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1) Whatare Bursts ?

4 main classes of events :

black hole,

neutron star, white
dwarfs, ...

anything that is

. superposition of a large
transient and not a CBC Perp g

number of events




2) How do we detectthem ?

e CBC detection : general relativity => model of collision = waveform

—— SEOBNRv2

=> then try to match those models to the data (matched filtering)

* Many other phenomena can generate GWs | But physics is
sometimes poorly known...
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=> Models not accurate enough to apply match filtering. W A,

=> But we can use multiple detectors to find correlation in the data
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2) How do we detectthem ?

* Excess of power method
=> Search in Time-Frequency space : bursts should be clusters of high-correlation pixels
=> Many sources of noise (seismic, laser noise, suspensions, etc.)

=> Focus on long duration events (>10 seconds)
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3) New approach : convolutional neural networks

* Inspired by Xing et al., 2019. (https://doi.org/10.1186/s12859-019-3037-5), coded with PyTorch

* Downscaling and upscaling network + skipped connections + ELU activation
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* Method:
- train the network so that : output (O) = target (T) - 0]

1000 4

==> our target will be injection in empty TF map

Frequency (H

750 4

==> Empty map for noise-only images

500 4

250 1

. . .. 1
* Lossthatis being minimized: MSE=_ ) (T;; - 0y)° NEm a w s w o & e e
inj


https://doi.org/10.1186/s12859-019-3037-5

3) New approach : convolutional neural networks

* Problem : can't rely on the long-duration models 20 B 1SCOChir Magnetar

- too many uncertainties in the physical phenomena e S ’ \

- cannot be used as patterns to recognize \\ E \

* They all show a "chirp up" or "chirp down" behavior i I N ' \ o

==> easily mimicked thanks to the Python Scipy library ! Ech L_B T [ u|| —

==> Allow to generate chirps as time series }mj " g ‘m,o_
Tine

2000

Taken from O3 long-duration paper:
https://dcc.ligo.org/public/0174/P2100078/0
11/03 long duration.pdf
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https://dcc.ligo.org/public/0174/P2100078/011/o3_long_duration.pdf

4) Early Results

e Localization : TF maps with injection

- Values > 0.5 for the detected signals
- Pixel-wise localization reached !

==> What about the time-frequency

maps with only pure noise ?
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4) Early Results

* Localization : TF maps with pure noise
- Empty map when nothing is seen

- Instrumental/environmental noise

transients (glitches) are detected !
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5) Improvements and future plans

e State of the work : draft finished

* Combine the training procedure with Curriculum Learning (train with the easiest samples at first)
=> should increase the performances particularly at low visibility

* Add a classifier to remove glitches
=> see the work of Melissa Lopez and myself (paper out soon)

* Improve the detection statistic

=> Look at the "connection" between the N-largest values

* Test on new problems (can be adapted to any image shape !)

=> CBC detection, supernovae, ...



THE END

Thank you for your attention !

Questions ?

Vincent Boudart
University of Liege




