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This study financed by ERDF and the Wallonia Region estimates the annual electricity consumption (EC)
of building stock, including the 3 building sectors namely residential, tertiary and industrial building. The
estimation takes into account appliances, electrical heating, cooling, lighting, cooking and EC by m2 on a
building level. The results are spatialized on different territorial scales. Using cadastral data of more than
1,700,000Walloon buildings and annual EC data from a sample collected in 2012 from the energy reports,
the paper assesses the EC of the whole building stock and tests to what extent different types of variables
(building factors and socio-demographics) explain annual EC. It then shows which individual variables
have the highest explanatory power. In contrast to many other studies, the research recognizes the prob-
lem of multicollinearity between predictors in regression analysis and uses Lasso regression to address
this issue. Three separate regression models were used to study the predictors of annual EC of residential,
tertiary and industrial buildings. EC building factors (appliances, auxiliary and main heating, domestic
hot water and cooking) explained the largest share which is 66.46% of the variability in EC for residential
buildings whereas the EC usages share for tertiary buildings (lighting, heating and domestic hot water, air
conditioning, cooling, etc.) is about 50.53% and 38.55% for industrial buildings. Socio-demographic vari-
ables on their own explained about 61.59%, 26.34% and 3.41% of the annual EC, respectively for residen-
tial, tertiary and industrial buildings. Hence, the building variables present the highest explanatory power
for EC, presumably because heating and cooling EC are included in this study. The study highlights that
when attempting to explain EC related to Walloon households, including heating and cooling EC, appli-
ances usage has the strongest predictive power in residential buildings. On the other hand, the projected
decrease in EC use for heating in existing residential buildings is �8.82% and �10% for existing tertiary
buildings while the projected increase in EC use for cooling in existing tertiary buildings is + 11.94% from
2012 to 2050 on a regional scale. These trends follow the predicted regional heating degree-days (HDD)
of �11.76% and cooling degree-days (CDD) of 14.04% for the same period based on the gated recurrent
unit (GRU) an implemented deep learning (DL) model. In addition, the produced EC maps on different ter-
ritorial scales show that the highest EC is seen in large and main cities in general.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

The European Union (EU) has committed to reducing its green-
house gas (GHG) emissions by 80 to 95% in 2050 with respect to
1990 base reference [1]. While excluding emissions from land use
and forestry, the total GHG emissions in Belgium decreased by
21.9% between 1990 and 2020 [2]. It detailed the emissions from
the Belgium building stock as follows: residential sector 13.3%,
commercial sector 4.8%, transport sector 22.5% and industrial sector
46.6%. The largest contribution to greenhouse gas emissions arises
from the energy sector. In 2018 this contributed 73% to the total
emissions [2]. Despite energy efficiency improvements in electrical
appliances over the last 40 years, electricity consumption (EC) of
domestic appliances has increased by about 2% per year over this
period [3], making EC an important research area. Hence, given
the need to reduce carbon emissions significantly to mitigate
climate change and meet European legal targets, it is important to
understand what factors explain residential EC and how to
minimise or reduce it.

The aim and scope of this study are to estimate on a building
level the EC, then grow the understanding of what determines EC
in buildings, with the emphasis on the contribution of various
classes of predictors. The task is to answer to what extent these
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List of abbreviations

appl. Appliances
auxH Auxiliary Heating
CDD Cooling degree-days
CEC Cooling electricity consumption
cook. Cooking
csv Coma Separated Values
DHW Domestic Hot Water
DL Deep Learning
EC Electricity Consumption
EIE Energy
ERDF European Regional Development Fund
EU European Union
GHG Greenhouse Gas
GIS Geographic Information System
GWh Gigawatt Hour
GRU Gated Recurrent Unit
HDD Heating Degree Days
HEC Heating electricity consumption
ICEDD Institut de Conseil et d’Etudes en Développement Dur-

able (asbl)

IWEPS Institut Wallon de l’Évaluation, de la Prospective et de la
Statistique

kWh Kilowatt Hour
LASSO Least Absolute Shrinkage and Selection Operator
LEMA Local Environment Management and Analysis
LHV Lower Heating Value
LN Natural Logarithm
MH Main Heating
NB Number of Buildings
OLS Ordinary Least Square
QGIS Quantum GIS
RD Relative Difference
SD Standard Deviation
SS Statistical Sector
TA Total shape Area
TEC Total Electricity Consumption
TNB Total Number of Buildings
TWh Terawatt Hour
VIF Variance Inflation Factors
WALSTAT Wallonia Statistics geoportal
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different types of variables explain the annual EC in residential,
tertiary and industrial buildings, including different uses of
electricity: electrical appliances, electricity space heating and cool-
ing. This study analyses which individual variables have the high-
est explanatory power. Afterwards, the EC use for heating and
cooling is predicted considering the effect of temperature changes
based on the implemented deep learning model, namely gated
recurrent unit (GRU), thus, heating degree-days (HDD) and cooling
degree-days (CDD) from 2020 to 2050. The developed methodol-
ogy is applied to a case study, the Walloon Region, located in Bel-
gium in the north of Europe. This region is composed of 260
municipalities, amongst them 40 main cities.

A literature review on buildings EC shows that, for many fac-
tors, findings are somewhat ambiguous and depend on the inclu-
sion of control variables and definition of EC. Many studies
constructed consecutive regression models, starting with the
appliance, and adding household, dwelling characteristics and
socio-demographic data. However, sample size varies according
to the magnitude of the research. For example, Bedir et al. [4]
assessed the EC in about 320 households in the Netherlands. Some
samples are limited to less than ten households. In contrast, the
analysis in this paper is based on a regional sample of more than
1.7 million buildings, including a large number of building types,
various appliances used, different usages and socio-
demographics. Hence, the relatively large dataset of this study
allows us to uniquely quantify the impact of various types of pre-
dictors within the same sample. The regression model decomposes
the annual EC into 19 building predictors and 9 socio-demographic
predictors.

Furthermore, the majority of studies reviewed did not report
checking and controlling for multicollinearity. Multicollinearity
occurs when two or more predictor variables in a multiple regres-
sion model are highly correlated. The presence of multicollinearity
means that regression coefficients cannot be reliably interpreted.
In our study, for each regression analysis, variance inflation factors
(VIF) are inspected to see if multicollinearity exists, and if it does,
Lasso regression is carried out which sets redundant predictors to
zero, therefore performing variable selection and removing
multicollinearity.
2

The main research questions that the authors are answering in
this study are:

(1) Can different methodologies be combined to estimate the EC
of a regional building stock? This study combines 4 different
methodologies which can be used in other studies to esti-
mate buildings EC on a regional scale.

(2) What can be the explanatory power of different types of vari-
ables explaining the annual EC in residential, tertiary and
industrial buildings? A statistical analysis using OLS (ordi-
nary least square) models is used to get influencing parame-
ters for each building and socio-demographic variables.

(3) How can EC be spatialized to illustrate the actual EC on dif-
ferent urban scales? This study uses QGIS to map the esti-
mated EC on different territorial scales namely statistical
sector, municipality and province scales. This mapping
method can be used everywhere else where the required
data are available to fulfil this task.

(4) How can EC used for heating and cooling be predicted to dif-
ferent horizons? This study predicted heating EC (HEC) and
cooling EC (CEC) using GRU modelling, UK Met Office equa-
tions and energy equations to predict HEC for residential and
tertiary and CEC of tertiary buildings on 3 horizons, specifi-
cally 2030, 2040 and 2050.

The innovations in this study are: (i) a combination of different
methodologies to estimate and model the EC of a whole regional
building stock composed of more than 1.7 million buildings, (ii)
characterizing each building by its estimated EC, based on the
cadastral database, (iii) combining cadastral data and socio-
demographic data on the statistical sector (SS) scale to create a
statistical model, using Lasso regression to remove multicollinear-
ity of variables in this model, (iv) predicting the heating EC (HEC)
for residential and tertiary buildings and cooling EC (CEC) for
tertiary buildings up to 2050, thanks to the use of predicted
temperature and UK Met Office equations, and (v) mapping the
obtained EC results on different scales to cover the whole studied
region and to analyse spatial variations on different territorial
levels.
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2. Background

2.1. Top-down and bottom-up methodologies

Top-down methodologies consider the situation as a whole (for
example using national electricity statistics, in our study) and try
to attribute EC to the studied building with regards to its character-
istics and the analysis of aggregated data. On the other hand, the
bottom-up models determine the load from individual devices
and consumption activities, via a progressive approach to reach
higher scale levels of data presentation. In their research Fabbri
and Tarabusi combined top-down and bottom-up methodologies
for buildings’ energy behaviour analysis using national energy
statistics to attribute electricity consumption to the studied build-
ing in the first step, and represent entire system loads at dwellings
scale from building characteristics and analysis of its aggregated
appliances data [5]. The complementarity of these two approaches
improves building electricity management. While the top-down
methods drive performance improvement by ranking a building
against its peers, the bottom-up methods are focused on the build-
ing’s specific context.

Hong et al. and Burman et al. compared top-down and bottom-
up approaches based on the complexity to provide a more accurate
indication of energy efficiency in non-domestic buildings [6,7]. Dif-
ficulties in acquiring adequate data were identified as a key limita-
tion to using both approaches. Kavgic et al. identified three major
issues which need to be addressed to get better output from these
methodologies: first, the lack of publicly available detailed data
related to inputs and assumptions, second, the lack of data on
the relative importance of input parameters to predict outputs,
and third, the uncertainty on the relationship between socio-
demographic data and the energy consumption [8]. Many recent
papers have shown the important effect of appliances ownership
on total building energy consumption, with a comparatively small
contribution of socio-demographics, self-reported behaviours, and
attitudes towards environmentally significant behaviour and cli-
mate change [9,10].
2.2. Impact of building characteristics and appliances ownership

Building characteristics’ effect on electricity consumption is
well documented. The composition of the sample is one of the
most important factors to be considered during the estimation pro-
cess [9]. The result variability on dwelling level can be expected to
vary in magnitude depending on whether space heating is included
in the electricity consumption [11,12]. Homes using electricity for
heating [13-16] and hot water are shown to use more electricity
compared to those heating water with gas [15,16]. Another self-
evident effect is that in a geographically diverse sample of homes,
location plays a role [17,18] due to differential demand for heating
(if included) and cooling.

Regarding the impact of building variables, a common finding
was that detached houses have been reported to have the highest
electricity consumption [10,19,20]. In one study, the effect of
building type only played a role in winter when heating loads con-
tributed significantly to EC [17]. Regarding building age, results
vary across studies, with some studies finding a non-linear rela-
tionship between building age and electricity consumption
[10,19], others found an effect only in subgroups of homes with
electric heating but not gas heating [13], and others reporting no
effect [17]. A larger floor area is generally associated with greater
electricity use [10,17,18,20], and a higher floor area is more likely
to signify a high consumption household [16]. Regarding the
impact of additional numbers of rooms, results varied, partly
depending on whether floor size was used as an additional predic-
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tor: once controlling for floor area, Brounen et al. found a negative
effect of additional numbers of rooms on electricity consumption
[10]; not controlling for floor area, Huebner et al. found a positive
effect [21]. Wiesmann et al. found no effect on the number of
rooms [18]; Bedir et al. found a negative effect of additional bed-
rooms but a positive effect for additional study and hobbies rooms
[4], potentially because the latter ones are associated with addi-
tional appliances.

The number of storeys, insulation of external walls, insulation
of loft, and energy-saving windows had no significant effect on
annual electricity consumption [13], but in that sample, only a
small subset of homes used electricity for heating, which might
explain why these factors played no role. To summarize, the effect
of building variables highly depends on what electricity is used for,
i.e. whether it includes space and water heating. General findings
are that greater floor areas and detached houses use more
electricity.

Appliance ownership was an explanatory variable included in
several studies, with a general finding that owning more appli-
ances and/or using them for longer is associated with greater EC
[4,18,22]. Specific appliances associated with greater EC were the
number of refrigerators, entertainment devices, electric water hea-
ter, electric clothes dryer, and spas/pools [17]. Bedir et al. reported
that general use appliances and hobby appliances use were signif-
icant predictors but that food preparation (cooking) and cleaning
appliances were not [4]. However, Kavousian et al. and McLoughlin
et al. have linked cooking appliances to higher EC [17,23]. In addi-
tion, the presence of an air-conditioning unit was a significant pre-
dictor [15]. The number of halogens or energy-saving light bulbs
however were not significant predictors [4]. Regarding the EC
without space and water heating, it is expected that appliances
ownership and use, and socio-demographics would have a bigger
impact [10].
2.3. Impact of socio-demographic variables

Larger household size is generally associated with higher elec-
tricity use. Though, the effect is not necessarily shown to be linear
and depends on how the variable is coded. Using household size as
a continuous predictor showed that a larger household was associ-
ated with greater EC [4,13,15]. However, other papers report that
whilst larger households use more electricity, the per-capita con-
sumption is lower and hence coded household size as a categorical
predictor [17,18,20,22,24]. Looking at what factors define a high
electricity user, Jones and Lomas found that households with three
or more occupants were more likely to be high consumers than
homes with one or two occupants [16]. They also found that
households with teenagers were more likely to be high consumers
of electricity, as did Brounen et al. [10].

Regarding the effect of age on households, results were ambigu-
ous: some studies found a non-linear effect (e.g. [17]), others
reporting no effect [4]. Income is another much-studied variable,
with several studies finding that households with higher income
were more likely to be in the category of high consumers of elec-
tricity [16], or consumed more electricity respectively
[10,18,20,21], even though Wiesmann stated the effect was rela-
tively small once other variables were added in the model [18].
However, Kavousian et al. found no relationship between income
and EC and suggested that this might be because the income effect
is mediated by appliance ownership which was a separate variable
in the analysis [17]. Bedir et al. reported that income on its own is
related to EC and it is not a significant predictor controlling for
other variables in regression analysis [4], including appliances,
lending support to Kavousian’s findings.
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2.4. Multicollinearity between variables

When using linear models, it is important to check multi-
collinearity between considered variables hence VIF is used. Some
papers and books of statistics argue that a VIF greater than 10 is
problematic and unacceptable since it shows serious issues of
collinearity between variables within the model [25,26]. Other
more conservative researchers set the limit value of VIF at 5 [27].

2.5. Impact of climate change and inhabitant climate concern

Santamouris et al. analysed fifteen studies examining the
impact of ambient temperature on the total EC and showed that
the actual increase of the electricity demand per degree of temper-
ature increase varies between 0.5% and 8.5% [28]. This increase is
the obvious response to global climate change and therefore their
impacts on building heating and cooling [29]. Besides, variables
such as climate change concern, house occupant self-reported
energy-saving actions, etc. can lead to significant reductions of
EC [30]. Huebner et al. evidenced that self-reported habit strength
was significantly related to self-reported energy-consuming beha-
viours and to actual energy consumption (combining gas and elec-
tricity) when controlling for several building factors [31].

Darby described electricity reductions between 5% and 15% for
users interested in environmental concern and pro-environmental
behaviour [32], whereas a Swedish study found no effect [33]. One
study found that households that have expressed a motivation to
buy energy-efficient appliances and air conditioners have higher
levels of daily minimum consumption, contrary to what might be
expected [17]. The same authors found that occupants who
reported turning off lights when not in use had higher electricity
consumption, contrary to what might be expected. Vringer et al.
found no evidence of a relationship between domestic energy
requirements and values including problem perceptions of climate
change [34]. Similarly, Brandon and Lewis found that environmen-
tal attitudes did not predict historic energy consumption but were
related to energy savings [35].

2.6. Electricity consumption spatialization

Nishimwe and Reiter modelled building heat consumption and
heat demand of the whole Walloon building stock (in Belgium), at
various territorial scales, but they didn’t model their electricity
consumption [36]. In other countries, Cao et al. analysed the spatial
and temporal change in EC between 1994 and 2009, Shi et al. esti-
mated and compared the spatiotemporal urban EC changes, and
Bourgeois et al. used regression models considering socioeconomic
and demographic variables and mapped energy behaviour with a
sample of 1950 houses in Paris to see spatial and temporal changes
[37-39]. Few studies have spatialized the EC of the regional build-
ing stock.
3. Research methodologies

For each building of the studied building stock, the average uni-
tary electric consumptions are calculated using a yearly national
survey report [40,41]. The estimated annual EC break down was
done in residential buildings according to appliances type (e.g.,
TV, lighting, fridges, cookers, etc.) and in tertiary buildings accord-
ing to usages (lighting, air conditioning, etc.) and activity type (e.g.,
employees, number of students in schools, number of beds in
health care and hospitals, etc.). Both cadastral and socio-
demographic data were combined with the appliances and usages
consumption to the next step of the bottom-up process which con-
sists in estimating for each statistical sector scale, the amount of
4

electricity used for each group of building type. The estimation of
the annual EC of each industrial building is based on the con-
structed space in m2 calculated in the cadastral database. The
developed model was used to build a GIS database of EC for the
entire regional building stock. The OLS models showed which vari-
able has the highest explanatory power in each building sector.

Finally, our paper looks at the prediction of annual EC use for
space heating in residential and tertiary buildings and cooling in
tertiary buildings due to change in temperature. The authors have
performed GRUmodels to forecast the temperature data from 2019
to 2050 in the previous research paper [42]. The HDD and CDD
were calculated using the UK Met Office equations applied to the
forecasted monthly temperatures with the base temperature of
15 �C for EC use for heating in residential and tertiary buildings,
and 22 �C for EC use for cooling for tertiary buildings. Then, the
EC for cooling was predicted. In a final step, the results were com-
pared to the national consumption statistics and their deviation in
percentage was represented.

In the next section, the case study is described (see Fig. 1). This
research concerns the south part of Belgium in Europe, the Wal-
loon Region, which includes more than 1,700,000 buildings. The
next sections will present used data and explain research method-
ologies in detail. The used methodologies are graphically repre-
sented in Fig. 2. They consist of four main tasks namely the top-
down, bottom-up, statistical analysis and mapping processes.

3.1. Case study

Wallonia is located in Belgium, in the northern part of Europe.
This region is composed of 5 provinces, 20 urban regions (bor-
oughs), 262 municipalities (with 40 main cities) and 9876 statisti-
cal sectors (SS) [43], shown in Fig. 1. The SS corresponds to a
neighbourhood in urban areas or a village in rural areas with more
than 150 inhabitants [44]. The 40 main municipalities are mostly
big cities, very densely populated compared to the other
municipalities.

3.2. Data description

The used databases in this study are summarized in Table 1.
They are the cadastral database, composed of building categories,
shape areas, floor numbers, attics etc., regional energy reports for
the EC by usages and appliances, shapefiles used for GIS (geo-
graphic information system), and socio-demographic data mainly
used in statistical analysis. Socio-economic data could be of great
interest but this study lacks that kind of data and did not use them.

The considered cadastral database in this study is composed of
1,509,697 residential dwellings, 157,205 tertiary buildings and
39,736 industrial buildings.

3.3. Top-down and bottom-up data processing

The cadastral database together with the ICCED annual report
on energy consumption breaks down variables in a top-down pro-
cess to enable estimate the electricity consumption according to
building sector (residential, tertiary and industrial) and appliance
type (e.g., lighting, fridge, cooker, washing machine, TV, etc.) This
is the first step in data mining. On one hand, the cleaning process
applied to the huge cadastral database allowed to keep buildings of
interest. For example, agriculture facilities, train and bus stations,
were removed from the data because they are out of the scope of
this study. Also, unclosed and unidentified buildings defined as
such in the GIS shape files were not considered. On the other hand,
the annualized energy consumption was estimated on basis of
ICCED reports. The task consists of estimating for each residential
and tertiary building type the amount of electricity used for each



Fig. 1. Case study: 262 municipalities with 40 main municipalities in Wallonia Region, Belgium (Source: Nishimwe & Reiter [36]).

Fig. 2. Top-down (the cadastral database and ICCED reports data help to get the annual EC variables), 2. Bottom-up (Annual EC of buildings at SS level), 3. OLS regression
models (building variables, socio-demographics), combine in one regression analysis, checking for multicollinearity (VIF), if multicollinearity exists between predictors
perform Lasso regression, produce the final OLS; HEC and CEC prediction analysis. 4. Mapping the electricity consumption on SS and regional scale.
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Table 1
Input data description. The ICEDD reports provide types of buildings, appliances types, different EC usages and EC by m2 for industrial buildings. The cadastral data is a GIS
database composed of residential, tertiary and industrial buildings.

Input data Description Source

Residential Housing category (i) Apartment, single houses (detached, semi-detached and terraced) ICEDD 2014 [40]
Appliances Refrigerators (R), freezers (F), combined R + F, washing machine,

tumble dryer, dishwasher, microwave, televisions, computers,
lighting, small electro, circulators, standby

DHW Domestic hot water using electricity
Cooking Cooking system that uses electricity
Heating Heating system using electricity
EC spec. for appliances Yearly specific electricity consumption of appliances
Number of housing category Total number of apartments, detached, semi-detached and terraced

houses
Tertiary Tertiary categories (j) Administration, banks, insurance, commercial, etc. ICEDD 2014 [40]

EC by category Yearly total EC of the same category type
Category partition (%) Percentage of each category
Usages Lighting, DHW and heating, air conditioning, circulation pumps and

fans, refrigeration and freezing, and others (computers, coffee
machines, etc.)

EC by usages by category Yearly EC by usages and by category
EC by m2 by category Yearly EC by m2 by each given category
EC by an employee by category Yearly EC for an employee in a given category

Industrial Industrial categories (k) Chemistry, food, paper and textile, steel industry, etc. ICEDD 2014 [41]
EC by category Yearly total EC of the same category type
Category partition (%) Percentage of each category
EC by m2 by category Yearly EC by m2 by each given category
EC by an employee by category Yearly EC for an employee in a given category

Cadastral GIS database Wallonia administration (2010)
Shapefiles Statistical sectors Wallonia Geoportal [45]

Municipalities
Urban regions
Provinces

Socio-demographic For residential inhabitant density per km2,
under 15,
employed,
unemployed,
inactive retirees and pensioners

WALSTAT/IWEPS [46]

For tertiary population density per km2,
people working in wholesale and retail trade transport and
warehousing accommodation and catering,
people working in other services

For industrial people working in mining and extractive manufacturing and other
industries,people working in construction
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group of electric appliances, and for industrial buildings types their
electricity use per square meter (Table.1). For example, the estima-
tion of the EC of schools (including universities) and hospitals is
based respectively on the number of students and of beds per
building. Many appliances and human activities impact the EC con-
sumption; however, it is hard to find the data for some factors and
others are too small to be used in analysis or hard to interpret, thus
they were excluded from this study.

In the bottom-up approach, the annual EC was grouped accord-
ing to building sectors for each SS. The corresponding socio-
demographic data were attached to the newly created database
before the statistical analysis starts. The EC estimation is per-
formed differently depending on the data availability for each
building sector.

3.3.1. Residential sector
The EC in the residential sector is estimated based on usages

(cooking, DHW, auxiliary heating andmain heating which use elec-
tricity) and appliances (see Table 1). Firstly, the appliances EC is
estimated as follow:

NBi;appl: ¼ TNBappl: � pi ð1Þ
where NB is the number of buildings, NBi,appl. is the number of
buildings of category i equipped by appliances appl.; TNB is the
total number of buildings and pi is the percentage of buildings of
the category i.
6

ECi;appl: ¼ ECspec:;appl: � NBi;appl: ð2Þ
ECi,appl. is the consumption of appliances by category i, ECspec.

appl. is the specific consumption of the given appliance.

ECr;appl: ¼
X

ðECi;appl:=NBiÞ ð3Þ

where ECr,appl. is the electricity consumption of the residential hous-
ing based on the appliances it is equipped with and NBi is the num-
ber of buildings of category i. The EC of domestic hot water (DHW)
(ECr;DHW ) and of the main heating (ECr;MH) are given in the ICEDD
report.

Secondly, the estimation of the total electricity used for auxil-
iary heating and for cooking is estimated by the authors following
the next formula:

ECr;cook ¼ TECcook � pi ð4Þ

where ECr,cook is the use of electricity in cooking for one single hous-
ing, TECcook is the total electricity used for cooking and pi is the per-
centage of buildings of category i.

ECr;auxH ¼ TECauxH � pi ð5Þ

Here, ECr,auxH is the electricity used for auxiliary heating for one
single housing and TECauxH is the total electricity used for auxiliary
heating.
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Lastly, the ECof a residential building in the cadastral database is:

ECr ¼ ECr;appl: þ ECr;DHW þ ECr;MH þ ECr;cook þ ECr;auxH ð6Þ
3.3.2. Tertiary buildings
The estimation of EC in the tertiary sector considers usages

described in Table 1 using formula 7:

ECtert ¼ ECj;u=NBj ð7Þ
where ECtert is the electricity consumption of a tertiary building in
the cadastral database, ECj,u is the electricity consumption of usage
u by building category j and NBj is the number of tertiary buildings
of category j.

3.3.3. Industrial buildings
Because of the lack of usages data for the industrial sector, the

authors considered using the EC by shape area as given in the
ICEDD report. Hence, the EC of industrial buildings is estimated
as follows:

ECk ¼ TECk=TAk ð8Þ
where ECk is the electricity consumption of an industrial building
category k, TECk is the total EC of industrial buildings of the same
category k and TAk is the total shape areas of industrial buildings
of the same category k. Hence, the EC of an industrial building in
the cadastral database is given by:

ECind ¼ ECk � Sc ð9Þ
where Sc is the shape area of an industrial building in the cadastral
database.

Afterwards, the obtained data above is applied to the cadastral
database. Therefore, each cadastral building is characterized by its
EC. This last is used as the input for statistical analysis and
cartography.

3.4. Statistical analysis ordinary least square, VIF, Lasso regression and
EC predictions

The statistical analysis and modelling are performed using Excel
and R software.

3.4.1. Ordinary least square (OLS)
The OLS regression analysis was carried out for each of the three

building sectors (residential, tertiary and industrial). The analysis
was done on the statistical sector level. The dependent variable
used was the annual EC in gigawatt-hours (GWh) and it was log-
Table 2
UK Met Office equations [48] applied to the computation of the monthly HDD using the mo
the base temperature.

Case Weather Co

1 Uniformly cold month Tm
2 Mostly cold month Ta
3 Mostly warm month Tm
4 Uniformly warm month Tm

Table 3
UK Met Office equations [48] applied to the computation of the monthly CDD using the mo
the base temperature.

Case Weather Co

1 Uniformly warm month Tm
2 Mostly warm month Tm
3 Mostly cold month Ta
4 Uniformly cold month Tm
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transformed (natural log) to achieve greater symmetry of the dis-
tribution, and of the residuals in the regression analysis. The inde-
pendent variables used as predictors are presented with their
frequencies or summary statistics (means and standard deviation)
in Table 4.

Predictors were grouped in two different factors: building and
socio-demographic. In the first step, OLS regression analysis was
performed for each predictors group separately. After building all
individual models (building and socio-demographic), models were
then successively combined until resulting in a final model encom-
passing all predictors. Thus, showing which individual predictors
have the highest explanatory power of the annual EC in residential,
tertiary and industrial buildings, including electricity for space and
water heating using separate models, and then in a combined
model. The next step was checking and if necessary, controlling
for multicollinearity.

3.4.2. Variance-inflation factors (VIF)
Given the suspected issue of multicollinearity, the variance-

inflation factors (VIF) were then inspected. The glmnet package
was installed in R software for this analysis. If VIFs greater than
10 were found in the OLS regression, then the least absolute
shrinkage and selection operator (Lasso regression) was employed.

3.4.3. Lasso regression
In our study, for each regression analysis, predictors were

inspected to see if multicollinearity exists, and if it does, Lasso
regression is carried out which sets highly correlated predictors
to zero, therefore performing variable selection and removing mul-
ticollinearity. Examples include the ‘‘Unemployed” correlating
with ‘‘Employed”. For further knowledge on how Lasso regression
is applied on variables in R, the book of James G. et al. is recom-
mended [26]. After identifying which coefficients were set to zero
using Lasso, then a new OLS was repeated omitting one of those
predictors.

3.4.4. Focus on EC use for heating and cooling/air-conditioning -
analysis and prediction

Belgium’s temperate climate implies a low use of cooling sys-
tems in the residential sector. In 2016, 92% of Belgian residential
households had neither a fixed air conditioning unit nor a mobile
air conditioning unit. The distribution of air conditioning and cool-
ing in the Belgian residential sector is known neither on the build-
ing level nor on any territorial level. Only 0.3% of the electricity
consumed by Belgian residential households was used for cooling
in 2017 [47] which equals 0.02 TWh LHV for the Wallonia Region,
nthly maximum and minimum temperatures, the average monthly temperature, and

ndition HDDmonth =

ax � Tbase ðTbase�TavgÞ(10)
vg � Tbase < Tmax ðTbase�Tmin

� �
=2� � ½ðTmax�TbaseÞ=4�(11)

in < Tbase < Tavg ðTbase�TminÞ=4(12)
in � Tbase 0 (No heating is required)

nthly maximum and minimum temperatures, the average monthly temperature, and

ndition CDDmonth =

in � Tbase ðTavg�TbaseÞ(13)
in < Tbase < Tavg ðTmax�Tbase

� �
=2� � ½ðTbase�TminÞ=4�(14)

vg < Tbase < Tmax ðTmax�TbaseÞ=4(15)
ax � Tbase 0 (No cooling is required)
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our case study. Therefore, this study did not consider the residen-
tial sector in cooling analysis and prediction. The industrial sector
is not considered too because of the lack of required data. Regard-
ing the EC use for heating, this study considered residential and
tertiary sectors to predict the heating electricity consumption
(HEC) and the cooling electricity consumption (CEC). For EC use
for cooling, the only tertiary sector is considered. The analysis
shows the impact of climate in EC use for heating in the residential
and tertiary building sectors, and EC use for cooling in the tertiary
building sector up to the 2050 horizon.

The UKMet Office equations used in this part of the research are
based on a comparison between the maximum, minimum and base
temperature (Tables 2 and 3). In this study, these equations were
applied to the predicted monthly maximum (Tmax) and minimum
temperatures (Tmin). These predicted temperatures were defined
in a previous study by Nishimwe and Reiter on assessing the
impact of climate change on Wallonia building stock heat con-
sumption. GRU model has been used to forecast the Tmax and Tmin

from 2019 to 2050 [42]. The monthly HDD values were computed
using a base temperature (Tbase) of 15 �C (Table 2), whereas the
monthly CDD used a base temperature of 22 �C (Table 3).

First, for residential buildings, the authors considered a correc-
tion factor of 0.75 which corresponds to 75% for heating-based sys-
tems and of 0.25 corresponds to 25% domestic hot water using
electricity. Second, for tertiary buildings, the factor of 0.85 which
corresponds to 85% of cooling/heating-based system and a factor
Table 4
Building and socio-demographic factors - summary statistics of continuous variables.

Predictor Mean Standard
deviation (SD)

Residential
Building variables:
Apartment 7.383 24.62205
Terraced 48.33 108.1906
Semi Detached 45.35 63.76053
Detached 56.92 63.42967
Socio-demographic variables:
Density (hab/km2) 1085 1508.517
Under_15_Years 64.97 80.16327
Employed 137.6 156.5005
Unemployed 19.27 34.17129
Inactive_Retirees_Annuitants 66.01 88.92442
Tertiary
Building variables:
Administration 1.23 4.221061
Other & Miscellaneous 0.3952 1.202021
Banks_Insurance_Business 0.8661 2.022129
Commerce 8.181 24.1762
Culture_Sport & Other Services 5.486 18.49036
Education 1.584 3.676335
Health Care & Hospital 0.5399 1.821924
Transport & Communication 0.1228 0.5501325
Socio-demographic variables:
Density (hab/km2) 1085 1508.517
People working in

wholesale_retail_warehousing_Restaurant
31.99 37.3211

People working in other Services 5.702 7.33062
Industrial
Building variables:
Food 0.3549 1.573659
Other Industry 5.315 8.300523
Chemistry 0.1865 3.924575
Metal Fabrication 0.1408 1.586539
Non-Metallic Minerals 0.1084 2.359441
Steel Non-Ferrous 0.01086 0.4626685
Textile & Paper 0.09507 2.257449
Socio-demographic variables:
People working in manufacturing & Mining

Extractive
20.44 22.04651

People working in construction 12.37 12.80149
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of 0.15 (15%) of pumps and fans used for cooling. Hence, the pre-
dicted HEC and CEC is calculated using the following formulas:

ECy;r;h ¼ ðð0:75 � ECref ;r;hÞ � ðHDDy=HDDref Þ þ ð0:25 � ECref ;r;hÞ ð16Þ

ECy;t;h ¼ ðð0:85 � ECref ;t;hÞ � ðHDDy=HDDref Þ þ ð0:15 � ECref ;t;hÞ ð17Þ

ECy;t;c ¼ ðð0:85 � ECref ;t;cÞ � ðCDDy=CDDref Þ þ ð0:15 � ECref ;t;cÞ ð18Þ
where ECref,r,h is the reference value for residential HEC in 2012, ECy,

r,h is the present annual HEC values for residential buildings, r
stands for residential buildings, HDDy is the heating degree-days
of the present year and HDDref is the reference year (2012) heating
degree-days. For tertiary buildings, the subscript t is used (formula
17). ECref,t,c is the reference value for tertiary CEC, ECy,t,c is the actual
annual CEC values for tertiary buildings and the CDDy stands for the
cooling degree-days of the present year while CDDref is the cooling
degree-days of the reference year (2012).

3.5. EC cartography

The estimation of EC is implemented on the building level con-
sidering different usages for residential and tertiary sectors and by
shape area for the industrial sector because the authors did not
find detailed information on usages in the industrial sector. The
estimation is performed using Excel and R for calculations and
QGIS software for mapping. Each building is represented by its
EC and the results are mapped on 3 territorial scales. The maps
use graduated symbology with Natural Breaks of Jenks for classifi-
cation on SS and municipality scales, as for the mapping of the
Wallonia heat consumption and demand of the previous study
[36]. However, on the province scale, the quantile classification
with equal counts is used because in our case study, Wallonia
has only 5 provinces and the authors prefer to divide feature values
into equal size spans.

3.6. Methodological framework

All the used methodologies are summarized in Fig. 2.

4. Results and discussion

To characterize each building by its EC, through the top-down
approach as explained earlier, the authors calculated EC of differ-
ent usages for residential and tertiary sectors (Fig. 3 and Fig. 4)
and the EC by m2 for the industrial sector (Fig. 5).

Fig. 3 shows that the appliances are very consuming in the res-
idential sector compared to other usages. For apartments, the
annual average EC of appliances is 2749.51 kWh LHV, whereas
for detached, semi-detached and terraced houses it is equal to
2712.79 kWh LHV. Also, the auxiliary heating and cooking have
the same values for terraced, semi-detached and detached houses
and are 262.08 kWh LHV and 468.47 kWh LHV respectively, while
they are 210.11 kWh LHV and 375.57 kWh LHV respectively for an
apartment. DHW and the main heating vary for each housing type.
DWH and main heating are higher in a detached house. DWH is
lower in the apartment and the main heating is lower in the ter-
raced house.

Fig. 4 shows that, in the tertiary sector, 6 usages are detected in
the ICEDD report, namely air-conditioning, cooling, heating and
DHW, lighting, pumps and circulation fans and others (which are
televisions, computers, microwaves and other appliances). In gen-
eral, lighting and others are higher in every tertiary subsector,
whereas heating and DHW are lower in many tertiary subsectors
and inexistent in other services and miscellaneous. The commerce
sub-sector is the most consuming in terms of lighting, other con-
sumption and refrigeration freezing usages.



Fig. 3. Annual average EC in kWh LHV (lower heating value) of appliances and usages in residential houses.

Fig. 4. Annual average EC by usage in tertiary buildings (GWh LHV).
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For the industrial sector, the usages of EC are not given in the
ICEDD reports. They present only the annual EC of each industrial
building category. Therefore, the authors estimated the EC by m2 of
each industrial building category, based on the shape areas of the
cadastral database. Fig. 5 shows that Steel and nonferrous indus-
trial buildings have the highest EC, whereas the other subsectors
have lower EC.

These results from the top-down approach are integrated into
the cadastral database with results of the bottom-up approach to
perform the statistical analysis and map the EC on different scales.
4.1. Statistical analysis

4.1.1. Descriptive statistics of predictors
Table 3 provides descriptive statistics for the independent vari-

ables used in the OLS model. The values assigned to the variables
are summed at the statistical sector level. The building variable
value refers to the counted number of the variable, whereas the
socio-demographic value is the number of the population associ-
ated with the variable. According to the descriptive statistics, the
dominant residential building type is detached, which on average
accounts for 57 houses in a SS, followed by terraced houses (48),
semi-detached houses (45) and apartments (7). Trade crafts (8)
9

together with culture, sport and other services (e.g. cinema, the-
atre, church) (5) are major tertiary buildings. Another industry
(construction, warehouses, sawmill, etc.) (5) is the dominant
industrial building on average in an SS. On the other hand, the used
socio-demographic variables are mainly average density (1085
hab/km2), employed (138), inactive and retirees (66) and habitant
under 15 years (65). Although many socio-demographic factors
impact the EC, few were selected for the model. Complete socio-
demographic data are rare and many were discarded due to miss-
ing data.
4.1.2. VIF and lasso regression
Given the suspected issue of collinearity between predictors,

the variance-inflation factors (VIF) were then inspected. In this
study, the value of 10 was used as suggested by many studies
[25,26]. This procedure set coefficients to zero, effectively elimi-
nating non-relevant predictors with VIF greater than 10 out of
the model. Thus, it minimizes the sum of squared errors. Four
socio-demographic predictors from the residential OLS model
showed VIF values above the chosen threshold criterion (Table 5).
Therefore, Lasso regression was performed on the data.

All VIF for the remaining predictors were smaller than 10 except
for the Under_15_Years variable (VIF = 10.33) which was kept in



Fig. 5. Annual average EC by an employee and by m2 of industrial buildings in kWh LHV.

Table 5
Collinearity check for residential buildings before and after multicollinearity elim-
ination. The Employed variable with VIF greater than 10 is excluded from the model,
the variable Under_15_Years is kept for its importance in the study.

Predictor VIF (before) VIF (after)

Building variables:
Apartment 2.383093 2.082155
Terraced 5.881274 5.450489
Semi Detached 2.622066 2.568346
Detached 3.135815 2.525560
Socio-demographic variables:
Density (hab/km2) 3.094740 3.093257
Under_15_Years 13.458822 10.331108
Employed 16.019709 Removed
Unemployed 9.062522 8.692325
Inactive_Retirees_Annuitants 8.130925 6.415412

Fig. 6. Predictors coefficients scores as a function of log(k) indicating the shrinkage
of coefficients.
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the model for its importance in the study, considering households’
composition. Hence, Lasso regression was not necessary.

In Table 5, the employed parameter showed the higher
collinearity with the unemployed parameter during the statistical
analysis expressed by the variance-inflation factors (VIF) value of
16.019709 which is greater than the desired value of VIF < 10.
Afterwards, the employed predictor was removed from the model
and the VIF values recalculated to ensure the elimination of
collinearity between predictors.

Fig. 6 from lasso regression shows predictor ranks from stron-
gest to the weakest. The predictors that enter the model early
are the most predictive and those that enter the model later are
less important. Each coloured line represents the value taken by
a different coefficient in our model. The top numbering of the plot
indicates the number of predictors the model is using, going from
all predictors (top left corner) to sparser models (top right corner).
As log lambda (k) grows toward zero, fewer predictors remain in
the model because more and more coefficients are zero-valued.
Therefore, the apartment is the first to enter the model followed
by semi-detached, detached, population density per km2, terraced,
inactive population, unemployed and under 15 years’ people. The
remaining employed variable coefficient is set to zero and conse-
quently removed from the final model.

In Table 6, the collinearity check is done as well for tertiary and
industrial buildings and all the VIF were lower than 10, thus all
variables are kept in the models.
10
4.1.3. Building and socio-demographic regression model
Table 7 shows the coefficients of the OLS (bOLS, standard error

and the p-values). The stars indicate significance at the 0.001 (***),
0.01 (**), and 0.05 (*) level. The regression coefficients are in the
original measurement units, e.g. for building predictors. It tells us
how much EC increases when the number of the building increases
by one unit (building). Only two predictors are not significant:
Apartment (p-value = 0.762) and other services (p-value = 0.526).
Only the predictors that had remained after the Lasso regression
were included in the final OLS model.

In the first step, an individual model for each predictor group
was developed. The building model explained R2 = 66.46% of the
variability in annual electricity consumption of residential build-
ings, for tertiary buildings R2 = 50.53% and R2 = 38.55% for indus-
trial buildings. Moreover, the socio-demographic model
explained R2 = 61.59% for residential buildings, R2 = 26.34% for ter-
tiary buildings and R2 = 3.41% for industrial buildings. In the sec-



Fig. 7. Adjusted R2 for the six individual models (left) and the combined models (right).
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ond step, the building and socio-demographic predictors were
combined. This final model explained R2 = 70.86% of the EC vari-
ability for residential buildings, R2 = 54.33% for tertiary buildings
and R2 = 39.75% for industrial buildings.

4.1.4. Focus on EC used for heating in residential and tertiary buildings
and EC used for cooling/air conditioning in tertiary buildings - analysis
and prediction

The EC used to heat residential and tertiary buildings as well as
the EC used for cooling tertiary buildings are estimated on building
level and spatialised on municipality scale. The results obtained are
Table 6
Collinearity check for tertiary and industrial buildings.

Predictor VIF

Tertiary
Building variables:
Administration 1.182668
Other & Miscellaneous 1.025821
Banks_Insurance_Business 1.229533
Commerce 1.815894
Culture_Sport & Other Services 1.005315
Education 1.529952
Health Care & Hospital 1.130783
Transport & Communication 1.041209
Socio-demographic variables:
Density (hab/km2) 2.109514
People working in wholesale_retail_warehousing_Restaurant 5.252508
People working in other Services 4.338770
Industrial
Building variables:
Food 1.057827
Other Industry 1.127859
Chemistry 1.016631
Metal Fabrication 1.114709
Non-Metallic Minerals 1.009806
Steel Non-Ferrous 1.096561
Textile & Paper 1.001432
Socio-demographic variables:
People working in manufacturing & Mining Extractive 3.780581
People working in construction 3.766945
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based on the GRU model. The total heating (Table 8) and cooling
(Table 9) EC change rate between 2012 and future horizon (2030,
2040, and 2050) on a regional scale (whole Wallonia Region), show
that the heating EC will decrease from �6.34% to �8.82% for resi-
dential buildings and from �7.19% to �10% for tertiary buildings
whereas the cooling EC will increase from 8.28% to 11.94% for ter-
tiary buildings on a regional scale.

Fig. 8 shows the projected decrease in EC used to heat residen-
tial and tertiary buildings, the increase in EC for cooling in tertiary
buildings from 2012 to 2050. This decrease or increase follows the
trend of the predicted HDD of �11.76% and CDD of 14.04% at the
same period interval.

The spatialization of EC used in heating for residential (Fig. 9)
and tertiary (Fig. 10) buildings sector illustrate on the left, heating
EC in 2012 and on the right the heating EC in 2050. The cooling EC
of the tertiary building sector in 2012 on the left and 2050 on the
right are presented in Fig. 11. These three figures are on a munic-
ipality scale.

The municipalities that have higher heating EC in residential
and tertiary buildings are mostly amongst main cities, whether
in 2012 or horizon 2050. This is because of the existence of many
residential using electricity for heating compared to other rural
municipalities or villages. Regarding the electricity used for cooling
or conditioning the tertiary buildings, the higher consumption is
localized also in main municipalities, which require a lot of air con-
ditioning or cooling especially in commercial buildings, such as
supermarkets and hypermarkets, banks and administration offices
(see Fig. 12).

4.1.5. Summary of statistical analysis and relation to other research
studies

The OLS models showed that the building’s EC is to a large
extent impacted by the building usages, more specifically
appliance-related variables. Other studies show that when
electricity-based heating is included, building variables play a
much larger role [13-16]. Considering residential buildings, the
building usages explained 66.46% of EC, whereas tertiary building
usages explained 50.53% of EC. However, EC in the industrial build-



Table 8
Change rate of the EC used in heating residential and tertiary buildings between 2012
and future horizon (2030, 2040, and 2050).

Period Heating EC change rate
for residential buildings

Heating EC change rate
for tertiary buildings

2012–2030 �6.34% �7.19%
2012–2040 �7.01% �7.94%
2012–2050 �8.82% �10.00%

Table 9
Change rate of the EC used in cooling for tertiary buildings between 2012 and future
horizon (2030, 2040, and 2050).

Period Cooling EC change rate on a regional scale

2012–2030 8.28%
2012–2040 10.24%
2012–2050 11.94%

Table 7
OLS coefficients for the final combined (building and socio-demographic) regression model.

Predictor bOLS Std. Error p-value

Residential
Building variables:
Apartment 1.748e-03 4.509e-04 0.000
Terraced*** 2.476e-03 1.660e-04 0.000
Semi Detached*** 6.366e-03 1.934e-04 0.000
Detached*** 9.942e-03 1.928e-04 0.000
Socio-demographic variables:
Density_hab.km2*** 3.302e-04 9.290e-06 0.000
Under_15_Years 1.076e-03 3.085e-04 0.000
Unemployed �3.477e-03 6.639e-04 0.000
Inactive_Retirees_Annuitants �1.366e-03 2.192e-04 0.000
Tertiary
Building variables:
Administration*** 3.744e-02 3.145e-03 0.000
Services & Miscellaneous (EIA & Water) *** 4.250e-01 1.029e-02 0.000
Banks_Insurance_Business*** 1.480e-01 6.694e-03 0.000
Commerce** 4.606e-03 6.804e-04 0.000
Culture_Sport & Other Services*** 1.192e-02 6.619e-04 0.000
Education*** 6.589e-02 4.107e-03 0.000
Health Care & Hospital*** 1.393e-01 7.125e-03 0.000
Transport & Communication*** 4.434e-01 2.264e-02 0.000
Socio-demographic variables:
Density (hab/km2) *** 7.866e-05 1.175e-05 0.000
Wholesale_retail_warehousing_Restaurant*** 9.782e-03 7.496e-04 0.000
Other Services* �2.199e-03 3.469e-03 0.526
Industrial
Building variables:
Food*** 0.391097 0.015865 0.000
Other Industry*** 0.122083 0.003106 0.000
Chemistry*** 0.065609 0.006236 0.000
Metal Fabrication*** 0.180698 0.016154 0.000
Non-Metallic Minerals*** 0.104405 0.010338 0.000
Steel Non-Ferrous* 0.129739 0.054939 0.01823
Textile & Paper*** 0.092746 0.010760 0.000
Socio-demographic variables:
Manufacturing & Mining Extractive** 0.006205 0.002141 0.00376
Construction** 0.011317 0.003680 0.00211
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ing sector was estimated by m2 for each industrial building cate-
gory and in the model, it is explained by 38.55% (Fig. 7). The con-
struction activity in the industrial sector has the highest impact
on electricity consumption. No clear relationship was found
between building age and size in many studies. Building variables
played important role in electricity consumption, except for build-
ing size [11].

Regarding the impact of socio-demographic variables, they
explained EC lesser than building variables. The socio-demographic
12
model explained 61.59% of EC for residential buildings, 26.34% for
tertiary buildings and 3.41% for industrial buildings. Regarding
the household composition, the presence of under 15 years
increases significantly the EC in the household contrary to the find-
ings in the previously reported paper by Brounen et al. [10] and
Jones et al. [16]. Differences in the sample, of various studies, might
explain these differences in output regarding the effect of house-
hold composition. Gilg et al. and Smallbone found that higher-
income relates positively to appliances ownership and thus
increase EC of household [49,50]. However, others argue that
income might have simply been inaccurate and not reflect actual
behaviour and lifestyles, any impact might be too small to be
picked up in EC, or finally, there might be other mediating variables
(beyond income) [9,23,33]. In our study, the employed and unem-
ployed variables were highly related, hence creating an issue of
collinearity. Thus the employed variable coefficient was set to zero
through Lasso regression and removed in the final model. As the
number of unemployed in the residential buildings sector
increases, the EC decreases which may be explained by the need
to making the economy and lack of consuming types of equipment.

The bOLS coefficients from the final regression show that the
annual EC in a statistical sector for residential buildings sector
increases by an average of 1.0097 GWh for detached buildings
class, followed by 1.006 GWh for semi-detached, 1.002 GWh for
terraced and 1 GWh for an apartment when moving from a one
to two households for a specific building class. When increasing
by one unit building in the tertiary buildings sector, transport
and communication activities have the higher increase by 1.558
GWh in annual EC, banks by 1.160 GWh and hospitals by 1.150



Fig. 8. Predicted HDD, CDD, HEC (Heat_EC_Tert_TWh), CEC (Cooling_EC_Tert_TWh) in tertiary buildings and HEC (Heat_EC_Res_TWh) in residential buildings, and from 2012
to 2050.
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GWh, energy and water treatment facilities by 1.530 GWh. On the
other hand, food increases by 1.479 GWh and metal fabrication by
1.198 GWh respectively for a one-unit increase in the industrial
buildings sector (Table 7). When looking at socio-demographic
variables, the increase by one person in population density per
km2 is about 0.00033 GWh annual EC on average in the residential
buildings. To summarize, a total of 70.86% for residential buildings,
54.33% for tertiary buildings and 39.75% for industrial buildings of
the variability in annual EC was explained by the two classes of
predictors (building and socio-demographics variables) (Fig. 7).
On the other hand, the projected increase in EC for cooling in the
tertiary building sector from 2012 to 2050 is 11.94% on a regional
scale (Table 9). This increase follows the trend of the predicted
regional CDD of 14.04% while the HDD will decrease by �11.76%
at the same period interval. However, the increase in CDD is more
severe for the building stock of southern countries of Europe
(Spain, Italy and Greece) where the projected value is greater than
40% by the end of the 21st century [48] but take into consideration
that these countries have a warm climate compared to Belgium.
The general increase pattern in CDD and decrease in HDD-related
cooling and heating EC is a clear effect of climate change on the
building sector [51].
13
4.1.6. Implications of the statistical analysis findings
The results imply that appliances ownership and usages are the

most important variables explaining residential and tertiary elec-
tricity use. Socio-demographic information does add explanatory
power to the models but the building only model already explains
66.46% and 50.53% for residential and tertiary respectively. The
study was conducted at the statistical sector level, and the result-
ing models highly explained the variability of EC. Therefore, the
future policy development for buildings EC must prioritize the
improvement of energy efficiency of appliances. In general, pro-
gress has been done with product potential energy saving by label-
ling like the EU energy efficiency label.

However, further research should aim at understanding better
what drives the choice and usage of appliances. This need is more
important nowadays than before with the lock down procedure
due to the coronavirus pandemic, which forces changes in every-
day lifestyle and behaviours. The use of household electricity appli-
ances has to be controlled and regulated. Increasing EC associated
with appliances usages, for example, hours of watching TV, has
been linked to many health issues like childhood obesity [52,53]
and greater risk of type 2 diabetes and cardiovascular disease in
adults [54,55]. Hence, a joint campaign from different disciplines



Fig. 9. Electricity used in heating for residential buildings in 2012 (left) and its projection in 2050 (right) on municipality scale.

Fig. 10. Electricity used in heating for tertiary buildings in 2012 (left) and its projection in 2050 (right) on municipality scale.
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tackling TV use would have multiple beneficial outcomes. More-
over, some technics to reduce EC for households should be pro-
moted. For instance, encouraging outdoor clothes drying or
internal shared drying rooms to avoid regular usage of a tumble
dryer. Finally, on the dwelling level, the benefit of terraced houses
14
is remarkable in terms of heating in winter and cooling in summer.
This type of construction has to be promoted in smart city develop-
ment programs to increase the EC efficiency of the building stock,
especially for regions like Wallonia where the building stock is
dominated by detached houses [40,41].



Fig. 11. Cooling EC spatialization on municipality scale. The classification used 9 classes both in 2012 and in 2050 and the type of classification used is natural breaks of Jenks.

Fig. 12. EC in GWh LHV of cooling usages by 8 tertiary building categories. The Commerce category stands out from other categories with very high cooling EC, which means
that cooling is very important in that category.
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4.2. EC mapping

EC is mapped on 3 territorial scales, namely SS (the smallest),
municipality and province scales. On the SS scale, the annual aver-
age EC of the residential, tertiary and industrial sectors are shown
in Fig. 13, Fig. 14 and Fig. 15 respectively.
4.2.1. Statistical sector scale
Generally, the yearly average EC on the SS scale for both resi-

dential, tertiary and industrial sectors is the highest in dense
and/or main cities.

For the residential sector, only 199 SS don’t have any house and
the annual EC at the SS scale varies between 0.004 and 8.66 GWh
15
LHV. In rural areas, the EC is low, certainly because they are spar-
sely populated (Fig. 13). In the tertiary sector, the yearly average EC
at the SS scale is not uniformly distributed and it varies between
0.005 and 22.29.78 GWh LHV. 1049 SS don’t have any tertiary
building and, alike the residential sector, many activities are
located in main cities. The EC of tertiary buildings at the SS scale
is the highest in city centres (Fig. 14). Regarding the industrial sec-
tor, there are around 3358 SS that don’t have any industrial build-
ings. The yearly average EC of industrial buildings at the SS scale
varies between 0.0004 and 873.77 GWh LHV. The industrial sector
is the most consuming. Many industries are located in Charleroi,
Liège, Seraing and Jemeppe-sur-Sambre, and thus those parts have
the highest EC (Fig. 15).



Fig. 13. Annual average EC in GWh LHV of the residential sector on a statistical sector scale. The symbology used graduated colours with natural breaks of Jenks for
classification.

Fig. 14. Annual average EC in GWh LHV of tertiary buildings on a statistical sector scale. The symbology used graduated colours with natural breaks of Jenks for classification.
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4.2.2. Municipality scale
The spatialization on the municipality scale shows the munici-

palities to focus on terms of reducing the EC in buildings or
improve the way of consumption. 2 municipalities (Charleroi and
Liège) which are the biggest Walloon cities have the highest EC
related to residential and tertiary sectors. In the industrial sector,
16
the highest EC is seen in Charleroi (Fig. 16). The rural municipali-
ties have lower EC, whereas the main cities are more densely pop-
ulated and thus have higher EC. The highest yearly average EC at
the municipality scale goes to 371.43 GWh LHV for the residential
sector, which is higher compared to tertiary where it goes to
343.53 GWh LHV but significantly below EC in the industrial sector



Fig. 15. Annual average EC in GWh LHV of industrial buildings on a statistical sector scale. Also, the symbology used graduated colours with natural breaks of Jenks for
classification.

Table 10
Residential, tertiary and industrial EC values in GWh LHV and their corresponding number of buildings in a province.

Province Residential EC (GWH LHV) Tertiary EC (GWH LHV) Industrial EC (GWH LHV) Residential NB Tertiary NB Industrial NB

Brabant Wallon 705.91 434.41 696.15 151,763 10,945 3051
Hainaut 2776.57 2133.63 5549.19 611,560 52,779 16,777
Liège 1953.98 1670.19 2821.00 427,760 43,300 11,095
Luxembourg 547.18 704.91 500.33 117,127 21,666 3641
Namur 936.42 886.87 1168.98 201,487 28,515 5172

Fig. 16. On municipality scale, the annual average EC in GWh LHV is presented for residential (left), tertiary (middle) and industrial (right) buildings.
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Fig. 17. Sum of residential, tertiary and industrial buildings EC in GWh LHV on province scale. The choropleth map used graduated colours with equal quantile classification
and symbolizes the sum of EC of the 3 building sectors. The histograms compare residential, tertiary and industrial EC by province and the pie charts represent residential,
tertiary and industrial buildings in a province.
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where it goes to 1895.99 GWh LHV at the municipality scale. The
industries are very consuming compared to residential and tertiary
activities.
Table 12
Comparison of the total annual EC (residential, tertiary and industrial buildings) with
the ICEDD values and the Walstat indicators on a regional scale.

Total EC (TWh) regional scale RD

This study (2012 data) 23.49
ICEDD (2012 data) [38,39] 23.35 0.59%
Walstat (2012 data) [53] 23.79 �1.29%
4.2.3. Province scale
Table 10 summarizes the results shown in Fig. 17. Although the

residential sector has many buildings in each province, it is the sec-
tor with lower EC at this scale. One province distinguishes itself
from the others: Hainaut province has the highest number of
buildings in each building sector, and subsequently, it has the
highest yearly average EC see (Fig. 16 Fig. 17).

The graduated colours illustrate the yearly average EC by each
province. The histograms represent the sum of EC of all building
sectors (residential, tertiary and industrial) by province and the
pie charts indicate the sum of the number of all building sectors
by province. The industry buildings have higher EC even though
the number of buildings is low. The priority measures to reduce
EC in industrial buildings or think of innovative technologies which
could reduce their consumption should be taken in Hainaut, then
Liège The southern-east province, Luxembourg, has a lower num-
ber of buildings in each sector, and thus lower EC.
Table 11
Comparing the EC estimated in this study with the values given in ICEDD reports for
each building sector. The relative difference obtained with the complete building
stock model is very low, thus the obtained results are accurate and are validated.

EC Cadastral, this
study (TWh)

EC ICEDD (TWh) Relative difference (RD)

Residential 6.92 6.78 2.02%
Tertiary 5.83 5.84 �0.17%
Industrial 10.74 10.73 0.09%
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4.3. Comparison with other studies

The results obtained in this study are compared to the yearly EC
given in the ICEDD reports [40,41], Table 11 and the Walstat indi-
cations [56], Table 12.

In Table 11, the relative difference (RD) between the obtained
results and the values given in the ICEDD report indicates that
the yearly average EC of the Walloon building stock based on
detailed cadastral data has been increased by 2.02% for the residen-
tial sector compared to regional report, has been reduced by
�0.17% in the tertiary sector and has been increased by 0.09% in
Table 13
Comparison of estimated EC in residential housing with the value given in ICEDD
reports. Also, the relative difference obtained is low, which allows us to validate the
obtained results.

EC Cadastral (kWh) EC ICEDD (kWh) RD

Apartment 4292.15 4453 �3.75%
Terraced house 4366.03 �1.99%
Semi-detached house 4515.81 1.39%
Detached house 4860.18 8.38%
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the industrial sector. Whereas in Table 12, the total annual EC of
our study is 23.49 TWhwhich is acceptable compared to the ICEDD
and Walstat values (23.35 TWh and 23.79 TWh respectively) on
the regional scale. The relative differences are very low which
allows the validation of this study’s results.

In Table 13, the calculated EC in different residential buildings is
compared to the annual average EC given by ICEDD which is the
average of one residential housing. The RD is acceptable and sup-
ports the validation of the calculated EC (see Table 12 and
Table 13).
4.4. Limitations of the study and recommendations

The need for the authors to assess the electricity consumption
(EC) of the regional building stock is challenging both on statistical
and technical points. This study presents an innovative and simpli-
fied methodology to calculate and forecast the EC for residential
housing, tertiary and industrial buildings based on the available
data for each building sector, at regional scale, which allows
municipalities, policy makers and inverters to take clear mitigation
or direct measures at the city level. Such actions are not feasible
when the research is limited at one or a couple of buildings as
found in many literatures. However, working at a larger scale has
its own consequences. The level of data confidentiality especially
in industrial sector is high. Moreover, investigating each individual
building could take an unimaginable amount of time considering
that the Wallon Region has over 1.7 million buildings. The inde-
pendent parameters used in the EC model were selected depending
to the data availability. For the moment, the usages EC were not
given in the ICEDD nor in any other reports, thus the authors rec-
ommend in further works to investigate this issue in the industrial
building sector. In addition, considering physical mechanisms
could be very interesting if these are available for a whole building
stock to be integrated in the model. However, the maps are created
at the statistical sector, municipal, and province levels, which
makes the regional average values used sufficiently representative
of real EC. This research reached valuable and pertinent findings at
regional level and allowed to make important conclusions using
calculated annual EC and socio-demographic variables for residen-
tial, tertiary and industrial buildings sectors.

Although the building models performed well, the socio-
demographic explanatory power was limited. This raises the ques-
tion about other factors that determine EC that was not considered
in this study. Some data are hard to measure and others have a
smaller effect on EC to be analysed [15]. For example, the number
of heated swimming pools, days of vacation taken away from the
house, etc. Moreover, remarkable progress has been made to solve
these problems. More recent technology such as using smart-
meter to measure hourly EC in the building might overcome these
limitations and help better understanding of electricity use. In
addition, predicting EC for tertiary building sector up to 2050 hori-
zon should consider measured hourly or daily EC data from smart
metres for prediction using only real measured data.

The cooling and heating (EC) of buildings depends not only on
temperature but also on building characteristics, household com-
position, consumer habit, electrical equipment, etc. [22,24,57,58].
Data scarcity and difficulties to measure some of these parameters
are the principal challenges related to the development of the
models. During this study, the authors investigated the impact of
climate change on the trend of the EC used in heating for residen-
tial housings and EC used for heating and cooling for tertiary build-
ings to the 2050 horizon. The heating and cooling of buildings are
strongly related to the weather parameters such as temperature.
The temperature-related model shows higher precision in predict-
ing the EC in buildings at the statistical sector level. However, the
19
authors recommend including additional parameters (exogenous
variables) such as buildings ‘renovation, renovation rate, electrical
equipment, working days, etc. in the cooling and heating EC predic-
tion model.
5. Conclusion and outlooks

Using a large regionally cadastral database of more than
1,700,000 buildings, this study showed that appliances ownership
and usages are the most influential variables in understanding the
EC of the residential and tertiary Walloon building stock, including
buildings with electric heating and cooling systems. However, in
the industrial building sector, the understanding of EC is based
on building size. Hence, to reduce the EC, energy-efficient appli-
ances ought to become more and more widespread. Firstly, in this
study, the EC is assessed separately depending on the building sec-
tor (residential, tertiary and industrial buildings) using the top-
down approach and then aggregated on different territorial scales
(statistical sector, municipality, urban region and province) using
the bottom-up approach. Furthermore, the results from the top-
down and bottom-up approaches are spatialized using QGIS soft-
ware. Based on the maps’ visualizations, the higher EC on munici-
pality scale was found in large and main cities for residential and
tertiary buildings, but for industrial buildings, the higher EC is
mostly found in the outskirts of the cities. For example, the higher
EC by municipality scale varies from 3.41 to 371.43 GWh LHV for
residential buildings, from 1.78 to 343.53 GWh LHV for tertiary
buildings and from 0.07 to 1895.99 GWh LHV for industrial build-
ings. The lower EC is found in small villages.

During the statistical analysis, the building variables played a
greater role than socio-demographic variables. For example, the
study found that a one-unit increase of apartments in the statisti-
cal sector increases the annual EC by 1GWh whereas the increase
by one person in population density per km2 increases the annual
EC by 0.00033 GWh on average in the residential buildings.
Though, depending on data availability, the outcome might vary
from one research study to the other. In addition, demographic
variables such as unemployed, under 15 years and population den-
sity played hardly a role in understanding the EC. Employed and
unemployed variables had multicollinearity and consequently,
one variable namely employed was removed from the final model.
This part of the study has important methodological implications
such as checking for and addressing multicollinearity which is cru-
cial in performing regression analysis.

In addition, predicting the evolution of EC in existing buildings
using the heating and cooling degree-days, help set adaptive
responses and policies to the global climate change. The prediction
process considered the temperature data from 1901 to 2019 to pre-
dict temperature up to 2050 using an artificial intelligence model
GRU, then calculating HDD and CDD using UK-Met Office equa-
tions. Afterwards, the EC used for heating and cooling is assessed
using energy equations to predict until 2050. This study found that
the HDD will decrease by �11.76% while the CDD will increase by
14.04% for the 2050 horizon on a regional scale. In addition, the EC
used for cooling will increase by 11.94% in 2050 in tertiary build-
ings whereas the EC used in heating for the residential and tertiary
buildings will decrease from �6.34% to �8.82% and �7.19% to
�10% on a regional scale respectively. Applied to the smart cities
development to reduce emissions from buildings EC, these deci-
sions might differ depending on these predictions and also use
the produced maps to see well which area to focus on to reach
European goals in terms of buildings energy consumption
reduction.

This study used replicable methodologies which can be applied
in other regions of the world, based on the availability of the data.
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Following this study, dynamic modelling which is hourly energy
consumption will be performed and validated using smart mea-
sured data in real-time. In addition, realistic and regulatory scenar-
ios will be established as well as multi-criteria decision aiding
tools, based on these scenarios, developed to see and select the
best energy management strategies at the regional scale.

Data availability

� The energy regional reports can be found on: https://energie.
wallonie.be/fr/bilans-energetiques-wallons.html?IDC=6288

� The Wallonia cadastral database used to conduct this study is
confidential and cannot be shared. However, the data can be
obtained under convention agreements over the SCIP (Structure
de Coordination de l’Information Patrimoniale): https://www.
scip-cspi.be/fr

� The temperature data are retrieved from: https://www.ncdc.
noaa.gov/

� The Wallonia shapefiles can be accessed via: https://geoportail.
wallonie.be/home.html
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