 1 and 2 while it
is not invariant with respect to the permutation of the sites 1 or 2 with the site 0. In
Ref. [128], the classical limit is obtained by introducing the quadrature operators, which can
be seen as a Cartesian representation of the system. Otherwise, in the limit of an infinite
number of particles the ladder operators can be replaced by complex numbers [129, 130],
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which corresponds to the mean-field approximation,

〈âl〉 ∼ ψl =
√
Il e

iθl , (5.1.2)

〈â†l 〉 ∼ ψ∗l =
√
Il e

−iθl . (5.1.3)

Here the ψl (l = 0, 1, 2) represents the condensate amplitude on site l, θl the phase on site
l and Il is proportional to nl, the number of particles on site l, such that Il = nl + 1/2.
As the total number of particles Np is conserved, the sum of the Il amounts to a constant
N = Np + 3/2,

I0 + I1 + I2 = N. (5.1.4)

In this framework, the classical limit of the Hamiltonian (5.1.1) reads1

H(ψl, ψ
∗
l ) =− κ (ψ∗0ψ1 + ψ∗1ψ0)− J(ψ∗1ψ2 + ψ∗2ψ1)− κ(ψ∗2ψ0 + ψ∗0ψ2)

+
U

2

(
γ|ψ0|4 + |ψ1|4 + |ψ2|4 − 2γ|ψ0|2 − 2|ψ1|2 − 2|ψ2|2

)
+ ξ|ψ0|2. (5.1.5)

The temporal evolution of the mean-field system is determined by the discrete Gross-
Pitaevskii equation. It can be derived from the Hamiltonian (5.1.5).

i~
dψ0

dt
= −κ(ψ1 + ψ2) + γU(|ψ0|2 − 1)ψ0 + ξψ0

i~
dψ1

dt
= −(κψ0 + Jψ2) + U(|ψ1|2 − 1)ψ1

i~
dψ2

dt
= −(κψ0 + Jψ1) + U(|ψ2|2 − 1)ψ2

(5.1.6)

Another convenient classical representation is the action-angle variables. It enables one
to separate the angle-independent part from the angle dependent part such that

H(θ, I) = H(I) + V (θ, I), (5.1.7)

with

H(I) =
U

2

(
γI2

0 + I2
1 + I2

2

)
− U(γI0 + I1 + I2) + ξI0 (5.1.8)

V (θ, I) =− 2κ
√
I0I1 cos(θ0 − θ1)− 2J

√
I1I2 cos(θ1 − θ2)

− 2κ
√
I0I2 cos(θ0 − θ2). (5.1.9)

Like the pure quantum Hamiltonian (5.1.1), the classical one stays invariant under the
permutation of site 1 and 2. This discrete symmetry enables one to consider the generation
of a NOON state between both sites.

1The constants in the Hamiltonian were removed. The general expression with the constants of motion
can be found in Sec. 1.3.4.
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5.2 Analysis of the phase space

If there is no hopping such that J = κ = 0, the system is described by the unperturbed
Hamiltonian H(I) and ~ times the zeroth-order frequencies Ω = (Ω0,Ω1,Ω2) read

~Ω(I) = ∇IH(I) =

γU(I0 − 1) + ξ
U(I1 − 1)
U(I2 − 1)

 . (5.2.1)

The perturbative term can be written as

V (θ, I) = −2
2∑
l=0

Jl
√
IlIl+1 cos(rl · θ), (5.2.2)

with I3 = I0, J0 = J2 = κ, J1 = J and

r0 = (1,−1, 0), (5.2.3)
r1 = (0, 1,−1), (5.2.4)
r2 = (1, 0,−1) (5.2.5)

are called the resonance vectors.

When the hopping is turned on, the term V (θ, I) becomes non-zero and the actions I
are no longer constants of motion. If the perturbation is slightly turned on, almost all tori
in phase space are preserved and slightly deformed according to KAM theorem [65,66]. The
tori that are destroyed are those for which their frequencies are rationally related such that
they fulfill

k0Ω0 + k1Ω1 + k2Ω2 = 0, (5.2.6)

with kl integer and with at least one kl 6= 0. In this case, the torus is resonant. A set
of destroyed tori which fulfill Eq. (5.2.6) will give rise to a resonance that we will call the
k0:k1:k0 resonance. Indeed, Eq. (5.2.6) is a way to compute the Arnold web, i.e. the set of
resonances. Actually, the main resonances are determined by the resonance vectors rl of the
perturbation V (θ, I) [87] according to

r0 ·Ω = 0, (5.2.7)
r1 ·Ω = 0, (5.2.8)
r2 ·Ω = 0. (5.2.9)

These equations constitute the parametrization of the main resonance surfaces in the ac-
tion space, also called the resonance center lines for a 2D action space [95]. From a geomet-
rical point of view, the frequency is orthogonal to the unperturbed energy shell. Therefore,
if a resonance vector is orthogonal to the frequency on a point of the action space, then
it will lie on the tangent plane of the energy shell. More specifically, the parametrizations
(5.2.7)–(5.2.9) read

I1 − 1− γI0 + γ − ξ

U
= 0, (5.2.10)

I1 − I2 = 0, (5.2.11)

I2 − 1− γI0 + γ − ξ

U
= 0. (5.2.12)
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If we set γ = 1 and ξ = 0 to facilitate the visualization, the unperturbed energy shells are
spheres, which will be crossed by the resonance surfaces. Initial conditions for the slightly
perturbed system will lead to a motion close to an unperturbed shell. These initial conditions
can lie on a resonance surface. In that case, the trajectory will follow the resonance surface
while respecting the energy conservation, and it is possible to reach another resonance surface
by passing through a junction where the resonance surfaces intersect. More descriptions of
this phenomenon can be found in Ref. [87].

The problem of this representation is the difficulty to visualize the dynamics as the phase
space has six dimensions. However, N is a constant of motion which can play the role of
a conjugate momentum in the Hamiltonian. With a canonical transformation such that N
becomes a conjugate momentum in the new representation, the resonance surfaces encoded
in the parametrizations (5.2.10)–(5.2.12) can be visualized with resonance center lines in a
2D action space in terms of the new momenta. Moreover, we can also take into account
the fact that site 1 and 2 are congruent. That is why the following third class generating
function that performs the transformation (θ, I) 7→ (φ, z) is introduced,

F (I,φ) = I0φ0 +
1

2
(I1 − I2)φ1 + (I0 + I1 + I2)φ2, (5.2.13)

characterized by the following relations,

θl =
∂F

∂Il
, zl =

∂F

∂φl
. (5.2.14)

The relations between the action-angle representation with and without a constant of
motion read 

θ0 = φ0 + φ2

θ1 = φ2 +
1

2
φ1

θ2 = φ2 −
1

2
φ1

I0 = z0

I1 =
1

2
(2z1 + (z2 − z0))

I2 = −1

2
(2z1 − (z2 − z0))

⇔



φ0 = θ0 −
1

2
(θ1 + θ2)

φ1 = θ1 − θ2

φ2 =
1

2
(θ1 + θ2)

z0 = I0

z1 =
1

2
(I1 − I2)

z2 = I0 + I1 + I2 = N

. (5.2.15)

The constant of motion (related to the total number of particles) reads

z2 = N. (5.2.16)

In this case, the phase space will be spanned by (φ0, φ1, z0, z1) as z2 is a parameter and φ2

is a cyclic variable.

It becomes possible to write the Hamiltonian as a function of (φ, z),

H(φ, z) = H(z) + V (φ, z), (5.2.17)
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with

H(z) = Uz2
1 +

U

4
(N − z0)2 +

γU

2
z2

0 + (1− γ)Uz0 + ξz0, (5.2.18)

V (φ, z) =−
√

2κ
√
z0(N − z0 + 2z1) cos

(
φ0 −

1

2
φ1

)
− 2J

√
(N − z0)2/4− z2

1 cos(φ1)

−
√

2κ
√
z0(N − z0 − 2z1) cos

(
φ0 +

1

2
φ1

)
. (5.2.19)

Figure 5.2.1: Phase space obtained through Eq. (5.2.20) of the three-site Bose-
Hubbard model (5.2.17) for the parameters Np = 5, κ = 0.85J , γ = 1.5, U = 20J ,
ξ = 30J . We have φ̃1 = φ1/(2π), z̃0 = z0/N and z̃1 = z1/N and φ̄0 = 0.

A 3D slice in the 4D phase space [85, 86] can be done beside φ0, for example, according
to Eq. (5.0.1). As the system is time-independent the thickness of the slice ε can be chosen
equal to 0. In this case, a coordinate Poincaré section is performed. It reads{

(φ0, φ1, z0, z1) | |φ0 − φ̄0| = 0
}
, (5.2.20)

with φ̄0 an arbitrary point. Figure 5.2.1 displays the phase space of the unperturbed three-
site Bose-Hubbard model for the parameters Np = 5, κ = 0.85J , γ = 1.5, U = 20J and
ξ = 30J . If the connection to the site 0 is turned off, i.e. κ = 0, then the phase space is
organized as a set of pendulum-like phase-space layers which are disconnected. In this case,
the system can be described by the two-site Bose-Hubbard model with the canonical variables
φ1 and z1. Moreover, the resonance center line for z1 = 0 is a collection of fixed points. Note
that the size of each layer decreases as z0 increases due to particle conservation. This leads
to an action space with a triangular shape as displayed in Fig. 5.2.2(a). The connection
to the zeroth site introduces temporal modifications of z0. Moreover, two other pendulum-
like structures becomes present, and a junction is formed by the intersection of the three
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resonance center lines, which can be parameterized in the action space by

z1 = +

(
γ +

1

2

)
z0 −

(
N

2
− ξ

U
+ γ − 1

)
, (5.2.21)

z1 = 0, (5.2.22)

z1 = −
(
γ +

1

2

)
z0 +

(
N

2
− ξ

U
+ γ − 1

)
. (5.2.23)

(a) (b)

Figure 5.2.2: Panel (a) is schematic representation of the action space related to the
phase space (b). The three resonance center lines are displayed in blue. The quasimodes
|n0, n1, n2〉 are represented by the dark dots. An energy shell of the unperturbed
Hamiltonian is represented in red on which the quasimodes |0, 5, 0〉, |3, 2, 0〉, |0, 0, 5〉
and |3, 0, 2〉 are situated. The on-site energy ξ was fixed by means of Eq. (5.3.1) in order
to have one resonance center line symmetrically located between |0, 5, 0〉 and |3, 2, 0〉,
and another one symmetrically located between |0, 0, 5〉 and |3, 0, 2〉. The phase space
of panel (b) is obtained for Np = 5, κ = 0.85J , γ = 1.5, U = 20J and ξ = 30J . We
have φ̃1 = φ1/(2π), z̃0 = z0/N and z̃1 = z1/N .

Figure 5.2.2(a) displays the three resonance center lines in blue in the action space, the
quasimodes |n0, n1, n2〉 are represented by the dark dots and an unperturbed energy shell is
represented in red. According to Eq. (5.2.19), the main resonance center lines are determined
by the resonance vectors s0 = (1,−1/2), s1 = (0, 1) and s2 = (1, 1/2). The resonance center
line related to s1 fulfills the condition s1 · φ = φ1 = const. In particular for the initial
conditions (φ0, φ1, z0, z1) = (φ0, 0, z0, 0), the Hamiltonian equations of Eq. (5.2.17) read

φ̇0 =− U(N − z0)/2 + γUz0 + (1− γ)U + ξ (5.2.24)

−
√

2κ
(N − 2z0)√
z0(N − z0)

cosφ0 + J,

ż0 =− 2
√

2κ
√
z0(N − z0) sinφ0, (5.2.25)

with φ̇1 = 0 and ż1 = 0. The resonance center line z1 = 0 with φ1 = 0 is therefore an
invariant submanifold such that it becomes possible to draw a 2D phase space as displayed
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in Fig. 5.2.3. Several fixed points are present at the resonance junction. Figure 5.2.3 clearly
attests the presence of an elliptic-elliptic fixed point in (φ0, φ1) = (0, 0), and a hyperbolic-
elliptic fixed point in (π, 0) at the junction. Far from the resonance junction, i.e. for z1 small
or large in the case of Figs. 5.2.1 or 5.2.2(b), the dynamics seems to be locally a pendulum-
like phase space with few variations of z0. Closer to the resonance junction a chaotic layer
with the shape of a bubble is formed. It results from the overlapping of the chaotic layers
of the three pendulum-like structures in the context of the nonintegrable system, i.e. κ 6= 0.
The phase space presented here displays some resemblances with the double pendulum in
Ref. [95].

-π -π/2 0 π/2 π

φ
0

0

1

2

3

4

5

6

z
0

N
p
=5; γ=1.5; U=20J; κ=0.85J; ξ=30J

φ
1
=0; z

1
=0

Figure 5.2.3: Phase space related to the Hamiltonian (5.2.17) for the initial conditions
(φ0, φ1, z0, z1) = (φ0, 0, z0, 0). In this case, the Hamiltonian equations are given by
(5.2.24) and (5.2.25) with φ̇1 = 0 and ż1 = 0. Thus, (φ1, z1) = (0, 0) leads to trajectories
that stay on this submanifold, and it becomes possible to draw a 2D phase space. The
elliptic-elliptic fixed point is situated in the center of the island as well as an elliptic-
hyperbolic fixed point in φ0 = π.

The junction is located at the intersection between the three resonance center lines. Its
parametrization reads

(z∗0 , z
∗
1) =

(
1

γ + 1
2

(
N

2
− ξ

U
+ γ − 1

)
, 0

)
. (5.2.26)

At this point, the unperturbed energy is minimum for repulsive atoms. By symmetry, it is
logical to have z∗1 = 0. If the on-site energy ξ is high, the site 0 tends to be depopulated in
order to minimize the energy. If the on-site energy is sufficiently large in absolute value, it
is possible to have the junction outside the phase space, i.e. a junction with z∗0 negative or
z∗0 larger than N . Concerning the combination of parameters of Fig. 5.2.2, the position of
the junction is given by (z∗0 , z

∗
1) = (1.125, 0).

5.3 NOON states via resonance-assisted tunneling

The idea of this section is to use the connection to the zeroth site in order to speed up the
production of a NOON state. By means of the relations (5.2.21) and (5.2.23), the parameters
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of the site zero, namely γ and ξ, can be changed in order to tune the positions of the resonance
center lines and, thus, to tune the tunneling rate. In particular, we would like to have one
of the two resonance center lines that passes through an arbitrary point (z

(ξ)
0 , z

(ξ)
1 ). We will

see that the goal is to choose this point situated right in between two quasimodes in phase
space. This point determines the value of ξ through the relations

ξ = U

(
±z(ξ)

1 −
(
γ +

1

2

)
z

(ξ)
0 +

N

2
+ γ − 1

)
. (5.3.1)

The sign + in the previous relation corresponds to the resonance center line (5.2.21) while
the sign − corresponds to the one (5.2.23). Note that γ control the slope of the lines.

A resonance must be symmetrically located between two quasimodes in order to maximize
the coupling matrix element between them [95]. To each Fock state |n0, n1, n2〉, a classical
torus can be associated whose position in action space is given by (z0, z1) = (n0 + 1/2, (n1−
n2)/2) with nl the number of particles on site l. Let’s assume that we want to induce a
resonant coupling between the quasimodes |n0, n1, n2〉 and |n′0, n′1, n′2〉. In this case, the point
(z(ξ)

0 , z
(ξ)
1 ) must be located in the middle of both quasimodes. The following associations can

be made,

|n0, n1, n2〉 ←→ (z0, z1), (5.3.2)
|n′0, n′1, n′2〉 ←→ (z′0, z

′
1). (5.3.3)

The coordinates of the point (z(ξ)
0 , z

(ξ)
1 ), located in the middle of (z0, z1) and (z′0, z

′
1), is given

by

z
(ξ)
j =

zj + z′j
2

, j = 0, 1. (5.3.4)

By injecting these two relations in one of the Eqs. (5.3.1), it becomes possible to evaluate the
on-site energy producing a resonance center line symmetrically located between |n0, n1, n2〉
and |n′0, n′1, n′2〉.

For example, Fig. 5.2.2(a) displays a resonant center line symmetrically located between
|0, 5, 0〉 and |3, 2, 0〉, which correspond respectively to (z0, z1) = (0.5, 2.5) and (z0, z1) =

(3.5, 1). Therefore, the point in the middle of both quasimodes is given by (z
(ξ)
0 , z

(ξ)
1 ) =

(2, 1.75). By inserting these values in Eq. (5.3.1) for the + sign with γ = 1.5, we obtain
ξ/J = 30.

To access the transition probabilities P|n0,n1,n2〉(t), a numerical diagonalization of the
Hamiltonian (5.1.1) is performed. The basis of eigenvectors is given by

{|χν〉 | ν = 1, 2, . . . , D}. (5.3.5)

The dimension of the Hilbert space reads [162]

D =
(Np + 1)(Np + 2)

2
. (5.3.6)

A convenient basis to decompose the Hamiltonian is the Fock basis. Note that the total
number of particles is conserved such that n0 = Np − n1 − n2.

|χν〉 =

Np∑
n1=0

Np−n1∑
n2=0

Fν,n1,n2|n0, n1, n2〉 (5.3.7)
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Figure 5.3.1: This figure displays the numerical detection probabilities of the quasi-
modes |3, 0, 2〉, |0, 0, 5〉, |3, 2, 0〉 and |0, 5, 0〉, knowing that the system is initially in
|0, 0, 5〉. This figure corresponds to the phase space in Fig. 5.2.2(b). Figure 5.2.2(a)
displays the positions of quantized actions in the action space (black dots), as well
as the principal resonant center lines (blue lines). With a suitable value for ξ, a res-
onant center line becomes symmetrically located between |0, 5, 0〉 and |3, 2, 0〉. For
Jτ/~ = 2.5× 103, the NOON state is formed. This is facilitated by the quasimodes of
the same energy |3, 0, 2〉 and |3, 2, 0〉, which are also responsible for the micromotions in
P|0,0,5〉(t) and P|0,5,0〉(t). With a purity equal to p = 0.99, the two-level approximation
still holds.

It is also possible to take advantage of the discrete symmetry by decomposing the Hamil-
tonian in the symmetry-adapted basis (see Appx. D). The analytical and the numerical
treatments are more complex, but the numerical calculation is faster owing to the smaller
matrices to diagonalize. The numerical diagonalization gives access to Fν,n1,n2 . Any state
can be decomposed in that basis, and the temporal evolution reads

|φ(t)〉 =
D∑
ν=1

cν(t0) e−iεν(t−t0)/~|χν〉, (5.3.8)

with cν(t0) = 〈χν |φ(t0)〉, and Ĥ|χν〉 = εν |χν〉. The transition probability to the state
|n0, n1, n2〉, knowing that the system is initially in |φ(t0)〉, is given by

P|n0,n1,n2〉(t) = |〈n0, n1, n2|φ(t)〉|2. (5.3.9)

As displayed in Fig. 5.3.1, the probability transitions show typical NOON oscillations
for the quasimodes |0, 5, 0〉 and |0, 0, 5〉. The NOON state is obtained after a time τ =
2.5×103~/J while in the absence of site 0 (i.e. κ = 0) the result obtained was τ = 6.0×105~/J
as computed in Fig. 4.5.1. The result with a coupling via the zeroth site is comparable to the
one obtained with the perturbed two-site system with a 2:1 resonance in the near-integrable
regime (see Fig. 4.4.1), where we obtained τ = 2.4× 103~/J .

The configuration in Fig. 5.3.1 is largely dominated by the oscillation between |0, 0, 5〉 and
|0, 5, 0〉 with micromotions due to quasidegeneracy between the symmetric and antisymmetric
combinations of |3, 0, 2〉 and |3, 2, 0〉 with the same combinations of |0, 0, 5〉 and |0, 5, 0〉. The
purity of the main oscillations can be time-independently evaluated by means of

p = M0,Np +MNp,0, (5.3.10)
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with
Mn1,n2 =

∑
σ=±

|〈n0, n1, n2|χνσ〉|2. (5.3.11)

Here |χν±〉 refers respectively to the symmetric and antisymmetric part of the NOON states
such that |χν±〉 ∼ 1/

√
2(|0, 0, Np〉 ± |0, Np, 0〉). We obtain p = 0.99 for κ = 0.85J , which

is consistent with Fig. 5.3.1. This latter figure displays characteristic two-level oscillations
between the quasimodes |0, 5, 0〉 and |0, 0, 5〉. The coupling matrix element with |0, 3, 2〉,
induced by the coupling to the site 0, is responsible for the micromotions as well as the
decrease of the NOON time, which amounts to τ = 2.5 × 103~/J . This result is compa-
rable with the NOON time obtained with a two-site system in the near-integrable regime
amounting to τ = 2.4× 103~/J as presented in Eq. (4.3.51).

Figure 5.3.2 displays a combination of parameters for which a resonance center line cou-
ples the quasimodes |0, 5, 0〉 and |2, 3, 0〉. In this context, Eq. (5.3.1) indicates that the on-site
energy must be equal to ξ = 55J . Figure 5.3.3 displays the typical four-level oscillations that
were previously described in the context of the periodically-perturbed two-site optical lattice
(see Sec. 4.4 for a detailed description of this phenomenon). In this framework, the coupling
between |0, 5, 0〉 and |2, 3, 0〉 is not a small perturbation and the two-level approximation
must be abandoned. The transition probability dynamics is characterized by two timescales,
namely the characteristic times of the slow oscillations τs and the fast oscillations τf (see
Eqs. (4.4.31) for the definitions). The eigenenergies implied in the dynamics are given by

ε−4 = 200.51509J,

ε+3 = 200.51114J,

ε−2 = 200.03074J,

ε+1 = 200.02725J,

(5.3.12)

which leads to τs = 422~/J and to τf = 3.24~/J . According to the zoom in Fig. 5.3.3(b), if a
measure is performed in τs, an entangled state between |2, 0, 3〉 and |2, 3, 0〉 will be obtained.
A measurement time tm can be chosen in order to obtain a NOON state. For tm = 428.3~/J ,
we obtain P|0,5,0〉+P|0,0,5〉 = 0.989 with a bias P|0,5,0〉−P|0,0,5〉 = 6.7×10−3. The time required
to produce the NOON state is smaller than that required in the two-level oscillation case
in Fig. 5.3.1. Nevertheless, the disadvantage related to the four-level oscillations is that tm
must be sufficiently precise, from an experimental point of view, in order to reach the NOON
state.
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(a) (b)

Figure 5.3.2: (a) Action space where the resonance center lines are represented in
blue, the quasimodes with black dots and the unperturbed energy shell of the quasi-
modes |3, 0, 2〉, |0, 0, 5〉, |3, 2, 0〉 and |0, 5, 0〉 in red. (b) Phase space related to the action
space of panel (a). The parameter ξ = 55J is chosen by means of Eq. (5.3.1) in order
to couple the quasimodes |0, 5, 0〉 and |2, 3, 0〉 with a resonant center symmetrically
located between both quasimodes. The parameters of panel (b) are given by Np = 5,
κ = J , γ = 1.5, U = 20J and ξ = 55J .
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Figure 5.3.3: (a) Numerical detection probabilities knowing that the system is ini-
tially in |0, 0, 5〉. This is a typical four-level oscillation dynamics. (b) Zoom around
τs the timescale of the slow oscillations. The coupling matrix element produced by
the resonance center lines between |0, 5, 0〉 and |2, 3, 0〉 (see Fig. 5.3.2(a)) is sufficiently
strong to invalidate the two-level approximation. In this case, the dynamics is described
by four-level oscillations characterized by two timescales, namely τs = 422.4~/J and
τf = 3.245~/J .



Chapter 6

Triple-NOON states via resonance- and
chaos-assisted tunneling

In the preceding two chapters, the formation of highly entangled states called the NOON
states was investigated. This state is formed by the coherent superposition of two states
|N, 0〉 and |0, N〉 where one mode is totally full of N quanta while the other is empty,
i.e. eiφ1|N, 0〉+ eiφ2|0, N〉. Another kind of entangled state can be built with three modes. A
qutrit has been experimentally realized with biphotons according to their polarizations [163]
and in a superconducting circuit [164], to mention two examples. In a triple-NOON state,
one mode is totally full while two others are empty, leading to the state eiϕ1|N, 0, 0〉 +
eiϕ2|0, N, 0〉 + eiϕ3|0, 0, N〉 where N is the number of quanta. In the three-mode Bose-
Hubbard model [162,165–169], few proposals have been made. In Ref. [96], it is suggested to
adiabatically generate the triple-NOON state with ultracold bosonic atoms that exhibit an
attractive interaction. Apart from the enhanced instability of a Bose-Einstein condensate
with attractive interaction [35–37], the generation of this triple-NOON state requires a very
low temperature as it is the ground state [170]. Here we propose to build a triple-NOON state
by initially loading all particles on a specific site in the self-trapping regime [53,54,166,167],
where the atomic repulsion is sufficiently strong to only authorize collective transfers of
particles. The targeted entangled state is then obtained after the triple-NOON time. Besides
the requirement of a perfectly symmetric optical trap, the main problem of this method is
the prohibitively long time needed, especially for large populations.

This chapter investigates how the timescale of this process can be considerably reduced by
modulating the optical lattice with a time-periodic driving. This phenomenon was demon-
strated in Chap. 4 in the case of the NOON state in a two-site optical lattice [52]. Indeed, the
driving is responsible for the emergence of nonlinear resonances in the phase space, leading to
the phenomenon of resonance-assisted tunneling [67–71], as well as the production of chaotic
layers, leading to the phenomenon of chaos-assisted tunneling [73–77]. Both phenomena can
be combined to give rise to resonance- and chaos-assisted tunneling [71,72,78–84].

6.1 Structure of the spectrum

The purpose is to produce a perfectly balanced entangled state with three modes, namely
|Np, 0, 0〉, |0, Np, 0〉 and |0, 0, Np〉, in a three-site optical trap. For the two-site optical trap,
the two sites must be congruent to produce a NOON state. In this case, the Hamiltonian is
invariant under the permutation of the two sites. Therefore, it is logical to study an optical

111
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Figure 6.1.1: Contour plot of the triangular superlattice potential that was previously
presented in Fig 1.2.2(b). All three sites are congruent, meaning they are characterized
by the same on-site interaction U , the same on-site energy (equal to zero here) and
each pair of sites is coupled by the same hopping parameter J . This site configuration
can be achieved with lasers by means of superlattice techniques explained in Sec. 1.2.3.
The red dots represent ultracold atoms trapped here on site 0.

lattice where the three sites are congruent in order to produce a triple-NOON state. The
corresponding Hamiltonian is written as

Ĥ0 = −J
2∑
l=0

(â†l âl+1 + â†l+1âl) +
U

2

2∑
l=0

â†l â
†
l âlâl, (6.1.1)

with â3 ≡ â0. This Hamiltonian is invariant under the permutation of any pair of sites. It
describes the optical lattice schematized in Fig. 6.1.1. The eigenvalue equation reads

Ĥ0|ψ(j)
n0,n1,n2

〉 = ε(j)n0,n1,n2
|ψ(j)
n0,n1,n2

〉, (6.1.2)

with j = 1 or j = 1, 2, 3 or j = 1, 2, 3, 4, 5, 6 depending on the value of n1 and n2, knowing
that n0 = Np − n1 − n2. The first one refers to the singlets for which n0 = n1 = n2, the
second one to the triplets for which n0 6= n1 = n2 and the last one to the sextuplets for
which n0 6= n1 6= n2 6= n0. This nomenclature is appropriate for the strong interaction
regime, where the nonlinear parameter is pretty high, (Np + 1)U/J � 1. In this regime, the
effective on-site interaction is strong compared to the hopping such that

ε(j)n0,n1,n2
' U

2

2∑
l=0

nl(nl − 1). (6.1.3)

The decomposition of the eigenvectors |ψ(j)
n0,n1,n2〉 will be overwhelmingly dominated by the

Fock states |n0, n1, n2〉, |n2, n0, n1〉, |n1, n2, n0〉, |n1, n0, n2〉, |n2, n1, n0〉 and |n0, n2, n1〉 in the
case of a sextuplet (n0 6= n1 6= n2 6= n0). In the case of a triplet, the dominant coefficients
of |ψ(j)

n0,n1,n1〉 will be determined by |n0, n1, n1〉, |n1, n0, n1〉 and |n1, n1, n0〉 with n0 6= n1.
There is also the case of the singlet where n0 = n1 = n2 such that |ψn1,n1,n1〉 ' |n1, n1, n1〉.
The triplet and sextuplet organization of the spectrum can be illustrated for Np = 5 and
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U = 20J ,

ε
(3)
0,0,5 = 200.1234556J,

ε
(2)
0,0,5 = 200.1234556J,

ε
(1)
0,0,5 = 200.1234521J,

ε
(6)
0,1,4 = 121.209J,

ε
(5)
0,1,4 = 121.188J,

ε
(4)
0,1,4 = 121.188J,

ε
(3)
0,1,4 = 119.211J,

ε
(2)
0,1,4 = 119.211J,

ε
(1)
0,1,4 = 119.190J,

ε
(6)
0,2,3 = 82.942J,

ε
(5)
0,2,3 = 82.942J,

ε
(4)
0,2,3 = 82.790J,

ε
(3)
0,2,3 = 77.169J,

ε
(2)
0,2,3 = 77.035J,

ε
(1)
0,2,3 = 77.035J,

ε
(3)
1,1,3 = 60.669J,

ε
(2)
1,1,3 = 60.016J,

ε
(1)
1,1,3 = 60.016J,

ε
(3)
2,2,1 = 41.482J,

ε
(2)
2,2,1 = 41.482J,

ε
(1)
2,2,1 = 34.847J.

(6.1.4)

For example, the triplet ε(j)0,0,5 displays a pair of two degenerate eigenvalues and a third one
that is almost degenerate with this pair. This lifting of degeneracy is the signature that
there is to some extent tunneling between |5, 0, 0〉, |0, 5, 0〉 and |5, 0, 0〉. For each triplet, this
structure is the same. Sextuplets effectively appear as the combination of two triplets, i.e.,
we have two distinct pairs of degenerate eigenvalues and two further eigenvalues such that
each one of them is close to one of the two pairs.

6.2 Three-level approximation

In the symmetric three-site optical lattice, the three states |Np, 0, 0〉, |0, Np, 0〉 and |0, 0, Np〉
are sufficiently separated from the other part of the spectrum in the strong interaction
regime. They can be seen as a triplet where V is the effective coupling. The main features
of the dynamics can be captured with a three-level approximation characterized by the basis
{|0〉, |1〉, |2〉}. Within this basis, the Hamiltonian is modeled as

M =


|0〉 |1〉 |2〉

〈0| E V V
〈1| V E V
〈2| V V E

. (6.2.1)

This modeling is general and the connection with the Bose-Hubbard model can be done
through

|0〉 = |Np, 0, 0〉, (6.2.2)
|1〉 = |0, Np, 0〉, (6.2.3)
|2〉 = |0, 0, Np〉. (6.2.4)

This matrix takes into account the symmetries of the system and the fact that all sites
are connected to each other. Indeed, the Hamiltonian is invariant under the permutation
of any pair of sites. If Np = 1, then E = 0, V = −J and the result will be exact. The
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eigenvalues and the related eigenvectors read

E1 = E − V, |X1〉 =
1√
2

 0
−1
1

 =
1√
2

(−|1〉+ |2〉),

E2 = E − V, |X2〉 =
1√
6

−2
1
1

 =
1√
6

(−2|0〉+ |1〉+ |2〉),

E3 = E + 2V, |X3〉 =
1√
3

1
1
1

 =
1√
3

(|0〉+ |1〉+ |2〉).

If all particles are initially located on site 0 such that

|φ(0)〉 = |0〉 (6.2.5)
= 〈X1|0〉|X1〉+ 〈X2|0〉|X2〉+ 〈X3|0〉|X3〉 (6.2.6)

= − 2√
6
|X2〉+

1√
3
|X3〉, (6.2.7)

then the temporal evolution gives rise to

|φ(t)〉 =
−2√

6
e−iE2t/~|X2〉+

1√
3
e−iE3t/~|X3〉

=
e−iE2t/~

3
(2|0〉 − |1〉 − |2〉) +

e−iE3t/~

3
(|0〉+ |1〉+ |2〉)

=
1

3

(
2 ei∆εt/(2~) + e−i∆εt/(2~)

)
|0〉 − 2i

3
sin

(
∆ε

2~
t

)
(|1〉+ |2〉) . (6.2.8)

Here the splitting is given by ∆ε = E3 − E2 = 3V . From Eq. (6.2.8), it is possible to
compute the temporal evolutions of the detection probabilities,

P|0〉(t) = |〈0|φ(t)〉|2

=
1

9

∣∣1 + 2 ei∆εt/~
∣∣2 ,

P|1〉(t) = P|2〉(t) = |〈1|φ(t)〉|2

=
4

9
sin2

(
∆ε

2~
t

)
.

(6.2.9)

The detection probabilities for having all particles on site 1 or 2 are the same. This matches
the intuition, as there is by symmetry no reason to favor the transition toward the site 1 or
2. The transition probabilities in Fig. 6.2.1 suggests that the dynamics is largely dominated
by three-level oscillations for the parameters Np = 5 and U = 20J .

From the previous relations (6.2.9), it is possible to compute the time τ required to reach
the same detection probabilities for the three states, called the triple-NOON time. The
condition P|1〉(τ) = 1/3 leads to

τ =
2π~
3∆ε

. (6.2.10)

At this time, the detection probabilities of each state are the same,

P|0〉(τ) = P|1〉(τ) = P|2〉(τ) =
1

3
. (6.2.11)
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The three-mode NOON time for the parameters Np = 5 and U = 20J is equal to
τ = 5.9 × 105~/J (see Fig. 6.2.1). In Sec. 1.3.3, the laboratory-unit evaluation gave rise
~/J = 4.4×10−3 s for a typical optical lattice filled with 87Rb. This leads to a triple-NOON
time of τ = 2600 s. An additional periodic perturbation will be necessary to decrease this
time above the lifetime of a condensate in an optical lattice, roughly equal to 10s [133].
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Figure 6.2.1: Numerical detection probabilities for the quasimodes |5, 0, 0〉, |0, 5, 0〉
and |0, 0, 5〉 knowing that all particles are initially located on site 0. In the strong
interaction regime, i.e. (Np + 1)U/J � 1, the dynamics can be approximated by the
three-level dynamic and the detection probabilities are given by Eq. (6.2.9). The time
required to obtain an entangled state with the same weight for |5, 0, 0〉, |0, 5, 0〉 and
|0, 0, 5〉 amounts to τ = 5.9× 105~/J .

6.3 Classical limit of the three-site Bose-Hubbard Hamil-
tonian

Before taking the classical limit, the Hamiltonian (6.1.1) will be amended by an additional
time-periodic perturbation which must preserve the symmetries of the system. One way to
achieve that is to have a time-dependent hopping such that

J(t) = J + δ cos(ωt). (6.3.1)

In this case, the time-dependent Hamiltonian reads [171]

Ĥ(t) = −J(t)
2∑
l=0

(â†l âl+1 + â†l+1âl) +
U

2

2∑
l=0

â†l â
†
l âlâl. (6.3.2)

Note that the Hamiltonian (6.3.2) is still symmetric with respect to the permutation of any
pair of sites.

The classical limit is similar to that presented in Sec. 5.1. In the limit of an infinite
number of particles the ladder operators can be replaced by complex numbers [129, 130],
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which corresponds to the mean-field approximation,

〈âl〉 ∼ ψl =
√
Il e

iθl , (6.3.3)

〈â†l 〉 ∼ ψ∗l =
√
Il e

−iθl . (6.3.4)

Here ψl (l = 0, 1, 2) represents the condensate amplitude on site l, θl the phase on site l and
Il is proportional to nl, the number of particles on site l, such that Il = nl + 1/2. As Np is
conserved, the sum of the Il amounts to a constant N = Np + 3/2,

I0 + I1 + I2 = N. (6.3.5)

In this framework, the classical limit of the Hamiltonian (6.3.2) reads1

H(ψl, ψ
∗
l ) = −J(t)

2∑
l=0

(ψ∗l ψl+1 + ψ∗l+1ψl) +
U

2

2∑
l=0

|ψl|4. (6.3.6)

The temporal evolution of the mean-field system is determined by the discrete Gross-
Pitaevskii equation. It can be derived from the Hamiltonian (6.3.6),

i~
dψ0

dt
= −J(t)(ψ1 + ψ2) + U |ψ0|2ψ0,

i~
dψ1

dt
= −J(t)(ψ0 + ψ2) + U |ψ1|2ψ1,

i~
dψ2

dt
= −J(t)(ψ0 + ψ1) + U |ψ2|2ψ2.

(6.3.7)

Another convenient classical representation is the action-angle variables. It enables one
to separate the angle-independent part H(I), the time-independent angle-dependent part
V (θ, I) and the time-dependent angle-dependent part V (θ, I, t),

H(θ, I, t) = H(I) + V (θ, I) + V (θ, I, t), (6.3.8)

with

H(I) =
U

2

(
I2

0 + I2
1 + I2

2

)
, (6.3.9)

V (θ, I) + V (θ, I, t)

= −2J(t)
(√

I0I1 cos(θ0 − θ1) +
√
I1I2 cos(θ1 − θ2) +

√
I0I2 cos(θ0 − θ2)

)
︸ ︷︷ ︸

G(θ,I)

. (6.3.10)

Here we have V (θ, I) = −2JG(θ, I) and V (θ, I, t) = −2δ cos(ωt)G(θ, I). Like the quantum
Hamiltonian (6.3.2), the classical Hamiltonian remains invariant under the permutation of
any pair of sites.

1The constants in the Hamiltonian were removed. The general expression with the constant of motion
can be found in Sec. 1.3.4.
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Figure 6.3.1: Numerical detection probabilities for (a) the unperturbed and (b) the
periodically-driven three-site Bose-Hubbard system. The plots (c) and (d) are the
phase spaces related respectively to the numerically simulated quantum dynamics (a)
and (b). A perfectly balanced entangled state between the quasimodes |5, 0, 0〉, |0, 5, 0〉
and |0, 0, 5〉, called a triple-NOON state, can be obtained by preparing all particles on
a specific site (here site 0) and then waiting the triple-NOON time τ . The timescale of
τ time can be considerably reduced by means of a time-periodic external perturbation
as displayed in (b). The main difference between (c) and (d) is the presence in (d) of
a 2:1 resonance clearly visible for the layer z0 = 0, which leads to the phenomenon of
resonance-assisted tunneling.

6.4 Analysis of the phase space

As N is a constant of motion, it is interesting to perform a canonical transformation to reduce
the number of degrees of freedom. As explained in Sec. 5.2, this procedure enables one to
build an effective four-dimensional system by means of the generating function (5.2.13).
Contrary to the standard action-angle representation (6.3.8), the Hamiltonian H(φ, z, t) =
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H(z) + V (φ, z) + V (φ, z, t) defines a phase space of four dimensions with

H(z) = Uz2
1 +

3U

4

(
z0 −

N

3

)2

, (6.4.1)

V (φ, z) + V (φ, z, t)

= −J(t)

(√
2
√
z0(N − z0 + 2z1) cos

(
φ0 −

1

2
φ1

)
+ 2
√

(N − z0)2/4− z2
1 cos(φ1) (6.4.2)

+
√

2
√
z0(N − z0 − 2z1) cos

(
φ0 +

1

2
φ1

))
︸ ︷︷ ︸

G(φ,z)

,

such that V (φ, z) = −JG(φ, z) and V (φ, z, t) = −2δ cos(ωt)G(φ, z). We have N = Np +
3/2, and the links with the condensate amplitudes and phases are given by

φ0 = θ0 −
1

2
(θ1 + θ2),

φ1 = θ1 − θ2,

z0 = n0 +
1

2
,

z1 =
1

2
(n1 − n2).

(6.4.3)

Here z0 represents the population of site 0 while z1 is the population imbalance between site
1 and 2. Note that φ1 and z1 are the phase-space variables used for the study of the two-site
system in Sec. 3.1.

The phase spaces 6.3.1(c) and (d) are 3D phase-space slices performed around φ̄0 = 0 in
a phase space of four dimensions. This visualization technique was proposed in Refs. [85,86]
for the study of two coupled standard map and can be formalized in our case by slices of
thickness 2ε around an arbitrary point φ̄0 such that{

(φ0, φ1, z0, z1) | |φ0 − φ̄0| 6 ε
}
. (6.4.4)

The phase space 6.3.1(c) is characterized by three pendulum-like phase spaces, each of
them defining a resonance center line [95] in action space (see also blue lines in Fig. 6.4.1(a)).
The unperturbed frequencies of the tori will enable one to characterize these resonance center
lines,

Ω(z) =
1

~
∇zH(z) =

1

~

(
3U
2

(z0 −N/3)
2Uz1

)
. (6.4.5)

As soon as the hopping J is different from zero, the system becomes perturbed through
V (φ, z), and the tori z characterized by a resonant motion rl ·Ω(z) = 0 will be destroyed
[87] as explained in Sec. 5.2. The main resonance vector r0 = (1,−1/2), r1 = (0, 1) and
r2 = (1, 1/2) are determined by the arguments of the cosines of V (φ, z) [87, 95]. This leads
to the parametrizations of the main resonant center lines,

z1 = +
3

2
z0 −

N

2
, (6.4.6)

z1 = 0, (6.4.7)

z1 = −3

2
z0 +

N

2
. (6.4.8)
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Each resonance center line passes through one of the quasimodes at stake, i.e. |5, 0, 0〉,
|0, 5, 0〉, |0, 0, 5〉, and are symmetrically located between one pair of them as displayed in
blue in Fig. 6.4.1(a). Moreover, these quasimodes lie on the same energy shell in red. At
quantum level there is a small splitting ∆ε, which is the spectral signature of tunneling.

(a)
(b)

Figure 6.4.1: The resonance center lines are schematized in the action space in (a)
by means of the blue color. The presence of an external perturbation of frequency ω =
120J/~ couples the two energy shells in red of the unperturbed system. This enables
one to add a coupling matrix element between the quasimode |0, 5, 0〉 of the outer
energy shell and the quasimode |0, 3, 2〉 of the inner energy shell. The manifestation
of this coupling in the phase space (b) is the presence of a 2:1 resonance visible in
z1 = ±1.5 for the layers with z0 between 0 and 1.25 roughly. For the phase space (b),
we have Np = 5, U = 20J , δ = 2.4J and ~ω/J = 120.

At the intersection of the resonance center lines, there exists a junction made of several
fixed points around which the phase space is organized. This junction is localized in action
space in

(z∗0 , z
∗
1) =

(
N

3
, 0

)
, (6.4.9)

which corresponds to the ground state for repulsive inter-atomic interactions. Far from them,
the phase space is locally a 2D pendulum-like phase space as it is the case, for example, for
the layer z0 = 0. Closer to the junction, the interplay between the three pendulum-like
degrees of freedom gives rise to a chaotic layer with the shape of a bubble. Note that due to
particle conservation (Np constant), the action space forms a triangle.

A careful analysis of the phase space is able to explain the role of the frequency ω for
the emergence of the nonlinear resonances. Each unperturbed torus z is characterized by
two frequencies Ω = (Ω0,Ω1) determined by Eq. (6.4.5). When the perturbation V (φ, z, t)
is slightly turned one, the Kolmogorov-Arnold-Moser theorem [65, 66, 87] states that if the
frequencies are not rationally related, then the torus is preserved. The frequencies of a torus
are rationally related if they obey the following relation [85,86],

k0Ω0 + k1Ω1 = mω, (6.4.10)

where (k0, k1) ∈ Z2\{(0, 0)} and m ∈ Z. A resonance is formed through the destruction of a
set a tori and can be labeled by k0:k1:m. Resonances of the form r:0:s and 0:r:s correspond
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Figure 6.4.2: Phase space portrait of the classical dynamics confined to the invariant
submanifold characterized by φ1 = 0 and z1 = 0. It enables one to deduce the position
of the central fixed points roughly situated in (z0, z1) = (2.167, 0), one of them is
elliptic-elliptic in (φ0, φ1) = (0, 0) and another is hyperbolic-elliptic in (φ0, φ1) = (π, 0).

to the relations rΩ0 = sω and rΩ1 = sω, respectively. These two kinds of resonance are here
called r:s to shorten the notation. Indeed, both of them produce a r:s resonance, the former
perpendicular to the z0 axis and the latter perpendicular to the z1 axis. In this framework,
the external frequencies ω that must be applied in order to build the r:s nonlinear resonance
characterized by z0 = z

(r:s)
0 or z1 = z

(r:s)
1 are given, respectively, by the relations

~ω =
r

s

3U

2

(
z

(r:s)
0 − N

3

)
, (6.4.11)

~ω =
r

s
2Uz

(r:s)
1 . (6.4.12)

It is worthwhile to note that Eq. (6.4.12) is exactly the same as that obtained for the two-site
optical lattice in Ref. [52].

For example, a 2:1 resonance situated in z
(2:1)
1 = 1.5 symmetrically located between

|0, 5, 0〉 in (z0, z1) = (0.5, 2.5) and |0, 3, 2〉 in (z0, z1) = (0.5, 0.5) leads to ω = 120J/~ for
U = 20J . Thus, this combination of parameters leads to

z
(2:1)
0 = 4.1666, (6.4.13)

z
(2:1)
1 = 1.5. (6.4.14)

Actually, this resonance is clearly visible in Fig. 6.4.1(b) for the layer z0 ' 0. Moreover,
Eq. (6.4.13) gives access to the position of the 2:1 resonance along the z1 = 0 resonance
center line. Indeed, since trajectories that start with φ1 = 0 and z1 = 0 remain confined
along this submanifold, it is possible to build a 2D representation of the dynamics. This is
displayed in Fig. 6.4.2 where the 2:1 resonance is clearly visible.
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6.5 Triple-NOON states in near-integrable phase spaces

The triple-NOON time is expected to be modified with the addition of a time-periodic
perturbation, for example, via the hopping parameter J(t) = J + δ cos(ωt) [171]. Even if
the addition of a time-periodic perturbation breaks the conservation of energy, it is still
possible to compute time-independent quasienergies εν and to decompose any state |φ(t)〉 in
a time-periodic basis {|uν(t)〉 = |uν(t+ 2π/ω)〉} in the framework of the Floquet formalism
[131,138,139], (

Ĥ(t)− i~ d
dt

)
|uν(t)〉 = εν |uν(t)〉, (6.5.1)

where ν = 1, 2, . . . , D with D = (Np + 1)(Np + 2)/2 the Hilbert space dimension of the
unperturbed system [162]. Floquet theory is developed in detail in Sec. 2.2.

The Floquet basis can, for example, be expressed in terms of the Fock states |n0, n1, n2〉,{
|uν(t)〉 =

+∞∑
k=−∞

eikωt
Np∑
n1=0

Np−n1∑
n2=0

Fν,k,n1,n2|n0, n1, n2〉

∣∣∣∣∣ ν = 0, 1, . . . , D

}
. (6.5.2)

Here the value of n0 is obtained through the particle conservation such that n0 = Np−n1−n2.
Any state |φ(t)〉 can be decomposed in that basis,

|φ(t)〉 =
D∑
ν=1

cν(t0) e−iεν(t−t0)/~|uν(t)〉, (6.5.3)

where cν(t0) = 〈uν(t0)|φ(t0)〉 and |φ(t0)〉 is the initial state. The probability amplitude to
obtain the state |n0, n1, n2〉, knowing that the system is initially in |φ(t0)〉, is given by

P|n0,n1,n2〉(t) = |〈n0, n1, n2|φ(t)〉|2 . (6.5.4)

As illustrated in Fig. 6.3.1(b), a suitably tuned driving leads to a sharp decrease of the
triple-NOON time such that τ = 240~/J for δ = 2.4J and ω = 120J/~. The manifestation
of this phenomenon is visible in the corresponding phase space of Fig. 6.3.1(d). Indeed,
Figs. 6.3.1(c) and (d) are very similar except for the presence of a 2:1 nonlinear resonance
in the perturbed case, which is clearly visible within the layer z0 = 0. By the resonance-
assisted tunneling mechanism [67, 68], a coupling matrix element is introduced between the
quasimodes |0, 5, 0〉 and |0, 3, 2〉, which favors resonant perturbative transitions as the 2:1
resonance is symmetrically located between both quasimodes [72,79]. In terms of the action
space of Fig. 6.4.1(a), the energy shell in red related to |5, 0, 0〉, |0, 5, 0〉 and |0, 0, 5〉 is now
connected to the one related to |0, 3, 2〉, |3, 2, 0〉, |2, 0, 3〉, |3, 0, 2〉, |0, 2, 3〉 and |2, 3, 0〉 via ~ω.
For a typical optical lattice2 filled with atoms of the 87Rb species, we have ~/J = 4.4× 10−3

s such that the triple-NOON time is given by τ = 1.1 s compared to τ = 2600 s for the
unperturbed case. This reduction of three orders of magnitude could render possible an
experimental observation of the triple-NOON state.

As it remains one free parameter, namely the amplitude δ, the triple-NOON time is
computed as a function of this one to obtain an optimal choice. As displayed in Fig. 6.5.1(a),
the triple-NOON time only decreases after the peak in δ = 0.05J . Nevertheless, the purity
decreases at the same time. This time-independent indicator is useful to quickly test the

2The details for the derivations can be found in Sec. 1.3.3.
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Figure 6.5.1: (a) Triple-NOON time as a function of the amplitude δ. (a) The
purity p defined in Eq. (6.5.5) as a function of δ. The triple-NOON time τ decreases
continually from δ = 0.05J without reaching a minimum (expect for δ = 0). The more
it decreases, the more the purity decreases as well as seen in panel (b). In this context,
the convenient choice of δ is a trade-off. For δ = 2.4J , we have τ = 240~/J with a
purity of p = 0.987 while for δ = 0, we have τ = 5.9× 105~/J with p = 0.998.

validity of the three-level approximation. The purity is defined as

p = MNp,0,0 +M0,Np,0 +M0,0,Np , (6.5.5)

with

Mn0,n1,n2 =
1

3T

3∑
j=1

∫ T

0

|〈n0, n1, n2|uνj(t)〉|2 dt. (6.5.6)

Here |uνj(t)〉 are the eigenstates related to the triple-NOON state. If they are close to the
eigenvectors of the three-level approximation such that

|uν1(t)〉 ∼
1√
2

(−|0, Np, 0〉+ |0, 0, Np〉), (6.5.7)

|uν2(t)〉 ∼
1√
6

(−2|Np, 0, 0〉+ |0, Np, 0〉+ |0, 0, Np〉), (6.5.8)

|uν3(t)〉 ∼ 1/
√

3(|Np, 0, 0〉+ |0, Np, 0〉+ |0, 0, Np〉), (6.5.9)

the purity is expected to be close to 1. In view of these considerations, the choice of δ is a
trade-off for the parameters in Fig. 6.5.1. By choosing δ = 2.4J , the three-level approxima-
tion is still valid with a purity of p = 0.987.

6.6 Triple-NOON states in mixed phase spaces

The time-independent indicator of purity defined in Eq. (6.5.5) enables one to obtain quickly
a representation of the main features of the dynamics without being obliged to compute a
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time evolution of the transition probabilities. Indeed, we have

Mn0,n1,n2 =
1

3

3∑
j=1

∞∑
k=−∞

∣∣Fνj ,k,n1,n2

∣∣2 . (6.6.1)

This indicator assumes that the system is prepared in one the three Floquet states involved
in the three-level approximation, namely |uνj(t0)〉 with j = 1, 2, 3. Then, the temporal mean
over one period of the transition probabilities from these three states is performed.

Nevertheless, the question asked by Fig. 6.3.1(a) is how much the transition probabilities
P|Np,0,0〉, P|0,Np,0〉 and P|0,0,Np〉 dominates the dynamics in order to test the validity of the
three-level approximation. This question makes sense from an experimental point of view if
the system is initially prepared in |φ(t0)〉 = |Np, 0, 0〉. Thus, the time-independent indicator
related to Fig. 6.3.1(a) and (b) is properly speaking given by

p̄ = P̄|Np,0,0〉 + P̄|0,Np,0〉 + P̄|0,0,Np〉, (6.6.2)

with

P̄|n0,n1,n2〉 =
1

t

∫ t

0

dt′ |〈n0, n1, n2|φ(t′)〉|2 . (6.6.3)

The p̄ indicator is more pertinent for the question asked. The main drawback is that it
required to compute the time-evolution of the system and to perform a temporal mean on
a sufficiently long time t. Luckily, both indicators p and p̄ are in general very close to each
other. Nevertheless, we remarked some notable deviations for the three-site Bose-Hubbard
model when a prominent chaotic sea is present (see Fig. 6.6.1). That is why, the values of p̄
are displayed in the last column of Table 6.1.

Np Jτδ=0/~ pδ=0 Jτω=60J/~/~ p̄ω=60J/~
5 5.9× 105 0.998 5.8× 102 (δ = 0.95J) 0.978
7 1.0× 109 0.998 4.8× 103 (δ = 1.3J) 0.974
9 1.9× 1012 0.998 4.3× 106 (δ = 1.5J) 0.972

Table 6.1: As expected, the triple-NOON time τ increases with Np, but this increase
can be considerably reduced for ω = 60J/~. Creating a central chaotic layer in phase
space (see Fig 6.6.1) is able to slow down the exponential increase with Np of the
triple-NOON time. In order to keep the unperturbed phase space unchanged, we keep
NU/J = 130 for each result.

Besides the resonance-assisted mechanisms, chaos-assisted tunneling is a credible alter-
native to speed up the production of a triple-NOON state. A smaller frequency, for example
ω = 60~/J in Fig. 6.6.1, is able to produce a prominent central chaotic layer due to the
interplay between the chaotic bubble structure at the junction and the low-rank 1:s non-
linear resonances. As indicated in Fig. 6.6.2, this produces a triple-NOON time amounting
to τ = 580~/J with a purity p̄ = 0.978, which is comparable to the one obtained through
the 2:1 resonance in Fig. 6.3.1(b) and (d). This corresponds to τ = 2.6 s for 87Rb atoms
in the lattice that is studied in Sec. 1.3.3. Moreover, Table 6.1 suggests that the phase-
space structure made of a central chaotic sea as displayed, for example, in Fig. 6.6.1, is
valuable for the triple-NOON time reduction as the number of particles increases. Indeed,
the exponential increase with Np is slowed down. This is due to the fact that the states
of the chaotic sea are strongly mixed such that they cannot really be distinguished from
each other. The transition between quasimodes |Np, 0, 0〉, |0, Np, 0〉 and |0, 0, Np〉 is then
facilitated by their coupling with the chaotic sea. It means that chaos-assisted tunneling is
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Figure 6.6.1: Phase space of the periodically-driven three-site Bose-Hubbard system
in the mixed regime. A central prominent chaotic layer can be generated by means of
smaller external frequency ω. The three corners of the phase space are still regular and
greet the three quasimodes involved in the triple-NOON state, namely |5, 0, 0〉, |0, 5, 0〉
and |0, 0, 5〉, which are strongly coupled by means of this chaotic sea. This specific
figure corresponds at the quantum level to τ = 580~/J with p̄ = 0.978 (see Fig. 6.6.2),
which corresponds roughly to the same orders of magnitude as the near-integrable case
in Fig. 6.3.1(b). As illustrated in Table 6.1, we can take advantage of this phase-space
structure as the number of particles increases. Embedded in the chaotic sea, regular
structures tends to stabilize, from the purity point of view, the states located at each
corner.
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Figure 6.6.2: Numerical detection probabilities of the quasimodes |5, 0, 0〉, |0, 0, 5〉
and |0, 5, 0〉 knowing that all particles are prepared on the site 0 initially. This figure
corresponds to the phase space of Fig. 6.6.1. The central chaotic layer is able to
facilitate the transition to the triple-NOON state. For this specific combination of
parameters, the triple-NOON time is given by τ = 580~/J for a purity p̄ = 0.978.
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surely a promising tool to investigate the triple-NOON production with higher populations.
The results of Table 6.1 were obtained by fixing NU/J = 130 constant in order to preserve
the unperturbed phase space. The central chaotic region of Fig. 6.6.1 is not homogeneous
as it displays regular islands embedded in the chaotic sea. This may indicate the presence
of some resonance-assisted tunneling phenomena besides the chaos-assisted tunneling one.
Moreover, these regular islands would tend to stabilize the regular eigenstates located at the
three corners of the phase owing to the presence of partial transport barriers.





Conclusion

This dissertation theoretically investigates the production of entangled states with a Bose-
Einstein condensate trapped in several sites of an optical lattice. The protocol proposed
here is quite simple. All atoms are loaded on any site of a symmetric optical trap. In this
case, the temporal evolution of the ultracold atoms leads to a NOON state, after the NOON
time, in the case of a double-well potential as explored partially in Chap. 2 and extensively
in Chap. 4. One of the main drawback is the prohibitively long time necessary to obtain
the coherent and equivalent superposition between the states |Np, 0〉 and |0, Np〉, called the
NOON state, where Np is the total number of ultracold atoms. For example, in the strong
on-site interaction regime where the effective atom-atom interaction is quite large compared
to the hopping J , i.e. (Np + 1)U � J , we theoretically obtain the NOON time τ = 2600
s for Np = 5 and U/J = 20 in Sec. 2.1.2. This time is obtained for 87Rb atoms with the
assumptions that are presented in Sec. 1.3.3. This result, computed in the unperturbed case,
is clearly larger than the typical lifetime of a condensate, which is roughly 10 s [133].

As it is explained in Chap. 4, this problem can be bypassed by subjecting the double-
well potential to a periodic tilting characterized by an amplitude δ and a frequency ω. In
Sec. 4.3.5, we obtain τ = 11 s for Np = 5, U/J = 20, δ/J = 75 and ~ω/J = 120 by
introducing a perturbative coupling between the Fock states |n1, n2〉 with a 2:1 nonlinear
resonance. It is also possible to improve this result by combining couplings with the chaotic
sea and multiple perturbative couplings via the 1:4 and 1:3 resonances. This configuration
gives rise to τ = 0.84 s and is obtained for Np = 5, U/J = 20, δ/J = 19.5 and ~ω/J = 20.
This result is presented in Sec. 4.5.

Indeed, the increase of the tunneling rate (or equivalently the decrease of the NOON
time) is the consequence of the presence of chaos and nonlinear resonances in the phase space.
These structures are able to produce coupling matrix elements at the quantum level between
the quasimodes |n1, n2〉, which can speed up the NOON-state generation without altering
too much the regular tori related to this NOON state. This is described in Secs. 4.3 and 4.5.
In this context, the semiclassical theory of resonance- and chaos-assisted tunneling, which is
introduced in Chap. 4, can be used as a guideline to find the optimal parameters. This is
particularly the case for the frequency of the periodic driving, which determines the positions
of the nonlinear resonances in the phase space. Moreover, integrable systems are known to
display an exponential decrease of tunneling rates according to the semiclassical parameter
(here Np). This is illustrated in Sec. 4.2 for the unperturbed two-site Bose-Hubbard model.
Nevertheless, with a prominent chaotic sea, the average slope of the exponential decrease is
slowed down, and there are peaks in the tunneling rate. This opens the way for realizing
NOON states with an increasing number of particles.

We can ask the opposite question, namely if it is possible to coherently suppress tunneling
in the optical trap by means of an external perturbation. Actually, it is possible, and this
phenomenon has been known for several decades. Obviously, this suppression doesn’t have
a lot of interest for the NOON state as the NOON time is already prohibitively large for the
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unperturbed case. Nevertheless, this question makes sense for entangled states with smaller
population imbalances as they have smaller entanglement times. As it is shown in Chap. 2,
the external perturbation is also able to totally suppress the entangled-state formation, es-
pecially for large frequency compared to the width of the unperturbed spectrum. Stated
differently, the entanglement time can become infinite for suitable amplitudes and frequen-
cies. In this context, we present our original contribution by deriving the renormalization of
the tunneling rate related to the two-site Bose-Hubbard model as shown in Sec. 2.4.

As it is explained in Chap. 6, a natural way to study entanglement in a three-site optical
trap is to introduce the notion of triple-NOON state, which corresponds to the coherent
and equivalent superposition between |Np, 0, 0〉, |0, Np, 0〉 and |0, 0, Np〉. The protocol here
is the same as in the two-site trap. The Bose-Einstein condensate is loaded on one site
of the symmetric three-site optical trap, and the triple-NOON state is obtained after the
triple-NOON time τ . For example, we compute τ = 2600 s for Np = 5 and U/J = 20
with the unperturbed three-site Bose-Hubbard model in Sec. 6.5. This time is too long
compared to the timescale of a typical experiment. Here the time-periodic perturbation is
added in the hopping parameter in order to preserve the symmetry of the lattice. The result
τ = 1.1 s is obtained in the near-integrable regime, where pertubative couplings between the
Fock states |n0, n1, n2〉 is induced by a 2:1 resonance. This result is presented in Sec. 6.5.
The related parameters are Np = 5, U/J = 20, δ/J = 2.4 and ~ω/J = 120. Here too,
resonance-assisted tunneling can be seen as a guiding mechanism. As in the two-site case,
the presence of a prominent chaotic layer in phase space is a valuable ingredient to obtain
triple-NOON states. For this phase-space structure, the regular regions, on which the states
|Np, 0, 0〉, |0, Np, 0〉 and |0, 0, Np〉 are anchored, are separated by a huge chaotic layer. This
structure favors the transitions between these three states. Specifically, we obtain τ = 2.6
s for Np = 5, U/J = 20, δ/J = 0.95 and ~ω/J = 60 as presented Sec. 6.6. Moreover, the
exponential increase with Np of the triple-NOON time tends to be damped by means that
huge chaotic layer. This paves the way to obtain a triple-NOON state with an increasing
number of particles.

Perspectives

From the present work, some perspectives can be drawn. At the end of Chap. 6, we suggest
that a huge layer of chaotic motion in phase space is the path to follow to produce triple-
NOON states with higher populations. Nevertheless, resonance-assisted tunneling could be
another way to achieve this goal, and our present lack of knowledge concerning its inherent
mechanisms at higher dimensions prevents us to use it in a valuable way. Indeed, resonance-
and chaos-assisted tunneling has not been studied much so far for several degree-of-freedom
systems. We initiate this study for the three-site Bose-Hubbard model subjected to a periodic
driving by identifying a valuable indicator, namely the triple-NOON time. Moreover, the 3D
slices in a 4D phase space enable one to have a clear representation of the classical dynamics.
The idea would be to develop a semiclassical theory that generalizes resonance- and chaos-
assisted tunneling for two or any degree-of-freedom systems. This should reproduce the
semiclassical theory exposed in Chap. 4 valid for the one degree-of-freedom system. With this
framework, it would be possible to explore quantitatively and qualitatively the semiclassical
limit of the three-site Bose-Hubbard model. With this theory, it should be possible to
combine the effect of chaos and resonances in an optimal way to produce triple-NOON
states with higher populations.

This dissertation focuses exclusively on the generation of double- and triple-NOON states
with ultracold bosonic atoms. Quite naturally, we can ask the question concerning the
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generation of a ntuple-NOON state. Actually, the protocol proposed here can be generalized
for this kind of state. All atoms are loaded on a specific site of a symmetric optical lattice
composed of Ns sites. The formation of the ntuple-NOON state is obtained after the ntuple-
NOON time. From a theoretical point of view, this state can be modeled by generalizing
the matrix (6.2.1) to a Ns × Ns matrix where all diagonal elements, i.e. the unperturbed
energies, are the same and are coupled to each other with the same coupling matrix element
V . From an experimental point of view, this kind of state is quite challenging. Indeed, it
requires a symmetric optical lattice, in a sense that the on-site interaction must be the same
for each site as well as the hopping between any pair of sites. This requirement is more easily
fulfilled for the two- and three-site optical traps as they can be produced in a plane. For a
quadruple NOON state, for example, the four-site optical trap must be considered in three
dimensions such that it can be generated for a lattice with the shape of a tetrahedron.

The protocol proposed to produce a NOON state (or a triple-NOON state) assumes a
nearby perfect symmetry of the optical lattice maintained during several seconds. This re-
quirement could lead to experimental complications. These complications are not addressed
in this dissertation. One way to overcome this potential problem would be to use the notion
of time crystal for which the symmetry is guaranteed by construction [172]. Specifically,
the ultracold atoms are confined in a ring-shaped trap [173]. By means of 2:1 resonance
produces by an external perturbation, the condensate displays two possible rotational states
of motion. The idea would be to load the ultracold atoms in one of them and wait the
NOON time in order to obtain the coherent superposition between these two rotational
states. From a phase space point of view, it means that the initial wave packet is localized
on a specific island of the 2:1 resonance. This protocol can also be used for a 3:1 resonance
to produce a triple-NOON state, implying three rotational states of motion, as the islands
are still connected in the same way. In this context, the coupling between these islands is
a chaos-assisted tunneling mechanism such that this theory is directly required to evaluate
the hopping parameter. Moreover, the on-site (or on-island) interaction can depend on time
because the spatial localization of the wave packet can vary on one period of the time crys-
tal. That is why the parameter of the Bose-Hubbard model would require more effort to be
determined.
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Appendix A

Floquet theory and two-site
Bose-Hubbard Hamiltonian

A.1 General solutions of Floquet systems

The purpose of this appendix is to demonstrate that the solutions of the Schrödinger equation
characterized by a time-periodic Hamiltonian with a period T , i.e. Ĥ(t + T ) = Ĥ(t), is the
combination an imaginary exponential and a function characterized by a period T . We
assume that the |ψν(t)〉 are the solutions of the Schrödinger equation,

i~
d

dt
|ψν(t)〉 = Ĥ(t)|ψν(t)〉, (A.1.1)

where ν labels the different solutions. As the Hamiltonian is periodic, the |ψν(t + T )〉 are
also solutions,

i~
d

dt
|ψν(t+ T )〉 = Ĥ(t)|ψν(t+ T )〉. (A.1.2)

In this case, the solutions are related by a phase factor [174],

|ψν(t)〉 = e−iαν |ψν(t+ T )〉. (A.1.3)

We define the quasienergies εν such that

εν =
~αν
T
. (A.1.4)

The function |uν(t)〉 defined as

|uν(t)〉 = eiενt/~|ψν(t)〉 (A.1.5)

is then periodic, |uν(t)〉 = |uν(t + T )〉. In this framework the solutions of (A.1.1) are given
by the combination of an imaginary exponential and a function with the periodicity of the
Hamiltonian,

|ψν(t)〉 = e−iενt/~|uν(t)〉. (A.1.6)
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A.2 Two-site Bose-Hubbard Hamiltonian in the Fock ba-
sis

The purpose of this appendix is to decompose the two site Bose-Hubbard Hamiltonian,

Ĥ(t) =− J(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2)

+ δ cos(ωt)(â†1â1 − â†2â2), (A.2.1)

into the Fock basis,
{|n,Np − n〉 | n = 0, 1, 2, . . . , Np} , (A.2.2)

in order to build the Floquet matrix (2.3.4). The following frame indicates the action of the
different operators on the Fock states with n1 + n2 = Np and with l = 1, 2.

− Jâ†1â2|n1, n2〉 = −J
√
n2(n1 + 1)|n1 + 1, n2 − 1〉

− Jâ†2â1|n1, n2〉 = −J
√
n1(n2 + 1)|n1 − 1, n2 + 1〉

U

2
â†l â
†
l âlâl|n1, n2〉 =

U

2
nl(nl − 1)|n1, n2〉

δ

2
â†l âl|n1, n2〉 =

δ

2
nl|n1, n2〉

The Fourier decomposition of Eq. (A.2.1) is given by Ĥ(t) = Ĥ0 + Ĥ1(eiωt + e−iωt), and
the mode one of the Fourier coefficients is diagonal,

(Ĥ1) =


− δ

2
Np 0 . . . . . . 0

0
. . . ...

... δ
2
(n1 − n2)

...
... . . . 0
0 . . . . . . 0 δ

2
Np

 . (A.2.3)

Concerning the specific case of Np = 3, the central diagonal block reads

(Ĥ0) =


3U −

√
3J 0 0

−
√

3J U −2J 0

0 −2J U −
√

3J

0 0 −
√

3J 3U

 . (A.2.4)

A.2.1 Measurement

A basis of solutions of the Schrödinger equation (2.2.5), where the Fourier coefficients |ũν,k〉
of |uν(t)〉 are decomposed in the Fock basis, is given by{

|uν(t)〉 =
+∞∑

k=−∞

eikωt
Np∑
n=0

Fν,k,n|n,Np − n〉

∣∣∣∣∣ ν = 0, 1, . . . , Np

}
. (A.2.5)
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The eigenstates |fν〉 of the eigenvalue equation (2.2.8) are made of the coefficients Fν,k,n1

such that

(|fν〉) =



...
Fν,k−1,Np

Fν,k,0
...

Fν,k,Np
Fν,k+1,0

...


. (A.2.6)

Any state can be decomposed in that basis,

|φ(t)〉 =

Np∑
ν=0

cν(t0) e−iεν(t−t0)/~|uν(t)〉 (A.2.7)

with cν(t0) = 〈uν(t0)|φ(t0)〉. The probability to be in the state |n′1, n′2〉, knowing that the
system is initially in the state |φ(t0)〉 = |n1, n2〉, is given by

Pn′1(t) = |〈n′1, n′2|φ(t)〉|2 (A.2.8)

=

∣∣∣∣∣
Np∑
ν=0

cν(t0) e−iεν(t−t0)/~Bν,n′1

∣∣∣∣∣
2

, (A.2.9)

where the different elements read

cν(t0) =
∞∑

k=−∞

e−ikωt0F ∗ν,k,n1
, (A.2.10)

Bν,n′1
=

∞∑
k=−∞

eikωtFν,k,n′1 . (A.2.11)

A.2.2 Average of the measurements

In the symmetric case, meaning that the Hamiltonian is invariant under the permutation
of both sites, the temporal evolution can be dominated by two symmetrically related basis
elements such that

|φ(t)〉 ∼ e−iεν+ (t−t0)/~|uν+(t)〉+ e−iεν− (t−t0)/~|uν−(t)〉, (A.2.12)

where the symmetric and antisymmetric parts are roughly given by |uν±(t)〉 ∼ 1/
√

2(|n1, n2〉±
|n2, n1〉) with εν+ ∼ εν− . The purity is a time-independent indicator of the global dynamics
defined as

p = Mn1 +Mn2 , (A.2.13)

with n1 + n2 = Np and

Mn =
1

2T

∑
σ=±

∫ T

0

|〈n,Np − n|uνσ(t)〉|2dt. (A.2.14)

If the purity is close to 1, the dynamic is largely dominated by the states |n1, n2〉 and |n2, n1〉.
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A.3 Two-site Bose-Hubbard Hamiltonian in the symmetry-
adapted basis

The purpose of this appendix is to decompose the two-site Bose-Hubbard Hamiltonian,

Ĥ(t) =− J(â†1â2 + â†2â1) +
U

2
(â†1â

†
1â1â1 + â†2â

†
2â2â2)

+ δ cos(ωt)(â†1â1 − â†2â2), (A.3.1)

into a symmetric and antisymmetric basis, i.e. a basis of the permutation operator P̂ , which
is defined as P̂ |n1, n2〉 = |n2, n1〉. This will lead to the Floquet matrix (2.3.4) related to
the two-site Bose-Hubbard system. The following frame indicates the action of the different
operators on some symmetric and antisymmetric states (l = 1, 2) with n1 + n2 = Np.

• − J(â†2â1 + â†1â2) (|n1, n2〉 ± |n2, n1〉)
1√
2

= −J
√
n1(n2 + 1)(|n1 − 1, n2 + 1〉 ± |n2 + 1, n1 − 1〉) 1√

2

− J
√
n2(n1 + 1)(|n1 + 1, n2 − 1〉 ± |n2 − 1, n1 + 1〉) 1√

2

• − J (â†2â1 + â†1â2)|n, n〉

= −J
√

2n(n+ 1)(|n− 1, n+ 1〉+ |n+ 1, n− 1〉) 1√
2

∑
l=1,2

U

2
â†l â
†
l âlâl(|n1, n2〉 ± |n2, n1〉)

1√
2

=
U

2
(n1(n1 − 1) + n2(n2 − 1))(|n1, n2〉 ± |n2, n1〉)

1√
2

δ

2
(â†1â1 − â†2â2)(|n1, n2〉 ± |n2, n1〉)

1√
2

=
δ

2
(n1 − n2) (|n1, n2〉 ∓ |n2, n1〉)

1√
2
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A.3.1 Np odd

The chosen basis reads (with n2 = Np − n1){
. . . ,

1√
2

(|n1, n2〉+ |n2, n1〉), . . . ,
1√
2

(|n1, n2〉 − |n2, n1〉), . . .
∣∣∣∣ n1 = 0, 1, ..., (Np − 1)/2

}
.

(A.3.2)
The particular case Np = 3 gives rise to

(Ĥ0) =


3U −

√
3J

−
√

3J U − 2J

3U −
√

3J

−
√

3J U + 2J

 , (A.3.3)

(Ĥ1) =


−3δ

2
0

0 −δ
2

−3δ
2

0
0 −δ

2

 . (A.3.4)

By combining these blocks, the Floquet matrix will take the form (2.3.10).

A.3.2 Np even

The chosen basis reads (with n2 = Np − n1) . . . ,
1√
2

(|n1, n2〉+ |n2, n1〉), . . . , |Np/2, Np/2〉, . . . ,
1√
2

(|n1, n2〉 − |n2, n1〉), . . . |

n1 = 0, 1, ..., Np/2− 1

 .

(A.3.5)

The particular case Np = 4 gives rise to

(Ĥ0) =


6U −2J 0

−2J 3U −
√

12J

0 −
√

12J 2U
6U −2J
−2J 3U

 , (A.3.6)

(Ĥ1) =


−4δ

2
0

0 −2δ
2

0 0
−4δ

2
0 0

0 −2δ
2

0

 . (A.3.7)

By combining these blocks, the Floquet matrix will take the form (2.3.10).



136 Floquet theory and two-site Bose-Hubbard Hamiltonian

A.3.3 Measurement

In the framework of the symmetric and antisymmetric basis, the Schrödinger equation (2.2.5)
can be written as (

Ĥ(t)− i~∂t
)
|uσν (t)〉 = εσν |uσν (t)〉, (A.3.8)

where σ = ±. The symbol + refers to the block FS in the relation (2.3.10), i.e. the Floquet
block where S is central. The symbol − refers to the block FA in the relation (2.3.10), i.e. the
Floquet block where A is central. By abuse of language, we can call FS the symmetric block
and FA the antisymmetric block.

A basis of solution of the Schrödinger equation (A.3.8), where the Fourier coefficients
|ũσν,k〉 of |uσν (t)〉 are decomposed in the symmetric and antisymmetric basis (A.3.2) or (A.3.5),
is given by|uσν (t)〉 =

+∞∑
k=−∞

eikωt
Dσk−1∑
n1=0

F σ
ν,k,n1

1√
2

(|n1, n2〉+ pσk |n2, n1〉)

∣∣∣∣∣∣σ = ±; ν = 1, 2, ..., Dσ

 ,

(A.3.9)

where D+ = dimS and D− = dimA are the dimensions of the symmetric and antisymmetric
blocks of Ĥ0 respectively (see the relation (2.1.9)). It means that N = D+ + D− = Np + 1
with N the dimension of the Hilbert space. Moreover, we have

Np odd: D±k = D+ = D− = N/2, (A.3.10)
Np even: D+ = (N + 1)/2 and D− = (N − 1)/2, (A.3.11)

D±k =

{
D± if k%2 = 0

D∓ if k%2 6= 0
. (A.3.12)

The values of p±k are given by p±k = ±(−1)k for n1 6= n2. The case n1 = n2 gives rise to
p+
k =
√

2− 1.

Any state can be decomposed in that basis,

|φ(t)〉 =
∑
σ=±

Dσ∑
ν=1

cσν (t0) e−iε
σ
ν (t−t0)/~|uσν (t)〉, (A.3.13)

where cσν (t0) = 〈uσν (t0)|φ(t0)〉. The probability to be in the state |n′1, n′2〉, knowing that the
system is initially in the state |φ(t0)〉 = |n1, n2〉, is given by

Pn′1(t) = |〈n′1, n′2|φ(t)〉|2 (A.3.14)

=

∣∣∣∣∣∑
σ=±

Dσ∑
ν=1

e−iε
σ
ν (t−t0)cσν (t0)Bσ

ν,n′1

∣∣∣∣∣
2

, (A.3.15)

with Bσ
ν,n′1

= 〈n′1, n′2|uσν (t)〉.
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The coefficients read

cσν (t0) =



+∞∑
k=−∞

e−ikωt0
F σ∗

ν,k,n1√
2

n1 < n2

+∞∑
k=−∞

e−ikωt0F σ∗

ν,k,n1
(δσ,+ δk%2,0 + δσ,− δk%2,|0) n1 = n2

+∞∑
k=−∞

e−ikωt0pσk
F σ∗

ν,k,n1√
2

n1 > n2,

(A.3.16)

Bσ
ν,n′1

=



∞∑
k′=−∞

eik
′ωt
F σ
ν,k′,n′1√

2
n′1 < n′2

∞∑
k′=−∞

eik
′ωtF σ

ν,k′,n′1
(δσ,+ δk%2,0 + δσ,− δk%2,|0) n′1 = n′2

∞∑
k′=−∞

eik
′ωt pσk′

F σ
ν,k′,n′2√

2
n′1 > n′2.

(A.3.17)

Here we have δk%2,|0 = 1 if k%2 6= 0 and δk%2,|0 = 0 in the other cases.

A.3.4 Average of the measurements

In the symmetric case, meaning that the Hamiltonian is invariant under the permutation
of both sites, the temporal evolution can be dominated by two symmetrically related basis
elements such that

|φ(t)〉 ∼ e−iε
+
ν (t−t0)/~|u+

ν (t)〉+ e−iε
−
ν (t−t0)/~|u−ν (t)〉, (A.3.18)

where |u±ν (t)〉 ∼ 1/
√

2(|n1, n2〉 ± |n2, n1〉) with ε+ν ∼ ε−ν . In this context, having a global
vision of the dynamics can be achieved by computing the purity

p = Mn1 +Mn2 , (A.3.19)

based on the overlap

Mσ
n1

=
1

T

∫ T

0

dt |〈n1, n2|uσν (t)〉|2 =



1

2

+∞∑
k=−∞

∣∣F σ
ν,k,n1

∣∣2 n1 < n2

+∞∑
k=−∞

∣∣F σ
ν,k,n1

∣∣2 (δσ,+ δk%2,0 + δσ,− δk%2,|0) n1 = n2

1

2

+∞∑
k=−∞

∣∣F σ
ν,k,n2

∣∣2 n1 > n2.

(A.3.20)

Here we have Mn1 = (M+
n1

+M−
n1

)/2 and n1 + n2 = Np. If the purity is close to 1, it means
that the dynamics is largely dominated by the states |n1, n2〉 and |n2, n1〉.





Appendix B

Monodromy matrix

The monodromy matrix characterizes the stability of a fixed point by tracking the dynamics

around it. Here P : z 7→ z′ denotes the mapping of a point z =

(
q
p

)
on a stroboscopic map

or a Poincaré section to the next point z′. A fixed point of order r, denoted by z∗, obeys the
relation

Pr(z∗) = z∗, (B.0.1)

where Pr = P ◦ · · · ◦ P refers to r times the application of the mapping P .

As the point z = z∗ + δz is assumed to be close to the fixed point, the map can be
linearized around z∗,

Pr(z∗ + δz) = z′(z) (B.0.2)

' z∗ +
∂z′(z)

∂z

∣∣∣∣
z=z∗

δz (B.0.3)

= z∗ +M(z∗)δz. (B.0.4)

HereM(z∗) is the Jacobian matrix which links z and z′. In this context, this matrix is called
the monodromy matrix or the tangent map.

The knowledge of this matrix gives precious information about the dynamics around the
fixed point. In the two-dimensional map case, the elliptic fixed points, for which the motion
in its vicinity is stable, are characterized by |Tr(M)| < 2 while the hyperbolic fixed points,
for which the unstable motion in its vicinity is described by an exponential separation with
respect to the fixed point, are characterized by |Tr(M)| > 2. For more details, see [65,66].
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Appendix C

Two-level approximation

The two-level model presented here has the purpose to describe the transitions between
the states |a〉 and |b〉 by means of the coupling parameter V . It is important to point out
that this simple system can still be suitable even for a Hilbert space dimension larger than
two. For instance, it can be applied for the two-site Bose-Hubbard model as detailed in
Sec. 2.1.2. In this context, V describes an effective coupling, which incorporates the direct
transition between both states and the indirect transitions via the other states. The two-level
Hamiltonian reads

(Ĥ) =

(
Ea V
V Eb

)
.

The eigenvalues read

E1,2 =
Eb + Ea

2
∓
√

(Eb − Ea)2

4
+ V 2.

In the case where Eb > Ea, the eigenvectors read

|1〉 = cos θ|a〉 − sin θ|b〉
|2〉 = sin θ|a〉+ cos θ|b〉,

(C.0.1)

with
tan(2θ) =

2V

Eb − Ea
. (C.0.2)

The states |a〉 and |b〉 can be expressed in terms of |1〉 and |2〉,

|a〉 = cos θ|1〉+ sin θ|2〉,
|b〉 = − sin θ|1〉+ cos θ|2〉.

(C.0.3)

If Ea = Eb and V > 0, the eigenvectors read

|1〉 =
1√
2

(|a〉 − |b〉),

|2〉 =
1√
2

(|a〉+ |b〉),
(C.0.4)
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which, respectively, correspond to the antisymmetric and the symmetric combination of the
states |a〉 and |b〉. The system is assumed to be initially in the state |a〉,

|φ(0)〉 = |a〉 =
1√
2

(|1〉+ |2〉). (C.0.5)

The temporal evolution leads to periodic oscillations between both states,

|φ(t)〉 =
1√
2

(
e−iE1t/~|1〉+ e−iE2t/~|2〉

)
(C.0.6)

= cos

(
∆E

2~
t

)
|a〉+ i sin

(
∆E

2~
t

)
|b〉, (C.0.7)

where ∆E = E1 − E2.

In this framework, it is possible to define a frequency Ω = |∆E|/~, called the Rabi
frequency, which determines the time to obtain a complete transfer of population from |a〉
to |b〉. The detection probabilities to obtain |a〉 and |b〉 read respectively

P|a〉(t) = cos2

(
Ω

2
t

)
, (C.0.8)

P|b〉(t) = sin2

(
Ω

2
t

)
. (C.0.9)

This simple model will be used as an approximation throughout this thesis. Let us
imagine a gas of ultracold bosonic atoms, characterized by Np particles, defined on two states
which correspond to two spatially separated orbitals. These two orbitals can be modeled by
the dynamics of |a〉 and |b〉 in certain circumstances explained in Sec. 2.1.2.



Appendix D

Matrix representation of the
unperturbed three-site Bose-Hubbard
Hamiltonian

The purpose of this appendix is to decompose the unperturbed three-site Bose-Hubbard
Hamiltonian in the symmetry-adapted basis. This Hamiltonian reads

Ĥ =− κ
(
â†0â1 + â†1â0

)
− J

(
â†1â2 + â†2â1

)
− κ

(
â†2â0 + â†0â2

)
+
U

2

(
γâ†0â

†
0â0â0 + â†1â

†
1â1â1 + â†2â

†
2â2â2

)
+ ξâ†0â0.

(D.0.1)

The symmetry-adapted basis is an eigenbasis of the permutation operator between site 1 an
2. It reads

{|n0, n1, n2〉+ . . . |n′0, n′1, n′1〉 . . . |n0, n1, n2〉− . . . } , (D.0.2)

with

n1 = 0, 1, . . . , d

n2 = n1 + 1, . . . , Np − n1

n0 = Np − n1 − n2

n′1 = 0, 1, . . . , Dne − 1

n′0 = Np − 2n′1, (D.0.3)

d =


Np − 1

2
Np odd

Np

2
− 1 Np even.

(D.0.4)

By definition, we have

|n0, n1, n2〉± ≡
1√
2

(|n0, n1, n2〉 ± |n0, n2, n1〉) . (D.0.5)

The dimension of the Hilbert space is given by [162]

D =
(Np + 2)(Np + 1)

2
= D+ +D−, (D.0.6)
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with D± the dimension of the symmetric and antisymmetric subspaces respectively. The
following table displays the different dimensions related to the system.

Np even :

Dne =
Np + 2

2

De =
D −Dne

2

=
N2
p

4
+
Np

2
D+ = De +Dne

=
N2
p

4
+Np + 1

D− = De

=
N2
p

4
+
Np

2

Np odd :

Dne =
Np + 1

2

De =
D −Dne

2

=
N2
p

4
+
Np

2
+

1

4
D+ = De +Dne

=
N2
p

4
+Np +

3

4
D− = De

=
N2
p

4
+
Np

2
+

1

4

(D.0.7)

As the Hamiltonian (D.0.1) is unchanged under the permutation between site 1 and 2,
its form is block diagonal is the basis (D.0.2) such that (Ĥ) = diag(S,A), with S and A the
symmetric and antisymmetric block, respectively. For Np = 1, it takes the form

S =

( |0, 0, 1〉+ |1, 0, 0〉
+〈0, 0, 1| −J −

√
2κ

〈1, 0, 0| −
√

2κ ξ

)
, A =

( |0, 0, 1〉−
−〈0, 0, 1| +J

)
. (D.0.8)

For Np = 2, it takes the form

S =



|1, 0, 1〉+ |0, 0, 2〉+ |2, 0, 0〉 |0, 1, 1〉

+〈1, 0, 1| ξ − J −
√

2κ −2κ −
√

2κ

+〈0, 0, 2| −
√

2κ U 0 −2J

〈2, 0, 0| −2κ 0 γU + 2ξ 0

〈0, 1, 1| −
√

2κ −2J 0 0

,

A =

( |1, 0, 1〉− |0, 0, 2〉−
−〈1, 0, 1| ξ + J −

√
2κ

−〈0, 0, 2| −
√

2κ U

)
.
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For Np = 3, it takes the form

S =



|2, 0, 1〉+ |1, 0, 2〉+ |0, 0, 3〉+ |0, 1, 2〉+ |3, 0, 0〉 |1, 1, 1〉

+〈2, 0, 1| γU + 2ξ − J −2κ 0 0 −
√

2× 3κ −
√

2× 2κ

+〈1, 0, 2| −2κ U + ξ −
√

3κ −κ 0 −
√

2× 2J

+〈0, 0, 3| 0 −
√

3κ 3U −
√

3J 0 0

+〈0, 1, 2| 0 −κ −
√

3J U − 2J 0 −
√

2× 2κ

+〈3, 0, 0| −
√

2× 3κ 0 0 0 3γU + 3ξ 0

+〈1, 1, 1| −
√

2× 2κ −
√

2× 2J 0 −
√

2× 2κ 0 ε



A =



|2, 0, 1〉− |1, 0, 2〉− |0, 0, 3〉− |0, 1, 2〉−
−〈2, 0, 1| γU + 2ξ + J −2κ 0 0

−〈1, 0, 2| −2κ U + ξ −
√

3κ −κ
−〈0, 0, 3| 0 −

√
3κ 3U −

√
3J

−〈0, 1, 2| 0 −κ −
√

3J U + 2J

.

The general eigenbasis reads

{|χσν 〉 | σ = ±; ν = 1, 2, . . . , Dσ} , (D.0.9)

with the decomposition in the symmetry-adapted basis (n0 = Np − n1 − n2),

|χσν 〉 =
d∑

n1=0

Np−n1∑
n2=n1+1

F σ
ν,n1,n2

1√
2

(|n0, n1, n2〉+ σ|n0, n2, n1〉) (D.0.10)

+ δσ,+

Dne−1∑
n1=0

F σ
ν,n1,n1

|n0, n1, n1〉. (D.0.11)

Any state |φ(t0)〉 can be decomposed in that basis and its temporal evolution reads

|φ(t)〉 =
∑
σ=±

Dσ∑
ν=1

cσν (t0) e−iε
σ
ν (t−t0)/~|χσν 〉, (D.0.12)

with cσν (t0) = 〈χσν |φ(t0)〉 and Ĥ|χσν 〉 = εσν |χσν 〉. This gives access to the transition probabilities,

P|n0,n1,n2〉(t) = |〈n0, n1, n2|φ(t)〉|2. (D.0.13)

It can be interesting to have an indicator which captures time-independently the main
features of the dynamics. That is why the purity is defined as

p = M0,Np +MNp,0, (D.0.14)
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with Mn1,n2 = M+
n1,n2

+M−
n1,n2

and

Mσ
n1,n2

= |〈n0, n1, n2|χσν 〉|2 (D.0.15)

=


1

2

∣∣F σ
ν,n1,n2

∣∣2 n1 6= n2

δσ,+
∣∣F σ

ν,n1,n1

∣∣2 n1 = n2.
(D.0.16)

If the purity is close to 1, it means that the dynamics is overwhelmingly dominated by the
transitions between |0, 0, Np〉 and |0, Np, 0〉.
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