
Introducing biological neuronal
dynamics and neuromodulation
in artificial neural networks.

Nicolas Vecoven
Advisor : Guillaume Drion
Co-advisor : Damien Ernst

PhD dissertation

The University of Liège

2021





Jury members
Prof. Louis Wehenkel (president) Université de Liège, Belgium;
Prof. Guillaume Drion (advisor) Université de Liège, Belgium;
Prof. Damien Ernst (co-advisor) Université de Liège, Belgium;
Prof. Timothy O’Leary Cambridge, United Kingdom;
Prof. Michal Valko Deepmind, Paris;
Prof. Alessio Franci UNAM, Mexico;
Prof. Pierre Geurts Université de Liège, Belgium;
Prof. Gilles Louppe Université de Liège, Belgium;





Acknowledgements

I really enjoyed working on this thesis, and am very grateful to have had the opportunity
to do so in such a great environment. This manuscript would never have seen daylight
without the help, support and insights of people around me, who I would like to thank
here.

First, I would like to thank my advisor, Guillaume Drion. To begin with, I would like to
thank him for letting me work on such an interesting topic. Although it was not an easy
task to conciliate our different domains in the beginning, his availability as well as his
positivity were incredible assets that led to successfully do so. As such, I want to thank
him for all the interesting discussions and for giving me so much of his time. I would
also like to thank him for giving me so much freedom in my research. And last but not
least, I would like to thank him for his enthusiasm, which has been a great driver for
me throughout those years, it was absolutely great working with him.

Of course, the writing of this thesis would have been impossible without my co-advisor
Damien Ernst. In particular, I would like to thank him for his many feedbacks, his
great mathematical rigour, his availability and for all the interesting discussions I was
given with him. It makes no doubt that my scientific writing and reasoning has greatly
improved thanks to his many advices. I would also like to thank him for introducing me
to the world of reinforcement learning, a topic which I particularly liked working on.
Finally, I would also like to thank him for the great times we had around a beer.

I would also like to thank all the members of the jury for reading this manuscript, for
their interest in it as well as for their feedback. A special thanks goes to Pierre Geurts
for his comments and for having spiked my interest in research during my master’s
thesis. I probably would not have started this work if it wasn’t for the great time I had
working with him.

I would also like to thank Gilles Louppe for the many discussions we had and advices
he gave to me throughout the years.

Of course, I can not forget to thank all my Montefiore colleagues and friends. First, I
would like to give a special thanks to Antoine Wehenkel for the many discussions we had
and his support/interest in my work. I would also like to thank him for proofreading
this thesis, and express him my gratitude for being such a good friend. I would like
to thank Pascal for his friendship and for making it so enjoyable at Montefiore as well
as Anais for all of our ”little“ chats. I would also not only like to thank Antonio for

v



our interesting discussions, Laurine for her enthusiasm and Vân Anh for the time spent
working with me but also Marie, Anthony, Romain, Jean-Michel, Pierre Sacré, Laurent
Mathy, Michael, Jonathan, Ulysse, Arnaud, Adrien, Renaud and all the others I forgot
to mention here for making the day-to-day life at Montefiore so great.

I would also like to thank my friends for their support and, last but not least, my family
for their unconditional love. In particular, I would like to thank my father for driving me
towards the path of computer science and engineering and my mother for her support.
Finally, last but not least, I would like to thank my wife Marine for always being there
for me and supporting me throughout this journey.

vi



Abstract

The present thesis takes a step towards enriching artificial neural networks with bio-
inspired mechanisms. To this end, high-level abstractions of important biological rules,
modelled using control theory, will be introduced and linked to artificial networks. In
particular, it will be discussed that introducing neuronal bistability and neuromodula-
tion into artificial neural networks provides different benefits. As a first step, Part I will
first introduce necessary machine learning background.

Part II of this thesis will focus on the ability of recurrent neural networks to learn
long-term dependencies, something which usually proves difficult. Bistable recurrent
cells will be introduced as a way to help towards solving such issues. Furthermore,
supported by the results obtained with those cells, a more generic method to promote
multistability with usual recurrent cells is proposed. This part highlights the importance
of dynamics in recurrent neural networks and in particular, right after initialisation, for
easily learning long-term dependencies.

Part III of this thesis is dedicated to introducing neuromodulation in artificial neural
network. This important biological mechanism is often associated to the robust control
of continuous behaviours, allowing biological systems to adapt very quickly to changing
context, something which remains very difficult for usual artificial agents. As such,
a neuromodulated architecture, specifically designed for its adaptive capabilities (i.e.
robustness towards changing environment or context), is proposed. It will be shown to
exhibit much more stable performance and to converge towards better policies than
classical recurrent networks. Furthermore, this part discusses that these architectures
are also implicitly able to learn a continuous representation of the different contexts in
which they evolve. Finally, some other very recently proposed architectures and their
benefits will be briefly mentioned as well.

As a last note, it is important to mention that Part II and Part III of this thesis could
potentially be linked. As such, the last part of this thesis will be dedicated to provide
ideas for future works, specifically aimed at closing the gap between Part II and Part III.

vii





Contents

Acknowledgements v

Abstract vii

1 Introduction 1

I Background 7

2 Machine learning 9
2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Standard architecture . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 System dynamics, reward function and policy . . . . . . . . . . . 14
2.3.2 Objective of RL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Model-free reinforcement learning 19
3.1 Value iteration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Policy iteration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Advantage actor-critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Actor update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Critic update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Tuning neuron dynamics for long-term memory 33

4 Handling sequential data with RNNs 39
4.1 Recurrent neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Towards easily training RNNs . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Dynamics of trained RNNs . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Bio-inspired bistable recurrent cells 49
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Neuronal bistability: a feedback viewpoint . . . . . . . . . . . . . . . . . 50
5.3 Cellular memory, bistability and neuromodulation in RNNs . . . . . . . 52

ix



CONTENTS x

5.4 Analysis of BRC and nBRC performance . . . . . . . . . . . . . . . . . . 55
5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Analysis of nBRC dynamic behavior . . . . . . . . . . . . . . . . 60

6 Warming-up recurrent neural networks 63
6.1 Variability amongst attractors and warm-up . . . . . . . . . . . . . . . . 64
6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

III Neuromodulating neural networks for adaptation 77

7 Adaptation capabilities of artificial neural networks 83
7.1 Meta-reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 ANNs for solving meta-RL . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2.1 Optimisation based methods . . . . . . . . . . . . . . . . . . . . 86
7.2.2 Metric-learning methods . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.3 Model-based / Blackbox methods . . . . . . . . . . . . . . . . . . 87

8 Neuromodulation of artificial neural networks 91
8.1 Neuromodulation in ANNs . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 NMN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.3.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3.2 Benchmarks description . . . . . . . . . . . . . . . . . . . . . . . 95

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

IV Conclusion 107

9 Conclusion and future works 109
9.1 Fixed points and long-term memory in RNNs . . . . . . . . . . . . . . . 109

9.1.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9.1.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9.2 Neuromodulation in neural networks . . . . . . . . . . . . . . . . . . . . 111
9.2.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.3 Closing the gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

V Supplementary material 117

Appendices

A Supplementary material for Chapter 3 119



CONTENTS xi

A.1 Modelling a multivariate Gaussian with ANN and computing KL divergence119

B Supplementary material for Chapter 5 121
B.1 Proof of bistability for BRC and nBRC for at > 1 . . . . . . . . . . . . . 121

C Supplementary material for Chapter 8 123
C.1 Detailed description of benchmark 2 and 3 . . . . . . . . . . . . . . . . . 123

C.1.1 Benchmark 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
C.1.2 Benchmark 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C.2 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
C.3 Bayes optimal policy for benchmark 1 . . . . . . . . . . . . . . . . . . . 128

Bibliography 137





Chapter 1

Introduction

One of the most popular definition of machine learning has been given by Mitchell &
McGraw (1997):

“A computer program is said to learn from experience E with respect to some class of
tasks T, and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”

Machine learning has been a rapidly evolving field for the past few decades, growing
into an extremely vast and rich domain of research over the years. So rich, in fact, that
machine learning now comprises a multitude of different algorithms, models, settings
and fields. As an extremely brief introduction, the most common machine learning
settings can be listed as follows.

• Supervised learning: a setting in which an annotated dataset of input-output
pairs is given, corresponding to experience E. In such a case, the task T is to
map new inputs to correct outputs, as assessed by some performance measure P.
To this end, machine learning models can be trained on the dataset in order to
map new unseen inputs to their output as correctly as possible. A simple example
of this setting would be handwritten digit recognition, as for example with the
MNIST dataset (LeCun & Cortes, 2010).

• Reinforcement learning (RL): a setting in which no dataset is given. Rather,
an RL agent gets to interact with an environment gathering experience E and
receiving rewards in the process. Its task T is to interact with the environment in
order to maximize its received rewards. Thus, P can be defined as the expectation
of the sum of reward signals received by the agent. An example of this setting
would be an agent learning how to achieve high-score in an Atari game, as noteably
done by Mnih et al. (2013).

• Unsupervised learning: as for the supervised learning setting, a dataset is
given, but without annotation. The task T in this case is thus to find patterns
in the provided dataset. Depending on the task, multiple performance measures
exist. A currently popular example of this setting would be generative modelling.
Broadly defined, sampling a generative model should allow to produce samples as

1



1. Introduction 2

if they arised from the same distribution than that used to create the provided
dataset. For example, generative adversarial networks (a particular machine learn-
ing model) can be trained to produce highly accurate images (Goodfellow et al.,
2014). Clustering (Rokach & Maimon, 2005) could be taken as another example
of finding pattern in a non-annotated dataset.

• Semi-supervised learning: a setting at the intersection of supervised and unsu-
pervised learning in that only parts (usually very few) of a dataset are annotated.
The goal is often the same as for supervised learning, while making use of some
non-annotated samples to learn patterns which could improve model performance.

It is important to stress that this list is non exhaustive, and that due to the increasing
richness of the domain, it has become more and more difficult to keep track of it.
However, some authors have done an excellent didactic job at summarizing the field. In
particular, Hastie et al. (2009) went through the explanation of most machine learning
concepts in a very comprehensive book and Murphy (2022) gave a different, more
probabilistic, perspective on machine learning basics in a book of his own, also including
newer concepts.

It is out of the scope of this thesis to detail such a broad field. Rather, this thesis focuses
on two of the previously introduced settings of machine learning, namely supervised and
reinforcement learning. Both of these settings can be tackled using machine learning
models. These models can either be parametric or non-parametric, are all trained
through different learning algorithms and all come on a different footing when it comes to
their interpretability and predictive performance. In this thesis we focus on a particular
type of parametric model: artificial neural networks (ANNs).

First introduced with the perceptron (Rosenblatt, 1958), ANNs were initially designed
to attempt mimicking the human brain, hence their interest for this thesis. Since
their introduction, ANNs have however been driven away from this goal and modified
towards having better mathematical properties. Over the years, these changes as well
as the advent of computational power and data availability have allowed ANNs to gain
fame, thanks to increasing predictive accuracy. The rise of ANNs popularity first came
thanks to a performance breakthrough on the image classification benchmark “imagenet”
achieved by Krizhevsky et al. (2012). This performance leap showed that ANNs could
become competitive and even outperform other types of machine learning models, which
were considered as state-of-the-art at the time. For about ten years now, the field of
ANNs has been growing exponentially and has received a tremendous amount of interest,
providing breakthroughs and state-of-the-art performance in a large number of fields
such as computer vision, time-series analysis and natural language processing.



1. Introduction 3

Despite all these progress, neural networks are still far from achieving perfect per-
formances for a variety of tasks. This thesis proposes to take insights from important
biological concepts to enhance performance of artificial neural networks on specific tasks.
As such, the goal of this thesis is thus not to compete with state of the art, but rather to
highlight the impact that some biological concepts could potentially bring to artificial
neural networks. This goal leads to two important choices made throughout this thesis.
First, the biological concepts will always be introduced such that they are as close as
possible to usual artificial architectures. This allows to clearly target the specific concept
to be analysed, and make sure it is linked with the differences observed. Second, some
benchmarks are specifically built for standard architectures to fail. This allows not to
focus on performances compared to state of the art, but rather, to highlight the impact
of the introduced concept in specific cases. When combined, those two choices allow
for a clear understanding of the proposed concept interests. In conclusion, the resulting
architectures often do not vary much from more usual ones, and thus, the biological
concepts are not so much seen in the resulting architectures than in the process carried
to build them. This thesis uses the preceding approach to tackle two main subjects.

Tuning neuronal dynamics for long-term memory On the one hand, biological neurons
have been modelled as exhibiting different dynamical properties, one of such being
bistability. In Part II, this property will be discussed in the case of artificial recurrent
neural networks, providing insights and methods for learning long temporal dependen-
cies, something which can currently remain difficult with usual recurrent cells.

In many applications and important problems, be them theoretical or practical, sequen-
tiality plays an important role in the data structure. As such, lots of different neural
architectures have already been designed towards exploiting such characteristic as best
as possible. In particular, recurrent neural networks have been put forward early as
such an architecture. Providing state-of-the-art results on many tasks over the years,
they have become a staple tool when working with artificial neural networks (Lipton et
al., 2015). However, they are known to be difficult to train, especially when patterns in
the sequential data grow longer (Pascanu et al., 2013). Furthermore, due to the high
complexity of such architectures, they remain black-box models and it is usually arduous
to understand their underlying dynamics. Nevertheless, recent body of work has focused
on using control theory to get a better grasp of the workings such networks, highlighting
the importance of fixed points in their prediction process (Sussillo & Barak, 2013; Ceni
et al., 2020; Maheswaranathan et al., 2019).



1. Introduction 4

Fixed points, and more particularly attractors, were also shown to be of importance
when modelling high-level behaviours of human neurons. The first work behind Part II
aims at taking inspiration from those high-level models to create a biologically inspired
bistable recurrent cell (BRC). The resulting BRC was shown to provide great per-
formance when learning long-term patterns. As such, following this work, Part II also
proposes a more generic technique, allowing to endow usual cells with similar dynamic
properties as those of BRCs, and consequently, enhancing their ability to learn longer
patterns.

Neuromodulation in neural networks for adaptive capabilities On the other hand,
neuromodulation is a well known biological mechanism, usually thought to be highly
important for the adaptive capabilities of humans. A big challenge behind neuromod-
ulation however, is its high complexity. Indeed, its modelling often comprises high-
dimensional, highly non-linear dynamics. Nevertheless, recent advances have been made
on the modelling of mechanisms allowing the robustness and modulation of neuron
intrinsic properties. Part III takes advantage of this research and will focus on the
introduction of high-level rules of such mechanisms in artificial neural networks. It will
be discussed that this can provide benefits in terms of adaptive capabilities of artificial
neural network, which also remains a challenge as of today.

Thanks to many breakthroughs in the past few years, it is now possible to train artificial
agents to achieve super-human performance on a wide variety of tasks. However, this
often requires tremendous amounts of data and computational power. Whereas humans
are able to make use of past accumulated knowledge in order to learn how to perform
new tasks efficiently, this remains difficult for machine learning models. When presented
with a new task, these will often have to start a new learning process altogether. Due
to the sheer amounts of data needed for such training, this quickly becomes limitant
and is the reason why studying adaptive capabilities of artificial neural networks is an
active and important field of research.

Neuromodulation is the ability of neurons to tune their input-output properties to
reshape signal transmission at the cellular level, generally in response to an external
signal. This processus was shown to be highly important in the functioning of the human
brain, allowing to regulate many critical nervous system properties which can not be
controlled through synaptic plasticity alone. Neuromodulation is also often associated
to the robust control of continuous behaviours, and as such, to “adaptive capabilities”.



1. Introduction 5

It is thus natural to study the introduction of neuromodulatory principles in artificial
neural networks, and more particularly to endow them with the ability to better adapt.
The work behind Part III precisely aimed towards this goal. Concurrent works, as well
as more recent ones, have also taken this line of research with success, further showing
the importance of endowing artificial neural networks with neuromodulation.

Thesis organisation

Part I aims at giving the necessary background about relevant machine learning con-
cepts for understanding the remaining of the manuscript. To this end, the objective of
Chapter 2 is to give a more formal and detailed view on the supervised and RL settings,
as well as on artificial neural networks. This chapter should provide enough information
to the reader for precisely understanding machine learning settings discussed in this
thesis as well as the standard ANNs architectures and training methods. Furthermore,
we will also shortly discuss the interpretability of ANNs. Indeed, sometimes the compre-
hension of the underlying model can be more important than its predictive accuracy.
Then, in Chapter 3, different methods to solve RL tasks are presented. Due to the
complexity of the setting, this chapter is necessary to provide information to the reader
on some of the state-of-the-art methods required to tackle the RL problems in Part III.

Part II will dive deeper into recurrent neural networks, and, more precisely, in the
long-term memory capabilities of such networks. To this end, first, background and
state-of-the-art will be presented, highlighting common troubles of such networks when
temporal dependencies grow longer. Afterwards, a novel biologically-inspired bistable
cell, as well as a more generic method will be shown to help alleviate these issues.

Part III will focus on adaptive capabilities of artificial neural networks, and in particular,
will look at the benefits of neuromodulation for such ability. First, in the form of meta-
learning and meta-reinforcement learning, usual settings for assessing adaptive capab-
ilities learning will be presented. Afterwards, basic concepts of neuromodulation will
be detailed, leading to the proposition of a neuromodulatory architecture, specifically
designed for adaptation. Finally, Part III will discuss the benefits of such architecture,
as well as briefly highlighting those obtained with other neuromodulatory approaches
in concurrent works.

Finally, Part IV will summarise the main findings of this thesis. Importantly, this part
will also step towards closing the gap between Part II and III through potential future
works avenues. This thesis ends with a brief and more general discussion on the approach
taken throughout its genesis.



1. Introduction 6

Publications

The following publications have led to the core of this thesis:

• Vecoven, N., Ernst, D., Wehenkel, A., & Drion, G. (2019). Cellular neuromodula-
tion in artificial networks. In Proceedings of the NeurIPS 2019 Workshop Neuro
AI.
(This publication originated Chapter 8)

• Vecoven, N., Ernst, D., Wehenkel, A., & Drion, G. (2020). Introducing neuromod-
ulation in deep neural networks to learn adaptive behaviours. PloS one, 15(1),
e0227922.
(This publication also contributed to Chapter 8)

• Vecoven, N., Ernst, D., & Drion, G. (2021a). A bio-inspired bistable recurrent cell
allows for long-lasting memory. Plos one, 16(6), e0252676.
(This publication originated Chapter 5)

• Vecoven, N., Ernst, D., & Drion, G. (2021b). Warming-up recurrent neural net-
works to maximize reachable multistability greatly improves learning. arXiv pre-
print arXiv:2106.01001.
(This publication originated Chapter 6)

The following publication was also worked on during this thesis.

• Vecoven, N., Begon, J.-M., Sutera, A., Geurts, P., & Huynh-Thu, V. A. (2020).
Nets versus trees for feature ranking and gene network inference. In International
conference on discovery science (pp. 231–245).



PART I

Background

7





Chapter 2

Machine learning

This chapter aims at formalizing the machine learning settings and models used through-
out this thesis. We note that, as the topics covered hereunder are quite large, state-of-
the-art will not be discussed in this chapter. Rather, we will introduce relevant state-
of-the-art in the following chapters as we dive deeper into some parts of the general
concepts presented here. First, Section 2.1 will go through supervised learning basics.
Section 2.2 will then go through ANNs’ basics by detailing a standard ANN architecture,
training algorithm. Finally, Section 2.3 will provide a formalisation of the RL setting,
introducing different categories of RL algorithms and easing the reader into Chapter 3,
which presents relevant state-of-the-art RL methods used in this manuscript.

2.1 Supervised learning

As previously introduced the goal of supervised learning is to learn a mapping between
inputs (often called features) and outputs, given a dataset of such pairs. Formally, let
X denote the set of all possible features and Y the set of all possible outputs. Given an
unknown distribution P over X × Y defining the task at hand and a training set D of
n samples drawn from it,

D = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n,

the goal of supervised learning is to learn a function f(·) : X → Y such as to minimize
the expected prediction error defined as:

E
(x,y)∼P

L(y, f(x))

where L is a function of dissimilarity between its arguments, called loss function.
Depending on the wanted result and task at hand, different losses can be used. In this
dissertation, we tackle both usual regression and classification benchmarks. As such, we
use two very common loss functions to assess the predictive performance of our models.

9



2.1. Supervised learning 10

• Regression: when Y is a continuous domain, then the loss can be defined as a
squared error such that

L(y, ŷ) = ||y − ŷ||2 .

• Classification: when Y is a discrete domain and y takes its value in {o1, . . . , on},
then the loss can be the 0-1 error loss which is equal to one if its arguments are
not equal, and else to zero:

L(y, ŷ) =

0 if ŷ = y,

1 otherwise.

The expectation on this loss is called the miss-classification error rate. We note
that, in this manuscript, the accuracy will often be reported for classification tasks
instead. This measure is equal to one minus the miss-classification error rate and
simply represents the proportion of samples correctly classified by the model.

When training a model in a supervised setting, one has to take particular attention to
the bias-variance trade-off (Geurts, 2002). Shortly put, models with high bias do not
learn a fine-enough representation of the training data and thus have poor performance
on training and testing data. This is often referred to as underfitting. On the other
hand, models with high variance learn a too fine representation of the training data,
capturing noise in the training data. As such, those models have a very good predictive
performance on the training data, but generalize extremely poorly to unseen data. In
other words, their representation will be highly dependant on the realisation of the
training set sampled from the underlying distribution. This is referred to as overfitting.

Hence why, for all experiments in this dissertation, sufficiently large testing sets are
generated for evaluating performance and experiments are run multiple times with
different training sets. As such, we make sure that our results do not depend on “lucky
runs” for which, by coincidence, a model would have been able to overfit the training
data and keep its predictive accuracy on testing data.

2.2 Artificial neural networks

In this section three main concepts of artificial neural networks are presented. First, the
most basic architecture of a neural network is introduced, then the training procedure
is explained.



2.2. Artificial neural networks 11

2.2.1 Standard architecture

In essence, an artificial neural network can simply be defined as a parametric function
with the main particularity that its parameters define a neural architecture. In its most
basic form, a neural architecture is built with multiple layers, each comprising multiple
neurons and connected using weight matrices, as shown on Figure 2.1.

Input
layer Layer 1 Layer n− 1

Output
layer

x1

x2

x3

W 1
11

W 1
34

Wn
11

Wn
41

ŷ

Figure 2.1: Neural network

With this architecture, each neuron takes a weighted sum of the previous layer’s outputs
as input to its activation function g : R → R and layers are said to be fully connected.
Let oli denote the output of neuron i of layer l comprising dim(l) neurons, then we define
the output of layer l as ol = [ol1, . . . , o

l
dim(l)], with

ol = g(W lol−1 + bl) ,

where bl ∈ Rdim(l) is the offset vector of layer l and where g(x) represents the function g
applied element-wise on x such that g(x) = [g(x1), . . . , g(xn)] for ease or writing. These
vectors are needed in order to be able to offset the output of each neuron with respect to
their input. The activation function is one of the most important piece of any artificial
neural network. Indeed, without this function, the network would simply output a linear
combination of the input. It is thus highly important to select a non-linear activation
function, such that the network itself can create a non-linear mapping. Some of the
activation functions g used in this manuscript are

• the sigmoid

g(x) =
1

1 + e−x
;

• the hyperbolic tangent
g(x) = tanh(x) ;



2.2. Artificial neural networks 12

• the rectified linear unit (ReLU)

g(x) = max(0, x) .

A computational graph of a neuron is provided on Figure 2.2.

Note that, when working with categorical features, one must create an encoding pro-
cedure for them to be used by neural networks. Potdar et al. (2017) compared various
strategies and one of the most usual methods is the “one-hot encoding”, a procedure
where each of the feature’s categories is attributed to an input neuron. For a given
sample, all of these neurons will be equal to zero except the one corresponding to that
sample’s feature category, which will be equal to one.

w2

×
Σ g

Activation
function

w1

Weights
×

w3

×

Bias
b

Inputs

Figure 2.2: Computational graph of an artificial neuron.

We stress that only the most standard type of neural network has been described here.
There exist many more architectures such as convolutional neural networks (LeCun et
al., 1989), transformers (Vaswani et al., 2017), conditional processes (Garnelo et al.,
2018) and hypernetworks (Ha et al., 2016a) among many others. All these architec-
tures are designed to tackle different problems, often providing improved performance
over more basic networks. In this thesis, a particular focus is given to a specific kind
of architecture: recurrent neural networks (RNNs), which are specifically designed to
handle sequential data. These networks are endowed with an internal state that serves
as a memory. As the inputs are sequentially received by the network, this internal state
gets updated (an input is passed to the network at each time-step). Unfortunately, such
recurrent architectures are known to be hard to train when the temporal data spans
too many time-steps. Part II is entirely dedicated to such networks. As such, more
background on these architectures will be given in Chapter 4 while Chapter 5 and 6 will
propose some possible solutions to cope with those training problems.



2.2. Artificial neural networks 13

2.2.2 Training

Let f(x; θ) denote a neural network, where θ are the parameters of the network. Training
such network in a supervised learning setting amounts to optimize θ through stochastic
gradient descent on a differentiable loss. In this dissertation, the mean-squared error is
used for regression problem, and the categorical cross entropy for classification problems.
The latter is defined as

L(f(x; θ), y) = −
k∑
i=1

yi log(f(x; θ))

where k is the number of classes, and yi is equal to 1 if the sample belongs to class i,
else to 0. When using this loss, the network needs to output a probability distribution
over the different classes (rather than a simple real-valued output). The mapping from
Rk can be done by adding a softmax activation function g : Rk → [0, 1]k to the final
layer which, given a vector x, maps each of its element xi as

g(x)i =
exi∑k
j=1 e

xj

such that its real-valued output vector [g(x)1, . . . , g(x)k] sums to 1. With these loss
defined, the stochastic gradient descent procedure is carried as follows. First, one uni-
formly samples a mini-batch B of k samples in D and updates the parameters as

θ ← θ − α1

k
∇θ

∑
(x,y)∈B

L(f(x, θ), y) ,

where α is called the learning rate. This update is called a gradient step. Removing
the samples of the mini-batch B from D and repeating the procedure until all elements
of the dataset D have been seen once is called an epoch. Usually when training neural
networks, a fixed number of epochs is predefined and gradient steps are repeated until
that given number is reached.

Some variations of this procedure exist and, in particular, adding momentum to the
gradient steps has been shown to improve training in most cases. As such, although
the training procedure remains similar in this dissertation, networks are trained using
ADAM (Kingma & Ba, 2014), one of the multiple ways to carry stochastic optimization
with momentum. As a final note, it is worth mentioning that there exist many methods
to reduce overfitting when training neural networks, such as weight regularization,
dropout (Srivastava et al., 2014) and adaptive learning rates among others.



2.3. Reinforcement learning 14

Figure 2.3: Small sketch of a RL setting.

2.3 Reinforcement learning

The goal of an RL agent is to learn how to maximize the reward it obtains while
interacting with an environment. An RL problem can be defined as a Markov Decision
Process (MDP). Let t denote the discrete time of such a process. In a RL setting
(depicted on Figure 2.3), an agent receives an observation xt ∈ X of state st ∈ S of the
environment. Based on this observation, the agent will have to perform an action at ∈ A
on the environment, receiving reward rt ∈ R and causing the environment’s state to
change. As such, a reinforcement learning setting can be defined through three auxiliary
concepts. First is the system dynamics, second is the reward function and third is the
policy. All these concepts are detailed in Subsection 2.3.1. Finally, Subsection 2.3.2
formalizes the goal of RL.

2.3.1 System dynamics, reward function and policy

Together, the system dynamics and reward functions describe an RL environment.

System dynamics On one hand, the system dynamics can be defined with two func-
tions. First is the transition probability function written p, which describes the potential
reactions of the environment to a given action of the agent, defined such that

st+1 ∼ p(st+1|at, st) .

Second is the observation function, written o, which describes the probability of the
agent to observe variable xt given the full-state of the environment st, that is

xt ∼ o(ot|st) .



2.3. Reinforcement learning 15

If the observation ot does not provide enough information to directly infer the full
state of the environment st, then the environment is said to be partially observable.
In such a case, the RL setting becomes a partially-observable markov decision process
(POMDP). It is important to note that the transition function can also be deterministic
if p(st+1|at, st) is a Dirac for all possible pairs (st,at) ∈ (S ×A).

Reward function On the other hand, the reward function describes the reward received
by the agent when performing a given action in a given state and going to a given state.
It can thus be defined as

ρ(at, st, st+1) : A× S × S → R .

In this dissertation, we will only tackle the case of bounded rewards, that is, ρ(·, ·, ·) <
|R| with R ∈ R+ for all reward functions. Also in the context of this manuscript, we
will only talk about time-invariant systems. Those are systems for which o(·|·), p(·|·, ·)
and ρ(·, ·, ·) are independent of the discrete time t. Finally, we define the reward signal
associated to the reward function at time-step t. This signal is equal to

γtρ(at, st, st+1) ,

where γ ∈ [0, 1[ is a decay factor, often called discount factor, that allows to bound the
cumulative reward signal obtained by the agent.

Policy The policy, denoted π defines the RL agent’s decision process. In other words,
at time-step t, the agent samples action at ∼ π(at|ht) given the history

ht = (x0,a0, r0, . . . ,at−1, rt−1,xt) .

2.3.2 Objective of RL

The goal of RL is to learn a policy π ∈ Π, where Π denotes the domain of all possible
policies, that maximizes its expected cumulative discounted reward signal Jπ. Formally,
we want to build a policy π̂∗ such that J π̂∗ is as close as possible to Jπ∗ where

Jπ
∗
(s) = max

π∈Π
Jπ(s), ∀s ∈ S ,

with

Jπ(s) = lim
T→∞

E
a∼π

[
T∑
t=1

γt ∗ ρ(at, st, st+1)|s0 = s] .



2.3. Reinforcement learning 16

Training There exist multiple methods to tackle this problem and they can be divided
into two main categories.

First,Model-based methods for which the model of the environment has to be known.
In other words, these methods can only be used if the transition and reward functions
are fully-known. Some algorithms are very efficient at solving this type of tasks, and
there is no need to interact with the environment to build a good policy. However, this
setting is quite restrictive in practice as one rarely has access to the full knowledge of
the system dynamics at hand. We refer the reader to Moerland et al. (2020)’s work for
a survey on the subject.

Second, and more interestingly in the context of this manuscript,Model-free methods
tackle the RL setting in a context where no prior information on the environment and
reward function is given. In such a context, the agent has to learn solely based on
its interactions with the environment and there exist two main ways to tackle the
problem. On one hand, one can try to build a model of the environment, then use this
approximation to use model-based methods (such procedures can sometimes be referred
to model-based methods as a whole). Such model of the environment can for example
trained by letting the agent play a random policy for many time-steps, then by using
supervised methods to learn the transition and reward functions. Such methods have
already proven to be very effective on multiple benchmarks (Ha & Schmidhuber, 2018).
On the other hand, one can try to directly learn a policy, without ever trying to model
the environment.

Next Chapter gives an overview of different such model-free methods, with a specific
emphasis on the state-of-the-art methods used for solving RL problems with a continu-
ous action space (A is a continuous set, as for the problems studied in Part III). As will
be discussed, such setting is harder to tackle due to the infinite size of the action space.
This infinite space makes it impossible to iterate over, something that is often done to
solve RL problems with a discrete action space.

Importantly, we note that those methods are very general, but are unfortunately often
very sample-inefficient. Usually, the agent will have to interact with the environment for
millions of time-steps before achieving good performance. It can thus quickly become
cumbersome to train such agents. Furthermore, an agent which has learned a good policy
for a given environment will probably achieve very poor performance on a similar albeit
slightly different environment. For these reasons, one has to wonder if, given multiple
different environments, it is possible to acquire knowledge which would let an agent
quickly learn how to tackle new similar tasks. Put otherwise, one could ask if it is
possible to train an agent to quickly adapt to new environments (without requiring an
extreme amount of time-steps), given some initial training on different environments.



2.3. Reinforcement learning 17

This is precisely what the field of meta-reinforcement learning aims to solve and what
Part III of this manuscript discusses. In particular Chapter 7, will formalize meta-
reinforcement learning and present different ways of tackling such problematic, and
especially how to do so by using RNNs.

Summary

This Chapter introduced the very basics of supervised and reinforcement learning,
which are the two settings that are used for the experiments in this manuscript. In
particular, Part II focuses on supervised problems whereas experiments in Part III are
made in a reinforcement learning setting. This Chapter also introduced a standard NN
architecture.Overall, having read this Chapter, the reader is expected to understand the
characteristics as well as the goal (and performance measures) of the settings tackled
in this manuscript, and to be familiar with the main concepts of NNs, such as their
training process.





Chapter 3

Model-free reinforcement learning

In this Chapter, we first start by introducing two main categories of algorithms which
can be used to solve model-free RL tasks. The first category encompasses the value
iteration methods, for which one tries to learn a value function that is then used to
derive a policy. The second category encompasses policy iteration methods, where one
rather directly iterates over the policy space to find a good candidate. Basics of each
category are respectively discussed in Section 3.1 and Section 3.2. While both categories
have their advantages, they also have their drawbacks. More recently, a third class of
algorithm was introduced: “actor-critic”. The goal of such method is to directly iterate
over the policy space, such as for policy iteration methods, while using guidance from a
learned value function, as for value iteration methods. As such, those algorithms are sup-
posed to combine advantages of both methods and usually provide good performance.
Section 3.3 formalizes the actor-critic framework. Furthermore, Section 3.3 also deeply
details an advantage actor critic framework (A2C) as proposed by Mnih et al. (2016),
using proximal policy optimisation (Schulman et al., 2017) and generalised advantage
estimation (Schulman, Moritz, et al., 2015). This framework is precisely described for
the reader to fully understand the algorithm used for all experiments of Part III. Finally,
it is important to note that for the sake of simplicity, all algorithms are explained in
the setting of fully observable MDPs 1.

1. All algorithms remain similar when working with POMDPs. The main difference is that when
working with POMDPs, function approximators will often take the history ht as input, rather than the
state st. As such, the function approximators can capture as much information as possible about the
true state st.

19



3.1. Value iteration methods 20

3.1 Value iteration methods

In the early years of RL, the main focus was to study fully observable environments
with small, discrete state and action spaces (S and A). As such, one of the first and
most immediate ways to solve such environments was through dynamic programming,
as for example with the tabular Q-learning algorithm (Watkins & Dayan, 1992). This is
probably the most well-known and simplest value iteration method in which one builds
a Q : (S ×A)→ R function, also called state-action value function, which is the unique
solution to the following Bellman equation:

Q(s,a) = E
s′∼p(s′|s,a)

[ρ(a, s, s′) + γmax
a′∈A

Q(s′,a′)] .

It is known that the policy π∗ is optimal if and only if a ∼ π∗(a|s) is such that a ∈
arg max

a∈A
Q(s,a) and we define the state value function V : (S)→ R as

V (s) = Jπ
∗
(s) = max

a∈A
Q(s,a) .

Building Q In such a setting, let Q0(s,a) = 0, one can get convergence of QN to Q
thanks to the following recurrence equation:

QN (s,a) = E
s′∼p(s′|s,a)

[ρ(a, s, s′) + γ ∗max
a′∈A

QN−1(s′,a′)],∀N ≥ 1 .

In practice, the Q learning algorithm uses the previous recurrent relation to build an
approximate Q̂ of Q, without inferring the transition and reward functions. Q̂ can be
computed solely based on a historic of interactions with the environment ht thanks to
the following update:

Q̂(st,at)← Q̂(st,at) + αt ∗ TD(st,at, st+1) ,

where αt ∈ [0, 1] is the learning rate and TD is called the temporal difference and is
defined as

TD(st,at, st+1) = rt + γ ∗max
a∈A

Q̂(st+1,a)− Q̂(st,at) .

Thanks to the law of large numbers and given some particular conditions on αt and the
history ht (each state-action pair needs to be visited an infinite number of times when
t→∞), it can be shown Q̂ will converge towards Q.



3.1. Value iteration methods 21

Exploration-exploitation If the agent always plays the policy which maximizes its
estimated return through Q̂, then it will not explore correctly all sate-action pairs.
This is the exploration/exploitation dilemma. Put otherwise, if the agent only does
what it has learned to be best through the state-action value function (and thus only
exploits his knowledge), it might miss and never learn about better opportunities. On
the other hand, if the agent does not care about what it has previously learned and
always plays differently, for example at random (hence exploring), it will never achieve
good rewards. To handle this dilemma in Q learning, one often uses the epsilon-greedy
approach. That is, a variable ε ∈ [0, 1] is used to give the probability of playing a random
move versus that maximizing Q̂. Usually, ε is initialized close to 1 as, at that time, the
approximation of Q is supposed to be extremely poor since no prior information on the
environment is given. Thus, when beginning to train, the agent has a high probability
of playing randomly to explore well the environment. Then, ε is slowly diminished after
each time-step to reach a threshold (usually small, such as 0.05) over time. As such, as Q̂
is refined over time, the agent will be more and more inclined to chose the action which
maximizes Q̂, and thus to exploit its knowledge, hopefully achieving good rewards.

Limitations There are however two major limitations to the basic tabular Q learning
algorithm explained above.

First, we note that the update of Q̂ works well in the case of small state and action
spaces as one can expect to visit each state-action pair sufficiently often for Q̂N to
approximate well Q as N grows large enough. However, when the state space grows or
becomes continuous, this assumption is no longer respected and thus updating values
of Q̂ per state-action pair (for example by updating a cell of a S × A table) is no
longer relevant. To counteract this problem, one can use a function approximator which
would be expected to generalize better to unseen state-action pairs, allowing for better
decisions of the policy in less frequently visited states. For example, Ernst et al. (2005)
used random forests to model the Q function. More recently, it was also shown that using
deep networks to model the Q function could prove very effective (Mnih et al., 2013;
Van Hasselt et al., 2016). Overall, due to the increasing complexity of RL environments,
function approximators have become an essential tool when tackling model-free RL with
value iteration methods.

Second, when exploiting the value function to get the optimal action, the action is taken
as

a = arg max
a′∈A

Q̂(s,a′) .



3.1. Value iteration methods 22

When solving MDPs where the action space A is continuous, the arg max operation
quickly becomes a limiting factor. Indeed, since the action space cannot be iterated over,
it is difficult to compute the best action. Some recent work have focused on alleviating
this problem. One of the most common ways to solve this problem is to use actor-critic
algorithms, as described here under, however other methods exist as well. Among others,
Gu et al. (2016) proposed to make the function approximator convex and Kalashnikov
et al. (2018) proposed to use optimization to find local maxima.

It is important to note that only the most basic value iteration method has been
described here. Many improvements have been proposed over the years in order to
get better approximations of the true value functions. Among many others, Z. Wang et
al. (2016) for example proposed using dueling networks while Van Hasselt et al. (2016)
proposed to use two estimators to reduce the overestimation bias of Q which is known
to happen with Q-learning. Also, not all value iteration algorithms focus on modelling
the Q function. One can for example learn to approximate the state value function V
rather than the state-action value function Q. Going one step further, Wiering (2005)
showed that there can even be benefits to learning both the Q and V function. The
concept behind all those methods remains similar however. The goal is always to learn
a (or multiple) value function(s) which gives a value to a state (or state-action pair),
and use these values to infer a policy.

3.2 Policy iteration methods

Similarly to tabular Q learning for value iteration methods, policy gradient algorithms
have been used early as a way to solve model-free RL tasks. Let πθ(a|s) denote the
policy used by the agent with parameters θ. This policy can for example be modelled
by a neural network whose outputs are the means vector and variance matrix of a
multivariate Gaussian distribution. Ideally, with such a policy, the goal of RL would be
to update it as

θ ← θ + α∇θ[ E
s0∼ps0

Jπθ(s0)]

such as to maximize its expected return where p0 is the distribution over initial states of
the MDP defined over S. This would be the ideal policy gradient, however, in a model-
free setting one does not have access to this gradient. Hence, the goal of policy gradient
methods is to approximate this update as close as possible. One of the simplest way
to achieve this is with Monte Carlo estimation. For ease of writing, let r(h) denote the
sum of discounted rewards in an history such that, given h = [s0,a0, r0, . . . , sT ,aT , rT ],



3.2. Policy iteration methods 23

r(h) =

T∑
t=1

γtrt .

The expected return of policy πθ can thus be written as

E
s0∼ps0

Jπθ(s0) =

∫
πθ(h)r(h)dh (3.1)

where πθ(h) is the probability of observing history h playing policy πθ, that is

πθ(h = [s0,a0, . . . , sT ,aT ]) = ps0(s0)

T∏
t=1

πθ(at|st)p(st+1|st,at) .

The simplest way to derive a policy gradient is then approximate ∇θ E
s0∼ps0

Jπθ(s0) as

follows,

∇θ E
s0∼ps0

Jπθ(s0) = ∇θ
∫
πθ(h)r(h)dh

=

∫
∇θπθ(h)r(h)dh

=

∫
πθ(h)∇θ lnπθ(h)r(h)dh

= E
h∼πθ,ps0 ,p

[∇θ lnπθ(h)r(h)]

= E
h∼πθ,ps0 ,p

[
r(h)

∑
t

∇θ lnπθ(at|st)

]

= E
h∼πθ,ps0 ,p

[
T∑
t=0

∇θ lnπθ(at|st)

(
T∑
t′=0

γt
′
rt′

)]

= lim
N→∞

N∑
i=1

1

N

[
T∑
t=0

∇θ lnπθ(at|st)

(
T∑
t′=0

γt
′
rt′

)]
st+1∼p(st,at)

s0∼ps0
at∼πθ(st)

As such, this value can be approximated by playing πθ on the environment and collecting
reward samples. In practice, it is of course impossible to play an infinite number of time-
steps on the environment. Therefore, the agent will play the environment multiple times.
Each time the agent plays, it will do so for T time-steps, the agent will then start a



3.2. Policy iteration methods 24

new trajectory on the environment from a new initial state s0 ∼ ps0 . Each of these
T interactions with the environment is called an episode. Denoting by ri,t the reward
obtained by the agent (playing policy πθ) at time-step t of episode i, the approximated
gradient over N episodes finally writes

∇θ E
s0∼ps0

Jπθ(s0) ≈ 1

N

N∑
i=1

[
T∑
t=0

∇θ lnπθ(ai,t|si,t)

(
T∑
t′=0

γt
′
ri,t′

)]
(3.2)

and the policy gets updated following

θ ← θ + α∇θ[ E
s0∼ps0

Jπθ(s0)] .

One of the most common policy gradient algorithms, REINFORCE (Williams, 1992),
uses a very similar update, written below.

θ ← θ + α
1

N

N∑
i=1

[
T∑
t=0

∇θ lnπθ(ai,t|si,t)

(
T∑
t′=t

γt
′−tri,t′

)]

As such, the only difference with our derived policy gradient update, is that the term(∑T
t′=0 γ

t′ri,t′
)

in Equation 3.2 gets replaced by the reward to go
(∑T

t′=t γ
t′−tri,t′

)
,

based on the principle that an action taken at time-step t can only influence rewards
at time-steps t + 1 and beyond. Both updates lead to a similar expected value for the
policy expected gradient, despite having different variance. The REINFORCE update
is easy to understand in that, the higher the cumulative future return

(∑T
t′=t γ

t′−tri,t′
)

obtained after making an action ai,t in state si,t, the more likely the agent will be to
play that action in that state again. There are multiple advantages to policy gradient:

1. Continuous action spaces are easily managed by the algorithm;
2. Exploration is handled automatically thanks to the variance of the policy. Whenever

the agent does not manage to obtain good rewards, the variance of the policy will
tend to increase, while it will tend to decrease whenever the agent finds a good
suit of actions.

The main drawback of those methods however, is that they are highly subject to
variance. Indeed, the rewards generated between runs of a given policy may vastly
differ, sometimes leading to very bad updates. It is known that subtracting a baseline
to the expected cumulative return when multiplying the gradient can help alleviate
this problem. In a similar vein, the critic in actor-critic algorithms precisely helps at
diminishing the variance of the policy gradient.



3.2. Policy iteration methods 25

Finally, similarly to Q learning, it is important to note that many alternative ways to
carry policy gradient have been proposed and that REINFORCE is only one of the
most basic. For example, Schulman, Levine, et al. (2015) proposed to add constraints
to the policy updates such that it cannot vary too abruptly. Also, Silver et al. (2014)
proposed deterministic policy gradient algorithms in which a deterministic policy is
used and where the gradient of the policy follows that of the state-action value function.
There exist many more such alternatives (Casas, 2017; Kakade, 2001; Schulman et al.,
2017) and next section focuses on three particular concepts: the advantage actor-critic
(A2C) framework, using proximal policy optimisation (PPO) and generalised advantage
estimations.

3.3 Advantage actor-critic

* Parts of this subsection have directly been adapted from the supplementary material
of Vecoven et al. (2020)

The goal of actor-critic algorithms is to simultaneously learn a policy and a value
function. More formally, let θ ∈ Θ and ψ ∈ Ψ denote the parameters of the actor
and critic respectively. We define πθ and cψ as the policy and critic functions. Let us
also define πθk and cψk as the models for the policy and critic after k updates of the
parameters θ and ψ, respectively. Finally, let Rπθ denote the sum of discounted rewards
obtained when playing policy πθ on the MDP such that

Rπθ = lim
T→∞

T∑
t=0

γtrt .

An AC algorithm should interact with its environment to find the value of θ that leads
to high values of the expected return given a probability distribution over the initial
states. This expected return is written as:

E
s0∼ps0
at∼πθ

[Rπθ ] .

One the one hand and when working well, actor critic algorithms produce a sequence of
policies πθ1 , πθ2 , πθ3 , . . . whose expected returns increase as the iterative process evolves
and eventually reaches values close to those obtained by πθ∗ with θ∗ = arg max

θ∈Θ
E

s0∼ps0
at∼πθ

Rπθ ,

which, if πθ is flexible enough, are themselves close to those obtained by an optimal



3.3. Advantage actor-critic 26

policy π∗ defined as:
π∗ ∈ arg max

π∈Π
E

s0∼ps0
at∼πθ

[Rπ] .

On the other hand, and again for an efficient actor-critic algorithm, the value of the
critic for st, cψ(st), should be updated at each iteration k in a direction that provides a
better approximation of Jπθk−1 (st). Note that this “lag” between the critic and the policy
is due to the fact that policy πθk is used to generate the interactions which will allow to
update ψk to ψk+1. Ideally, as k grows and E

s0∼ps0
Jπθk (s0) gets closer to E

s0∼ps0
Jπθ∗ (s0),

the critic should learn to approximate Jπ∗ .

Existing actor-critic algorithms mainly differ from each other by the way the actor and
critic are updated. While in early actor-critic algorithms the critic was directly used
to compute the direction of update for the actor’s parameters (see for example the
REINFORCE policy updates using the critic’s output as estimated return), now it is
more common to use an advantage function (Mnih et al., 2016). This function represents
the advantage in terms of return of selecting specific actions given a trajectory history (or
simply a state) over selecting them following the policy used to generate the trajectories.
In the context of this manuscript, generalised advantage estimations (GAE) are used,
as introduced by Schulman, Moritz, et al. (2015). More recently, it has been shown
that avoiding too large policy changes between updates can greatly improve learning
(Schulman, Levine, et al., 2015; Schulman et al., 2017). Therefore, while in classical
AC algorithms the function used to update the actor aims at representing directly
the gradient of the actor’s return with respect to its parameters, such algorithms rather
update the actor’s parameters θ by minimising a loss function that represents a surrogate
objective. In this manuscript, a surrogate function that is similar to the one introduced
by Schulman et al. (2017) is used with an additional loss term that proved to increase
(albeit slightly) the performance of the algorithm on our experiments in all cases.

In the context of this manuscript, the actors and critics are modelled by artificial neural
networks. They are both updated through a gradient descent process which is described
in the remaining of this Chapter.

3.3.1 Actor update

Let Hk be a set of the interactions used to update ψk and θk to ψk+1 and θk+1. This
set is usually built with multiple episodes of the agent. Let si,t, ai,t and ri,t respectively
denote the state, action and reward of episode i at time-step t. In practice, it is obvioulsy
impossible for the agent to interact with the environment for an infinite number of time-



3.3. Advantage actor-critic 27

steps. Therefore, the stochastic gradient descent will be carried only on the T ∈ N0

first time-steps of each trajectory (using upwards to the T ′ ∈ N0 first time-steps of
each trajectory to compute cumulative rewards). Let B ∈ N0 be the number of such
trajectories used for the update, then we define Hk as

Hk = {hBk,T , . . . ,hB(k+1)−1,T } ,

where
hi,T = {si,0,ai,0, ri,0, . . . ,ai,T−1, ri,T−1, si,T } .

With these definitions, it is noted that Hk does not represent the full set of interactions
used to update θk and ψk, but rather the set of interactions for which losses will be
computed.

Generalised advantage estimations (GAE) In this context, one can use the critic to
define an approximate temporal error difference for any two consecutive time-steps of
any episode:

TDt = rt + γ ∗ cψk(st+1)− cψk(st), ∀t ∈ N

where ψk denotes the critic’s parameters for playing the given episode. This temporal
difference term represents, in some sense, the (immediate) advantage obtained, after
having played action at over what was expected by the critic. If cψk was the true
estimate of Jπθk and if the policy played was πθk , the expected value of these temporal
differences would be equal to zero. We now define for each trajectory i, the GAE terms
that will be used later in our loss functions:

GAEi,t =

T ′∑
t′=t

(γ ∗ λ)t
′−t ∗ TDi,t′ , ∀t ∈ {0, . . . , T} (3.3)

where λ ∈ [0, 1] is a discount factor used for computing GAEs, TDi,t is the value of
TDt for trajectory i. It appears clearly here that T ′ has to be chosen in combination
with T in order to have a value of GAEi,t that accurately approximates

∞∑
t′=t

(γ ∗ λ)t
′−t ∗ TDi,t′∀i, t .



3.3. Advantage actor-critic 28

Note that the value chosen for T also needs to be sufficiently large to provide the loss
function with a sufficient number of GAE terms. These GAE terms, introduced by
Schulman, Moritz, et al. (2015), represent the exponential average of the discounted
future advantages observed. Thanks to the fact that GAE terms can catch the accu-
mulated advantages of a sequence of actions rather than of a single action, as it is the
case with the temporal difference terms, they can better represent the advantage of the
new policy played by the AC algorithm over the old one (in terms of future discounted
rewards). It is important to note that it is also best to normalize GAE terms, such that
they have a zero mean and standard deviation of 1. This allows for the policy learning
rate to be independent of the magnitude of those terms.

Proximal policy optimization Once advantages have been computed, the values of
θk+1 are computed using updates that are strongly related to PPO updates with a
Kullback Leibler (KL) divergence implementation (Schulman et al., 2017). The loss used
in PPO updates is composed of two terms: a standard policy gradient term Lvanilla and
a penalisation term Lppo. The first is defined as

Lvanilla(ai,t, si,t; θ) = − πθ(ai,t|si,t)
πθk(ai,t|si,t)

∗GAEi,t . (3.4)

One can easily become intuitive about Equation 3.4 as, given an history hi,t, minimising
this loss function tends to increase the probability of the policy taking actions leading
to positive advantages (i.e. GAEi,t > 0) and decreases its probability to take actions
leading to negative advantages (i.e. GAEi,t < 0). As such, minimizing this loss has the
exact effect to that of a REINFORCE update.

It has been found (Schulman, Levine, et al., 2015) that to obtain good performance with
this above-written loss function, it is important to have a policy that does not change
too rapidly from one iteration to the other. The penalisation term introduced in PPO
is one way to do so, but other methods exist such as trust region policy optimisation
proposed by Schulman, Levine, et al. (2015). Before explaining how this is achieved
with the PPO update, it is useful to understand why it may be important to have slow
updates of the policy. Taking a look back at the loss function given by Equation 3.4,
one can see that minimising this loss function will give a value for θk+1 that will lead to
higher probabilities of selecting actions corresponding to high values of the advantages
GAEi,t. A potential problem is that these advantages are not really related to the
advantages of the would-be new policy πθk+1

over πθk but are instead related to the
advantages of policy πθk over πθk−1

. Indeed, the advantages GAEi,t are computed using
the value function cψk , whose parameters have been updated from ψk−1 in order to
better approximate the sum of discounted rewards obtained during the episodes played



3.3. Advantage actor-critic 29

with policy πθk−1
. It clearly appears that ψk has, in fact, been updated to approximate

discounted rewards obtained through the policy πθk−1
(used to play episodes for update

k−1). A solution to this problem is to constraint the minimisation to reach a policy πθk+1

that does not stand too far from πθk . We may reasonably suppose that the advantage
function used in (3.4) still correctly reflects the real advantage function of πθk+1

over
πθk . To achieve this, we add a penalisation term L(si,t; θ) to the loss function. In the
PPO approach, the penalisation term is Lppo(si,t; θ) = βk ∗ d(si,t; θ), where:

• βk is an adaptive weight, whose goal is to scale how strong the penalisation should
be. A too low value of βk could lead to too big updates, and thus too high variance
in the training process. However, too high values of βk would lead to too small
updates, and thus to extremely slow learning.

• d(si,t; θ) = KL(πθk(.|si,t), πθ(.|si,t)), where KL is the Kullback-Leibler divergence.
This term grows as the distribution πθk and πθ diverge.

In the context of the experiments of this manuscript, it was seen that adding another
penalisation term (squared hinge loss) to LPPO to further penalise the KL divergence, in
cases where it surpasses 2∗dtarg, improved algorithm performance. The final expression
of the penalisation term is:

Lppo(si,t; θ) = βk ∗ d(si,t; θ) + δ ∗max(0, d(si,t; θ)− 2 ∗ dtarg)2

where δ is a hyper-parameter that weights the third loss term. Finally, the loss function
L that we minimise as a surrogate objective becomes:

L(ai,t, si,t; θ) = Lvanilla(ai,t, si,t; θ) + Lppo(sit ; θ) (3.5)

One can then simply update the parameters θk of the neural network πθk with standard
stochastic gradient descent on the dataset Hk using the loss of Equation 3.5. Details
on the computation of the KL divergence, as well as on the way the distribution πθk is
modeled with an ANN is given in Appendix A.

βk is updated at each gradient step using a hyper-parameter dtarg ∈ R0 called the
divergence target. Schulman et al. (2017) proposed the following procedure for this
update:

βk+1 =



βk
1.5 if

∑
si,t∈B

d(si,t; θ) <
dtarg

2

βk ∗ 1.5 if
∑

si,t∈B
d(si,t; θ) > dtarg ∗ 2

βk otherwise

(3.6)



3.3. Advantage actor-critic 30

where B is the mini-batch sampled for each gradient step and
∑

denotes the average
value over a set. With this update strategy, the penalisation term will tend to evolve
in a way such that the KL divergence between two successive policies does not tend to
go too far beyond dtarg without having to add an explicit constraint on d, as was the
case in Trust Region Policy Optimization (TRPO) updates introduced by Schulman,
Levine, et al. (2015).

3.3.2 Critic update

The critic is updated at iteration k in a way to better approximate the expected return
obtained when following the policy πθk , starting from a given trajectory history. To this
end, a mean-square error loss is used as a surrogate objective for optimizing ψ. First,
an approximate of the expected discounted cumulative return of policy πθk is defined:

R̂
πθk
i,t =

T ′∑
j=t

γj−t ∗ ri,t .

Note that if T →∞ this tends to the true discounted cumulative return of policy πθk ,
R
πθk
t where

R
πθk
t = lim

T→∞

T∑
k=0

γkrt+k .

From there, the loss used to update the critic can simply be written:

L(hi,t;ψ) = (cψ(si,t)− R̂
πθk
i,t )2 . (3.7)

In the case of the critic updates, the gradient descent is often not only carried on the set
Hk but well on the sets Hk−rb, . . . ,Hk. As such, the critic not only uses the trajectories
of update k but also all those played since update k − b. This is called a replay buffer
(hence, b), something that is often used in value iteration algorithms. Such buffers
have for effect to smooth the critics’ updates, often improving algorithm performance.
Due to the replay buffer, the updates are not such that cψ directly approximates the
average expected return of the policy πθk . Rather, the updates are such that cψ directly
approximates the average expected return obtained by the last b+ 1 policies played. In
practice, this does not lead to problems, and efficiency of such algorithm is often very
good.



3.3. Advantage actor-critic 31

As a final observation, note that the loss (3.7) is only computed on the T � T ′

first time-steps of each episode, as was the case for the actor. The reason behind
this choice is simple. The value function cψk should approximate

∑+∞
t′=t γ

t′−t ∗ ri,t′ for
every si,t. However, this approximation can become less accurate when t becomes close
to T ′ since we can only guarantee R̂

πθk
i,t to stand in the interval: [

∑+∞
t′=t γ

t′−t ∗ ri,t −
γT
′−t

1−γ Rmax,
∑+∞

t′=t γ
t′−t ∗ ri,t − γT

′−t

1−γ Rmin], where Rmax and Rmin are respectively the
minimum and maximum bounds of the reward function.

Summary

The two main classes of algorithm for solving model-free RL were presented in this
Chapter. Both of them were formalized using the most basic corresponding algorithms,
i.e. tabular Q learning for value iteration methods and REINFORCE for policy iteration
methods. Through these introductions, the reader was exposed to the short-comings of
both methods, leading to the presentation of a state-of-the-art algorithm for solving
model-free RL. This algorithm, which will be used in Part III of this manuscript, is
based on three recently introduced concepts. First, it uses an A2C framework; Second,
policy updates are done using proximal policy optimisation; And third, advantages are
computed using generalised advantage estimation. By reading this Chapter, the reader
is expected to have understood the different strong points and short comings of classical
model-free RL methods as well as the specific concepts used in this manuscript to address
those issues.





PART II

Tuning neuron dynamics for long-term
memory

33





Introduction

While there exists many datasets for which the input is unstructured, there also exists
many more where the input is highly structured. Images, which hold a rich spatial
structure, are a common example of the latter. While benefiting from such structure is
not doable with all machine learning models, luckily, ANNs are very flexible. Thus, there
exists a multitude of neural architectures which are all more or less well suited towards
different types of data. As an example, convolutional neural networks (CNNs) are a great
tool to introduce a bias towards the structure of images. In this type of architecture,
filters are learned and applied onto patches of neighbouring pixels, extracting relevant
spatial features from raw pixel values. The same filters are applied over all the image,
patch by patch, effectively introducing spatial bias into the model over a fully connected
network. This method was shown to greatly improve predictive accuracy in such cases.

A lot of interest has been given to a particular type of data, for which structure comes
in the form of having ordered inputs or outputs: “sequential data”. Natural language
processing and time-series forecasting are two great examples of having sequential
inputs. Indeed, when processing natural language, words (or letters) are often used
as input features. In such a setting, it is easy to understand why introducing a bias
towards the model taking word order into account is important. For example, if this is
not the case, the two following sentences:

• “The disgusting looking apple I ate was good.”;
• “The good looking apple I ate was disgusting.”;

are exactly the same, despite having opposite meanings. Similarly, by definition, time-
series are composed of data points ordered by time. As such, it is also important to use
that order in the manner to find relevant temporal patterns that can arise from such
data. It is noted that outputs can also be sequential, as would be the case for music
generation and speech synthesis among others.

Due to the plethora of applications for which data is sequential, many neural archi-
tectures suited to tackle such structured data have been proposed. In particular, one-
dimensional CNNs 2, position transformers (Liu et al., 2020) and RNNs are the first
that come to mind. In this Part of the manuscript, a special interest is given to the
latter.

2. One-dimensional CNNs are based on the same principle as standard CNNs. Instead of learning
filters over patches of neighbouring samples in a spatial domain, one rather learns filters over patches
of neighbouring samples in a one dimensional domain, for example, filters over consecutive data points
in the context of time-series.

35



INTRODUCTION 36

RNNs can be defined as neural networks for which neurons are connected to themselves
(and others) through time. They have been discussed as soon as ANNs were introduced;
in fact, McCulloch & Pitts (1943) already discussed the idea of neural nets with cycles
when discussing their logical representation of neural networks. The first discussion on
how to train such network was made as early as 1985 by Rumelhart et al. (1985). In
that paper, it was shown that any recurrent neural network (over a finite period of
time) can be represented by a non-recurrent neural network and that this property
could be used to train such networks. Thanks to their temporal connections (called
recurrent connections) RNNs can exhibit temporal dynamics, effectively endowing them
with memory capabilities. This memory is what makes them specifically well-suited to
handle sequential data. Indeed, as each input is fed to the network, it uses its current
memory state (called internal state) and that input in order to produce an output and
update its internal state. As such, when receiving an input, the network’s state is always
dependant on all the previous inputs received, as well as on their order.

Despite having exhibited state-of-the-art on multiple tasks over the years (Lipton et al.,
2015), RNNs have been victim to some caveats.

• Mainly and most importantly, they are known to be difficult to train, especially
for sequential data where patterns can span hundreds of inputs.

• Also, due to their inherent complexity, RNNs have often been seen as black boxes
for which the underlying dynamics are unclear.

Many recent works have focused on improving the ease of training of RNNs. For example,
over the years, one of the most common way to achieve this has become to use gated
units (Cho et al., 2014; Hochreiter & Schmidhuber, 1997) as recurrent neurons. When
it comes to addressing the second caveat, among others, Sussillo & Barak (2013) have
recently focused on understanding the dynamics of trained RNNs, highlighting some
important properties when it comes to their prediction process. Research in the field
is still ongoing however, and the goal of this part is to introduce new solutions for
easier training of RNNs on long-term dependencies. Furthermore, those solutions are
well-motivated by non-linear control theory, allowing a deeper understanding on their
workings.

In particular, Chapter 4 formalizes standard RNNs and introduces state-of-the-art
methods for improving their training on long sequences. Furthermore, the Chapter will
also present and discuss some important properties of trained RNNs following notions of
dynamical systems theory. Chapter 5 will then focus on bistable recurrent cells (BRC),
a new cell that is specifically designed for having bistability properties. The cell is
shown to exhibit excellent performance on very long sequences, for which classical gated
architectures fail to learn. This Chapter finally hints at some links that can in fact be
made between gated cells and human neurons, despite their link being thought to be



INTRODUCTION 37

extremely shallow. Finally, Chapter 6 will introduce a more general technique called
“warm-up” for handling long sequences with RNNs. As opposed to bistable recurrent
cell, this technique can be used with any kind of recurrent neuron and it is shown to
greatly enhance the performance of RNNs when sequences grow longer.





Chapter 4

Handling sequential data with
RNNs

While Part I presented basic concepts on ANNs, this Chapter really focuses on recurrent
networks. To this end, Section 4.1 will formalize RNNs and detail the difficulties that can
arise when training such networks, providing more basic knowledge on RNNs. Section 4.2
will then introduce and discuss common methods to solve some of these issues. Finally,
Section 4.3 will focus on the analysis of trained networks. Indeed, similarly to some of
the decomposition based feature selection methods (which aim at understanding the
role of each neuron towards predicting the output), there has been a rising interest
towards understanding the underlying dynamics of trained RNNs. As such, Section 4.3
will discuss some recent findings on the subject, through the lens of control theory.

4.1 Recurrent neural networks

* A few parts of this Section have been adapted from Vecoven et al. (2021a).

As mentioned earlier, RNNs are especially suited to problems where the input is ordered,
and in particular, for problems with temporal structure such as time-series. In such
a context, relevant information can only be captured by processing observations ob-
tained during multiple time-steps. More formally, a time-series can be defined as X =

{x1, . . . ,xT } with T ∈ N0 and xi ∈ Rn. To capture time-dependencies, RNNs maintain
a recurrent internal state whose update depends on the previous internal state and
current observation of a time-series, making them dynamical systems and allowing them
to handle arbitrarily long sequences of inputs. Mathematically, RNNs maintain a hidden
state ht = f(xt,ht−1; θ), where h0 is a constant and θ are the parameters of the network.
In its most standard form, an RNN is fully connected through time, and thus a standard
update would be written as

ht = g(Uxt +Wht−1) , (4.1)

39



4.1. Recurrent neural networks 40

Figure 4.1: Unrolling of an RNN shown over three time-steps.

where g is a standard activation function such as a sigmoid or a hyperbolic tangent.
Recurrent layers also output a value ot = o(ht−1,xt; θ). Frequently, this output value
is taken directly as the hidden state such that ot = ht. As a final note on recurrent
architectures, it is worth to mention that one can of course stack multiple recurrent
layers when building an RNN. As for feed-forward networks, these layers can be linked
sequentially through xit = oi−1

t with x0
t = xt, where oit denotes the output of layer i at

time-step t and xit its input.

Such networks can be trained as standard ANNs by using stochastic gradient descent.
To achieve this, one can compute the gradient using backpropagation through time
(Werbos, 1990) over an unrolled version of the RNN (as shown on Figure 4.1). When
seen as such, the network thus becomes a standard fully connected network with layers
using shared weights. In such a context, the depth of the network will be proportional
to the number of time-steps unrolled, hence why backpropagating the gradient in such
a network amounts to do it through time.

It is interesting to discuss the form that such gradient takes as the unrolling grows
longer. Indeed, the mathematical expression of ht can be written as

ht = f(xt, f(xt−1, f(. . .); θ); θ)︸ ︷︷ ︸
t

which can lead to some bad mathematical properties of the gradient when t grows too
large. To highlight this, one can think of the gradient of ht with respect to x0 in the
case of a single layer RNN. First, to ease the writing for this discussion,

Fn(θ,hn−1(θ)) = Uxn +Whn−1(θ)



4.1. Recurrent neural networks 41

is defined for all n in N0. A modified version, F̄n, of Fn is also introduced. F̄n is equal to
Fn for which hn−1 is considered constant and thus, does not depend on θ. This allows
to write δF̄i

δθ to denote the ”immediate“ partial derivative 1 of state ht with respect to
θ. In such a context,

ht = f(xt,ht−1; θ) = g(Ft) .

Thanks to the chain rule, the jacobian of ht with respect to θ can be expressed as:

δht
δθ

=
δht
δFt

(
δF̄t
δθ

+
δFt
δht−1

δht−1

δθ

)
(4.2)

= diag(g′(Ft))

(
δF̄t
δθ

+
δFt
δht−1

δht−1

δθ

)
(4.3)

= diag(g′(Ft))
δF̄t
δθ

+ diag(g′(Ft))
δFt
δht−1

δht−1

δθ
. (4.4)

where g′ computes the derivative of g element-wise and diag(·) converts a vector into a
diagonal matrix. Using h0 = 0, by recurrence, one can replace the expression of δht−1

δθ

in Equation 4.4, which leads to the following expression for all t ≥ 1:

δht
δθ

= diag(g′(Ft))
δF̄t
δθ

+

t−1∑
i=1

diag(g′(Fi))

 t∏
j=i+1

δFj
δhj−1

diag(g′(Fj))

 δF̄i
δθ

(4.5)

= diag(g′(Ft))
δF̄t
δθ

+
t−1∑
i=1

diag(g′(Fi))

 t∏
j=i+1

W Tdiag(g′(Fj))

 δF̄i
δθ

. (4.6)

To understand the problem with such an expression and for simplicity, one can look at
the expression of the derivative of ht with respect to the recurrent weights W in the
context of a single neuron, that is, when W and h are scalar (hence written w and h in
the following). In this context, Equation 4.6 leads to

1. This term was introduced in a similar context by Pascanu et al. (2013).



4.1. Recurrent neural networks 42

δht
δw

= g′(Ft)ht +
t−1∑
i=1

g′(Fi)

 t∏
j=i+1

wg′(Fj)

hi−1 (4.7)

= g′(Ft)ht +
t−1∑
i=1

g′(Uxi + whi−1)

 t∏
j=i+1

wg′(Uxj + whj−1)

hi−1 . (4.8)

From Equation 4.8, one can see that long-term components of the equation are likely
to either vanish or explode. For example, in Equation 4.8 the value of the first input x1

only appears in the following term

g′(Ux1 + wh0)

 t∏
j=2

wg′(Uxj + whj−1)

h0 , (4.9)

which can, on the one hand,

• vanish if w is smaller than 1. Indeed, as already mentioned, activation functions
used in RNNs are often either sigmoids or hyperbolic tangents (because they are
bounded, which permits to avoid exploding states when doing a forward pass
of the network). The sigmoid derivative has an image that belongs to ]0, 0.25]

whereas the hyperbolic tangent derivative has an image that belongs to ]0, 1]. In
both cases, if w < 1, Equation 4.9 will tend towards 0 as t increases (due to the
small values of the derivative, it might also be the case even if w > 1). This shows
that in such cases, the first input does not influence the gradient at all, making
it impossible for the network to learn long-term temporal patterns. On the other
hand,

• explode if w � 1. In such a case, the gradient grows bigger as t increases, either
leading to numerical instabilities or too big gradient steps, ultimately destabilizing
training.

The same problems can arise when there are multiple neurons. Due to the non-linearity
of the activation functions, it remains difficult however to find exact conditions on the
weights matrices for the gradient to vanish or explode. An in-depth study on the subject
has been made by Pascanu et al. (2013), who have thoroughly analyzed these issues using
control theory. In the same paper, the authors summarize multiple solutions that have
been introduced over the years in an attempt to solve some of those issues. The next
section will now introduce some of the most commonly used, and in particular, the
concept of gated recurrent cells.



4.2. Towards easily training RNNs 43

4.2 Towards easily training RNNs

On the one hand, over the past years, a few methods have been proposed to solve
exploding gradients issues. These methods however remain quite similar and straight-
forward, generally relying on clipping too big gradients (Pascanu et al., 2013; Mikolov
et al., 2012) to a constant value. Despite the fact that this operation can change the
direction of the gradient, it still proved to work well in practice. It is thus common
practice to clip gradients when training RNNs, and as such, when needed, we use a
similar approach for training our RNNs in next Chapters. Pascanu et al. (2013) go into
more details on the subject and further discuss such methods.

On the other hand, there has also been an extensive amount of work to solve van-
ishing gradient problems. As such, different methods have been proposed, including
introducing gating mechanisms (Cho et al., 2014; Hochreiter & Schmidhuber, 1997),
maintaining orthogonality in recurrent weight matrices (Jing et al., 2019) and using
new ways to initialise RNN parameters (Pascanu et al., 2013; Van Der Westhuizen &
Lasenby, 2018; Marichal et al., 2009). The remaining of the section will focus on such
methods. First, gating mechanisms will be introduced. Then, a special case of such
mechanism will be used to highlight some ways of initialising RNNs such as to endow
them with better training properties.

Long-short term memory Gating mechanisms were first introduced in the long-short
term memory (LSTM) cell, proposed by Hochreiter & Schmidhuber (1997) as a way to
solve vanishing gradients. The idea behind gating mechanisms is to build units for which
the input, memory and output flows are controlled by different weight matrices, through
sigmoid functions, denoted σ and called “gates”. To understand why this denomination
is used, one should study the update rules of LSTM cells, which are as follows:



ft = σ(Ufxt +Wfht−1 + bf ) ,

it = σ(Uixt +Wiht−1 + bi) ,

kt = σ(Ukxt +Wkht−1 + bk) ,

ct = ft � ct−1 + it � tanh(Ucxt +Wcht−1 + bc) ,

ht = tanh(ct)� kt ,

(4.10)

where � denotes the Hadamard product. From Equation 4.10, one can define three
distinct gates.



4.2. Towards easily training RNNs 44

1. The forget gate f which controls the internal state flow. Indeed, note that the
image of sigmoid functions belongs to ]0, 1[. Therefore, the forget gate is there
to drive what part of the previous cellular state ct−1 (an internal state that is
specific to LSTMs) should be forgotten. The closer to 1, the more the previous
cellular state will be kept into memory, whereas the closer to 0, the more it will
be forgotten.

2. The input gate i that controls the input flow. This gate is basically used to choose
what part of the new cellular state candidate (computed thanks to the previous
state ht−1 and newly received observation xt) should be taken into account in the
new cellular state.

3. Finally, the output gate k that drives the output flow of the cell state, similarly
to both previous gates.

Since the introduction of LSTM cells, many other gated architectures have been intro-
duced (Zhou et al., 2016; Jing et al., 2019; Dey & Salemt, 2017). Going one step further,
an empirical search over hundreds of different gated architectures has even recently been
carried by Jozefowicz et al. (2015), showing that different architectures could be better
or worse suited to different tasks. This study also highlights the importance of well
initialising parameters of LSTM cells, something that has also been discussed by Van
Der Westhuizen & Lasenby (2018). Overall, LSTM still remain as one of the most well
established recurrent cells and are heavily used in the field of deep learning. Another
widely used recurrent cell that comes close to LSTMs in terms of widespread usage is
the gated recurrent unit (GRUs), proposed by Cho et al. (2014).

Gated recurrent units Similarly to LSTMs, GRUs use gating mechanisms to control
flow of information during the state updates. They however use less parameters and
gates than LSTMs to do so. The update rules for GRUs are as follows:


zt = σ(Uzxt +Wzht−1) ,

rt = σ(Urxt +Wrht−1) ,

ht = zt � ht−1 + (1− zt)� tanh(Uhxt + rt �Whht−1) ,

(4.11)

where z is called the update gate and r is called the regret gate.

• The role of the update gate is even clearer than that of LSTMs’ gates. Indeed,
from Equation 4.11, one can see that z drives the speed at which the current
internal state is replaced by newly computed values (usually called candidate).
The smaller z is, the quicker the internal state will be updated and past states
will be forgotten.



4.2. Towards easily training RNNs 45

• The role of r on the other hand is less immediate in that this gate controls the
usage of the previous internal state when computing the new candidate.

Despite LSTMs and GRUs partly solving gradient issues, it can still remain difficult to
train such cells on some tasks where very long temporal patterns exist and thus research
in the field is still ongoing. As GRUs have exhibited good performance on multiple tasks,
they also have inspired multiple works to build upon them.

Among others, Jing et al. (2019) proposed gated orthogonal recurrent units (GORUs),
another type of gated recurrent cell heavily based on GRUs but making use of orthogonal
matrices. This cell is detailed hereunder and serves to introduce orthogonal initialisation,
another method that has recently been showed to enhance learning of RNNs.

GORUs The idea behind GORUs is to use a similar update to that of standard GRUs.
In fact, the update of GORUs is given by Equation 4.11 where only the tanh function
is replaced with a sort of modified ReLU (introduced by Jing et al. (2019)). Thus the
main difference with GRUs is neither in the update, nor in the architecture. Rather,
the core concept behind GORUs is to parameterize Wh such that it is (and remains
throughout training) orthogonal.

This idea comes from an initialisation procedure which was shown to improve GRUs
(among other types of gated cells) performance. Indeed, it is thought that initialising
the recurrent weight matrix such that it is orthogonal provides better gradient (and
feed-forward) properties. This is often discussed intuitively in the case of a standard
RNN cell, with no input, no bias, h0 set to the identity vector and identity as activation
function. In such a case, the following development can be made:

ht = Wht−1 (4.12)

= W (W (. . . (W (h0))))︸ ︷︷ ︸
t

(4.13)

= W tI (4.14)

= W t . (4.15)

In this particular case, it appears that the value of ht will explode if the absolute value of
some eigenvalues ofW are greater than 1 and vanish if these absolute values are smaller
than 1. Since orthogonal matrices have eigenvalues strictly equal to one or minus one,
it appears that they permit to avoid this problem. Of course many assumptions are
made here, and this development is done for intuition only. Henaff et al. (2016) talk



4.2. Towards easily training RNNs 46

more in-depth on this particular subject. For completeness, note that GORUs were only
taken as an example to introduce the benefits of orthogonal matrices in RNNs since they
followed well GRUs’ description. There has however been other works on RNNs focusing
on using orthogonal matrices, such as that of Arjovsky et al. (2016) among others.

To conclude, other initialisation methods for RNNs have proven to work well (Tallec &
Ollivier, 2018; Van Der Westhuizen & Lasenby, 2018; Marichal et al., 2009; Jozefowicz
et al., 2015), and it is believed that having good properties at initialisation is highly
important and allows for faster and easier training of such models. In this regard,
Chapter 5 and 6 will introduce new ways of initialising RNNs near a good dynamical
regime. Chapter 5 does so by introducing a new cell which inherently possess good
dynamical properties for long-term memory, while Chapter 6 introduces a novel proced-
ure before training to reach such properties with usual cells. Doing so, these Chapters
will also highlight how dynamics of untrained RNNs, i.e. at initialisation, can strongly
impact RNNs learning performance during training on specific benchmarks.

4.3 Dynamics of trained RNNs

* Parts of this Section have been adapted from Vecoven et al. (2021b).

Despite the tremendous amount of work focusing on developing new types of cells and
analysing their performance (Chung et al., 2014; Jozefowicz et al., 2015), they have
predominantly remained seen as black-box models. Recently, there has however been a
growing body of works focused on understanding the internal dynamics of trained RNNs
(Sussillo & Barak, 2013; Ceni et al., 2020; Maheswaranathan et al., 2019), providing
invaluable insights into their prediction process.

In particular, RNNs can be seen as dynamical systems and non-linear control tools can
be used to understand the behaviour of such networks. This viewpoint has been used
early to understand the difficulties of RNNs to capture long term dependencies (Doya,
1993; Bengio et al., 1993; Pascanu et al., 2013). More recently, this specific approach
was taken by Sussillo & Barak (2013) as a way to analyze dynamics of trained RNNs,
considering them as blackbox systems. This work led to very interesting findings and
mainly, the authors highlight the importance of fixed points in the prediction process
of RNNs.

Fixed points are well-known characteristics of dynamical systems that are defined as
points in the phase space that map to themselves through the update function. Fixed
points depend on the input of the system. In the case of RNNs, we say that a state h∗

is a fixed point of a network in x if and only if:



4.3. Dynamics of trained RNNs 47

h∗ = f(h∗,x; θ)

Fixed points can either be fully attractive (attractors), fully repulsive (repellors), or com-
bine attractive and repulsive manifolds (saddle points). Attractors and saddle points are
the most useful when it comes to understanding RNNs dynamics. Attractors correspond
to network steady-sates and are thought to be the allowing factor for RNNs to maintain
long-term information (Pascanu et al., 2013; Sussillo & Barak, 2013; Maheswaranathan
et al., 2019). They are defined as fixed points towards which the system converges for
multiple starting conditions. The set of starting states for which the system converges
to the attractor h∗ is called basin of attraction of h∗ and written as Bh∗ . Basins of
attraction are delimited by the stable manifolds of saddle-points. Mathematically, h∗ is
an attractor in x if its basin of attraction in x, Bxh∗ , is not a singleton and is such that:

h ∈ Bxh∗ ⇐⇒ lim
n→∞

fn(h,x; θ) = h∗ .

From this definition, one can introduce the notion of reachable attractors. In particular,
we say that an attractor h∗ is reachable in x if there exists an input to the system such
that its final state belongs to Bxh∗ . More formally, an attractor h∗ is said to be reachable
in x if there exists X∗ = [x∗1, . . . ,x

∗
M ] such that hM ∈ Bxh∗ , where hi+1 = f(hi,x

∗
i)

with h0 = c, M ∈ N and c denoting a constant initial state. A system that has a
single reachable attractor in x is said to be monostable in x, whereas a system that has
multiple reachable attractors in x is said to be multistable in x.

In their work, Sussillo & Barak (2013) use linearization in order to find all types of fixed
points (i.e. attractors, repellors and saddle points) and to study them. They show that
attractors are heavily used by RNNs to store information about the prediction and that
saddle points were often created by the network to move between their different basins
of attractions. Intuitively, this result makes sense as, by definition, attractors are stable
states, and thus, allow the network to store information for arbitrarily long period of
times. As such, it is believed that these points are highly important for RNNs to learn
when sequences become longer (Jozefowicz et al., 2015).

On the other hand, it is known and important to note that fixed points alone are not
sufficient when it comes to learning complex temporal patterns. Indeed, one can easily
think of the case of regression tasks. If a network only uses stable points as a way
to store information, it would only be able to predict N different values with N ∈ N
being the number of different reachable attractors of the network. Due to the continuous



4.3. Dynamics of trained RNNs 48

nature of regression, this would quickly limit the predictive accuracy of such a model.
It is thus important to note that transient dynamics of RNNs are also very important,
and of course necessary, when it comes to their predictions. Indeed, the transient regime
allows for the continuous, albeit shorter-term, encoding of information.

Despite not being complete enough to fully understand RNNs dynamics, fixed point
analysis is thus a great tool to understand RNNs. However, due to the complexity of
these models, it is difficult and often computationally expensive to find and study these
points. As such, multiple methods have recently been developed for finding fixed points
in trained RNNs (Katz & Reggia, 2017; Pascanu et al., 2013; Ceni et al., 2020). Despite
this increasing amount of work on trained RNNs and due to these constraints, there has
however been only very little work focusing on the evolution of fixed points in RNNs
during training. The goal of Chapter 6 is precisely to focus on this evolution, looking
in particular at the number of different reachable attractors that the network possesses.
Focusing on such particular fixed points, as opposed to finding all of them, allows for
the definition of fast and easy to compute metrics, in turn allowing to easily check their
evolution during training. In particular, Chapter 6 highlights a high correlation between
the number of reachable attractors that a network possesses and its predictive accuracy.

Summary

The goal of this Chapter was to make the reader familiar with recurrent architectures
and mainly, some of their common problems. The reader should also have a good
understanding of some common state-of-the-art techniques designed towards solving
these issues. In particular, the reader is expected to understand the two most commonly
used gated architectures, i.e. GRUs and LSTMs, as well as some newly introduced
initialisation (such as orthogonal initialisation) and gradients clipping methods (helping
towards alleviating exploding gradients, which sometimes arise when training RNNs on
long sequences).

Furthermore, this Chapter also aimed at discussing the dynamics of successfully trained
networks and at providing tools to do so. In particular, the importance of fixed points in
the prediction process of RNNs has been highlighted, and more precisely, that of stable
points. These discussions aimed at easing the reader into the next Chapter in which a
new cell, specifically designed towards being multistable and easily analysable through
control theory, is presented.



Chapter 5

Bio-inspired bistable recurrent cells

This Chapter contains the core of the following publication (Vecoven et al., 2021a).

As mentioned in previous chapter, RNNs provide state-of-the-art performances in a wide
variety of tasks that require memory, which are often achieved thanks to gated recurrent
cells. Standard gated cells share a layer internal state to store information at the network
level, and long term memory is shaped by network-wide recurrent connection weights.
Biological neurons on the other hand are capable of holding information at the cellular
level for an arbitrary long amount of time through a process called bistability. Through
bistability, cells can stabilize to different stable states depending on their own past state
and inputs, which permits the durable storing of past information in neuron state. In
this Chapter, inspiration from biological neuron bistability is taken to embed RNNs with
long-lasting memory at the cellular level. This leads to the introduction of a new bistable
biologically-inspired recurrent cell that is shown to strongly improves RNN performance
on time-series which require very long memory, despite using only cellular connections
(all recurrent connections are from neurons to themselves, i.e. a neuron state is not
influenced by the state of other neurons). The fact that only cellular connections are
used also allows for an easy interpretation of the dynamics of such cells from a control
perspective. Furthermore, equipping this cell with recurrent neuromodulation permits
to link them to standard GRU cells, taking a step towards the biological plausibility
of GRU. Section 5.1 introduces the motivation behind building bistable recurrent cells
from a biological perspective. Section 5.2 then goes into deeper details on a high-level
model of human neurons, from which we derive the bistable recurrent cell in Section 5.3.
Finally, results and experiments are discussed in Section 5.4.

49



5.1. Introduction 50

5.1 Introduction

Recently, there has been an increased interest in assessing the biological plausibility of
neural networks. There has not only been a lot of interest in spiking neural networks
(Tavanaei et al., 2019; Pfeiffer & Pfeil, 2018; Bellec et al., 2018), but also in reconciling
more traditional deep learning models with biological plausibility (Bengio et al., 2015;
Miconi, 2017; Bellec et al., 2019). RNNs are a promising avenue for the latter (Barak,
2017) as they are known to provide great performances from a deep learning point of
view while theoretically allowing a discrete dynamical simulation of biological neurons.

RNNs combine simple cellular dynamics and a rich, highly recurrent network archi-
tecture. The recurrent network architecture enables the encoding of complex memory
patterns in the connection weights. These memory patterns rely on global feedback
interconnections of large neuronal populations. It was discussed in previous chapter
that such global feedback interconnections are difficult to tune, and can be a source of
vanishing or exploding gradient during training, which is a major drawback of RNNs. In
biological networks, a significant part of advanced computing is handled at the cellular
level, mitigating the burden at the network level. Each neuron type can switch between
several complex firing patterns, which include e.g. spiking, bursting, and bistability. In
particular, bistability is the ability for a neuron to switch between two stable outputs
depending on input history. It is a form of cellular memory as discussed by Marder et
al. (1996).

In the next Sections, a new biologically motivated bistable recurrent cell (BRC) is pro-
posed and embeds classical RNNs with local cellular memory rather than global network
memory. More precisely, BRCs are built such that their hidden recurrent state does not
directly influence other neurons (i.e. they are not recurrently connected to other cells).
To make cellular bistability compatible with the RNNs feedback architecture, a BRC is
constructed by taking a feedback control perspective on biological neuron excitability
(Drion, O’Leary, et al., 2015). This approach enables the design of biologically-inspired
cellular dynamics by exploiting the RNNs structure rather than through the addition
of complex mathematical functions.

5.2 Neuronal bistability: a feedback viewpoint

Biological neurons are intrinsically dynamical systems that can exhibit a wide variety
of firing patterns. In this Chapter, particular focus is made on the control of bistability,
which corresponds to the coexistence of two stable states at the neuronal level. Bistable
neurons can switch between their two stable states in response to transient inputs
(Marder et al., 1996; Drion, O’Leary, & Marder, 2015), endowing them with a kind
of never-fading cellular memory (Marder et al., 1996).



5.2. Neuronal bistability: a feedback viewpoint 51

+

I
syn

V
post1

Cs

I
int

I
m

f(V
post 

)

V
pre,1

V
pre,3

V
pre,2

_

A B
I

int

V
post

0

I
int

V
post

0

α=0.5 α=1.5

f(V
post 

) f(V
post 

)
f(V

pre 
)

0 0

Figure 5.1: A. One timescale control diagram of a neuron. B. Plot of the function
Iint = Vpost − α tanh(Vpost) for two different values of α. Full dots correspond to stable
states, empty dots to unstable states.

Complex neuron firing patterns are often modeled by systems of ordinary differential
equations (ODEs). Translating ODEs into an artificial neural network algorithm often
leads to mixed results due to increased complexity and the difference in modeling
language. Another approach to model neuronal dynamics is to use a control systems
viewpoint (Drion, O’Leary, et al., 2015). In this viewpoint, a neuron is modeled as
a set of simple building blocks connected using a multi-scale feedback, or recurrent,
interconnection pattern.

A neuronal feedback diagram focusing on one time-scale, which is sufficient for bista-
bility, is illustrated in Fig 5.1A. The block 1/(Cs) accounts for membrane integration,
C being the membrane capacitance and s the complex frequency. The outputs from
presynaptic neurons Vpre are combined at the input level to create a synaptic current
Isyn. Neuron-intrinsic dynamics are modeled by the negative feedback interconnection
of a nonlinear function Iint = f(Vpost), called the IV curve in neurophysiology, which
outputs an intrinsic current Iint that adds to Isyn to create the membrane current
Im. The slope of f(Vpost) determines the feedback gain, a positive slope leading to
negative feedback and a negative slope to positive feedback. Im is then integrated by
the postsynaptic neuron membrane to modify its output voltage Vpost.

The switch between monostability and bistability is achieved by shaping the nonlinear
function Iint = f(Vpost) (Fig 5.1B). The neuron is monostable when f(Vpost) is mono-
tonic of positive slope (Fig 5.1B, left). Its only stable state corresponds to the voltage
at which Iint = 0 in the absence of synaptic inputs (full dot). The neuron switch to
bistability through the creation of a local region of negative slope in f(Vpost) (Fig 5.1B,
left). Its two stable states correspond to the voltages at which Iint = 0 with positive
slope (full dots), separated by an unstable state where Iint = 0 with negative slope
(empty dot). The local region of negative slope corresponds to a local positive feedback
where the membrane voltage is unstable.



5.2. Neuronal bistability: a feedback viewpoint 52

In biological neurons, a local positive feedback is provided by regenerative gating, such
as sodium and calcium channel activation or potassium channel inactivation (Drion,
O’Leary, & Marder, 2015; Franci et al., 2013a). The switch from monostability to
bistability can therefore be controlled by tuning ion channel density. This property can
be emulated in electrical circuits by combining transconductance amplifiers to create
the function

Iint = Vpost − α tanh(Vpost), (5.1)

where the switch from monostability to bistability is controlled by a single parameter α
(Ribar & Sepulchre, 2019). α models the effect of sodium or calcium channel activation,
which tunes the local slope of the function, hence the local gain of the feedback loop
(Fig 5.1B). For α ∈]0, 1] (where ]0, 1] denotes a continuous interval), which models a low
sodium or calcium channel density, the function is monotonic, leading to monostability
(Fig 5.1B, left). For α ∈]1,+∞[, which models a high sodium or calcium channel density,
a region of negative slope is created around Vpost = 0, and the neuron becomes bistable
(Fig 5.1B, right). This bistability leads to never-fading memory, as in the absence of
significant input perturbation the system will remain indefinitely in one of the two stable
states depending on the input history.

Neuronal bistability can therefore be modeled by a simple feedback system whose
dynamics is tuned by a single feedback parameter α. This parameter can switch between
monostability and bistability by tuning the shape of the feedback function f(Vpost),
whereas neuron convergence dynamics is controlled by a single feedforward parameter
C. In biological neurons, both these parameters can be modified dynamically by other
neurons via a mechanism called neuromodulation, providing a dynamic, controllable
memory at the cellular level. The key challenge is to find an appropriate mathematical
representation of this mechanism to be efficiently used in artificial neural networks, and,
more particularly, in RNNs.

5.3 Cellular memory, bistability and neuromodulation in
RNNs

The bistable recurrent cell (BRC) To model controllable bistability in RNNs, two main
comparisons are made between the feedback structure Fig 5.1A and the GRU equations
(Equation 4.11). First, it is noted that the reset gate r has a role that is similar to the
one played by the feedback gain α in Equation 5.1. In GRU equations, r is the output
of a sigmoid function, which implies r ∈]0, 1[. These possible values for r correspond to
negative feedback only, which does not allow for bistability for initial values of Wh (be
it with an orthogonal or a more usual initialisation). The update gate z, on the other



5.3. Cellular memory, bistability and neuromodulation in RNNs 53

hand, has a role similar to that of the membrane capacitance C. Second, one can see
through the matrix multiplicationsWzht−1,Wrht−1 andWhht−1 that each cell uses the
internal state of other neurons to compute its own state without going through synaptic
connections. In biological neurons, the intrinsic dynamics defined by Iint is constrained
to only depend on its own state Vpost, and the influence of other neurons comes only
through the synaptic compartment (Isyn), or through neuromodulation.

To enforce this cellular feedback constraint in GRU equations and to endow them with
bistability, it is proposed to update ht as follows:

ht = ct � ht−1 + (1− ct)� tanh(Uxt + at � ht−1) (5.2)

where at = 1+tanh(Uaxt+wa�ht−1) and ct = σ(Ucxt+wc�ht−1). at corresponds to
the feedback parameter α, with at ∈]0, 2[ (as tanh(·) ∈] − 1, 1[). ct corresponds to the
update gate in GRU and plays the role of the membrane capacitance C, determining the
convergence dynamics of the neuron. This updated cell is called the bistable recurrent
cell (BRC).

The main differences between a BRC and a GRU are twofold. First, each neuron has
its own internal state ht that is not directly affected by the internal state of the other
neurons. Indeed, due to the four instances of ht−1 coming from Hadamard products, the
only temporal connections existing in layers of BRC are from neurons to themselves.
In other words, layers are no longer fully connected through time, which enforces the
memory to be only cellular. Second, the feedback parameter at is allowed to take a value
in the range ]0, 2[ rather than ]0, 1[. This allows the cell to switch between monostability
(a ≤ 1) and bistability (a > 1) (Fig 5.2A,B). The proof of this switch is provided in
Appendix B.1.

It is important to note that the parameters at and ct are dynamic. Tests were carried
with a and c as parameters learned by stochastic gradient descent, which resulted in lack
of representational power. This dynamic scheme was the most evident as it maintains
the cellular memory constraint and leads to the most similar update rule with respect
to standard recurrent cells (Equation 4.11). However, as will be discussed later, other
updates can be thought of.

Likewise, from a neuroscience perspective, at could well be greater than 2. Limiting the
range of at to ]0, 2[ was made for numerical stability and for symmetry between the
range of bistable and monostable neurons. It is argued that this is not an issue as, for
a value of at greater than 1.5, the dynamics of the neurons become very similar (as
suggested in Fig 5.2A).



5.3. Cellular memory, bistability and neuromodulation in RNNs 54

h
t

a
t

A C

0 21

0

-1

1

Stable state

Unstable state

h
t

t

t

t

h
t

Ux
t

-1

1
c

t
=0.2

c
t
=0.7

a
t
=0.7 a

t
=1.5

B

h
t

h
t

a
t
=0.7 a

t
=1.5

h
t
-F(h

t 
)

0 0

0

-1

1

0

0

0

h
t
-F(h

t 
)

0

Figure 5.2: A. Bifurcation diagram of Equation 5.2 for Uxt = 0. B. Plots of the
function ht − F (ht) for two values of at, where F (ht) = ctht + (1 − ct) tanh(atht) is
the right hand side of Equation 5.2 with xt = 0. Full dots correspond to stable states,
empty dots to unstable states. C. Response of BRC to an input time-series for different
values of at and ct.

Fig 5.2C shows the dynamics of a BRC with respect to at and ct. For at < 1, the cell
exhibits a classical monostable behavior, relaxing to the 0 stable state in the absence of
inputs (blue curves in Fig 5.2C). On the other hand, a bistable behavior can be observed
for at > 1: the cells can either stabilize on an upper stable state or a lower stable state
depending on past inputs (red curves in Fig 5.2C). Since these upper and lower stable
states do not correspond to an ht which is equal to 0, they can be associated with
cellular memory that never fades over time. Furthermore, Fig 5.2 also illustrates that
neuron convergence dynamics depend on the value of c.

The recurrently neuromodulated bistable recurrent cell (nBRC) To further improve
the performance of BRC, one can relax the cellular memory constraint. By creating a
dependency of at and ct on the output of other neurons of the layer, one can build a kind
of recurrent layer-wise neuromodulation. This modified version of a BRC is referred to
as an nBRC, standing for recurrently neuromodulated BRC. The update rule for the
nBRC is the same as for BRC, and follows Equation 5.2. The difference comes in the
computation of at and ct, which are neuromodulated as follows:at = 1 + tanh(Uaxt +Waht−1)

ct = σ(Ucxt +Wcht−1)
(5.3)



5.3. Cellular memory, bistability and neuromodulation in RNNs 55

The update rule of nBRCs being that of BRCs (Equation 5.2), bistable properties are
maintained and hence the possibility of a cellular memory that does not fade over time.
However, the new recurrent neuromodulation scheme adds a type of network memory
on top of the cellular memory.

This recurrent neuromodulation scheme brings the update rule even closer to standard
GRU. This is highlighted when comparing Equation 4.11 and Equation 5.2 with para-
meters neuromodulated following Equation 5.3. A relaxed cellular memory constraint
is still ensured, as each neuron past state ht−1 only directly influences its own current
state and not the state of other neurons of the layer (Hadamard product on the ht

update in Equation 5.2). This is important for numerical stability as the introduction
of a cellular positive feedback for bistability leads to global instability if the update is
computed using other neurons states directly (as it is done in the classical GRU update,
see the matrix multiplication Whht−1 in Equation 4.11).

Finally, it is noted that to be consistent with the biological model presented in Sec-
tion 5.2, Equation 5.3 should be interpreted as a way to represent a neuromodulation
mechanism of a neuron by those from its own layer and the layer that precedes. Hence,
the possible analogy between gates z and r in GRUs and neuromodulation, an important
aspect of biological brains (discussed in more details in Part III of this thesis). In
this respect, studying the introduction of new types of gates based on more biological
plausible neuromodulation architectures would certainly be interesting.

5.4 Analysis of BRC and nBRC performance

To demonstrate the impact of bistability in RNNs, four problems are tackled. The first
is a one-dimensional toy problem, the second is a two-dimensional denoising problem,
the third is the permuted sequential MNIST problem and the fourth is a variation of
the third benchmark. All benchmarks are related to a supervised setting. The network
is presented with a time-series and is asked to output a prediction (regression for the
first two benchmarks and classification for the others) after having received the last
element(s) of the time-series xT . Note that for the second benchmark the regression
is carried over multiple time-steps (sequence-to-sequence) whereas, this prediction is
given in a single time-step after receiving xT for the other benchmarks. It is first shown
that the introduction of bistability in recurrent cells is especially useful for datasets
in which only time-series with long time-dependencies are available. This is achieved
by comparing results of BRC and nBRC to other recurrent cells. LSTMs and GRUs
are used as a baseline since they have already been established. As a state-of-the-art



5.4. Analysis of BRC and nBRC performance 56

comparison, two other cells (GORUs and Legendre memory units (LMUs, proposed by
Voelker et al. (2019)) are used. Finally, the dynamics inside the nBRC neurons are also
discussed in the context of the denoising benchmark and they show that bistability is,
as expected, heavily used by the neural network.

5.4.1 Results

For the first two problems, training sets comprise 40000 samples and performances
are evaluated on test sets generated with 50000 samples. For the permuted MNIST
benchmarks, the standard train and test sets are used. All averages and standard
deviations reported were computed over three different seeds. It was found that there
were only minor variations in between runs, and thus that three runs are believed to be
sufficient to capture the performance of the different architectures. For all benchmarks,
networks are composed of two layers of 128 neurons. Different recurrent cells are always
tested on similar networks (i.e. same number of layers/neurons). The tensorflow (Abadi
et al., 2015) implementation of GRUs and LSTMs were used. Finally, the ADAM
optimizer with a learning rate of 1e−3 is used for training all networks, with a mini-
batch size of 100. The source code for carrying out the experiments is available at
https://github.com/nvecoven/BRC. All networks are trained for 50 epochs (which
has proven to be enough to reach convergence on these particular benchmarks).

Copy first input benchmark In this benchmark, the network is presented with a one-
dimensional time-series of T time-steps where xt ∼ N(0, 1), ∀t ∈ T . After receiving
xT , the network output value should approximate x0, a task that is well suited for
capturing their capacity to learn long temporal dependencies if T is large. Note that this
benchmark also requires the ability to filter irrelevant signals as, after time-step 0, the
networks are continuously presented with noisy inputs that they must learn to ignore.
The mean square error on the test set is shown for different values of T in Table 6.1.
Despite their ability to learn longer patterns than standard RNN cells, one can see the
limitation of LSTMs and GRUs when T becomes large (this is shown in particular for
GRUs on Fig 5.3), as they are unable to beat random guessing performances (which
would be equal to 1 in this setting 1).

Furthermore, one can see that the gated orthogonal version of GRUs (GORUs) achieves
better performances than GRU cells, as expected. It also appears that thanks to bista-
bility, nBRCs and BRCs are able to learn effectively and achieve similar performances
to those of LMUs.

1. Indeed, as x0 is sampled from a normal distribution N(0, 1), guessing 0 would lead to the lowest
error which would on average be equal to the standard deviation

https://github.com/nvecoven/BRC


5.4. Analysis of BRC and nBRC performance 57

T BRC NBRC GORU LSTMCell GRUCell LMU
5 0.005± 0.00 0.000± 0.00 0.000± 0.00 0.000± 0.00 0.000± 0.00 0.000± 0.00
50 0.082± 0.03 0.002± 0.00 0.019± 0.01 0.000± 0.00 0.997± 0.01 0.000± 0.00
300 0.086± 0.01 0.010± 0.00 0.308± 0.05 1.002± 0.01 0.876± 0.19 0.000± 0.00
600 0.099± 0.03 0.009± 0.00 0.323± 0.07 0.989± 0.01 0.999± 0.02 0.002± 0.00

Table 5.1: Mean square error (± standard deviation) of different architectures on the
test set for the copy input benchmark. Results are shown after 50 epochs and for different
values of T .

Figure 5.3: Evolution of the average mean-square error (± standard deviation) over
three runs on the copy input benchmark for GRU and BRC and for different values of
T .

It is very important to note that theoretically, GRUs and LSTMs have the repres-
entational power to solve this benchmark and to possess attractors as well. They are
however unable to learn how to solve this benchmark and remain mono-stable through-
out training. This hints at the importance of the dynamics of RNNs at initialisation
and while training and will be the subject of Chapter 6. To highlight this, those cells
were tested on a modified version of the copy input benchmark, in which T is chosen
uniformly between 1 and 600 for each sample. As such, for this modified version of the
benchmark, some samples only require very little memory, while others require long-
term memory. Results are shown in Table 5.2 and highlight that GRUs are indeed able
to solve the benchmark (and thus, learn long-term dependencies) when guided by easier
samples. In next Chapter, a method for allowing these cells to learn such benchmark
(without requiring “short-term memory” samples) is introduced.

BRC nBRC GRU LSTM
0.0010± 0.0001 0.0001± 0.0001 0.0373± 0.00371 0.3323± 0.4635

Table 5.2: Mean square error on test set after 50 epochs for different architectures on
the modified copy input benchmark.



5.4. Analysis of BRC and nBRC performance 58

N BRC NBRC GORU LSTM GRU LMU
5 0.579± 0.03 0.016± 0.00 0.000± 0.00 0.655± 0.46 0.001± 0.00 1.004± 0.01

200 0.614± 0.12 0.071± 0.08 1.004± 0.00 0.996± 0.01 0.995± 0.00 1.000± 0.00

Table 5.3: Mean square error (± standard deviation) of different architectures on the
denoising benchmark’s test set. Results are shown with and without constraint on the
location of relevant inputs and after 50 epochs. Relevant inputs cannot appear in the
N last time-steps, that is xt[1] = −1,∀t > (T − N). In this experiment, results were
obtained with T = 400.

Denoising benchmark The copy input benchmark is interesting as a means to highlight
the memorisation capacity of the recurrent neural network, but it does not tackle its
ability to successfully exploit complex relationships between different elements of the
input signal to predict the output. In the denoising benchmark, the network is presented
with a two-dimensional time-series of T time-steps. Five different time-steps t1, . . . , t5,
for which data should be remembered, are sampled uniformly in {0, . . . , T − N} with
N ∈ {5, . . . , T − 4} and are communicated to the network through the first dimension
of the time-series by setting xt[1] = 1 if t ∈ {t1, . . . , t5}, xt[1] = 0 if t = T − 4 and
xt[1] = −1 otherwise. Note that the parameter N controls the length of the forgetting
period as it forces the relevant inputs to be in the first T −N time-steps. This ensures
that tx < T − N, ∀x ∈ {1, . . . , 5}. Also note that this dimension can be used by the
network to know when its predictions influence the loss (whenever xt[1] = 0 as been
seen).

The second dimension is a data-stream, generated as for the copy first input benchmark,
that is xt[2] ∼ N (0, 1),∀t ∈ {0, . . . , T − 5} and xt[2] = 0,∀t ∈ {T − 4, . . . , T}. At time-
step T − 4, the network is asked to output xt1 [2], at time-step T − 3 the network is
asked to output xt2 [2] and so on until time-step T at which it should output xt5 [2]. The
mean squared error is averaged over the five values. That is, the error on the prediction
is equal to

∑5
i=1

(xti [2]−oT−5+i)
2

5 with ox the output of the neural network at time-step
x.

As one can see in Table 6.2 (generated with T = 400 and two different values of N), for
N = 200 only bistable cells are able to learn how to achieve good performances. It is
noted that for this benchmark, LMUs were not able to learn due to heavy overfitting.



5.4. Analysis of BRC and nBRC performance 59

BRC NBRC GORU LSTMCell GRUCell LMU
0.662± 0.007 0.908± 0.006 0.902± 0.004 0.910± 0.002 0.908± 0.004 0.969± 0.001

Table 5.4: Overall accuracy (± standard deviation) on the permuted sequential MNIST
benchmark’s test set after 50 epochs and for different cell types.

N BRC NBRC GORU LSTMCell GRUCell LMU
72 0.968± 0.00 0.973± 0.00 0.977± 0.00 0.977± 0.00 0.977± 0.00 0.969± 0.00
472 0.960± 0.00 0.972± 0.00 0.198± 0.02 0.562± 0.32 0.591± 0.39 0.961± 0.00

Table 5.5: Overall accuracy (± standard deviation) on permuted sequential-line
MNIST test set after 50 epochs for different architectures. Images are fed to the recurrent
network line by line and N black lines are added at the bottom of the image after
permutation. When N equals 72(472) the resulting image has 100(500) lines.

Permuted sequential MNIST In this benchmark, the network is presented with the
MNIST images (LeCun & Cortes, 2010), where pixels are shown, one by one, as a time-
series. It differs from the regular sequential MNIST in that pixels are shuffled, with the
result that they are not shown in top-left to bottom-right order. This benchmark is
known to be a more complex challenge than the regular one. Indeed, shuffling makes
time-dependencies more complex by introducing lag in between pixels that are close
together in the image, thus making structure in the time-serie harder to find. MNIST
images are comprised of 784 pixels (28 by 28), requiring dynamics over hundreds of time-
steps to be learned. Table 6.3 shows that cellular constraints do not hinder performances
when compared to GRU cells, even for more complex standard benchmarks, in which
specific long-term memory is not required. In this case, only LMUs provide significantly
better performance than nBRCs, which are otherwise competitive with all other cell
types.

Permuted line-sequential MNIST In this benchmark, the same permutation of pixels
in the MNIST images as for the previous benchmark are used. The pixels are then
fed to the RNNs line by line, thus allowing one to test the networks with a higher
input dimension (28 in this case). Furthermore, to highlight once again the interest of
bistability, N black lines are added at the end of the image. This has the effect of a
forgetting period, as any relevant information for predicting the output will be farther
from the prediction time-step in the time-serie. As for the copy input benchmark, one
can see on Table 6.4 that only bistable cells and LMUs are able to tackle this problem
correctly.



5.4. Analysis of BRC and nBRC performance 60

X BRC NBRC GORU LSTMCell GRUCell LMU
472 0.958± 0.00 0.970± 0.00 0.148± 0.02 0.630± 0.32 0.540± 0.43 0.180± 0.00

Table 5.6: Overall accuracy (± standard deviation) on the permuted variable-
sequential-line MNIST test set after 50 epochs for different architectures. Images are
fed to the recurrent network line by line and N ∼ U{0, . . . , X} black lines are added at
the bottom of the image after permutation.

Permuted variable-line-sequential MNIST Finally, to test the capacity of the network
on variable-length sequences, a variation of this benchmark is also tested and is called
permuted variable-sequential-line MNIST. In this variation, a random number N of
black lines are added to the image (after permutation of the pixels) for each sample,
where N is sampled uniformly in U{0, . . . , X}. Additionally, all pixels of the last line are
assigned a high positive value (greater than the value corresponding to that of a white
pixel, so that this line can never appear in a standard image). This line can be used by
the network for it to know it should output the class of the image for that particular
time-step. We note that in this benchmark, samples are of variable lengths. In this case
(Table 5.6), results are more similar to those obtained in the denoising benchmark.

5.4.2 Analysis of nBRC dynamic behavior

Until now, only the learning performances of bistable recurrent cells was discussed. It is,
however, interesting to take a deeper look at the dynamics of such cells to understand
whether or not bistability is used by the network. To this end, a random time-series
from the denoising benchmark is chosen to analyse some properties of at and ct. For
this analysis, a network with 4 layers of 100 neurons each was trained, allowing for
the analysis of a deeper network as compared to those used in the benchmarks. Note
that the performances of this network are similar to those reported in Table 6.2. Fig 5.4
shows the proportion of bistable cells per layer and the average value of et per layer. The
dynamics of the parameters show that they are well used by the network, and three main
observations should be made. First, as relevant inputs are presented to the network, the
proportion of bistable neurons tends to increase in layers 2 and 3, effectively storing
information and thus confirming the interest of introducing bistability for long-term
memory. As more information needs to be stored, the network leverages the power of
bistability by increasing the number of bistable neurons. Second, as relevant inputs are
presented to the network, the average value ct tends to increase in layer 3, effectively
making the network less and less sensitive to new inputs. Third, one can observe a
transition regime when a relevant input is shown. Indeed, there is a high decrease in the
average value of ct, effectively making the network extremely sensitive to the current
input, which allows for its efficient memorization.



5.4. Analysis of BRC and nBRC performance 61

Proportion of bistable neurons (a
t
>1) per layer

0.7

0.6

0.5

0.4

t
1
=30 t

2
=100 t

3
=246 t

4
=300 t

5
=376

Average value of c
t
 per layer

t
1
=30 t

2
=100 t

3
=246 t

4
=300 t

5
=376

0.7

0.5

0.3

0.1

Layer 0 Layer 1

Layer 2 Layer 3

Figure 5.4: Representation of the nBRC parameters, per layer, of a recurrent neural
network (with 4 layers of 100 neurons each), when shown a time-series of the denoising
benchmark (T = 400, N = 0). Layer numbering increases as layers get deeper (i.e. layer
i corresponds to the ith layer of the network). The 5 time-steps at which a relevant input
is shown to the model are clearly distinguishable by the behaviour of those measures
alone.

Summary

In this Chapter, two new important concepts from the biological brain were introduced
into recurrent neural networks: cellular memory and bistability. This led to the de-
velopment of two new cells, called the Bistable Recurrent Cell (BRC) and recurrently
neuromodulated Bistable Recurrent Cell (nBRC) that proved to be very efficient on
several datasets requiring long-term memory and on which the performances of classical
recurrent cells such as GRUs and LSTMS were poor. Furthermore, through the simil-
arities between nBRCs and standard GRUs, it is highlighted that gating mechanisms
can be linked to biological neuromodulation.

Furthermore, it is worth it to note that even though, in the context of this Chapter, a
particular focus was made on supervised benchmarks, bistable cells might be of great use
for RL, and more precisely for RL problems with sparse environments (environments for
which rewards or meaningful observations are rare). These problems have been known
to be extremely hard to solve, on one hand due to the difficulty of exploration and on
the other hand due to the difficulty of remembering relevant information across large
periods of time-steps. Bistable cells are a promising avenue for solving the latter, and
might be a worthwhile path to explore. In fact, some preliminary work has been carried
on the subject by Lambrechts & Ernst (2021) and De Geeter & Drion (2021) showing
promising results. Specifically, it was shown that such bistable cells could learn good
policies in more complex specific environments than GRUs and LSTMs. The policies
learned by multistable networks were also shown to generalize better in these specific
environments. Although, this work is still preliminary. As such, a more thorough analysis
should be carried on more standard environments to assess the performances of bistable
cells in such a setting.





Chapter 6

Warming-up recurrent neural
networks

This Chapter contains the core of the following publication (Vecoven et al., 2021b).

As seen in the previous Chapter, training standard gated cells such as GRUs and
LSTMs on benchmarks where long-term memory is required remains an arduous task.
In this Chapter, it is proposed to introduce a general way to initialize any recur-
rent network connectivity through a process called “warm-up” which improves their
capability to learn arbitrarily long time dependencies. This initialization process is
designed to maximize network reachable multistability, i.e. the number of attractors
within the network that can be reached through relevant input trajectories. Warming-
up is performed before training, using stochastic gradient descent on a specifically
designed loss. We show that warming-up greatly improves recurrent neural network
performance on long-term memory benchmarks for multiple recurrent cell types, but
can sometimes impede precision. Therefore, a parallel recurrent network structure with
partial warm-up is introduced, and is shown to greatly improve learning on long time-
series while maintaining high levels of precision. This approach provides a general
framework for improving learning abilities of any recurrent cell type when long-term
memory is required.

First, Section 6.1 introduces a fast-to-compute and differentiable measure called variab-
ility amongst attractors (VAA) that counts the number of different reachable attractors
within a network. It is shown that loss decrease during learning in long-term memory
benchmarks is highly correlated with an increase in VAA, highlighting both the relevance
of the measure and the importance of multistability for efficient learning. Second,
stochastic gradient ascent is used on VAA before training as a way to maximize the
number of reachable attractors within the network. It is shown that this technique
strongly improves performance on long-term memory benchmarks, though at the cost
of precision, the latter relying on the richness of network transient dynamics. Finally, a
parallel recurrent network structure with partial warm-up is proposed and enables the
combining of long-term memory through multistability on the one hand, and precision

63



. Warming-up recurrent neural networks 64

through rich transient dynamics on the other hand. Section 6.2 highlights the results
of this architecture for multiple RNNs such as gated recurrent units (GRUs (Cho et
al., 2014)) and long-short term memory (LSTMs (Hochreiter & Schmidhuber, 1997)).
It is seen that this method indeed retains the benefits of warm-up, while improving
predictive performances.

6.1 Variability amongst attractors and warm-up

VAA is proposed as a proxy measure for counting the number of attractors in dynamical
systems. It is first detailed how VAA can be computed for any arbitrary dynamical
system and then the usage of VAA in the case of RNNs is further discussed. It is
then shown how an increase in VAA is highly correlated to loss decrease during RNN
training on the denoising benchmark (see Section 5.4). Finally, the warm-up procedure
is detailed, explaining how VAA can be used to maximize the number of reachable
attractors in RNNs.

Variability amongst attractors. VAA is quite straightforward in essence. Given a batch
of different initial-state conditions and a constant perturbation, VAA is computed as the
proportion of different states towards which the system converges. States are considered
different if their Euclidian distance in phase space is greater than a given threshold ε ∈
R+

0 . Concretely, a perturbation x is sampled and n ∈ N0 initial states {h0,1; . . . ;h0,n}
are sampled in phase space where n is a hyper-parameter. It is later detailed how to
define these distributions for RNNs. For each initial state, the model converges over M
time-steps with x as input. If we define δ as the minimal Euclidian distance between two
attractors,M must be chosen large enough such that the Euclidian distance between all
hM,i and their corresponding attractor is smaller than δ/4. This ensures that there exists
a threshold ε that captures all states belonging to a same attractor while ensuring zero
overlap between states belonging to different attractors. Finally, the number of unique
vectors (given ε) in the final states {hM,1; . . . ;hM,n} can be counted. This is done by
first building a correspondence matrix C where Ci,j is equal to 1 if hM,i is close enough
to hM,j in Euclidian distance and else to 0. From this matrix, a vector v such that v[i]

is equal to the number of corresponding states to hM,i is built. Let m be the number
of reached final states associated to an attractor. By definition each of these m states
will be similar to m − 1 other states. Thus, the number of unique states can simply
be computed by inverting each element in v and summing them. Once the number
of different states has been computed, it is divided by n to obtain the proportion of



6.1. Variability amongst attractors and warm-up 65

different states, and thus the VAA. Alternatively put:
Ci,j = 1 if ||hM,i − hM,j || < ε else 0, ∀i, j ∈ {1, . . . , n}2

v[i] =
∑n

j=1Ci,j ∀i ∈ {1, . . . , n}

V AA = 1
n

∑n
i=1

1
v[i]

(6.1)

It is noted that VAA will vary between 1
n and 1. Indeed, if the system is mono-stable (has

only one attractor) then the VAA will be equal to 1
n , whereas if the network converges

to different states for all input trajectories, VAA will be equal to 1.

When measuring the VAA on RNNs, the interest lies in the number of attractors that
can be reached when receiving time-series from a given dataset as inputs. For this
reason, when computing the VAA, a batch of n samples is used from the same dataset
as that for training the model, for which each sample corresponds to a time-series
Xi = {x0,i, . . . ,xT,i}. Each time-series is then truncated at random before being fed
to the RNN. The resulting final states of the system (one per time-series) are used as
initial states for the VAA procedure detailed above. Furthermore, the perturbation x

is sampled from a multivariate normal distribution. By repeating the VAA procedure
multiple times and if VAA is greater than 1

n for all different sampled perturbations, we
can then assume that the RNN is multistable for a wide range of perturbations. The
full procedure for computing the VAA of an RNN is presented in Algorithm 1.

In terms of computations, measuring VAA is similar to a batched forward pass of the
network and is thus very efficient, allowing its computation during training. To illustrate
the relevance of this measure, a GRU network is trained on a denoising benchmark (see
Section 5.4 for full details on the benchmark). Figure 6.1 shows a strong correlation
between the ability of the network to learn (thus, a decrease in the mean-squared error)
and its measured VAA. Interestingly, it is noted that each VAA measure reported in
the Figure is computed with different perturbations, which suggests that when RNN
become multistable, it is for a wide range of perturbations. Furthermore, it can also be
observed that GRU are mono-stable at initialization and that multiple gradient steps
are required to reach multistability. These observations motivate to propose warm-up,
a procedure in which VAA is used to promote multistability in RNNs before training.



6.1. Variability amongst attractors and warm-up 66

Algorithm 1: Computing VAA for an RNN
Data: X a set of n time-series {X1, . . . ,Xn} sampled in the training set.
Parameters: M ∈ N0 the number of time-steps used for state convergence.

ε ∈ R+
0 tolerance when considering state similarity.

θ the architecture and parameters of the network.
Result: VAA for a random perturbation, computed on the given data.
/* Compute the initial states. */
H ← {}
foreach Xi ∈ X do

c ∼ U{1, . . . , T} where T is the length of Xi

hi ← 0
for t← 1 to c do

hi ← f(hi,xt,i; θ) where f(·, ·; θ) is the RNN’s update rule.
end
H ← H

⋃
{hi}

end
/* Use initial states to compute VAA of each layer */
x ∼ N(0,1)
for t← 1 to M do

hi ← f(hi,x; θ),∀hi ∈ H
end
Ci,j ← 1 if ||hi − hj || < ε else 0, ∀i, j ∈ {1, . . . , n}
v[i]←

∑n
j=1 Ci,j ∀i ∈ {1, . . . , n}

V AA← 1
n

∑n
i=1

1
v[i]

Figure 6.1: Evolution of the loss (left) and of VAA (right, computed with n = 100 and
M = 3000) of muliple GRU and MGU networks trained on the denoising benchmark.
The average over three runs is plotted (± standard deviation). Learning, represented
by a decreasing loss, only starts when the network becomes multistable (VAA greater
than 1/n).



6.1. Variability amongst attractors and warm-up 67

Warming-up. The goal of warm-up is to maximize the number of reachable attractors
of a RNN for a given dataset, that is, to maximize VAA. As is usually done for training
neural networks, we propose using stochastic gradient descent so as to maximize VAA.
However, SGD cannot be used directly on the VAA measure detailed in Algorithm 1
for two different reasons.

• First, it is important to note that the deeper recurrent neural networks are, the
bigger M must become for reaching convergence. Indeed, one must wait for the
shallower layers to converge before reaching convergence of deeper layers. This is
still practical for computing VAA but can become too expensive for propagating
the gradient back through time on such long sequences.

• Second, the correspondence matrix C is not differentiable due to the operations
used to build it.

To solve the first problem, when warming up, each layer is treated as a separate
dynamical system and the number of reachable attractors is maximized for each layer
independently.

Solving the second problem can easily be done by introducing a differentiable proxy
measure for VAA. The differentiable proxy measure for computing VAA is denoted as
V AA∗. The only difference with the VAA measure is in the definition of C as that is
the only non-differentiable computation. For all i, j in {1, . . . , n}, we approximate C as:

Ĉi,j = 1− max(0,|| tanh(hM,i)−tanh(hM,j)||−ε)
|| tanh(hM,i)−tanh(hM,j)|| if i 6= j

Ĉi,j = 1 else.
(6.2)

It is noted that the value of Ĉi,j is strictly equal to 1 if hM,i is close enough in Euclidian
distance to hM,j . On the other hand, Ĉi,j will be close to 0 when hM,i and hM,j are
different. We note that the Ĉi,j will never strictly be equal to 0, but will get closer as the
distance between hM,i and hM,j increases since

|| tanh(hM,i)−tanh(hM,j)||−ε
|| tanh(hM,i)−tanh(hM,j)|| will get closer

to 1. Although states being far apart from each others is not of a particular interest in
itself, it appeared that this small bias of V AA∗ (increasing slightly as distance between
states grows) provides a good direction to the gradient for reaching multistability.
Furthermore, one must note that this bias encourages using a saturating function (a
hyperbolic tangent in this case) on the states. It permits to saturate attractor values
even in non-saturated recurrent cells, avoiding extreme states when warming-up. The
procedure for computing V AA∗ for all layers of an RNN is given in Algorithm 2.



6.1. Variability amongst attractors and warm-up 68

Algorithm 2: Computing the set of V AA∗ for an RNN
Data: X a set of n time-series {X1, . . . ,Xn} sampled in the training set.
Parameters: M ∈ N0 the number of time-steps used for state convergence.

ε ∈ R+
0 tolerance when considering states similarity.

θ the architecture and parameters of the network.
Result: V the set of V AA∗ of each layer for a random perturbation, computed on the

given data.
/* Compute the initial states. */
X ← {}
foreach Xi ∈ X do

c ∼ U{1, . . . , T} where T is the length of Xi

hi ← 0
for t← 1 to c do

hi ← f(hi,xt,i; θ) where f(·, ·; θ) is the RNN’s update rule.
end
H ← H

⋃
{hi}

end
/* Use initial states to compute V AA∗ of each layer */
V ← {}
foreach layer l in θ do

xl ∼ N(0,1)
for t← 1 to M do

hli ← f l(hli,x
l; θl),∀hli ∈ H where fl(·, ·; θl), hl and θl are respectively the update

function, hidden state and parameters of layer l.
end

Ĉi,j ← 1− max(0,|| tanh(hl
M,i)−tanh(h

l
M,j)||−ε)

|| tanh(hl
M,i)−tanh(hl

M,j)||
, ∀i, j ∈ {1, . . . , n}, i 6= j

Ĉi,i ← 1, ∀i ∈ {1, . . . , n}
v[i]←

∑n
j=1 Ĉi,j ∀i ∈ {1, . . . , n}

V AA∗ ← 1
n

∑n
i=1

1
v[i]

V ← V
⋃
V AA∗

end



6.1. Variability amongst attractors and warm-up 69

Stochastic gradient descent can then be used to get the V AA∗ of each layer as close
as possible to k ∈ [0, 1]. In practice, we use k = 0.95 as this proved, empirically, to
maximize the number of attractors while avoiding too extreme states that could arise
from the approximation of C. This is done with an usual MSE loss, defined as

L(U ,M, θ) =
∑

vl∈VAA∗(U ,M,ε,θ)

(vl − 0.95)2

where V AA∗(U ,M, ε, θ) represents the procedure for computing V AA∗ with the cor-
responding parameters and data depicted in Algorithm 2 and where

∑
represents an

average over a set. Batches are sampled in the training set and to avoid over-fitting
problems, M is sampled uniformly in U(1, . . . ,M∗) at each gradient step. M∗ is a
variable initialized at 1 and increased by a constant c ∈ N0 after each gradient step. This
progressive increase, driven by the curriculum learning speed c, is required to smoothly
reach multistability, avoiding gradient problems. Furthermore, this progressive increase
is motivated by some results obtained in previous Chapter, showing that guidance by
“short-term memory” samples could help standard gated cells learn how to handle longer
relations. Algorithm 3 details the whole warm-up procedure.

Algorithm 3: Warming-up an RNN
Data: D a training set of time-series.
Parameters: S ∈ N0 the number of gradient steps.

lr ∈ R+
0 the learning rate.

c ∈ N0 constant driving the curriculum learning speed.
M ∈ N0 maximum convergence steps for VAA computation.
θ parameters of the network.

Result: Updates θ for multistability in different layers.
M∗ ← 1
for t← 1 to S do
X ← Un(D) where Un(D) denotes a set of n elements sampled uniformly in D.
L← L(X ,M∗, θ)
θ ← θ − lr ∗ δLδθ
M∗ ← min(M,M∗ + c)

end

It is shown on Figure 6.2 that the warm-up procedure effectively increases the V AA∗ of
each layer in an RNN. Furthermore, and most importantly, one can also see on Figure 6.2
that as the warm-up procedure is carried out, the true VAA measure of the RNN also
increases, even reaching 1 as the warm-up procedure ends.



6.1. Variability amongst attractors and warm-up 70

0

1

0

step
0

1

0

step
0

1

0

step

VAA* - Layer 1VAA* - Layer 0 VAA

1k 1k 1k

Figure 6.2: Evolution of the V AA∗ for a two-layer RNN (left and middle) and of
the VAA of the network (right) during warm-up. This network was warmed up on the
denoising dataset and results were averaged over three runs.

Figure 6.3: Scheme of a double-layer architecture. Each recurrent layer is split in
two equal parts, only one of which has its parameters warmed-up. The output of the
recurrent layer is then computed as the concatenation of the outputs of each of its parts.
This effectively divides a recurrent layer into two separate dynamical systems.

Double-layers Until now, only attractors have been discussed. However, as mentioned
in Chapter 4, Sussillo & Barak (2013) also pointed the importance of the transient
dynamics of RNNs for prediction. It was observed that when warming up neural net-
works, they tend to lose predictive accuracy, to the benefit of easier training on longer
time-series. To alleviate this problem and obtain precise predictions while maintaining
the benefits of warm-up, a double-layer architecture is proposed. Each recurrent layer
is simply split into two equal parts and only one of them is warmed up, that is,
V AA∗ is only computed on those parts of the network and solely their variables are
updated when warming up. This enables the endowment of some part of each layer
with multistability, while the rest remains mono-stable with richer transient dynamics.
As a mean of visualisation, a double-layer structure is depicted on Figure 6.3.



6.2. Results 71

6.2 Results

To demonstrate the impact of warming up RNNs, the same benchmarks previously as
introduced in Chapter 5 are used. These benchmarks were proposed in (Vecoven et
al., 2021a) to test the ability of RNN cells to learn long-term dependencies and the
reader is referred to Section 5.4 of Chapter 5 for a precise description of each of the
benchmark tackled in this Section. In this Chapter, warm-up is tested on three different
types of cells. To this end, LSTMs, GRUs and minimal gated units (MGUs, proposed by
Zhou et al. (2016)) are trained without warm-up, with warm-up and with double-layer
warmup (DLWU) on these benchmarks and it is shown that their performance is greatly
improved with warm-up, in a single or double-layer setting. Parameters for warm-up
can vary depending on architectures and needs, however lr = 1e−2, c = 10, S = 100

and M = 200 were found to be a good choice for an effective and fast warm-up on our
benchmarks. For the first benchmark, networks were made of one 128 neuron recurrent
layer. For the other two benchmarks, networks were made of two recurrent layers, each
of 256 neurons. All averages and standard deviations reported were computed over three
different seeds and training was done with the ADAM optimizer and a learning rate of
1e−3. Concerning warm-up, it is noted that in some rare cases, if the V AA∗ is too close
to 1 after warming up, RNNs become stuck and unable to learn. This is due to a bad
fitting of the V AA∗ measure and thus internal states becoming too extreme. Although
very rare, this issue was solved by restarting any run for which V AA∗ is too high for
any layer after warm-up (0.98 was empirically chosen as a threshold in the paper).

Copy first input benchmark This benchmark allows for a simple proof of concept that
warming up RNNs provides certain benefits for training. Indeed, one can see in Table 6.1
that warm-up greatly improves the performances of all RNNs as T increases. This is
highly interesting as it highlights that, when long-term memory is required, warming
up seems to initialise RNNs near a good dynamical regime.

Denoising benchmark In this benchmark, the amount of information the network must
store is much greater as it needs to store five real values. This allows for a demonstration
of the effectiveness of the double-layer architecture combined with warm-up. Indeed,
Table 6.2 shows that warm-up is required for the networks to learn when N increases.
It is important to note that the standard deviation obtained for MGUs and LSTMs
without double-layers is due to failed runs. That is, despite a successful warm-up, the
network is not able to learn and loses its multistability properties. This is likely due to
the nature of the problem which requires precise transient dynamics for outputting the
prediction. One can see that adding a double-layer architecture solves this problem.



6.2. Results 72

T Warm-up MGU LSTM GRU

50
None 0.831± 0.324 0.634± 0.427 0.997± 0.005

warmed-up 0.000± 0.000 0.000± 0.000 0.000± 0.000
DLWU 0.000± 0.000 0.000± 0.000 0.000± 0.000

300
None 0.98± 0.002 0.95± 0.019 1.003± 0.002

warmed-up 0.000± 0.000 0.000± 0.000 0.000± 0.000
DLWU 0.000± 0.000 0.000± 0.000 0.000± 0.000

600
None 1.017± 0.004 0.977± 0.008 1.017± 0.003

warmed-up 0.000± 0.000 0.000± 0.000 0.000± 0.000
DLWU 0.000± 0.000 0.000± 0.000 0.000± 0.000

Table 6.1: Mean square error (± standard deviation) of different architectures and
different warm-up strategies on the test set for the copy input benchmark. Results are
shown after 50 epochs and for different values of T .

N Warm-up MGU LSTM GRU

5
None 0.005± 0.008 1.001± 0.003 0.000± 0.000

warmed-up 0.002± 0.006 0.032± 0.011 0.000± 0.000
DLWU 0.002± 0.001 0.025± 0.007 0.000± 0.000

100
None 1.004± 0.003 0.996± 0.005 0.995± 0.003

warmed-up 0.32± 0.641 0.338± 0.561 0.001± 0.002
DLWU 0.024± 0.023 0.013± 0.125 0.000± 0.000

Table 6.2: Mean square error (± standard deviation) of different architectures on the
denoising benchmark’s test set. Results are shown with and without constraint on the
location of relevant inputs and after 50 epochs. Relevant inputs cannot appear in the
N last time-steps. In this experiment, results were obtained with T = 200.



6.2. Results 73

Figure 6.4: Evolution of the loss for GRU networks trained on the denoising benchmark
with N = 5 (left) and N = 100 (right). The average over three runs is plotted (±
standard deviation). Learning, represented by a decreasing loss is the fastest with the
double-layer architecture. Meanwhile, we see that warming-up makes it harder for the
network to generate necessary transient dynamics. Once again, it also appears that
warming-up is necessary for learning longer time-dependancies.

Warmup MGU LSTM GRU
None 0.896± 0.004 0.907± 0.002 0.925± 0.004

warmed-up 0.897± 0.001 0.402± 0.012 0.102± 0.061
DLWU 0.901± 0.003 0.909± 0.005 0.914± 0.014

Table 6.3: Overall accuracy (± standard deviation) on the permuted sequential MNIST
benchmark test set after 70 epochs for different warm-up methods and for different cell
types.

To further highlight the impact of the double-layer architecture, as well as that of
warming up, Figure 6.4 shows the training curve of GRU networks for both values of
N .

Permuted sequential MNIST Table 6.3 shows that warm-up with a double-layer archi-
tecture provides equivalent performances than without warming up. The slight decrease
in GRU performance can be explained by the lower number of parameters in the double-
layer architecture as compared layers connected fully recurrently. This benchmark shows
the importance of a double-layer structure when warming up RNNs.

Permuted line-sequential MNIST Finally, Table 6.4 further highlights the importance
of the double-layer architecture when training on more complex time-series. Again, the
impact of warming-up the network also appears.



6.2. Results 74

N Warm-up MGU LSTM GRU

72
None 0.968± 0.001 0.977± 0.002 0.977± 0.002

warmed-up 0.893± 0.132 0.890± 0.017 0.873± 0.016
DLWU 0.967± 0.021 0.976± 0.032 0.974± 0.012

472
None 0.198± 0.021 0.562± 0.328 0.591± 0.388

warmed-up 0.534± 0.592 0.942± 0.009 0.493± 0.556
DLWU 0.828± 0.152 0.961± 0.007 0.973± 0.001

Table 6.4: Overall accuracy (±standard deviation) on permuted sequential-line MNIST
test set after 70 epochs for different architectures and warm-up methods. Images are
fed to the recurrent network line by line and N black lines are added at the bottom of
the image after permutation. We note that when N equals 72(472) the resulting image
has 100(500) lines.

Summary

In this Chapter, a procedure for warming-up recurrent neural networks was proposed
to improve their ability to learn long time-dependencies. The procedure is motivated by
recent work that showed the importance of fixed points and attractors for the prediction
process of trained RNNs. To this end, a lightweight measure called VAA and that can
be optimized to endow RNNs with multistable dynamics was introduced. Warm-up
can be used with any type of recurrent cell and it was shown to vastly improves their
performance on long-term memory benchmarks when combined with a double-layer
architecture. As this procedure is general and easy to implement, it could easily be
further tested on multiple benchmarks.

As future work, similarly to bistable recurrent cells, an area of application that is
promising for such an approach is sparse reinforcement learning. In fact, warming up
RNNs would allow them to remember information for much longer, and they could thus
be more robust to complex exploration in such a setting.

Furthermore, it is worthwhile to note that the double-layer architecture might be worth
exploring with different types of cells. It was discussed here that there are benefits
of using different types of initialization for the same type of cell. This might hint at
the possibility of having similar benefits when using different types of cells, each with
different dynamical properties, in RNNs. One could for example study the benefits of
introducing bistable cells in RNNs mixed with standard gated cells such as GRUs and
LSTMs.



6.2. Results 75

Finally, in this Chapter, the aim was to maximize the number of attractors through
warming up before training. However, in some rare cases, it was observed that networks
can lose their multistability properties when training. To avoid this, using VAA as a
regularization loss during training could be interesting. Likewise, when warming-up, one
could choose to aim for a number of attractors that is optimized for a given benchmark.
This provides further room for improvement of algorithm performance.





PART III

Neuromodulating neural networks for
adaptation

77





Introduction

Despite the tremendous progress made in the field of machine learning over the years,
there is however one specific type of task natural to humans and where machines still
struggle to show reasonable performance: the adaptive control of continuous behaviors
in unknown, time-varying contexts. Compared to humans, there are two main aspects
to which this difference in performance can be attributed.

• First, RL agents often require a massive amount of data to learn decent policies.
On the opposite side, humans can often achieve decent performance with very
little experience in a specific environment.

• Second, and which can be linked to the first point, RL agents often specialize on
a single domain, whereas humans can flexibly react to changing task conditions.
Indeed, an RL agent trained on a specific task will often exhibit extremely poor
performance if tested on a similar, albeit very slightly different one. A human, on
the other hand, would easily be able to adapt to small changes without much of
a performance loss.

In other words, standard machine learning methods usually lack the capacity to learn
general representations which would allow them to quickly learn how to tackle similar
tasks. Recently, there has been work towards solving these issues. The machine learning
settings which are closely related to this issues have been called “meta-learning” and
“meta-reinforcement learning” (related to their non-meta version). In such settings, one
does not have to learn a single task, but rather to learn over a distribution of such tasks.

In the case of meta-learning, the goal is to train a model to learn a task as quickly as
possible. For example, few-shot learning, a setting in which a model has to learn how
to distinguish samples with only very few of them labelled, can be associated to meta-
learning. In this setting, the train set consists of samples coming from multiple tasks.
The test set is composed of different (but similar) tasks, for which very few labelled
samples are available. As such, the model has to learn how to quickly adapt (or quickly
learn) such new tasks, based on the knowledge acquired when training on other tasks.
A high-level view sketch of this setting is depicted on Figure 6.5

Similarly, in the case of meta-reinforcement learning, the agent does not interact with
a single environment, but rather with a distribution of such environments. This setting
is thus very well suited for testing adaptation capabilities of RL agents. Indeed, to
obtain good rewards in such benchmarks, the agent must be able to perform well in
environments it has never seen during training (i.e. to be robust and adapt to these
environments with very few interactions).

79



INTRODUCTION 80

Figure 6.5: Sketch of a meta-learning problem

In the nervous system, the robust control of continuous behaviors is often associated
with a second class of physiological mechanism as important as synaptic plasticity but
less studied and much less understood, called neuromodulation (Bargmann & Marder,
2013). Neuromodulation is the ability of neurons to tune their input-output properties
to reshape signal transmission at the cellular level, generally in response to an external
signal carried by biogenic chemicals called neuromodulators (Bargmann &Marder, 2013;
Marder et al., 2014). Neuromodulation regulates many critical nervous system properties
that cannot be achieved by synaptic plasticity alone. One recent and striking example is
in regards to the critical role of neuromodulation in the voluntary control of locomotion
: using a brain-spine interface, researchers have recently been able to aleviate walking
deficits in rodents (Van den Brand et al., 2012) and primates (Capogrosso et al., 2016)
suffering from paralysing spinal cord injury by specifically restoring neuromodulation
below the lesion site. Although experimental studies have highlighted the ubiquity of
neuromodulation in all nervous systems, the basic principles governing this mechanism
have not been formulated to date, and the potential impact of neuromodulation-inspired
mechanisms on research strategies in engineering has yet to be fully explored.

One big obstacle in the study of neuromodulation is the high complexity of the un-
derlying mechanisms, both from physiological and dynamical viewpoints. Although
basic rules of synaptic plasticity have been quickly formulated and shown to adequately
describe biological mechanisms (Abbott & Nelson, 2000), neuromodulation deals with
high-dimensional, highly nonlinear dynamical systems and targets a vast number of
different cellular and network properties, making it difficult to tackle. For instance, even
the most recent, qualitative modeling attempts of brain signaling lack neuromodulation
(Markram et al., 2015). However, recent advances have been made on the mechanisms
underlying the robustness and modulation of neuron intrinsic properties (Franci et al.,
2013a,b; Drion, O’Leary, & Marder, 2015; Drion, O’Leary, et al., 2015; O’Leary et al.,
2013; O’Leary et al., 2014). These advances bring us closer to the extraction of basic
rules of neuromodulation, a necessary step for the design of neuromodulation-inspired
strategy and methods in artificial intelligence.



INTRODUCTION 81

In fact, there has recently been a growing interest in introducing neuromodulation
mechanisms into artificial neural networks, for different purposes. The works of Tsuda
et al. (2021), Geadah et al. (2020), Beaulieu et al. (2020) and Wilson et al. (2018) are
very recent examples that suggest these mechanisms to provide benefits for deep neural
networks. As such, these works will be further discussed in Chapter 8.

Indeed, Part III focuses on the introduction of neuromodulation in deep neural networks
as a mean to improve their capabilities to adapt. To this end, Chapter 7 formalizes
meta-reinforcement learning. Chapter 7 will also discuss some recent architectures and
methods to tackle meta-learning as well as meta-reinforcement learning. The goal of
Chapter 8 is then to propose an architecture, based on neuromodulation, to tackle
such tasks. This study highlights the benefits of designing an architecture specifically
designed towards easily adapting (and thus, the interest of neuromodulation) over using
more standard ones.





Chapter 7

Adaptation capabilities of artificial
neural networks

Meta-learning and, more particularly, meta-reinforcement learning are known to be
very difficult settings. As such, there has been a growing body of work regarding the
capabilities of neural networks to solve such tasks, leading to the proposal of multiple
new training algorithms. It is important to note that it is possible to formalize such a
setting in multiple ways. Therefore, Section 7.1 starts by introducing the formalization
of meta-reinforcement learning used in this manuscript. It will also be discussed that
such a setting can in fact be associated to a regular POMDP. Then, Section 7.2 shortly
describes the main classes of methods for tackling such a setting. Some examples of each
class will also be shortly introduced.

7.1 Meta-reinforcement learning

In this section, the meta-reinforcement learning (meta-RL) problem is formalized along
the lines of the setting used by J. X. Wang et al. (2016). One should note that other
variants can also be thought of as relevant instances of the generic meta-RL problem.
To end the section, the link with a standard RL setting and a partially observable
environment will also be discussed.

Meta-RL formalization In a meta-RL setting, an agent has to interact through a
sequence of episodes with MDPs drawn from a distribution η. All of these MDPs have
different transition and reward functions and are assumed to have the same state space
S ⊆ Rn and the same action space A ⊆ Rm. At the beginning of a new episode i, an
element from η is drawn to define an MDP with which the meta-RL agent interacts
afterwards. Let us refer to such an element as M. We refer to the transition and reward

83



7.1. Meta-reinforcement learning 84

function of this MDP as pM(st+1|st,at) and ρM(at, st, st+1) respectively. Finally, note
that, as for the classical RL settings discussed in Part I, all the reward functions are
also assumed to be bounded, i.e. ρM(st,at, st+1) ∈ [Rmin, Rmax] ∀st, st+1 ∈ S,M ∈ η,
at ∈ A and with Rmin, Rmax ∈ R.

The interaction process between the meta-RL agent and M is defined as follows:

1. The initial state s0 is drawn according to the distribution over the initial states
pMs0

(·).
2. At each time step, the agent selects an action at ∈ A, for which it transitions

from state st to a new state st+1 and receives a reward rt.
3. The agent can observe the different states encountered and the rewards obtained.

That is, all MDPs that belong to the support of η are considered to be fully
observable, and thus the observation x received by the agent are equal to s.

4. As for the formalization of RL proposed in Chapter 2, the interaction lasts an
infinite number of time steps.

The only information that the agent collects on the transition function of M and its
reward function is through observing the states crossed and the rewards obtained at
each time-step.

Let si,t, ai,t and ri,t refer to the values of st, at and rt of episode i. Also let

hi,t = {si,0,ai,0, ri,0, si,1, . . . ,ai,t−1, ri,t−1, si,t}

be the history of the interaction of the meta-RL agent the MDP of episode i up to time
step t and H denote the set of all possible such histories. Finally, let π : [H × U ] →
[0, 1] be the policy played by the RL agent during episode and Π denote the set of all
such policies. Without loss of generality, we assume that it is a (possibly degenerated)
probabilistic policy that selects the action ai,t to be played at time t based on the
knowledge of hi,t such that ai,t ∼ π(a|hi,t). The return of policy π during episode i
called RπMi writes as:

RπMi = lim
T→∞

T∑
t=0

γtri,t

where γ ∈ [0, 1[ the discount factor, common to all MDPs belonging to the support of
η and Mi denotes the MDP drawn at episode i. The goal of the meta-learning agent
is to maximise the expected value of the sum of returns it can obtain over a budget
E ∈ N of episodes. As we will see later in this document, the policy πi computed by
the algorithm should implicitly, at time t, use the history ht−1, to adapt its behaviour
to Mi.



7.1. Meta-reinforcement learning 85

Meta-RL seen as a POMDP It is worthwhile to note that this formalization could well
correspond to a standard RL problem where the environment is not fully observable.
Thus this RL setting could in fact be formulated as a POMDP which could be defined
as follows.

In a way to represent the different MDPs with which the agent interacts, a non-
observable variable α is introduced. Similarly to MDPs in the previous formalization,
this variable is sampled at time t = 0 of each episode in a distribution η∗ and remains
constant throughout the episode. It is noted that the information contained in α should
be rich enough to encode the different transition and reward functions of the MDPs
belonging to the support η. As such, the full state of the environment st could be
described as the concatenation of xt and α, that is, st = [α,xt]. Put otherwise, α is
hidden and codes for the fully observable task currently at hand while xt fully describes
the current state of that task.

The main particularity of this POMDP setting is thus that α remains constant through-
out the episode and that every other part of the state is fully observable, as opposed to a
more standard POMDP in which non-observable parts of the full state can freely change
during an episode. To highlight this, the transition, reward and observation functions
of the environment in this setting can be written as:


o(xt|st) = o(xt|xt, α) = δ(xt)

p(st+1|st,at) = p(xt+1|xt,at, α) ,

ρ(at, st, st+1) = ρ(at,xt,xt+1, α) .

(7.1)

Looking at Equations 7.1, it thus clearly appears that, for a given episode, the goal of
a meta-RL agent is to infer the value α (which will be further referred to as “context”)
from past observations and rewards as quickly as possible. Doing so, the full state of
the environment becomes known and well-performing actions can be played.

7.2 ANNs for solving meta-RL

Due to their increasing popularity for a wide range of applications, it is a logical
development that many works focused on using neural networks to tackle meta-learning.
Hospedales et al. (2020) provide a great in-depth survey on the subject, going through
many of the different recently proposed methods. The authors introduce a new complete



7.2. ANNs for solving meta-RL 86

taxonomy, allowing to link and/or distinguish all recent meta-learning algorithms along
many different axes. For simplicity and conciseness, a more standard taxonomy is
used here. This taxonomy separates the different meta-learning algorithms intro three
categories:

1. optimisation based methods,
2. model-based / Blackbox methods and
3. metric learning methods.

The following Chapter focuses on a particular type of model-based method. However,
to provide more context, each category is shortly depicted in the following subsections
through some of their most common respective algorithms.

7.2.1 Optimisation based methods

These methods are probably the most complex of the three, as they rely on two
stages optimisation processes. Indeed, in such methods, the adaptation process is done
through optimisation, as would be done for usual training. For such methods, there
thus exists an “inner” optimisation task, corresponding to adaptation, as well as an
“outer” optimisation task, associated to meta-training. Obviously, the core concept
of these methods is therefore to extract as much knowledge as possible during outer
optimisation to learn how to make the inner optimisation task as efficient as possible.
At test time, when presented a new task, only the inner optimisation part will be carried
as a way of adaptation, and thus for a well-working algorithm, this optimisation process
should show much greater performance over using a standard method. performance can
be improved along multiple axes, depending on the method used. For example, some
methods focus on improving sample efficiency while others aim at better convergence
or robustness, in between others. One of the most common methods for this class of
algorithm, which focuses on improving sample efficiency, has been proposed by Finn et
al. (2017) and is called “Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks” (MAML).

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks In their work,
Finn et al. (2017) proposed a meta-optimisation process to learn a set of initial model
(focusing primarily on deep neural networks) parameters. It was shown that it is possible
to find such a set that few gradient steps (and especially, very few data) are necessary
in order to generalise well (i.e. adapt) to new tasks. Following this idea, further works
have also aimed at learning the step size and training recurrent networks to compute
inner gradients, in between others. On a side note, it is interesting to note that this
further highlights the impact that good initial parameters can have on training a neural
network for a given task. This echoes, in some sense, discussions on RNNs of Part II.



7.2. ANNs for solving meta-RL 87

7.2.2 Metric-learning methods

These methods are mostly relevant for the few-shot learning applications of meta-
learning, and are therefore less relevant when it comes to meta-RL. However, as they are
still relevant for some meta-learning problems, they are nevertheless shortly described
here for informative purposes. The core concept of such methods is to perform a
non-parametric “learning” (at adaptation time) by using relevant metrics to compare
validation points and training points. These methods thus rely on learning the best
metrics possible during meta-training (hence, before adaptation). A common example
of such metric can be computed thanks to siamese networks.

Siamese Neural Networks for one-shot image recognition Koch et al. (2015) proposed
to use siamese networks, first introduced by Bromley et al. (1993), as a way to build
strong discriminative features. In his thesis, Koch et al. (2015) used siamese networks to
do a forward pass on two images, resulting in two high level encodings of those images.
In essence, siamese networks have two heads with similar parameters and activation
functions, and as such, both images are encoded through the same function. Koch et al.
(2015) trained its siamese networks to distinguish whether the two presented images are
similar (of the same class) or not. This training procedure leads the siamese network to
learn high level discriminative features, which can be used to build relevant metrics on
unseen classes. Indeed, at test-time, both images (in one-shot learning, one would be
labelled but not the other) can be of classes never seen during meta-training, however,
the network should still be able to predict whether or not these two images are of the
same class. Thus, the model should correctly predict whether or not the non-labelled
example is of the same class as that of the labelled example, effectively achieving one-
shot “learning”.

7.2.3 Model-based / Blackbox methods

This final class of method is that of blackbox models, in which, the adaptation (or
inner learning) is embedded in the forward pass of the model. That is, the model is
trained to adapt by itself, effectively learning how to learn. At test-time, the model is
presented with a labelled dataset (or equivalently, task) and a non-labelled validation
sample belonging to that particular dataset (or task). With these methods, the model
is trained to embed the current presented dataset (task) into its activations, such
that the prediction of the validation sample can be made accordingly. Typical neural
architectures used with these methods include RNNs, CNNs and hypernetworks (Ha et



7.2. ANNs for solving meta-RL 88

al., 2016a). The next Chapter precisely aims at introducing such an architecture, based
on neuromodulation and specifically designed for adaptation purposes. This method
will be compared to using a standard RNN in the learning to reinforcement learn (RL2)
framework, as proposed by J. X. Wang et al. (2016).

Learning to reinforcement learn In the RL2 framework, the authors propose to train
an RNN to solve the meta-RL setting presented in Section 7.1. The authors showed
that the RNNs trained were able to come up with their own “inner” RL procedure.
That is, after training, the RNN agents embedded an RL procedure in their dynamics
such that, when presented a new task, they were able to adapt to it with very few
samples (this adaptation can effectively be associated to “inner” reinforcement learning).
This embedded procedure benefits from the fact that it is configured to highly exploit
the training domain and as such, is highly biased towards solving tasks belonging to
that particular domain. Over a more standard RL procedure, this allows the inner
reinforcement learning procedure (i.e. adaptation) to be much more efficient on similar
tasks, but also makes it much harder to extrapolate that inner procedure if tasks are
too different than those of the training domain. This is the case for other meta-learning
methods, but holds especially true for this class of methods. In fact, blackbox methods
are known to be simpler to optimise than optimisation methods (as they do not require
second order gradients) but are also usually less able to generalise to out of distribution
tasks over optimisation methods.

PEARL In the RL2 framework, the context is implicitly represented by a recurrent
network, through its hidden state. More recently, it was shown that representing this
context through a latent variable allows to drastically increase sample efficiency in
meta-RL. Rakelly et al. (2019) introduced an algorithm called probabilistic embeddings
for actor-critic RL (PEARL) in which the past observations obtained from a given
environment are compressed by a kind conditional neural process (CNP, proposed by
Garnelo et al. (2018) 1) into a latent variable, encoding the said environment as a
context vector. The authors show that by adding this context to the agent’s inputs, one
can leverage off-policy algorithms (and thus their sample efficiency) even in a meta-
RL setting. However, this approach suffers a limitation due to the aggregation method
of the observed samples. Indeed, even though CNPs allow for a very computationally
efficient and easily trainable framework, they suffer from huge inertia, which makes

1. As a brief introduction, similarly to RNNs, conditional neural process can handle arbitrary long
sequences of inputs. To achieve this, each input is encoded through the same learned function.
Afterwards, all such values are averaged over the input sequence, leading to a final representation
of the input sequence. One will note that, as opposed to RNNs, order of inputs is not taken into
account due to the commutativity property of the average operator.



7.2. ANNs for solving meta-RL 89

them ineffective to adapt quickly in case of a rapid context switch. This could make
the method proposed in PEARL inefficient in the context of meta-RL if, at test time,
there is no way to know when a context switch occurs. Although this is not a problem
with the meta-RL formalisation proposed here (as tasks remain constant throughout an
episode), one could easily remedy this by using an RNN, as in RL2, to encode this latent
variable. This problem of changing contexts would be harder to tackle with optimisation
methods for example.

There exists other architectures and algorithms which fall in this category of model-
based / black box methods. For example, hypernetworks (Ha et al., 2016a) have also
been used in this context. Again, the reader is referred to (Hospedales et al., 2020) for
a more complete review on the subject. In the next Chapter, the focus is made on the
RL2 framework. Indeed, the goal is to highlight the interest of using a neuromodulated
architecture over a standard RNN in such a context, thus the standard RL2 framework
seemed well-suited for this study. As will be discussed, it is worth noting that the
proposed architecture could well be extended to the PEARL algorithm, which would
certainly be a worthwhile and very interesting study in itself.

Summary

This Chapter formalised the meta-RL setting that will be tackled in the remaining of
this manuscript. It was also shown that this setting could be linked to a more standard
partially observable RL setting. Afterwards, the most common meta-learning methods,
as well as their advantages and drawbacks, were introduced and examples were given for
each class of such methods. At this point, the reader is thus expected to well understand
the meta-learning setting and more precisely, the meta-reinforcement learning as well
as the challenges to solve such problems. Despite having only provided a brief overview
of different existing methods, the reader should also be aware of the main concepts that
are usually used in meta-learning algorithms. The RL2 framework will be more deeply
detailed in next Chapter, but for further details on other methods, the reader is once
again referred to (Hospedales et al., 2020).





Chapter 8

Neuromodulation of artificial neural
networks

The core of this Chapter has been copied and slightly adapted from Vecoven et al. (2020).

In biological nervous systems, adaptation capabilities have long been linked to neur-
omodulation, a biological mechanism that acts in concert with synaptic plasticity to tune
neural network functional properties. It has been shown as being critical to the adaptive
control of continuous behaviours, such as in motor control, among others (Marder et al.,
1996). In this Chapter, a new neural architecture is introduced, it is specifically designed
for DNNs and inspired from cellular neuromodulation and is called NMN, standing for
“Neuro-Modulated Network”.

At its core, the NMN architecture comprises two neural networks: a main network
and a neuromodulatory network. The main network is a feed-forward DNN composed
of neurons equipped with a parametric activation function whose parameters are the
targets of neuromodulation. It allows the main network to be adapted to new unforeseen
problems. The neuromodulatory network, on the other hand, dynamically controls the
neuronal properties of the main network via the parameters of its activation functions.
Both networks have different inputs: the neuromodulatory network processes feedback
and contextual data whereas the main network is in charge of processing other inputs.

Originally introduced in 2019, at the time of publication, the proposed architecture could
be related to previous works on different aspects. In (Miconi et al., 2018), the authors
took inspiration from Hebbian plasticity to build networks with plastic weights, allowing
them to tune their weights dynamically. Miconi et al. (2020) extended their work by
learning a neuromodulatory signal that dictates which and when connections should be
plastic. The neuromodulatory architecture is also closely related to hypernetworks (Ha
et al., 2016b), in which a network’s weights are computed through another network.
It is also worth noting that other works focused on learning fixed activation functions,
such as those of Agostinelli et al. (2014); Lin et al. (2013).

91



. Neuromodulation of artificial neural networks 92

Finally, it must be highlighted that concurrently and after the proposed NMN architec-
ture, there has also been an increasing interest towards the introduction of neuromod-
ulatory principles in ANNs. As such, the next section aims at pointing to some more
recent works on neuromodulation in ANNs.

8.1 Neuromodulation in ANNs
Despite this growing interest for neuromodulation, the topic is still quite new. Therefore,
research is still ongoing and only a handful of works have already looked at using
neuromodulation mechanisms for adaptation in artificial neural networks. Some of the
most relevant ones are introduced hereunder. It should be stressed that the list below
is certainly non exhaustive and that the field is still quickly growing. As such, its goal
is solely to point to the most relevant recent advances with respect to adaptation using
neuromodulation, providing a bit more context on the current state of the field.

First, the work of Geadah et al. (2020) takes interest in the modulation of activation
functions. More precisely, the authors introduced a new family of activation functions
for which gain and saturation are parametric and can be learned. This modulation of
activation functions is reminiscent of that used in NMN, although more expressive.
Furthermore, in this work, they highlight that modulation of those parameters alone
can help the network to adapt to new tasks, hinting at the potential interest of such
mechanisms for transfer learning.

Second, Tsuda et al. (2021) have used neuromodulators in such a way to scale the
weights of RNNs. That is, they input neuromodulatory signals which scale all the weights
belonging to different neurons subpopulation of the network. The authors show that this
mechanism alone is sufficient to tackle different tasks, whereas one could have expected
that simply scaling the weights would lead to more linear behavioural changes.

Third, tackling different meta-learning tasks, Beaulieu et al. (2020) proposed “A Neur-
omodulated Meta-Learning Algorithm” (ANML). Despite not using the same train-
ing procedure, this method and the NMN are similar in that they both introduce a
neuromodulatory network to gate the forward pass of another network. ANML was
introduced a bit after NMN and the method proved to give state-of-the-art performances
in continual learning tasks, exhibiting great resistance to catastrophic forgetting.

Finally, Wilson et al. (2018) used an artificial gene regulatory network as a neuromodu-
latory agent. This agent is trained and tasked to modify the optimiser parameters (such
as the momentum parameters of ADAM) of each layer, at each step of training. The
authors showed that this technique could help reduce overfitting, and demonstrated that
the location-dependent and time-specific qualities of neuromodulation are important for
deep learning, as they are in human brains.



8.2. NMN architecture 93

Figure 8.1: Sketch of the NMN architecture. A. The NMN is composed of the
interaction of a neuromodulatory neural network that processes some context signal
(top) and a main neural network that shapes some input-output function (bottom).
B. Computation graph of the NMN activation functions σNMN , where ws and wb

are parameters controlling the scale factor and the offset of the activation function
σ, respectively. z is a context-dependent variable computed by the neuromodulatory
network.

8.2 NMN architecture

The NMN architecture revolves around the neuromodulatory interaction between the
neuromodulatory and main networks. Biological cellular neuromodulation (Drion, O’Leary,
et al., 2015) is mimicked in a DNN by assigning the neuromodulatory network the task
to tune the slope and bias of the main network activation functions.

Let σ(x) : R → R denote any activation function and its neuromodulatory capable
version σNMN(x, z;ws,wb) = σ

(
zT (xws + wb)

)
where z ∈ Rk is a neuromodulatory

signal andws,wb ∈ Rk are two parameter vectors of the activation function, respectively
governing a scale factor and an offset. In this work, it is proposed to replace all the main
network neuron activation functions with their neuromodulatory capable counterparts.
The neuromodulatory signal z, where size k is a free parameter, is shared for all these
neurons and computed by the neuromodulatory network as z = f(c), where c is a
vector representing contextual and feedback inputs. The function f can be any DNN
taking as input such vector c. For instance, c may have a dynamic size (e.g. more
information about the current task becomes available as time passes), in which case f
could be parameterised as a recurrent neural network (RNN) or a conditional neural
process (Garnelo et al., 2018), enabling refinement of the neuromodulatory signal as
more data becomes available. The complete NMN architecture and the change made to
the activation functions are depicted in Figure 8.1.



8.2. NMN architecture 94

Notably, the number of newly introduced parameters scales linearly with the number of
neurons in the main network whereas it would scale linearly with the number of connec-
tions between neurons if the neuromodulatory network was affecting connection weights,
as seen for instance in the context of hypernetworks (Ha et al., 2016b). Therefore this
approach can be extended more easily to very large networks.

8.3 Experiments

Experiments are carried using the meta-RL setting described in Chapter 7. This Sec-
tion first details the training procedure used for the meta-RL agent, then the precise
benchmarks used to test our agent capabilities.

8.3.1 Training

In J. X. Wang et al. (2016), the authors tackle this meta-RL framework by using an
advantage actor-critic (A2C) algorithm. This algorithm revolves around two distinct
parametric functions: the actor and the critic. The actor represents the policy used to
interact with the MDPs, while the critic is a function that rates the performance of the
agent policy. All actor-critic algorithms follow an iterative procedure that consists of
the three following steps.

1. Use the policy to interact with the environment and gather data.
2. Update the actor parameters using the critic ratings.
3. Update the critic parameters to better approximate a value function.

In J. X. Wang et al. (2016), the authors chose to model the actor and the critic with
RNNs, taking ht as the input. In this work, we propose comparing the NMN architecture
to standard RNN by modelling both the actor and the critic with NMN. To this end,
the feedback and contextual inputs c (i.e. the neuromodulatory network inputs) are
defined as ht \ xt while the main network input is defined as xt. Note that ht grows
(as sequential data) as the agent interacts with the MDP M, motivating the usage of a
RNN as neuromodulatory network. A graphical comparison between both architectures
is shown on Figure 8.2.

To be as similar as possible to the neuronal model proposed by Drion, O’Leary, & Marder
(2015), the main network is a fully-connected neural network built using saturated
rectified linear unit (sReLU) activation functions σ(x) = min(1,max(−1, x)), except
for the final layer (also neuromodulated), for which σ(x) = x. In Section 8.4, we also
report results obtained with sigmoidal activation functions which are often appreciably
inferior to those obtained with sReLUs, further encouraging their use.



8.3. Experiments 95

Figure 8.2: Sketch of a standard recurrent network (A) and of an NMN (B) in a meta-
RL framework. → represent standard connections, ( represent a neuromodulatory
connection, 99K represent temporal connections and MLP stands for Multi-Layer
Perceptron (standard feed-forward network).

The models are built such that both standard RNN and NMN architectures have the
same number of recurrent layers/units and a relative difference between the numbers of
parameters that is lower than 2%. Both models are trained using an A2C algorithm with
generalized advantage estimation (Schulman, Moritz, et al., 2015) and proximal policy
updates (Schulman et al., 2017). Finally, no parameter is shared between the actor and
the critic. This choice is motivated by noting that the neuromodulatory signal might
need to be different for the actor and the critic. For completeness and reproducibility,
a formal description of the algorithms used is provided as supplementary material in
Appendix C. This Appendix also provides the exact neural architectures used for each
benchmark.

8.3.2 Benchmarks description

Experiments are carried on three custom benchmarks: a simple toy problem and two
navigation problems with sparse rewards. These benchmarks were built to evaluate
our architecture in environments with continuous action spaces. For conciseness, a
mathematical definition is only provided for the first benchmark. The two other bench-
marks are briefly textually depicted and further details are available in Appendix C.
Figures 8.3, 8.4 and 8.5 are a graphical representation of each of the benchmarks.



8.3. Experiments 96

Figure 8.3: Sketch of a time-step interaction between an agent and two different tasks
M (A and B) sampled in η for the first benchmark. Each task is defined by the bias
α on the target’s position pt observed by the agent. xt is the observation made by the
agent at time-step t and at its action. For these examples, at falls outside the target
area (the zone delimited by the dashed lines), and thus the reward rt received by the
agent is equal to −|at − pt| and pt+1 = pt. If the agent had taken an action near the
target, then it would have received a reward equal to 10 and the position of the target
would have been re-sampled uniformly in [−5− α, 5− α].

Figure 8.4: Sketch of a time-step interaction between an agent and two different tasks
M (A and B) sampled in η for the second benchmark. Each task is defined by the main
direction α of a wind cone from which a perturbation vector wt is sampled at each
time-step. This perturbation vector is then applied to the movement mt of the agent,
whose direction is given by the action at. If the agent reaches the target, it receives a
reward of 100, otherwise a reward of −2.



8.3. Experiments 97

Figure 8.5: Sketch of a time-step interaction between an agent for the two different
tasks M (A and B) sampled in η for the third benchmark. Each task is defined by the
attribution of a positive reward to one of the two targets (in blue) and a negative reward
to the other (in red). At each time-step the agent outputs an action at which drives the
direction of its next move. If the agent reaches a target, it receives the corresponding
reward.

Benchmark 1. The first benchmark (made of a 1-D state space and action space) is
defined through a random variable α, informative enough to distinguish all different
MDPs in η. With this definition, α represents the current task and drawing α at the
beginning of each episode amounts to sampling a new task in η. At each time-step,
the agent observes a biased version xt = pt + α of the exact position of a target pt
belonging to the interval [−5 − α, 5 − α], with α ∼ U[−10, 10]. The agent outputs an
action at ∈ [−20, 20] and receives a reward rt which is equal to 10 if |at − pt| < 1

and −|at − pt| otherwise. In case of positive reward, pt+1 is re-sampled uniformly in its
domain, else pt+1 = pt. This benchmark is represented on Figure 8.3.

Benchmark 2. The second benchmark consists of navigating towards a target in a 2-
D space with noisy movements. Similarly to the first benchmark, all different MDPs
in η can be distinguished through a three-dimensional random vector of variables α.
The target is placed at (α[1],α[2]) in the 2-D space. At each time-step, the agent
observes its relative position to the target and outputs the direction of a move vector
mt. A perturbation vector wt is then sampled uniformly in a cone, whose main direction
α[3] ∼ U[−π, π[, together with the target’s position, define the current task in η. Finally
the agent is moved following mt + wt and receives a reward (rt = −0.2). If the agent
reaches the target, it instead receives a high reward (rt = 100) and is moved to a position
sampled uniformly in the 2-D space. This benchmark is represented on Fig 8.4



8.3. Experiments 98

Figure 8.6: Mean (± std in shaded) sum of rewards obtained over 15 training runs
with different random seeds with respect to the episode number. Results of benchmark
1,2 and 3 are displayed from left to right. The plots are smoothed thanks to a running
mean over 1000 episodes.

Benchmark 3. The third benchmark also involves navigating in a 2-D space, but which
contains two targets. As for the two previous benchmarks, all different MDPs in η are
distinguished through a five-dimensional random vector of variables α. The targets are
placed at positions (α[1],α[2]) and (α[3],α[4]). At each time-step, the agent observes
its relative position to the two targets and is moved along a direction given by its action.
One target, defined by the task in η through α[5], is attributed a positive reward (100)
and the other a negative reward (−50). In other words, α[5] is a Bernoulli variable
that determines which target is attributed the positive reward and which is attributed
the negative one. As for benchmark 2, once the agent reaches a target, it receives the
corresponding reward and is moved to a position sampled uniformly in the 2-D space.
This benchmark is represented on Figure 8.5.

8.4 Results

Learning. From a learning perspective, a comparison of the sum of rewards obtained
per episode by NMNs and RNNs on the three benchmarks is shown in Figure 8.6. Results
show that, on average, NMNs learn faster (with respect to the number of episodes) and
converge towards better policies than RNNs (i.e., higher rewards for the last episodes).
It is worth mentioning that, NMNs show very stable results, with small variances over
different random seeds, as opposed to RNNs. To put the performance of the NMN
in perspective, we note that an optimal Bayesian policy would achieve an expected
sum of rewards of 4679 on benchmark 1 (see Appendix C for a formal proof) whereas
NMNs reach, after 20000 episodes, an expected sum of rewards of 4534. For this simple
benchmark, NMNs manage to learn near-optimal Bayesian policies.



8.4. Results 99

Adaptation. From an adaptation perspective, Figure 8.7 shows the temporal evolution
of the neuromodulatory signal z (partA), of the scale factor (for each neuron of a hidden
layer, part B) and of the rewards (part C) obtained with respect to α for 1000 episodes
played on benchmark 1. For small values of t, the agent has little information on the
current task, leading to a non-optimal behaviour (as it can be seen from the low rewards).
Of greatest interest, the signal z for the first time-steps exhibits little dependence on
α, highlighting the agent uncertainty on the current task and translating to noisy scale
factors. Said otherwise, for small t, the agent learned to play a (nearly) task-independent
strategy. As time passes, the agent gathers further information about the current task
and approaches a near-optimal policy. This is reflected in the convergence of z (and thus
scale factors) with a clear dependency on α and also in wider-spread values of z. For a
large value of t, z holding constant between time-steps shows that the neuromodulatory
signal is almost state-independent and serves only for adaptation. It is noted that the
value of z in each of its dimensions varies continuously with α, meaning that for two
similar tasks, the signal will converge towards similar values. Finally, it is interesting
to look at the neurons scale factor variation with respect to α (B). Indeed, for some
neurons, one can see that the scale factors vary between negative and positive values,
effectively inverting the slope of the activation function. Furthermore, it is interesting to
see that some neurons are inactive (scale factor almost equal to 0, leading to a constant
activation function) for some values of α.

For benchmark 2, it is first noted that z seems to code exclusively for α[3]. Indeed, z
converges slowly with time with respect to α[3], whatever the value of α[1] and α[2]

(Figure 8.8). This, could potentially be explained by the fact that one does not need
the values of α[1] and α[2] to compute an optimal move. The graphs on Figure 8.8 are
projected on the dimension α[3], allowing the same analysis as for benchmark 1.

The results obtained for benchmark 2 (Figure 8.8) show similar characteristics. Indeed,
despite the agent receiving only noisy information on α[3] at each time-step (as perturb-
ation vectors are sampled uniformly in a cone centered on α[3]), z quasi-converges slowly
with time (partA). The value of z in each of its dimensions also varies continuously with
α[3] (as for the first benchmark) resulting also in continuous scale factors variations.
This is clearly highlighted at time-step 100 on Figure 8.8 where the scale factors of
some neurons appear highly asymmetric, but with smooth variations with respect to
α[3]. Finally, it is highlighted that for this benchmark, the agent continues to adapt
even when it is already performing well. Indeed, one can see that after 40 time-steps the
agent is already achieving good results (part C), even though z has not yet converged
(part A), which is due to the stochasticity of the environment. Indeed, the agent only



8.4. Results 100

Figure 8.7: Adaptation capabilities of the NMN architecture on benchmark 1. A.
Temporal evolution of the neuromodulatory signal z with respect to α, gathered on 1000
different episodes. Note that the neuromodulatory signals go from uniform distributions
over all possible α values (i.e., the different contexts) to non-uniform and adapted (w.r.t.
α) distributions along with an increase in the rewards. B. The value of the scale factors
with respect to α for each neuron of a hidden layer in the main network. C. Rewards
obtained at each time-step by the agent during those episodes. Note that light colours
represent high rewards and correspond to adapated neuromodulatory signals.

receives noised information on α and thus after 40 time-steps it has gathered sufficient
information to act well on the environment, but insufficient information to deduce a
near-exact value of α[3]. This shows that the agent can perform well, even while it is
still gathering relevant information on the current task.

It is harder to interpret the neuromodulatory signal for benchmark 3. In fact, for that
benchmark, it is shown that the signal seems to code not only for the task in η but
also for the state of the agent in some sense. As α is five-dimensional, it would be very
difficult to look at its impact on z as a whole. Rather, one can fix the position of the
two references in the 2-D space and look at the behaviour of z with respect to α[5]. In
Figure 8.9 adaptation is clearly visible in the rewards obtained by the agent (part C)
with very few negative rewards after 30 time-steps. It is noted that for later time-steps,
z tends to partially converge (A) and :

• some dimensions of z are constant with respect to α[5], indicating that they might
be coding for features related to α[1, 2, 3, 4].

• Some other dimensions are well correlated to α[5], for which similar observations
than for the two other benchmarks can be made. For example, one can see that
some neurons have a very different scale factors for the two possible different
values of α[5] (B).



8.4. Results 101

Figure 8.8: Adaptation capabilities of the NMN architecture on benchmark 2. A.
Temporal evolution of the neuromodulatory signal z with respect to α[3], gathered on
1000 different episodes. As α[3] is an angle, the plot is projected in polar coordinates for
a better interpretability of the results. Each dimension of z is corresponds to a different
radius. B. The value of the scale factors with respect to α[3] for each neuron of a hidden
layer in the main network. Again, the plot is projected in polar coordinates. For a given
α[3], the values of the neurons’ scale factor are given thanks to the radius. c. Average
reward obtained at each time-step by the agent during those episodes. Note that after
an average of 40 time-steps, the agent is already achieving decent performances even
though z has not yet converged.



8.4. Results 102

Figure 8.9: Adaptation capabilities of the NMN architecture on benchmark 3. A.
Temporal evolution of the neuromodulatory signal z with respect to α[5], gathered
on 1000 different episodes. Note that the neuromodulatory signals go from uniform
distributions over all possible alpha values (i.e., the different contexts) to non-uniform
and adapted (w.r.t. alpha) distributions along with an increase of the rewards. B. The
value of the scale factors with respect to α[5] for the 5 neurons of a hidden layer in
the main network, for which the scale factor is the most correlated to α[5]. C. Average
number of good and bad target hits at each time-step during those episodes. On average,
after 15 time-steps, the agent starts navigating towards the correct target while avoiding
the wrong one.

• The remaining dimensions do not converge at all, implying that these are not
related to α, but rather to the state of the agent.

These results suggest that in this case, the neuromodulation network is used to code
more complex information than simply that required to differentiate tasks, making z

harder to interpret. Despite z not converging on some of its dimensions, it should be
stressed that freezing z after adaptation will not strongly degrade the agent’s perform-
ance. That is, the features coded in z that do not depend on α are not critical to the
performance of the agent. To illustrate this, we will analyse the behaviour of the agent
within an episode when freezing and unfreezing the neuromodulation signal and when
changing task. This behaviour is shown on Figure 8.10, for which:

(a) Shows the behaviour of the agent when z is locked to its initial value. This plot thus
shows the initial "exploration" strategy used by the agent; that is, the strategy
played by the agent when it has not gathered any information on the current task.

(b) Shows the behaviour of the agent after unlocking z, that is when the agent is able
to adapt freely to the current task by updating z at each time-step.



8.4. Results 103

Figure 8.10: Analysis of the agent’s behaviour when freezing and unfreezing the
neuromodulation signal and when changing task within an episode. The green reference
is attributed a reward of 100 while the red one is attributed a reward of −50. Each
blue arrow represents the movement of the agent for a given time-step. (a) Shows the
behaviour with z fixed at its initial value. In (b) we unlock z. Then, in (c) we lock z
with its current value. Finally in (d) we switch the references before unlocking z once
again in (e).

(c) Shows the behaviour of the agent when locking z at a random time-step after
adaptation. z is thus fixed at a value which fits well the current task. As one can
see, the agent continues to navigate towards the correct target. The performance
is however a slightly degraded as the agent seems to lose some capacity to avoid
the wrong target. This further suggests that, in this benchmark (as opposed to
the two others), the neuromodulation signal does not only code for the current
task but also for the current state, in some sense, that is hard to interpret.

(d) Shows the same behaviour as in (c) as z is still locked to the same value, but the
references are now switched. As there is no adaptation without updating z; the
agent is now always moving towards to wrong target.

(e) Shows the behaviour of the agent when unlocking z once again. As one can see,
the agent is now able to adapt correctly by updating z at each time-step, and
thus it navigates towards the correct target once again.

Robustness study. Even though results are quite promising for the NMN, it is interest-
ing to see how it holds up with another type of activation function as well as analysing
its robustness to different main networks’ architectures.

Sigmoid activation functions. Figure 8.11 shows the comparison between having sig-
moids as the main network’s activation function instead of sReLUs. As one can see,
sigmoid activation functions lead to worse or equivalent results to sReLUs, be it for
RNNs or NMNs. In particular, the NMN architecture seems more robust to the change
of activation function as opposed to RNNs, as the difference between sReLUS and
sigmoids is often far inferior for NMNs than RNNs (especially for benchmark 2).



8.4. Results 104

Figure 8.11: Mean (± std in shaded) sum of rewards obtained over 15 training runs
with different random seeds with respect to the episode number. Results of benchmark
1,2 and 3 are displayed from left to right. The plots are smoothed thanks to a running
mean over 1000 episodes.

Figure 8.12: Mean (± std in shaded) sum of rewards obtained on benchmark 1 over
15 training runs with different random seeds with respect to the episode number. The
plots are smoothed thanks to a running mean over 1000 episodes.

Architecture impact. Figure 8.12 shows the learning curve, on benchmark 1, for dif-
ferent main network architectures (0, 1 and 4 hidden layers in the main network re-
spectively). As one can see, RNNs can, in fact, reach NMNs’ performances for a given
architecture (no hidden layer in this case), but seem relatively dependant on the archi-
tecture. On the contrary, NMNs seem surprisingly consistent with respect to the number
of hidden layers composing the main network.



8.4. Results 105

Summary

This Chapter studied a high-level view of a nervous system mechanism called cellu-
lar neuromodulation in order to improve the adaptive capabilities of artificial neural
networks. After giving an overview of the actual state of the field, a specific neuromod-
ulatory architecture is discussed. The results obtained for three meta-RL benchmark
problems showed that this new architecture was able to perform better than classical
RNN. The architecture discussed in this Chapter could be extended along several lines.

First and most importantly, this architecture could very easily be extended to a more
probabilistic framework. Indeed, it was shown by Rakelly et al. (2019) that using a
latent variable (encoded through a CNP) to capture the context was of great interest for
sample efficiency in meta-RL. In their work, Rakelly et al. (2019) then use that variable,
in addition to the current state, as inputs of a standard neural network (representing
the policy). In such a context it would be immediate to rather use the context to
neuromodulate the policy network, which might be very promising. Indeed, seeing the
way z codes for the context in the experiments of Section 8.4 hints that it might be
beneficial to let the network code for uncertainty in its context by rather using a latent
probabilistic variable.

Second, it would make sense to explore other types of machine-learning problems where
adaptation is required. Supervised meta-learning would be an interesting track to follow
as, for example, it is easy to see how the architecture could be applied to few-shot
learning. In such a framework, the context fed to the neuromodulatory network would
be a set composed of a few samples and their associated ground-truth. It would be of
great interest to compare the performance of this architecture to that of conditional
neural processes or other few-shot learning algorithms. Furthermore, it would also be
highly interesting to test other neuromodulatory architectures than standard RNNs.

Third, research work could also be carried out to further improve the NMN introduced
here. For instance, one could introduce new types of parametric activation functions
which are not linear (as was done by Geadah et al. (2020)), or even spiking neurons. This
would amount to designing a brand-new parametric activation functions, the parameters
of which could thus be more powerful than simple slope and bias. It would also be
of interest to look at sharing activation function parameters per layer, especially in
convolution layers, as this would essentially result in scaling the filters. One could also
build a neuromodulatory signal per-layer rather than for the whole network, allowing
for more complex forms of modulation (similarly to what is proposed by Tsuda et al.
(2021)). Furthermore, it would be interesting to see if, with such a scheme, continuity
in the neuromodulatory signal (with respect to the task) would be preserved.



8.4. Results 106

Fourth, it would be a logical progression to tackle other benchmarks to see if the
observations made here hold true. More generally, analysing the neuromodulatory signal
to a greater depth (and its impact on activation functions) with respect to different
more complex tasks would be worthwhile. An interesting point raised in this work is
that, for some tasks, neurons have been shown to have a scaling factor of zero, making
their activation constant with respect to the input. Generally, any neuron that has a
constant output can be pruned if the corresponding offset is added to its connected
neurons. This has two interesting implications. First, some neurons have a scale factor
of zero for all of the tasks and thus, by using this information, one could prune the main
network without losing performance. One could think of decomposition based methods
for feature selection, which would attribute a null importance to such neurons. Second,
neurons having a zero-scale factor for some tasks essentially leads to only a sub-network
being used for the given task. It would be interesting to discover if very different sub-
networks would emerge when an NMN is trained on tasks with fewer similarities than
those used in this work.

Fifth, it is also worth noting that some similar neuromodulatory concepts could be used
in different ways. For example, it would be interesting to try the MAML for which
only neuromodulatory parameters would be modified at test-time. Finally, we should
emphasize that even if the results obtained by the NMN architecture are good and also
rather robust with respect to a large choice of parameters, further research is certainly
still needed to better characterise the NMN performances.



PART IV

Conclusion

107





Chapter 9

Conclusion and future works

This Part concludes the thesis and tries to provide future works ideas. In particular,
this thesis was articulated along two main parts:

• while Part II focused on the analysis of RNN dynamics for long-term memory,
• Part III looked at neuromodulatory principles in ANNs, and more specifically for

adaptation purposes.

As such, the main findings for both parts will be respectively presented in Section 9.1
and 9.2. Concerning future works, taking inspiration from the works presented in Part II,
some potential ideas revolving around RNNs will be presented in Section 9.1.

Finally, more global comments on this thesis will be made and in particular, it will be
argued that Part II and Part III are more linked than it would first appear. Therefore,
to end this thesis, Section 9.3 provides a discussion about the connections that exist
between both parts, from which potential future works concerning neuromodulation in
ANNs will be proposed, aiming to further close this gap.

9.1 Fixed points and long-term memory in RNNs

In the first Part of this thesis, particular attention was given to RNNs and the difficulties
of training such networks. Notably, it was first discussed that problems can frequently
arise when dealing with longer data sequences. It was also discussed that control theory
could well be used to analyse the dynamics of trained RNNs, providing valuable insights
on the inner workings of such networks. Following these discussions, a new recurrent
bistable cell (called BRC, or nBRC for its neuromodulated version) was introduced. The
proposed BRC was biologically inspired and built through control theory to promote
bi-stability. Finally, Part II introduced a technique for warming up RNNs and improve
their ability to learn long-term dependancies, while allowing for the usage of usual
recurrent cells such as GRUs and LSTMs. The main findings of these works are presented
hereunder in Subsection 9.1.1 before the description of potential related future works
in Subsection 9.1.2.

109



9.1. Fixed points and long-term memory in RNNs 110

9.1.1 Main findings

Thanks to multiple recent works, it is known that initial (before training) dynamics of
RNNs are important (Tallec & Ollivier, 2018; Jing et al., 2019; Pascanu et al., 2013).
Nevertheless, how one should initialise RNNs to obtain optimal training performance
remains an open question. More precisely, parameters play different roles for each type
of recurrent cell, and different benchmarks might benefit from different dynamics. Due
to the non-linearity of such cells and to the complex nature of RNNs, it is extremely
difficult to fully grasp the effect of different initialisations for a given cell, let alone to
come up with generic well-working initialisation rules.

Furthermore, it was also recently shown that trained neural networks rely heavily on
fixed points to compute their predictions (Sussillo & Barak, 2013; Ceni et al., 2020;
Maheswaranathan et al., 2019).

Both works presented in Part II focused on the fixed points characteristics of RNNs at
initialisation, aiming to improve training of RNNs on long-term memory benchmarks.
In particular it was highlighted that, for such problems, a decrease in loss was highly
correlated with an increase in the number of attractors possessed by the network. It was
also shown that, with standard initialisation, RNNs built with usual recurrent cells (such
as GRUs) are mono-stable. Throughout Chapter 5 and 6, it was shown that RNNs with
multi-stability properties at initialisation were able to easily learn much longer time-
dependencies. As such, one of the main findings of Part II lies in the importance of
building RNNs such that they possess multiple attractors at initialisation. This can
specifically be done by building new recurrent cells (as done with BRCs in Chapter 5)
or by using a different initialisations for more usual cells. Chapter 6 focused on the
latter and showed that it is possible to build a proxy measure which allows to maximise
the number of attractors in an RNN, independently of the recurrent cells used.

9.1.2 Future works

Both bistable cells and warm up provide interesting avenues of research in their own
rights and these have been respectively discussed in Chapter 5 and 6. One such import-
ant avenue is that it would be highly interesting to use the long-term memory char-
acteristics of BRCs and warm-up to tackle partially observable reinforcement learning
with sparse observations. In such setting, relevant information should be remembered
for many time-steps by the agent. If the agent is modelled as an RNN and initialised
to be multi-stable, the experiments of Part II suggest that it should be easier for it to
learn how to remember this information. As such, this framework might be extremely
relevant when it comes to further testing and using BRCs as well as warm-up.



9.1. Fixed points and long-term memory in RNNs 111

More general directions, following similar lines of work than those of Chapter 5 and 6,
will now be discussed.

In particular, the interest of linking non-linear control theory and RNNs was highlighted
and it might be extremely beneficial to pursue such line of research further. Indeed, while
this work focused solely on attractors, other dynamical properties of RNNs could surely
be of interest. Amongst others, transient dynamics and saddle points are known to be
highly relevant for RNNs’ predictions as well. Studying these properties more thoroughly
could lead to the development of new recurrent cells or to the further improvements of
existing ones.

Finally, the variability amongst attractors (presented in Chapter 6) suggested a very
interesting observation. Naturally, the deeper an RNN becomes (that is, the more
recurrent layers are stacked), the slower its convergence in phase space might become
(convergence of layer n requires convergence of layer n − 1). As such, of particular
interest would be a deeper analysis through control theory on the effect of stacking
recurrent layers for RNN dynamics. This could be compared to the effect of widening
such layers (i.e. increasing their number of neurons). This could also lead to a very
interesting study on the effect of parallelising recurrent layers, like was done with the
double-layer architecture presented in Chapter 6. Indeed, it was shown that it can be of
interest to build multiple “sub layers” with different dynamical properties at the same
depth of a network. This hints that it could also be of interest to study the dynamics of
RNNs built with parallel layers, sequential layers and more specifically, a mix of both.

9.2 Neuromodulation in neural networks

Neuromodulation in artificial neural networks was the centrepiece of the second Part of
this thesis. From a biological viewpoint, neuromodulation is often seen as an important
factor for adaptative behaviours. It is thus logical that neuromodulatory principles
in neural networks are often used for similar purposes. As such, a small overview of
different ways to incorporate neuromodulation in ANNs for adaptation was presented
in Chapter 8, from which it appeared that neuromodulation has often been associated to
meta-learning and meta-reinforcement learning. This part focused on the latter setting
and introduced a new neuromodulated architecture, called NMN. Subsection 9.2.1 will
now highlight the main findings of the experiments carried with NMNs.



9.2. Neuromodulation in neural networks 112

9.2.1 Main findings

In Chapter 8, it was shown that NMNs allow for much improved adaptive capabilities
over more standard networks. In particular, they were shown to greatly reduce the
variance of the training process on some meta-RL navigation benchmarks. This is of
great interest as, due to the complexity of the setting, results of different runs on these
benchmarks were shown to be vastly different when using more usual recurrent neural
networks in the RL2 framework. Furthermore, for some of the benchmarks, NMNs were
also shown to achieve better average rewards in addition to the reduced variance.

It is also interesting to note that, thanks to their structure, NMNs separate contex-
tual inputs and “instantaneous” observations. As such, the neuromodulatory networks
were shown to implicitly learn to encode the context of the task at hand through the
contextual inputs. Interestingly, the encoding of the neuromodulatory network was
continuous with respect to the different tasks. That is, similar tasks got mapped to
similar neuromodulatory signals, and consequently, similar neuromodulatory parameters
of the predictive network. Effectively, this highlighted some sort of continuity in the
predictive network’s activation functions’ properties.

Finally, it was also discussed that for simple enough tasks, these parameters con-
verge as the number of interactions with the environment increases. After convergence,
these parameters could be frozen while maintaining good performance of the agent,
highlighting that the neuromodulatory network is exclusively used for adaptation. All
these findings lead to think that using architectures specifically designed for adaptation
provide great benefits in such settings. The interests of designing such architectures are
also supported by more recent works, such as that of Beaulieu et al. (2020).

For follow-up ideas immediately related to the neuromodulatory architecture proposed
in Chapter 8, the reader is referred to the summary of that chapter. The next Section
aims at linking both parts of this thesis by taking a more global view on neuromodu-
lation in ANNs and consequently, providing more general avenues of research for using
neuromodulatory principles in ANNs.

9.3 Closing the gap

Contextualising similarities Both parts of this thesis can be linked through Chapter 5
and 8, for which activation functions were tackled as the main subject of interest. Indeed,

• in Chapter 5, BRCs were proposed as a new recurrent cell. Consequently, the
chapter focused on the study of recurrent update rules, which can be described
as the composition of multiple sequential activation functions.



9.3. Closing the gap 113

• On the other hand, Chapter 8 introduced parameterised versions of usual activa-
tion functions, such that they could be adapted dynamically.

To close the loop and make the link between both of these works, one should look at
the BRCs’ update rule as a single, parameterised activation function. As a reminder,
the rule writes (Equation 5.2),

ht = ct � ht−1 + (1− ct)� tanh(Uxt + at � ht−1) .

As such, c and a can be considered as being the two parameters of the update (or
equivalently, activation function). In Chapter 5, two methods for computing these
parameters were discussed.

• The first, leading to the BRC, did so by keeping the cellular memory constraint,
• while the other, leading to the nBRC, did so by relaxing this constraint and

introducing recurrent neuromodulation.

This neuromodulation is analogous to that discussed in Chapter 8 of this thesis, in
that, both methods use the outputs of neurons to modulate activation functions of
some other neurons. As such, it is interesting to note that usual gated cells can well be
seen as particular cases of neuromodulation (although more difficult to interpret due to
their non-cellular memory).

Future lines for research Now that this link has been highlighted, it is interesting to
discuss the potential research topics that could result from it.

One obvious line would be to target the parameters of BRCs using a similar neuromod-
ulatory architecture than that of the NMN and ANML. That is, a totally separate
neuromodulatory network could be used to compute gates parameters, which could
consequently lead to new types of gated recurrent architectures with more usual cells,
for which gates’ activations would be computed through a separate network.

Other types of recurrent activation functions could also be thought of. In particular,
Geadah et al. (2020) introduced such kind of parameterised cells. In their work, para-
meters are kept static, and it would be very interesting to see if benefits would arise
from making them depend on a dynamic neuromodulatory signal.



9.3. Closing the gap 114

Furthermore, in the same work, the authors analyse the different behaviours of those
recurrent cells with respect to their parameters. In a similar vein, it would be interesting
to use some of the control tools discussed in Chapter 6 to understand the impact of
neuromodulation on the dynamics of such networks. In particular, this kind of analysis
could well be performed for networks where BRCs’ parameters would be the target
of a neuromodulatory network. For example, it would be expected that for different
neuromodulatory signals, attractors of such networks would vary widely.

Finally, many other neuromodulatory schemes could be thought of, notably that pro-
posed by Tsuda et al. (2021). In that work, the authors show that using a single
neuromodulating signal value on different subnetworks within an ANN, depending on
the task, can be more beneficial than using different values for the whole network.
As such, it could be particularly interesting to study the effect of computing different
neuromodulatory signals, each of which would impact different subparts of the predictive
network. Going even one step further, one could even potentially link this to parallel
recurrent architectures, for which each parallel sub-layer would be neuromodulated to
have different dynamical properties.



9.3. Closing the gap 115

A final word

Overall, this thesis tried to propose some novel methods for ANNs by taking inspir-
ation from important biological concepts. In particular, very high level abstraction of
neuromodulatory principles, as well as neuronal behaviours (such as bi-stability) were
introduced and proved to exhibit different benefits.

There currently exists a rise in interest for the biological plausibility of artificial net-
works. Examples of this are the different works about neuromodulation cited in Part III,
the quick increase in popularity of spiking neural networks and the multiple works
aiming specifically at reconciling usual models with biological concepts (Bengio et al.,
2015; Miconi, 2017; Bellec et al., 2019).

In this vein, using control theory to extract high-level abstractions of important bio-
logical concepts is highly relevant. Indeed this thesis showed that integrating these
abstractions in deep networks could be pertinent. As such, further pursuing this ap-
proach for other topics might also be beneficial and is well in concordance with recent
works in the literature.

Integration of these high-level abstractions in usual machine learning models and frame-
works remains the most arduous task. Obviously, there are often many different inter-
pretations to those abstractions and consequently, multiple ways to pursue such integra-
tion. This can be attested by the multiple different ways neuromodulation has recently
been used in deep neural networks. While some of these methods share similarities, they
all remain quite different however, despite still being associated to the same biological
concept. In this thesis, and other works towards biological plausibility as well, recurrent
neural networks have proven to be an extremely powerful and versatile tool to integrate
these abstractions.

As such and as a final note, due to the well defined link between control theory, biological
neurons and recurrent neural networks (which could, theoretically, allow for the discrete
simulation of biological neurons), mixing all three topics could provide extremely new
valuable lines of research and this should certainly continue to be explored.

Hopefully, this was successfully highlighted throughout this thesis.





PART V

Supplementary material

117





Appendix A

Supplementary material for
Chapter 3

A.1 Modelling a multivariate Gaussian with ANN and com-
puting KL divergence

*This explanation comes from Vecoven et al. (2020).

We now detail how to compute the KL divergence used in the PPO loss described in
Chapter 3. First, let us stress that we have chosen to work with multi-variate Gaussian
policies for the actor. This choice is particularly well suited for MDPs with continuous
action spaces. The approximation architecture of the actor will therefore not directly
output an action, but the means and standard deviations of an m-dimensional multi-
variate Gaussian from which the actor’s policy can be defined in a straightforward way.
For each dimension, we bound the multi-variate Gaussian to the support, A, by playing
the action that is clipped to the bounds of A whenever the multi-variate Gaussian is
sampled outside of A. In the remaining of this section, we will sometimes abusively use
the terms "output of the actor at time t of episode i" to refer to the means vector µθki,t
and the standard deviations vector σθki,t that the actor uses to define its probabilistic
policy at time-step t of episode i. Note that we have chosen to work with a diagonal
covariance matrix for the multi-variate Gaussian distribution. Its diagonal elements
correspond to those of the vector σθki,t . We can then compute the KL divergence in each
pair [i, t] following the well-established formula:

KL(πθk(·|si,t), πθ(·|si,t)) =

1

2
{tr(Σ−1

θ,i,tΣθk,i,t) + (µθi,t − µ
θk
i,t)

TΣ−1
θ,i,t(µ

θ
i,t − µ

θk
i,t)− k + ln(

|Σθ,i,t|
|Σθk,i,t|

)} (A.1)

where Σθk,i,t,Σθ,i,t are the diagonal covariance matrices of the two multi-variate Gaus-
sian distributions πθk(·|si,t), πθ(·|si,t) that can be derived from σθki,t and σθi,t. The loss
function Lvanilla can be expressed as a function of Σθk,i,t, Σθ,i,t, µθi,t and µθki,t when
working with a multi-variate Gaussian. To this end, we use the log-likelihood function

119



A.1. Modelling a multivariate Gaussian with ANN and computing KL divergence120

ln (πθ(ai,t|si,t)), which gives the log-likelihood of having taken action ai,t given a state
si,t. In the case of a multi-variate Gaussian, ln (πθ(ai,t|si,t)) is defined as:

ln (πθ(ai,t|si,t)) = −1

2
(ln(|Σθ,i,t|)+(ai,t−µθi,t)T ∗Σ−1

θ,i,t∗(ai,t−µ
θ
i,t)+m∗ ln(2∗π)) (A.2)

where m is the dimension of the action space and where |Σθ,i,t| represents the determ-
inant of the matrix. From this definition, one can rewrite Lvanilla as:

Lvanilla(hi,t; θ) = −eln (πθ(ai,t|si,t))−ln (πθk (ai,t|si,t)) ∗GAEit . (A.3)

By merging equation (A.3), (A.2) and equation (3.5), one gets a loss L that depends
only on Σθk,i,t, Σθ,i,t, µθi,t and µ

θk
i,t.



Appendix B

Supplementary material for
Chapter 5

B.1 Proof of bistability for BRC and nBRC for at > 1

Theorem B.1.1. The system defined by the equation

ht = cht−1 + (1− c) tanh(Uxt + aht−1) = F (ht−1) (B.1)

with c ∈ [0, 1] is monostable for a ∈ [0, 1[ and bistable for a > 1 in some finite range of
Uxt centered around xt = 0.

Proof. We can show that the system undergoes a supercritical pitchfork bifurcation at
the equilibrium point (x0, h0) = (0, 0) for a = apf = 1 by verifying the conditions

G(h0)
∣∣
apf

= dG(ht)
dht

∣∣
h0,apf

= d2G(ht)
dh2t

∣∣
h0,apf

= dG(ht)
da

∣∣
h0,apf

= 0 (B.2)

d3G(ht)
dh3t

∣∣
h0,apf

> 0, d
2G(ht)
dhtda

∣∣
h0,apf

< 0 (B.3)

121



B.1. Proof of bistability for BRC and nBRC for at > 1 122

where G(ht) = ht − F (ht) (Golubitsky & Schaeffer (2012)). This gives

G(h0)
∣∣
apf

= (1− c)(h0 − tanh(apfh0)) = 0, (B.4)

dG(ht)

dht

∣∣∣∣
h0,apf

= (1− c)(apf (tanh2(apfh0)− 1) + 1) = (1− c)(1− apf ) = 0, (B.5)

d2G(ht)

dh2
t

∣∣∣∣
h0,apf

= (1− c)2a2
pf tanh(apfh0)(1− tanh2(apfh0)) = 0, (B.6)

dG(ht)

da

∣∣∣∣
h0,apf

= (1− c)h0(tanh(apfh0)2 − 1) = 0, (B.7)

d3G(ht)

dh3
t

∣∣∣∣
h0,apf

= (1− c) ∗ (2a3(tanh2(apfh0)− 1)2 + 4a3
pf tanh2(apfh0)(tanh2(apfh0)− 1))

= 2(1− c) > 0, (B.8)
d2G(ht)

dhtda

∣∣∣∣
h0,apf

= (1− c)((tanh2(apfh0)− 1) + 2apfh0 tanh(apfh0)(1− tanh2(apfh0)))

= c− 1 < 0. (B.9)

The stability of (x0, h0) for a 6= 1 can be assessed by studying the linearized system

ht =
dF (ht)

dht

∣∣∣∣
h0

ht−1. (B.10)

The equilibrium point is stable if dF (ht)/dht ∈ [0, 1[, singular if dF (ht)/dht = 1, and
unstable if dF (ht)/dht ∈]1,+∞[. We have

dF (ht)

dht

∣∣∣∣
h0

= c+ (1− c)a(1− tanh2(ath0)) (B.11)

= c+ (1− c)a, (B.12)

which shows that (x0, h0) is stable for a ∈ [0, 1[ and unstable for a > 1.

It follows that for a < 1, the system has a unique stable equilibrium point at (x0, h0),
whose uniqueness is verified by the monotonicity of G(ht) (dG(ht)/dht > 0∀ht).

For a > 1, the point (x0, h0) is unstable, and there exist two stable points (x0,±h1)
whose basins of attraction are defined by ht ∈] −∞, h0[ for −h1 and ht ∈]h0,+∞[ for
h1.



Appendix C

Supplementary material for
Chapter 8

C.1 Detailed description of benchmark 2 and 3

Before defining the three benchmark problems, let us remind that for each benchmark,
the MDPs that belong to the support of η, which generates the different tasks, have
transition probabilities and reward functions that differ only according to the value of a
scalar α. Drawing an MDP according to η will amount for all the benchmark problems
to draw a value of α according to a probability distribution Pα(·) and to determine the
transition function and the reward function that correspond to this value. Let us also
denote by X and A the state and action spaces respectively.

C.1.1 Benchmark 2

State space and action space:
X = [−3.0, 3.0]2

A = R

123



C.1. Detailed description of benchmark 2 and 3 124

Probability distribution of α:

α[i] ∼ U [−1.0, 1.0], ∀i ∈ [1, 2]

α[3] ∼ U [−π, π[

where U [a, b] stands for a uniform distribution between a and b.

Initial state distribution:
The initial state x0 is drawn through 2 auxiliary random variables that represent the
x and y initial coordinates of the agent and are denoted ux0 , u

y
0. At the beginning of an

episode, those variables are drawn as follows:

uk0 ∼ U [−1.5 ∗ π, 1.5 ∗ π] ∀k ∈ {x, y}

From those four auxiliary variables, we define x0 as:

x0 = [α[1]− ax0 ,α[2]− a
y
0]

The distribution Px0(·) is thus fully given by the distributions over the auxiliary vari-
ables.

Transition function:
First, let target be the set of points (x, y) ∈ R2 such that

(x, y) ∈ target⇔
√

(x−α[1])2 + (y −α[2])2 ≤ 0.4 .

When taking action at in state xt drawing the state xt+1 from the transition function
amounts to first compute uxt+1 and uyt+1 according to the following procedure:

1. If (uxt , u
y
t ) ∈ target then ukt+1 ∼ U [−1.5, 1.5] ∀k ∈ {x, y} .

2. If the preceding condition is not met, an auxiliary variable nt ∼ U [−π4 ,
π
4 ] is drawn

to compute uxt+1 and uyt+1 through the following sub-procedure:
(a) Step one:

uxt+1 = uxt + 0.25 ∗ (sin(at) + sin(α[3] + nt))

uyt+1 = uxt + 0.25 ∗ (cos(at) + cos(α[3] + nt)) .

One can see that taking an action at moves the agent in a direction which
is the vectoral sum of the intended move mt of direction at and of a per-
turbation vector pt of direction α+nt sampled through the distribution over
nt.



C.1. Detailed description of benchmark 2 and 3 125

(b) Step two: In the case where the coordinates computed by step one lay outside
S[−2; 2]2, they are corrected so as to model the fact that when the agent
reaches an edge of the 2D space, it is moved to the opposite edge from which
it continues its move. More specifically, ∀k ∈ {x, y}:

ukt+1 ←


ukt+1 − 4 if ukt+1 > 2

ukt+1 + 4 if ukt+1 < −2

ukt+1 otherwise .

Once uxt+1 and uyt+1 have been computed, xt+1 is set equal to [α[1]−uxt+1,α[2]−u
y
t+1].

Reward function:
The reward function can be expressed as follows:

ρ(at, xt, xt+1) =

100 if (uxt , u
y
t ) ∈ target

−2 otherwise .

C.1.2 Benchmark 3

State space and action space:
X = [−2.5, 2.5]4

A = R

Probability distribution of α:

α[i] ∼ U [−1.0, 1.0], ∀i ∈ [1, 2, 3, 4]

α[5] ∼ U{−1, 1}

Note that α[1, 2, 3, 4] define the 2-D positions of two targets. For clarity, we will refer
to these values respectively by αx1 ,αy1 ,αx2 and αy2 .



C.1. Detailed description of benchmark 2 and 3 126

Initial state distribution:
The initial state x0 is drawn through two auxiliary random variables that represent the
x and y initial coordinates of the agent and are denoted ux0 , u

y
0. At the beginning of an

episode, those variables are drawn as follows:

uk0 ∼ U [−1.5, 1.5] ∀k ∈ {x, y} .

From those six auxiliary variables, we define x0 as:

x0 = [αx1 − ux0 , αy1 − u
y
0, α

x2 − ux0 , αy2 − u
y
0] .

Transition function:
For all i ∈ {1, 2} let targeti be the set of points (x, y) ∈ R2 such that√

(x− αxi)2 + (y − αyi)2 ≤ 0.4 .

When taking action at in state xt, drawing the state xt+1 from the transition function
amounts to first compute uxt+1 and uyt+1 according to the following procedure:

1. If ∃i ∈ {1, 2} : (uxt , u
y
t ) ∈ targeti, which means that the agent is in one of the two

targets, then ukt+1 ∼ U [−1.5, 1.5] ∀k ∈ {x, y}
2. If the preceding condition is not met, uxt+1 and uyt+1 are computed by the following

sub-procedure:
(a) Step one:

uxt+1 = uxt + sin(at ∗ π) ∗ 0.25

uyt+1 = uyt + cos(at ∗ π) ∗ 0.25 .

This step moves the agent in the direction it has chosen.
(b) Step two: In the case where the coordinates computed by step one lay outside

[−2; 2]2, they are corrected so as to model the fact that when the agent
reaches an edge of the 2D space, it is moved to the opposite edge from which
it continues its move. More specifically, ∀k ∈ {x, y}:

ukt+1 ←


ukt+1 − 4.0 if ukt+1 > 2

ukt+1 + 4.0 if ukt+1 < −2

ukt+1 otherwise .

Once uxt+1 and u
y
t+1 have been computed, xt+1 is set equal to [αx1−uxt+1, α

y1−uyt+1, α
x2−

uxt+1, α
y2 − uyt+1].



C.1. Detailed description of benchmark 2 and 3 127

Reward function:
In the case where (uxt , u

y
t ) either belongs to only target1, only target2 or none of them,

the reward function can be expressed as follows:

ρ(at, xt, xt+1) =


100 ∗α[5] if (uxt , u

y
t ) ∈ target1 ∧ (uxt , u

y
t ) 6∈ target2

−50 ∗α[5] if (uxt , u
y
t ) ∈ target2 ∧ (uxt , u

y
t ) 6∈ target1

0 if (uxt , u
y
t ) 6∈ target1 ∧ (uxt , u

y
t ) 6∈ target2 .

In the case where (uxt , u
y
t ) belongs to both target1 and target2, that is (uxt , u

y
t ) ∈

target1 ∧ (uxt , u
y
t ) ∈ target2, the reward function can be expressed as follows:

ρ(at, xt, xt+1) =

100 ∗α[5] if
√

(uxt − px1)2 + (uyt − py1)2 ≤
√

(uxt − px2)2 + (uyt − py2)2

−50 ∗α[5] otherwise .

That is, we consider that the agent belongs to the target to which it is closer to the
centre.

C.2 Architecture details

For conciseness, let us denote by fn a hidden layer of n neurons with activation functions
f , by → a connection between two fully-connected layers and by ( () a neuromodu-
latory connection (as described in Section 8.2).

Benchmark 1. The architectures used for this benchmark were as follows:

• RNN : GRU50 → ReLU20 → ReLU10 → I1

• NMN : GRU50 → ReLU20 ( (SReLU10 → I1)

Benchmark 2 and 3. The architectures used for benchmark 2 and 3 were the same and
as follows:

• RNN : GRU100 → GRU75 → ReLU45 → ReLU30 → ReLU10 → I1

• NMN : GRU100 → GRU75 → ReLU45 ( (ReLU30 → ReLU10 → I1)



C.2. Architecture details 128

C.3 Bayes optimal policy for benchmark 1

A Bayes optimal policy is a policy that maximises the expected sum of rewards it obtains
when playing an MDP drawn from a known distribution η. That is, a Bayes optimal
policy π∗bayes belongs to the following set:

π∗bayes ∈ arg max
π∈Π

E
M∼η

x0∼Px0
a·∼π(.)

x·∼PM(.,.)

RπM ,

with PM being the state-transition function of the MDP M and RπM the discounted sum
of rewardsobtained when playing policy π on M.

In the first benchmark, the MDPs only differ by a bias, which we denote α. Drawing an
MDP according to η amounts to draw a value of α according to a uniform distribution
of α over [−αmax, αmax], denoted by Uα, and to determine the transition function and
the reward function that correspond to this value. Therefore, we can write the previous
equation as:

π∗bayes ∈ arg max
π∈Π

E
α∼Uα
x0∼Px0
a·∼π(.)

x·∼PM(α)(
.,.)

RπM ,

with M(α) being a function giving as output the MDP corresponding to α and Π the
set of all possible policies.

We now prove the following theorem.

Theorem C.3.1. The policy that selects:

1. at time-step t = 0 the action a0 = x0 + γ∗(αmax+4.5)
1+γ

2. at time-step t = 1

a) if r0 = 10, the action a1 = x1 + a0 − x0

b) else if |r0| > αmax − (a0 − x0) ∧ a0 − x0 > 0, the action a1 = a0 + r0

c) else if |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0, the action a1 = a0 − r0

d) and otherwise the action a1 = a0 + r0 + 1

3. for the remaining time-steps:
a) if r0 = 10, the action at = xt + a0 − x0

b) else if r1 = 10, the action at = xt + a1 − x1

c) and otherwise the action at = xt + it where it is the unique element of the
set {a0 − x0 + r0; a0 − x0 − r0} ∩ {a1 − x1 + r1; a1 − x1 − r1}

is Bayes optimal for benchmark 1.



C.3. Bayes optimal policy for benchmark 1 129

Proof. Let us denote by π∗theorem1 the policy described in this theorem. To prove this
theorem, we first prove that in the set of all possible policies Π there are no policy π
which leads to a higher value of

E
M∼η

x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(r0 + γ ∗ r1) (C.1)

than π∗theorem1. Or equivalently:

E
M∼η

x0∼Px0
a·∼π∗theorem1

(.)
x·∼PM(.,.)

(r0 + γ ∗ r1) ≥ E
M∼η

x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(r0 + γ ∗ r1) ∀π ∈ Π . (C.2)

Afterwards, we prove that the policy π∗theorem1 generates for each time-step t ≥ 2 a
reward equal to Rmax which is the maximum reward achievable, or written alternatively
as:

E
M∼η

x0∼Px0
a·∼π∗bayes(

.)

x·∼PM(.,.)

(

∞∑
t=2

γt ∗ rt) =

∞∑
t=2

γt ∗Rmax ≥ E
M∼η

x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(

∞∑
t=2

γt ∗ rt) ∀π ∈ Π . (C.3)

By merging (C.2) and (C.3), we have that

E
M∼η

x0∼Px0 (.)

a·∼πtheorem1(.)
x·∼PM(.,.)

(
∞∑
t=0

γt ∗ rt) ≥ E
M∼η

x0∼Px0 (.)

a·∼π(.)
x·∼PM(.,.)

(
∞∑
t=0

γt ∗ rt) ∀π ∈ Π

which proves the theorem.

. Part 1. Let us now prove inequality (C.2). The first thing to notice is that, for a
policy to maximise expression (C.1), it only needs to satisfy two conditions for all x0. The
first one: to select an action a1, which knowing the value of (x0, a0, r0, x1), maximises
the expected value of r1. We denote by V1(x0, a0, r0, x1) the maximum expected value
of r1 that can be obtained knowing the value of (x0, a0, r0, x1). The second one: to
select an action a0 knowing the value of x0 that maximises the expected value of the
sum r0 + γV1(x0, a0, r0, x1). We now show that the policy πtheorem1 satisfies these two
conditions.



C.3. Bayes optimal policy for benchmark 1 130

Let us start with the first condition that we check by analysing four cases, which
correspond to the four cases a), b), c), d) of policy πtheorem1 for time step t = 1.

a) If r0 = 10, the maximum reward that can be obtained, we are in a context where a0

belongs to the target interval. It is easy to see that, by playing a1 = x1 + a0−x0,
we will obtain r1 equal to 10. This shows that in case a) for time step t = 1,
πtheorem1 maximises this expected value of r1.

b) If |r0| > αmax− (a0− x0) ∧ a0− x0 > 0 and r0 6= 10 it is easy to see that the
value of α to which the MDP corresponds can be inferred from (x0, a0, r0) and
that the action a1 = a0 + r0 will fall in the middle of the target interval, leading
to a reward of 10. Hence, in this case also, the policy πtheorem1 maximises the
expected value of r1.

c) If |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0 and r0 6= 10, we are also in a
context where the value of α can be inferred directly from (x0, a0, r0) and the
action a1 = a0 − r0 targets the centre of the target interval, leading to a reward
of 10. Here again, πtheorem1 maximises the expected value of r1.

d) When none of the three previous conditions is satisfied, a is not satisfied and so
x1 = x0, we need to consider two cases: (a0 − x0) ≥ 0 and (a0 − x0) < 0. Let us
first start with (a0−x0) ≥ 0. In such a context, α ∈ {a0−x0 + r0; a0−x0− r0} =

{a0 − x0 − |a0 − x0 − α|, a0 − x0 + |a0 − x0 − α|} and where:
1) P (α = a0 − x0 − |a0 − x0 − α||x0, a0, r0, x1) = 0.5

2) P (α = a0 − x0 + |a0 − x0 − α||x0, a0, r0, x1) = 0.5 .

Let us now determine the action a1 that maximises r̂1, the expected value of r1

according to P (α|x0, a0, r0, x1). Five cases, represented on Figure C.1, have to be
considered:
1) a1 < a0 − |a0 − x0 − α| − 1. Here r̂1 = a1 − a0 and the maximum of r̂1 is

equal to −|a0 − x0 − α| − 1.
2) a1 ∈ [a0−|a0−x0−α|− 1, a0−|a0−x0−α|+ 1]. Here we have r̂1 = 1

2(10 +

a0−|a0−x0−α|−a1) whose maximum over the interval is 5.5−|a0−x0−α|
which is reached for a1 = a0 + |a0 − x0 − α| − 1.

3) a1 ∈ [a0−|a0−x0−α|+1, a0+|a0−x0−α|−1]. In this case r̂1 = −|a0−x0−α|
and is independent from a1.

4) a1 ∈ [a0 + |a0 − x0 − α| − 1, a0 + |a0 − x0 − α| + 1]. The expected reward
is r̂1 = 1

2(10 + a0 − |a0 − x0 − α| − a1) whose maximum over the interval is
5.5− |a0 − x0 − α| which is reached for a1 = a0 + |a0 − x0 − α|+ 1.

5) a1 > a0 + |a0 − x0 − α|+ 1. In this case the expected reward is r̂1 = a0 − a1

and the maximum of r̂1 is equal to −|a0 − x0 − α| − 1.



C.3. Bayes optimal policy for benchmark 1 131

a0

x0

|r0||r0|

α

1 2 3 4 5

Figure C.1: Graphical representation of the 5 different cases when playing a1.

From 1), 2), 3), 4) and 5) one can see that, given the conditions considered here, an
optimal policy can either play a1 = a0+|a0−x0−α|−1 or a1 = a0−|a0−x0−α|+1.
In the following we will fix a1 to a0 + |a0 − x0 − α|+ 1 when a0 − x0 ≥ 0. Let us
also observe that the expected value of r1 is equal to 5.5 − |a0 − x0 − α|. Up to
now in this item d), we have only considered the case where (a0− x0) > 0. When
(a0 − x0) ≤ 0, using the same reasoning we reach the exact same expression for
the optimal action to be played and for the maximum expected return of r1. This
is due to the symmetry that exists between both cases. Since πtheorem1 plays the
action a1 = a0 + r0 + 1 = a0 − |a0 − x0 − α| + 1 in the case d) at time step 1,
it is straightforward to conclude that, in this case, it also plays an action that
maximises the expected value of r1.

Now that the first condition for πtheorem1 to maximise expression (C.1) has been proved,
let us turn our attention to the second one. To this end, we will compute for each x0 ∈ X ,
the action a0 ∈ A that maximises:

E
α∼Uα

x1∼PM(α)(x0,a0)

(r0 + γ ∗ V1(x0, a0, r0, x1)) (C.4)

and show that this action coincides with the action taken by πtheorem1 for time step
t = 0. First let us observe that for this optimisation problem, one can reduce the search
space A to [x0 − αmax + 1, x0 + αmax − 1] ⊂ A. Indeed, an action a0 that does not
belong to this latter interval would not give more information about α than playing
a0 = x0 − αmax + 1 or x0 + αmax − 1 and lead to a worse expected r0. This reduction
of the search space will be exploited in the developments that follow.

However, we should first remember that Uα = U [−αmax, αmax] and that the function
V1(x0, a0, r0, x1) can be written as follows:

1. if r0 = 10, V1 is equal to Rmax = 10

2. else if |r0| > αmax − (a0 − x0) ∧ a0 − x0 > 0 and r0 6= 10, then V1 is equal to
Rmax = 10



C.3. Bayes optimal policy for benchmark 1 132

3. else if |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0 and r0 6= 10, then V1 is equal to
Rmax = 10

4. and otherwise V1 is equal to 5.5− |a0 − x0 − α|.

We note that the value of V1(x0, a0, r0, x1) does not depend on the state x1, which allows
us to rewrite expression (C.4) as follows:

E
α∼Uα

(r0 + γ ∗ V1(x0, a0, r0, x1)) (C.5)

and since the expectation is a linear operator:

(C.5) = E
α∼Uα

(r0) + γ ∗ E
α∼Uα

(V1(x0, a0, r0, x1)) . (C.6)

Let us now focus on the second term of this sum:

E
α∼Uα

(V1(x0, a0, r0, x1)) . (C.7)

We note that when a0 − x0 ≥ 0 the function V1 can be rewritten under the following
form:

1. if α ∈ [−αmax, 2 ∗ (a0 − x0)− αmax[, V1 is equal to 10
2. else if α ∈ [2 ∗ (a0 − x0)− αmax, a0 − x0 − 1], v1 is equal to 5.5 + α− (a0 − x0)

3. else if α ∈ [a0 − x0 − 1, a0 − x0 + 1], V1 is equal to 10

4. else if α ∈]a0 − x0 + 1, αmax], V1 is equal to 5.5− α+ (a0 − x0).

From here, we can compute the value of expression (C.7) when a0 − x0 ≥ 0. We note
that due to the symmetry that exists between the case a0 − x0 ≥ 0 and a0 − x0 ≤ 0,
expression (C.7) will have the same value for both cases. Since we have:

(C.7) =

∫ ∞
−∞

V1 ∗ pα ∗ dα

where pα is the probability density function of α, we can write:

(C.7) =

∫ αmax

−αmax
V1 ∗

1

2 ∗ αmax
dα

=

∫ 2∗(a0−x0)−αmax

−αmax

10

2 ∗ αmax
dα+

∫ a0−x0−1

2∗(a0−x0)−αmax

5.5 + α− (a0 − x0)

2 ∗ αmax
dα

+

∫ a0−x0+1

a0−x0−1

10

2 ∗ αmax
dα+

∫ αmax

a0−x0+1

5.5− α+ (a0 − x0)

2 ∗ αmax
dα .

And thus, by computing the integrals, we have:



C.3. Bayes optimal policy for benchmark 1 133

E
α∼Uα

(V1) = − 1

2 ∗ αmax
(a0 − x0)2 +

1

αmax
(αmax + 4.5) ∗ (a0 − x0)

+
1

αmax
(5 + 5.5 ∗ αmax −

α2
max

2
) .

Let us now analyse the first term of the sum in equation (C.6), namely E
α∼Uα

(r0).

We have that:
E

α∼Uα
(r0) =

∫ ∞
−∞

(r0|x0, a0, α) ∗ pα ∗ dα

which can be rewritten as:

E
α∼Uα

(r0) =

∫ αmax

−αmax
(r0|x0, a0, α) ∗ 1

2 ∗ αmax
dα .

Due to the reduction of the search space, we can assume that a0 belongs to [x0−αmax+

1, x0 + αmax − 1], we can write:∫ αmax

−αmax
(r0|x0, a0, α) ∗ 1

2 ∗ αmax
dα =

∫ a0−x0−1

−αmax

α− (a0 − x0)

2 ∗ αmax
dα

+

∫ a0−x0+1

a0−x0−1

10

2 ∗ αmax
dα+

∫ αmax

a0−x0+1

(a0 − x0)− α
2 ∗ αmax

dα .

Given that Rmax = 10, we have:

E
α∼Uα

(r0) =
−(a0 − x0)2 + 21− α2

max

2 ∗ αmax

and therefore:

(C.6) = − 1 + γ

2 ∗ αmax
∗ (a0 − x0)2 +

γ

αmax
(αmax + 4.5) ∗ (a0 − x0)

+
1

2 ∗ αmax
(21− α2

max + γ ∗ (10 + 11 ∗ αmax − α2
max)) .

To find the action a0 that maximises (C.4), one can differentiate (C.6) with respect to
a0:

d(C.6)

d(a0)
= − 1

αmax
∗ (1 + γ)(a0 − x0) +

γ

αmax
(αmax + 4.5) .



C.3. Bayes optimal policy for benchmark 1 134

This derivative has a single zero value equal to:

a0 =
γ ∗ (αmax + 4.5)

1 + γ
+ x0 .

It can be easily checked that it corresponds to a maximum of expression (C.4) and since
it also belongs to the reduced search space [x0−αmax+1, x0 +αmax−1], it is indeed the
solution to our optimisation problem. Since πtheorem1 plays this action at time t = 0,
Part 1 of this proof is now fully completed.

. Part 2. Let us now prove that the policy π∗theorem1 generates for every t ≥ 2 rewards
equal to Rmax = 10. We will analyse three different cases, corresponding to the three
cases a), b) and c) of policy πtheorem1 for time step t ≥ 2.

a) If r0 = 10, we are in a context where a0 belong to the target interval. It is
straightforward to see that, by playing at = xt + a0 − x0, the action played by
πtheorem1 in this case, we will get a reward rt equal to 10.

b) If r1 = 10 and r0 6= 10, one can easily see that playing action at = xt + a1 − x1,
the action played by πtheorem1, will always generate rewards equal to 10.

c) If r0 6= 10 and r1 6= 10, it is possible to deduce from the first action a0 that
the MDP played corresponds necessarily to one of these two values for α: {a0 −
x0 + r0; a0 − x0 − r0}. Similarly, from the second action played, one knows that
α must also stand in {a1 − x1 + r1; a1 − x1 − r1}. It can be proved that because
a0 6= a1 (a property of our policy πtheorem1), the two sets have only one element
in common. Indeed if these two sets had all their elements in common, either this
pair of equalities would be valid:

a0 − x0 + r0 = a1 − x1 + r1

a0 − x0 − r0 = a1 − x1 − r1

or this pair of equalities would be valid:

a0 − x0 + r0 = a1 − x1 − r1

a0 − x0 − r0 = a1 − x1 + r1 .

By summing member by member the two equations of the first pair, we have:

a0 − x0 = a1 − x1 .



C.3. Bayes optimal policy for benchmark 1 135

Taking into account that x0 = x1 because none of the two actions yielded a
positive reward, it implies that a0 = a1, which results in a contradiction. It can
be shown in a similar way that another contradiction appears with the second
pair. As a result the intersection of these two sets is unique and equal to α. From
here, it is straightforward to see that in this case c), the policy πtheorem1 will
always generate rewards equal to Rmax.

From Theorem C.3.1, one can easily prove the following theorem.

Theorem C.3.2. The value of expected return of a Bayes optimal policy for benchmark
1 is equal to 3∗γ2∗(αmax+4.5)2

2∗αmax∗(1+γ) + 21+α2
max+γ∗(10+11∗αmax−α2

max)
2∗αmax + γ2

1−γ ∗ 10.

Proof. The expected return of a Bayes optimal policy can be written as follows:

E
M∼η

x0∼Px0
a·∼π∗bayes(

.)

x·∼PM(.,.)

1∑
t=0

γt ∗ rt + E
M∼η

x0∼Px0
a·∼π∗bayes(

.)

x·∼PM(.,.)

∞∑
t=2

γt ∗ rt .

From the proof of Theorem C.3.1, it is easy to see that:

1. E
M∼η

x0∼Px0
a·∼π∗bayes(

.)

x·∼PM(.,.)

∑1
t=0 γ

t ∗ rt = 3∗γ2∗(αmax+4.5)2

2∗αmax∗(1+γ) + 21+α2
max+γ∗(10+11∗αmax−α2

max)
2∗αmax

2. E
M∼η

x0∼Px0
a·∼π∗bayes(

.)

x·∼PM(.,.)

∑∞
t=2 γ

t ∗ rt = γ2

1−γ 10

which proves Theorem C.3.2.





Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
Retrieved from http://tensorflow.org/ (Software available from tensorflow.org)

Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: taming the beast. Nature
neuroscience, 3(11), 1178–1183.

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation
functions to improve deep neural networks. arXiv preprint arXiv:1412.6830.

Arjovsky, M., Shah, A., & Bengio, Y. (2016). Unitary evolution recurrent neural
networks. In International conference on machine learning (pp. 1120–1128).

Barak, O. (2017). Recurrent neural networks as versatile tools of neuroscience research.
Current opinion in neurobiology , 46, 1–6.

Bargmann, C. I., & Marder, E. (2013). From the connectome to brain function. Nature
methods, 10(6), 483–490.

Beaulieu, S., Frati, L., Miconi, T., Lehman, J., Stanley, K. O., Clune, J., & Cheney, N.
(2020). Learning to continually learn. arXiv preprint arXiv:2002.09571.

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-
term memory and learning-to-learn in networks of spiking neurons. In Advances in
neural information processing systems (pp. 787–797).

Bellec, G., Scherr, F., Hajek, E., Salaj, D., Legenstein, R., & Maass, W. (2019).
Biologically inspired alternatives to backpropagation through time for learning in
recurrent neural nets. arXiv preprint arXiv:1901.09049.

Bengio, Y., Frasconi, P., & Simard, P. (1993). The problem of learning long-term
dependencies in recurrent networks. In Ieee international conference on neural
networks (pp. 1183–1188).

Bengio, Y., Lee, D.-H., Bornschein, J., Mesnard, T., & Lin, Z. (2015). Towards
biologically plausible deep learning. arXiv preprint arXiv:1502.04156.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., . . . Shah,
R. (1993). Signature verification using a “siamese” time delay neural network.
International Journal of Pattern Recognition and Artificial Intelligence, 7(04), 669–
688.

Capogrosso, M., Milekovic, T., Borton, D., Wagner, F., Moraud, E., Mignardot, J.-B.,
. . . Courtine, G. (2016, 11). A brain–spinal interface alleviating gait deficits after
spinal cord injury in primates. Nature, 539, 284-288. doi: 10.1038/nature20118

137

http://tensorflow.org/


BIBLIOGRAPHY 138

Casas, N. (2017). Deep deterministic policy gradient for urban traffic light control.
arXiv preprint arXiv:1703.09035.

Ceni, A., Ashwin, P., & Livi, L. (2020). Interpreting recurrent neural networks behaviour
via excitable network attractors. Cognitive Computation, 12(2), 330–356.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the
properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling.

De Geeter, F., & Drion, G. (2021). Using multistability to solve fading memory problems
in reinforcement learning.

Dey, R., & Salemt, F. M. (2017). Gate-variants of gated recurrent unit (gru) neural
networks. In 2017 ieee 60th international midwest symposium on circuits and systems
(mwscas) (pp. 1597–1600).

Doya, K. (1993). Bifurcations of recurrent neural networks in gradient descent learning.
IEEE Transactions on neural networks, 1(75), 164.

Drion, G., O’Leary, T., Dethier, J., Franci, A., & Sepulchre, R. (2015). Neuronal
behaviors: A control perspective. In 2015 54th ieee conference on decision and control
(cdc) (pp. 1923–1944).

Drion, G., O’Leary, T., & Marder, E. (2015). Ion channel degeneracy enables robust
and tunable neuronal firing rates. Proceedings of the National Academy of Sciences,
112(38), E5361–E5370.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based batch mode reinforcement
learning. Journal of Machine Learning Research, 6, 503–556.

Finn, C., Abbeel, P., & Levine, S. (2017). Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning (pp.
1126–1135).

Franci, A., Drion, G., Seutin, V., & Sepulchre, R. (2013a). A balance equation
determines a switch in neuronal excitability. PLoS computational biology , 9(5).

Franci, A., Drion, G., Seutin, V., & Sepulchre, R. (2013b). A balance equation
determines a switch in neuronal excitability. PLoS computational biology , 9(5),
e1003040.

Garnelo, M., Rosenbaum, D., Maddison, C., Ramalho, T., Saxton, D., Shanahan, M.,
. . . Eslami, S. A. (2018). Conditional neural processes. In International conference
on machine learning (pp. 1704–1713).

Geadah, V., Kerg, G., Horoi, S., Wolf, G., & Lajoie, G. (2020). Advantages of
biologically-inspired adaptive neural activation in rnns during learning. arXiv preprint
arXiv:2006.12253.



BIBLIOGRAPHY 139

Geurts, P. (2002). Contributions to decision tree induction: bias/variance tradeoff
and time series classification (Unpublished doctoral dissertation). University of Liège
Belgium.

Golubitsky, M., & Schaeffer, D. G. (2012). Singularities and groups in bifurcation
theory (Vol. 1). Springer Science & Business Media.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . .
Bengio, Y. (2014). Generative adversarial networks. arXiv preprint arXiv:1406.2661.

Gu, S., Lillicrap, T., Sutskever, I., & Levine, S. (2016). Continuous deep q-learning
with model-based acceleration. In International conference on machine learning (pp.
2829–2838).

Ha, D., Dai, A., & Le, Q. V. (2016a). Hypernetworks. arXiv preprint arXiv:1609.09106.
Ha, D., Dai, A., & Le, Q. V. (2016b). Hypernetworks. arXiv preprint arXiv:1609.09106.
Ha, D., & Schmidhuber, J. (2018). World models. arXiv preprint arXiv:1803.10122.
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:

data mining, inference, and prediction. Springer Science & Business Media.
Henaff, M., Szlam, A., & LeCun, Y. (2016). Recurrent orthogonal networks and long-

memory tasks. In International conference on machine learning (pp. 2034–2042).
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735–1780.
Hospedales, T., Antoniou, A., Micaelli, P., & Storkey, A. (2020). Meta-learning in

neural networks: A survey. arXiv preprint arXiv:2004.05439.
Jing, L., Gulcehre, C., Peurifoy, J., Shen, Y., Tegmark, M., Soljacic, M., & Bengio, Y.

(2019). Gated orthogonal recurrent units: On learning to forget. Neural computation,
31(4), 765–783.

Jozefowicz, R., Zaremba, W., & Sutskever, I. (2015). An empirical exploration of
recurrent network architectures. In International conference on machine learning
(pp. 2342–2350).

Kakade, S. M. (2001). A natural policy gradient. Advances in neural information
processing systems, 14.

Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., . . . Levine,
S. (2018). Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation. arXiv preprint arXiv:1806.10293.

Katz, G. E., & Reggia, J. A. (2017). Using directional fibers to locate fixed points
of recurrent neural networks. IEEE transactions on neural networks and learning
systems, 29(8), 3636–3646.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Koch, G., Zemel, R., & Salakhutdinov, R. (2015). Siamese neural networks for one-shot
image recognition. In Icml deep learning workshop (Vol. 2).



BIBLIOGRAPHY 140

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems,
25, 1097–1105.

Lambrechts, G., & Ernst, D. (2021). Bistable recurrent cells and belief filtering for
q-learning in partially observable markov decision processes.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4), 541–551.

LeCun, Y., & Cortes, C. (2010). MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. Retrieved 2016-01-14 14:24:11, from http://

yann.lecun.com/exdb/mnist/

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint
arXiv:1312.4400.

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A critical review of recurrent neural
networks for sequence learning. arXiv preprint arXiv:1506.00019.

Liu, X., Yu, H.-F., Dhillon, I., & Hsieh, C.-J. (2020). Learning to encode position
for transformer with continuous dynamical model. In International conference on
machine learning (pp. 6327–6335).

Maheswaranathan, N., Williams, A. H., Golub, M. D., Ganguli, S., & Sussillo, D.
(2019). Reverse engineering recurrent networks for sentiment classification reveals
line attractor dynamics. Advances in neural information processing systems, 32,
15696.

Marder, E., Abbott, L., Turrigiano, G. G., Liu, Z., & Golowasch, J. (1996). Memory from
the dynamics of intrinsic membrane currents. Proceedings of the national academy
of sciences, 93(24), 13481–13486.

Marder, E., O’Leary, T., & Shruti, S. (2014). Neuromodulation of circuits with variable
parameters: single neurons and small circuits reveal principles of state-dependent and
robust neuromodulation. Annual review of neuroscience, 37, 329–346.

Marder, E., et al. (1996). Principles of rhythmic motor pattern generation. Physiological
reviews, 76(3), 687–717.

Marichal, R., PiÑeiro, J., González, E., & Torres, J. (2009). New approach of recurrent
neural network weight initialization. In Advances in computational algorithms and
data analysis (pp. 537–548). Springer.

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez,
C. A., . . . others (2015). Reconstruction and simulation of neocortical microcircuitry.
Cell, 163(2), 456–492.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/


BIBLIOGRAPHY 141

Miconi, T. (2017). Biologically plausible learning in recurrent neural networks
reproduces neural dynamics observed during cognitive tasks. Elife, 6, e20899.

Miconi, T., Rawal, A., Clune, J., & Stanley, K. O. (2020). Backpropamine: training
self-modifying neural networks with differentiable neuromodulated plasticity. arXiv
preprint arXiv:2002.10585.

Miconi, T., Stanley, K., & Clune, J. (2018). Differentiable plasticity: training plastic
neural networks with backpropagation. In International conference on machine
learning (pp. 3559–3568).

Mikolov, T., Sutskever, I., Deoras, A., Le, H.-S., Kombrink, S., & Cernocky, J. (2012).
Subword language modeling with neural networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8, 67.

Mitchell, T. M., & McGraw, H. (1997). Machine learning.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., . . . Kavukcuoglu,

K. (2016). Asynchronous methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928–1937).

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Moerland, T. M., Broekens, J., & Jonker, C. M. (2020). Model-based reinforcement
learning: A survey. arXiv preprint arXiv:2006.16712.

Murphy, K. P. (2022). Probabilistic machine learning: An introduction. MIT Press.
Retrieved from probml.ai

O’Leary, T., Williams, A. H., Caplan, J. S., & Marder, E. (2013). Correlations in
ion channel expression emerge from homeostatic tuning rules. Proceedings of the
National Academy of Sciences, 110(28), E2645–E2654.

O’Leary, T., Williams, A. H., Franci, A., & Marder, E. (2014). Cell types, network
homeostasis, and pathological compensation from a biologically plausible ion channel
expression model. Neuron, 82(4), 809–821.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent
neural networks. In International conference on machine learning (pp. 1310–1318).

Pfeiffer, M., & Pfeil, T. (2018). Deep learning with spiking neurons: opportunities and
challenges. Frontiers in neuroscience, 12, 774.

Potdar, K., Pardawala, T. S., & Pai, C. D. (2017). A comparative study of categorical
variable encoding techniques for neural network classifiers. International journal of
computer applications, 175(4), 7–9.

Rakelly, K., Zhou, A., Quillen, D., Finn, C., & Levine, S. (2019). Efficient off-
policy meta-reinforcement learning via probabilistic context variables. arXiv preprint
arXiv:1903.08254.

probml.ai


BIBLIOGRAPHY 142

Ribar, L., & Sepulchre, R. (2019). Neuromodulation of neuromorphic circuits. IEEE
Transactions on Circuits and Systems I: Regular Papers, 66(8), 3028–3040.

Rokach, L., & Maimon, O. (2005). Clustering methods. In Data mining and knowledge
discovery handbook (pp. 321–352). Springer.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review , 65(6), 386.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal
representations by error propagation (Tech. Rep.). California Univ San Diego La
Jolla Inst for Cognitive Science.

Schulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015). Trust region
policy optimization. In International conference on machine learning (pp. 1889–
1897).

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-
dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014).
Deterministic policy gradient algorithms. In International conference on machine
learning (pp. 387–395).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1), 1929–1958.

Sussillo, D., & Barak, O. (2013). Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural computation, 25(3), 626–649.

Tallec, C., & Ollivier, Y. (2018). Can recurrent neural networks warp time? arXiv
preprint arXiv:1804.11188.

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., & Maida, A. (2019).
Deep learning in spiking neural networks. Neural Networks, 111, 47–63.

Tsuda, B., Pate, S. C., Tye, K. M., Siegelmann, H. T., & Sejnowski, T. J. (2021). Neur-
omodulators enable overlapping synaptic memory regimes and nonlinear transition
dynamics in recurrent neural networks. bioRxiv .

Van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., Huerli-
mann, M., . . . Courtine, G. (2012). Restoring voluntary control of locomotion after
paralyzing spinal cord injury. science, 336(6085), 1182–1185.

Van Der Westhuizen, J., & Lasenby, J. (2018). The unreasonable effectiveness of the
forget gate. arXiv preprint arXiv:1804.04849.

Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double
q-learning. In Proceedings of the aaai conference on artificial intelligence (Vol. 30).



BIBLIOGRAPHY 143

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .
Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

Vecoven, N., Ernst, D., & Drion, G. (2021a). A bio-inspired bistable recurrent cell
allows for long-lasting memory. Plos one, 16(6), e0252676.

Vecoven, N., Ernst, D., & Drion, G. (2021b). Warming-up recurrent neural networks
to maximize reachable multi-stability greatly improves learning. arXiv preprint
arXiv:2106.01001.

Vecoven, N., Ernst, D., Wehenkel, A., & Drion, G. (2020). Introducing neuromodulation
in deep neural networks to learn adaptive behaviours. PloS one, 15(1), e0227922.

Voelker, A., Kajić, I., & Eliasmith, C. (2019). Legendre memory units: Continuous-
time representation in recurrent neural networks. In Advances in neural information
processing systems (pp. 15570–15579).

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., . . .
Botvinick, M. (2016). Learning to reinforcement learn. CoRR, abs/1611.05763.
Retrieved from http://arxiv.org/abs/1611.05763

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016). Dueling
network architectures for deep reinforcement learning. In International conference on
machine learning (pp. 1995–2003).

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine learning , 8(3-4), 279–292.
Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE, 78(10), 1550–1560.
Wiering, M. A. (2005). Qv (lambda)-learning: A new on-policy reinforcement learning

algrithm. In Proceedings of the 7th european workshop on reinforcement learning
(pp. 17–18).

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning , 8(3-4), 229–256.

Wilson, D. G., Cussat-Blanc, S., Luga, H., & Harrington, K. (2018). Neuromodulated
learning in deep neural networks. arXiv preprint arXiv:1812.03365.

Zhou, G.-B., Wu, J., Zhang, C.-L., & Zhou, Z.-H. (2016). Minimal gated unit for
recurrent neural networks. International Journal of Automation and Computing ,
13(3), 226–234.

http://arxiv.org/abs/1611.05763

	Acknowledgements
	Abstract
	Introduction
	I Background
	Machine learning
	Supervised learning
	Artificial neural networks
	Standard architecture
	Training

	Reinforcement learning
	System dynamics, reward function and policy
	Objective of RL


	Model-free reinforcement learning
	Value iteration methods
	Policy iteration methods
	Advantage actor-critic
	Actor update
	Critic update



	II Tuning neuron dynamics for long-term memory
	Handling sequential data with RNNs
	Recurrent neural networks
	Towards easily training RNNs
	Dynamics of trained RNNs

	Bio-inspired bistable recurrent cells
	Introduction
	Neuronal bistability: a feedback viewpoint
	Cellular memory, bistability and neuromodulation in RNNs
	Analysis of BRC and nBRC performance
	Results
	Analysis of nBRC dynamic behavior


	Warming-up recurrent neural networks
	Variability amongst attractors and warm-up
	Results


	III Neuromodulating neural networks for adaptation
	Adaptation capabilities of artificial neural networks
	Meta-reinforcement learning
	ANNs for solving meta-RL
	Optimisation based methods
	Metric-learning methods
	Model-based / Blackbox methods


	Neuromodulation of artificial neural networks
	Neuromodulation in ANNs
	NMN architecture
	Experiments
	Training
	Benchmarks description

	Results


	IV Conclusion
	Conclusion and future works
	Fixed points and long-term memory in RNNs
	Main findings
	Future works

	Neuromodulation in neural networks
	Main findings

	Closing the gap


	V Supplementary material
	Supplementary material for Chapter 3
	Modelling a multivariate Gaussian with ANN and computing KL divergence

	Supplementary material for Chapter 5
	Proof of bistability for BRC and nBRC for at>1

	Supplementary material for Chapter 8
	Detailed description of benchmark 2 and 3
	Benchmark 2
	Benchmark 3

	Architecture details
	Bayes optimal policy for benchmark 1

	Bibliography


