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1) Whatare Bursts ?

* Gravitational waves detected so far : compact binary coalescences (CBC)

- Black Hole-Black Hole
- Neutron star-Neutron star

- Black Hole-Neutron star

* Expected class of events : Bursts
- Anything that is transient and not a CBC

- two families of bursts : short- (< 2 sec) and long duration (> 2 sec)



1) Whatare Bursts ?

 What are the phenomena generating long-duration bursts ?

Accretion disk
instabilities around
black holes

Non-axisymmetric
deformations in
magnetars

Fallback accretion
in newborn
neutron stars

Gamma-ray Bursts




2) How do we detectthem ?

e CBC detection : general relativity => model of collision = waveform — scoonmiz

=> then try to match those models to the data (matched filtering)

* Many other phenomena can generate GWs !

=> But physics is poorly known...
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=> Models not accurate enough to apply match filtering.

Solution : use multiple detectors to find correlation in the data
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2) How do we detect them ?

* Excess of power method
=> Search in Time-Frequency space => minimal assumption : well represented in that
=> Bursts should be clusters of high-correlation pixels

=> Many sources of noise (seismic, laser noise, suspensions, etc.)
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3) Convolutional neural networks

 Class of artificial neural networks employing convolution

=> easy to use and understand

=> allows to downscale the information

* Image processing applications often require :

=> classification tasks (medical images, galaxy catalogs, ...)
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=> bounding box determination (self-driven cars, face recognition, ...)
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3) Convolutional neural networks

 Efficient at recognizing patterns and shapes :

* Note : a neural network is nothing without a well-designed loss function !

=> |oss function = what you want to minimize to achieve your goal (classification, prediction, ...)

=> |loss function gives feedbacks to update the weights (in kernels, ...)
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4) New approach : mimic long-duration burst signals

* Problem : can't rely on the long-duration models 00 He 11SCOChirp Maguetar

- too many uncertainties in the physical phenomena e S ’ \

- models cannot be used as patterns to match for \\ B \

* They all show a "chirp up" or "chirp down" behavior e N ' \ NG

==> easily mimicked thanks to the Python Scipy library ! Ech L_B T [ u|| —

==> Allow to generate chirps as time series P }mj " g “W,D_
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Taken from O3 long-duration paper:
[** https://dcc.ligo.org/public/0174/P2100078/0
oo 11/03 long duration.pdf
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4) New approach : mimic long-duration burst signals

* Inspired by Xing et al., 2019. (https://doi.org/10.1186/s12859-019-3037-5), coded with PyTorch
* Downscaling and upscaling network

— strided convolution @ element-wise addition — transposedc
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Frequency (Hz)
=]
3

==> our target will be injection in empty TF map

=]
=)

==> Empty map for noise-only images

3
=)

&
S

L L 1
* Loss that is being minimized : MSE:§§ (T,; — 04)° P e Tt m e
i.j 10


https://doi.org/10.1186/s12859-019-3037-5

Frequency (Hz)

5) Early Results

* Localization : Time-Frequency maps with injection
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5) Early Results

* Localization : Time-Frequency maps with injection
400y
- next step : learn the connectivity 350 B
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5) Early Results

* Localization : Time-Frequency maps with injection
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5) Early Results

* Localization : Time-Frequency maps with pure noise
- Values at least 1 order of magnitude lower than injection images

- Sparse and uncorrelated pixels
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5) Early Results

* Localization : Time-Frequency maps with pure noise
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transients (glitches) are detected !

0.8

P
=
o=

0.6

=> |imit the sensitivity of our searches 0.4

Frequency (Hz)
L
o
=

s
=
=

=> need for a tool to remove them

0.2

5 EL e 5 A 1k i -I U.ﬂ
0 250 500 750 1000 0 250 500 750 1000
Time (s) Time (s)

15



6) Improvements and future plans

e State of the work : internal LVK review start by the end of November

* Implement new training method : Curriculum Learning (train with the easiest samples at first)

=> should increase the performances for low amplitude injections

* Add a classifier to remove glitches

=> see the work of Melissa Lopez and myself (paper out soon)

e Test on new problems (can be adapted to any image shape !)

:> GW background Search' GW from Supernovae’ we. convoltion T strdedconvolution @ element -wiseaddition ~ — transposed convolution zx; ooooooooooooo

111111111

16



THE END

Thank you for your attention !

Questions ?

Vincent Boudart
vboudart@uliege.be




