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Löıc Burger

November 2021
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Résumé

Les films supraconducteurs et les empilements de rubans supraconducteurs font partie
intégrante de nombreuses applications, parmi lesquelles on retrouve des magnétomètres
de haute sensibilité, des détecteurs de photons uniques, les ordinateurs quantiques, les
câbles de transmission à faibles pertes, les moteurs supraconducteurs, ou encore des
systèmes de stockage d’énergie magnétique. Comprendre comment le champ magnétique
et les courants induits qui en résultent sont distribués à l’intérieur des films supracon-
ducteurs est essentiel au développement de telles applications. Pour ce faire, la recherche
s’est récemment focalisée sur la visualisation en temps réel de la réponse magnétique des
systèmes sur base de films supraconducteurs soumis à un champ externe transverse.

Cette thèse cherche à déterminer les raisons physiques à l’origine de distributions de
champ magnétique inattendues au sein de systèmes supraconducteurs structurés soumis
à un champ transverse. Par ‘systèmes supraconducteurs structurés’, on fait ici référence
à des systèmes composés d’un ou plusieurs films supraconducteurs assemblés ou usinés
de sorte à influencer la distribution du champ magnétique. A cette fin, l’emploi de
méthodes numériques rend possible le test d’hypothèses physiques, la réalisation d’études
paramétriques concernant les structures étudiées, ou l’évaluation de champs électromagné-
tiques dont la mesure est difficile, voire impossible, expérimentalement. En particulier,
la méthode par éléments finis est une technique numérique polyvalente et adaptée à la
modélisation des systèmes physiques non-linéaires dont la géométrie tridimensionnelle
peut devenir complexe.

Avant toute chose, une formulation H-ϕ sur base des éléments finis est développée pour
modéliser les différents contextes expérimentaux rencontrés. Afin de réduire le nom-
bre de degrés de liberté nécessaires, on considère des transformations de domaine, qui
consistent en des bijections faisant correspondre tout point d’un domaine d’extension
infinie à un point d’un domaine de dimension finie au travers d’un changement de co-
ordonnées. Les performances d’une telle approche sont testées pour des transformation
sphériques, trapézöıdales et unidirectionnelle. L’influence de la qualité du maillage et
des paramètres géométriques de la transformation unidirectionnelle est étudiée avec pour
but de choisir un ensemble de paramètres limitant le nombre de degrés de liberté tout
en assurant une précision suffisante des résultats. D’une part, il apparâıt que quelle que
soit la forme du domaine transformé et de la section du film parmi celles considérées,
la précision des méthodes de transformation de domaine est comparable à celle obtenue
dans le cadre d’une méthode de troncature, plus répandue en pratique, qui consiste à
placer la frontière du domaine de simulation à une distance élevée mais finie des do-
maines conducteurs. D’autre part, dans le cas des disques supraconducteurs minces, les
transformations sphériques sont capables de réduire les temps de simulation de 35% par
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rapport aux durées de calcul requises par la méthode de troncature. Cependant, l’intérêt
computationnel des transformations de domaine devient marginal lorsqu’on emploie une
transformation unidirectionnelle ou dans le cas de films rectangulaires.

Par la suite, l’accent est mis sur la modélisation et l’interprétation de l’observation des
distributions de champ magnétiques particulières. Dans un premier temps, la formulation
H-ϕ est utilisée afin de confirmer si des variations locales de la barrière de surface peuvent
être responsables de l’ouverture des lignes de discontinuité autour d’indentations à la suite
d’une élévation de température. Les barrières de surface sont modélisées au travers de
régions périphériques où le pinning est renforcé. Il est démontré numériquement qu’un
abaissement de la barrière de Bean-Livingston aux environs de la pointe d’une indentation
entrâıne (1) l’ouverture des lignes de discontinuité paraboliques qui se développent autour
de l’indentation, et (2) un excès de pénétration de flux magnétique par rapport à la
position du front de pénétration attendu dans un film sans indentation. Les concavités
et les excès de pénétration obtenus numériquement sont respectivement inversement et
directement proportionnels à l’amplitude de la réduction de la barrière de surface. Ces
tendances restent valables que l’on soit dans une géométrie longitudinale ou dans une
géométrie de film. Toutefois, pour relier sans ambigüité l’élévation de température à
l’ouverture des lignes de discontinuité qui entourent les indentations dans des films de
niobium, davantage d’études expérimentales sont nécessaires.

Dans un second temps, la méthode des éléments finis est utilisée pour motiver la ten-
dance qu’ont les avalanches de flux magnétique à se déclencher préférentiellement le long
des bords lisses plutôt qu’au niveau des indentations. Les simulations numériques mon-
trent que les indentations provoquent une élévation simultanée des niveaux des champs
magnétique et électrique par rapport à ceux atteints le long des bords du film. Cependant,
contrairement à ce qui est usuellement admis, il apparâıt que la présence d’indentation
ne s’accompagne pas systématiquement d’une concentration des lignes de courant dans
le voisinage direct des sommets de l’indentation. En effet, un tel phénomène ne survient
que si la densité de courant critique est indépendante du champ magnétique. A l’inverse,
si la densité de courant critique dépend du champ magnétique, les lignes de courant ont
tendance à s’espacer davantage les unes des autres près de l’indentation qu’ailleurs dans le
film. En outre, lorsqu’une dépendance de type Jc(B) est prise en compte, il est suggéré que
le renforcement du champ électrique au niveau de l’indentation se traduit par de légères
variations du niveau seuil de champ magnétique théorique auquel la première avalanches
de flux se déclenche. Dans certains cas, le champ seuil devient plus bas au niveau des
bords lisses qu’au niveau de l’indentation, ce qui favorise la nucléation des avalanches le
long de ces bords lisses.

Finalement, des simulations numériques sont réalisées afin de mettre en exergue le rôle
primordial que joue la dépendance en champ magnétique de la densité de courant critique
sur la structure des lignes de discontinuité observées dans deux configurations distinctes
: (1) dans des films minces dont l’épaisseur est modulée par un réseau régulier de trous
triangulaires de formes identiques, et (2) dans diverses superpositions de films minces
de sections carrées et rectangulaires. Dans les deux cas, les résultats délivrés par im-
agerie magnéto-optique illustrent clairement une dépendance de la position des lignes de
discontinuité en fonction du champ appliqué.

Dans le premier système, il est soutenu que la symétrie C3 des trous triangulaires se
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traduit par une densité de courant critique asymétrique, ce qui est corroboré par les
résultats de simulations exploitant les équations de Ginzburg-Landau dépendantes du
temps, à l’échelle des trous de taille microscopique. Ces propriétés valables à l’échelle mi-
croscopique sont transposées à l’échelle macroscopique au travers d’une loi E-J anisotrope
et dépendante de la valeur du champ magnétique qui est ensuite inclue dans la formula-
tion H-ϕ. Compte tenu de cette modélisation, les simulations éléments finis permettent
alors de reproduire qualitativement les distributions de champ magnétique et les états
critiques observés durant les expériences.

Dans le cas du second système, la modélisation numérique met en lumière un mécanisme
physique qui permet de reproduire la dépendance en champ appliqué de la forme des états
critiques dans des structures bi-couches formées d’un film carré et d’un film rectangulaire.
Sur base des résultats numériques, on montre que la différence de sections définit une
région centrale où le champ de réaction du film rectangulaire affecte le film carré, en
conséquence de quoi se génère une distribution non-uniforme de la densité de courant
critique dans les films, pour peu que l’on prenne en compte la dépendance de la densité de
courant critique par rapport au champ magnétique. De là, tenant compte des prédictions
d’un modèle d’état critique réduisant la géométrie tridimensionnelle de la structure en
une géométrie bidimensionnelle, il est montré comment cette non-uniformité mène à des
états critiques dont l’allure est proche de ceux observés expérimentalement. Finalement,
une étude paramétrique faisant varier (1) les paramètres de la loi de Kim, et (2) les
paramètres géométriques de la structure est réalisée, illustrant plus finement comment
la dépendance en champ magnétique de la densité de courant critique, d’une part, et,
le couplage magnétique entre les films, d’autre part, modulent la forme des lignes de
discontinuité.
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Abstract

Superconducting films and stacks of tapes are used in many applications, among which
sensitive magnetometers, single-photon detectors, quantum computers, low-loss trans-
mission cables, trapped-field magnets, superconducting single-photon detectors, super-
conducting motors, and superconducting magnetic energy storage systems. They also
provide interesting perspectives for novel electronics, spintronics, or fluxonics devices.
Understanding how magnetic flux and the associated induced current density are dis-
tributed in the superconducting films is essential to develop these applications. To this
aim, an important research effort has been devoted to the in-situ visualization of the
response of superconducting film systems subjected to a perpendicular applied field.

This thesis aims at explaining the origin of several unexpected magnetic flux distributions
that have been recently observed in structured superconducting film systems subjected
to an out-of-plane magnetic field. ‘Structured superconducting film systems’ here refer
to single-film or multilayer superconducting systems that are patterned in such a way to
influence the penetration of magnetic field. To this aim, numerical methods allow one
to test hypotheses, run parametric investigations, or evaluate electromagnetic fields that
cannot be accessed by experimental means. In particular, the finite-element method is
a versatile numerical approach that is adapted to the efficient modelling of non-linear
physics in complex three-dimensional geometries.

A finite-element H-ϕ formulation is developed to tackle the modelling of the different
experimental contexts. In an attempt to reduce the number of degrees of freedom of the
simulations, the relevance of shell-transformation techniques, which consist in mapping
the infinite space surrounding the superconducting domains onto a shell domain of finite
extension, is investigated. Spherical, trapezoidal, and unidirectional shell transformations
are considered. The influence of the mesh and geometrical parameters for the unidirec-
tional shell transformation is discussed in order to select a set of parameters that limits the
number of degrees of freedom, while achieving a satisfactory accuracy. On the one hand,
for all shell geometries and for various film cross sections, it is shown that the accuracy of
the shell-transformation techniques is comparable to that of the more common truncated-
geometry approach, where the boundary of the simulated domain is placed at a large but
finite distance from the conducting domain. On the other hand, for thin superconducting
disks, it appears that spherical shell transformations can reduce the simulation times by
35% compared to those of the truncated-geometry approach. By contrast, the interest of
using shell transformations becomes marginal with unidirectional shell transformations,
or in the case of rectangular films.

Then, the focus is put on modelling and explaining the various peculiar magnetic flux dis-
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tributions observed experimentally. First, the H-ϕ formulation is used to verify whether
surface barriers can explain the opening of discontinuity lines around edge indentations
upon a temperature increase. Surface barriers are modelled by means of an enhanced pin-
ning region that lies in the periphery of the film. It is numerically shown that a depletion
of the Bean-Livingston barrier in the vicinity of the indentation sharp tip indeed leads
to (1) an opening of the parabolic discontinuity lines around the indentation, and (2) to
an excess flux penetration with respect to the position of the flux front obtained in a
non-indented film. The simulated concavities and excess penetration depths are found to
be respectively inversely and directly proportional to the magnitude of the surface barrier
depletion. These conclusions hold true in both the longitudinal and film geometries. How-
ever, without further experimental work, it remains difficult to correlate unambiguously
the raising of the temperature to the opening of the discontinuity lines that surround edge
indentations in niobium films.

Second, the finite-element method is used to explain why magnetic flux avalanches are
sometimes triggered along smooth borders rather than at the edge indentations. Numeri-
cal simulations outline the simultaneous enhancement of the electric field and the magnetic
field levels at the indentation, with respect to their levels along the smooth edges. How-
ever, contrary to what is usually assumed, it seems that the presence of an indentation is
not systematically concomitant with current crowding in the direct surroundings of the
indentation tip. In fact, current crowding arises when the critical current density does
not depend on the local magnetic field intensity, while the current lines are otherwise
less densely concentrated around the indentation in comparison to the rest of the film.
Besides, it is argued that the enhancement of the electric field at the indentation when a
Jc(B) dependence is taken into account leads to small differences of the threshold mag-
netic field at which the first flux avalanche is triggered. In some instances, this threshold
field may become lower along the smooth edges than at the indentation, which favours
the nucleation of flux avalanches along the smooth borders of the film.

Finally, numerical simulations are performed to evidence the essential role played by the
magnetic field dependence of the critical current density on the shape of the discontinuity-
lines observed in two different structured systems: (1) in thin films where a regular array
of micron-size triangular holes is etched, and (2) in three-dimensional assemblies of super-
imposed square and rectangular films. In both cases, magneto-optical imaging displays
applied-field-dependent discontinuity-line patterns.

In the first system, it is argued that the C3 symmetry of the equilateral triangles leads to
an asymmetry of the critical current density, as evidenced by time-dependent Ginzburg-
Landau simulations at the scale of the holes of microscopic size. At the macroscopic scale,
a magnetic-field-dependent anisotropic E-J model that encapsulates the main micro-scale
properties of the system is developed and included in the H-ϕ formulation. The finite-
element simulations then show similar magnetic field distributions and critical state pat-
terns than those reported in the experiments, provided both the anisotropy of the critical
current density and its magnetic field dependence are taken into account.

For the second system, numerical modelling reveals a mechanism that replicates the
applied-field-dependent shapes of the critical states in two-layer assemblies made of a
square film and a rectangular one. With the help of numerical simulations, it is demon-
strated how the dissimilar cross sections of the two films delimit a region where the
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reaction field of the rectangular film affects the square film, which in turn, accounting
for the magnetic field dependence of the critical current density, results in a non-uniform
distribution of the critical current density in the square film. Then, based on the results
of a simplified critical state model, it is shown how such non-uniform critical current
density distributions can lead to the formation of the observed discontinuity-line pat-
terns. A systematic investigation of (1) Kim’s law parameters, and (2) the variations of
the geometrical characteristics of the assembly, is carried out, and illustrates how both
the magnetic field dependence of the critical current density and the magnetic coupling
between the films shape the architecture of the discontinuity lines.
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tion to Alejandro Silhanek (ULiège, Belgium) and Maycon Motta (Universidade Federal
de São Carlos, Brazil) for sharing the magneto-optical images of the superconducting
samples with arrays of antidots.

Similarly, I wish to present my deepest thanks to Jesús González Acosta, Željko Jelić,
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Introduction

Context

In the last decades, type-II superconducting films and tapes have been used in many ap-
plications. Superconducting films are mainly used in Josephson junctions, which consist
in three-layer assemblies made of two superconducting films separated by a metallic or
insulating layer. When subjected to a DC voltage, they generate an AC current with a
voltage-dependent frequency that can exceed 10 THz for some materials [1], hence their
relevance for high-frequency applications. These heterostructures can then be arranged
in rings to form superconducting quantum interference devices (SQUID), that are mag-
netometers able to reach a magnetic field resolution as low as ∼ 4 fT/

√
Hz at 77 K [2].

To this day, SQUID are the most sensitive magnetometers that have ever been devised.
Josephson junctions have also been successfully used for designing qbits [3], and have re-
cently allowed to reach quantum supremacy thanks to the 53-qubit Sycamore processor,
by reducing the time needed to sample the output of a pseudo-random quantum circuit to
200 s, while it is estimated that it would otherwise have taken 10000 years with a classical
supercomputer [4]. Thin films are also used to make superconducting radio frequency
(SRF) cavities with a very high quality factor. Typically, the cavities are made of bulk
niobium coated with thin magnesium diboride films to increase the penetration field and
avoid the entrance of parasitic vortices [5]. These cavities are of particular interest for
future accelerators.

Superconducting tapes are structured assemblies that include a thin high-temperature su-
perconducting film, generally made of rare-earth barium copper oxide (REBCO), which is
placed in between non-superconducting buffer and stabilizer layers. Owing to their ability
to carry very large current densities with very limited dissipation [6], tapes are particu-
larly adapted for current transport applications [7]. Several tapes can also be stacked on
top of each other, forming superconducting assemblies that present many advantages over
bulk samples: larger critical current densities, enhanced mechanical flexibility, improved
homogeneity of the electrical properties, and better thermal properties, to enumerate a
few [8, 9]. The high values of the critical current density and the advantageous mechanical
properties of the stacks of tapes are paramount for the design of trapped-field magnets
[10]. At the time of writing this thesis, a record 17.7 T has been trapped with stacks of
REBCO tapes, without the need of any mechanical reinforcement around the tapes [10].
Similarly, the various advantages of tapes over bulks have opened the path for machining
contactless bearings based on stacks of superconducting tapes that would prove useful for
low-loss levitating high-speed trains [11, 12]. Finally, tapes can also be used in the form
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of coils, which widely contribute to the design of many existing or future electrotechnical
applications such as superconducting motors [13, 14, 15, 16], transformers [17], supercon-
ducting magnetic energy storage (SMES) systems [18], or accelerator magnets [7, 19].

Another field of application of thin superconducting structures concern superconducting
nanowires, which are used for superconducting single-photon detectors (SSPD). The prin-
ciple of operation of the SSPD is based on the propagation of a hot spot that is generated
by the absorption of a photon in a superconducting nanowire. The hot spot generates a
local transition from the superconducting to the normal state, and progressively grows
until it covers the whole width of the nanowire, which ultimately results in a measurable
voltage across the device. SSPD require reliable photon absorption, reliable generation of
an output voltage upon photon absorption, and fast recovering times from the normal to
the superconducting states to reset the detector [20]. Lately, it has been experimentally
demonstrated that NbN nanowires SSPD are capable of detecting incident photons with
an efficiency over 90% [21], and a temporal resolution that goes below 3 ps [22].

In parallel with these well-established applications, a lot of research effort has been put in
developing structures with new properties. Superconducting films can be coupled to films
with different electromagnetic properties, aiming at controlling the motion of magnetic
flux inside the superconductor. For example, the energy dissipation that results from the
eddy currents generated by the motion of vortices in the vicinity of a metallic film induces
a magnetic-braking mechanism that hampers their motion. This damping force depends
on the magnetic flux velocity, and on the electromagnetic properties of the metallic and
superconducting layers [23, 24]. Therefore, metallic layers and sheaths are often presented
as practical means to deflect magnetic flux avalanches, effectively limiting their entry in
the region capped with the metallic layer [24, 25]. They can also serve as a way to provide
better thermal stability and prevent the superconductor from quenching [26].

Similarly, a lot of work has been recently dedicated to the investigation of the interac-
tions between ferromagnetic structures and superconducting films. While magnetic flux
is channelled into ferromagnetic materials, superconducting domains tend to expel it,
owing to their diamagnetic behaviour. Studying the coupling between these two cate-
gories of materials turns out to be an ideal playground to discover rich and intriguing
physics. Upon changing the orientation of the in-plane magnetization of the magnetic
domains [27, 28], or by means of polarized structures placed in the vicinity of the su-
perconducting films [29], it is possible to gain control over the entrance and the exit of
magnetic flux in the heterostructures. Moreover, it has recently been shown that the
ferromagnetic-superconducting interaction enables the manipulation of skyrmions in the
ferromagnetic layer through the motion of vortices [30, 31]. The interactions at play in
metallic-superconducting and magnetic-superconducting heterostructures pave the way
for manufacturing controllable topological hybrid materials, while revealing the existence
of new magnetic flux dynamics at the same time. It might also lead to progress concerning
the development of new devices in spintronics ( based on carriers of spin degrees of free-
dom, as opposed to charge carriers) and in fluxonics (based on carriers of magnetic flux),
or else broaden the realm of possibilities for memory devices or in the field of information
theory.

Finally, superconducting films are involved in the conceptualization of novel hybrid ma-
terials and metamaterials. For example, magnetic phases or nanorods can be included to
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generate spin textures that might be useful for future nano-scale spintronics devices [32].
Metamaterials are also considered for promising applications, such as magnetic cloaking
[33, 34, 35], magnetic flux concentrators [36, 37, 38] and distance coupling [39]. Proto-
types have already been realised at the macroscopic scale, but the possibility of reducing
their size to the microscopic scale for novel, responsive, compact, and low-consumption
devices remains a very interesting open question.

Objectives of the thesis

In regard with the design and the optimization of technological devices, understanding how
magnetic flux diffuses within the superconducting films is crucial to improve or optimize
the functionality of a given application. This thesis concerns the numerical investigation
of the magnetic field distributions in structured superconducting film systems. The term
‘structured superconducting film systems’ here refers to multilayer assemblies that include
some thin superconducting layers or single superconducting films that are patterned in
such a way to influence the magnetic flux penetration in the investigated system. To
this aim, an important endeavour has been devoted to the in-situ visualization of the
response of structured superconducting film systems subjected to a perpendicular applied
field [24, 27, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. In particular, recent magneto-optical
imaging (MOI) of three different structured superconducting film systems have evidenced
peculiar distributions of magnetic field [41, 44, 48].

The first investigated system concerns a superconducting film with an edge indentation
[41]. Two unexpected observations were reported. The first one concerns the shape of
the discontinuity lines (d-lines) around edge indentations in niobium films. The d-lines
mark the location where the current lines bend abruptly, as they bypass the indentation.
As long as the magnetic flux penetration is smooth, experiments show that the parabolic
d-lines forming around the indentation open up more than predicted by the theory, and
with a temperature dependence that cannot be explained by the theory. The second
observation concerns the location of the sudden magnetic flux avalanches that can occur
in niobium films. According to a common view held in the literature, the onset of magnetic
flux avalanches is facilitated at the indentation. However, in some instances, this fact is
invalidated in niobium films, as flux avalanches were instead observed to be preferentially
triggered along the smooth and non-indented borders.

In the second and third systems, the attention is switched towards the formation of
unexpected and evolving networks of d-lines in (a) films with a regular array of triangular
antidots [48], and (b) assemblies of several superposed films with different cross sections
[44]. The asymmetric motion of vortices along the easy and hard axis of the array, and
the non-symmetric arrangement of the films in the out-of-plane direction, imply that the
two structured superconducting film systems present inherent geometrical characteristics
that break the symmetry of these systems. In both cases, the d-lines do not remain static
structures that are dictated by the geometry of the sample. Instead, the d-line networks
change with respect to the strength of the applied field, and their shape is not the same
upon increasing or decreasing the applied field, which, to the best of my knowledge, has
not been previously observed.
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Unfortunately, it is impossible to conclude about the physical origin of the magnetic field
distributions reported in [41, 44, 48] from the sole inspection of the experimental data.
By contrast, numerical modelling is a flexible and powerful tool when it comes to testing
different model hypotheses. Numerical modelling is also very efficient if ones wishes to
carry out a systematic investigation of the influence of diverse geometrical or physical
parameters, or to assess some physical quantities that are difficult to evaluate experimen-
tally. Due to demagnetization effects that result from the thin-film geometry and the
superconducting nature of the film, the penetration of magnetic field in superconducting
thin films is (1) highly non-local, since the magnetic field at a given position is deter-
mined by the distribution of the current density over the whole film, and (2) non-linear,
as the electric field is a non-linear function of the current density. The finite-element (FE)
method is one of the methods capable of handling such a non-linear and complex physics
efficiently, while being adapted to a large number of complex geometries.

This thesis addresses, by means of finite-element simulations, the modelling of the pecu-
liar magnetic flux distributions that were exposed above. Therefore, the aim is to propose
models that are then evaluated numerically to help in elucidating the fundamental ques-
tions that were raised by the experimental data in [41, 44, 48]. In particular, we will
investigate how the magnetic field dependence of the critical current density and the sur-
face barriers can influence the distribution of the magnetic field and the shape of the
resulting critical states. Indeed, while both aspects usually modify the field levels only,
it will be shown here that they play a much more consequential role in some structured
geometries. Although the results of this work directly concern much more fundamental
questions than the development of matured applications, the relevance of these aspects is
believed to be important in structures where a precise control of the penetration of the
magnetic field is required, such as in metamaterials or heterostructures.

Outline

The manuscript is organized as follows. Chapter 1 provides an overview of the basic
theoretical concepts about superconductivity that pave the way for the results presented
in the rest of the manuscript. The basis of the macroscopic penetration of magnetic field
inside type-II superconducting samples and the specificities of the thin-film geometry are
reminded. Finally, since the main experimental results that have motivated the upcoming
numerical simulations are based on MOI, a short overview of the technique is given.

Chapter 2 is devoted to the elaboration of the numerical method on which the simulations
of the subsequent chapters rely. Bearing in mind the reduction of the number of degrees
of freedom required to mesh the domain that surrounds the superconducting films, the
relevance of a shell-transformation approach is investigated and compared to the usual
domain truncation of the non-conducting regions.

Chapter 3 concerns the study of the influence of surface barriers on the opening of the
parabolic d-lines that develop around a triangular indentation. A way of modelling surface
barriers is proposed, while the dependency of the opening of the d-lines around triangular
indentations on the temperature is discussed. The theme of this chapter is inspired from
the experimental results of [41].
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Chapter 4 focuses on the rearrangement of current lines around defects and indentations,
and discusses the occurrence of the current-crowding effect that is normally expected to
happen in the vicinity of an indentation. The effects of the magnetic field dependence of
the critical current density on the distributions of the magnetic field, the current density,
and the electric field, are discussed in the case of a square thin film with a triangular
indentation cut along one of its edge. Finally, in an attempt to answer the questions raised
in [41], the location of the nucleation of the first magnetic flux avalanche is discussed from
a conceptual standpoint, based on the conclusions of the previously simulated results.

Chapter 5 concerns the distribution of the magnetic field in superconducting thin films
containing a square array of identical triangular antidots, based on the configuration that
is described in the experiments in [48]. It is explained how the magnetic-field-dependent
anisotropy of the critical current density, which stems from the asymmetry of the antidots,
is responsible for the apparition of a central d-line and for its reversal that follows the
change of direction of the out-of-plane applied field.

Chapter 6 tackles the investigation of the penetration of magnetic field in superposed
assemblies of superconducting films with unequal cross sections, as in [44]. The inves-
tigation first concerns the applied-field-dependent critical states in two-layer assemblies
that consists in the superposition of a square and a rectangular films. Then, the analy-
sis is extended to three-layer assemblies made of two rectangular and one square films.
A systematic parametric investigation of the geometrical parameters of the assembly is
carried out afterwards, with the aim of having a better grasp on the role of the three-
dimensional coupling between the films and the magnetic-field-dependent critical current
densities that characterize the films.

Finally, a conclusion chapter closes the manuscript by summarizing the main findings and
discussing the perspectives of this work.
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Chapter 1

Theoretical overview of the magnetic
field penetration in thin
superconducting films

This thesis aims at explaining several magnetic-field distributions in superconducting
films that were measured by means of magneto-optical imaging. Before analysing the
experimental results and proceeding with their numerical modelling, it is important to
introduce the basic concepts of superconductivity and to understand how magnetic flux
diffuses in superconducting films.

Section 1.1 introduces the main parameters that are commonly used to describe super-
conductivity. First, an overview of the T -H-J phase diagram highlights the main critical
parameters that determine the limit between the superconducting and the normal states.
The definition of the London penetration depth, λ, and the coherence length, ξ, are illus-
trated within the formalism of the London and the Ginzburg-Landau equations for simple
study cases. This in turn leads to the distinction between the Meissner phase and the
Shubnikov phase (mixed state). The temperature dependence and orders of magnitude
for the superconductivity parameters at T = 0 K are also given.

Section 1.2 focuses on the vortex dynamics in the Shubnikov phase, starting from the
interaction between two individual vortices and leading to their collective behaviour in
the presence of randomly distributed pinning sites. In particular, the critical-state model
is introduced in the context of the Bean and the Kim models as convenient, but simplified,
tools to understand flux and current distributions in an infinitely long superconducting
slab subjected to a transverse applied field. Explanations about the physical origins of
the flux-flow and flux-creep regimes are provided. The influence of the current-density
anisotropy and of the surface barriers on the entrance and the propagation of in-plane
and out-of-plane vortices are also discussed.

Section 1.3 evidences the main differences that arise in the thin-film geometry in compar-
ison with bulk samples, as far as the micro- and macro-scale magnetic-field penetration
are concerned. The notion of discontinuity lines and their location in the framework of the
critical-state model in several typical thin-film cases are also covered. An overview about

7



Section 1.1. Electrodynamics of superconductors and fundamental parameters

T

H

J

Hc(T, 0)

Jc(T, 0)

Jc(0, H)

Figure 1.1: T -H-J surface that separates the superconducting phase, in light blue, from
the normal conducting phase, in yellow. The bold light blue curves represent the critical
parameters in each principal plane, Hc(T, 0), Jc(0, H) and Jc(T, 0), which roughly outline
the superconducting phase.

thermomagnetic avalanches, which occur much more frequently than in bulk samples,
closes the section.

Finally, Section 1.4 is devoted to the magneto-optical imaging technique, on which relies
the in-situ visualization of both the smooth penetration of magnetic flux and the dramatic
thermomagnetic flux avalanches that are triggered in niobium thin films. The key physical
principles on which the method is based are recalled, before the experimental set-up, the
main challenges to which the experimentalists are confronted and the practical answers
to these issues are briefly highlighted.

1.1 Electrodynamics of superconductors and funda-

mental parameters

1.1.1 The T-H-J phase diagram

Historically speaking, superconductivity has been experimentally evidenced by the ob-
servation of an abrupt drop of the resistivity of metallic compounds below a critical
temperature, Tc. Superconductivity results from the creation of Cooper pairs, i.e. pairing
of electrons that condense into a state of lower energy [50], this state being separated
from a dissipative state by an energy gap, ∆s. When the temperature, T , approaches Tc,
the energy of thermal fluctuations, which is kBT with kB being the Boltzmann constant,
becomes comparable to ∆s. Cooper pairs start to dissociate, leading to the suppression
of the superconducting phase in favour of the normal phase. In fact, superconductivity
is not only limited by Tc, it is also suppressed when the magnetic field is higher than a
critical value, Hc, or if a transport current that exceeds an upper bound, Jc, is forced
through the superconductor. Jc is always lower than the depairing current, Jdep, which is
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the current density beyond which Cooper pairs are no longer energetically favourable and
split, marking the loss of superconductivity. The definition of Tc, Hc and Jc delimits a
closed region in the T -H-J diagram where the material is superconducting. A schematic
illustration of such a phase diagram is indicated in Figure 1.1. Note that Tc, Hc and Jdep
are intrinsic characteristics of a given superconductor.

1.1.2 The London equations and the London penetration depth

On the microscopic level, the magnetic-field landscapes inside a superconducting material
can be characterized with the help of two main spatial parameters. The first one is the
London penetration depth, λ. The first feat of superconductivity that was discovered
consists in its ability to transport current with no heat dissipation. It was also discov-
ered that superconductors act as perfect diamagnetic materials. Supercurrents shield the
superconducting volume from the external applied magnetic field, efficiently preventing
its entrance. This last property is usually referred to as the Meissner effect. Perfect
conductivity and diamagnetism can be modelled by the London constitutive laws [51]

E =
∂

∂t

(
me

nse2
J

)
, (1.1)

∇×
(
me

nse2
J

)
= −B, (1.2)

where me is the electron mass, e is the electron charge, ns is a density of superconducting
carriers, J is the current density, E is the electric field, and B is the induction field. Both
equations stem from the basic phenomenology of superconductivity. The first London
law, Equation 1.1, translates the perfect conductivity of superconductors. It can be
inferred from the Drude model, in the limit where the carrier scattering rate vanishes,
which effectively models perfect conductivity. The second London law, in Equation 1.2,
is supported by the resilience of the Cooper pairs to perturbations, which is enhanced
with respect to the case of single electrons [51]. Furthermore, the second London law can
be combined to Ampere’s law, ∇×H = J, yielding

∇2B =
1

λ2
B, (1.3)

λ =

√
me

µ0nse2
. (1.4)

where µ0 is the vacuum permeability, while λ is the London penetration length, which
measures the spatial screening of magnetic field inside a superconducting phase. For the
sake of illustration, if an infinitely long superconducting slab of width W is subjected to
a uniform static field, Ha, H = Hzez that is parallel to the sample’s border, Equation
1.3 and Equation 1.4 yield a magnetic-field distribution

Hz = Ha
cosh (x/λ)

cosh (W/2λ)
, (1.5)

where x is the distance from the median plane of the sample, see panel (a) of Figure 1.2.
Equation 1.5 shows the exponential decay of magnetic field, evidencing the screening of
magnetic field caused by the Meissner currents.
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(a)

x

Bz

λ

W

Ha

J

x

z

y

µ0Ha

(b)

x

|ψ|

ξ
ψ∞

ψ0

x

z

y

Figure 1.2: (a) Distribution of the transverse magnetic field, Bz, in an infinitely long
superconducting slab of widthW under a transverse field, Ha, as a function of the distance
from its transverse median plane. The London penetration depth, λ is the screening
characteristic length of the magnetic field, B. (b) Order parameter, ψ, in the juxtaposition
of two semi-infinite phases as a function of the distance from the interface between both
phases, x. The superconducting phase is highlighted in blue and the non-superconducting
one is in yellow. In the superconducting phase, the norm of the order parameters goes
from ψ0 at the interface between both phases, to ψ∞ at an infinite distance from it. The
coherence length, ξ, is the characteristic length of variation of ψ.

1.1.3 The Ginzburg-Landau equations and the coherence length

The second parameter that shapes the microscopic distribution of the magnetic field in
superconductors is the coherence length, ξ. As it will be shown below, ξ is closely related
to a theory of superconductivity that was devised by Ginzburg and Landau [52]. The
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Ginzburg-Landau theory relies on a variational method that minimizes the free energy
of the system, expressed as a function of a pseudo wave-function, which is called the
order parameter, ψ. Remarkably, |ψ|2 is the density of superconducting electrons. The
Ginzburg-Landau equations for Cooper pairs read as

1

4me

[
ℏ
i
∇− 2eA

]2
ψ + αψ + β|ψ|2ψ = 0, (1.6)

1

µ0

∇×∇×A =
e

me

Re

{
ψ∗
[
ℏ
i
∇− 2eA

]
ψ

}
, (1.7)

with ℏ, the Planck constant, A, the vector potential, that verifies the relation µ0J =
∇×∇×A, while Re stands for the real part of the expression surrounded by braces. The
expressions in brackets consist in operators, and the square corresponds to a repeated
application of the operator. Equation 1.6 has a form that is very close to Schrödinger
equation, while Equation 1.7 reproduces exactly the quantum-mechanical expression of
a current density carried by Cooper pairs which effective charge and mass are 2e and
2me, respectively. These similarities explain why ψ is assimilated as a pseudo wave-
function. The constants α and β are intrinsically related to the spatial distribution of
ψ. One can indeed define the coherence length as ξ2 = ℏ2/2m|α|, and the characteristic
order of magnitude of the superconducting electron density as ψ2

∞ = −α/β > 0. The
physical meaning of ξ can be understood as the typical length that is required to mitigate
a perturbation of ψ that stems from the transition between a superconducting phase and
non-superconducting phase, going from ψ0 at the interface between both phases, to ψ∞ at
an infinite distance from it [53]. In particular, it characterizes the spatial extension of the
transition from a superconducting phase to an adjoining normal phase. This is illustrated
in panel (b) in Figure 1.2.

Importantly, Equations 1.6 and Equation 1.7 can be generalized into a time-dependent
scheme, which is known as the time-dependent Ginzburg-Landau (tdGL) equations, which
are given as [54, 55]

ℏ2

4meD

[
∂

∂t
+ i

2e

ℏ
V

]
ψ +

1

4me

[
ℏ
i
∇− 2eA

]2
ψ + αψ + β|ψ|2ψ = 0, (1.8)

1

µ0

∇×∇×A =
e

me

Re

{
ψ∗
[
ℏ
i
∇− 2eA

]
ψ

}
− σn

(
∂A

∂t
+∇V

)
, (1.9)

where D is a phenomenological diffusion constant [56], σn is the normal conductivity of
the material in the normal state and V is the scalar electric potential.

1.1.4 Type-I and Type-II superconductors

The magnetic properties of a superconducting material change radically depending on the
value of the Ginzburg-Landau parameter, κ = λ/ξ. On the one hand, when κ < 1/

√
2,

the material is a type-I superconductor. In such superconductors, the magnetic field is
shielded by superconducting currents, according to the Meissner effect. Applied fields that
exceed the thermodynamic field, Hc(T ), destroy superconductivity as shown in panel (a)
in Figure 1.3. On the other hand, if κ > 1/

√
2, the material is considered as a type-

II superconductors. In these superconductors, a normal phase and a superconducting
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(a)

Tc
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(b)
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B
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Figure 1.3: H-T diagrams in (a) type-I superconductors (κ < 1/
√
2), and (b) type-

II superconductors (κ > 1/
√
2). Type-I superconductors are characterized by a sole

Meissner phase, which holds for H < Hc, Hc being the thermodynamic critical field. Hc

demarcates the conducting and the Meissner phases. Type-II superconductors are divided
in a Meissner phase when H < Hc,1, and a Shubnikov phase for Hc,1 < H < Hc,2. In the
latter phase, magnetic field is allowed in the superconductor in the form of vortices, each
of them carrying a constant magnetic flux, ϕ0. The first vortex becomes energetically
favourable at Hc,1, while Hc,2 delimits the transition from the Shubnikov phase to the
normal phase.

phase can coexist. The sample is then said to be in the Shubnikov or mixed state. In
other words, magnetic flux can penetrate inside the material, in the form of quantized
magnetic flux bundles that are named vortices. A single vortex is composed of a core
where superconductivity is locally suppressed, while it remains maintained outside it.
Commonly, a vortex is thus represented as a cylinder that extends over the thickness of
the sample, and which radius is comparable to ξ. Each vortex individually carries a fixed
amount of magnetic flux, which is called the flux quantum, Φ0 = h/2e = 2.07 × 10−15

T/m2.
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Unlike type-I superconductors, type-II superconductors are characterized by two critical
fields. The first one represents the limit between the Meissner and the mixed states and
indicates the field at which the first vortex is allowed into the sample. At this value of the
applied field, the Gibbs free energy that is required to introduce the first vortex in the
sample, and which comes from the magnetic energy of the vortex and the kinetic energy
from the surrounding superconducting currents, is equal to the Gibbs energy of the sample
free of magnetic flux. The threshold field is called the lower critical field and is denoted
by Hc,1. Below Hc,1 a type-II superconductor experiences a pure Meissner phase, like the
one described for type-I superconductors. The second threshold outlines the boundary
between the mixed state and the normal state. It is called the upper critical field and is
denoted as Hc,2. Above Hc,2, superconductivity is destroyed. Alternatively, for decreasing
applied fields, Hc,2 coincides with the nucleation of superconductivity inside a normal
phase. Both Hc,1 and Hc,2 are schematically shown as a function of the temperature in
the right image of panel (b) in Figure 1.3.

Analytical expressions for Hc,1 and Hc,2 can be derived and are given by

Hc,1 =
Φ0

4πµ0λ2
log κ, (1.10)

Hc,2 =
Φ0

2πµ0ξ2
, (1.11)

while the thermodynamic field, Hc, is given by

Hc =
Φ0

2
√
2πµ0λξ

. (1.12)

Comparing Equation 1.12 to Equation 1.11, one finds Hc,2/Hc =
√
2κ and understands

the origin of the threshold value κ = 1/
√
2, that distinguishes type-I and type-II super-

conductors. Similarly, Equation 1.12 and Equation 1.10 lead to Hc/Hc,1 =
√
2κ/ log κ.

Hc can then be roughly considered as the geometrical mean between Hc,1 and Hc,2. Type-
II superconductors are then much useful in practice, since they can be utilized at much
larger working magnetic fields than their type-I counterparts.

1.1.5 Temperature dependence of the London penetration length,
the coherence length and the critical fields

Material Tc λ(0) ξ(0) µ0Hc,1(0) µ0Hc,2(0)
Nb 9.2 K [57] 39 nm [57] 38 nm [57] 160 mT [58] 450 mT [59]

YBa2Cu3O7 92 K [60] 150 nm [60] 1.5 nm [60] 180 mT [61] 125 T [62]

Table 1.1: Principal bulk parameters of superconducting Nb and YBa2Cu3O7. For the
latter material, which presents an anisotropic crystal structure, critical fields are deter-
mined along the out-of-plane direction to the CuO2 planes, and λ(0) and ξ(0) correspond
to the values along the same CuO2 planes, when the sample is subjected to an external
magnetic field in a direction perpendicular to the CuO2 planes.
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Section 1.2. Magnetic properties of type-II superconductors

As it can be expected from Subsection 1.1.1, the critical fields and the spatial charac-
teristic lengths of a superconductor are temperature-dependent. However, based on the
relations that relate Hc, Hc,1 and Hc,2 to λ and ξ, see Equation 1.12, Equation 1.10 and
Equation 1.11, the knowledge of the temperature dependence of only two among these
five quantities is necessary. For instance, one can rely on the variations of λ and Hc

with temperature to deduce the temperature dependence of Hc,1, Hc,2 and ξ. The exact
temperature dependences of Hc and λ depend on the material [63] and the theoretical
model that is considered to fit the experimental data, such as the the two-fluid model
[64], the BCS model [65], or the electron-phonon model [66], but more elaborated models
and empirical fits are also possible [63, 67]. Since the experimental results exposed in
this thesis mostly concern thin niobium films, using the two-fluid model [64] to explain
the temperature dependence of Hc and λ is appropriate, as evidenced by convincing fits
to the experimental data [68, 69]. In summary, we will use the following temperature
dependences for bulk niobium [64]:

λ(T ) ∼
[
1−

(
T

Tc

)4
]−1/2

, ξ(T ) ∼
[
1− T

Tc

]−1/2

, (1.13)

Hc(T ) ∼ 1−
(
T

Tc

)2

, Hc,1(T ) ∼ 1−
(
T

Tc

)4

, Hc,2(T ) ∼ 1−
(
T

Tc

)2

. (1.14)

Typical values of the superconducting parameters at T = 0 K for Nb and YBa2Cu3O7

compounds are given in Table 1.1, with the associated references. Note that these values
are valid for bulks and can change drastically for thin films [70, 71, 72, 73], depending
on the fabrication process, the microstructure or the presence of impurities [74, 75, 76].
Also, note that the temperature dependences in YBa2Cu3O7 differ a lot from the ones
above [63]. Nevertheless, it is still useful to keep in mind these expressions, as a reference
to compare to more realistic and detailed experimental studies of these parameters.

1.2 Magnetic properties of type-II superconductors

1.2.1 Magnetic-field distribution around an isolated vortex

Since niobium is a type-II superconductor, gaining additional insight about the distribu-
tion of magnetic field and current density around an isolated vortex and how they interact
with each other is crucial. The magnetic field and current density around a single vortex
can be extracted from the Ginzburg-Landau formalism, using numerical methods to solve
this system of non-linear coupled differential equations. However, a first approximation
can be derived in the high-κ limit, i.e. κ≫ 1. This assumption allows one to consider the
vortex as a normal cylindrical core of radius ξ, around which supercurrents circulate and
shield the core magnetic field. Assuming magnetic field to be directed in the out-of-plane
direction, the generated magnetic field decreases along the radial direction, r, so that
B = Bz(r)ez, and the subsequent Meissner current are azimuthal, J = Jθ(r)eθ. In this
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Figure 1.4: (a) Distributions of the out-of-plane component of the magnetic field,
Bz(r)/B(0), the azimuthal current density, Jθ(r)/Jθ(ξ), and the order parameter,
ψ(r)/ψ∞, as a function of the radial distance from the vortex centre of an Abrikosov
vortex, r/λ, in the specific case κ = 2. The normal core region is represented in yellow,
and the superconducting region, where Meissner currents extend, is coloured in light blue.
(b) Electric field inside and around an Abrikosov vortex and the Lorentz force that drives
the vortex forward, fL = J×B. In the steady state, the vortex moves at the velocity vL.
The motion of the normal core, in yellow, of lateral extension ξ, results in Joule-effect
energy losses that can be modelled by a dissipative force opposing the vortex motion,
fd = ηvL.
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context, Equation 1.6 yields [77]

Bz(r) =
Φ0

2πλ2

K0

(√
r2 + ξ′2/λ

)

K1 (ξ′/λ)
, (1.15)

Jθ(r) =
Φ0

2πµ0λ3

K1

(√
r2 + ξ′2/λ

)

K1 (ξ′/λ)

r√
r2 + ξ′2

(1.16)

where K0 and K1 are the zeroth- and first-order modified Bessel functions of the second
kind, and ξ′ is a variational parameter of the order of magnitude of ξ. Note that Equation
1.15 is supposed to diverge as log(λ/r) close to the center of the vortex. In practice,
this divergence is cut-off, because |ψ|2 → 0 in the normal core and the superconducting
currents drop to zero. As a result of this, the magnetic field reaches a maximum at the
center of the core and one can estimate

Bz(0) ≈
Φ0

2πλ2
log κ. (1.17)

The Bz and Jθ profiles of a so-called Abrikosov vortex as a function of r/λ are schemat-
ically represented in panel (a) of Figure 1.4, in the case κ = 2. From the magnetic-field
decay from a single vortex, it is then possible to deduce its energy per length unit, ϵ0.
Neglecting the normal core of the vortex, ϵ0 is the sum of the magnetic and the kinetic
energies of the Meissner currents [77]

ϵ0 ≈
Φ2

0

4πµ0λ2
log κ. (1.18)

1.2.2 Interactions between vortices

In a real sample, not only one but many vortices penetrate the sample and interact with
each other. The presence of other neighbouring vortices results in additional contributions
to the system free-energy. These additional terms can be interpreted as the presence of
forces that act on each vortex on behalf of every other surrounding vortices. In order to
illustrate the kind of force that the vortices undergo, let us consider the simplest case of
a vortex pair. Starting from the results of Equation 1.15 in the limit κ ≫ 1, the force
acting on vortex 2 on behalf of vortex 1, f12, is given by

f12 = −∇F12 = (Jθeθ)× (ϕ0ez) (1.19)

where F12 is the free-energy characterizing the interaction between both vortices, and
Jθ is the current density associated with vortex 1. Similarly, one can estimate the force
governing the interaction of a vortex with an antivortex, which carries a fluxon of opposite
sign. The force is then the opposite of that in Equation 1.19.

The first observation that can be made about Equation 1.19 is that the force that under-
goes the vortex takes a form similar to a Lorentz force, even though it is limited to the
superconducting currents, and while the current is the cause of vortex motion and not
the magnetic field [78]. Equation 1.19 generalizes easily to samples that contain many
vortices

fL = Jsc ×Φ0, (1.20)
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with fL being the Lorentz force to which the vortex is subjected, and Jsc being the total
superconducting current density that reaches the target vortex and generated by every
other vortices. The second observation is that f12 is repulsive, whereas the force acting
between a vortex and an antivortex is attractive. A vortex and an antivortex then attract
each other, until they annihilate. On the other hand, in the presence of a multitude of
vortices that carry fluxons of the same polarity, the vortices are bound to spontaneously
move because of the repulsive Lorentz forces. Ultimately, in a bulk sample, vortices will
arrange themselves into a stable triangular lattice known as the Abrikosov vortex lattice
[79].

1.2.3 Flux flow and critical current density due to pinning

The situation is completely different when an external current is forced through the su-
perconductor. Then, the driving Lorentz force is not only generated by the supercon-
ducting current density of the vortices, but also takes the external supplied current into
account. This additional contribution to the total current forces the vortex lattice out-
of-equilibrium, undergoing a net force that sets the vortices into motion, at a speed vL.
In turn, the flux quanta in motion induce an electric field, E. According to the Bardeen-
Stephen model [80], which assumes that the core of the vortex acts as a normal state
region, the electric field generated inside a moving vortex is parallel to the current den-
sity passing through the core. A sketch of the electric field inside and around the normal
core of the vortex, when superconductivity is supposed to act locally, is shown in panel
(b) of Figure 1.4. As a consequence of the induced E ∥ J, energy is dissipated locally
in the form of heat because of Joule effect, at a rate E · J. This regime, where vortices
move, carrying their fluxons and dissipating energy simultaneously, is called the flux-flow
regime. Flux flow can be characterized by a flux-flow resistivity, ρff , that emerges from
equating the driving Lorentz force, fL = J×Φ0, to a viscous drag of the form fD = −ηvL,
which models the energy losses stemming from Joule heating and opposes the vortex mo-
tion, as represented in panel (b) in Figure 1.4. Here, η is a drag coefficient that reflects
the effect of heat dissipation of the medium. From the expression of the induced electric
field E = vL ×B, one directly finds that [80]

ρff =
Φ0

η
|B| ≈ nvΦ

2
0

η
, (1.21)

where nv is the density of vortices in the material and depends on the applied field. The
dissipated power by unit length of the normal core, PD, and the flux-flow resistivity can
be related to the resistivity of the material in the normal state, ρn, according to [80]

PD =
|vL|2Φ2

0

4πξ2ρn
(1.22)

ρff
ρn

≈ |H|
Hc,2

, (1.23)

Flux flow particularly undermines the usefulness of type-II superconductors for applica-
tions, especially at high applied field, as witnessed by Equation 1.23, since current cannot
be transported without heat dissipation any more. In order to counteract the deleterious
consequences of the flux-flow regime, vortices need to remain immobile. This can be done
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by introducing artificial defects and inhomogeneities in the sample such as normal phases,
dislocations, inclusions, arrays of antidots or holes, vacancies or grain boundaries. These
defects locally suppress the order parameter and reduce the energy of the vortices, so that
it becomes beneficial to them to pass through the defects, partially or completely, instead
of bypassing them. The pinning sites thereby act as potential wells where vortices tend to
hook on and remain trapped. This potential landscape is denoted by ϵP . A local pinning
force, fP , can be derived from the pinning potential as

fP = −∇ϵP . (1.24)

A vortex remains pinned to a given pinning center as long as fP can balance the driving
force, fL. A straightforward force balance outlines a local critical current density, Jc =
|fP,max|/Φ0, above which the vortex detaches from the pinning center and keeps moving
until it pins to another pinning site, provided the local current density is not too intense,
i.e. |J| ≤ Jc. Bear in mind that Jc < Jdep and cannot exceed this value, as mentioned in
Subsection 1.1.1.

1.2.4 The critical state model

The Ginzburg-Landau model has proved its efficacy in describing the penetration of mag-
netic field in superconductors at the scale of the coherence length and the vortices. How-
ever, being able to probe the magnetic landscapes at such a small length scale becomes
quickly heavy in terms of numerical workload when the size of the investigated system
increases. Moreover, it is not necessary to probe the magnetic field in such details to
appreciate the main features that manifest at the macroscopic scale. Instead, one can
average the electromagnetic quantities over several vortex spacings and use the Maxwell
equations. This approach is more adapted to macroscopic systems, which size typically
extends over several hundreds of micrometers or more. Macroscopic models are then
needed to investigate superconducting properties.

Critical state models (CSM) constitute a class of macroscopic models that aim at explain-
ing the distribution of magnetic field in type-II superconductors. The main assumption
of this category of models is the strong pinning hypothesis, that supposes that pinning
is sufficiently strong to prevent any flux leakage from the pinning sites, once the external
applied field is kept constant. As stated in Subsection 1.2.3, vortices remain attached
to their pinning centres and cannot move as long as |J| ≤ Jc. As soon as |J| exceeds Jc,
the vortices are set into motion and reorganize until a new equilibrium configuration is
reached. This situation occurs once the condition |J| ≤ Jc holds for every vortex. Each
vortex is then anchored to a pinning site, until the external field changes again. This
delimits a region where vortices have penetrated, where the condition |J| = Jc holds.
By contrast, the remaining part of the sample remains flux-free, since no vortex has
progressed thus far. For infinitely long bulk sample, J = 0 in the flux-free region.

Among the CSM, the Bean model [81, 82] neglects the possible non-uniformities in the
pinning landscape, so that Jc is supposed to be uniform in the whole sample. Considering
Hc,1 to be zero and Hc,2 infinitely large, the Bean model allows an easy description of the
magnetic field distribution in an infinitely long superconducting slab of width W which
is subjected to a uniform out-of-plane magnetic field, Ha = Haez. The problem is then
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Figure 1.5: Critical states in an infinitely long superconducting slab of width W in the
framework of the Bean model. The applied field, Ha, is directed along the z-direction. (a)
Distributions of the magnetic field, Bz, as a function of the distance from the centre when
the applied field is ramped up from 0 to a maximal field Hmax

a . H∗
a is the applied field that

is required to force the flux front at the centre of the slab. ℓp is the penetration length
of the flux front. (b) Distribution of the norm of the current density, |Jy|, corresponding
to the first Bz profile highlighted in panel (a). (c) Bz profiles when the applied field is
ramped back from Hmax

a to −Hmax
a . H†

a = Hmax
a − 2H∗

a is the applied field for which
Jy = sgn(x) Jc in the whole sample for the first time. (d) Jy that corresponds to Ha = 0,
back from Hmax

a .
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reduced to a one-dimensional problem, and the induced currents are directed toward the
y-axis, J = Jy(x)ey. The magnetic field profiles, Bz, at different values of the external
field, Ha, are illustrated in panel (a) in Figure 1.5, increasing Ha from a virgin state up
to a maximum applied field, Hmax

a . Since Hc,1 = 0, vortices enter the sample as soon as
Ha > 0, and B = µ0H holds throughout the magnetization process. Moreover Hz = Ha

at x = ±W/2 for any Ha. According to Ampere’s law, J = ∇×H, Bz decreases linearly
with x with a slope that is equivalent to Jc until Bz = 0. This occurs at a distance ℓp, the
penetration length, as illustrated in panel (b) of Figure 1.5. The higher Ha, the higher ℓp,
until a threshold field, H∗

a is reached for which ℓp = W/2. In this case, Jy = −sgn(x) Jc
in the whole slab, and the relation H∗

a = JcW/2 holds. When Ha ≥ H∗, vortices occupy
every pinning centres, the magnetic response of the slab remains unchanged, and the
profiles of Hz are simply shifted by a constant Ha −H∗

a .

Once Hmax
a has been reached, Ha is decreased back to −Hmax

a . The Bz and Jy profiles
are shown in panels (c) and (d) of Figure 1.5. Now, antivortices that carries fluxons of
opposite polarity immediately enter the sample, since Hc,1 = 0, and progressively replace
the anchored vortices. The superconductor is thus divided into a region where Jy = −Jc,
and another region where Jy = Jc is still holding, see for instance panel (d) of Figure
1.5. At H†

a = Hmax
a − 2H∗, for the first time, Jy = sgn(x) Jc everywhere in the infinitely

long bulk. The magnetic response then stays as it is, although Ha still decreases until
Ha = −Hmax

a . The remanent state displays a rooftop-like profile, which is a completely
different magnetic field landscape than the original virgin state.

The critical state model can also account for magnetic-field-dependent Jc. Among diverse
available empirical fits, this dependence can in general be faithfully described by the
generalized Kim model, which states [83]

Jc(B) =
Jc(0)

(1 + |B|/B0)
α , (1.25)

where B0 is a characteristic magnetic field that describes the variations of Jc with |B|,
Jc(0) is the critical current density at B = 0 and α is a fitting parameter. Kim’s model
is obtained for the particular case α = 1 [84]. Upon a magnetization from a virgin state,
and considering the same longitudinal geometry as for the Bean model, the profiles of Bz

in the region filled with vortices as a function of Ha can, in the context of Kim’s model,
be obtained from the relation

(Bz +B0)
2 − (µ0Ha +B0)

2 = 2µ0Jc(0)B0

(
|x| − W

2

)
, (1.26)

and the associated current-density distributions in the penetrated region are given by

Jc(0)

|Jy(x)|
=

√(
1 +

µ0Ha

B0

)2

+
2µ0Jc(0)

B0

(
|x| − W

2

)
. (1.27)

The Bz and |Jy| profiles are respectively outlined in panel (a) and panel (b) in Figure 1.6 in
the particular case α = 1, B0 = µ0Jc(0)W/2 and for various applied fields, Ba/B0 = 0.5, 1
and 1.5. The flux front stops at a distance ℓp from the edges, which value can be obtained
from Equation 1.26 with Bz = 0. The penetration length ℓp for a given Ha is thus

ℓp =
Ha

Jc(0)

(
1 +

µ0Ha

2B0

)
, (1.28)
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Figure 1.6: Critical states in an infinitely long superconducting slab of width W in the
framework of the Kim model. The applied field, Ha, is directed along the z-direction.
(a) Distributions of the magnetic field, Hz, and (b) the corresponding distributions of the
norm of the current density, |Jy|, as a function of the distance from the centre of the slab
when the applied field is ramped up from 0 to a given maximal field. The magnetic field
dependence is given by Equation 1.25, with α = 1. The Bz and |Jy| profiles are given
for B0 = µ0Jc(0)W/2, and for applied fields µ0Ha equal to 0.5B0, B0 and 1.5B0. ℓp is the
penetration length of the flux front and is indicated in the case µ0Ha = B0 for the sake
of illustration.

which is a larger value than the penetration length that is expected in the Bean model
with Jc = Jc(0), i.e. ℓp = Ha/Jc(0). This is expected, since Jc decreases with |B|. Jc is
thus depleted close to the lateral surface of the slab and increases as one gets closer to
|x| = W/2 − ℓp, as evidenced in panel (b) of Figure 1.6. The magnetic field variations
are then smoother and the flux front progresses further than in the Bean model. When
|x| ≤ W/2−ℓp, Bz = 0 and Jy = 0, as dictated by the CSM. Note that in the extreme case
B0 → ∞, Equation 1.26, Equation 1.27 and Equation 1.28 yield the same analytical
expressions as the Bean model.

1.2.5 Surface barriers

The critical state models focus on the dynamics of vortices once the vortices have entered
the superconductor, but are not dedicated to how their entrance unfolds, which is a surface
effect in essence. In fact, the entrance of the first vortex is not immediate and a minimal
intensity of the applied field is required so that the formation of a single vortex becomes
favourable in terms of the free energy of the system. Under this threshold field, a vortex
cannot exist in the superconductor, which corresponds to the Meissner state. In practice,
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Figure 1.7: (a) Free energy of the vortex, ϵ/ϵ0, as a function of the distance from the
edge of an infinitely long superconducting slab, x/λ, for various strengths of the applied
field, Ha, and in the case λ = 10 ξ. The energy barrier that opposes the entrance of
vortices above Ha = Hc,1 is called the Bean-Livingston barrier. (b) Enlargement of the
magnetic flux lines, in dark blue, close to the sharp corners of a superconducting film
when Ha < HGB. (c) Enlargement of the magnetic flux lines, in dark blue, close to the
sharp corners of a superconducting film when Ha > HGB.

this lower threshold can differ from the lower critical field Hc,1. Two main phenomena
can explain a modification of the actual penetration field, Hp ̸= Hc,1.

The Bean-Livingston barrier

The first type of barrier that a vortex must overcome to enter a sample is known as the
Bean-Livingston barrier [85]. When a vortex lies close to the surface of a superconductor
of infinite lateral extension, it undergoes two opposing forces. The first one stems from the
zero normal current condition across the border of the superconductor. This conditions is
equivalent to create a fictive antivortex that is the image of the targeted vortex, according
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to a mirror symmetry with respect to the film border. Based on Equation 1.19, for x≫ ξ,
this generates an attractive force towards the border and contributes to its energy per
unit length as

ϵB = − ϕ2
0

4πµ0λ2
K0

(
2x

λ

)
(1.29)

where x stands for the distance of the vortex from the border. The second force stems
from the interaction between the vortex and the field inside the superconductor. If the
internal flux lines and the entering vortex point towards the same direction, the interaction
between the Meissner currents and the vortex results in a Lorentz force that pushes the
vortex away from the border. This mechanism contributes to the energy per unit length
of the vortex as a Zeeman energy

ϵZ = ϕ0Ha exp
(
−x
λ

)
. (1.30)

Combining Equation 1.29 and Equation 1.30, one can estimate the dimensionless energy
per unit length of a vortex, ϵ/ϵ0, with respect to the normalized distance from the border,
x/λ, with ϵ = ϵ0 + ϵB + ϵZ and ϵ0 is the energy per length unit of a single vortex far from
the border, see Equation 1.18. This is plotted in panel (a) in Figure 1.7 for different
applied fields in the particular case of λ = 10 ξ. When Ha < Hc,1, the line energy of
the vortex is the lowest close to the border of the film, so that the formation of a vortex
is unfavourable and does not occur. If Ha ≥ Hc,1, the line energy becomes lower at
sufficiently long distances from the border than at the border itself. However, it increases
over a finite distance form the border, reaching a maximal value, which means that the
vortex has to overcome a potential barrier to enter the sample. Such barrier prevents
the vortex entrance inside the superconductor. This barrier is called the Bean-Livingston
barrier, and its height decreases as Ha increases, until it reaches the value of HBL above
which the line energy is strictly decreasing with x, meaning that the first vortex is allowed
to enter the sample freely.

The aforementioned developments assume a perfectly smooth surface. In practice, how-
ever, the roughness of the borders involves small defects where magnetic pressure may
locally be enhanced, which facilitates flux entrance even for Ha < HBL, so that the de-
fects act as tiny flux faucets. However, upon a reduction of the applied field, these same
locations, where the magnetic field flux lines concentrate locally, block and delay the exit
of vortices, which remain trapped inside the sample [85]. The Bean-Livingston barrier
is thus an non-symmetric barrier. The hysteretic behaviour of magnetization in weak-
pinning or close-to-Tc samples is the signature of such surface barriers and has mostly
been observed in single crystals [86, 87].

Geometrical barrier

The other kind of surface barrier that can delay the entrance of vortices is the geometric
barrier [88, 89]. It results from a balance between the line tension of a vortex that
keeps it anchored to the edges of the sample and the Lorentz force that drives it to the
centre of the film [90]. The onset of vortex penetration is represented for an infinitely
long sample of rectangular transversal section, in panels (b) and (c) of Figure 1.7, which
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show close-up views on the magnetic flux lines around the corners of the sample [91].
In analogy to the flux-concentrating property of small irregularities along rough borders
that was mentioned when discussing the Bean-Livingston barrier, the sharp corners of a
sample are also locations of magnetic flux concentration. Since Hc,1 is first reached there,
vortices nucleate through the corners, in such a way that they are at first not parallel
to the applied field and stay attached to the boundary because of their line tension, see
panel (b) of Figure 1.7. The vortex undergoes two opposing forces. One the one hand,
the line tension of the vortex tends to minimize the length of the vortex and prevents its
progression inside the superconducting film. On the other hand, the Lorentz force pushes
the vortex towards the interior of the sample. The balance between both forces determines
the length of the vortex, which progressively increases as the applied field increases. This
balance is maintained until both the upper and lower part of the vortices merge and form
a single vortex that straightens and becomes parallel to the applied field, see panel (c)
of Figure 1.7. At this moment, the length of the vortex suddenly reaches its minimum
value, the line tension becomes minimal, and the Meissner currents drive the vortex to the
center of the superconductor, in the absence of pinning, or until |J| = Jc, in the presence
of pinning. This can lead to the formation of magnetic flux domes [88, 90]. These domes
vanish outside a given range of applied current and applied field [92]. The geometrical
barrier also implies an hysteretic behaviour of the magnetization of the superconductor,
because the field of first vortex entry is not the same as the field that is required to exit
the superconducting material [90, 91].

The applied field at which the vortex detaches from the boundary and is carried away by
Meissner currents is the penetration field related to the geometrical barrier, HGB. This
penetration field is highly dependent on the geometry of the sample, which determines
the line tension of the vortex. In the case of an infinitely long strip of rectangular cross
section with rounded borders, and in the absence of the Bean-Livingston barrier, it can
be shown that [90]

HGB = Hc,1
1√

2W/d+ 1
. (1.31)

Thereby, the geometric barrier reduces the applied field that is necessary to let a vortex in
the superconductor. Equation 1.31 immediately demonstrates that geometrical barriers
are much more prominent in thin films that are subjected to a transverse field than in
bulks. In fact, if W/d ≈ 1000, HGB is effectively reduced by a factor of 45, while it is
only divided by a factor of 2 when W/d ≈ 1. For a niobium thin film of aspect ratio
W/d ≈ 1000, taking µ0Hc,1 = 160 mT, this thus gives a first penetration field that is of
the order of magnitude of 4 mT.

1.2.6 Anisotropic behaviour

The Bean and the Kim models, which were introduced in Subsection 1.2.4, assume uni-
form pinning, which is a very convenient hypothesis. Nevertheless, depending on the
material or the microstructure, pinning is not always isotropic. Both out-of-plane and in-
plane anisotropy can significantly deform the shape of the vortices, for instance causing
the twisting and tilting of the flux lines [93]. Anisotropy can be divided into two types.
Intrinsic anisotropy can stem from the crystal structure of the compounds, but also from
the inclusion of pinning sites and anisotropic structural defects, such as columnar defects,
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extended defects [93]. YBa2Cu3O7 is a known example of anisotropic superconductor.
Its atomic structure, which consists in parallel CuO planes that sandwich barium and yt-
trium atoms alternatively, leads to very different effective electron masses along or normal
the CuO planes, which in turn influences the superconducting and transport properties
along each direction [93, 94]. Intrinsic anisotropy can also be instigated by ion-beam
irradiations, which create oblique pinning centres [95].

Contrary to intrinsic anisotropy, extrinsic anisotropy can be induced by an external in-
plane field, H∥, that is superposed to an out-of-plane field, H⊥ [96, 97]. Two main theories
were proposed to explain the rise of anisotropic features under the application of an in-
plane field. The first one is based on flux cutting. H∥ gives rise to in-plane vortices
(in the direction of H∥) which interact with the usual out-of-plane or tilted vortices that
penetrate because of H⊥. The out-of-plane vortices that move perpendicular to the in-
plane vortices must cross them and undergo successive cutting-and-reconnection processes
that further hinder their passage, while the vortices that make their way parallel to the
in-plane vortices remain unperturbed by their presence and only have to overcome bulk
pinning [96]. The in-plane field thus begets an increase of the pinning force when the
vortices move perpendicular to the direction of H∥, while pinning in the same direction
as H∥ is preserved. A second theory was proposed just after the first and advocates
for reduced pinning along the in-plane vortices, that act as preferential corridors for the
motion of the out-of-plane vortices, while their motion remains roughly unaffected along
the perpendicular direction [43]. In any case, both theories conclude that Jc is larger in
the regions where the current density is parallel to the direction of H∥ than those where
it flows perpendicular to H∥.

Extrinsic anisotropy steps in only whenH∥ exceeds a lower threshold value which coincides
with the field at which in-plane vortices are allowed in the sample [96]. For this reason,
for a given value of H∥, extrinsic anisotropy is prevented if the sample is thinner than a
threshold value [96, 97]. Extrinsic anisotropy becomes more significant as H∥ is increased,
so that extrinsic anisotropy has the benefit to be completely tunable [97]. One should
be careful on the fact that critical states might radically differ depending on whether the
anisotropy is intrinsic or extrinsic [95].

1.2.7 Thermally activated flux-creep

Subsection 1.2.3 emphasized that vortices remain pinned to defects until the local current
density reaches its critical value, Jc. The temperature dependence of the critical current
density, Jc(T ), can be estimated as [98, 99]

Jc(T ) = Jc(0)

(
1− T

Tc

)3/2

, (1.32)

where Jc(0) is the critical current density at T = 0 K. Besides, due to thermal fluctuations,
vortices happen to hop from their pinning center to another one, and then reorganize,
meanwhile dissipating power, which increases the measured voltage drop across a sample,
for a given value of the transport current. This thermally activated phenomenon is better
known under the name of flux creep. From the perspective of modelling, flux creep relates
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E and the local J according to a power law

E (|J|) = Ec

Jc

( |J|
Jc

)n−1

J ≡ ρ (|J|)J. (1.33)

Equation 1.33 is formally explained by a logarithmic dependence on J of the activation
energy, U = U0 log (Jc/|J|), where U0 is an energy constant that may vary with tempera-
ture and magnetic field. The logarithmic shape is corroborated experimentally [100, 101]
and then combined to the usual flux-creep model [102] to yield Equation 1.33. The choice
of the logarithmic dependence of U with respect to J is motivated by a logarithmic shape
of the potential wells within which vortices are trapped, which corresponds to the ex-
pected shape of the potential well for small defects that extend over distances that are
comparable to the coherence length, ξ [100]. Strictly speaking, the value of Ec is an arbi-
trary chosen value that defines the value of Jc from the E-J curve of the studied sample.
In this thesis, the very widespread value Ec = 1 µV/cm is chosen. However, the choice
of Ec is not expected to influence qualitatively the results of this thesis [103]. It is worth
stressing out that the isotropic flux-creep model is not suited for treating the modelling
of longitudinal currents [104, 105, 106]. In that case, one should refer to more elaborated
models [105, 107, 108].

Determining a value of n can be achieved by either the direct measurement of the loga-
rithmic scale plot of the E−J curve or using the decay of the magnetization with respect
to time [84, 109]. In fact, because of the thermal fluctuations that enable flux hopping
from one pinning site to another, the array of vortices rearranges continuously and the
total magnetization of the sample progressively decreases since some of these unpinned
vortices exit the sample through the borders. Since vortex motion is driven by Lorentz
forces and flux gradients, which are reduced as trapped vortices are released, flux creep
slows down over time. In practice, this results in a logarithmic time decay of the total
magnetization of the sample M and the persistent currents that are responsible for it.
Denoting the normalized flux-creep rate by S, one can show that, at large times, [109]

S = −∂ log (|M|)
∂ log t

=
1

n− 1
. (1.34)

Notice that if n → ∞, one recovers the critical state assumption, where the pinning
centres are strong enough to prevent any thermally activated flux creep. In such a case,
E = 0 if |J| < Jc, and the magnetization of the sample does not decay over time.

1.3 Magnetic properties of thin films

1.3.1 Penetration of magnetic field in thin superconducting films
at the micro- and macro-scale

Up to this point, the focus was put on the main superconducting parameters and the gen-
eral dynamics of vortices to explain the propagation of magnetic field in superconductors
in the mixed state. However, the results of this thesis focus on thin films subjected to
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an external out-of-plane magnetic field. Thin films cover samples with a lateral exten-
sion, let us say L, much larger than its thickness, d, i.e. L/d ≫ 1. Such a restriction
has crucial implications regarding the magnetic field distribution around vortices. First,
the magnetic field generated by vortices in bulk superconductors is characterized by an
exponential asymptotic decay at distances r > λ, i.e. Bz ∼ exp (−r/λ). In contrast
to Abrikosov vortices, the so-called Pearl vortices, which arise in thin films with d ≤ λ,
generate a magnetic field that asymptotically decays as 1/r3, and the superconducting
currents, that dictate the interaction range of the vortices stemming from the pseudo-
Lorentz forces, decay as 1/r2 [72]. Pearl vortices then interact on much longer scales
than Abrikosov vortices. Subsequently, the macroscopic profiles of the magnetic field in
practical thin superconducting films are heavily impacted by the long-range interactions
and ordering between vortices. Second, when d ≤ λ, the Meissner currents that screen
the magnetic field leaking through the vortices are confined over the film thickness, so
that these induced current extend over typical distances of the order of Λ = 2λ2/d in
the planar direction, instead of λ for bulk samples. Pearl vortices typically appear when
d≪ λ, but are also reported when d ∼ λ [110].

Moreover, the thin-film geometry also involves much more prominent demagnetizing ef-
fects than in bulk samples, influencing even further the magnetic field penetration in thin
superconducting films, which becomes strongly non-local. These demagnetizing effects
and the sharp edges of the samples tend to concentrate the magnetic flux at the border of
the film, as illustrated in the upper picture of panel (a) in Figure 1.8. Such a concentra-
tion means that vortices may enter the film although the magnitude of the applied field,
Ha, is much lower than Hc,1 or HBL, if the Bean-Livingston barrier is accounted for, as
witnessed by Equation 1.31. Besides, for partially penetrated films with strong pinning,
the current density is uniform along the thickness only where vortices have penetrated,
while currents spreads non-uniformly across the thickness in the Meissner region [111],
forming a meniscus-like shape. The sheet current density, Js, is therefore non-zero in
the flux-free regions, as schematically illustrated in the lower part of panel (a) in Figure
1.8. Physics in thin films thus becomes non-local, which adds complexity to the already
challenging non-linear behaviour of superconductors.

In order to have a better grasp of the typical distributions of the out-of-plane component
of the magnetic field, Hz, and the current density, J, in the thin-film geometry, analytical
expressions can be obtained for thin disks of radius R and infinitely long thin strips of
widthW subjected to an out-of-plane external field, Ha = Haez. These results rely on the
thin-film approximation, which consists in recasting Maxwell’s equations with the current
density, J, replaced by the sheet current density, Js, which is the integration of J over
the thickness of the film, d, i.e.

Js(x, y) =

∫ d/2

−d/2

J(x, y, z)dz. (1.35)

The film is then treated as an infinitely thin layer, where the magnetic field in the film, H,
is strictly directed in the out-of-plane direction, while the current density remains strictly
parallel to the cross section of the film. This assumption allows the three-dimensional
eddy-current problem to be reduced to a two- or one-dimensional problem, which is based
on the resolution of the Biot-Savart law. The results are obtained in the framework of
the critical state model, with a critical current density equal to Jc. In the case of a thin
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Figure 1.8: (a) Distribution of the magnetic field lines (in dark blue) in a superconducting
film with strong pinning, which is subjected to a uniform out-of-plane applied field (in
light blue). The associated distribution of the current density is sketched in the bottom
drawing. This distribution is non-uniform in the flux-free regions, which extends over a
length 2ℓ0. (b) Distributions of Bz and |J| in an infinitely long thin superconducting strip
of widthW as a function of the distance from the centre of the strip, x, with Ha/Hd = 1.5.
The profiles are taken along the red curve.
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disk, the current density flows in the azimuthal direction, and one has [112, 113]

Hz(r) =





0 if 0 ≤ |r| ≤ ℓ0,

Hd

[
arccosh

(
R
ℓ0

)
− arccosh

(
R
r

)
+

∫ π/2

arcsin (ℓ0/R)
2
π

1−θ cot θ√
1−(Ha/Hd)2 sin θ

dθ

]
if ℓ0 ≤ |r| ≤ R,

(1.36)

|J(r)| =
{

2Jc
π

arctan
{

r
R

√
R2−ℓ20
ℓ20−r2

}
if |r| ≤ ℓ0,

Jc if ℓ0 ≤ |r| ≤ R,
(1.37)

where r is the radial distance from the centre of the disk, ℓ0 = R/ cosh (Ha/Hd) corre-
sponds to the extension of half the flux-free region, and Hd = Jcd/2. Similarly, in the
case of the infinitely long strip, the CSM in the thin-film approximation yields [114]

Hz(x) =





0 if 0 ≤ |x| ≤ ℓ0,

Hd arctanh

{√
x2−ℓ20
c0|x|

}
if ℓ0 ≤ |x| ≤ W/2,

(1.38)

|J(x)| =





2Jc
π

arctan

{
c0|x|√
ℓ20−x2

}
if 0 ≤ |x| ≤ ℓ0,

Jc if ℓ0 ≤ |x| ≤ W/2,
(1.39)

where x is the distance along the width from the infinitely long median of the strip,
ℓ0 = W/(2 cosh (Ha/Hd)), c0 = tanh (Ha/Hd) and Hd = Jcd/π. The profiles of Hz and
|J| are plotted versus x for Ha = 1.5Hd in the strip geometry in panel (b) of Figure 1.8.
Contrary to the CSM in bulk samples, the magnetic field diverges as a logarithm close
to the borders of the film. Besides a region of constant |J| = Jc, the current density is
also non-zero outside this region, and decays progressively until J = 0 at the centre of
the film, as illustrated in the bottom figure of panel (a) of Figure 1.8. Note that the
logarithmic divergence is cut off at the boundary of thin films of finite thickness, d, and
reaches a level that scales as ∼ log (L/d), where L is the typical in-plane size of the film
[115, 116].

1.3.2 Discontinuity lines

In any superconductor in the mixed state, magnetic field enters the sample through the
border of the sample as soon as it exceeds the surface barrier and progresses further
towards the center as the external field is increased. The associated distribution of the
current density also varies with the applied field, and the current loops that result from
this distribution evolve accordingly, in a complex way. However, once the magnetic field
has fully penetrated inside the film, the reaction field does not change any more and the
induced current lines freeze into a definite shape [116]. The hypotheses of the critical state
model then become relevant. The current density must flow parallel to the borders of the
sample to obey current conservation, and the current streaming lines are equidistant from
each other, in accordance with the CSM. If the boundary of the film cross section makes
sharp turns, the current lines follow them, leading to abrupt changes of orientation of the
current density. These current deflections occur at specific locations that are known as
discontinuity lines (d-lines) [116].
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Two kinds of d-lines can be identified [95]. The first kind regroups d-lines that demarcate
two regions of unequal Jc, where current must bend sharply to obey current conservation.
These d-lines are also labelled as d−-lines. In particular, they include the borders of the
film or the holes that may perforate the film cross section. As is obvious in the case of the
film boundaries, vortices and magnetic flux can cross d−-lines. The second kind of d-lines
concerns those arising in a region of uniform Jc, but where the current density changes
its direction abruptly. In contrast with d−-lines, magnetic flux cannot traverse d+-lines
and moves along them instead. These d-lines are confounded with particular symmetry
lines that are intricately related to the geometry of the sample. Note that the thin-film
geometry exacerbates the levels of magnetic field around the d-lines, where Bz diverges
logarithmically [116, 117]. If the magnetic landscapes are probed by means of magneto-
optical imaging, see Subsection 1.4, the d-lines stand out in the thin-film geometry, and
can be easily identified. This is in stark contrast with bulk samples, where such magnetic
field divergence is non-existent, so that d-lines might be difficult to identify. Moreover,
once the sample has been completely penetrated by the magnetic field, the d-lines do not
change any more, and their shape is exclusively determined by the geometry of the film
and the spatial distribution of the critical current density, whatever the strength of the
external field that might be applied afterwards [116]. The difference between the d−-lines
and the d+-lines is now illustrated in particular cases.

Discontinuity lines in a thin square film with uniform Jc

First, the case of a square film of length L is considered. The corresponding array of d-
lines is shown in panel (a) of Figure 1.9. The d−-lines coincide with the outer boundary
of the film, since current density is zero outside the film, and suddenly becomes Jc on the
other side of the boundary, inside the superconducting sample. The d+-lines correspond
to the diagonals of the square, because they separate two patches of currents, each of them
flowing parallel to one of a pair of adjacent sides of the square, which form a π/2 angle.
Current conservation then implies that a d+-line emerges from the corner, making a π/4
angle with respect to each edge. Another way to explain this result is to observe that
current lines are equidistant from the borders, so that the d+-lines must be equidistant
to each pair of adjacent edges, and thus follow the bisector line.

Discontinuity lines in a thin rectangular film with uniform Jc

In the case of a rectangular sample, the situation does not change much. d−-lines still
coincide with the outer boundary of the film, while d+-lines still make a π/4 turn, starting
from each corner of the rectangle, in accordance with current conservation. However, the
bisector lines that start from each corner do not meet at a single point, as in the case of
a square film. Instead, the two upper bisector lines meet at point, I1, which is located on
the longest median of the rectangle, in the upper half of the rectangle. Similarly, the two
lower bisector lines meet at I2, the point reflection of I1 with respect to the barycentre of
the rectangular film. The d+-lines and the central vertical d−-line thus imitate a ‘double
Y’ shape, as represented in panel (b) of Figure 1.9.
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Figure 1.9: Discontinuity lines and current lines in different thin-film geometries subjected
to an out-of-plane magnetic field, within the CSM assumptions. In all panels, the bold
blue and cerulean lines correspond to d+- and d−-lines, respectively, while current lines
are depicted in light red. Dashed lines are guides for the eye. (a) ‘X’-shaped d-lines
in a thin square superconducting film of side L. (b) ‘Double Y’-shaped d-lines in a
thin rectangular superconducting film of width W and length L. (c) Abrupt current
reorientation in a semi-infinitely long sample which is characterized by a non-uniform
critical current density distribution, with Jc = Jc,1 on the left side and Jc = Jc,2 > Jc,1 on
the right side. The d-lines are sketched in the particular case 2Jc,1 = Jc,2. (d) Parabolic
d+-lines around an isosceles triangular indentation of base b and height h. P is a point
of the right branch of the parabolic d+-lines. In the drawing, the triangle is equilateral,
so that h/b =

√
3/2.
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Discontinuity lines around an abrupt non-uniform Jc transition

Let us now consider the case of a semi-infinite film that is divided in two regions of uneven
Jc, as schematically illustrated in panel (c) of Figure 1.9. Let us denote by Jc,1 the current
density in the left region (sector 1) and Jc,2 the current density in the right region (sector
2 and 3), where Jc,1 < Jc,2, without loss of generality. Unsurprisingly, d

−-lines are located
along the flat border of the semi-infinite film. Since Jc,1 < Jc,2, a mismatch between
the location of current lines in the left and right regions arises. In particular, horizontal
current lines in sector 1 have advanced deeper in the superconducting film than those
in sector 2, where they are denser. In sector 3, the current lines take a sharp turn and
become oblique in such a way that the mismatch can be gradually rectified. Current
conservation along the limit between sector 1 and 3 yields

Jc,1
Jc,2

= cos (π − 2α). (1.40)

Several remarks are worth mentioning. First, because of the concurrent and sharp changes
of both the orientation of the current lines and the value of the current density along the
line that demarcates sector 1 and 3, a d−-line is located there. Secondly, the d+-line that
separates sector 2 from sector 3 corresponds to the bisector line between the horizontal
and oblique current lines in sector 2 and 3, respectively. This highlights once again the fact
that d+-lines coincide with symmetry lines. Last, α affects the strength of the logarithmic
divergence that surrounds the d+-line, according to the relation [116]

Bz ∼ Kα
µ0Jcd

2π
log (δx), (1.41)

where Kα = 2 cosα and δx here represents the distance from the monitored d-line. The
smaller α, the larger the multiplying factor Kα, and the more the d-line stands out. In
the limit Jc,1 = 0, one recovers the π/4 d+-line that emerges from a sharp right corner.
By contrast, if Jc,1/Jc,2 → 1, one recovers the case of a uniform Jc sample, and the d+-line
vanishes.

Discontinuity lines around defects

Finally, let us consider the case of a plain isosceles triangular indentation that is cut along
the border of a film, with a base length b and height h, as illustrated in panel (d) of Figure
1.9. As usual, d−-lines are located along the border of the film and the indentation. Since
current lines are parallel to these borders, they must change their direction along a d+-line
that is equidistant from the border of the film and the lateral border of the indentation.
The d+-line is thus located along the bisector line of the outer angles, at the basis of the
indentation. The oblique current lines that develop parallel to both lateral edges of the
indentation rejoin thanks to circular current lines, which are equidistant to the tip of the
triangular indentation. The change of orientation of the current lines is continuous, so
that no d-line is observed there.

The d+-line does not however remain linear indefinitely. Far enough from the indentation,
the circular current lines that originate from the tip of the indentation meet the horizontal
current lines parallel to the border of the sample before the latter ones meet the oblique
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current lines that are parallel to the lateral sides of the indentation. The d+-line now
outlines the locus of points that are equidistant from the tip and the horizontal border
of the film. The curve that satisfies such a requirement is a parabola. If one refers to
an orthonormal basis which origin corresponds to the mid-point of the triangle basis, the
parabolic part of the d+-lines is described by the following equation:

yP =
x2P
2h

+
h

2
, (1.42)

where P (xP , yP ) is a point of the parabolic d+-line. Equation 1.42 immediately shows
that the longer the indentation height, the more open the parabola. For the sake of
illustration, the network of d-lines and the current lines that form around a triangular
indentation are represented in panel (d) of Figure 1.9, in the specific case of an equilateral
triangular indentation, h/b =

√
3/2. The above reasoning can also be easily extended to

the case of circular and square indentations [41]. Indistinctly of the indentation geometry,
a parabolic d+-line forms far enough from the indentation, and its opening is related to
the height of the indentation [41].

1.3.3 Magnetic flux avalanches

The critical state model, an overview of which was given in Section 1.2.4, addresses
the problem of how magnetic field is distributed in superconducting materials. Such an
approach is not exclusive to superconductivity but can also be used to describe the physics
of numerous other self-organized systems, such as sand piles, earthquakes or financial
markets [118]. For instance, the vortex rearrangement upon an increase of the external
magnetic field is similar to the reorganization of grains of sand that are deposited on top
of a sand pile. In this context, the incoming amount of sand might force the slope of the
pile to exceed a critical slope. The grains at the top of the pile are pulled downwards
by gravity and rearrange until the slope is less than the critical value everywhere. These
updates of the sand-pile structure occur in the form of several local sand avalanches
that continue until an equilibrium is found where the slope of the pile is less than the
critical slope. To this extent, it is worth noticing that the sand-pile equilibrium does not
correspond to the lowest energy state, which is a flat surface where all the sand has spread
over, but rather to a situation of local equilibrium where friction is balanced by gravity,
which determines the critical slope. The analogy between the sand-pile problem and the
penetration of vortices in superconductors is rather immediate if one relates the grains of
sand to the vortices, the gravity to the Lorentz forces, and if the friction forces between
the grains, which prevent them from further tumbling down the slope, are assimilated to
the vortex pinning forces. The small and sometimes abrupt rearrangements of vortices
are labelled under the name of dynamically driven flux avalanches, since they stem from
the local balance between the opposing Lorentz and pinning forces and dissipate only low
amounts of energy.

However, when temperature and thermal effects are taken into account, vortices might
sometimes reorganize over larger length scales and smaller time scales. These kinds of
avalanches are called thermally driven avalanches. The advent of thermally or dynami-
cally driven events can be understood by comparing the magnetic and thermal diffusivity
constants of the material. The magnetic diffusion constant assesses the ability of the

33



Section 1.3. Magnetic properties of thin films

Flux motion

δQ ↑

δT ↑

Jc ↓, fP ↓Dt ≫ Dm

Dt ≪ Dm

Figure 1.10: Illustrations of the dynamically driven and the thermally driven propagations
of magnetic field inside a superconducting film. When heat is easily evacuated after a
local generation of heat (Dt ≫ Dm), magnetic flux penetrates smoothly in the sample.
If heat cannot be removed efficiently (Dt ≪ Dm), a positive feedback loop is initiated,
leading to thermomagnetic avalanches. The magneto-optical images were provided with
the courtesy of J. Brisbois and A. V. Silhanek.

material to smear a perturbation of magnetic nature. It is derived from Faraday’s and
Ohm’s law and writes as

Dm =
ρ0
µ0

, (1.43)

with µ0, the magnetic permeability, and ρ0, the normal-state electric resistivity of the
material. Similarly, the thermal diffusion constant, Dt, assesses the efficacy of the material
to spread a thermal perturbation. It compares the heat conductivity of the material, κt,
to the volumetric heat capacity, cv, so that

Dt =
κt
cv
. (1.44)

If Dt/Dm ≫ 1, heat diffuses much more rapidly than magnetic field. Each time vortices
are set in motion, modifying the distribution of magnetic field, the heat generated by
the motion of vortices is efficiently removed. Therefore, the superconducting properties
remain stable, and one assists to a relatively smooth magnetic field penetration, such as
showed in the left image of Figure 1.10.

By contrast, if Dt/Dm ≪ 1, heat is smeared very slowly with respect to the motion of flux
lines. As soon as vortices escape their pinning centres, the dissipated heat is not removed
efficiently. As a result, a local heat excess, δQ, occurs and the resulting small temperature
increase, δT , locally degrades the superconducting properties, such as the critical current
density Jc and the pinning forces fP . This facilitates magnetic flux motion, which begets
additional heat dissipation, degrading even more Jc and fP . A positive feedback loop is
initiated and leads to the occurrence of extremely fast and sudden thermomagnetic flux
avalanches, as illustrated in the rightmost picture of Figure 1.10. Eventually, these events
stop spontaneously, since the Meissner currents that entail the motion of magnetic flux
decrease when heat is released and temperature raises. In addition, as the large amount
of vortices that contribute to the avalanche process is pushed forward, the flux gradient
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decreases close to the border of the sample. The incoming vortices end up being pinned
again, which prevents further heat dissipation responsible for the onset of flux avalanches.

These thermally driven events are extremely deleterious to the superconducting sample,
since they can locally elevate the sample temperature above Tc and completely suppress
superconductivity there. This can damage the sample definitively [119]. Thermomagnetic
avalanches events typically occur over a few nanoseconds and reach velocities that can go
as high as 160 km/h [120]. They are also extremely erratic, are not triggered systematically
at the same location along the border of the sample, while their number and morphology
depend on the applied field and substrate temperature, T0 [121, 122]. Following the same
pedagogical incentive that motivated the analogy between sand piles and dynamically
driven avalanches, thermodynamically driven avalanches can also be compared to other
phenomena that can be observed in nature, such as snow avalanches or thunderstorms.
Snow avalanches are triggered when the weight of the snow that has accumulated on a
mountain flank is so high that a sudden release of this stacked up potential energy, which
is converted into kinetic energy as snow tumbles down the slope, becomes inevitable. In
the case of thunder, electric charges accumulate, building up large amounts of electrostatic
energy, until a thunderous discharge unfolds, once the gradient of the electric potential
reaches a critical threshold.

H low
th (T )

Hup
th (T )

Tc

Hc,2(T )

T

logH

Figure 1.11: Threshold magnetic field for the onset of thermomagnetic avalanches, Hth,
as a function of the temperature, T . The region of the H-T diagram where magnetic
flux avalanches occur is delimited by an upper and a lower bound of H low

th and Hup
th ,

respectively, and form a unique curve that is indicated in orange. Within the region
coloured in cerulean, the magnetic field penetration is smooth, while flux avalanches
occur in the orange region, see the insets. Hc,2 is indicated in cerulean for the sake of
comparison and indicates the transition from the Shubnikov phase to the metallic phase.
The magneto-optical images were provided with the courtesy of J. Brisbois and A. V.
Silhanek.

From a more theoretical standpoint, the onset of avalanches has been extensively studied
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starting from a linear stability analysis of the coupled heat diffusion equation and the
Maxwell equations, i.e.

∇×H = J (1.45)

∇ ·B = 0 (1.46)

Ḃ = −∇× E (1.47)

cvṪ = ∇ · (κt∇T ) + E · J, (1.48)

with the associated thermal boundary conditions, (κt∇T ) · n = h0(T − T0), where h0 is
the thermal heat exchange coefficient and n denotes the normal vector to the surface of
the sample, and with E being related to J by Equation 1.33. This linear analysis of the
propagation modes provides several threshold criteria for the onset of thermally driven
events in bulks [123] and films [124, 125] and was successful in predicting the different
morphologies of the thermally driven events [124]. In particular, for an infinitely long
thin superconducting film of width W and thickness d, the threshold magnetic field that
characterizes the onset of dendritic avalanches, Hth, is given by [126]

Hth =
Jcd

π
arccosh

(
1

1− 2ℓth/W

)
, (1.49)

where

ℓth =
π

2



√

|E|Jc
κtTth

−
√

2h0
ndκt




−1

(1.50)

is the penetration length in the infinitely long strip just before the first avalanche is
triggered, with n the flux-creep exponent from Equation 1.33. The parameters invoked
in Equation 1.49 and 1.50 being temperature-dependent, Equation 1.49 provides a H-T
curve for the onset of the first avalanche. In particular, there is an upper threshold for
T , Tth, above which no avalanche can develop in the film, when the film is already fully
penetrated, i.e. ℓth = W/2. It is also worth mentioning that the linear analysis yields an
onset electric field threshold, Eth, that is larger for bulks by several orders of magnitude
than for thin films [124], which explains why thermomagnetic avalanches are much more
frequent in the thin-film geometry. Hth as a function of T and the different morphologies
of the magnetic field penetration are summarized on the H-T diagram in Figure 1.11.

1.4 Magneto-optical imaging

The experimental results which support the validity of the numerical modelling results ex-
posed in this thesis were all obtained with the magneto-optical imaging (MOI) technique,
which is a method that enables the in-situ visualization of the magnetic field distribution
in a sample. The key idea behind MOI is to exploit the difference between the refraction
indices of left- and right- circularly polarized light beams, nL and nR, respectively, that
appears in circularly birefringent materials and results in a rotation of the polarization
plane of the medium. This mismatch stems from the asymmetry of the unit cell of the
material, which is intrinsic or can be induced by an external magnetic field. When the

36



Chapter 1. Theoretical overview of the magnetic field penetration in thin
superconducting films

birefringence is induced by an external magnetic field, the medium is said to be Faraday-
active. The magnetization of the material, M, can be related to the phase shift according
to [127]

∆αF = V (ω)

∫

Lo

µ0M · dl, (1.51)

where ∆αF is the change of orientation of the polarization plane across the Faraday-active
medium, V (ω) is the so-called frequency-dependent Verdet constant, and the integral
is performed along the optical path taken by the light beam across the Faraday-active
birefringent medium, Lo.

Hg lamp Green filter

550 nm

Linear polarizer

Beam splitter

Analyzer

CCD camera

Objective

Outer shell Radiation shield

Cold finger

Sample
Faraday-active layer

GGG Al mirror

Figure 1.12: Front-view sketch of a magneto-optical imaging set-up. Non-polarized green
light is extracted from a non-polarized natural light emitted from a Hg lamp. A linear
polarizer selects a given polarization plane for the incident electric field, which is in turn
deviated towards the Faraday-active layer placed in close proximity to the sample, within
the cryostat. The changes of orientation of the polarization plane are recorded by the
CCD camera, from which the magneto-optical images can be analysed afterwards.

An overview of the magneto-optical set-up is schematically depicted in Figure 1.12. Non-
polarized green light is extracted from a non-polarized natural light source. A linear
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polarizer selects a given orientation of the polarization plane. The resulting beam then
passes through a beam splitter that redirects it towards the Faraday-active medium placed
on top of the superconducting sample. The reflected green light, which polarization plane
orientation has changed under the effect of the Faraday-active layer, reaches the analyser,
which is another linear polarizer. Its polarization plane is rotated by an π/2 angle with
respect to polarization plane of the first linear polarizer, insofar that one wants the regions
that were affected by the Faraday effect to stand out. Flux-free regions then appear pitch
black, while regions where magnetic flux has penetrated are coloured in green, with an
intensity that increases with the local field strength. The final luminous output signals are
recorded by a high-resolution charge coupled device (CCD) camera, which provides the
user with the experimental images of the magnetic field distributions. Since the magnetic
landscapes are recorded with a high-resolution CCD camera, it allows for high-resolution
imaging while covering a large field of view in comparison. For instance, the MOI can
record samples that extend over several square millimiters, while offering a resolution
that is as small as one micrometer. Being a non-destructive method that offers in-situ
and real-time pictures, and being a particularly responsive technique [128, 129], the MOI
is perfectly adapted for the visualization of extremely fast-paced dynamics, as in flux
avalanches, or slower-paced magnetic field penetrations and the corresponding critical
states in superconducting films [41, 46].

Several aspects can degrade the quality of the images collected with MOI. Thick garnets
magnify the rotation of the polarization plane across the Faraday-active indicator, but
this is done at the cost of a blurring of the images, since the polarization-plane rotation
is an image of the mean magnetization across the Faraday-active indicator. Selecting a
medium that optimizes the Verdet constant in the visible spectrum is thus paramount
to recording qualitative images of the magnetic landscapes [130]. Besides, although the
sensitivity of the technique is optimal at low applied fields, it decreases at fields that are
of the same order of magnitude or larger than the anisotropic field [131]. It is also worth
noticing that, because of the magnetic-field decay with the out-of-plane distance from the
sample, the probed levels of magnetic field do not exactly correspond to those inside the
film, even if the garnet is placed directly on top of the sample.

The magneto-optical garnet also highlights magnetic domains that progressively emerge
upon magnetization and become visible on top of the magnetic landscapes that one ac-
tually wishes to visualize. These domains can be erased by applying an external in-plane
field, at the expense of the sensitivity of the Faraday-active medium, while it can also
impact the superconducting films due to extrinsic anisotropy, as discussed in Subsection
1.2.6. Finally, a numerical post-processing procedure is needed to convert the qualitative
light-intensity gradients into quantitative levels of magnetic field. The procedure is based
on the combination of Malus’ law and the magnetic-field-dependent Faraday phase shift
that provides an essential relation between the incident light intensity and the local out-of-
plane component of the magnetic field. Such a procedure is for instance detailed in [132].
The corresponding current density distribution can then be obtained from the magnetic
field levels by inverting Biot-Savart law [133, 134]. Exact specifications about the instru-
ments that were used in the MOI set-up of the Experimental Physics of Nanostructured
Materials (Liège Université) group are also documented in [130, 132].
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Chapter 2

Finite-element modelling of the
magnetic field penetration in thin
superconducting films with shell
transformations

2.1 Introduction: A brief overview of the numerical

modelling of high-temperature superconductors

The physics of electrodynamics in thin superconducting film being non-linear and non-
local [117], numerical simulations are required to compute physical quantities that cannot
be directly measured or to perform systematic parametric studies. Various complementary
approaches shed light on different aspects of superconductivity. Its origin and inherent
physical properties at the scale of the atoms can be evaluated with the help of the ab-
initio formalism [135, 136] or in the framework of the BCS theory [65]. In the mixed state,
the physics of superconductors is described by the dynamics of vortices, their interactions
with neighbouring vortices, and the borders of the sample or defects. The time-dependent
Ginzburg-Landau (tdGL) theory [137, 138] addresses the dynamic manifestations at the
scale of a vortex. The fact that several millions of vortices might enter in a sample of
realistic size requires a prohibitive amount of numerical resources for a single simulation.
The behaviour of macroscopic samples can be modelled with less resources by solving
Maxwell’s equations. In that case, electromagnetic fields are averaged over the scale
of several vortices. Superconductivity is then introduced by means of constitutive laws
stemming from experimental observations or microscopic models and relating the different
fields to each other, such as London’s laws [51], critical model laws [81, 139, 140], surface
barrier models [89, 90, 91], or the highly non-linear power law between J and E which
is observed in transport measurements [100]. In the context of this thesis, since many
experimental observations involve samples that typically extend over distances that range
from a few hundreds of micrometers to a few millimeters, macroscopic models that rely on
Maxwell’s equations appear as natural candidates to model the penetration of magnetic
field in thin superconducting films.
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In the framework of the critical state model, analytical solutions of the magnetic field
distribution in thin superconducting films exist, but only for a very restricted number
of geometries, such as disks [113], strips [141], or ellipses [142]. For other geometries,
numerical modelling is the only tool at disposal. When it comes to thin superconducting
films, four main techniques have been exploited: integral methods, Fast Fourier Transform
(FFT) methods, minimization techniques such as the Minimum Electro-Magnetic Entropy
Production (MEMEP), and finite-element (FE) approaches.

In integral methods, the three-dimensional geometry of the film is simplified as a two-
dimensional geometry by means of a thin-film approximation. The current density, J, is
assumed to be constant over the thickness of the sample and can consequently be replaced

in Maxwell’s equations by the sheet current density, Js =
∫ d/2

−d/2
J dz = Jd. An example

of such contrivance is attributed to E. H. Brandt [143]. The method solves the coupling
of Faraday’s law with Biot-Savart law with respect to a scalar magnetization function, g,
which is related to Js as

Js(r) = −ez × (∇g(r)) , (2.1)

where r = (x, y) are the in-plane coordinates and ez points in the out-of-plane direction.
Biot-Savart law is thereby tantamount to

ġ(r, t) =

∫

Ωc

Q−1(r, r′)

[
1

µ0d
∇ · [ρ(r′, t)∇g(r′, t)]− Ḣa

]
dr′, (2.2)

with Q−1(r, r′) being the inverse kernel, µ0 is the vacuum magnetic permeability, Ḣa is
the rate of variation of the applied field, and ρ(r′, t) is the electrical resistivity given in
Equation 1.33. The integral is carried out over the superconducting film, which extends
over a planar surface Ωc. This model was successfully applied to thin films subjected to an
external transverse field for various geometries such as plain square and rectangular sam-
ples [143], or square films with holes or slits that are required in flux-focusing geometries
[144]. The method was also extended to the case of a finite London penetration length,
λ [145], or to anisotropic current densities [95, 146, 147]. The computational complexity
of the Brandt’s method scales as O(N2), with N being the number of degrees of freedom
[148, 149]. In the context of this method, the conducting domain is generally meshed with
regular grids, but it has also been extended to triangular meshes [150].

The FFT method is a straightforward variant of Brandt’s method and has mostly been
elaborated for modelling either thermomagnetic flux avalanches in thin superconducting
films [119, 125] or smooth penetrations in two-dimensional or three-dimensional geome-
tries [151, 152]. The core idea hence remains the same as in the integral method of Brandt,
although the kernel inversion is carried out in the Fourier space. When the number of de-
grees of freedom equals a power of two, the FFT algorithm scales as O(N logN) [149, 153].
However, the FFT also has its own challenges and limitations such as the complexity of
implementing non-regular grids and the subsequent performance cost [154, 155, 156], the
necessity of extending the domain beyond the boundary of the film and the associated
treatment of the current-free regions [151, 152], the regularization of the kernel around
k = 0 [125, 151], or addressing the presence of holes in the superconductor and three-
dimensional geometries [151].

The Minimum Electro-Magnetic Entropy Production (MEMEP), has been devised and
applied to cubic and bulk superconductors [157, 158], stack of tapes [159, 160], coils and
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large magnets [161] or Roebel cables [162]. It consists in the minimization of the Euler-
Lagrange functional describing Faraday’s law, which gives the increment of magnetic
field or current density at each time step [157]. It can be shown to be equivalent to
the minimization of the entropy production in the system. Simulations are heavily sped
up with the help of an algorithm performing an iterative parallelization by sector and
accounting for the symmetry when possible. An adaptative time-step algorithm is also
used for convergence. This approach has also been investigated in several other works in
the context of the critical state [163, 164, 165, 166].

Last, the finite-element (FE) method consists in approximating the field as a linear com-
bination of a finite set of M basis functions, whose coefficients become the unknowns
of the problem. Furthermore, the simulated domain is partitioned in a finite number of
smaller, non-overlapping, and generic building blocks, which are called elements. The
basis functions are chosen in such a way that they are defined piecewise on every single
element, so that the unknown field is locally approximated on each elementary subdo-
main with simple mathematical functions, such as polynomials. The coefficients of the
linear combination are then computed by solving the weak form of the partial differen-
tial equation (PDE) that is addressed, which is tested against a set of M test functions.
This amounts to solving an M ×M matrix equation, for which the essential boundary
conditions can be directly stipulated. Most of the time, the test functions are chosen
to be the same as the basis functions. The motivation behind the FE method is two-
fold. First, the M ×M matrix that is assembled is sparse, and second, the method is
very systematic and can be applied to a variety of meshes and very complex structures.
The computational complexity of the FE method scales as O(Nα), with α ∈ [1, 2[ [150].
The FE method is thus a very versatile, efficient numerical scheme. It has been applied
to a wide variety of situations and to numerous formulations, such as H-formulation
[36, 167, 168, 169, 170, 171, 172, 173, 174], H-ϕ formulation [175, 176], H-A formulation
[177, 178], A-V formulation [179, 180, 181, 182], T formulation [183], T-Ω formulation
[184, 185], T-A formulation [186], A-V -J formulation [187], E formulation [188] or even
in the critical state [164, 189].

The FE method possesses several valuable attributes over other methods, which contribute
to its versatility and popularity. For instance, it enables the refining of the mesh in
the regions that require particular care, while relaxing the mesh elsewhere. This is of
crucial importance for complex geometries, or if one needs to evaluate the behaviour of
electromagnetic fields around structures that are much smaller than the size of the film,
such as little holes or indentations. The other methods are mostly built for regular grids,
and extending them to irregular ones or unstructured meshes does not always seem to be a
trivial task, while the impact on the efficiency of the methods still needs to be elucidated.

The FE method also appear to be the most natural choice to simulate stacks of tapes.
The FFT has been extended to the case of stacks of thin films by extending the Green’s
functions in the out-of-plane direction, which allows considering the influence of each film
on all other ones, at the cost of extending the convergence issues for more closely packed
stacks [152]. Similarly, Brandt’s method would also need to be rewritten with these
adapted Green’s functions. As far as the MEMEP is concerned, the modelling of the
non-conducting regions that separate the successive films has been addressed by means
of a high spurious resistivity [160]. As a consequence of the uniform grid, if the spacing
between the films is larger than the thickness of the films, many degrees of freedom are
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needed in the non-conducting regions. Besides, at the current state of the art, the FFT
and the MEMEP are restricted to stacked tapes with identical cross sections. Finally,
there exist numerous operational commercial or open-source FE softwares [190], such
as ANSYSTM, COMSOLTM, GetDP [191], or FEMPAR [192], while the other methods
consist in home-made codes that must be implemented from scratch. The advantages and
the drawbacks of each technique are summarized in Table 2.1.

The numerical results of this thesis rely on the FE H-ϕ formulation, which aims at evalu-
ating the magnetic field, H, from the weak form of Faraday’s law, Ḃ = −∇×E. In order
to solve this kind of problem, one can resort to h-conform or b-conform formulations. In
h-conform formulations, E can be expressed in terms of H by combining Ampere’s law
and the constitutive law E = ρ(J)J, where ρ is the electrical resistivity, which is very low
in superconductors. By contrast, b-conform formulations, among which the A-V formu-
lation, require the use of the electrical conductivity, σ = 1/ρ, which diverges when E → 0
in superconducting materials, and can be tricky to handle in some cases, especially when
the magnetic field is on the verge of penetrating the sample [177]. Among the h-conform
formulations, the H-ϕ formulation uses the current-free property in the non-conducting
region, J = ∇ ×H = 0, to imply H = ∇ϕ, with ϕ being the magnetic scalar potential.
Using ϕ instead of H in the non-conducting region has the merit of reducing the number
of degrees of freedom with respect to the H-formulation, which solves the problem with
respect to the vectorial quantity H, even in the non-conducting regions. Furthermore,
the H-ϕ formulation provides the user with a proper way to treat current-free regions, as
there is no need to introduce some spurious resistivity such as in the H-formulation.

In the context of the H-ϕ formulation, a source of error of the three-dimensional FE
method is the necessity to mesh a domain that extends beyond the conducting domain,
since the essential boundary condition on the magnetic potential ϕ cannot be defined
directly on its boundary. Ideally, the boundary condition ϕ = 0 should be imposed at an
infinite distance from the conducting regions. However, the simulated domain is of finite
extension, so that a truncation error is inevitable. A rule of good practice is to mesh a
domain that typically extends over more than five times the characteristic length of Ωc, so
that the effect of the finite extension of the domain is reduced as much as possible [193].
However, this leads to an increase of the number of degrees of freedom of the problem,
hence longer simulations. Several options exist to overcome the issue of open boundaries
in finite-element computations, such as mapped elements, iterative and integral numerical
techniques, or hybrid methods [193, 194].

Among the possibilities that keep the assembled matrices sparse, infinite elements are an
interesting option [195]. The key idea behind their use is to map the physical region of
infinite extension into a shell of finite extension through a change of coordinates, hence
the name of shell transformations. The outer infinite physical domain is mapped onto a
finite region such as spherical or a truncated pyramidal shells. The boundary conditions
are simply applied on the outer boundary of the shell.

In this chapter, the relevance, the efficiency and the accuracy of the shell-transformation
approach for modelling the magnetic field penetration in thin superconducting films are
tested against the usual truncated-geometry approach. The more classical spherical and
truncated pyramidal shell transformations are considered, as much as the less common
prismatic shell transformation. The idea that motivates the use of prismatic shells con-
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Characteristics Brandt FFT MEMEP FEM

Mesh adaptability

2D regular
grids /

Triangular
meshes [150]

2D regular or
non-regular
grids [154,
155, 156]

3D regular
grids [157,
158, 160]

Fully
adaptable
meshes

Dedicated softwares None Open-source Open-source

COMSOLTM,
GetDP [191],
FEMPAR
[192],

ANSYSTM

Mesh in the non-
conducting regions

None Yes
Partially
[160]

Yes

Treatment of the
non-conducting
regions in stacks of
tapes

3D Green
functions

3D Green
functions
[152]

Spurious
resistivity

[160]

Spurious
resistivity /
Cohomology
functions /

H-ϕ
formulation

Computational com-
plexity

O(N2) [149]
O(N log (N))

[149]
Unknown

O(Nα),
1 ≤ α < 2

[150]
Sparsity of the ma-
trix

Full Sparse Full Sparse

Table 2.1: Summary of the global characteristics of the diverse numerical techniques for
modelling the penetration of magnetic field in superconducting films.

sists in reducing the extension of the non-conducting regions in the meshed domain, while
ensuring that the boundary conditions are applied at an infinite distance from the con-
ducting domains.

The chapter is structured as follows. Section 2.2 summarizes the formal concepts that
are related to the finite-element method. In particular, the approximation spaces and the
different formulations that can be exploited to solve eddy-current problems are described,
among which the H-ϕ formulation. The strong form of the eddy-current problem with an
appropriate set of constitutive laws for the superconductors in the mixed state is posed,
and the corresponding weak form in the context of the H-ϕ formulation is derived from
it. The linearisation of the non-linear E-J constitutive law and the time-discretization
schemes that will be used throughout the numerical simulations are described as well.
Section A.1 of Appendix A further elaborates on the former point. Finally, a very general
overview of how the finite-element method can be implemented from a weak formulation
is recalled. Information about the test functions used in the H-ϕ formulation are then
provided.

In Section 2.3, the mathematical background about shell transformations is addressed.
First, the sensitivity of the eddy-current distribution in thin superconducting films on the
proximity of the boundaries of the truncated geometry is illustrated. Then, the main idea
behind shell transformations is introduced, and mathematical details about the coordinate
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changes involved in spherical, truncated pyramidal, and prismatic shell transformations
are given. A practical way to apply an external field of known distribution in a restricted
domain despite the presence of the shell-transformation elements is mathematically de-
rived.

Section 2.4 constitutes the core of this chapter. Emphasis is first put on the prismatic
shell transformations, in the specific case of the magnetic field penetration inside a thin
superconducting disk. The influence of the size of the shell region, which embeds the shell
transformation, is illustrated by means of numerical simulations. A rationale for the choice
of the shell size relies on the mathematical developments of Section B.1 of Appendix B.
Then, a numerical investigation of the dependence of the quality of the finite-element
scheme on the refinement of the mesh in the non-conducting region along the out-of-plane
direction is carried out. This allows for the empirical determination of mesh parameters
that achieve a good balance between accuracy of the numerical approximations and the
computational cost. The computational complexity of the prismatic shell transformation
with respect to the in-plane mesh quality is also investigated.

Afterwards, the various shell-transformation shapes are compared to the truncated ge-
ometry in terms of quality of the finite-element approximation and time performance.
This comparison is done for thin disks, rectangular and square films, which are the film
geometries that will be involved in the results of the following chapters. In Section B.2
of Appendix B, the results of Section B.1 of Appendix B are extended to the case of
thin rectangular films of arbitrary in-plane aspect ratio. Throughout Section 2.4, the
results are confronted to the analytical results of the critical state model or to the Brandt
method, which serve as references to assess the quality of the finite-element approach.

Finally, Section 2.5 draws the main conclusions and further work that are brought up by
this chapter.

2.2 The finite-element method

2.2.1 Strong form of the general eddy-current problem in the
H-formulation

From a global standpoint, a magnetodynamic formulation consists in the simultaneous
resolution of Faraday’s law, Ampere’s law, and Gauss’s law, which are respectively

Ḃ = −∇× E, (2.3)

J = ∇×H, (2.4)

∇ ·B = 0, (2.5)

with constitutive laws that relate B to H and E to J, i.e.

B = µH, (2.6)

E = ρJ, (2.7)
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where µ is the magnetic permeability and ρ is the electrical resistivity. Note that since
the conductivity in superconductors is very large, the displacement current, Ḋ, is omitted
in Equation 2.4 [196]. In addition to Equation 2.3, Equation 2.4 and Equation 2.5, one
must also make sure that adapted boundary conditions are enforced on the boundary of
the investigated domain to ensure the unicity of the solution. These boundary conditions
involve one of the fields B, E, H or J, depending on the formulation that is used. For
instance, in the so-called H-formulation, in the conducting regions, Equation 2.4 is sub-
stituted in Equation 2.3, so that, with the help of Equation 2.6 and Equation 2.7, one
obtains

∂

∂t
(µH) +∇× (ρ∇×H) = 0, (2.8)

which only involves the magnetic field, H. In the non-conducting regions, which are
current-free, one has instead

∇×H = 0. (2.9)

Besides, in the non-conducting regions, combining Equation 2.5 and Equation 2.6 yields

∇ · (µH) = 0. (2.10)

In such a case, Equation 2.8, Equation 2.9, and Equation 2.10, with the appropriate
associated boundary conditions, is the strong form of the magnetodynamicH-formulation.
It is worth noticing that, although Equation 2.5 is not directly involved in Equation 2.8,
Equation 2.3 implies

∇ · Ḃ = 0 ⇒ ∇ ·B = C, (2.11)

where C is a time-independent integration constant. Consequently, if one ensures∇·B = 0
as an initial condition, then Equation 2.5 is verified at all times in Ω.

2.2.2 Geometry of the magnetodynamic eddy-current problem

Next, the general strong form of the H-formulation is particularized to the case of the
penetration of magnetic field inside a thin superconducting film subjected to a uniform
applied magnetic field, Ha, which is generated by some external sources. In the light of
this, H can be decomposed into two contributions, i.e.

H = Ha + h, (2.12)

where h is the reaction field, i.e. the magnetic field that stems from the eddy currents
induced in the conducting regions in response to Ha.

The strong form of the magnetodynamic formulation is applied to a simulated domain of
finite extension which is denoted by Ω, and which outer boundary is Γ. The vector field
of the unitary normal to Γ and which points outwards is denoted by n. The conducting
regions, which include the superconducting films, are denoted by Ωc, which boundary is
denoted by Γc. Finally, the non-conducting regions, which are by definition current-free,
are denoted by Ω\Ωc and will be assumed to be simply connected. In this case, Ampere’s
law, ∇×h = 0, makes it possible to express the reaction field as the gradient of a magnetic
scalar potential

h = −∇ϕ. (2.13)
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Ωc, Γc

Ω, Γ

Ωb, Γb

y
z

x

Figure 2.1: Definition of the different volumes and surfaces that are implied in the numer-
ical H-ϕ formulation. Ω, which appears in blue plain lines, corresponds to the simulated
domain. Ω also includes the shell transformations, see Section 2.3. Ωc, which is delimited
by the plain cerulean lines, corresponds to the conducting domain. Ωb, which is the dotted
box in light blue, is a domain of arbitrary shape, where the applied field will be forced
to be uniform in the scope of this thesis, see Section 2.3.3. The domain Ωb is chosen
such that Ωc ⊂ Ωb ⊂ Ω. The boundaries of Ω, Ωc, and Ωb are denoted by Γ, Γc and Γb,
respectively. In particular, the boundary conditions of the problem are set on Γ. The
vector field of all the outward unitary normal vectors to Γ (resp. Γb) is denoted by n
(resp. nb).

A schematic drawing of the different domains is shown in Figure 2.1. Now that the
geometry of the problem has been formally introduced, the boundary condition associated
to the H-formulation can be written explicitly as

n× h|Γ = 0. (2.14)

In terms of ϕ, provided Equation 2.13 holds, Equation 2.14 automatically results from
the essential boundary condition

ϕ|Γ = 0. (2.15)

2.2.3 Constitutive laws in an isotropic superconductor

The constitutive laws, which were presented in their most general form with Equation
2.6 and Equation 2.7, must be particularized to each medium or material that composes
the system under scrutiny, Ω. In particular, different constitutive laws characterize the
conducting domains, Ωc, and the non-conducting ones, Ω \ Ωc. If the latter domain is
filled with a mix of cryogenic fluid, gas, or air, which are non-magnetic, one has

B = µ0H. (2.16)

If the conducting region consists in a superconductor in the mixed state, the effect of the
surface barrier is neglected, and it is assumed that Hc,1 ≪ |H| ≪ Hc,2 [91, 197]. In this
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range of applied field, Equation 2.6 becomes

B = µ0H, (2.17)

where µ0 = 4π × 10−7 H/m is the vacuum magnetic permeability. Besides, the thermally
activated flux-creep power law from Equation 1.33 is used

E (|J|) = Ec

Jc

( |J|
Jc

)n−1

J ≡ ρ (|J|)J, (2.18)

with Ec = 1 µV/cm is the critical electric field, Jc is the current density and n is a
dimensionless exponent. Jc can be either constant or magnetic-field-dependent, such
as stated by Equation 1.25. Throughout the manuscript, the isothermal hypothesis is
assumed, so that solving the heat equation is not required in the upcoming finite-element
simulations.

2.2.4 The h-conform function spaces

This subsection is devoted to the definition of the functional spaces in which the electro-
magnetic fields belong. Maxwell’s equations involve three key linear differential operators
that will be used throughout the chapter: the gradient operator, grad, the curl operator,
curl, and the divergence operator, div. For sufficiently smooth scalar (resp. vectorial)
fields f : Ω → R (resp. f : Ω → R3), which means that f ∈ H1 (Ω) (resp. f ∈ H1 (Ω)),
where H1 (Ω) (resp. H1 (Ω)) is the scalar (resp. vectorial) Sobolev space on Ω, these
operators are defined as

grad f = ∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
, (2.19)

curl f = ∇× f =

(
∂fz
∂y

− ∂fy
∂z

,
∂fx
∂z

− ∂fz
∂x

,
∂fy
∂x

− ∂fx
∂y

)
, (2.20)

div f = ∇ · f = ∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

, (2.21)

where x, y and z are the Cartesian coordinates of an orthonormal basis, and fx, fy and fz
are the three components of f along the x, y and z directions. The domain of definition
of these operators are

H (grad,Ω) = {f ∈ L2 (Ω) ; ∇f ∈ L2 (Ω)}, (2.22)

H (curl,Ω) = {f ∈ L2 (Ω) ; ∇× f ∈ L2 (Ω)}, (2.23)

H (div,Ω) = {f ∈ L2 (Ω) ; ∇ · f ∈ L2 (Ω)}, (2.24)

where L2 (Ω) (resp. L2 (Ω)) is the space of all scalar (resp. vectorial) fields that are
square-integrable over Ω. The function spaces of each operator (Equation 2.22, Equation
2.23 and Equation 2.24) can further be limited to subspaces of functions that verify
homogeneous essential boundary conditions, i.e.

F0
h(Ω) = {f ∈ L2(Ω);∇f ∈ L2(Ω); f |Γ = 0}, (2.25)

F1
h(Ω) = {f ∈ L2(Ω);∇× f ∈ L2(Ω); n× f |Γ = 0}, (2.26)

F2
h(Ω) = {f ∈ L2(Ω);∇ · f ∈ L2(Ω); n · f |Γ = 0}. (2.27)
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At this point, one can choose either h-conform or b-conform formulations, which deter-
mine which fields are approximated in the numerical scheme, while the remaining ones
are accessible by means of the constitutive laws, although the functional spaces are not
adapted to their rigorous description. In h-conform formulations, the fields H and J are
approximated, while B and E are estimated with the constitutive laws. The core property
of the h-conform formulations is to enforce the continuity of the tangential components
of H. In b-conform formulations, B and E are approximated, while H and J follow
from the constitutive laws. This time, it is the continuity of the normal component of B
that is ensured. The h-conform formulations are more adapted to the modelling of mag-
netic field inside superconductors, because they involve the electrical resistivity, which is
well behaved in the power-law model. By contrast, the b-conform formulations involve
the electrical conductivity, which diverges at low electric fields, so that convergence may
sometimes be compromised [177]. In h-conform formulations, ϕ ∈ F0

h(Ω), h ∈ F1
h(Ω) and

J ∈ F2
h(Ω).

2.2.5 Weak form of the general eddy-current problem in isotropic
superconductor in the mixed state

Now that adequate function spaces for the different fields have been defined, the generic
weak form of a H-ϕ formulation is derived. For this purpose, Faraday’s law is first
multiplied by a vector test function, Ψ. Here, the Galerkin method is carried out, and
the test functions coincide with the basis functions that approximate the magnetic field.
Consequently, Ψ ∈ F1

h(Ω). The resulting equation is then integrated over Ω, so that one
gets ∫

Ω

Ḃ ·Ψ dΩ +

∫

Ω

(∇× E) ·Ψ dΩ = 0. (2.28)

Using the vectorial identity ∇·(a× b) = (∇× a) ·b−a ·(∇× b), Equation 2.28 rewrites
as ∫

Ω

Ḃ ·Ψ dΩ +

∫

Ω

∇ · (E×Ψ) dΩ +

∫

Ω

E · (∇×Ψ) dΩ = 0. (2.29)

Using the divergence theorem on the second term of the left-hand side of Equation 2.29,
one has ∫

Ω

Ḃ ·Ψ dΩ +

∫

Γ

(E×Ψ) · n dΓ +

∫

Ω

E · (∇×Ψ) dΩ = 0. (2.30)

Since Ω \Ωc is simply connected and current-free, ∇×Ψ = 0 in Ω \Ωc, and one can find
a scalar test function, Φ, such that Ψ = −∇Φ, with Φ ∈ F0

h(Ω \ Ωc). As a result, the
third integral term of Equation 2.30 can be restricted to Ωc. Besides, the second integral
of Equation 2.30 is zero. In fact, with the help of the vectorial identity a × (∇b) =
b(∇× a)−∇× (ba), this surface integral can be transformed as follows

∫

Γ

(E×Ψ) · n dΓ = −
∫

Γ

(E× (∇Φ)) · n dΓ

=

∫

Γ

(∇× (ΦE)) · n dΓ−
∫

Γ

Φ (∇× E) · n dΓ. (2.31)

Yet, Stokes theorem applied on Γ, which is deprived of any boundary, implies that the first
integral in Equation 2.31 is identically zero, while Φ|Γ = 0, so that the second integral
in Equation 2.31 vanishes as well.
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Furthermore, one can make use of Equation 2.12, with Ha ∈ L2(Ω), which is uniform in
Ωc, and h ∈ F1

h(Ω) to recast Equation 2.30. Ultimately, using Equation 2.17, Equation
2.18, and ∇ ×Ha = 0 in Ωc, one obtains the weak formulation of Faraday’s law for an
isotropic superconductor in the mixed state
∫

Ω

µ0Ḣa ·Ψ dΩ +

∫

Ω

µ0ḣ ·Ψ dΩ +

∫

Ωc

ρ (|∇ × h|) (∇× h) · (∇×Ψ) dΩ = 0. (2.32)

It is worth mentioning that Equation 2.32 solves Faraday’s law in the weak sense only.
Ampere’s law, and consequently current conservation, is solved in the strong sense, while
the current-free condition in Ω \Ωc and the cancelling of the tangential components of h
on Γ are enforced through the definition of the test functions. Also, this formulation is
valid for any square-integrable Ha which is curl-free in Ωc, and can be extended to other
constitutive laws than Equation 2.18. Since Gauss’s law results from Faraday’s law, and
since Faraday’s law is solved in the weak sense only, Gauss’s law is therefore solved in the
weak sense at every time step if and only if the initial solution obeys Gauss’s law.

2.2.6 The finite-element approximation in the framework of the
H-ϕ formulation

Most of the time, finding an analytical expression that verifies the strong form of the
H-formulation, see for instance Equation 2.8, Equation 2.9, Equation 2.10, Equation
2.12 and Equation 2.15, is impossible. The only way to gather enough insight about
h is to make use of numerical methods, among which the finite-element (FE) method.
It consists in a twofold discretization [196]. First, a geometric discretization is carried
out and consists in systematically dividing Ω in the union of smaller entities of predicted
shape, called elements. Such a geometrical partition, M, is called a mesh of Ω, and any
arbitrary element of M will be denoted by K. In this work, three-dimensional geometries
are considered, and the element shapes are limited to hexahedra, prisms, tetrahedra or
pyramids. An illustration of each kind of element is sketched in Figure 2.2. Hexahedra
result from the extrusion along the third dimension of two-dimensional quadrangular
meshes. Prismatic elements are three-dimensional elements that are structured along
one dimension and are used in the extrusion of unstructured two-dimensional meshes.
Tetrahedra are used in fully three-dimensional unstructured meshes. Finally, pyramids
allow for the junction between three-dimensional structured and unstructured meshes. In
the thin-film geometry, because of the high aspect ratio L/d of the film, where L is the
planar extension of the film and d is its thickness, meshing Ωc with tetrahedra leads to
very flat elements of poor quality. Structured meshes based on hexaedra and prisms were
used instead. In Ω \ Ωc, the mesh can either be progressively relaxed to an unstructured
mesh, with the help of pyramidal elements in a transition layer, or remain structured.

The second discretization occurs in function spaces which are constructed in such a way
that basis functions are defined piecewise on the geometric entity of every element of the
mesh, i.e. the nodes, the edges, the facets and on the volume of each element. Restricting
the support of given basis function to a given element and the neighbouring ones is a
crucial attribute of the FE method, because the resulting matrix becomes sparse.

The nodes of M can be gathered in one set, N (Ω), and are labelled ni, with i ∈
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(a) (b) (c) (d)

Figure 2.2: Sketch of different first-order elements, K, which take the shape of (a) a
hexahedron, (b) a prism, (c) a tetrahedron, and (d) a pyramid. Vertices are sketched
as plain dark circles, edges are shown in cerulean, and the facets are coloured in light
cerulean. Dashed cerulean lines are added for three-dimensional perspective.

{1, · · · , card [N (Ω)]}. The set of all edges in M is denoted by E(Ω) and each edge is
given a unique label, eij, which corresponds to the edge linking the node ni to the node
nj. In the context of the H-formulation, the reaction field h ∈ F1

h(Ω) in Equation 2.32
can thus be expressed as a linear combination of basis functions sij ∈ F1

h(Ω),

h =
∑

eij∈E(Ω)

hij sij, (2.33)

where the hij are the unknowns of the FE approximation. hij can be identified as the
circulation of h along the edge eij

hij =

∫

eij

h · dl. (2.34)

However, the current-free property in Ω \ Ωc implies that the circulation on any closed
path is zero, and global constraints between the coefficients hij in Ω\Ωc must exist. These
constraints can be resolved thanks to the magnetic scalar potential from which h derives
in such a case, i.e. h = −∇ϕ, where ϕ ∈ F0

h(Ω \Ωc). The circulation of h on any edge eij
of Ω \ Ωc can in this case be written as

hij =

∫

eij

h · dl = ϕi − ϕj, (2.35)

where ϕi is the scalar magnetic potential at the node ni. Accounting for Equation 2.35
and grouping all ϕni

together, Equation 2.33 can be rewritten accordingly as

h =
∑

eij∈E(Ωc)

hij sij +
∑

nk∈N (Ω\Ωc)

ϕk ∇sk, (2.36)

where the edges belonging to Γc are excluded from E(Ωc), while the nodes of Γc are
included in N (Ω \ Ωc), and the sk ∈ F0

h(Ω \ Ωc).

Furthermore, the essential boundary conditions are enforced through the degrees of free-
dom. For instance, in Equation 2.36, ϕk = 0 for all nodes in Γ. Equation 2.36 corre-
sponds to the FE approximation in the H-ϕ formulation. In comparison to the original
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H-formulation, see Equation 2.33, less degrees of freedom are allocated to the description
of the magnetic field in Ω \ Ωc due to the scalar nature of ϕ, by contrast to the vectorial
nature of h in the H-formulation [176, 177], which is advantageous.

Finally, one should keep in mind that if Ω \ Ωc is multiply connected, then ∇ × f = 0
does not systematically imply that f is equivalent to the gradient of a scalar potential.
Nevertheless, a multiply connected domain can be transformed into a simply connected
one by removing from the multiply connected space domain a set of Nh non-intersecting
two-dimensional cuts, where Nh is the number of holes in the multiply connected do-
main [196, 198]. Equation 2.36 can be generalized to multiply connected geometries, by
introducing additional basis functions that are associated to the cuts [199].

2.2.7 Basis functions

This subsection elaborates on the mathematical expression of the basis functions sk and
sij that appear explicitly in Equation 2.36.

Nodal basis functions

The piecewise basis functions, which belong to F0
h(Ω), are defined on each node ni of every

element K of the mesh of Ω, M. To each node ni is associated a nodal basis function, si,
so that ni ∈ K. These nodal basis functions are defined in such a way that they equal 1
on the node ni, and vary continuously across the element to reach 0 on all the other nodes
nj ∈ K, i ̸= j. This can be achieved with linear combinations of polynomials that depend
linearly on the Cartesian coordinates. The element is then said to be of the first order.
Similarly, it is possible to define higher-order elements, which will extend the polynomial
basis to higher-order multi-variable polynomials.

Edge basis functions

Given an arbitrary domain Ω, h belongs to the function space F1
h(Ω). The piecewise basis

functions that are used on each element K ∈ M also belong to the same functional space,
F1
h(Ω). They are defined on each edge of a given element, hence the name of edge basis

function. The edge basis function that corresponds to the edge eij that is a part of a given
element K is denoted by sij and is defined as [200]

sij = si grad




∑

nk∈Nij̄

sk



− sj grad




∑

nk∈Njī

sk



 . (2.37)

Edge functions thus involve nodal basis functions in such a way that the circulation along
the edge eij in the element K equals ±1 on the selected edge and 0 along all the other
edges of K, i.e. ∫

eab

sij · dl = δab,ij, (2.38)
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(a)

na

nb
eab

Nab̄

Nbā

(b)

nc

na
eac

Ncā

Nac̄

Figure 2.3: (a) Illustration of an edge basis function in a reference prismatic element. The
shape of the edge function is drawn on three planes: the facets enclosed by the nodes in
the sets Nab̄ and Nbā, and an intermediate plane parallel to the triangular facets, which
is outlined by the dashed line. Nab̄ is the set of nodes that forms the facet containing the
node na but not nb. (b) Illustration of the edge basis function related to the edge eac.

with δab,ij being the generalized Kronecker function that equals 1 if a = i and b = j, −1
if a = j and b = i, and 0 otherwise. The elementary vectorial field associated to a basis
edge function that results from Equation 2.37 is shown in a prismatic element for two
different edges in Figure 2.3.

2.2.8 Time discretization

Function spaces have been elaborated for h in Subsection 2.2.4 and the corresponding FE
approximations have been introduced in Subsection 2.2.7. However, the second integrand
in Equation 2.32 involves the time derivative of the reaction field, ḣ, which must be
discretized with respect to time. In terms of u, which is a linear form of h, the weak form
of Faraday’s law takes the generic form u̇ = F (u), which integration over time can be
approximated as

uk+1 − uk
∆t

= rF (uk+1) + (1− r)F (uk), (2.39)

where uk is the evaluation of u at the current time, t, uk+1 is the evaluation of u at the
next time, t+∆t, ∆t is the time step, and r is a parameter between 0 and 1.

If r = 0, the right-hand side of Equation 2.39 only depends on uk, and therefore only
on the reaction field at the current time, hk. The time discretization is then said to
be explicit. This approach is the most straightforward one, since it involves a direct
evaluation of the non-linear electrical resistivity in Equation 2.32. However, explicit time
discretization schemes are conditionally stable and ∆t must be adapted to the mesh size.
In the context of a diffusion problem, refining the mesh forces the time step to become
prohibitively small, which is detrimental to the time efficiency of the FE method.
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On the other hand, if r > 0, the right-hand side of Equation 2.39 also depends on uk+1,
and equivalently on the unknown, hk+1. In this case, the time discretization scheme is
said to be implicit. In particular, if r = 1, the resulting method is better known as
the Euler backward method, and if r = 1/2, Equation 2.39 yields the Crank-Nicolson
implicit scheme. These two implicit methods possess an intrinsic advantage over explicit
methods, due to their unconditional stability. However, a non-linear equation in hk+1

must be solved for each time level. Moreover, despite the absolute stability of the implicit
scheme, the time-step value can still affect the quality of the numerical solution. In all
results presented in this thesis, r is set to 1, which corresponds to the Euler backward
method. Equation 2.32 then becomes

∫

Ω

µ0

∆t
hk+1 ·Ψ dΩ +

∫

Ωc

ρ (|∇ × hk+1|) (∇× hk+1) · (∇×Ψ) dΩ

=

∫

Ω

µ0

∆t
hk ·Ψ dΩ−

∫

Ω

µ0Ḣa ·Ψ dΩ. (2.40)

The well-posedness and the convergence of the FE method with a power law E(J) con-
stitutive law and the backward Euler method is ensured [201, 202]. Implementing the
Crank-Nicolson method might be an interesting idea to improve the accuracy of the so-
lution for a given time step ∆t, since the error is expected to scale as O(∆t2), while the
accuracy of the solution of backward Euler method scales as O(∆t) [201, 202, 203]. A
more rigorous comparison between both methods could be investigated in further works.

2.2.9 Non-linear E(|J|) and linearization with the Newton-Raphson
algorithm

In order to use a fully implicit time discretization scheme as indicated in Equation 2.40,
a non-linear equation must be evaluated at each time step to find hk+1. For this purpose,
an iterative method is used to determine Jk+1. The Picard’s method is one possible way
to cope with this. Here, ρ is evaluated for Jm

k+1, so that

Ek+1 = ρ
(
|Jm+1

k+1 |
)
Jm+1
k+1 ≈ ρ

(∣∣Jm
k+1

∣∣)Jm+1
k+1 , (2.41)

where Jm
k+1 is the result of the m-th iteration of the Picard’s iterative loop that approx-

imates J at t + ∆t. Another method that can be used is the Newton-Raphson method,
where Ek+1 is estimated as a first-order Taylor expansion in Jm

k+1 as

Ek+1 ≈ ρ
(∣∣Jm

k+1

∣∣)Jm
k+1 +

∂E

∂J

∣∣∣∣
Jm
k+1

(
Jm+1
k+1 − Jm

k+1

)
. (2.42)

Because of the vectorial nature of both E and J, ∂E/∂J is a tensor, which expression for
isotropic superconductors is given in Appendix A.

At each time step, whatever the selected iterative algorithm, the first guess J0
k+1 is esti-

mated to be equal to Jk. At each iterative step, hk+1 is replaced by hm+1
k+1 in Equation

2.40, and the difference between the right-hand side and the left-hand side of Equation
2.40 is then evaluated for every single test function. The Euclidean norm of the vector
that gathers all these evaluations is then computed, and the result is called the residual
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of the iterative step. The iterative loop is repeated until the residual becomes less than
an absolute criterion, ϵabs, or, when compared to the residual of the first iterative step,
becomes less than a relative criterion, ϵrel.

It has been shown that the Picard’s method is more efficient with concave constitutive
laws, J(E), and the Newton-Raphson method is more adapted to convex constitutive
laws, E(J), such as in Equation 2.18 [177]. Hence, Newton-Raphson is chosen to tackle
the linearization process. Note that, despite the backward Euler method being uncondi-
tionally stable, the Newton-Raphson method still might converge slowly or even diverge
if the estimate is too far from the expected solution, which might occur if ∆t is too large.
As a result, the choice of ∆t and J0

k+1 still play an important role depending on the
magnetodynamic problem [177]. A similar analysis to [177] for thin films subjected to a
transverse field could be the topic of a further work.

2.3 Shell-transformation techniques

2.3.1 Influence of the proximity of Γ to Ωc on the penetration
of magnetic field in superconducting films

In Section 2.2, a general mathematical and formal overview of the FE method in the
context of the H-ϕ formulation has been detailed. The simulated domain, Ω, is of finite
size and can take an arbitrary shape. In what follows, Ω consists in a large cubic box
of side 2Lph. This configuration is referred to as the truncated geometry, because the
scalar magnetic potential, ϕ, which is set to 0 on the nodes of Γ, cannot be imposed at
an infinite distance from Ωc, as it should theoretically be the case. Instead, ϕ|Γ = 0 at a
finite distance Lph of Ωc because of the finite extension of Ω. This raises the question of
the influence of the proximity of Γ on the eddy currents generated in Ωc. The truncated
geometry is illustrated on panel (d) of Figure 2.5.

In order to demonstrate the influence of the domain truncation, let us consider the penetra-
tion of magnetic field in a thin superconducting disk of radius R = 141 µm and thickness
d = 100 nm that is submitted to a uniform out-of-plane applied field, Ha = Haẑ. In the
simulations in the truncated geometry, the applied field is uniform in the whole domain
Ω, and the applied field is ramped up from 0 at a constant rate Ḣa for a duration ta. This
configuration is referred to as the TD case. The geometrical and physical parameters
of the simulations in the TD geometry can be found in the first column (TD) of Table
2.2, with the exception of Lph that is allowed to vary in this subsection. In order to
evaluate the accuracy of the truncated-box approach, we compare the FE simulations to
the analytical distribution of the out-of-plane magnetic field, Hz, and the norm of the
current density, |J|, under the assumptions of the critical state model (CSM) in the thin-
film approximation [113], as reminded by Equation 1.36 and Equation 1.37. In the TD
geometry, the eddy currents flow azimuthally along circular paths and the current density
and magnetic field distributions are independent on the azimuthal angle. The fields only
vary as a function of the distance from the center of the film. Probing the profiles of
Hz and |J| along a random radius and comparing the numerical results to the CSM is
then enough to assess the validity of the numerical scheme in the TD case. In order to
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quantify how well the numerics replicate the expected analytical solution, the average
absolute errors of Hz and |J| with respect to the CSM over the radius are computed, i.e.

MAEH =
1

NR

NR∑

i=1

∣∣∣∣
[
Hz

(
R

NR

i

)]

CSM

−
[
Hz

(
R

NR

i

)]

FE

∣∣∣∣ , (2.43)

MAEJ =
1

NR

NR∑

i=1

∣∣∣∣
[
|J|
(
R

NR

i

)]

CSM

−
[
|J|
(
R

NR

i

)]

FE

∣∣∣∣ , (2.44)

where the radius of the disk is divided in NR equidistant points. These absolute errors
of |J| (resp. Hz) are then normalized with respect to Jc (resp. Jcd). It is also worth
noting that |J| and Hz are evaluated from the linear curl-conforming test functions. This
explains the continuous variations of Hz along the radius, while |J| varies discontinuously,
as it will be shown below.

The Hz and |J| profiles along a radius of the disk are shown for Lph as large as R, 2R and
10R in Figure 2.4. The geometric and physical parameters are summarized in the TD
column of Table 2.2, with the exception of Lph that varies. The mean absolute error on
Hz decreases as Lph increases, and is 2.4%, 1% and 0.8% of Jcd when Lph is R, 2R and
10R, respectively. Similarly, the mean absolute error on |J| is 7%, 1.6% and 0.9% when
Lph is R/2, R, 2R and 10R respectively. In the light of the above results, it is clear that
imposing the boundary conditions too close to Ωc is detrimental to the quality of the FE
solution. To overcome this issue, one can either consider a large value of Lph, or consider
shell transformations [195], which are investigated in the following subsections.

2.3.2 Parameters of the shell transformations

A shell transformation consists in a one-to-one map φ : R3 → R3 of the points of a
physical region, Ωph, onto a smaller one, Ωsh, that is embedded in the simulated domain,
Ω. Furthermore, a shell transformation not only maps the points of Ωph onto those of
Ωsh, it also maps the test functions that are used in the shell region, which usually are
polynomials, into other functions that might be more suitable to interpolate the behaviour
of the field. Shell transformations come in various shapes of Ωph, such as spherical shells,
truncated pyramidal shells, or prismatic shells [195]. In what follows, these will be referred
as spherical, trapezoidal and unidirectional shell transformations, respectively. These
three kinds of shell transformations are sketched in two dimensions in Figure 2.5. From
panel (a) to (c), the shape of Ωph and the corresponding Ωsh onto which Ωph is mapped
are illustrated for the three shell transformations. For each of them, φ transforms each of
the coordinates X, Y , Z of P ′ ∈ Ωph into the coordinates x, y, z of P ∈ Ωsh. In the case
of spherical and trapezoidal shell transformations, the change of coordinates, φ, follows
the generic relations [195]





X −XO = Fφ(x, y, z) (x−XO) ,
Y − YO = Fφ(x, y, z) (y − YO) ,
Z − ZO = Fφ(x, y, z) (z − ZO) ,

(2.45)
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Figure 2.4: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a
thin superconducting disk of radius R = 141 µm and thickness d = 100 nm in the case of
a truncated geometry. The simulated domain corresponds to a cube of varying side 2Lph.
The boundary conditions are thus applied at a finite distance from the film. The numerical
results are taken along a radius of the disk and along the mid-plane cross section along
the thickness. All the results are compared to the critical state model (CSM) analytical
result within the thin-film approximation (in black).
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Figure 2.5: Drawing of (a) a spherical shell transformation, (b) a trapezoidal shell trans-
formation, and (c) a unidirectional shell transformation. For the sake of clarity, all ge-
ometries have been sketched in two dimensions. A point P ′ in the physical region Ωph,
which extends over a typical length Lph−A, is mapped onto the point P in a shell region,
Ωsh ⊂ Ω, which characteristic length is given by B − A. The change of coordinates from
Ωph to Ωsh is characterized by the function φ. r ∈ [A,B] is a parameter that is used
to describe the mapping φ and is indicated for each shell shape. An illustration of a
truncated geometry is also shown in panel (d). The location of Ωsh in Ω is depicted for
(e) a spherical shell, (f) a trapezoidal shell, and (g) a unidirectional shell. In panels (d) to
(g), the light cerulean regions represent the conducting region, Ωc, while the light violet
regions represent Ωsh. The boundary conditions are applied on the outermost boundary
of Ω, and thus on the outermost boundary of Ωsh.
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where XO, YO and ZO are the coordinates of the fixed point of the shell transformation,
see panels (a) and (b) in Figure 2.5, and where Fφ is equal to

Fφ(A,B, p, r) =

(
A(B′ − A)

r(B′ − r)

)p

, (2.46)

B′ =
L0B

2 − A2

L0B − A
, (2.47)

L0 =

(
Lph

B

)1/p

, (2.48)

Whatever the shell configuration, the one-to-one mapping sends the shell Ωph of extension
Lph−A to the shell of similar shape Ωsh that extends over a distance B−A, with B < Lph.
The parameter r characterizes the distance from a point P ∈ Ωsh to the fixed point O of
the transformation, and its mathematical expression depends on the shape of the shell.
For instance, in the case of spherical shell transformations, one has

r =
√
(x−XO)2 + (y − YO)2 + (z − ZO)2, (2.49)

while for trapezoidal shell transformations in the z direction, one has (it can be easily
extended to the other principal directions x and y)

r = z − ZO. (2.50)

It is straightforward to see that A (resp. B) is the lower (resp. upper) bound of r. The
parameter B′ is a numerical parameter that takes into account the finite extension of Ωph.
In particular, B′ converges to B when Lph → ∞. Finally, the parameter p > 0 modifies the
spatial dependence of the approximation space. Such a change is numerically implemented
by the means of the Jacobian that results from Equation 2.45, Jφ = ∂Xi/∂xj(x, y, z),
with Xi ∈ {X, Y, Z} and xj ∈ {x, y, z}. It is also worth noting that in order to ensure the
continuity of the metrics between the two coordinate systems, one must ensure that

∂X

∂x

∣∣∣∣
r=A

=
∂Y

∂y

∣∣∣∣
r=A

=
∂Z

∂z

∣∣∣∣
r=A

= 1 (2.51)

which automatically holds when B′ = 2A [195].

As suggested by Equation 2.46, shell transformations interpolate fields that decay as Z−m

in Ωph with test functions that vary as rm(p−1)(B′− r)pm in Ωsh. Yet, far enough from the
conducting region, the scalar magnetic potential is expected to decrease as Z−2. Setting
p = 1 in Equation 2.46 means that the far-field Z−2 of ϕ is mapped onto a parabolic
function in Ωsh. Since linear nodal test functions are used, this means that the parabola
is approximated by piecewise linear test functions, which is a decent estimation, provided
there are enough elements in Ωsh.

In the case of a unidirectional shell transformation, which is illustrated in panel (c) of
Figure 2.5, the one-to-one mapping remains the same as detailed previously for spherical
and trapezoidal shells. For example, the mapping of a unidirectional shell transformation
along the z direction is given as





X = x,
Y = y,
Z − ZO = Fφ(x, y, z) (z − ZO) ,

(2.52)
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with Fφ(x, y, z) described by Equation 2.46, Equation 2.47, and Equation 2.48. However,
there is no fixed point O in the unidirectional shell transformation. Instead, a reference
plane is set at z = ZO. This expression can be easily modified to consider unidirectional
shell transformations along other directions, if needed. The previous remark about the
continuity of the metrics, which is equivalent to ∂Z/∂z|z=A = 1, still holds, so that
B′ = 2A and p = 1, and linear test functions can reasonably approximate the Z−2

dependence of the magnetic potential far from Ωc.

2.3.3 Applying a uniform Ha in a domain of infinite extension

In the scope of this thesis, it is sought to simulate the response of thin superconducting
films submitted to a uniform field, Ha, which is directed in the out-of-plane direction
to the cross section of the film, i.e. Ha = Haẑ, with Ha assumed uniform. In practice,
such an Ha can be generated with a spherical assembly of coils with a current intensity
varying as the sine of the elevation angle with respect to the plane perpendicular to the
direction of the applied field [204]. In this case, the generated Ha is uniform across the
sample under scrutiny, decays as a dipolar field outside this region of uniform field, and
is divergence-free in Ω. Helmoltz coils could also be used to apply a uniform field in a
restricted region of the three-dimensional space, before it decays far from the conducting
regions. Ha ∈ L2(Ω), and thus Ḣa ∈ L2(Ω) is also a prerequisite to the use of the weak
form in Equation 2.32. Hence, if Ω extends to infinity along one direction, a uniform
Ha over Ω is non-physical, since it does not take into account the inevitable decay of the
magnetic field generated by a source. Even for finite Ω, forcing a uniform Ha everywhere
in Ω is merely a convenient numerical approximation of an actual source delivering the
applied field. A way to overcome the issue would consist in actually modelling the field
source, at the cost of an increase of the number of unknowns of the problem. In what
follows, another way to generate a uniform field, while ensuring that Ha ∈ L2(Ω), is
proposed.

In fact, one can rely on the divergence-free property of µ0Ha in Ω \ Ωc to recast the
first term of Equation 2.32. To this aim, let us define an auxiliary closed domain, Ωb,
of arbitrary shape and which encloses Ωc, as depicted in Figure 2.1. Its boundary is
denoted by Γb and nb is the outer unitary normal to Γb. Ωb delineates the region where
Ha is expected to be uniform. On the contrary, in Ω \Ωb, Ha is allowed to decrease at far
distances from Ωc. The first term of Equation 2.32 rewrites as

∫

Ω

µ0Ḣa ·Ψ dΩ =

∫

Ωb

µ0Ḣa ·Ψ dΩ +

∫

Ω\Ωb

µ0Ḣa ·Ψ dΩ. (2.53)

Given the current-free relation in Ω\Ωc, the properties of the function spaces F0
h(Ω\Ωc) and

F1
h(Ω\Ωc), resulting toΨ = −∇Φ, and the vectorial identity (∇a)·b = ∇·(ab)−a (∇ · b),

the second integral of Equation 2.53 can be further modified

∫

Ω\Ωb

µ0Ḣa ·Ψ dΩ = −
∫

Ω\Ωb

µ0Ḣa · (∇Φ) dΩ

=

∫

Ω\Ωb

(
∇ · (µ0Ḣa)

)
ΦdΩ−

∫

Ω\Ωb

∇ · (µ0ḢaΦ) dΩ. (2.54)
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The first integral cancels out because of the time derivative of Gauss’s law, ∇·(µ0Ḣa) = 0.
The divergence theorem can be applied to the second integral in such a way it becomes

∫

Ω\Ωb

∇ · (µ0ḢaΦ) dΩ =

∫

Γ

µ0(Ḣa · n)Φ dΓ−
∫

Γb

µ0(Ḣa · nb)Φ dΓ. (2.55)

The first integral of Equation 2.55 is zero because Φ|Γ = 0, and it immediately follows
that Equation 2.54 is equivalent to

∫

Ω\Ωb

µ0Ḣa ·Ψ dΩ =

∫

Γb

µ0(Ḣa · nb)Φ dΓ. (2.56)

Finally, substituting Equation 2.56 in Equation 2.53, one gets

∫

Ω

µ0Ḣa ·Ψ dΩ =

∫

Ωb

µ0Ḣa ·Ψ dΩ +

∫

Γb

µ0(Ḣa · nb)Φ dΓ. (2.57)

The first term of Equation 2.57 corresponds to the generation of a uniform field in the
a restricted volume, while the second term ensures, through a surface integral, that Ha

is square-integrable outside the box Ωb. The most interesting feature that Equation 2.57
highlights is that the exact description of Ha is not needed outside Ωb, where the field is
non-uniform. This approach can be generalized to any Ha ∈ L2(Ω) that is divergence-
free and to any shape of Ωb. Ultimately, using Equation 2.57, Equation 2.32 can be
reformulated as

∫

Ωb

µ0Ḣa ·Ψ dΩ +

∫

Γb

µ0(Ḣa · nb)Φ dΓ

+

∫

Ω

µ0ḣ ·Ψ dΩ

+

∫

Ωc

ρ (|∇ × h|) (∇× h) · (∇×Ψ) dΩ = 0. (2.58)

2.4 Analysis of the numerical performance of the shell

transformations

2.4.1 Mesh for each shell transformation and truncated geome-
try

Now, let us evaluate the efficiency in terms of time performance and accuracy of the
different shell transformations in comparison to the approach of truncating the physical
domain. To this aim, the simulated response of a superconducting film to a uniform
out-of-plane applied field will be investigated for the different shell geometries and for
two types of thin films: a thin disk of radius R (TD) and a thin strip of width W and
length L (TS). The results of the unidirectional shell transformation in a square film of
side L (SF) will also be investigated later on, even though they will not be compared to
the other shell geometries or to the truncation method. In each case, the thickness of the
film is denoted by d. As mentioned in Subsection 2.3.1, the applied field is ramped from
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0 for a duration ta at a constant rate Ḣa, so that the strength of the applied field reaches
the value Ha. Panels (d) to (g) of Figure 2.5 show how the different regions of Ω are
organized around Ωc, which consists in the superconducting film with the desired cross
section. Ωc corresponds to the cerulean region on each of these panels. In panels (e), (f)
and (g), Ωsh, shown in light violet, is located at the periphery of Ω \ Ωc and is meant to
be mapped onto a region of infinite extension in Ωph, i.e. Lph → ∞. The white regions
match the subdomain in Ω \ Ωc where no jacobian shell transformation is applied to the
elements contained in its interior. In the truncated geometry, Lph is finite and the whole
simulated domain extends over distances that are 50

√
2 times larger than R in the TD

configuration and 100 times larger than L in the TS configuration. In the TD geometry,
the value of A is set to 2R for both the spherical and trapezoidal shell transformations,
while A is set to

√
2L in the TS geometry for the same two shell transformations. These

values ensure that Γ is much closer to Ωc than in the truncated geometry. In the case of
the unidirectional shell transformation, the choice for A will be explained in Subsection
2.4.2.

Because of the thin-film geometry, the mesh in Ωc must be made of prisms or hexahedra
to avoid very flat tetrahedra in Ωc. Pursuing the same mesh quality requirements, the
film cross section is also extruded above and below the film over a distance La, which is
made of Na layers. For all shell geometries and the truncated geometry, La is equivalent
to the value of A for the unidirectional shell transformation. The in-plane extension of
this box is set to 1.8 times R or L/2, depending on whether the TD or the TS case is
considered. For the sake of comparison, this box is the same for the spherical shell, the
trapezoidal shell, and the truncated geometry. By contrast, as far as the unidirectional
shell geometry is concerned, since the shell transformation is only applied in the out-of-
plane direction, the in-plane extension of Ω is limited to 5

√
2R and 5L in the TD and TS

geometry, respectively. This is justified by the fact that ϕmainly varies in the out-of-plane
direction, so that a truncation along the in-plane direction does not influence much the
solution in Ωc.

The out-of-plane extension above and below the film in the interior of this structured
box is thus the same in every shell configuration, the unidirectional one included. This
structured-meshed box delimits Ωb, where the applied field is assumed to be uniform
when shell transformations are used, according to the developments of Subsection 2.3.3.
In the case of the truncated geometry, the applied field is uniform in the whole domain Ω.
Yet, the structured-meshed box still exists and will still be referred to as Ωb. The mesh
and the geometry of Ω \ Ωc only differ outside Ωb. As far as the spherical or trapezoidal
shell transformations and the truncated geometry are concerned, whose meshes become
unstructured outside Ωb, the transition between the structured and the unstructured
meshes is carried out by means of pyramidal elements. In the case of an out-of-plane
unidirectional shell transformation, the mesh is fully structured in Ω, and Ωsh starts
directly after the Na layers that lie above and below Ωc. Ωsh is then made of an extrusion
of the same planar two-dimensional geometry over Nsh layers. The main geometrical,
physical, and mesh parameters in each case are summarized in the TD, TS and SF columns
of Table 2.2. The mesh is generated with Gmsh [205] and results from the Delaunay
algorithm. The H-ϕ formulation is implemented in the context of the FE method and
solved in GetDP [191] on a CPU with an Intel Core i7 (3.6 GHz and 16 Gb RAM).
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Parameter TD TS SF
d (nm) 100 100 100
R (µm) 141 / /
L (µm) / 1200 200
W (µm) / 400 /
Spherical: A (µm) 282 1700 /
Trapezoidal: A (µm) 282 1700 /
Unidirectional: A (µm) 32 80 25
Truncated: Lph (cm) 1 1.2 /
Na 3 3 3
Nsh 3 3 3
n 1000 1000 Var.
Jc (MA/cm2) 1 1 1

Ḣa (kA/m.s) 1 1 1
ta (s) 0.5 0.5 Var.

Table 2.2: Physical and numerical parameters for the simulation of magnetic field pene-
tration in a thin superconducting disk (TD), thin superconducting strip (TS), and thin
square film (SF). If a parameter is not relevant to the shape of the film under considera-
tion, the entry is filled in with a slash. The abbreviation ”Var.” means that the parameters
varies.

2.4.2 Determining the value of A in unidirectional shell trans-
formations

First, let us focus on determining reasonable choices for the parameters that influence the
quality of the FE approximation with a unidirectional shell transformation, namely, A, Na,
and Nsh. To this aim, the profiles of the out-of-plane component of the magnetic field, Hz,
and the norm of the current density, |J|, are compared to the analytical result of the critical
state model (CSM), assuming the thin-film approximation, in a thin superconducting disk
[113] (TD geometry). Because of the finite thickness of the simulated film and the finite
value of n in Equation 2.18, one should expect some differences, even for very small mesh
size and time steps. Nevertheless, n can be chosen to be very large, n = 1000, so that the
deviations from the CSM results are expected to be small everywhere in the film. Given
the large aspect ratio R/d ∼ 1000, deviations in the magnetic field are expected close to
the border, as Hz is expected to diverge in the thin-film approximation, whereas it should
be cut off with a factor ∼ log(R/d) for films of finite thickness [115, 116]. The mean
absolute errors on Hz and |J| are inspected along a random radius of the disk, as already
stipulated in Subsection 2.3.1.

Figure 2.6 shows Hz and |J| for different values of A in the TD configuration, when Na

and Nsh are both set to 3. While these values might appear rather small, the motivation
behind such a choice will be given in Subsection 2.4.3. The mean absolute deviations of
Hz and |J| from their CSM values are summarized in Table 2.3 and range from 0.6% of
Jcd and 1.1% of Jc when A = 40 µm to 5.2% of Jcd and 2.3% of Jc when A = 200 µm.
The former A-value is the optimal choice among the restricted number of investigated
values of A. Too large or too small a value of A for given values of Na and Nsh leads to
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a substantial underestimation of the magnitude of Hz and |J| in the film with respect to
the CSM predictions, more specifically in the non-penetrated regions. In particular, the
position of the flux front is sensibly underestimated. However, it appears that the value
of A can still be chosen in a fairly large range, since the results from A = 40 to A = 80 µm
are qualitatively very close to each other, as indicated by the mean absolute errors on Hz

and |J|, which remain nearly the same. It is also worth reminding that these observations
are valid for the given values of Na = 3 and Nsh = 3. The quality of the approximations
is expected to improve as Na and Nsh increase.

In order to motivate the selection of a reasonable value of A, one can for instance turn
to the analysis of the out-of-plane dependence of the magnetic scalar potential in the
TD geometry. Such dependence is shown on a logarithmic-scale plot in Figure 2.7, and
stems from the analytical resolution of Biot-Savart law applied to the azimuthal current
distribution that is established in a fully penetrated thin superconducting disk within the
CSM formalism. The calculations on which this graph relies are detailed in Section B.1
in Appendix B. As one gets further from the film, ϕ varies in Ω \ Ωc from a finite value
on the surface of the film, which is ϕ0, to zero at an infinite distance from the conducting
domain. The current loops that circulate in Ωc affect the behaviour of ϕ in a region that
is restricted to the immediate neighbourhood of the film. The region of space where the
shape of the induced current loops in the superconducting film dictates the variations of
ϕ is called the near-field region. At far distances, ϕ decreases as ϕ ∼ Z−2, independent
of the shape of the film. This is reminiscent of how the magnetic field and the associated
scalar potential decay around a magnetic dipole, and this region will be referred to as the
far-field region.

Given that one wishes to keep Na and Nsh a small as possible, understanding why the
choice of A is crucial to the quality of the solution becomes now clearer. In Equation
2.46, the value p = 1 enables a good approximation of the Z−2 decay of ϕ in the far-field
region. On the one hand, if A is too small, the scalar potential that is evaluated in the
shell region does not strictly vary as Z−2, as a part of the near-field region is included in
Ωph. A sufficiently large number of test functions is then required in the shell region to
correctly estimate the variations of ϕ, which means increasing Nsh. On the other hand,
if A is too large, part of the far-field region is contained in (Ω \ Ωc) \ Ωsh, where the test
functions are linear, and thus do not approximate well the Z−2 decay. A solution in Ωc of
good quality then requires to increase the number of layers Na. Opting for an intermediate
value of A allows one to delimit a region where ϕ varies smoothly when Z < A, which
can be faithfully approximated by a few linear test functions, while approximating the
Z−2 behaviour with the mapped test functions for Z > A with only a few layers in Ωsh.
Of course, it is also possible to increase either Na or Nsh, at the cost of an increase of the
number of DOF. A pragmatic, but arbitrary, choice consists in choosing A such that ϕ is
divided by a factor 2 with respect to the value of the scalar potential on the surface of
the superconductor, ϕ0, as illustrated in Figure 2.7.
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Figure 2.6: Out-of-plane component of the magnetic field, Hz, and norm of the current
density, |J|, in a thin superconducting disk of radius R = 141 µm and thickness d = 100
nm for different values of A. The numerical results are taken along the radius of the disk,
and along the mid-plane cross section along the thickness, as depicted in the inset. All
results are compared to the analytical result of the critical state model in the thin-film
approximation (in black).
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Figure 2.7: ϕ/ϕ0 as a function of Z/R, the out-of-plane distance from a fully penetrated
thin superconducting disk of radius R and thickness d, on a logarithmic-scale plot. ϕ0 is
the scalar magnetic potential on the surface of the film. The red circle indicates the value
of A for which ϕ/ϕ0 = 1/2. One finds A ≈ 0.23R. The near-field and the far-field regions
are also roughly indicated. The dashed line is a guide for the eye which emphasizes a Z−2

dependence to which the far-field ϕ corresponds. O is the origin of an orthonormal basis
that is used in the analytical developments of Section B.1 in Appendix B.

A (µm) Na Nsh DOF Wall time (min) Error |J| Error Hz

10 3 3 104825 168 5.8% 1.7%
20 3 3 104825 167 2.8% 0.6%
40 2 3 88220 124 1.4% 1.2%
40 3 1 71603 84 3.4% 1.1%
40 3 2 88220 124 1.9% 0.7%
40 3 3 104825 168 1.1% 0.8%
40 3 4 121456 225 0.9% 0.9%
40 3 5 138704 299 0.8% 0.9%
40 3 10 221164 948 0.8% 1%
40 4 3 121456 224 1.1% 0.7%
40 5 3 138704 297 1.1% 0.7%
40 10 3 221164 947 1.1% 0.7%
80 3 3 104825 167 1% 1.2%
100 3 3 104825 168 1.2% 1.6%
200 3 3 104825 169 2.3% 5.2%

Table 2.3: Accuracy and time performance of the unidirectional shell transformation for
different values of A, Na and Nsh in the thin disk geometry.
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2.4.3 Determining the values of Na and Nsh in unidirectional
shell transformations

In the light of the results of Subsection 2.4.2, the value of A has been set to an inter-
mediate value that lies between the near-field and the far-field region. However, as it has
already been discussed, this means that ϕ does not exactly evolves as Z−2 in Ωph and
several layers in Ωsh might be necessary to obtain an accurate approximation of ϕ hence
a correct evaluation of the magnetic field in Ωsh. Since the structured nature of the mesh
implies that the in-plane mesh in Ωsh is the exact replication of the in-plane mesh in Ωc,
increasing the number of layers Nsh might rapidly increase the number of elements in
the non-conducting regions to levels that are prohibitive in practice. One may seek to
determine the minimal value Nsh, so that the quality of the solution in Ωc is preserved.
To this aim, the profiles of Hz and |J| in the TD situation are plotted along the radius
for various Nsh. A is set to 40 µm. The results of the FE method are shown in Figure 2.8
and are compared to the CSM. Details about the mean absolute errors, the number of
DOF and the duration of the simulations are mentioned in Table 2.3. As Nsh increases,
the profiles of Hz and |J| are closer to the predictions of the CSM. The mean absolute
errors vary from 1.1% of Jcd and 3.4% of Jc when Nsh = 1 to 0.7% of Jcd for Nsh = 2
and 0.8% of Jc for Nsh = 10. Meanwhile, the number of DOF increases, which manifests
as an increase of the duration of the simulations, expressed in minutes. However, once
Nsh ≥ 3, the results for both Hz and |J| do not significantly vary. The mean absolute
error on Hz is less than 1% of Jcd, while the mean absolute error on |J| becomes less
than 1% of Jc as well. Taking Nsh = 3 appears to be a reasonable choice of Nsh, when
Na = 3, which simultaneously limits the number of DOF in Ω \ Ωc, while ensuring that
the approximation error on |J| remains around 1%.

Similarly, let us investigate the impact of the value of Na while keeping Nsh = 3. The
associated Hz and |J| profiles are compared to the results of the CSM and shown in
Figure 2.9. The mean absolute errors on Hz and |J| and the duration of the simulations
are gathered in Table 2.3. Similarly to Figure 2.8, increasing the value of Na enhances
the quality of the FE approximation. This is assessed by the mean absolute errors on |J|
and Hz, which range from 1.4% of Jc and 1.2% of Jcd respectively for Na = 2 to 1.1% of
Jc and 0.7% of Jcd respectively when Na = 10. Increasing either Nsh or Na has the merit
of improving the FE approximation close to the flux front mostly. Increasing the value
of Na also seems to reduce the level of Hz close to the boundary of the sample, while
changing Nsh leaves this value nearly unaffected. Refining the mesh close to the film is
responsible for a better approximation of ϕ in this region, so that it is not surprising that
Na influences more Hz in the vicinity of the thin-disk circumference. Once again, referring
to the results gathered in Table 2.3, for Nsh = 3 and Na ≥ 3, the mean absolute errors on
|J| and Hz does not vary, so that choosing Na = 3 and Nsh = 3 simultaneously seems to
be the best compromise that ensures a good quality of the FE simulations, while keeping
the number of DOF as low as possible.

Also, note that increasing Nsh while keeping Na fixed does not lead to a monotonic
reduction of the mean error on Hz, see Table 2.3. The solution to which the FE scheme
converges might differ from the analytical result of the CSM, because ϕ in Ωb is only
approximated by Na = 3 layers. Similarly, if Na (resp. Nsh) increases while Nsh = 3
(resp. Na = 3) is kept constant, the errors do not tend to zero. Several factors may
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Figure 2.8: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a
thin superconducting disk of radius R = 141 µm and thickness d = 100 nm for different
values of Nsh, the number of layers in the shell domain, Ωsh, for Na = 3. The numerical
results are taken along the radius of the disk, and along the mid-plane cross section along
the thickness, as depicted in the inset. All results are compared to the analytical result
of the critical state model in the thin-film approximation (in black).
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Figure 2.9: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a thin
superconducting disk of radius R = 141 µm and thickness d = 100 nm for different values
of Na, the number of layers in Ωb above and below the superconducting film, for Nsh = 3.
The numerical results are taken along the radius of the disk, and along the mid-plane
cross section along the thickness, as depicted in the inset. All results are compared to the
analytical result of the critical state model in the thin film approximation (in black).
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Figure 2.10: Logarithmic-scale plot of the simulation time as a function of the number
of DOF, N , in a thin disk of radius R = 141 µm and thickness d = 100 nm. Results
are shown for Nsh = 1 (in red), Nsh = 3 (in green) and Nsh = 5 (in blue), while Na = 3
in every configuration. The curves remain unchanged if the values of Na and Nsh are
swapped. The time complexity of the unidirectional shell transformation is O(N1.26),
O(N1.29) and O(N1.42) for Nsh = 1, Nsh = 3 and Nsh = 5, respectively, as highlighted by
the slope of the dotted lines, which serve as a guide to the eye.

explain this. Although the aspect ratio R/d > 1400 is very large, the finite thickness of
the film has the effect of cutting off the divergence arising at the edge of the film, which
implies deviations of the FE scheme from the CSM. Similarly, despite n = 1000 being very
large, it is not infinite. As a result of this, |J| is not strictly equal to Jc in the penetrated
region, which also influences the profiles of Hz as well.

2.4.4 Time complexity of the unidirectional shell transforma-
tions

Finally, now that the number of layers, Na and Nsh, and the value of A have been
optimized, the scaling of the unidirectional shell transformation with respect to the quality
of the in-plane mesh in the TD layout is investigated. The mesh inside the thin disk is
progressively refined, which in turn increases the number of degrees of freedom of the
simulation. The mesh size of the disk ranges from 2 to 20 µm. The simulation time as a
function of the number of degrees of freedom in Ω are represented on a logarithmic-scale
plot in Figure 2.10 for Nsh = 1, Nsh = 3 and Nsh = 5, with Na = 3. For each value of
Nsh, the logarithmic plot shows a linear trend, which is equivalent to say that the time
complexity scales as Nα, where N is the number of DOF and α is a real parameter. A
linear regression on the log-log plot of these curves directly gives the order of the monomial,
hence the time complexity of the FE scheme with the unidirectional shell transformation.
These linear regressions are indicated by dashed lines in Figure 2.10. One can see that
the time complexity is enhanced when the number of layers in the non-conducting region
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Figure 2.11: Convergence of the H-ϕ formulation with a unidirectional shell transforma-
tion in the TD geometry. The convergence of the FE scheme is evaluated by means of the
mean absolute error of |J| as a function of the number of DOF for different combinations
of Na and Nsh. The number of DOF varies by changing the typical mesh size in the
superconducting disk.

is lowered, since it is found that it scales as O(N1.26), O(N1.29) and O(N1.42) for Nsh = 1,
Nsh = 3 and Nsh = 5, respectively (or equivalently, for Na = 1, Na = 3 and Na = 5,
respectively, with Nsh = 3). The increase of the computational complexity as the number
of extruded layers increases might come in part from the increase of the time allocated
for assembling the matrices at each time step, which is a mandatory process given the
non-linear nature of the simulations.

The mean absolute error of |J| is also plotted against the number of DOF in Figure
2.11 for different combinations of Na and Nsh. Independent of the combination, the
mean absolute error made on |J| decreases with the number of DOF and reaches a lower
threshold which depends on the value of Na and Nsh. For a given value of Na (resp. Nsh),
increasing Nsh (resp. Na) reduces the error. Besides, increasing the number of layers
Nsh seems to be more beneficial to the quality of the FE approximation than increasing
Na, as proved by the comparison between the case Na = 3 and Nsh = 5 and the case
Na = 5 and Nsh = 3, which both require the same computing time. Combining the results
of Figure 2.10 to those of Figure 2.11, one understands that refining the mesh in the
non-conducting region with the unidirectional-shell-transformation technique soon loses
its interest, as the increase of the duration of the simulation is not compensated by a
significant improvement of the FE approximation. In conclusion, Na = 3 and Nsh = 3
appears to be a reasonable choice of values that achieves good numerical accuracy, while
sparing DOF and keeping a reasonable simulation time.
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2.4.5 Comparison of the shell transformations with the trun-
cated geometry in thin disks

The implications of Subsection 2.4.2 and Subsection 2.4.3 are combined so that the
unidirectional shell transformations can be compared to the other shell transformations
and the truncated geometry. All cases are compared to the analytical results of the CSM.
The numerically simulated profiles of Hz and |J| across a radius in the TD configurations
are shown in Figure 2.12. All cases seem to reproduce the expected analytical solution
of the CSM fairly well. This is corroborated by the mean absolute errors of both fields,
which are indicated in Table 2.4. The typical mesh size in the superconducting disk is
more or less equal to 4 µm. The error on Hz and |J| are rather low. For instance, the
mean absolute error is the lowest in the case of the unidirectional shell transformation,
with a mean absolute error of 0.6% Jcd. In the other shell configurations, the error on Hz

is still limited to 0.7% Jcd. As far as |J| is concerned, the errors are ∼ 1% Jc in every case,
but seem to be the lowest for the trapezoidal and spherical shell transformations, with
0.8% Jc, and the largest for the unidirectional shell transformation, with 1.1% Jc. The
number of DOF however varies quite a lot depending on the shell geometry. The spherical
shell transformation appears to spare the most DOF among all shell transformations and
is also the most time-efficient one, reducing the duration of the simulation by ∼ 35% with
respect to the truncated geometry. Besides, although it remains more time-consuming
than trapezoidal or spherical shell transformations, the unidirectional shell transformation
proves to be more efficient than the truncated geometry, dropping the simulation duration
by ∼ 8%, while proving to be slightly more accurate. In the particular case of the TD
geometry, the use of shell transformations appears to be beneficial to the user, by reducing
significantly the duration of the simulations, while being slightly more accurate than the
truncated-geometry approach.

The fact that spherical and trapezoidal shell transformations systematically require less
DOF than the unidirectional shell transformation stems from the unstructured nature
of the mesh in Ωsh, which allows to relax the mesh along the three principal directions,
therefore sparing a substantial amount of DOF. In fact, the structured mesh implies the
extrusion of the in-plane mesh over several layers in Ωsh. More specifically, the extrusion
of the film mesh in the out-of-plane direction generates an unnecessary fine in-plane mesh
in Ωsh, increasing the number of elements there. The larger extension of the in-plane cross
section in the case of the unidirectional shell might also explain the excess of DOF that
is observed regarding the unidirectional shell.

2.4.6 Comparison of the shell transformations with the trun-
cated geometry in thin rectangular strips

Let us turn now to the case of thin rectangular strip of length L and width W (TS
geometry). This verification is of importance, since most of the films that are used in
experiments and in the subsequent simulations are either square or rectangular. In the
TS geometry, the current lines form closed contours that become parallel to the longer
sides of the strip once the current is probed sufficiently far from the smaller sides of
the rectangle. In comparison to the TD case, the value of A must change, because the
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Figure 2.12: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a su-
perconducting thin disk of radius R = 141 µm and thickness d = 100 nm for a trapezoidal
(in red), a spherical (in yellow), a unidirectional (in green) shell transformation, and for
the truncated geometry (in blue). The numerical results are taken along the radius of the
disk, and along the mid-plane cross section along the thickness. All results are compared
to the analytical result of the critical state model (CSM) in the thin-film approximation
(in black).
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Planar geometry Shell geometry DOF Wall time (min) Error |J| Error Hz

TD

Truncated 93542 182 1% 0.7%
Trapezoidal 73338 128 0.8% 0.7%
Spherical 68181 118 0.8% 0.7%

Unidirectional 104825 168 1.1% 0.6%

TS

Truncated 191939 489 0.9% 1.9%
Trapezoidal 186617 478 0.9% 1.9%
Spherical 186800 467 0.9% 1.9%

Unidirectional 225280 538 1.2% 2.4%

Table 2.4: Accuracy and time performance of the different shell transformations in the
thin-disk and thin-strip geometries. The accuracy is computed as the mean absolute error
of the evaluated physical quantity. The time performance is assessed with the time needed
to perform the whole simulation. As a matter of comparison, the number of DOF is given
for each case.

current loops have changed from circular to roughly rectangular shapes. To this aim, let
us consider the TS geometry and let us determine the value of A for various aspect ratio
L/W , sticking to the criterion that was used in the TD case, ϕ/ϕ0 = 1/2. The evolution
of ϕ as a function of Z is once again evaluated along the lines of the calculations in Section
B.2 in Appendix B, in the case of a fully penetrated thin strip of width W and length
L. The evolution of A/W as a function of L/W is shown in Figure 2.13 for aspect ratios
ranging from 1 to 10. This curve serves as a rule of thumb to select the value of A for
rectangular strips. For example, in the TS case, one gets A ≈ 0.20×W ≈ 80 µm, while in
the SF configuration, A ≈ 0.13×L ≈ 25 µm, as indicated in Table 2.2. In the context of
this thesis, the cross sections of the films will be either squares or rectangles, so that the
predictions of Figure 2.13 can be safely used throughout the manuscript. Nevertheless,
one could still use the results of Figure 2.13 as a first guess for a thin film with arbitrary
cross section by roughly approximating the cross section as the smallest rectangle that
circumscribes the actual film. The length and the width of the rectangle can then be used
to determine the value of A. For the sake of illustration, in the TD geometry, one would
obtain A ≈ 0.13 × 2R ≈ 37 µm. The factor 0.13 corresponds to the value of A/W for a
square (L/W = 1), which corresponds to the fact that the smallest rectangle containing
a circle of radius R is a square of side 2R. In fact, it can be shown analytically that
A ≈ 0.23 × R ≈ 32 µm, as shown in Table 2.2, which is close to the prediction for a
thin square film. Note that rounding the value of A, as it was done in Table 2.2, is not
detrimental to the quality of the solution, since the value of A can be chosen in a large
range of values, as discussed in Subsection 2.4.2.

In order to assess the validity of the shell-transformation methods in this geometry, the
profiles of the out-of-plane component of the magnetic field, Hz, and the norm of the
current density, |J|, are once again compared to the analytical results of the CSM, as-
suming the thin-film approximation for an infinitely thin superconducting strip [114], see
also Equation 1.38 and Equation 1.39. Given the parameters of the TS column in Table
2.2, one has L/W = 3. The mesh in the strip is non-regular, as the mesh size goes from
20 µm in the vicinity of the small lateral borders of the strip to 2 µm along the smallest
median. Due to the finite aspect ratio of the strip, a direct comparison to the results
of the infinitely long and thin strip is valid only at a sufficiently far distance from the
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Figure 2.13: Size of the layer, A/W , as a function of the aspect ratio of a thin rectangular
film, L/W , where L and W are the length and the width of the rectangular film, respec-
tively. These results were obtained in the framework of the mathematical developments
of Section B.2 in Appendix B.

corners of the rectangular cross section. The border effects are thus the smallest along
the smallest median of the strip, which is where the numerical results are collected and
compared to the CSM in the TS case. The average absolute errors of Hz and |J| along
the smallest median are calculated to estimate how well the simulations interpolate the
analytical profiles of the CSM.

The profiles along the smallest median of the rectangular cross section of the out-of-
plane component of the magnetic field, Hz, and the norm of the current density, |J|,
for the different shapes of Ωsh are summarized in Figure 2.14. The accuracy and the
time performance for every shell-transformation shape and the truncated geometry are
reported in Table 2.4. The number of degrees of freedom are also indicated, for the sake
of comparison. Note that for all geometries Na = 3 and Nsh = 3 in the unidirectional shell
transformation, in a direct application of the observations of Subsection 2.4.3. It can be
immediately observed that the numerical results fit the analytical ones for an infinitely
long strip very well for each shape of Ωph, except close to the border and at the flux front,
where the main differences with respect to the CSM are found. The error on Hz and
|J| are higher for the TS case than in the TD case, independent of the shell geometry.
The mean absolute error on Hz are multiplied by a factor 3 to 4, and the mean absolute
errors on |J| increase slightly as well. The number of DOF remains pretty much the same
for the truncated geometry, the spherical and the trapezoidal shell transformations. The
simulation times are then roughly the same, even if an improvement of 5% is observed
with the spherical shell transformation with respect to the truncated geometry. The mean
absolute error on |J| and Hz are equal to 0.9% of Jc and 1.9% of Jcd respectively, in all
cases. The unidirectional shell transformation, however, appears to use more DOF and,
as a result of this, the simulation also lasts 10% longer than for the truncated-geometry
case. The error on |J| and Hz are also larger than in the previous cases, reaching 1.2%
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of Jc and 2.4% of Jcd respectively. The larger error on Hz associated to the FE method
mainly comes from the estimation of Hz close to the borders and at the flux front. In
fact, in an infinitely thin film, Hz diverges at the border of the film. This divergence
is absent in the simulations, since the thickness of the films is finite. The value of Hz

at the border of the strip varies with the shell transformation and is partly responsible
for the significant differences in the mean absolute error on Hz. The quality of the FE
approximation at the flux front could be enhanced by increasing the values of Na and
Nsh, as discussed in Subsection 2.4.3.

Nevertheless, in the scope of the simulations carried out for this particular cross section, it
appears that the shell transformations do not contribute much to improving the accuracy
of the numerical solutions with respect to the truncated geometry, and do not significantly
improve the time performance either. As far as the unidirectional shell transformation
is concerned, the numerical evaluation of Hz also appears to be slightly worse, while
increasing the number of DOF and thus the duration of the simulation.

2.4.7 Magnetic field penetration in thin superconducting square
films

Until now, the exponent n has been set to a very large value so that the numerical results
could be compared to the analytical expressions of the CSM. In practice, the value of
n is much less than 1000. Besides, the choice for the value of A relies on analytical
developments in fully penetrated samples. In order to test the validity of the shell-
transformation approach in partially penetrated thin films and for more practical values
of n, a unidirectional shell transformation is used in a film with square cross section (SF
geometry), with a more realistic value of n = 20. Because of the square geometry and
the limited value of n, it becomes impossible to compare the FE simulations to existing
CSM or other analytical solutions. Instead, they will be tested against the results of the
Brandt’s method [206], that serves as a reference. All numerical and physical parameters
can once again be found in Table 2.2, in the SF column. The mesh in the Brandt’s method
consists in a uniform grid of 103 elements along half a side of the square, using symmetry
boundary conditions along the median the square to account for the square symmetry.
In the FE simulations, the square is meshed with triangular elements, according to the
Delaunay algorithm, and the side of the square is subdivided in 200 points, giving rise to
a mesh size of 1 µm.

The numerical profiles of Hz and |J| along one of the median of the square are then
compared to the results of the Brandt method in Figure 2.15, for different durations of
the applied field ramp, ta, or equivalently, different values of Ha. One can see that for
each value of Ha, the FE simulations are very much on par with the Brandt method. The
main differences arise at the flux front, where |J| starts to decrease and where Hz reaches
0. The FE method seems to deliver Hz and |J| profiles that penetrate less inside the
sample than the numerical results of Brandt’s method. Far enough from the flux front,
the profiles in the penetrated region are in excellent agreement with each other.

Similarly, if one sets ta to 0.5 s, so that Ha = 500 A/m, the profiles of Hz and |J| for
diverse values of n are shown in Figure 2.16. The FE results are once again compared
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Figure 2.14: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in
a thin superconducting strip of length L = 1.2 mm, width W = 400 µm and thickness
d = 100 nm for a trapezoidal (in red), a spherical (in yellow) and a unidirectional (in
green) shell transformation, and for the truncated geometry (in blue). The numerical
results are taken along the smallest median of the strip, and along the mid-plane cross
section along the thickness. All results are compared to the analytical result of the critical
state model (CSM) in the thin-film approximation (in black).
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Figure 2.15: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a
thin superconducting square film of side length L = 200 µm and thickness d = 100 nm
for various values of Ha and n = 20. The numerical results are taken along one of the
median of the square, and along the mid-plane cross section along the thickness. The FE
results are indicated by the plain lines, and are compared to the numerical results of the
Brandt method [206], shown in dashed lines.
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to those of Brandt’s method. The results are in close agreement. When compared to
Brandt’s method, the FE method seems again to systematically underestimate the loca-
tion of the magnetic flux front. Such effect does not seem more pronounced for higher
values of n, even though it is significantly reduced for n = 10. This could be attributed
to inevitable differences that arise between the two-dimensional thin-film approximation,
which is assumed in Brandt’s method, with respect to the fully three-dimensional mod-
elling of the thin-film geometry in the FE method. Besides, since Na = 3 and Nsh = 3, the
mesh in the close proximity of the film might be too coarse and introduce numerical errors
that manifest close of the flux front. Finally, one should also bear in mind that although
Brandt’s method is considered as a reference scheme, its results are numerically evaluated
and are thus accurate within an error bar that is inherent to the method. Despite all
of this, the qualitative and quantitative agreement between both methods remain very
good, and the validity of the unidirectional shell transformation is corroborated.

2.5 Conclusion

In this chapter, the mathematical formalism of the FE method in the context of a H-
ϕ formulation has been introduced. This approach is the main numerical tool on which
the numerical results of the next chapters rely. The shell-transformation technique, where
infinitely large physical domains are mapped onto meshed shell domains of finite extension,
has also been introduced as a way to prevent the truncation error arising in the truncated-
geometry approach. This technique has been applied to diverse shapes of the shell region,
Ωsh, such as spherical, trapezoidal and unidirectional shells. The validity, accuracy and
time performance of the shell-transformation approach were tested against the truncated-
geometry approach for thin disks (TD), thin rectangular strips (TS), and thin square
films (SF). In the TS geometry, shell transformations and the truncated geometry yield
profiles of Hz and |J| of equivalent accuracy and equivalent simulation times. In the
TD case, shell transformations slightly improve the accuracy of the results and reduce the
duration of the simulations up to 35% with respect to the truncated case, when a spherical
shell transformation is used. In the SF geometry, the results of the unidirectional shell
transformation were found to be similar to those of the Brandt method for different applied
fields and n exponents. The time efficiency and the quality of the shell-transformation
approach is thus corroborated for specific cross sections, and their use may be encouraged
in comparison with the usual truncated-geometry approach.

In the TD geometry, emphasis was put on the mesh parameters of the unidirectional shell
transformation. Based on the analytical developments of Appendix B, a suggestion for
choosing the size of the shell domain, Ωsh, was proposed. This approach was extended to
thin films with rectangular cross section. Then, attention has been drawn to the value
of Na and Nsh in the TD geometry, which both control the mesh quality in the non-
conducting region. It was found that the values Na = 3 and Nsh = 3 ensure a good
balance between mesh quality and reasonable simulation durations.

For the unidirectional shell transformation, a proper choice of the size of the shell region,
A, is paramount to obtain reliable numerical approximations of the magnetic field and
the current density inside the film. However, the value of A can still be chosen in a rather
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Figure 2.16: Out-of-plane magnetic field, Hz, and norm of the current density, |J|, in a
thin superconducting square film of side length L = 200 µm and thickness d = 100 nm
for various values of the exponent n, at a constant applied field, Ha = 500 A/m. The
numerical results are taken along one of the median of the square, and along the mid-plane
cross section along the thickness. The FE results are indicated by the plain lines, and are
compared to the numerical results of the Brandt method [206], shown in dashed lines.
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large set of possible values without significantly impacting the quality or the simulation
duration. Although the suggestion for A is formally guided by the decay of the scalar
magnetic potential for fully penetrated thin disks and thin strips, one should not be
worried about adapting the value of A to the exact shape of the film or to partially
penetrated thin films, as suggested by the numerical results in the SF case of Subsection
2.4.7 and Appendix B. In addition, the criterion that determines A is arbitrary and was
chosen in this work as a reduction of ϕ by a factor of 2 with respect to its value at the
surface of the film. Other valid criteria could be considered as well.

From a formal standpoint, it is important to recognize that the values of A calculated
in Appendix B are limited to single fully penetrated thin disks or rectangles. Besides,
the critical current density is assumed to be constant and magnetic-field-independent.
The question therefore arises of whether these calculations are rigorously adapted to the
description of more elaborated constitutive laws or more complex geometries, such as
indented films or three-dimensional assemblies of films with different cross sections, that
will oftentimes be investigated in the following chapters. For this reason, in the next
chapters, the truncated geometry with a very large value of Lph will be preferred over
shell transformations, in such a way to avoid any ambiguity about the validity of the
results that might be related to the choice of A. Nonetheless, an empirical validation of
the unidirectional shell transformation in these contexts will also be carried out in some
instances.
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Chapter 3

Surface barrier effects near an edge
indentation

3.1 Introduction

Consider a superconducting film with an indentation along one of its borders. The inden-
tation perturbs the distribution of eddy currents generated by an out-of-plane magnetic
field. In accordance with current conservation, the current lines must bend around the
indentation. As explained in Section 1.3.2, these sharp turns result in the formation of
discontinuity lines, or d-lines, which can be clearly identified in the thin-film geometry if
one uses magneto-optical imaging (MOI) of the sample. As shown in panel (a) of Fig-
ure 3.1, in the context of the Bean critical state model (CSM), the d-lines that develop
around an indentation of depth h follow, sufficiently far from the indentation, a parabolic
trajectory of equation

P ≡ y =
x2

2h
+
h

2
∼ ax2, (3.1)

where a = 1/(2h) is the concavity parameter of the parabola. Therefore, a solely depends
on the depth of the indentation. In particular, the larger h, the larger the opening
of the parabola, P . Furthermore, according to the Bean model, the presence of the
indentation induces a magnetic field excess penetration depth, ∆p = h, that is not bound
to the vicinity of the indentation, but is instead visible at the flux front of the penetrated
region, which might be much larger than the indentation size. Note that ∆p is formally
defined as the distance between the flux front originating from the indentation tip and
that originating from the sample border, as shown in red in panel (a) of Figure 3.1.

Since the parameters a and ∆p depend only on h in the CSM, it is legitimate to ask
whether the size of an indentation can be directly inferred from the measurement of the
concavity parameter of the parabolic d-lines. Brisbois et al. investigated this possibility
for thin niobium films in [41]. To this aim, they recorded the penetration of magnetic field
around lithographically defined edge indentation of known geometrical characteristics by
means of MOI, and fitted the observed d-lines with a parabolic function P ≡ ax2 + c.
Relying on the predictions of the Bean model to assess the depth of the indentations, they
found that the values of h were systematically overestimated, and that the discrepancy
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(b) P ∼ ax2 a−1 ∼ h +∆L
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Figure 3.1: Discontinuity lines around a triangular indentation of basis length b and
height h when (a) surface barriers are neglected, i.e. Hp,border = Hp,tip = 0, and (b)
surface barriers are accounted for, with a depleted barrier height at the indentation tip,
i.e. Hp,border > Hp,tip > 0. Current lines are represented in light red, the last of which
corresponds to the location of the flux front in the longitudinal geometry. The thick
blue lines correspond to the d-lines that develop around the triangular indentation. In
the Bean model, the d-lines take the shape of a parabola at a large enough distance
from the indentation, P ∼ ax2, where a is the concavity parameter of the parabola
and can be evaluated by the relations (a) a−1 ∼ h, and (b) a−1 ∼ h + ∆L, where
∆L ∼ (Hp,border − Hp,tip)/Jc, is the excess path length and Jc is the critical current
density in the superconductor. The excess penetration depth, ∆p, is also shown in red in
both cases.

with the theoretical prediction was exacerbated as the sample temperature, T0, increased.
For the sake of illustration, for triangular indentations of height h = 10 µm and basis
length b = 20 µm, they estimated that 2h = 1/a was respectively equal to 12.5 µm and
28 µm for T0/Tc ≈ 0.45 and 0.89, with Tc = 9 K. In other terms, although the data show
some scatter influencing the fitting of the parameter a, there appears to be a consistent
widening of the parabolic d-line as temperature increases, which is not predicted by the
Bean model. Besides, magneto-optical measurements also revealed that the maximal
value of ∆p monotonically increases when the temperature is raised.

In superconductors, several parameters are temperature-dependent, such as the parameter
n and the critical current density, Jc, that both appear in the E-J power law of Equation
1.33. In [41], it is shown that the observed parabola widening cannot be reproduced by a
continuous electrodynamics model that includes the E-J power law and takes into account
the temperature dependence of the n value. Reducing the n value leads to a smearing of
the flux distribution, but the location of the d-lines remains very close to those prescribed
by the results of the Bean model. Accounting for the temperature dependence of Jc
does not modify the d-lines with respect to the patterns predicted by the Bean model,
which are governed by geometrical considerations, i.e. the equidistance of intersecting flux
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fronts that originate from the sample boundary or the sharp corners of the indentation.
Numerical simulations have shown that temperature does not have any influence on this
criterion. Moreover, in regard with the low applied field rates that induce insignificant
spatial variations of heat dissipation, negligible temperature gradients are generated in
the system.

In [207], Vestgaarden et al. studied the excess penetration induced by the presence of
a circular indentation of radius R, by means of an electrodynamic model for thin films
that uses the usual E-J power law. It was shown that ∆p is an n-dependent and non-
monotonous function of the applied field, Ha, reaching a maximal value ∆p,max at a field
Ha = Hmax, where ∆p,max > h. These numerical observations were validated experimen-
tally in the case of thin YBCO films [207], and the experimental excess penetrations in
niobium films also follow this trend [41]. However, according to [207], if T increases, n
decreases and so do ∆p,max and Hmax. This contradicts what was observed experimentally
in [41] for niobium films, as Hmax indeed decreases with T , whereas ∆p,max increases with
T .

In [41], it was suggested that the opening of the d-lines could be explained in terms
of a depletion of the first penetration field in the vicinity of the tip of the triangular
indentation. Moreover, in a first approximation, one can rely on the Bean model in the
longitudinal geometry to estimate the additional excess penetration depth, ∆p − h, that
is induced by the difference of surface barriers. If one denotes the first penetration field
at the border and at the tip of the indentation by Hp,border and Hp,tip respectively, then

∆p − h ∼ Hp,border −Hp,tip

Jc
=

∆Hp

Jc
, (3.2)

where ∆Hp ≡ Hp,border −Hp,tip. By raising the temperature, if the reduction of the first
penetration field difference is slower than the decrease of Jc, then one can expect that ∆p

increases with T .

In this chapter, we would like to further scrutinize the hypothesis that the surface barrier
variations are responsible for both the d-line and ∆p dependences on T . The remaining of
the chapter is organized as follows. Section 3.2 investigates from a theoretical perspective
the effect of inhomogeneous surface barriers on the curvature of the parabolic d-lines that
surround triangular indentations. The case of the longitudinal geometry is first considered
by means of the Bean model, which leads to a rough estimation of the expected widening
of the parabolas. Then, the main differences between surface barriers in longitudinal
and thin-film geometries are highlighted and their relevance is discussed. Section 3.3
is devoted to the description of the surface barrier modelling in superconducting thin
films and bulks, in the framework of the finite-element (FE) method. In Section 3.4, a
numerical study addressing the influence of the inhomogeneous surface barriers on the
excess penetration depth and the curvature of the parabolic d-lines emerging from a
triangular border indentation is carried out for a slab of infinite height and then extended
to the thin-film geometry. Finally, Section 3.5 summarizes the main findings of the
chapter.
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3.2 Influence of inhomogeneous surface barriers on

the curvature of the parabolic d-lines around an

edge indentation

In this section, it will be discussed how the argument of [41] based on the indentation-
induced inhomogeneity of the surface barrier can also explain the widening of the parabolic
d-lines. To this aim, the case of the longitudinal geometry will be first considered, and the
relevance of extending the conclusions to the thin-film geometry will then be discussed.

Longitudinal geometry

In the longitudinal geometry, i.e. a superconducting sample with infinite height that is
subjected to an applied magnetic field parallel to the infinite height, the surface barrier
that vortices must overcome to enter the sample is the Bean-Livingston barrier. As
explained in Subsection 1.2.5, this barrier results from the balance between two opposing
forces acting on a vortex, namely (1) the Lorentz force that drives the vortex in the
superconductor, because of the interaction between the vortex and the Meissner currents,
and (2) a force that pulls the vortex back outside and which is generated by the mirror
image of the vortex. When Hc,1 < Ha < HBL, where HBL is the penetration field, this
balance gives birth to an energy barrier that extends over distance that are of the order
of λ to ξ. When Ha > HBL, the barrier vanishes, and the vortex enters the sample. The
Bean-Livingston barrier is of the order of magnitude of the thermodynamic field, so that
µ0HBL ∼ µ0Hc ∼ ϕ0/2

√
2πλξ, see Equation 1.12. The magnetic field variation at the

interface between the superconductor and the non-conducting region implies the existence
of a surface current Jc,surf ∼ Hs/λ which is of the order of magnitude of the depairing
current density, Jdep ∼ ϕ0/3

√
3µ0λ

2ξ.

The presence of defects may locally reduce the surface barrier and lead to local flux
entrance, as it is shown in Figure 3.2 [208], which is known as the flux gate mechanism.
It was shown in [209] that the penetration field is reduced in the vicinity of the tip of a
triangular indentation. The explanation for the lower penetration field is the consequence
of two distinct effects that weakens the Bean-Livingston barrier. First, current crowding
occurs near the tip of the indentation, which increases the Lorentz force pushing the
vortices inside the sample. Second, the indentation perturbs the vortex currents, so that
the attractive force that is exerted by the mirror image of the vortex is reduced. Therefore,
for a given applied field, the Bean-Livingston barrier is reduced and HBL is reduced with
respect to the situation of a flat border.

Now, let us analyse the effect of a depletion of the surface barrier at the tip of a triangular
indentation on the parabolic d-lines. Consider a triangular indentation of basis length b
and height h that lies on the border of an infinitely long superconducting slab. The
slab is subjected to a uniform applied field of magnitude Ha parallel to the slab, so that
Ha = Haez. The critical current density inside the superconductor is assumed to be
uniform and its value is denoted by Jc. In the longitudinal geometry, the magnetic field
is always parallel to the slab, i.e. H = Hzez, while the current density only has in-plane
components, i.e. Jz = 0. A close-up view of the cross section of the slab in the vicinity of
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Figure 3.2: Schematic illustration of the flux-gate mechanism, where the reduction of the
surface barrier around an edge defect facilitates the entrance of magnetic flux through the
defect. The current density is assumed uniform in the superconductor, which is coloured in
light cerulean. The current lines are drawn in light red, and describe a circular trajectory
around the indentation, before following the boundary of the sample, so that the surface
current density exceeds that in the bulk of the sample.

the indentation is represented in Figure 3.1.

We suppose that a constant Bean-Livingston barrier exists everywhere along the border
of the superconductor, but is depleted at the tip of the triangular indentation. The
penetration fields along the smooth border of the film and at the indentation are again
denoted by Hp,border and Hp,tip respectively. As discussed in the previous paragraph,
Hp,tip < Hp,border. Following the model of Clem [210], the surface barrier can be modelled
as a constant drop of the magnetic field at the boundary of the slab, so that Hz = Ha−Hp

on the surface of the superconductor if Ha > Hp, and Hz = 0 if Ha < Hp. Meissner
currents shield the external magnetic field over a layer that lies in the vicinity of the
boundary of the superconductor, and is typically as large as a few times λ. Given that
h ≫ λ, the detailed behaviour of the induced currents in this layer are ignored and the
layer is considered infinitely thin.

The sample remains flux-free as long as Ha ≤ Hp,tip (Hz = 0). For Hp,tip < Ha < Hp,border,
magnetic flux penetrates inside the slab through the tip of the indentation, and the current
lines follow circular patterns that are centred around the tip of the indentation itself [208].
For Ha > Hp,border, the magnetic field is now able to penetrate the sample through the
straight borders. The current lines that emerge parallel to the straight borders, and
the circular ones that are centred around the tip of the indentation intersect to form
d-lines. Hence, the d-lines correspond to the locus of equidistance of diffusion between
the horizontal straight border and the tip of the indentation, which is a parabola. The
situation is similar to what was derived in panel (a) of Figure 3.1, where no surface barrier
along the whole boundary was considered, but now an additional path length difference
must be accounted for to emulate the difference of surface barrier heights between the tip
and the border. One has

∆L =
Ha −Hp,tip

Jc
− Ha −Hp,border

Jc
=
Hp,border −Hp,tip

Jc
=

∆Hp

Jc
> 0. (3.3)

The resulting d-lines are therefore identical to those found in a situation where no surface
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barrier is accounted for, provided the border is shifted downwards by a distance ∆L, as
shown in panel (b) Figure 3.1. Hence, far enough from the indentation, it is expected
that the opening of the parabola corresponds to that of a sample with no surface barrier
and for an indentation of length h+∆L. The curvature of the parabola is therefore given
by a ∼ 1/(h + ∆L), which implies that the parabola opens up by increasing ∆L. Note
that Equation 3.2, related to the excess penetration depth, ∆p, and Equation 3.3, related
to the parabola widening, share the same expression. The simple line of reasoning that
was used to explain the increase of the excess penetration in thin niobium films in [41] is
therefore also able to explain the wider parabolas that are observed in experiments.

An order of magnitude of ∆L for bulk niobium can be estimated from the above con-
siderations. The reduction of the surface barrier Hp,border −Hp,tip can be estimated as a
fraction of Hc. The current density induced at the surface of the superconductor is of the
order of Jdep, so that ∆L is of the order of

∆L ≲
Hc

Jc
∼ Jdep

Jc
λ. (3.4)

Interestingly, the excess path length, which is a consequence of the spatial inhomogeneity
of the surface barrier, can thus be interpreted as the consequence of the mismatch between
the current densities that are found at the surface and in the bulk of the superconductor.
From [41], one has λ ∼ 50 nm and ξ ∼ 16 nm for T/Tc = 0.65, while one can roughly
estimate Jc ∼ 1 MA/cm2. Then, Jdep ∼ 8 MA/mm2. Finally, one finds ∆L ∼ 25 µm.
This calculation shows that the variations of the barrier height might be responsible for
parabola openings that are wider than the size of the defect, which is in this case h = 10
µm. The widening of the parabolic d-lines when the temperature is increased might thus
be explained by surface barrier effects, if it is possible to show that ∆L increases with
temperature.

Thin-film geometry

Up to this point, the arguments that were developed apply to the longitudinal geome-
try. However, several differences may arise when considering real geometries. The Bean-
Livingston barrier is still present in thin superconducting films, although it is now asso-
ciated with the Pearl length, Λ = 2λ2/d, if d < λ where d is the thickness of the film,
instead of the London penetration depth, λ. Besides, a geometrical barrier that depends
on the geometric shape of the edges is also present. As it was mentioned in Subsection
1.2.5, this barrier results from the balance between the driving Lorentz force, which stems
from the interaction between the vortex and the Meissner currents, and a restraining force
that is associated with the deformation of the vortex, as it moves from the edge into the
interior of the superconductor. The deformation of the vortex is thus responsible for a
potential barrier that must be overcome before the vortex can enter the superconductor.
The irreversible entrance of vortex occurs when the applied magnetic field exceeds a value
HGB. Therefore, in superconducting films, both the Bean-Livingston and the geometrical
barriers contribute to the surface barrier, especially for thick samples, d ≫ λ [211, 212].
For films of thickness d < λ, the geometric barrier can however be neglected [212].

Due to the demagnetizing effect of the thin-film geometry, both types of barriers take the

88



Chapter 3. Surface barrier effects near an edge indentation

generic form

Hs ≃
√

d

W
Hp , (3.5)

where W and d are the characteristic lateral length and the thickness of the film, respec-
tively. For a perfect Bean-Livingston barrier, Hp = Hc, while Hp ≃ Hc,1 for a perfect
geometrical barrier [212]. In practice, in the former case, Hc,1 ≤ Hp < Hc, since the
presence of imperfections or edge indentations reduces the surface barrier, as explained
earlier.

Another difference between bulk samples and thin films manifests itself in the magnetic-
field distribution. In the thin-film geometry, a vortex-free region can form near the edges
of the superconductor [89]. The presence of surface overcritical Meissner currents drive
the vortices that have just overcome the surface barrier to the centre of the film, until the
pinning force becomes large enough to balance the driving Lorentz force. Subsequently,
the vortices pile up in the center, and a magnetic-flux dome is formed, which extends
progressively towards the edge as the applied field is increased [89, 213, 214, 215]. In
principle, a model where surface barriers are accounted for should also take into account
the extension of the vortex-free region. Indeed, the contribution of the vortex-free region
may vary with the local value of the magnetic field, which is larger at the indentation
than far from it. This would alter further the value of ∆L. However, vortex-free regions
are more easily observed in weak-pinning samples [215] and were not observed in the
strong-pinning niobium samples in [41]. It is therefore expected that the contributions of
such regions can be neglected, as it will be assumed so in what follows.

Besides, since the thickness of the samples in [41] is d = 100 nm and the Pearl length
is estimated as Λ ∼ 50 nm, we have d ∼ Λ, so that the surface barriers are presumably
dominated by the Bean-Livingston barrier. Therefore, it is reasonable to assume that
the argument of Daumens and Buzdin from [209] still holds for thin films, so that one
can assume that the surface barrier and the value of Hs are reduced near the tip of the
indentation.

The previous arguments point to the relevance of surface barriers in the magnetic-flux
pattern. We argue that the d-lines are influenced by differences in the surface barrier
heights between the tip of a triangular indentation and the straight borders of the film
that surround it. Even though the d-lines are observed for fields that can be much larger
than the penetration fields, their shape is determined by the surface barrier difference at
the first stage of magnetic-flux penetration.

3.3 Inhomogeneous surface barriers in thin supercon-

ducting films

This section is devoted to the modelling of inhomogeneous surface barriers that arise in
the presence of a triangular indentation in thin superconducting films. In fact, the mod-
elling of surface barriers in infinitely thin strips has already been addressed by means of
a semi-analytical approach [90]. Nevertheless, the problem is rather complex for three-
dimensional geometries, such as thick films, and when dynamical aspects must be ac-
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counted for. Following a suggestion of [88], the main phenomenology of the problem
will be instead captured by mimicking the surface barrier height with regions of surface
pinning that lie in the vicinity of the border. The height of the surface barrier is then
adjusted by adapting locally the strength of the surface pinning and hence the magnitude
of the corresponding critical current density.

A few remarks about the choice of the parameters are in order. First, the region where
surface currents are generated is expected to be much smaller than the lateral dimension
of the film, L. It will also be supposed that its depth is constant along the edge of
the sample. Besides, based on the remarks of Section 3.2, the effect of the vortex-free
regions and the geometrical barrier will be neglected. Therefore, based on the orders of
magnitude that were estimated previously, a perfect Bean-Livingston barrier should give
rise to surface current densities of the order of the depairing current density, which is
estimated to surpass by two orders of magnitude the value of the critical current density
in the rest of the film. Near the tip of the indentation, the value of the surface critical
current density is reduced, in such a way to emulate the reduction of the surface barrier
height around the sharp edge of indentations.

For the sake of illustration, Figure 3.3 shows the different regions within a superconductor
of square cross section and where a triangular indentation is introduced along one of its
edges. The length of the square is denoted by L, while the basis length and the height
of the triangle are denoted by b and h respectively. The sample is subjected to an out-
of-plane magnetic field that is ramped up from 0 to a maximal value, Ha, at a constant
rate Ḣa. A band of constant depth hsurf parallel to the boundary of the superconductor
corresponds to the region where the surface currents flow. This region is itself divided
in two parts, which are coloured in dark cerulean and cyan in Figure 3.3. In the dark
cerulean (resp. cyan) region, the critical current density is set to a value Jc,border (resp.
Jc,tip), while it is equal to Jc elsewhere (in the light cerulean region). From the previous
remark about the surface barrier height and the surface current intensity, the relation
Jc < Jc,tip < Jc,border holds.

The penetration of magnetic field inside the superconductor is addressed numerically by
means of the FE method which was detailed in Chapter 2. The E-J constitutive law
consists in a power-law. Moreover, it is assumed that B = µ0H, although non-linear
B(H) relations have also been used to address the modelling of surface barriers [90, 91].
The effect of the vortex-free regions are also neglected, given that they do not appear at
all in the MO images.

3.4 Excess penetration depth and the curvature of

the d-lines around an edge indentation

In order to validate the model, consider first the case of an infinitely long slab, which
cross section is the same as described in Figure 3.3. The values of ∆p and a obtained
numerically will then be compared with the theoretical predictions of the Bean model, see
for instance Equation 3.2 and Equation 3.3. In the context of this simulation, one has
L = 200 µm, b = 10 µm and h = 10 µm, while Ha = 0.8 MA/m and Ḣa = 1 kA/m.s. In

90



Chapter 3. Surface barrier effects near an edge indentation

L

Jc,border
Jc,tip
Jc

h

b
hsurf

ex

ey

ez

Ha

Figure 3.3: Distribution of the critical current density, Jc, in the surface barrier model,
for a square film of length L with a triangular indentation at the bottom edge. The width
and the height of the isosceles triangle are denoted by b and h respectively. The critical
current density takes the value Jc,border in the peripheral region, in dark cerulean, Jc,tip in
the cyan region, which lies in the vicinity of the indentation, and Jc in the light cerulean
region, which corresponds to bulk pinning. The depth of the peripheral region, i.e. the
union of the dark cerulean and cyan areas, is kept constant with respect to the border of
the superconductor. This spatial extension of the barrier is denoted by hsurf. We assume
Jc < Jc,tip < Jc,border.

the absence of demagnetizing effects, the magnetic field along the boundary of the slab is
equal to the applied field. In the peripheral region, i.e. the deep dark cerulean region in
Figure 3.3, we have Jc,border = 10 MA/cm2 over a distance hsurf. Note that Jc,border < Jdep
for numerical reasons. Since the value of the penetration field can be estimated as µ0Hp =
µ0Jc,borderhsurf, one can chose hsurf = 1.4 µm, so that µ0Hp ≈ µ0Hc = 175 mT, which is an
acceptable order of magnitude for a perfect Bean-Livingston barrier for niobium [68, 216].
Bearing in mind a proper comparison with the Bean-model, n is set to a very large value,
i.e. n = 1000.

Figure 3.4 shows the distribution of the out-of-plane magnetic field in the indented slab
for four distinct sets of parameters. Panel (a) serves as the reference case and consists in
the situation where surface barrier are not absent, i.e. Jc,border = Jc,tip = Jc = 1 MA/cm2.
In panel (b), surface barriers are accounted for, but it is supposed uniform in the entire
peripheral band, so that Jc,border = Jc,tip = 10 MA/cm2. The last two panels show the
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Figure 3.4: Distribution of the out-of-plane magnetic field, Hz, in an infinitely long slab of
square cross section of length L = 200 µm. A triangular indentation of basis length b = 10
µm and height h = 10 µm is cut along one of the edge. The surface barriers and their
spatial variations are modelled by means of inhomogenous surface pinning, as described in
Figure 3.3. In panel (a), surface barriers are absent, so that Jc,border = Jc,tip = 1 MA/cm2.
In the other panels, surface barriers are accounted for, and Jc,border = 10 MA/cm2. Jc,tip
is set to (b) 10, (c) 8 and (d) 5 MA/cm2. In all cases, the bulk critical current density,
Jc, is equal to 1 MA/cm2. The d-lines are highlighted by the black dashed lines.
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µ0∆Hp (mT) ∆p (µm) a (1/mm) ∆L (µm)
No surface barrier (Bean model) 10 50 0

No surface barrier (FEM) 10 50 0
0 11 47 0.7
35 14 37 3.5
88 18 28 8

Table 3.1: Simulated values of the excess penetration depth, ∆p, the concavity of the
parabola around the triangular indentation, a, and the excess path length, ∆L, as a func-
tion of the surface barrier difference, µ0∆Hp = µ0 (Hp,border −Hp,tip), in the longitudinal
geometry. The analytical predictions within of the Bean model, neglecting surface barrier
effects, are indicated for the sake of comparison. The size of the triangular indentation is
h = 10 µm. The corresponding magnetic field distributions are shown in Figure 3.4.

distribution of the magnetic field when it is assumed that the indentation suppresses the
surface barrier in its vicinity, so that Jc,border = 10 MA/cm2 and (c) Jc,tip = 8 MA/cm2,
or (d) Jc,tip = 5 MA/cm2. It can be seen that the smaller Jc,tip, the larger the excess
penetration depth and the wider the parabola. In terms of the d-line shape, little to
no difference is visible between panel (a) and (b), which points to the fact that the
spatial variations of the surface barrier are indeed crucial to observe deviations of ∆p

and the concavity of the parabolic d-lines, a, from the predictions of the Bean model.
However, since the surface barrier delays the entrance of the magnetic field until the
first penetration field is reached, the magnetic field logically penetrates less when surface
barriers are considered.

The excess penetration depths and the curvatures of the parabolic d-lines that characterize
the presence of the triangular indentation, when surface barriers are modelled, are now
compared quantitatively with the help of FE simulations. On the one hand, the excess
penetration depths are obtained through a mere subtraction of the positions of the flux
front that stems from the indentation and from the opposite side. On the other hand,
the radius of curvature of the parabola is obtained from the magnetic field contour lines.
The global shape of the simulated d-lines is extracted by determining the position where
the orientation the contour lines changes abruptly. A parabolic fitting on the resulting
set of points is carried out afterwards, yielding the value of a. Equation 1.42 can then
be used to correlate the value of a to an equivalent indentation size, heq = h+∆L, where
heq = 1/(2a).

The obtained values of ∆p, a and ∆L are summarized in Table 3.1 . When the surface
barriers are not included in the model, the values of ∆p, a and ∆L are close to what is
expected within the Bean model, i.e. ∆p = h = 10 µm, a = 1/(2h) = 50 mm−1 and
∆L = 0. The small differences with respect to the Bean model can be attributed to the
mesh quality, which leads to errors in the determination of the location of the flux fronts.
When surface barriers are accounted for, while ignoring the reduction of the surface barrier
at the indentation, the simulated ∆p, a and ∆L are close to what is predicted within the
Bean model. These values are nearly the same as in the case of a sample without surface
barrier. As soon as the suppression of the surface barriers around the tip of the triangular
indentation is considered, the numerical results start to deviate from the Bean model.
More specifically, ∆p and ∆L both increase as µ0∆Hp increases, while a decreases, which
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confirms the main conclusions that were inferred from Figure 3.4.

Finally, it is interesting to compare the results of the numerical simulations to the first-
order theoretical evaluation of ∆p and ∆L that were derived in the context of the Bean
model. According to Equation 3.2 and Equation 3.4, ∆p−h and ∆L are both ∼ 2.8 and
7 µm for µ0∆Hp = 35 and 88 mT respectively. In fact, the numerical simulations agree
fairly well with these analytical estimations. This advocates for the relevance of modelling
surface barriers by means of strong surface pinning, mimicking the large surface currents
that come in pair with it.

Let us turn now to the case of a thin superconducting film of thickness d = 100 nm, and
which cross section is identical to that of the bulk sample, i.e. L = 200 µm, b = 10 µm and
h = 10 µm. The applied perpendicular field is ramped from 0 to Ha = 500 A/m at a rate
Ḣa = 1 kA/m.s. hsurf is set to 2 µm, while Jc = 1 MA/cm2, Jc,border = 10 MA/cm2. In the
E-J constitutive law, we take n = 19. The magnetic field penetration in the indented film
is numerically solved by means of the FE H-ϕ formulation that was described in Chapter
2. The boundary condition ϕ|Γ = 0 is set at an infinite distance from the superconducting
film with the help of a unidirectional shell transformation, following the conclusions of
the analysis from Chapter 2. The surface barriers are still emulated by the presence of
peripheral regions of enhanced pinning, as depicted in Figure 3.3. It is therefore assumed
that the ratio (Jc,border − Jc,tip)/Jc is representative of the surface barrier difference that
is introduced by the presence of the indentation.

Figure 3.5 shows the distribution of the out-of-plane component of the magnetic field,
Hz, for the same combinations of the critical current densities (Jc,border, Jc,tip and Jc)
as in Figure 3.4. When the effect of surface barriers is taken into account, unphysical
negative values of Hz appear near the boundary of the bulk region, which corresponds to
the dark cerulean area in Figure 3.3. Since the peripheral region is merely introduced to
model the surface barrier in the film, only the positive values of Hz in the bulk region are
represented in panel (b), (c) and (d) of Figure 3.5. The remaining part of the film, which
is limited to the periphery of the film, is filled in dark blue. First, one can note that the
smaller Jc,tip, the larger the maximal value of Hz. The maximum of Hz is always located
around the indentation tip, and is the largest when the surface barriers are neglected,
the situation that is depicted in panel (a) of Figure 3.5. Such an observation is coherent
with the fact that larger surface barrier heights should accentuate the reduction of the
magnetic field level in the bulk region. Similarly to the longitudinal case, it can be seen
that magnetic flux that enters from the indentation tip penetrates further inside the film
as Jc,tip decreases, while the flux front does not change when it originates from the top
edge. In conclusion, ∆p and 1/a are found to increase with the ratio (Jc,border − Jc,tip)/Jc.
Comparing the distributions of |J| in panel (a) and (b), the flux penetration is still more
advanced when no surface barrier is considered than in the case of a uniform barrier.

The general observations of Figure 3.5 are quantitatively corroborated in Figure 3.6,
which shows the value of ∆p and a obtained numerically as a function of the ratio
(Jc,border − Jc,tip)/Jc. This time, the d-lines around the triangular indentation are de-
fined as the set of the local minima of magnetic field along horizontal lines that are
completely circumscribed to the penetrated region in the bottom quarter of the square.
The concavity is then defined as the coefficient that corresponds to the quadratic term of
a parabolic fit to the obtained d-lines.
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Figure 3.5: Distribution of the out-of-plane component of the magnetic field, Hz, in
a thin film in the form of a square of length L = 200 µm. A triangular indentation
of basis length b = 10 µm and height h = 10 µm is also cut along one of the edges.
The surface barriers and their spatial variations are modelled by means of inhomogenous
surface pinning, as described in Figure 3.3. In panel (a), surface barriers are neglected,
so that Jc,border = Jc,tip = Jc = 1 MA/cm2. In the other panels, surface barriers are
accounted for, and Jc,border = 10 MA/cm2. Jc,tip is set to (b) 10, (c) 8 and (d) 5 MA/cm2.
In all cases, the bulk critical current density, Jc, is set to 1 MA/cm2. The distributions of
|J| are only shown in the bulk pinning region, which appears in light cerulean in Figure
3.3.
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Figure 3.6: Excess penetration depth, ∆p, and the concavity of the d-lines around the
triangular indentation, a, as a function of (Jc,border − Jc,tip)/Jc in a thin film of length
L = 200 µm and thickness d = 100 nm, with a triangular indentation of basis length
b = 10 µm and height h = 10 µm. The surface barriers are modelled by means of the
critical current density model, with bulk pinning and surface pinning that are set to Jc = 1
MA/cm2 and Jc,border = 10 MA/cm2 respectively, see Figure 3.3 for a description of the
different pinning regions.

The value of ∆p appears to increase linearly with (Jc,border − Jc,tip)/Jc, i.e. as the sur-
face barrier mismatch becomes larger. By contrast, a is inversely proportional with
(Jc,border − Jc,tip)/Jc. This is coherent with what was obtained numerically in the longitu-
dinal geometry and theoretically predicted with the simplified analysis in the beginning
of the chapter. However, for the smaller values of the critical current density ratio, one
has ∆p < 10 µm and a > 50 mm−1, i.e. results that deviate from the predictions of the
Bean model. When the surface barriers are omitted from the modelling, it was found
that ∆p = 9 µm and a = 66 mm−1, which still differs from what is expected in the Bean
model.

This actually points to different difficulties concerning the definition of a that go beyond
the uncertainty due to the mesh quality. First, the d-lines around an indentation are
parabolic only far enough from the indentation. Closer to the indentation, this is not the
case, as for instance illustrated in the context of the Bean model without surface barrier
effects, where the d-lines first form straight lines which are dependent on the geometry
of the indentation [41]. Since the location of the transition between the non-parabolic
and the parabolic parts of the d-lines is difficult to assess, the parabolic fitting of the
magnetic field minima may be influenced. Second, the nature of the criterion that is
chosen to locate the d-lines can also lead to a large uncertainty on the value of a for the
lowest ratios (Jc,border − Jc,tip)/Jc. Finally, one should be aware that the values of ∆p

might change with Ha and n [207], even though it was verified that a remains insensitive
to these parameters. However, these imperfections do not question the clear variations of
∆p and a with changing (Jc,border − Jc,tip)/Jc.
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Finally, let us discuss how the influence of the temperature can be related to the opening of
the parabolic d-lines when surface barriers are considered. First, one expects Jc, Hc,1, and
Hc to scale as 1− T/Tc near Tc. For no indentation and a perfect barrier along the edge,
Hp ∼ Hc and one does not expect substantial variations of the ratio Hp/Jc. One possible
mechanism arises when Hp(T ) experimentally exhibits a non-linear variation with T , as
shown in [87, 217] for untwinned YBCO crystals. In the presence of a small surface defect,
Hp(T ) exhibits two temperature regimes. Near Tc, the vortices have radii much larger
than the defect size and their nucleation is unaffected, yielding Hp ∼ Hc ∝ 1− T/Tc. For
lower temperatures, the defect effectively acts as a flux gate and Hp(T ) exhibits a smaller
temperature variation. In such a scenario, the ratio Hp/Jc would increase with T in the
first regime and level off as T approaches Tc. Other mechanisms leading to non-linear
variations may also arise from thermal activation over the barriers [218]. In such a case,
one would expect the penetration of magnetic flux to be increasingly easier near the tip
as T is increased, since the height of the surface barrier is lower in this region.

Eventually, the temperature dependence of the excess path length ∆L = (∆Hp,border −
∆Hp,tip)/Jc will depend on the temperature variations of the surface barrier both near the
tip and along the border, so that it is difficult to conclude without further experimental
observations of the magnetic flux penetration as a function of temperature. Furthermore,
this phenomenon might be absent in some samples, such as in twinned YBCO [87]. In
fact, the influence of temperature on the shape of the d-lines that surround rectangular
and quadrilateral edge indentations has been studied in YBCO films, which were grown
on a LaAlO3 substrate by chemical solution deposition [130]. Photolithography masks
were made by direct-writing on a photoresist reproducing the indented film shape, with
the help of a micro-writer system endowed with laser-assisted technology. Wider d-lines
were not reported as the temperature was increased, since the trajectories of the d-lines
matched the prediction of the Bean model. The difference between YBCO and Nb films
might stem from the difference in surface barriers between both materials [130]. For a
given temperature, the coherence length and the lower critical field are typically lower in
YBCO than in Nb, which points towards higher surface barriers in niobium films. The
absence of surface barrier effects in YBCO thin disks has been reported in [219].

3.5 Conclusion

The aim of this chapter was to investigate the influence of surface barriers on the excess
penetration depth and the shape of the d-lines that are induced by the presence of an edge
indentation of microscopic size. In particular, it was sought to clarify whether variations
of the surface barrier height in the presence of the indentation could be at the root of the
opening of the parabolic d-lines, as experimentally observed in niobium films by Brisbois
et al [41].

First, a preliminary study on the surface barriers in the longitudinal geometry was carried
out. Relying on the results of the Bean model where edge barriers were accounted for, it
was shown analytically that the suppression of the Bean-Livingston barrier in the vicinity
of the sharp tip of a triangular indentation could indeed induce wider parabolic d-lines
around an indentation with respect to the case where surface barriers were neglected.
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A quantitative estimation of the resulting d-line opening evidenced that the amplitude
of the surface barrier inhomogeneity is significant enough to induce visible changes in
the curvature of the surrounding d-lines. Finally, the case of the thin-film geometry was
discussed. The predominance of the Bean-Livingston barrier over geometrical barrier was
justified.

Thereafter, based on a model that emulate the large peripheral Meissner currents that
shield the applied field and prevent its entrance inside the superconductor, the distribu-
tions of magnetic field in the longitudinal and in the thin-film geometry were numerically
investigated in the case where surface barriers are taken into account. In the longitudinal
geometry, this approach appeared to correctly emulate the effect of surface barriers. The
values of the excess penetration depth, the concavities of the parabolic d-lines, and the
corresponding excess path length were in good agreement with the predictions of the Bean
model. Using a three-dimensional FE H-ϕ formulation, it was shown that surface barrier
differences between the flat borders and the indentation tip could be held responsible for
the increase of the excess penetration depth and the widening of the d-lines around the
indentation in thin superconducting films. Ultimately, combined with results from the lit-
erature that highlight different temperature dependences of the first penetration field and
the critical current density in YBCO when the temperature is far enough from Tc, the pre-
viously obtained numerical results advocate for the possibility of temperature-dependent
widened parabola in superconducting thin films with edge indentations.

Nonetheless, the correlation between spatial inhomogeneities of the surface barriers and
the temperature-dependent geometry of the d-lines should be consolidated with further
experimental evidence. The temperature dependence of the penetration field in niobium
films should for instance be experimentally measured, in a similar fashion to what was
carried out for YBCO crystals in [217]. One could also observe the temperature depen-
dence of the shape of the d-line patterns in other superconductors, such as MgB2 or NbN,
which surface barrier height is expected to be between that of Nb and YBCO [130]. Ar-
tificial and external interventions could also be considered to modulate the value of the
first penetration field. For example, the effect of surface barriers can be reduced by evap-
orating a conducting layer on top of a superconducting layer [220]. Similarly, the surface
barriers can be suppressed by tilting the applied magnetic field, by polishing the sample
into a prismatic shape, or by directly cutting gaps or cracks in the sample [213].

The interest of surface barriers is not limited to fundamental physics, as they play a key
role in many technological devices as well. For instance, superconducting bridges can
have their critical current dominated by surface barrier. In this case, most of the current
is concentrated along the periphery of the bridge in the form of the surface current that
are generated by the surface barriers [89]. Surface barriers can also be a crucial factor
in SQUIDs or single-photon detectors, as the motion of trapped vortices induce noise
that affects the sensitivity of the device [221, 222]. Surface barriers also play a crucial
role for the flux-flow instability mechanism by enhancing the heat dissipation close to
the boundary of the superconducting film, because of the larger surface current that
edge barriers generate [222, 223]. Finally, surface barriers have also been suspected to
influence the onset of flux avalanches at edge indentations [41]. Indeed, it was suggested
that the indentations might act as tiny flux faucets where the diffusion of magnetic flux
is smoothed, as a consequence of the lowered surface barrier height in the vicinity of
the indentation tip. Making progress in understanding the physics of surface barriers
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and developing numerical models that allow to emulate and evaluate their impact on the
distribution of magnetic field in three-dimensional geometries is therefore also important
from a practical standpoint.
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Chapter 4

Selective triggering of magnetic flux
avalanches by an edge indentation

4.1 Introduction

Thermomagnetic avalanches are sudden bursts of magnetic flux that mostly occur in
superconductors in the thin-film geometry [41, 224, 225]. They are triggered because of
the inability of the medium to efficiently remove the heat that is dissipated as magnetic
flux progresses into the sample. The resulting local increase of temperature degrades
the superconducting properties, and this in turn favours further penetration of magnetic
flux. Additional heat is dissipated, and a positive feedback loop is activated that leads to
the generation of flux avalanches. From a technological viewpoint, these flux avalanches
often limit the accuracy, range of application, or properties of superconducting devices.
The sudden bursts of magnetic flux that characterize thermomagnetic events generate
noise in superconducting devices, such as SQUID magnetometers [226]. Moreover, during
these flux avalanches, the temperature can locally exceed the critical temperature in a
very short lapse of time, leading to the quenching of the superconducting material, or
sometimes even degrading the sample irreversibly as a consequence of the local melting
of the material [227, 228]. The nucleation of hotspots also implies a reduction of the
critical current density in the vicinity of the avalanche, and causes the degradation of the
transport abilities of the superconducting sample [229, 230].

Flux avalanches are extremely complex and erratic phenomena, showing a clear stochastic
nature [46]. The morphology of magnetic flux avalanches depends on several parameters
such as the thermal conductivity, the specific heat, and the normal state diffusivity, but
also depends on the substrate temperature and the applied field [46]. Besides, predicting
the location of flux avalanches is most of the time impossible, since they may occur any-
where along the border of a film with uniform superconducting properties. Nonetheless,
the nucleation of flux avalanches can sometimes be provoked, prevented or guided by
means of an external intervention [231, 232, 233], or by changing the microstructure of
the sample [234].

In particular, the onset of avalanches is believed to be facilitated by the presence of
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indentations or around sharp concave turns [149, 227, 234]. In the vicinity of micro-
scaled indentations, the pattern of the current-density lines is perturbed, in accordance
with current conservation. These changes of orientations also imply a concentration of
current lines in the close proximity of the sharp vertices of the indentations, which is
known as current crowding [235]. Due to the accumulation of current lines, the electric
field, E, locally increases [103, 207, 236], which is the signature of a more intense magnetic
flux line motion activity in the region, in accordance to Faraday’s law [149, 236]. Both
the increase of J and E leads to the increase of the Joule heat dissipation per unit
volume, E · J. Given the fact that current theories of avalanches relate their onset with
a threshold electric field, Eth [123, 125], it can be easily understood that indentations are
usually considered to act as preferred spots for triggering magnetic flux avalanches [227].

However, quite surprisingly, it has been observed experimentally that flux avalanches
sometimes seem to avoid sharp indentations and are preferentially triggered along smooth
borders [41]. This counter-intuitive observation was observed in niobium samples and are
in clear contrast with what is commonly reported in the literature. In [41], it was argued
that indentations could possibly act as tiny flux faucets that actually help in releasing
magnetic flux as a result of a reduction of the surface barrier at these locations. However,
to the best of my knowledge, this hypothesis has not yet been corroborated in the literature
by complementary theoretical or numerical works.

Another element for the avoidance of the sharp indentations as preferred spots for trigger-
ing thermomagnetic events has been proposed recently, in a work to which I collaborated
[237]. It is suggested that the magnetic field dependence of the critical current density,
Jc(|B|), plays a role in determining whether the first magnetic flux avalanche nucleates
somewhere along the smooth borders, at the indentation, or does not nucleate at all. As
will be shown below, a magnetic-field-dependent critical current density leads to a few
modifications in the actual distributions of the current lines and the electric field. Hence,
the standard arguments based on current crowding, which were historically elaborated for
constant Jc, need to be reanalysed. The purpose of this chapter is to revisit the notion
of current crowding in the presence of magnetic-field-dependent critical current density,
in relationship with the conditions for triggering magnetic flux avalanches. The chapter
is organized as follows.

Section 4.2 revisits the notion of current crowding in the most common case where the
critical current density is considered constant and uniform. It is assessed how an internal
hole inside a superconducting slab deviates the current density flow with respect to the
situation of a plain sample within which a given amount of current is fed, leading to the
concentration of current lines in the vicinity of the hole. The results are studied with
respect to the exponent n of the non-linear isotropic E(J) law.

In Section 4.3, I consider the profiles of current density in a superconducting square
film with a triangular indentation cut on one of its edges. The profiles are analysed to
determine the location of highest electric field in the film, given that the critical current
density is magnetic-field-dependent and follows Kim’s law [84]. In the same time, by
contrast with the case of a constant critical current density, it is shown that current lines
become less dense in the vicinity of the tip of the indentation than along a non-indented
border.
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In Section 4.4, I explain from a more theoretical and conceptual standpoint how the
Jc(|B|) dependence plays a role in determining whether the first flux avalanche nucleates
along the smooth edges or at the sharp indentation. Based on µ0Ha-Jc diagrams and the
arguments of Section 4.3, the value of the threshold applied field, µ0Hth, is estimated at
both locations, which allows one to deduce the location of nucleation of the first magnetic
flux avalanche. Finally, Section 4.5 concludes the chapter.

4.2 Current crowding around a circular hole in an

infinitely long slab with constant Jc

Consider the theoretical case of an infinitely long superconducting slab, which extends
laterally to infinity. A single circular columnar defect of radius R is pierced at some
location in the sample, and an in-plane current is forced through the infinite slab along
ey, as shown in Figure 4.1. In a defect-free sample, the trajectory of the current lines
would correspond to straight lines, with a current density denoted by J0. However, due
to the presence of the circular hole, which is a current-free region, the current lines are
deflected from their straight trajectory, as illustrated in Figure 4.1. From this drawing,
it is immediately understood that current conservation leads to a concentration of the
current lines in the vicinity of the defect, while they are nearly unaffected far enough
from it. The purpose of this Section is to introduce the notion of current crowding, as it
is usually understood, and to discuss its global characteristics depending on the value of
the n exponent that appears in the E(J) power-law of Equation 2.18, when the critical
current density, Jc, is assumed to be uniform and constant. The results of this analysis
will serve as a basis of comparison with the Jc(|B|) case that will be investigated later on.

To this aim, the weak formulation of Faraday’s law is adapted to the problem at hand.
Starting from Equation 2.30 of Chapter 2 and rewriting the surface integral, one gets

∫

Ω

Ḃ ·Ψ dΩ +

∫

Ω

E · (∇×Ψ) dΩ−
∫

Γ

(E× n) ·Ψ dΓ = 0, (4.1)

where n is the normal to the boundary of Ω that points outwards. Using the constitutive
laws of Equation 2.17 and Equation 2.7, one has
∫

Ω

µ0Ḣ ·Ψ dΩ +

∫

Ω

ρ (|∇ ×H|) (∇×H) · (∇×Ψ) dΩ−
∫

Γ

(E× n) ·Ψ dΓ = 0, (4.2)

where ρ(|∇ × H|) is given by Equation 2.18. The basis functions, Ψ, are still included
in the function space Fh

1(Ω). However, the slab geometry allows for some simplifications.
The absence of demagnetizing effects allows one to reduce the three-dimensional problem
to a two-dimensional one, with H = Hz(x, y) ez, and J being oriented in-plane. Moreover,
the boundary conditions can be directly applied on the border of the slab, so that the
non-conducting region does not have to be meshed and thereby Ω ≡ Ωc.

The boundary conditions of the system are imposed as follows. The origin of the coordi-
nate system is taken as the centre of the circular hole and denoted by O. The magnetic
field is set to Hz = Ha = JcL on the left edge of the square domain, Hz = −Ha = −JcL
on its right edge, and Hz = 0 on the circumference of the cavity. By Ampere’s law, these
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J

2L

2L

Hz = 0

Hz = −HaHz = Ha

O
R

ex

ey

ez

Figure 4.1: Illustration of a square domain of length 2L that is centred around O, the
centre of a columnar defect of radius R, which is pierced into an infinitely long slab
of infinite planar extension. O coincides with the origin of the Cartesian orthonormal
coordinate system. The current lines, J, are schematically represented in pink. The
boundary condition Hz = −Ha is imposed on the right side and Hz = Ha on the left
side of the square cross section that encloses Ω. Hz = 0 on the circumference of the
hole. The indicated boundary conditions force a net current density across the upper and
lower edges of the domain, which is directed in the ey direction and which intensity is
J0 = Ha/L.

conditions impose a net current 2JcL per unit height inside the superconductor, while
no current flows through the cavity. Furthermore, the symmetry of the geometry and
the boundary conditions imply that the surface integral in Equation 4.2 vanishes over Γ.
These specific boundary conditions and the geometry of Ω are summarized in Figure 4.1.
In the context of the simulations of this section, L = 50

√
2R, Jc = 1 MA/cm2. The mesh

size varies from R/(50
√
2) on the boundary of the defect to L/50 on the boundary of the

square.

Figure 4.2 shows the amplitude of the perturbation of the current density around the
hole, δJ , on the line that is aligned with ex axis and passes through the center of the
circular hole, as shown by the red line in the inset. X is the distance of a point on this
line from the centre of the defect. The excess current density, δJ , is defined as

δJ = |J| − J0, (4.3)

where J is the current density that is numerically evaluated in the case of the pierced
slab. The profiles of δJ are numerically evaluated for different values of the exponent n,
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Figure 4.2: Excess current density, δJ/J0, around a circular hole of radius R as a function
of the distance from the center of the disk, X/R, along a horizontal line that passes
through the center, in red in the inset. J0 is the current density that would flow in a
sample without the hole. The perturbation δJ/J0 is represented for various values of the
exponent n that describes the non-linear E(J) law.

and J0 is set to 1 MA/cm2 for all values of n. For each n, the monotonic decay of δJ/J0
with X/R is obvious. Besides, two main observations can be inferred from these graphs.
On the one hand, one can observe that the higher n, the smaller δJ in the vicinity of the
hole. This is equivalent to say that current crowding around the hole is reduced with n.
On the other hand, the smaller n, the steeper the decay of the perturbation. This last
effect is a consequence of current conservation, which prescribes that the integral of δJ
from X/R = 1 to X/R → ∞ is equal to J0R for any value of n, since J is directed towards
ey along this line for symmetry reasons.

It is possible to give an estimate of the steepness of the monotonic decrease of δJ/J0 as
a function of X/R by assuming that δJ/J0 decays as C.(X/R)p, where C and p are a
parameters that depend on n. In particular, p describes the steepness of the decay of
δJ/J0. A least-square fit of the δJ/J0 profiles for different values of 1 ≤ n ≤ 50 yields the
n-dependence of the index p shown in Figure 4.3. As n increases, p increases monotoni-
cally, which corroborates the smoother variations of δJ/J0 observed in Figure 4.2. Thus,
the distribution of |J| becomes more uniform as n increases, and the perturbation of the
current density around the hole extends over larger spatial scales.

It is interesting to compare the extreme cases n = 1 and n → ∞ with each other. The
case n = 1 corresponds to an ohmic material. It can be theoretically demonstrated that
the perturbation behaves as (X/R)−2, while current conservation dictates that the current
density at the boundary of the hole is twice its value at an infinite distance from it, i.e.
δJ/J0 = 1 when X/R = 1. The current deviations are therefore rapidly smeared out, so
that the current lines are significantly deviated in the close proximity of the defect only.
This was indeed numerically validated in Figure 4.2 and Figure 4.3. By contrast, in the

105



Section 4.3. Current crowding around a circular hole in an infinitely long slab with
constant Jc
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Figure 4.3: Value of the exponent p as a function of the exponent n in the non-linear E(J)
constitutive law. The exponent p characterizes the decrease of the excess current density,
δJ/J0, that results from current crowding around a circular hole of radius R, provided it
takes the form C.(X/R)p, with X being the distance from the centre of the disk along a
horizontal line that passes through the center, in red in the inset, and C is a constant. J0
is the current density that would flow in the same sample without the hole.

other limiting case n→ ∞, one should expect δJ/J0 to tend to 0, while the perturbation
extends over an infinite distance, i.e. p = 0. This situation corresponds to the critical
state model, according to which a defect modifies the distribution of the current density
in the whole material. Interestingly, this last situation is similar to the perturbation of
alignment that stems from a book placed under a wall of bricks. The bricks being very
rigid, they cannot align in the vicinity of the book. The misalignment propagates over the
whole wall, since the position of a given brick depends on the layout of the other bricks
on top of which it is placed. From this analogy, increasing n can thus be interpreted as a
stiffening of the medium from an electromagnetic point of view.

While the current density is enhanced along the ex axis, this is not the case everywhere in
the whole surroundings of the hole. This is illustrated in Figure 4.4 which represents the
two-dimensional maps of δJ/J0 for the same values of n as in Figure 4.2. The color scales
confirm the enhancement of the current density along ex, especially in the vicinity of the
hole, while they also indicate that the current density is depressed close to the apexes
of the circular hole. In any case, the value of δJ/J0 wanes with the distance from the
hole and therefore asymptotically tends to zero. The regions of enhanced and depressed
current density are delimited from each other by a geometrical structure that becomes
more salient as n increases. These structures take a parabolic shape and are reminiscent
of discontinuity lines that emerge around a circular defect in superconductors [41].
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Figure 4.4: Two-dimensional maps of the current density perturbations around a circular
hole of radius R in a superconducting slab of infinite extension for various values of the
exponent n of the non-linear E(J) constitutive law. One has (a) n = 1, (b) n = 3, (c)
n = 5, (d) n = 10, (e) n = 20 and (f) n = 50. A constant current density of magnitude
J0 = 1 MA/cm2 is forced from the bottom edge to the top edge. The current-crowding
effect is assessed through the normalized perturbation of the norm of the current density
with respect to J0, which is denoted by δJ/J0.
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4.3 Influence of Jc(|B|) on the distribution of Hz, |J|
and |E| in thin films with an edge indentation

In the previous section, a general investigation of the deviation of the current lines around
a circular defect, in the slab geometry, and considering a constant current density, has
been carried out. In particular, it was shown that the presence of the defect induces an
accumulation of current lines around the hole, in the regions where the current has to
bypass it. This is known as the current-crowding effect. This analysis is now extended
to the more realistic case of a thin square film of length L and thickness d, where a
triangular indentation of height h and basis b is cut in the middle of one of its edges.
The film is subjected to an out-of-plane magnetic field of intensity Ha, which is ramped
up from 0 at a constant rate Ḣa. The critical current density is also assumed to be
magnetic-field-dependent and to follow Kim’s law.

Two objectives are pursued in this section. First, it sought to determine how the triangular
indentation affects the distribution of the out-of-plane component of the magnetic field,
Hz, the norm of the current density, |J|, and the norm of the electric field, |E|, with
respect to non-indented edges, when a magnetic field dependence of the critical current
density is accounted for. Second, it will be analysed if the behaviour of these fields is
sensitive to changing parameters, such as the temperature of the substrate, the applied
field rate, or the detailed magnetic field dependence.

To this aim, the finite-element H-ϕ formulation that was developed in Chapter 2 is used.
The simulated domain, Ω, consists in a cubic box of extension 2Lph, with Lph = 0.1
m, with the Dirichlet boundary conditions applied on its boundary, Γ. The conducting
region, Ωc, consists in the indented superconducting film, with L = 2 mm, d = 100 nm,
h = 62 µm, and b = 124 µm. The applied field rate is set to µ0Ḣa = 3 T/s. The critical
current density and the exponent n that appears in Equation 1.33 are assumed to vary
as [237]

Jc(T,B) = Jc(0, 0)

(
1− T

Tc

)
B0

B0 + |B| , (4.4)

n(T ) = n(0)
Tc
T
, (4.5)

with Jc(0, 0) = 12 MA/cm2 and n0 = 20. The magnetic field dependence of Equation
4.4 follows Kim’s law with α = 1, see Equation 1.25. Note that all geometric and
physical parameters correspond to those in [237]. The substrate temperature is in a first
time set to T0 = 2.5 K, and the critical temperature is Tc = 9.2 K. Although the heat
equation should be coupled to Maxwell’s equations to model flux avalanches, as it was
done in [237], in practice, the heat equation oftentimes has little effect on the variations
of the electromagnetic properties of the superconductor when Ha < Hth, where Hth is the
threshold field at which the first avalanche is recorded. This is for instance illustrated in
panel (b) of Figure 9 in [237], which indicates that the temperature is nearly uniform and
equal to T0 before the first avalanche is triggered. In what follows, Maxwell’s equations
will be solved assuming a constant temperature T = T0 until the conditions for triggering
a magnetic flux avalanche are met.

In what follows, it is sought to evaluate how the value of B0 influences the distributions
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Figure 4.5: Profiles of Hz (top panel), |J| (middle panel), and the ratio |J|/Jc (bottom
panel) in an indented film of length L = 2 mm and thickness d = 100 nm, for B0/Bf = 1
(in red), B0/Bf = 5 (in green), and B0/Bf → ∞ (in blue), where B0 describes the
magnetic field dependence of Jc, according to Kim’s law, see Equation 4.4, and Bf =
µ0Jc(0, 0)d/π. The indentation is a triangle of basis b = 124 µm and height h = 62 µm,.
The shown profiles are taken along the red line depicted in the inset of the upper panel.
The penetration depth when B0 → ∞, ℓp,∞, is also indicated in the lowest panel. T0 = 2.5
K, Tc = 9.2 K, Jc(0, 0) = 12 MA/cm2, n0 = 20, µ0Ḣa = 3 T/s and µ0Ha = 3 mT.
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of Hz, |J| and |E|, and how their levels close to the tip of the triangular indentation
and in the vicinity of the middle of one of the smooth edges compare to each other. In
what follows, the magnitude of |J|/Jc ∼ |E|1/n will be represented instead of |E|. Figure
4.5 shows the profiles of Hz, |J| and |J|/Jc along the median of the square that passes
through the tip of the indentation for B0/Bf = 1, B0/Bf = 5 and B0/Bf → ∞, with
Bf = µ0Jc(0, 0)d/π being a characteristic field amplitude in the film geometry [238, 239],
and for an applied field µ0Ha = 3 mT. The magnetic field dependence of the critical
current density therefore plays a major role when B0/Bf = 1, even at an early stage of
flux penetration, while it is rather limited until the applied field reaches large values in the
case B0/Bf = 5, or even non-existent when B0/Bf → ∞. First, let us focus on the profiles
of Hz, as depicted in the top panel of Figure 4.5. Magnetic field decreases monotonically
as one progresses deeper inside the sample and approaches the center. The presence of
the indentation implies two main characteristics, which are an excess of field penetration
at the indentation, and higher levels of Hz around the indentation in comparison to those
observed at the smooth border. These observations hold independent of B0. Finally, if
one defines fH,△ as

fH,△ =
Hz(h)

Hz(L)
, (4.6)

with Hz(x) being the value of Hz at a distance x from the left border of the film, as
indicated in the inset of panel (a) of Figure 4.5, one obtains the ratios fH,△ = 1.25,
fH,△ = 1.34 and fH,△ = 1.47 for B0/Bf = 1, B0/Bf = 5 and B0/Bf → ∞, which
quantify the enhancement of the magnetic field at the indentation. Increasing the value
of B0 thus seems to increase the enhancement of the magnetic field around the indentation
with respect to its value along the smooth borders.

The corresponding |J| profiles are shown in the middle panel of Figure 4.5. In the case
B0 → ∞, which is the case of a magnetic field independent critical current density, the
current density decreases monotonically from the edges towards the centre of the film.
Despite the presence of numerical fluctuations in the vicinity of the indentation, a slight
increasing trend is observed as one approaches the tip of the indentation. The level of the
current density is higher around the tip of the indentation than on the smooth border,
which reflects the current-crowding effect around the tip of the indentation. According
to Equation 4.5, the large value n = 73.6 explains why current crowding only influences
marginally the value of |J|, as it is enhanced by 5.4% with respect to the value of |J| at
the smooth border.

When B0/Bf = 1 or B0/Bf = 5, |J| increases in the penetrated regions, as one gets
closer to the magnetic flux front and is the lowest close to the boundary of the film. In
the Meissner current region, the current density decreases as one progresses towards the
centre. Moreover, the extension of the penetrated region increases as B0 decreases. These
features are signatures of Kim’s model [238, 239] and were also analytically derived in the
slab geometry, see for instance Equation 1.27, Equation 1.28 and Figure 1.6. Besides,
the magnitude of |J| in the penetrated area increases as B0 is increased. Let us define the
enhancement of the current density fJ,△ as

fJ,△ =
|J|(h)− |J|(L)

|J|(L) , (4.7)

where |J|(x) represents the value of |J| at a distance x from the left border of the film.
The levels of |J| appear to be slightly depleted at the indentation in comparison to their
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level at the middle of a non-indented border, as corroborated by the values fJ,△ = −7.9%
and fJ,△ = −5.1% for B0/Bf = 1 or B0/Bf = 5, respectively. The indentation thus
exacerbates the natural depletion of |J| that results from Kim’s law. This observation
contrasts with the case of a magnetic field independent Jc, i.e. B0/Bf → ∞, where the
current density is the largest at the vertex of the indentation.

Let us finally turn to the bottom panel of Figure 4.5. As it can be seen from the com-
parison with the top panel, when B0 → ∞, the profiles of |J|/Jc and |J| coincide. This is
unsurprising, since Jc is constant. However, once B0 is finite, the profiles of |J|/Jc differ
with those of |J|. For any B0, the ratio |J|/Jc barely changes over the distance ℓp,∞, which
is the penetration length in the case B0 → ∞. ℓp,∞ is the minimal extension of the pene-
trated region for a given µ0Ha and variable B0. For any value of B0, the profiles of |J|/Jc
are monotonically decreasing when approaching the centre of the film, and the highest
values are reached at the boundary of the film. In particular, the highest value of the ratio
|J|/Jc is located around the tip of the indentation, while |J| reaches its lowest value there.
The numerical fluctuations are one more time detrimental to the direct comparison of all
these curves close to the borders or the triangular indentation. However, based on the
simulations, it seems that the levels |J|/Jc are slightly enhanced at the indentation with
respect to the levels at the smooth borders. Therefore, the indentation always coincides
with the location where the ratio |J|/Jc is the largest, whether a Jc(|B|) dependence is
used or not.

From the inspection of Figure 4.5, three important implications can be established. First,
since the ratio |J|/Jc remains higher at the tip of the triangular indentation than on the
smooth border in all cases, the magnitude of the electric field |E| = Ec|J/Jc|n is the highest
at the tip of the indentation. As usually reported in the literature, indentations enhance
the intensity of the electric field. Second, contrarily to what is commonly assumed, current
crowding does not necessarily mean that current lines are concentrated around the tip of
the triangular indentation as a result of the deformation of the current lines close to it. On
the contrary, considering a magnetic-field-dependent Jc implies that current density is the
lowest at the sharp tip, so that the magnetic field gradients are lower at the indentation
tip than along the straight edges of the film. Finally, the indentation always enhances the
magnetic field intensity with respect to what it is along the smooth borders.

Up to this point, the role played by the indentation on the distributions of Hz, |J| and
|J|/Jc when a magnetic-field-dependent Jc(|B|) is accounted for has been highlighted.
The above observations were obtained for an invariant set of values of the parameters
µ0Ha, µḢa and T0, which all influence the distributions of the aforementioned fields.
Therefore, it is legitimate to ask if variations of these parameters change anything to the
way the indentation modifies the magnitude of the electromagnetic fields, when a Jc(|B|)
dependence comes into play.

The results of Figure 4.6, Figure 4.7 and Figure 4.8 show the distributions of Hz, |J| and
|J|/Jc when µ0Ha, µ0Ḣa and T0 vary, respectively, while the other parameters are kept
constant. In all three figures, Jc(|B|) follows Kim’s law, with B0/Bf = 1. The sets of
parameters that are used in each simulation are mentioned in the captions of each figure.
From Figure 4.6, it can be noted that magnetic field penetrates further in the film when
Ha is increased, as expected, while its level globally increases with Ha. Meanwhile, the
profiles of |J|/Jc progressively rise as Ha is ramped up.
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Figure 4.6: Profiles of Hz (top panel), |J| (middle panel), and the ratio J/Jc (bottom
panel) in an indented film of length L = 2 mm and thickness d = 100 nm, for an applied
field equal to µ0Ha = 1.5 mT (in red), µ0Ha = 3 mT (in green), and µ0Ha = 6 mT (in
blue). The indentation is a triangle of basis b = 124 µm and height h = 62 µm, and the
shown profiles are taken along the red line depicted in the inset of the upper panel. The
critical current density follows Kim’s law, see Equation 4.4. T0 = 2.5 K, Tc = 9.2 K,
Jc(0, 0) = 12 MA/cm2, B0 = Bf = 4.8 mT, n0 = 20, and µ0Ḣa = 3 T/s.
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Figure 4.7: Profiles of Hz (top panel), |J| (middle panel), and the ratio |J|/Jc (bottom
panel) in an indented film of length L = 2 mm and thickness d = 100 nm, for an applied
field rate equal to µ0Ḣa = 0.1 T/s (in red), µ0Ḣa = 0.7 T/s (in green), and µ0Ḣa = 5 T/s
(in blue). The indentation is a triangle of basis b = 124 µm and height h = 62 µm, and
the shown profiles are taken along the red line depicted in the inset of the upper panel.
The critical current density follows Kim’s law, see Equation 4.4. T0 = 2.5 K, Tc = 9.2 K,
Jc(0, 0) = 12 MA/cm2, B0 = 4.8 mT, n0 = 20 and µ0Ha = 3 mT.
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B0 (mT) µ0Ha (mT) µ0Ḣa (T/s) T0 (K) fH,△ fJ,△
4.8 3 3 2.5 1.25 −7.9%
24 3 3 2.5 1.34 −5.1%
∞ 3 3 2.5 1.47 5.4%
4.8 1.5 3 2.5 1.30 −10.3%
4.8 6 3 2.5 1.18 −5.3%
4.8 3 0.1 2.5 1.25 −7.7%
4.8 3 0.7 2.5 1.25 −7.9%
4.8 3 5 2.5 1.25 −8%
4.8 3 3 3.5 1.25 −5.3%
4.8 3 3 5 1.25 −1.5%

Table 4.1: Summary of the values of fH,△ and fJ,△ for the different combinations of the
parameters B0, µ0Ha, µ0Ḣa and T0 that are used in Figure 4.5, Figure 4.6, Figure 4.7
and Figure 4.8.

Increasing µ0Ḣa implies an increase of the electric field, as commanded by Faraday’s law.
Equivalently, this has the effect of increasing the ratio |J|/Jc, which can be observed in
the bottom panel of Figure 4.7, where the curves are clearly trending upwards as µ0Ḣa

increases. By contrast, the profiles of Hz and |J|, which are depicted in the top and
middle panels of Figure 4.7 respectively, barely change, since µ0Ha is set to a given value.

Last, increasing T0 simultaneously lowers Jc and n, as indicated by Equation 4.4 and
Equation 4.5. For this particular value of Ḣa, and as T0 increases, magnetic flux enters
further into the sample, the amplitude of |J| globally decreases, while the profiles of |J|/Jc,
and thus the profiles of the electric field, increase. This is evidenced with the middle and
bottom panels of Figure 4.8. The magnetic field levels at the periphery of the film also
appear to be lowered as T0 increases, which is seen in the top panel of the same figure.

Furthermore, it is possible to compare the levels of the electromagnetic fields at the
indentation with those at the middle of the opposite border by computing the ratios
fH,△ and fJ,△ for each set of parameters. The obtained values are summarized in Table
4.1. Similarly to what was inferred from Figure 4.5, it can be concluded that, in the
investigated range of parameters, whatever the parameter that varies, the indentation
simultaneously induces an enhancement of both |E| and Hz, and a reduction of |J| with
respect to their respective levels along the smooth borders. When a Jc(|B|) dependence
is assumed, the indentation therefore acts as spot of enhanced electric field and magnetic
field, but cannot be considered as the location where current crowding occurs, as usually
assumed in the literature.

4.4 Influence of Jc(|B|) on the location where mag-

netic flux avalanches trigger

The above analysis focuses on a general argument about the mechanism at the core of
triggering magnetic flux avalanches, i.e. heat dissipation caused by Joule effect. However,
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Figure 4.8: Profiles of Hz (top panel), |J| (middle panel), and the ratio |J|/Jc (bottom
panel) in an indented film of length L = 2 mm and thickness d = 100 nm, when the
temperature of the film is equal to the substrate temperature T0 = 2.5 K (in red), T0 = 3.5
K (in green), and T0 = 5 K (in blue). The indentation is a triangle of basis b = 124 µm
and height h = 62 µm, and the shown profiles are taken along the red line depicted in
the inset of the upper panel. The critical current density follows Kim’s law, see Equation
4.4. Tc = 9.2 K, Jc(0, 0) = 12 MA/cm2, B0 = Bf = 4.8 mT, n0 = 20, µ0Ḣa = 3 T/s and
µ0Ha = 3 mT.
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it does not really come with a definitive explanation for the onset of flux avalanches along
smooth borders. To this aim, let us instead proceed with an alternative approach, which
is based on the theoretical results of [126], which provides a mathematical expression for
Hth, the onset applied field for triggering the first magnetic flux avalanche in an infinitely
long thin superconducting strip of thickness d and width W , as a function of its critical
current density Jc. This expression is given by the following equation, which depends on
the electrical and thermal properties of the superconducting material

Hth =
Jcd

π
arccosh

(
1

1− 2ℓth/W

)
, (4.8)

where

ℓth =
π

2



√

|E|Jc
κtTth

−
√

2h0
ndκt




−1

, (4.9)

where κt and h0 are the heat conductivity and the thermal heat exchange coefficient
respectively.

For a given location, the threshold field at which the first avalanche is triggered can be
obtained as the intersection between the theoretical µ0Hth curve and the µ0Ha(Jc) curve
that is evaluated at the location of interest. If the curves do not meet, no avalanche
forms. Evaluating µ0Hth curves as a function of Jc requires the estimation of several
thermal parameters, but also an estimate of the value of the electric field at the location
where the avalanches are expected. What is sought here is to draw qualitative curves
of µ0Hth that confirm the phenomenology and respect the orders of magnitude reported
in the thermomagnetic simulations of [237], while keeping the explanation as simple as
possible.

Starting from the main conclusions of Section 4.3, two elements are considered. On the
one hand, the magnetic field enhancement that occurs at the indentation implies different
µ0Ha(Jc) curves at the indentation and along the smooth borders. Evaluating µ0Ha(Jc)
can be carried out accurately by means of the FE simulations. In the present case, for
B0/Bf = 1, B0/Bf = 5, and B0/Bf → ∞, the inverse curves Jc(µ0Ha) are computed
numerically from 0 to µ0Ha = 6 mT, at the indentation and at the middle of the opposite
border. On the other hand, since the electric field is larger at the indentation, the values
of µ0Hth are always smaller at the tip of the triangular indentation than along the smooth
borders. Note that in [237], it was instead suggested that the reduction of µ0Hth at the
indentation stems from the enhancement of magnetic field that occurs there. In either
case, the values of µ0Hth are lowered at the indentation with respect to those along the
smooth edges.

The µ0Hth and µ0Ha(Jc) curves for the various values of B0/Bf at both locations are rep-
resented in Figure 4.9. The values of µ0Hth close to the triangular indentation correspond
to the plain orange curve, while the dashed orange curve depicts µ0Hth around a smooth
edge. Following the previous remarks, the plain orange curve systematically lies under
the dashed orange one. The temperature-dependent thermal and electrical parameters
are those of [237], i.e. L = 2 mm, d = 100 nm, Tc = 9.2 K, T0 = 2.5 K, Jc(0, 0) = 12
MA/cm2, n0 = 20, κt = 20 W/K.m and h0 = 10 W/K.m2. The Jc curves for B0/Bf = 1,
B0/Bf = 5 and B0/Bf → ∞ are drawn in red, green and blue respectively. The plain
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curves correspond to the Jc that were numerically evaluated at the indentation, while the
dashed ones were evaluated on the opposite non-indented border. The values of the elec-
tric field at the indentation and at the middle of the opposite border are set to 20 mV/m
and 18.7 mV/m, respectively. Note that these orders of magnitude are coherent with
those computed by means of thermomagnetic simulations in [237]. One should however
keep in mind that Equation 1.49 and Equation 1.50 are in principle valid for infinitely
long strips with perfectly smooth borders, although they have been assumed to hold true
for finite geometries and indented samples.
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Figure 4.9: Threshold magnetic field, µ0Ha, in mT, as a function of Jc, in MA/cm2 in a
thin film of length L = 2 mm and thickness d = 100 nm. The threshold fields (in orange)
are evaluated accounting for the following physical parameters [126, 237]: Tc = 9.2 K,
T0 = 2.5 K, Jc(0, 0) = 12 MA/cm2, n0 = 20, κt = 20 W/K.m and h0 = 10 kW/K.m2.
The current densities are evaluated at the indentation (plain lines) and along a smooth
border (dashed lines) for B0/Bf = 1 (in red), B0/Bf = 5 (in green) and B0/Bf → ∞
(in blue), with Bf = µ0Jc(0, 0)d/π = 4.8 mT, based on the results of the finite-element
numerical simulations for a triangular indentation of basis b = 124 µm and height h = 62
µm.

When B0/Bf → ∞, the Jc curve (in blue) is vertical. Therefore, the avalanche, when
it occurs, can only be triggered at the tip of the indentation, since the µ0Ha(Jc) will
always meet the plain orange curve first. The situation differs once a magnetic field
dependence is accounted for. When B0/Bf = 5 (in green), the plain and the dashed
Jc curves differ, because of the magnetic field enhancement at the indentation tip. The
plain orange and green curves intersect at a value of µ0Hth = 1.94 mT that remains lower
than the µ0Hth = 2.10 mT, which results from the intersection of the dashed curves.
Therefore, an avalanche still prefers to develop around the triangular indentation. By
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contrast, if B0/Bf = 1, the intersection of the plain red and orange curves results in a
higher µ0Hth = 3.04 mT than the one that corresponds to the intersection of the dashed
curves, which is µ0Hth = 2.39 mT. In this case, the avalanche is triggered along the
smooth border rather than at the tip of the indentation, despite the electric field being
larger there. If the plain red curve was slightly shifted to the left of the graph, it would
even be possible to observe that avalanches only trigger along the smooth borders. These
conclusions corroborate what is numerically observed in [237].

Interestingly, Figure 4.9 shows that the intensity of |E| does not single-handedly deter-
mine the location where avalanches trigger. The indentation is also responsible for the lo-
cal enhancement of the magnetic field, which reduces the magnitude of the critical current
density, and consequently the current density, in the vicinity of the indentation. There-
fore, the µ0Ha(Jc) curve at the indentation differs from that along the border. Smaller
Jc means smaller flux gradients, so that the magnetic field is less concentrated around
the indentation than elsewhere, which might displace the value of the threshold field in
favour of triggering avalanches along the smooth edges. The location of the avalanche nu-
cleation thus results from the balance between the excess heat dissipation and the release
of magnetic pressure that occur at the indentation.

4.5 Conclusion

This chapter was mainly devoted to explaining why magnetic flux avalanches might pref-
erentially trigger along smooth edges rather than at the tip of an edge indentation. In
a first time, current crowding has been quantified in the theoretical geometry of a cir-
cular hole in a superconducting slab that laterally extends to infinity and with constant
critical current density. In order to circumvent the defect, the applied current density
distribution is non uniform. An excess current density concentrates in the vicinity of the
hole, and progressively relaxes back as one gets further from the hole. This relaxation
back to the current density that is expected in the absence of the hole has been quantified
as a function of the exponent n of the E(J) power-law. It appears that n characterizes
the index of electrical rigidity of the superconducting medium. Indeed, larger values of n
come with long-range perturbations of the current density profiles, which can be infinitely
long in the context of the critical state model (n → ∞), although the effect of current
crowding is reduced, but always present.

Then, focus was put on the analysis of current crowding and the levels of magnetic field,
current density, and electric field around a triangular indentation in a thin square film,
considering the critical current density to be magnetic-field-dependent. It has been shown
how the parameters such as the substrate temperature, B0, a parameter that dictates the
typical magnetic field dependence of the critical current density, or the applied field rate
could influence the levels of the electromagnetic fields in the film. Besides, contrary to
what is usually assumed, it was shown that introducing a magnetic field dependence of the
critical current density implies a less dense repartition of current lines at the triangular
indentation, although the location of maximal electric field still coincides with the tip of
the indentation. The magnetic field was also shown to be enhanced at the triangular tip.

Finally, the previous finite-element analysis was used to explain how magnetic flux avalanches
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can preferentially nucleate along the smooth borders rather than at the indentation.
Firstly, the enhancement of the electric field at the indentation does not only mean that
more power is dissipated there, but is also equivalent to a reduction of the onset field,
µ0Hth, with respect to its value along the smooth borders. Secondly, the enhancement of
the magnetic field at the indentation implies smoother flux gradients at the indentation,
which prevents the onset of avalanches, provided that a magnetic-field-dependent critical
current density is accounted for. Flux avalanches will first nucleate at the indentation
only if the threshold applied magnetic field is lower there than in the close vicinity of the
tip of the indentation. This was shown to happen only for sufficiently large ratios B0/Bf ,
while for the smaller ratios, the avalanches develop along the smooth edges or does not
occur at all.

The influence of the magnetic field dependence of the critical current density is a plausible
explanation for the triggering of avalanches at locations that do not coincide with the
places where power dissipation is the most intense. A balance between the enhanced
dissipated power and the reduced current density occurring around the indentation is thus
at the core of the determining the location of flux avalanches. This balance is intricately
related to the physical properties of the film and the value of external parameters. It is
however worth insisting on the fact that the results of this chapter do not exclude the
possibility that a depletion of the surface barrier in the vicinity of an indentation can also
prevent avalanches from nucleating at the tip of sharp indentations, as suggested in [41],
and further work should be carried out to evaluate the soundness of this suggestion.
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Chapter 5

Metamorphosis of discontinuity lines
in thin superconducting films
perforated with a regular array of
triangular holes

5.1 Introduction

Ratchets consist in systems where the notion of some physical entities which motion is
facilitated in a given direction, but is hindered in the opposite direction. In particular,
a ratchet effect can be found in molecular motors [240], particle separation [241], rec-
tification of self-propelled swimmers [242, 243, 244] or directional cell migration [245].
Similarly, the rectification of the motion of the flux quanta inside a superconducting sam-
ple is a ratchet phenomenon. Superconducting systems have drawn a lot of attention since
one can easily vary the density of the interacting vortices, by adjusting the applied field
to the right intensity, or the landscape of the vortex potential, for instance by etching
arrays of antidots or defects in the superconducting sample. Not only superconducting
films make for a perfect playground to study and illustrate the ratchet effect, but it has
also been suggested to use them to prevent stray magnetic flux from entering in some
areas in SQUID detectors [246]. Ratchet effect and networks of antidots can also be used
to control the dynamics of vortices or the sudden burst of magnetic flux that occurs when
thermomagentic flux avalanches are triggered [47].

Although the ratchet motion of magnetic flux is well understood at the micro-scale [247,
248], little progress has been done about the impact of non-symmetric pinning landscapes
on the subsequent penetration of magnetic flux in such systems. A possible way to form a
non-symmetric pinning landscape consists in etching the surface of the film with a regular
lattice of single identical steps with an uneven height across the step. This was for instance
done for MgB2 films [249]. From the observation of the magnetic flux penetration patterns
in the remanent state, one can infer the existence of anisotropy that does not exceed a few
percent between the critical current densities associated with a current flow either along
or perpendicular to the steps. It was also shown that when magnetic flux propagates in
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the form of sudden thermomagnetic flux avalanches, its penetration is favoured along the
direction that is perpendicular to the substrate surface steps.

Another way of obtaining a non-symmetric pinning landscape consists in etching, inside
the superconducting film, a square array which unit cell is made of two square antidots
of different sizes. For instance, this was made in Pb films with antidot sizes larger than
the coherence length and the penetration depth [250]. The directionality of the flux
penetration depends on the size of the holes and the temperature of the superconductor.
At low temperature, dendritic flux avalanches burst into the Pb film and propagate in the
direction that frontally faces the larger hole, which coincides with the easy direction of
the asymmetric pinning potential. At intermediate temperature, magnetic field diffuses
smoothly inside the film and its penetration is found to be isotropic. Finally, at high
temperature, magnetic field enters in the form of finger-like patterns forming along the
hard direction of the pinning potential.

This chapter addresses the penetration of magnetic field in thin films that are perforated
with an array of regularly spaced triangular antidots, which is yet another way to etch a
ratchet potential in a superconducting film. The film is made of niobium and is subjected
to a uniform out-of-plane magnetic field. The antidots are all similar and consist in
equilateral triangles with side of length b and a centre-to-centre spacing s△. One of the
vertices of the triangular antidots is oriented towards the ey direction, as schematically
depicted in Figure 5.1. Such a sample contains several different geometrical symmetries.
On the one hand, to the film, being a square of length L, is associated a C4 symmetry.
The regular layout of the antidots also displays a C4 symmetry. On the other hand, the
triangles being equilateral, the holes themselves introduce a C3 symmetry in the system.
In particular, the potential landscape through which the vortices move as the applied field
is increased is non-symmetric along the ey direction. This particular lack of symmetry is
thus expected to generate a ratchet effect for the penetration of magnetic field inside the
superconducting sample [247, 248]. The principal aim of the chapter is to determine how
these different symmetries combine with each other and how they affect the penetration
of magnetic field and the current density distribution at the macro-scale, in response to
a uniform magnetic field that is applied perpendicular to the cross section of the film.

The chapter is structured as follows. Section 5.2 contains a brief overview of the experi-
mental details of the studied sample. The experimental evidence of the effect of the array
of antidots on the penetration of the magnetic field in the sample is then also provided.
Section 5.3 is devoted to the characterization and quantification of the critical current
density along the four different principal directions of the square based on the results of
time-dependent Ginzburg-Landau (tdGL) simulations. The signature of the ratchet effect
that is suggested by the non-symmetric shape of the antidots is highlighted. Section 5.4
capitalizes on the main conclusions of Section 5.3 to devise a macroscopic model that
can reproduce the most salient characteristics of the penetration of magnetic field in the
sample etched with the antidot array that were observed in the experiments of Section
5.2. A critical state model is also proposed to help in understanding the experimental
results.
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Figure 5.1: Schematic representation of the thin square superconducting film of length
L = 5 mm, and wherein a square array of triangular antidots is etched. A close-up view
over a square region containing a few triangular antidots around the lower right corner of
the sample is also shown on the right part of the figure. The array is made of identical
equilateral triangles, whose edges are b = 1.5 µm long, and which are all separated by the
same center-to-center distance s△ = 4 µm. The rows and columns of triangles start at a
distance db = 1 µm from the borders.

5.2 Magnetic-field-dependent critical states in a square

film with a regular array of non-symmetric anti-

dots

The investigated samples consist in lithographically defined niobium films deposited on
Si/SiO2 substrates by ultra-high vacuum direct current magnetron sputtering. The de-
posited thickness of niobium is 45 µm and the length of the side of the film is L = 5 mm.
The patterns of antidots are etched by lift-off processing, and the critical temperature of
the films is 6.8 K. A small portion of the film is schematically depicted in Figure 5.1 to
illustrate the array of identical antidots. They consist in equilateral triangles of length
b = 1.5 µm, and are organized as a square array across the whole 5 × 5 mm2 film. The
unit-cell size of the array, which corresponds to centre-to-centre spacing between two con-
secutive triangles, s△, is hence constant and equals 4 µm. Moreover, the distance between
the borders of the square film and the closest row of triangles is 1 µm along each edge of
the film, in order to avoid any asymmetric surface barrier that could interfere with the
results [251]. From the temperature derivative of the upper critical field near Tc and the
temperature-dependent dirty-limit expressions of ξ(T ) and λ(T ), one can estimate that
ξ(0) = 8 nm and λ(0) = 132 nm. As a result, ξ and λ are much lower than the size of the
antidots over the whole probed temperature range.

The distribution of the magnetic field in the films with the array of non-symmetric antidots
are shown in Figure 5.2. They were obtained by means of magneto-optical imaging. The
measurements have been carried out by A.V. Silhanek and M. Motta, and the images of
Figure 5.2 are shown with their courtesy. The Faraday-active indicators that were used
in the setup are bismuth-substituted yttrium iron garnet films (Bi:YIG) with in-plane
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Figure 5.2: Magneto-optical imaging of the penetration of magnetic field in a thin square
superconducting film within which a symmetric array of equilateral triangular antidots
is etched. The applied field is perpendicular to the film and is first ramped up to 5 mT
before being progressively decreased back to 0. The first three images are taken when the
field is ramped up, while the other snapshots are taken during the field decrease. When
the field is increased, the d-lines appear in black, while they stand out in light green when
the field is decreased back to zero.

magnetization that is used to suppress the parasitic visual artefacts that correspond to
the magnetic domains of the film [252]. Upon a field increase, it appears that the magnetic
field fills the sample. At µ0Ha = 1.37 mT, the d-lines seem to coincide with the diagonals
of the square, as it would be expected in a square sample without antidots and with
uniform Jc. However, when the applied field is large enough, a clear horizontal line arises
at the centre of the sample, for µ0Ha = 1.87 mT. This d-line stabilizes as the field is
progressively increased and even when the applied field is progressively reversed, see for
instance the distribution of magnetic field at µ0Ha = 3.13 mT. However, the central d-line
is progressively shifted to the left and to the bottom half of the film as the field is further
decreased. In addition to this change of location, the horizontal d-line shrinks. This is
visible from the magneto-optical images by comparing the magnetic flux distributions
at µ0Ha = 1.71 mT and µ0Ha = 1.62 mT. The reduction of the length of the d-line
continues until it degenerates in a single point for µ0Ha = 1.55 mT. The transformation
of the central critical structure keeps going, as the d-line becomes vertical, as observed at
µ0Ha = 1.13 mT. This new vertical d-line extends further as the applied field decreases
further, as illustrated when µ0Ha = 1.05 mT and µ0Ha = 0.75 mT.

The results of Figure 5.2 illustrate how much an array of antidots can influence the
diffusion of magnetic field inside a superconducting film. The d-line patterns deviate
from the diagonals of the square, which is normally expected, and a d-line emerges at the
centre of the sample. Moreover, the arising d-line patterns do not remain frozen as the
applied field strength varies. Their shape visibly changes with the applied field. In what
follows, an explanation for the magnetic field dependence and the shape of these critical
structures is sought.
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Figure 5.3: Jc(0)/Jc(θ) curves as a function of µ0Ha, with Ha being the applied field
strength, for θ = π/2 and π. The angle θ, which is the orientation of the applied current
Ja, is defined as in the drawing on the upper left corner of the figure. The geometry of a
reduced cell of antidots, that is used for the time-dependent Ginzburg-Landau simulations,
is shown in the inset drawing. Four identical triangular antidots are contained within the
cell, which extends over a 8 × 8 µm2 region. The cell is chosen in such a way that the
geometry is symmetric with respect to the vertical median of the square. Each antidot
is separated from the next antidot by a distance s△, and each of them consists in a
equilateral triangle of length b.

5.3 Assessment of the anisotropy of the critical cur-

rent density with time-dependent Ginzburg-Landau

simulations

In order to understand the magneto-optical measurements, one can first look at how the
vortices are distributed around the antidots, opting for a micro-scale approach. To this
aim, time-dependent Ginzubrg-Landau (tdGL) simulations were carried out by Z̆. L. Jelić,
J. D. González Acosta, and M. V. Miloševic at the University of Antwerp. The data that
appear in these section are on their credit and are reproduced here for argumentation
purposes, since the conclusions of these tdGL simulations will be used in Section 5.4.
The tdGL simulations are based on Equation 1.8 and Equation 1.9. Furthermore, these
simulations were carried out in the effective type-II limit, which states Λ/ξ ≫ 1, with
Λ being the Pearl length and ξ is the coherence length, while the thin-film limit, d ≪
λ, is assumed, where λ is the London penetration length. The order parameter, ψ, is
numerically computed over a square region that covers a 8× 8 µm2-area, which includes
4 triangular antidots of side b = 1.5 µm and separated by a 4 µm distance, as shown in
the bottom inset of Figure 5.3.

An out-of-plane field, Ba = µ0Haez is first applied to the whole system. Then, an in-plane
current density, Ja, is injected in a given direction, θ, and its intensity is progressively
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time-dependent Ginzburg-Landau simulations

increased. The definition of θ and the direction of both Ba and Ja are shown in the
drawing in the upper left corner of Figure 5.3. In practice, the norm of the current
density is forced to be equal to Ja, while the current density is forced to be normal to the
superconductor-normal (SN) interface, which corresponds to the sides of the simulated
domain that are perpendicular to the current flow. Besides, superconductor-vacuum (SV)
boundaries coincide with the sides of the square domain that are parallel to the direction
of the applied current. The SV boundary conditions encompass both zero normal current
density and zero supercurrent density conditions. The voltage V can then be defined
as the mean of the electrical potential difference between two lines that are parallel to
the SN interface, at a distance of 40 ξ from both of them. As Ja increases, V changes,
which leads to V (Ja) curves from which the critical current densities, Jc(θ, Ba), can be
extracted. These values correspond to the detection of a 20 µV voltage across the control
lines and correspond to the onset of the vortices dynamics. The numerical details of the
simulations can be found in [48].

The ratios Jc(0)/Jc(π/2) and Jc(0)/Jc(π) as a function of µ0Ha are shown Figure 5.3.
In the range of the investigated values of µ0Ha, the results show that Jc(π) < Jc(π/2) <
Jc(0). Furthermore, the ratios Jc(0)/Jc(π/2) and Jc(0)/Jc(π) increase with µ0Ha. The
non-symmetric anisotropy of the current density and its magnetic field dependence that
are revealed by the tdGL simulations are of a particular importance and will be retained
for the macroscopic simulations to come. The orientation-dependent current density can
be understood from a microscopic viewpoint as the manifestation of the non-symmetric
potential landscape that is induced by the shape of the antidots. The triangular shape of
the antidots implies that the cross section through which an applied current flows in the
vertical direction [Jc(π/2)] is larger than the cross section through which the same applied
current goes when the current density move in the horizontal direction [Jc(0) and Jc(π)],
which might explain the differences between the value of Jc(π/2) and those of Jc(0) and
Jc(π).

Besides, the vortices face an non-symmetric landscape while moving in the vertical di-
rection. This defines easy and hard magnetic field penetration axes, which results in a
rectification phenomenon [248, 253]. The vortices that stem from the upper edge and
move towards the center of the sample face the sharp tip of the triangular indentations,
while those that enter from the bottom edge meet the flat bases of the triangular antidots.
Around the vertices of the triangles, the supercurrent density lines are denser because of
the current-crowding effect [235], so that the vortices are more easily depinned from the
hole within which they were trapped. The motion of vortices is thus facilitated when
vortices move while facing the basis of the triangle and made harder in the opposite di-
rection, while facing the vertices. As a result, Jc(0), which is associated with a downward
motion of vortices when the applied field points along ez, is larger than Jc(π), which is
related to vortices that move in the opposite direction. The C3 symmetry of the triangu-
lar holes is thus responsible for the observed ratchet effect by breaking the C4 symmetry
that comes from the regular square layout of the antidots and the global square shape
of the sample. Furthermore, the C3 symmetry does not introduce any asymmetry of the
potential landscape for vortices that penetrate from the left or the right border, since the
vortices face the same tilted edges. Their motion is thus not fundamentally different if
one forces the current to flow in the direction of ey or in the opposite direction, so that
one can reasonably assert that Jc(π/2) = Jc(3π/2).
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It is worth noticing that the ratio Jc(0)/Jc(π) does not necessarily vary as shown in
Figure 5.3 for all materials and might greatly depend on the size of the antidots [248].
In what follows, the present tdGL results are used, as the results are adapted to niobium
parameters and to the size of the antidots in the experimental sample.

5.4 Macroscopic modelling of the discontinuity line

reversal with the finite-element method

At the microscopic scale, the tdGL simulations have highlighted the anisotropic feature of
the critical current density, Jc(θ,B), that results from the non-symmetric potential land-
scape. In this section, the most salient results of the tdGL simulations are implemented
in a macroscopic model, and the critical states that are formed in the superconducting
film are then investigated. The aim of such an approach is to prove that the anisotropic
Jc(θ,B) law can explain the reversal of the central d-line that is observed experimentally,
while keeping a minimal amount of key parameters.

Before going into the description of the numerical model, let us explain how the anisotropy
in the critical current density can lead to the different critical states observed in MOI.
For the sake of the simplicity of the argument, the magnetic field dependence of Jc is
knowingly omitted, so that the B variable of Jc(θ,B) will be momentarily dropped in
the following developments. Based on the observations that were inferred from the tdGL
simulations, one can assume that Jc(0) > Jc(π/2) > Jc(π) and Jc(π/2) = Jc(3π/2).
Assuming, without loss of generality, that the induced currents circulate in the clockwise
direction as a consequence of an upward applied magnetic field, the square film can be
divided into four sectors, where the amplitude of the critical current density varies with
the direction of the eddy currents. For instance, the current density is parallel to the
borders and forms rectangular patterns within which the current density flows in a given
direction. The current density Jc is equal to Jc(0), Jc(π/2), Jc(π) and Jc(3π/2) in the
upper, left, bottom and right quarter, respectively. The shape of the quarters are uneven,
and are delimited by the oblique d-lines, which inclination is determined from current
conservation.

In the context of the Bean model, the conditions Jc(0) > Jc(π/2) > Jc(π) and Jc(π/2) =
Jc(3π/2) then yield three different possible sets of d-lines that can arise in a fully pene-
trated sample after zero-field cooling, which are depicted in Figure 5.4, depending on the
values of Jc(0), Jc(π), Jc(π/2) and Jc(3π/2). Panel (a) corresponds to the case where a
central vertical line arises. Since Jc(π/2) = Jc(3π/2), the vertical line is centred. Con-
sequently, in accordance to current conservation across the leftmost oblique d-lines, one
can write (

L

2
− δw,1

)
Jc(0) =

L

2
Jc(π/2) =

(
L

2
+ δw,2

)
Jc(π), (5.1)

and one can express the length of the vertical line, ℓv, as ℓv = δw,1 − δw,2 > 0. Similarly,
in panel (b), given that Jc(π/2) = Jc(3π/2), one can write

(
L

2
− δw

)
Jc(0) =

L

2
Jc(π/2) =

(
L

2
+ δw

)
Jc(π), (5.2)
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while in panel (c), it can be easily deduced that

(
L

2
− δw

)
Jc(0) =

(
L

2
− ℓh

2

)
Jc(π/2) =

(
L

2
+ δw

)
Jc(π), (5.3)

where the condition ℓh < 2δw holds, to agree with the hierarchy of the critical current
densities magnitude Jc(0) > Jc(π/2) > Jc(π). Equation 5.1, Equation 5.2 and Equation
5.3 can be recast as a function of the following sum of current density ratios,

RJ ≡ Jc(π/2)

Jc(0)
+
Jc(π/2)

Jc(π)
, (5.4)

and a simple but strong relation can be inferred from this set of equations and related to
each of the d-line layouts, i.e.

RJ =





2 ℓv
L
< 2 for panel (a),
2 for panel (b),

2 L
L−ℓh

> 2 for panel (c).
(5.5)

It is worth stressing out that the magnetic-field-independent Bean model cannot reproduce
the reversal of the central d-line, since definite values of Jc(0), Jc(π/2) and Jc(π) determine
the critical states once and for all, even as the applied magnetic field is decreased back to
zero. An additional mechanism is thus required to justify the change from an horizontal
d-line to a vertical one, in other words, to explain why the value of RJ drops from a value
that is greater than 2 when the applied field is ramped up to a value that goes below 2
when approaching the remanent state.

The most natural way to account for the magnetic field dependence of the critical states
is to include a magnetic field dependence of the critical current density, Jc(θ,B). Such
upgrade is justified since the tdGL simulations clearly indicate magnetic-field-dependent
ratios Jc(π/2)/Jc(0) and Jc(π)/Jc(0). A magnetic field dependence of Jc(π)/Jc(0) has also
been experimentally evidenced in YBCO films [248]. Such modifications of these ratios
lead to variations of RJ as a function of B, and the central d-line is then expected to vary
as the applied field changes. In order to illustrate the Jc(θ,B) in a more graphical way,
the values of Jc(θ) are represented on a polar plot for different values of the applied field,
µ0Ha = 14.3 mT, 57.2 mT and 200.6 mT, see Figure 5.5. The results are normalized with
respect to the value of Jc(0). The continuous lines are guides to the eye that evidence the
global shape of the critical surface, which boundary is Jc(θ). Note that only the upper
half of the Jc(θ) curve is shown for symmetry reasons, i.e. Jc(θ, |B|) = Jc(2π− θ, |B|) for
θ ∈ [0, π], generalizing the relation Jc(π/2, |B|) = Jc(3π/2, |B|). It can be immediately
seen that, as µ0Ha is increased, the ratio Jc(π/2)/Jc(0) and Jc(π)/Jc(0) become smaller
and the ovoid-shaped Jc(θ,B) appears to cover a smaller area. The critical surface that
outlines Jc(θ,B) is thus progressively deformed as the applied field changes, the ovoid-like
shape being accentuated at larger fields.

The numerical method that is used to model the penetration of magnetic field in the
film relies on the FE H-ϕ formulation that was developed in Chapter 2. The truncated-
geometry approach is used to apply the boundary conditions. The length of the cubic non-
conducting domain is Lph = 200L = 1 m. The mesh is also non-uniform, the unstructured
mesh size being on average equal to 0.1 m in the non-conducting region, while the planar
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Figure 5.4: Schematic representation of the different possible networks of discontinuity
lines, as predicted by the critical state model. The eddy currents in the film form rectan-
gular loops that circulate clockwise, so that Jc = Jc(0, |B|). In particular, depending on
the values of Jc(0, |B|) > Jc(π/2, |B|) > Jc(π, |B|) and Jc(π/2, |B|) = Jc(3π/2, |B|), the
oblique d-lines that stem from each corner of the square sample (a) give rise to a central
vertical d-line of length ℓv, (b) meet at a single point, and (c) delimit a central horizontal
d-line of length ℓh. The exact condition that determines the shape of the d-line set is
given by Equation 5.4 and Equation 5.5.

size of the structured mesh in the conducting region is on average equal 50 µm on the
boundary of the film and is progressively reduced to 10 µm in the central region of the
film, allowing for a finer grid in the region where the central d-lines are expected. The
main challenge resides in finding a way to model the anisotropic current density at the
macroscopic scale by using Maxwell’s equations and appropriate constitutive laws, which
can faithfully capture the physics of the problem in a range that goes from a few microns
to a few mm.

The anisotropic magnetic response of the superconductor is modelled following a pre-
vious work from Badia et al. [140, 108]. This method is based on a thermodynamic
approach which describes the behaviour of hard superconductors once they are driven out
of equilibrium by overcritical currents. When the system is in the critical state, the super-
conductor is characterized by a critical current density Jc that can be represented in the

129



Section 5.4. Macroscopic modelling of the discontinuity line reversal with the
finite-element method

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

µ0Ha = 14.3 mT
µ0Ha = 57.2 mT
µ0Ha = 200.6 mT θ

Jc(θ, µ0Ha)/Jc(0, µ0Ha)

Figure 5.5: Polar plot of the critical current density, Jc(θ, µ0Ha)/Jc(0, µ0Ha), for µ0Ha =
14.3 mT, µ0Ha = 57.2 mT, and µ0Ha = 200.6 mT, in blue, green, and red, respec-
tively. The orientation of the current density is denoted by θ and the circles, squares,
and diamonds represent the values of Jc(θ, µ0Ha) that were obtained in the framework
of the time-dependent Ginzburg-Landau simulations. The plain curves act as a guide
to the eye and take the shape of half ovoids, which highlight in an ideal way the
asymmetry of the anisotropic characteristics of the critical current density along the
principal axes. Only half the curve is shown for symmetry reasons, since the relation
Jc(θ, |B|) = Jc(2π − θ, |B|) with θ ∈ [0, π] holds true for an ovoid, which is inspired from
the relation Jc(π/2, µ0Ha) = Jc(3π/2, µ0Ha).

(Jx,Jy) plane, delineating a closed curve in this plane, that will be labelled as the critical
surface. If external excitations force the displacement of vortices, an out-of-equilibrium
state is reached, while the current density, J, lies outside the region that is enclosed by
the critical surface. The system then relaxes back to equilibrium by dissipating energy at
a rate E ·J, which is estimated by means of a dissipative function, F(J). It was shown in
[140] that the electric field can be derived from this dissipation function as E = ∇JF . In
such a case, one defines an electrodynamically consistent E-J constitutive law which can
be adapted to the problem under scrutiny.

According to [108], the dissipative function F can be expressed in the following practically
manageable generic form

F = F0 (E(J))M , (5.6)

where E is a functional of the current density that accounts for all the relevant symmetries
of the pinning sites, while the dimensionless exponentM typically depends on the pinning
characteristics and the magnetic relaxation properties of the sample. It is worth noticing
that M is reminiscent of the exponent n of the usual isotropic E-J constitutive law. The
level set F = Fc delimits the critical surface that encloses the critical region, which must
be convex. Similarly to how the value of the critical electric field, Ec, can be chosen
arbitrarily in the isotropic E-J law, Fc can also be chosen arbitrarily.

The major remaining challenge consists in finding an appropriate mathematical expression
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for E that encodes all the crucial conclusions unveiled by the tdGL simulations. Once
such E is established, one can infer an expression of E(J), which can in turn be used in the
weak form of Faraday’s law, see Equation 2.32. For instance, one wishes to enforce the
condition Jc(0, |B|) > Jc(π/2, |B|) > Jc(π, |B|), while adopting a continuous transition for
intermediate angles. Besides, it is sought that the ratio Jc(0, |B|)/Jc(π, |B|) increases as
|B| becomes larger, which reflects the enhancement of the ratchet effect as |B| increases,
as demonstrated in Figure 5.3. The ovoid-shaped Jc curves that are depicted in Figure
5.5 for several values of µ0Ha are for instance a reasonable contender that can correctly
encode the kind of anisotropic feature that characterizes the system under investigation.
Keeping a minimal number of powers of J and its components in the modelling, one can
write the ansatz

E = Es + Ea, (5.7)

Es =
(
Jx
Jc,x

)2

+

(
Jy
Jc,y

)2

, (5.8)

Ea = − Cx√Es

(
Jx
Jc,x

)3

, (5.9)

where Jc,x, Jc,y and Cx are parameters that control the amplitude of the critical current
density along the principal axes of the square (x and y directions) and the asymmetry of
the critical current density along the x direction. E(J) is an homogeneous functional of
degree two, which ensures that the shape of the ovoid does not vary with the value of Fc,
and that the shape of the critical surface is independent on the choice of Fc. In particular,
if one considers the case Fc = F0 with Equation 5.7, Equation 5.8, and Equation 5.9,
one can obtain convenient expressions for Jc(0, |B|), Jc(π/2, |B|) and Jc(π, |B|) that can
be used to ponder the balance between these critical current densities. One can easily
derive that

Jc(0, |B|) = Jc,x√
1− Cx

, (5.10)

Jc(π/2, |B|) = Jc,y, (5.11)

Jc(π, |B|) = Jc,x√
1 + Cx

. (5.12)

Do not forget that E is a non-linear function of J. Since the linearisation of E is carried
out by means of the Newton-Raphson scheme, Equation 5.6must actually be derived with
respect to the components of J twice. This yields a tensor ∂E/∂J which mathematical
expression is more complex than what was derived in AppendixA.1. This is a consequence
of the anisotropic shape of the critical surface, which, according to [108], allows E and J
to be oriented along different directions. The formal expression of the ∂E/∂J tensor that
accounts for an anisotropic E-J constitutive law can be found in Appendix A.2.

In order to clarify the role played by the parameters Cx, Jc,x and Jc,y, it is interesting to
consider some particular choices. If Cx = 0 and Jc,x = Jc,y = Jc, one recovers the isotropic
flux-creep law, given F0 = EcJc/2M and n = 2M − 1. If Cx = 0 but Jc,x ̸= Jc,y, the
critical surface takes the form of an ellipse which translates an intrinsic anisotropy feature
of the superconducting sample along the principal directions x and y, without accounting
for the ratchet effect.
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In the latter case, the model can be validated by considering the case of a thin su-
perconducting disk submitted to an out-of-plane magnetic field, with a magnetic-field-
independent Jc(θ), a case which was studied in the critical state limit (M → ∞) in [142].
To this aim, let us consider a thin disk of radius R = 200 µm and of thickness d = 100
nm. The applied field is ramped up from 0 to Ha at a constant rate Ḣa = 1 kA/m.s,
and Ha/Hc is set to either arccosh(2) or arccosh(50), with Hc = Jc,xd/2. The exponent
M that is involved in Equation 5.6 is set to a large value of n = 200 and n = 2M − 1,
in such a way that one can compare the numerical results to those of the critical state
model. Taking Cx = 0 and Jc,y = 2Jc,x = 2 MA/cm2, one obtains the results of Figure
5.6.

For both partial and complete penetrations, the penetration depth in the x and y direc-
tions, the iso-lines of magnetic field and the corresponding shape of the current density
lines are in good qualitative agreement with what was found in [142, 254], which validates
the way the anisotropic critical current density is modelled. One can also observe that
in a similar fashion to [142], despite having the relation Jc,y = 2Jc,x, the numerically
computed ratio between the penetration lengths in the horizontal and vertical direction,
ℓp,x and ℓp,y, respectively, is indeed more or less equal to 4 when Ha/Hc = arccosh(2).
When the magnetic field penetration is complete (Ha/Hc = arccosh(50)), a discontinuity
line forms at the centre of the disk, which extension is measured to be equal to 1.46R,
close to the value predicted in [142], i.e. 1.43R. The magnitude of the current density
that moves strictly upwards or downwards (θ = π/2 or θ = 3π/2) is equal to twice the
value of J that moves to the left or to the right (θ = 0 or θ = π), as expected.

Returning to the discussion of the parameters of the E-J law, consider now Cx > 0 and
Jc,x ̸= Jc,y. The symmetry along the x-axis is now broken, and the shape of the critical
surface can comply with the results of Figure 5.3 if the parameters are wisely selected.
The shape of the ovoid changes with respect to the applied field, so that the parameters
Jc,x, Jc,y and Cx must include a magnetic field dependence that reliably reproduces the
metamorphosis of the central d-line, going from a horizontal position, when the magnetic
field is ramped up, to a vertical one, close to the remanent state. Put in a different way,
the ratio RJ < 2 if |B| is low, while RJ > 2 when the levels of |B| become sufficiently large.
The parameters Jc,x, Jc,y are assumed to follow Kim’s law [84], while the magnetic field
dependence of Cx is chosen to be continuous, strictly increasing and a bounded function
of |B|. More explicitly, the following dependences are used

Jc,x =
Jc,x,0

1 + |B|/Bx

, (5.13)

Jc,y =
Jc,y,0

1 + |B|/By

, (5.14)

Cx = Cx,0
|B|+B1

|B|+B2

, (5.15)

where Jc,x,0, Jc,y,0, Bx, By, B1, B2 and Cx,0 are the parameters that need to be adapted to
the phenomenology and the observations that were evidenced by the MOI and the micro-
scopic study of the sample. Therefore, one is looking for a set of parameters that verifies
Jc(0, |B|) > Jc(π/2, |B|) > Jc(π, |B|), while giving an increasing Jc(0, |B|)/Jc(π, |B|) ratio
as a function of |B|. In addition, the values of the parameters are chosen in such a way
that the levels of the applied magnetic field at which the different critical state shapes
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Figure 5.6: Out-of-plane magnetic field (panels (a) and (b)) and norm of the critical
current density (panels (c) and (d)) in a thin superconducting disk with an anisotropic
critical current density. The radius of the disk is R = 200 µm and its thickness is d = 100
nm. The disk is subjected to an out-of-plane magnetic field that is raised from 0 to
Ha/Hc = arccosh(2) (panel (a) and (c)) or Ha/Hc = arccosh(50) (panel (b) and (d)),
with Hc = Jc,xd/2, at the constant rate Ḣa = 1 kA/m.s. The critical current density is
anisotropic, so that, according to the thermodynamic dissipation-function approach, the
critical surface is an ellipse with principal axes lengths equal to Jc,y = 2Jc,x = 2 MA/cm2.
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Parameter Units Value
Jc,x,0 MA/cm2 1
Jc,y,0 MA/cm2 0.95
Bx mT 1.4
By mT 1.58
B1 mT 1
B2 mT 1.1
Cx,0 - 0.15

Table 5.1: Numerical parameters of the anisotropic E-J constitutive law that allow to
reproduce the change of critical states observed in the magneto-optical images of the pen-
etration of magnetic field in the square film with the regular array of triangular antidots,
see Figure 5.7.

occur match the experimental ones. The chosen set of parameters is reported in Table
5.1. The resulting critical states for different values of the applied field are depicted in
Figure 5.7. One starts from a virgin state and apply a maximal field of 5 mT. One can
observe first a horizontal d-line when µ0Ha = 3.11 mT, when the applied field is progres-
sively increased. When the external field is ramped back down to zero, the horizontal
line shrinks to a single point at µ0Ha = 1 mT, and at µ0Ha = 0.75 mT, a small vertical
line is obtained. This vertical line further extends as the remanent state is reached. This
succession of events is therefore very similar to what is observed experimentally.

Interestingly, if one uses the shell-transformation method, taking Na = Nsh = 3 and
A ≈ 0.13L = 0.65 mm, in agreement with the discussions of Chapter 2, the obtained
magnetic field levels in the numerical results do not differ by more than a few percent
from those yielded by the truncated approach. The difference is maximal during the
first numerical iterations and quickly vanishes afterwards. The lengths of the numerically
simulated sets of d-lines are also exactly the same, independently of the selected method.
This empirically corroborates the validity of the unidirectional shell-transformation model
combined with this kind of anisotropic constitutive law, as the results are nearly identical
to those of the truncated method.

Several remarks are worth mentioning. First, from the inspection of the values of the
ratios Jc(π/2)/Jc(0) and Jc(π)/Jc(0) obtained in the tdGL calculations, see Figure 5.3,
it appears that the value of RJ is always less than 2 and does not seem to ever cross that
threshold. This can be attributed to the fact that the tdGL simulations themselves have
their own limitations, especially regarding the size of the investigated domain, and the
corresponding boundary conditions, which do not correspond to those of the very dense
array of antidots that fills the superconducting film. Assuming the phenomenological
shape suggested by Equation 5.13, Equation 5.14, and Equation 5.15, a parametrization
based on a least-square fit of the tdGL data that shows an RJ parameter crossing the
threshold level of 2 can be derived. However, the obtained parameters yield a reversal of
the d-line patterns in the wrong direction, i.e. the central d-line is first vertical as the
applied field increases, before it becomes horizontal as the field is decreased back to zero.
The correct order of events can however be achieved by making small adjustments to the
fitting parameters. Nonetheless, the order of magnitude of the magnetic field dependence
of the tdGL results is not consistent with those of the experimental data. Therefore, the
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parametrization of Figure 5.7 has been purposely scaled with respect to the typical range
of magnetic field amplitude over which the metamorphosis of the d-lines is experimentally
observed. Although the reversal of the central d-line can be reproduced with the magnetic
field dependence of the parameters, this comes with the identification of an appropriate
set of parameters. This highlights that, despite revealing rather small pinning-induced
asymmetries (typically, the Jc anisotropy does not exceed a few percent), the observed
critical states result from a delicate balance between the critical current densities along
each principal direction, which are very sensitive to the model parameters.

Second, it is worth highlighting that the anisotropy is assumed to be an homogeneous
property in the whole sample. This assumption of course ignores the complete symmetry
of the system, since the C4 symmetry of the array is not accounted for, neither is the pos-
sibility that the interstitial pinning in between the holes may create channels of magnetic
field penetration along the principal axis. The present convex F model should therefore
be adapted to include these additional effects.

Finally, one should bear in mind that the anisotropy, as it is modelled here, does not reflect
all peculiarities of the critical states that are shown in the experimental images. The nu-
merically computed lengths of the vertical and the horizontal d-lines are underestimated
with respect to the ones that are measured experimentally. The agreement with experi-
ments is thus only qualitative, by highlighting the correct metamorphosis of the central
d-line. Moreover, in experiments, the d-lines appear to be slightly off-centred to the right
when the field is increased, and to the left as the applied field is decreased. This contrasts
with the numerical simulations, where the structure is always centred with respect to the
vertical median of the square, because of the C3 symmetry of the equilateral holes, i.e.
Jc(π/2, |B|) = Jc(3π/2, |B|). Also, the oblique parts of the d-line patterns feature several
disruptions, which could be attributed to the presence of defects that perturb the smooth
penetration of magnetic field, and could also introduce some array-unrelated horizontal
asymmetries that are not included in the model. From a conceptual standpoint, it is
possible to model this horizontal offset by introducing a non-symmetric term along the
ey axis in Ea. This supplementary term would involve another cubic dependence, which
importance would be controlled by an additional parameter Cy, similar to how the asym-
metry along the ex axis was modelled in Equation 5.9. However, the physical origin of
the off-centred d-line remains unclear and is therefore difficult to justify, while the current
model capture the most salient features of the observed physics.

5.5 Conclusion

In this chapter, the critical states were investigated in a thin square film which surface
is etched by a very dense regular array of small triangular antidots and subjected to an
out-of-plane magnetic field. The magneto-optical images revealed that the discontinuity
lines that develop in the samples do not follow the diagonals of the square, but rather
form more complex patterns that change with the applied field. A very distinctive feature
of such critical states is a central horizontal d-line that forms when the applied magnetic
field is progressively increased, and which transforms into a vertical d-line when decreasing
the field and approaching the remanent state.
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(a) (b)

(c) (d)

Bz [mT]

2.77 3.36 3.95

Bz [mT]

0.29 1.37 2.44

Bz [mT]

−0.04 1.06 2.17

Bz [mT]

−0.78 0.45 1.68

Figure 5.7: Out-of-plane magnetic field, Bz, in a thin square superconducting film which
is characterized by a magnetic-field-dependent anisotropic E-J law. After a first magne-
tization up to µ0Ha = 5 mT at the constant rate Ḣa = 1 kA/m.s, the applied field is
decreased at the same rate, and the distributions of Bz are shown at (a) µ0Ha = 3.13 mT,
(b) µ0Ha = 1 mT, (c) µ0Ha = 0.75 mT, and (d) in the remanent state. The simulations
show the reversal of the central d-line from a horizontal position to a vertical one, which
coincides with the experimental observations.
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Time-dependent Ginzburg-Landau simulations were performed on a reduced area that
include only four equilateral triangles and showed that the critical current density varies
with the direction of the current flow. A reduction of the critical current density when
the vortices exit the tips of the antidots occurs, as a consequence of the enhancement
of the current crowding effect in the vicinity of the vertices. In comparison, the vortices
that move towards the flat borders of the triangular antidots depin less easily, and the
associated critical current density is larger than that associated to vortices moving towards
the triangle tips. Most importantly, the ratio between these two critical current densities,
which reflects the prominence of the ratchet effect, varies as a function of the applied
field, in agreement with previous works.

Based on the main conclusions of the microscopic study of the critical current density,
a macroscopic model was used to replicate the critical states that were observed in ex-
periments. The widespread isotropic E-J law that models flux-creep was replaced by an
anisotropic constitutive law based on a thermodynamic approach of the out-of-equilibrium
critical states that relies on a functional of the dissipated energy to bring the system back
to equilibrium. It allowed to formally address the anisotropic and non-symmetric features
of the critical current density along the principal axes of the square film. A meticulous
choice of the model parameters enabled the qualitative emulation of the critical state
structures that are observed in practice. This thermodynamically motivated model en-
capsulates the most remarkable observations, based on the magneto-optical imaging of
the system, while keeping a small number of model parameters.

Both the microscopic and macroscopic numerical simulations point to the fact that ar-
rays of non-symmetric antidots induce a slight anisotropy of the critical current density,
which turns out to be responsible for the unexpected sets of d-lines and their continuous
metamorphosis. Besides, it is yet another evidence of a category of systems that illus-
trates the non-trivial influence of a magnetic-field-dependent critical current density on
the distribution of magnetic field and the associated critical states in superconducting
films. If the magnetic field dependence of the critical current density is not accounted for,
the current density anisotropy alone does in fact not suffice to explain the reversal of the
central critical structure.
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Chapter 6

Critical states in superimposed
superconducting films

6.1 Introduction

As discussed in Chapter 1, discontinuity lines, or d-lines, coincide with the locations where
the current density make sharp turns, e.g. near a corner of the sample, in order to ensure
current conservation. In the idealized case of the critical-state model, current flows along
loops that are parallel with the boundaries of the film. Consequently, as was illustrated in
Chapter 1, the d-lines form along symmetry lines of the film, and mostly depend on film
geometry, as well as the local values of critical current density, in the case of anisotropic
samples. To illustrate these principles, the d-lines in a thin square film with uniform
current density are located along the diagonals of the square. Similarly, the d-lines in
a thin rectangular strip form a ‘double Y’ shape, which originates from the corners and
follows 45-degrees lines before merging into a central line lying along the longest median
of the strip. Because of the logarithmic divergence of the magnetic-field levels in the close
proximity of the d-lines, magneto-optical imaging (MOI) enables the in-situ visualization
of the sets of d-lines for the two film geometries, as shown in panels (a) and (b) of Figure
6.1, for a square and a rectangular film, respectively. Note that in these images, the
darker the contrast, the less intense the magnetic field, i.e. the rectangular strip is in the
remanent state, while the square film is in a fully penetrated state.

To the best of my knowledge, while the critical states in single films are fairly well doc-
umented for various film shapes, critical states in multilayer assemblies of films have not
been studied extensively. Tamegai et al. recently probed the magnetic-field distribution
in an assembly made of a thin square film of side L = 200 µm on which a rectangular strip
of width W = L/2 and length L is superimposed [44]. In this structure, proximity effects
are suppressed by separating both films by a SiO2 layer of thickness tSiO2 = 300 nm, and
the thickness of both films are equal to 300 nm. The longest median of the rectangular
strip is aligned with respect to one of the medians of the square. A three-dimensional
view of the assembly, which comprises the two films and the intermediate SiO2 layer, is
sketched in panel (d) of Figure 6.1. In the experiment of [44], the magnetic field in the
remanent state of the assembly was imaged by magneto-optical techniques. Interestingly,
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Figure 6.1: Magneto-optical images of the critical state (a) in a completely penetrated
square superconducting film, (b) in a rectangular superconducting strip in the remanent
state, and (c) in the superposition of a rectangular superconducting strip over a square
superconducting film in the remanent state. The geometry of the assembly corresponding
to the image in panel (c) is depicted in panel (d). In each magneto-optical image, the
brighter the contrast, the higher the magnetic field.

instead of observing a simple superposition of the d-lines of the thin square film and those
of the thin strip, the MOI of the assembly shows a richer network of d-lines, see panel
(c) of Figure 6.1. In the overlap region, the ‘double Y’-shaped d-lines of the thin strip
are still clearly recognizable. In the region where the films are not superimposed, the
d-lines remain aligned with the diagonals of the square film, as expected. However, in the
overlap region, the d-lines deviate from the diagonals of the square film. They change
their direction abruptly, in such a way that the d-lines originating from the left corners of
the square film meet to the left of the assembly center, while the ones that start from the
right corners of the square film intersect to its right. Moreover, an additional horizontal
d-line arises at the center of the assembly, linking both intersections. Such a pattern
differs from those usually observed in single thin films.

The presence of a central horizontal d-line in a thin square film is reminiscent of the
critical-state patterns encountered in films with an anisotropic critical current density.
Anisotropy is either induced by the microstructure of the material itself, in this case it is
referred to as intrinsic anisotropy [95], or by an external in-plane applied field, in this case
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it is called an extrinsic anisotropy [97]. In the latter case, the anisotropy is induced in a
direction perpendicular to the applied in-plane field. In [44], the pinning in the niobium
films is homogeneous, so that anisotropy is not intrinsic. Furthermore, in order to induce
extrinsic anisotropy in thin films, large in-plane magnetic fields must be applied. For
instance, in a 300 nm thick niobium film, it is necessary to apply a background in-plane
field of 300 Oe [97]. In the context of the experiment in [44], an in-plane film was in fact
applied to suppress the magnetic domains in the magneto-optical indicator, which spoils
the quality of the MO images. However, this applied field did not exceed 180 Oe, and
thus could not induce an anisotropic behaviour in the film. Moreover, the in-plane field
is applied parallel to the diagonals of the film, so that the anisotropy and the subsequent
modification of the critical state are expected to develop perpendicular to the chosen
diagonal. The physical origin of the patterns in Figure 6.1 thus remains to be elucidated.

In what follows, an explanation for these peculiar d-line patterns and the actual shape
of the current loops in two-layer assemblies is proposed, based on the magnetic-field
dependence of the critical current density. The chapter is organized as follows. In Section
6.2, the magnetic response of an assembly of a thin rectangular film placed on top of a thin
square film is numerically investigated. The numerical simulations are then confronted to
MOI measurements, and the effect of the field dependency Jc(|B|) is clearly demonstrated.
The basic mechanism is then illustrated with a simplified model based on the critical-
state model. Then, the influence of geometrical parameters, such as the thickness of the
insulating layer, tSiO2 , the width of the thin rectangular strip, W , and the lateral offset of
the rectangular strip, Xc, are investigated in Section 6.3. The distribution of magnetic
field is studied for various three-layer assemblies of square and rectangular films in Section
6.4. Section 6.5 concludes this chapter.

6.2 Comparison of the numerically modelled mag-

netic response of the two-layer assembly to ex-

perimental measurements

6.2.1 Experimental details on the two-layer samples

The films were made in Tokyo University by I. Veschunov and T. Tamegai. The niobium
films were grown on Si substrates by using magnetron sputtering, photolitography and
SF6 reactive ion etching. A clean and clear-cut superposition of the rectangular film on
top of the square film is performed by means of caldera planarization [255]. Both films are
separated with a 300 nm thick SiO2 layer, which acts as an insulator to avoid proximity
effects. The MOI is used to probe the critical states that result from the penetration of
magnetic field inside the superimposed assembly, which relies on the Faraday effect in a
ferromagnetic garnet film in direct contact with the sample [44, 256, 257]. The in-situ
snapshots of the out-of-plane component of the magnetic field are recorded with a com-
mercial optical microscope (Olympus BX30MF) and a cooled-CCD camera with 12-bit
resolution (ORCA-ER, Hamamatsu). Samples are cooled down to 6 K according to a
zero-field cooled (ZFC) procedure in a He-flow cryostat (Microstat HighRes II, Oxford
Instruments). The critical temperature of the niobium films was measured to be Tc = 9 K,
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which is consistent with the onset of diamagnetism measured with a SQUID magnetome-
ter. An out-of plane external field is applied to the sample, as a constant in-plane applied
field, which magnitude is 180 Oe, is directed along one of the diagonals of the square to
erase the otherwise visible reaction of the ferromagnetic magneto-optical indicator.

6.2.2 Details on the numerical method to emulate the penetra-
tion of magnetic field in superconducting two-layer assem-
blies

Ωc, Γc

Ω, Γ

Ωb, Γb

xy

z

Ha

Figure 6.2: Domains considered in the H-ϕ formulation. Ω is the computational domain,
Ωc contains the superconducting materials, and Ωb is an auxiliary box introduced for the
application of the external field. The corresponding boundaries of the domains are Γ, Γc,
and Γb respectively.

To simulate the assembly sketched in Figure 6.1 (d), we use the H-ϕ formulation intro-
duced in Section 2.2. The applied field is ramped from 0 to 1000 Oe at a rate Ha = 1
kA/m.s, which is ∼ 12.5 Oe/s. A schematic representation of the simulated geometry
is depicted in Figure 6.2. Both the rectangular strip and the square film, where eddy
currents are induced, belong to Ωc, which is shown in dark blue. The non-conducting
domain, Ω \ Ωc, includes the SiO2 layer.

Throughout the chapter, the boundary conditions will be applied by means of either the
truncated-geometry approach or the unidirectional shell transformation. In the case of
the truncated-geometry approach, the films are included in a larger cubic box of size 2Lph,
with Lph = 100L = 20 mm, where L is the length of the square film. For the unidirectional
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shell transformation, Ωc is embedded in an arbitrary box, Ωb, which corresponds to the
dashed light blue domain in Figure 6.2, where the applied field is set to be uniform, as
described in Subsection 2.3.3. By default, the domain truncation will be used, so that it
will be explicitly mentioned when the shell-transformation approach is used. The mesh
used in the simulations is non-uniform. In particular, the typical planar mesh size in the
assembly varies from 5 µm near the external borders of the square film to 1 µm in the
overlap region. Refining the mesh in the overlap region allows a better visualization of the
critical-state structures, where the central d-line develops. When the truncated-geometry
technique is used, the mesh size on the boundary of Ω is typically set to a tenth of Lph.

In the thin films, the non-linear constitutive law

E =
Ec

Jc

( |J|
Jc

)n−1

J, (6.1)

is assumed, with Ec = 1 µV/cm and n = 19. Jc, the critical current density, is assumed
to be magnetic-field dependent, and follows the generalized Kim law [83, 84], which is
convenient to reach a satisfactory fit to experimental data while keeping as few parameters
as possible,

Jc (|B|) = Jc(0)

(1 + |B|/B0)
α . (6.2)

Here, Jc(0) is the critical current density at B = 0, B0 is a parameter that describes the
characteristic scale of decay of Jc with B, and α is a dimensionless parameter that tunes
the asymptotic decay of Jc with B. Neglecting surface barriers and the lower critical-field,
Hc,1, the magnetic induction, B, is given as

B = µ0H, (6.3)

where H is the magnetic field.

The rectangular and the square films were not made out of the same niobium samples.
Hence, the parameters Jc(0), B0 and α must be determined separately for each film. Their
values were chosen to fit at best the experiments. For the thin square film, this procedure
led to Jc(0) = 3.4 MA/cm2, B0 = 1.25 mT and α = 0.42, while for the thin rectangular
film, it led to Jc(0) = 5.4 MA/cm2, B0 = 4.9 mT and α = 0.51.

6.2.3 Results of the numerical simulations and comparison with
the MOI results

The numerical results are now compared to the MOI results when the applied field is
ramped up from 0 to a fixed value, Ha, at the constant rate Ḣa = 12.5 Oe/s. Figure
6.3 (a) to (f) show the magneto-optical distributions of the out-of-plane magnetic field,
µ0Hz, for Ha = 50, 100, 150, 200, 300 and 500 Oe. Figure 6.3 (A) to (F) display the
corresponding numerical results. At the first stage of flux penetration, which is illustrated
on panel (a) at Ha = 50 Oe, vortices preferentially enter from the edges of the square
sample, along the portions that exclude the boundary delineating the film overlap region.
Roughly, d-lines appear along the diagonals of the square. However, the magnetic flux
barely penetrates the sample along the edges of the thin strip, where the flux front is
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(a) (b) (c)

(A)

Bz (G)

−16.7 74.7 166

(B)

Bz (G)

−7.82 99.6 207

(C)

Bz (G)

−8.61 119 247

(d) (e) (f)

(D)

Bz (G)

−19 135 247

(E)

Bz (G)

94.9 237 379

(F)

Bz (G)

352 459 566

Figure 6.3: Distributions of magnetic field in the niobium two-layer assembly, Bz = µ0Hz,
where, after a zero-field cooling to 6 K, the applied field is ramped up to a fixed value Ha

given as (a) 50, (b) 100, (c) 150, (d) 200, (e) 300, and (f) 500 Oe. The magneto-optical
images showing the experimental distributions of Bz are expressed in Gauss (dark pixels
correspond to low field strengths) and are shown in panels (a) to (f). Their numerical
counter-parts, showing the simulated distributions of µ0Hz for the same applied fields as
panels (a) to (f), are shown in panels (A) to (F).
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(a) (b) (c)

(A)

Bz (G)

436 532 628

(B)

Bz (G)

95.7 226 357

(C)

Bz (G)

27.7 171 314

(d) (e) (f)

(D)

Bz (G)

−44.8 114 272

(E)

Bz (G)

−95.2 67.9 231

(F)

Bz (G)

−134 28.4 190

Figure 6.4: Distributions of the magnetic field in the niobium two-layer assembly, Bz =
µ0Hz, where, after a zero-field cooling to 6 K, the applied field is ramped up to 1000 Oe
and decreased to a fixed value Ha given as (a) 500, (b) 200, (c) 150, (d) 100, (e) 50, and
(f) 0 Oe. The magneto-optical images showing the experimental distributions of Bz (dark
pixels correspond to low field strengths) correspond to panels (a) to (f). Their numerical
counter-parts, showing the simulated distributions of µ0Hz for the same applied fields as
panels (a) to (f), are shown in panels (A) to (F).
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much less advanced in comparison. Upon further increasing the applied field to Ha = 100
Oe (panel (b)), the magnetic flux finally enters the central overlap region. The ‘double Y’
shape in the rectangular strip starts forming while the d-lines along the diagonals extend
in the overlap region. However, their orientation seems to change abruptly at the limit
between the overlap region and the rest of the square film. This trend is confirmed from
Ha = 150 Oe and on, as is clearly illustrated in panels (c) to (f). A ‘kink’ in the d-lines
appears when one goes from the region where the films do not overlap to the region where
they do. Ultimately, this change of orientation means that the d-lines originating from
the corners of the square film do not meet at the center of the film. Instead, the two
d-lines that stem from the upper corners of the square meet above the center, while the
two d-lines that originate from the bottom corners intersect below the center. This results
in a central vertical line, which spans over a length ℓv.

Besides, from the inspection of panel (d), (e) and (f), one notices that ℓv decreases as
Ha increases. At the same time, as the applied field is increased, the orientation of the
d-lines in the overlap region seems to be progressively corrected. At 500 Oe (panel (f)),
this kink can barely be observed with the naked eye. Even though it is not shown in
Figure 6.3, ℓv still decreases and tends to 0 as Ha goes to 1000 Oe, in such a way that the
kink completely fades away. The common vertical tail of the ‘double Y’-shaped d-line,
which is typical of thin rectangular strips, is also progressively recovered, as the applied
field is ramped up from 200 to 500 Oe.

Similarly, Figure 6.4 (a) to (f) show the magneto-optical images of the magnetic-flux
distributions in the assembly when the applied field is ramped down from 1000 Oe to
Ha, at the same rate Ḣa = 12.5 Oe/s, where Ha = 500, 200, 150, 100, 50, 0 Oe. The
corresponding FE results are gathered in panels (A) to (F) in Figure 6.4. At 500 Oe
(panel (a)), the d-lines are found to be the same as the superposition of the array of
d-lines expected in separate square and a rectangular samples. No kink is apparent at the
junction between the overlap region and the outer parts of the square film, as the d-lines
seem to follow the diagonals of the square film and meet in its center. As the applied
field is reduced and goes back to zero, as illustrated in panel (b) to panel (f), the d-line
patterns change and differ from those observed in the increasing field stage. In particular,
one does not recover the vertical d-line. The d-lines that stem from the corners of the
square film still follow the diagonals, until they reach the overlap region, where they break
and change their orientation. However, instead of meeting above and below the center of
the projection of the assembly along the x-y plane, the d-lines originating from the left
corners of the square sample now meet on the left side of the assembly and, reciprocally,
the d-lines that started from the right corners intersect on the right half of the assembly.
Both intersection points now delimit a central horizontal d-line, which extends over a
length ℓh, that can be easily identified from 150 Oe and below (panels (c) to (f)). As
Ha is lowered, ℓh steadily increases, and the d-lines further deviate from the diagonals of
the square. Finally, at the remanent state (panel (f)), the horizontal d-line reaches its
maximal extension and nearly crosses the whole width of the overlap region.

For both increasing and decreasing fields, the results computed numerically with the
FE H-ϕ formulation are in very good qualitative and quantitative agreement with the
magneto-optical measurements. Nonetheless, when the applied field is ramped up, the
numerical model seems to slightly overestimate the entrance of magnetic flux inside the
sample. Diverse justifications to these qualitative differences can be given. First, values
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for the parameters of the generalized Kim law are difficult to assess for the two films.
Second, the numerical model ignores the effect of surface barriers. Hence, this model
assumption has the consequence of effectively favouring flux penetration. Finally, the
resolution of the MO images might also limit the relevance of a strict comparison of the
numerically computed flux-front extensions with the experimental ones.

Furthermore, these imperfections are also translated into systematic quantitative differ-
ences between the experimentally recorded levels of µ0Hz and those evaluated numerically.
These differences appear to be more marked for the lowest values of Ha. Besides, the nu-
merical snapshots of the µ0Hz distribution correspond to the levels of the magnetic field
in the mid cross-sectional plane of the square film, while the magnetic-field levels that are
evaluated by means of MOI correspond to flux penetrations at a finite distance of a few
microns above the superimposed assembly, where the magnetic-field strength is slightly
reduced with respect to what it is inside the films themselves.

Nevertheless, the salient phenomenological results, such as the global shape of the d-line
networks, the smooth transition from an additional vertical d-line to an horizontal one,
the field-dependent value of ℓv and ℓh, and the sudden breaking of the diagonal d-lines
when they cross the border of the overlap region, are faithfully reproduced and modelled.
The numerical estimations of ℓv and ℓh are in very good agreement with respect to what
transpires in the magneto-optical snapshots. In summary, the H-ϕ formulation, coupled
with the constitutive laws described by Equation 6.1, Equation 6.2, and Equation 6.3,
gives an appropriate description of the experimental observations in [44].

6.2.4 The critical role played by the magnetic-field dependence
of the current density

The essential role played by the magnetic-field dependence of the critical current density is
now demonstrated. From now on, in order to simplify the interpretation, it is assumed that
both films share the same properties, i.e. Jc(0), B0 and α are the same in the square and
rectangular films. Moreover, it is assumed that α = 1, so that Equation 6.2 corresponds
to Kim’s law. In order to show the necessity of a magnetic-field dependence of the critical
current density, let us compare the case of a uniform magnetic-field independent critical
current density Jc = 2 MA/cm2 in both films to the case of a magnetic-field dependent
critical current density, which obeys Kim’s law in Equation 6.2 with Jc(0) = 4 MA/cm2,
B0 = 20 mT and α = 1 in both films. The applied field is ramped up from 0 to 500 Oe
at a rate Ḣa = 12.5 Oe/s, before being ramped down to zero again at the same rate.

The resulting remanent-state critical states and the distributions of the out-of-plane mag-
netic field, Bz = µ0Hz, are presented in Figure 6.5. The difference is striking. On the
one hand, when Jc is constant, no central horizontal d-line is observed, as it can be seen
in panels (a) and (c). The magnetic-field distribution then displays the combination of
the footprints of the d-lines of each individual film, i.e. a ‘X’-shaped pattern that stems
from the square sample and the ‘double Y’ pattern of the rectangular sample. On the
other hand, once a magnetic-field dependence of Jc is considered, the horizontal d-line
arises in the centre of the assembly in the remanent state, which is imprinted in the out-
of-plane component of the magnetic field of both films, as illustrated in panel (b) and (d).
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(a)

Bz (G)

−88.9 68.8 226

(b)

Bz (G)

−164 26.7 217

(c)

Bz (G)

−88.3 66.5 221

(d)

Bz (G)

−163 34.2 231

Figure 6.5: Simulated Bz = µ0Hz distributions in the square film (panels (a) and (b))
and the rectangular strip (panels (c) and (d)), when Jc is assumed constant with, Jc = 2
MA/cm2 (panels (a) and (c)), and when Jc is assumed to depend on |B| according to
Kim’s law, with Jc(0) = 4 MA/cm2, B0 = 20 mT and α = 1 (panel (b) and (d)). The
films are in the remanent state (magnetization from a virgin sample to 500 Oe, see text).

This is fully coherent with the experimental and numerical results that were discussed in
Subsection 6.2.3, despite the simplified assumptions. This straightforward comparison
directly shows the necessity of considering the contribution of Jc(|B|) for reproducing the
distortion of the network of d-lines in the overlap region.

Further insight on the origin of the convoluted patterns unveiled by the µ0Hz mappings
in both films can be acquired by analysing the current density inside the films. The
circulation of J inside the films is represented through the normalized components of the
current densities, Jx/|J| and Jy/|J|, in the rectangular and square films. First they are
depicted in the case of a constant critical current density Jc = 2 MA/cm2. As it can be
seen from panel (a) and (c), the square film is divided in four sectors that are identical
according to a C4 symmetry, where Jx = 0 in the left and right sectors, and Jy = 0 in the
upper and lower sectors. In fact, the critical current density being constant and uniform
in each individual film, |J| is the same in each sector, as shown in panel (e) of Figure
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6.6. In short, in the square film, the current lines move in the counter-clockwise direction
and describe square patterns. The inspection of panel (b), (d) and (f) leads to the same
conclusion regarding the current paths in the rectangular film, although the patterns now
consist in rectangular contours that are parallel to the borders of the film, and delimit
four unequal sectors, delimited by the ‘double Y’ pattern.

The situation differs when the critical current density becomes magnetic-field dependent,
as shown in Figure 6.7. In the rectangular strip, current density can be divided in four
sectors that globally form the ‘double Y’ pattern. J remains roughly parallel to the
edges of the strip, despite very slight deviations around the center of the strip, where
the external ‘X’ pattern is observed, as shown in panels (b) and (d) of Figure 6.7. A
slight Jx/|J| component can be observed, while Jx/|J| = 0 inside the same region for a
magnetic-field independent Jc. In that sense, the current loops are very similar to those
of an uncoupled thin strip, and so are the d-line network that they generate.

This situation contrasts with what happens in the square film. The starkest difference
with the current loops that are described in an isolated square film occurs around the
center of the film, where currents curl around the central horizontal d-line, as it can be
inferred from panel (a) and panel (c) in Figure 6.7. As assessed by the clear transition
from blue to red along the horizontal median in panel (a), the current density sharply
reverses its direction around the location of the central d-line. As it can be seen in
panel(c), the current lines in the upper and lower regions are not strictly horizontal, but
rather present a small but non-negligible inclination, which can be seen from the non-
zero Jy/|J| at several locations in the upper and lower regions. These deviations are
exacerbated around the central d-line. In the leftmost and rightmost sectors, the current
density is strictly vertical. However, the sector delimitations no longer coincide with the
square diagonals.

While the films share nearly the same distributions of µ0Hz, see panels (b) and (d) of
Figure 6.5, the distribution of J differ radically from one film to another, in the overlap
region, as illustrated in Figure 6.7. In particular, the map of |J| in the square and
the rectangular films indicate different levels from one film to another, as depicted in
panels (e) and (f) of Figure 6.7. Also, note that the non-uniform distribution of µ0Hz

implies the more evident variations of |J| in accordance to Kim’s law, by contrast with
the magnetic-field independent case, where the distribution was rather uniform.

6.2.5 A simplified model for explaining the distorted d-line pat-
terns

In order to have a better grasp on the shape of the eddy-current loops inside the square
film, where the additional d-line arises and evolves when the applied field varies, a simpli-
fied model based on the critical-state model (CSM) is proposed. The kinks that appear
at the limits of the overlap region and the resulting critical states shown in Figure 6.3
and Figure 6.4 are reminiscent of what would happen in a square film with an inhomo-

geneous sheet critical current density, Jc,s(x, y) =
∫ d/2

−d/2
Jc(x, y, z) dz. Eddy currents are

generated in the square film in response to the superposition of the external applied field
and the reaction field of the strip. From the perspective of the square film, the external
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(a)

Jx/|J|

−1 0 1

(b)

Jx/|J|

−1 0 1

(c)

Jy/|J|

−1 0 1

(d)

Jy/|J|

−1 0 1

(e)

|J| [MA/cm2]

0 0.69 1.38

(f)

|J| [MA/cm2]

0 0.69 1.38

Figure 6.6: Distributions of Jx (panels (a) and (b)), Jy (panels (c) and (d)), and |J| (panels
(e) and (f)) in the square film (panels (a), (c) and (e)) and in the rectangular strip (panels
(b), (d) and (f)) for the case of a magnetic-field independent Jc = 2 MA/cm2. The films
are in the remanent state (magnetization from a virgin sample to 500 Oe, see text).
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(a)

Jx/|J|
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(b)
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(c)

Jy/|J|
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(d)
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(e)

|J| [MA/cm2]

0.09 1.26 2.43

(f)

|J| [MA/cm2]

0.09 1.18 2.27

Figure 6.7: Distributions of Jx (panels (a) and (b)), Jy (panels (c) and (d)), and |J|
(panels (e) and (f)) in the square film (panels (a), (c) and (e)) and in the rectangular
strip (panels (b), (d) and (f)) for the case of a magnetic-field dependent Jc(|B|) following
Kim’s law, see Equation 6.2, with Jc(0) = 4 MA/cm2, B0 = 20 mT and α = 1. The films
are in the remanent state (magnetization from a virgin sample to 500 Oe, see text).
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source magnetic field is therefore different in the overlap region, where the influence of
the strip is the strongest, than in the rest of the film, where this influence is weak. The
C4 symmetry of the square film is broken, and the square film can be divided into three
rectangular bands: the overlap area between the two films, and the two bands to the left
and the right of the central band.

The crudest way to model the influence of the rectangular film on the critical current
density in the square film consists in considering that Jc,s is uniform within each region,
whereas its value differs in the overlap and in the outer bands. In what follows, the values
of Jc,s in the overlap and lateral regions are denoted by Jc,s−int and Jc,s−ext, respectively.
Under such an assumption, one can use the Bean model in the longitudinal geometry
to draw the current loops and infer the position of the d-lines in the square film. It is
supposed that the sheet current density reaches its critical value everywhere, i.e. |Js| =
Jc,s, which corresponds to the situation of completely penetrated films. The current loops
in the thin-film geometry then coincide with those obtained in the longitudinal geometry.
This assumption allows one to estimate the current distributions in the square film at
large applied fields and in the subsequent remanent state.

Two cases can then be dissociated. Upon magnetization from a virgin state, the local
magnetic field is less intense at the center of the assembly, because magnetic field first
enters the sample through the edges of the square before it reaches the overlap region.
Hence, according to Kim’s law, Jc,s−int > Jc,s−ext. By contrast, upon a reduction of the
applied-field intensity, magnetic field progressively evacuates the superconductors through
its borders. The magnetic response of the film consists in a trapped flux that is globally
more intense in the overlap region. From Kim’s law, one can then safely assume that
Jc,s−int < Jc,s−ext.

In order to illustrate the current-line patterns that are predicted by the simplified model,
Figure 6.8 shows the current lines in the top right quarter of the square film upon a
magnetization from a virgin state in the particular case of Jc,s−int = 2Jc,s−ext and for a
rectangular strip of width W = L/2. Similarly, Figure 6.9 depicts the current lines in the
remanent state for the case Jc,s−ext =

√
3/2Jc,s−int and W = L/2. There are similarities

with the MO images and the numerical results in Figure 6.3 and Figure 6.4. In particular,
one recovers the vertical d-line in Figure 6.8, while the horizontal d-line at the center of
the sample is visible in Figure 6.9. The kinks that characterize the d-lines in the remanent
state are also reproduced qualitatively, as it can be seen from the comparison between
panel (F) of Figure 6.4 and Figure 6.9. In particular, the d-line that stems from point
O changes direction two times, at points A and B. Similar deviations occur at points A
and B in Figure 6.8. However, these deviations are difficult to pinpoint in panels (D),
(E) and (F) of Figure 6.3, where the film has reached a fully penetrated state.

Besides being a two-dimensional model while the assembly is three-dimensional, the model
is extremely simplified because it completely neglects the non-uniformity of the magnetic
field within a given region. Instead, only differences between the outer and the overlap
regions are considered. However, this model provides a first estimate of the expected
critical-state architecture, from which a theoretical expression of the lengths ℓv and ℓh
can be extracted. If one considers a centred thin strip of length L and width W = L/2,
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Figure 6.8: Critical state in the simplified model corresponding to a magnetization of the
square + strip assembly, assuming Jc−int = 2Jc−ext and W = L/2. Only the upper right
part of the structure is shown. The other parts can be obtained by reflection symmetry,
the axes of symmetry being highlighted with dashed lines. The dark blue lines correspond
to the d-lines, while light red lines represent the current lines in the square film. The filled
circles mark the locations where d-lines change their trajectory abruptly.

it can be shown that :

ℓv,h =
L

2

∣∣∣∣
Jc,s−ext

Jc,s−int

− 1

∣∣∣∣ . (6.4)

The detailed mathematical developments leading to this result are given in Appendix C
for a centred strip with aspect ratio W/L < 1. One should however keep in mind how
elementary and simplified the two-dimensional model is, so that the resulting ℓv and ℓh
must be considered as first-order estimations.

Equation 6.4 can be expressed in a slightly different way, owing to the magnetic-field
dependence of the critical current density described by Equation 6.2 with α = 1, which
is Kim’s law. Assuming that the average strength of the magnetic induction over the
overlap and outer regions is Bint and Bext, respectively, one can rewrite the length of the
additional horizontal d-line as

ℓh =
L

2

|Bint| − |Bext|
|Bext|+B0

. (6.5)

Because of the aforementioned limitations of the model, the result is however not expected
to hold strictly and match exactly the simulated ℓh, as the distribution of the magnetic
induction, and even more so the distribution of critical current density, are non-uniform
within each region. Nevertheless, Equation 6.5 illustrates how the apparition of a central
horizontal d-line is intimately related to the breaking of the square C4 symmetry that
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Figure 6.9: Critical state in the simplified model corresponding to a remanent state in
the square + strip assembly, assuming Jc,s−int =

√
3/2× Jc,s−ext and W = L/2. Only the

upper right part of the structure is shown. The other parts can be obtained by reflection
symmetry, the axis being highlighted by dashed lines. The dark blue lines correspond to
the d-lines, while the light red lines show the current lines in the square film. The filled
circles mark the locations where d-lines change their trajectory abruptly.

stems from the mutual magnetic interaction between the square and the rectangular
films. The unequal levels of trapped field in the different delimited regions are then
responsible for inhomogeneous critical-current-density distributions, because of Kim’s law,
which leads to the deformation of the d-line network.

Both parameters B0 and Jc(0) influence the distributions of magnetic field inside the
superconducting film. In the remanent state, the trapped magnetic field depends on the
entrance and exit of vortices, so that one can expect that ℓh vary with respect to both
B0 and Jc(0). In order to assess the dependence of ℓh on these parameters, the magnetic
response of the assembly in the remanent state is simulated for several values of B0 and
Jc(0). The resulting values of the dimensionless quantity ℓh/L are shown as a function of
B0/µ0Jc(0)d in Figure 6.10, where µ0Jc(0)d has been chosen as the typical level of the
local reaction field that is generated by the assembly. In these simulations, one still has
L = 200 µm, W = L/2, and d = 300 nm. The out-of-plane magnetic field is ramped
up from 0 to a maximal value Ha at the constant rate Ḣa ∼ 12.5 Oe/s, before being
ramped back to zero at the same rate. For each set of parameters, the extreme value of
Ha is chosen so as to ensure the complete penetration of the films. The mesh size in the
superimposed region is set to 1 µm, while it is either 1 or 5 µm in the outer regions of
the square film.
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Figure 6.10: ℓh/L as a function of B0/µ0Jc(0)d. B0 and Jc(0) are parameters that de-
scribe the magnetic-field dependence of the critical current density. The plain red curve
corresponds to the least-square fit on the data, based on the expression of Equation 6.6,
which yields C1 = 0.33 and C2 = 1.44. The measured values of ℓh emerging from the
numerical simulations are indicated by the blue circles. For each simulation, L = 200 µm,
W = L/2 and d = 300 nm. The applied field is ramped at a constant rate Ḣa = 12.5
Oe/s, from 0 to a maximal applied field that entails the complete penetration of the films,
before being decreased back to the remanent state, where ℓh is probed.

A unidirectional shell transformation with A = 75 µm was used for all simulations. Note
that the selected value of A lies in the interval of values that was prescribed in Chapter 2
for a single film. In the particular case B0 = 20 mT and Jc(0) = 4 MA/cm2, the obtained
magnetic-field distribution was also compared to the results simulated with a truncated-
geometry approach, and to those obtained with a unidirectional shell transformation with
A = 26 µm, which is the recommended value of A for a thin square film of length L = 200
µm, see Figure 2.13. The mean absolute errors of the magnetic field in the square film
did not exceed 2% of the field trapped at the center of the assembly, with most error
occurring at the level of the d-line. Besides, the critical-state structures were found to be
identical. In particular, the length ℓh remained the same in all tested simulations.

Remarkably, the values of ℓh appear to fall on a unique curve that decreases with increasing
B0/µ0Jc(0)d. The magnetic induction Bint and Bext in Equation 6.5 can be normalized
with respect to B0/µ0Jc(0)d, in such a way that Equation 6.5 now reads as

ℓh
L

=
C1

C2 +
B0

µ0Jc(0)d

. (6.6)

Equation 6.5 thus suggests a first-order estimation of the variations of ℓh as a function
of the physical parameters that are involved in Kim’s law, which are B0 and Jc(0). The
values of C1 and C2 can be estimated from the least-square fit of Equation 6.6 on the
numerical results of Figure 6.10. One finds C1 = 0.33 and C2 = 1.44. The resulting
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fitting curve, indicated by the plain red line in Figure 6.10, is found to be in excellent
agreement with the numerically estimated ℓh.

One can easily understand why ℓh decreases when B0 increases, as inferred from Fig-
ure 6.10. For fixed Jc(0) and a high value of B0, Jc(B) barely decreases with |B|, in
agreement with Kim’s law. The magnetic-field variations induce small current-density
changes, reducing the influence of the three-dimensional geometry and hence the value of
ℓh. Moreover, it is interesting to note that the ratio B0/Jc(0) is also found in the CSM
expression of the critical current density in the longitudinal geometry, which is

Jc(0)

|Jy(x)|
=

√(
1 +

µ0Ha

B0

)2

+
2µ0Jc(0)

B0

(
|x| − W

2

)
, (6.7)

where x is the distance from the center of an infinitely long superconducting slab of width
W . Equation 6.7 indicates that B0/Jc(0) controls the amplitude of the variations of the
critical current density in bulk samples. Similarly, the ratio B0/µ0Jc(0)d characterizes the
distributions of the magnetic field and the current density in thin superconducting films
[238]. Therefore, it sounds logical that this ratio is related to the distance ℓh, which is
the distinctive trait of the two-layer assemblies.

At this stage, the influence of Kim’s law on the critical states in the three-dimensional two-
layer assemblies has been made very clear. Nevertheless, it is worth stressing out again
that this mechanism is not the only one that can be held responsible for the apparition
of unusual central d-lines. Applying an external in-plane magnetic field is for instance
able to induce anisotropy of the critical current density and therefore modify the critical-
state networks [97]. The in-plane components of the reaction field generated by one
film could potentially lead to induced in-plane anisotropy in the other film. However,
the numerical simulations confirm the absence of induced in-plane anisotropy. First,
the numerical simulations present striking quantitative similarities with the experimental
results, although no in-plane field was generated in the assembly. Second, the computed
intensity of the in-plane components of the reaction field inside the films does not exceed
60 Oe, that is to say much less than the required 300 Oe.

6.3 Influence of the geometrical parameters of the

two-layer assembly on ℓh

In Section 6.2, it was suggested that the additional central d-line arises in the two-layer
assemblies for two reasons. First, the natural C4 symmetry of the square film is broken
as the consequence of the magnetic interaction with the closely placed rectangular film.
Second, the magnetic-field dependence of the critical current density is paramount to the
development of these additional d-lines. The influence of the Jc(B) law was discussed
thoroughly in Subsection 6.2.4 and Subsection 6.2.5. In this section, the focus is put on
the role played by the magnetic interaction between the two films. Its effect is studied
by varying the geometrical parameters of the two-layer assembly: the thickness of the
insulating layer, tSiO2 , the width of the strip,W , and the lateral position of the rectangular
film with respect to the center of the square film, Xc.
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In what follows, the assembly will always be composed of a square film of side L = 200
µm, above which is superimposed a thin rectangular strip of length L and width W < L,
in such a way that its longest median is aligned with the vertical median of the film. The
thickness of both the square and the rectangular films are set to 300 nm. The assembly is
still subjected to an out-of-plane magnetic field, Haẑ, which is raised from 0 to a maximal
applied field, before being ramped back to the remanent state at the same constant rate,
Ḣa ≈ 12.5 Oe/s. The parameters of Equation 6.2 are set to the given values Jc(0) = 4
MA/cm2, B0 = 20 mT, and α = 1. Individual geometrical characteristics of the geometry,
i.e. tSiO2 , W , and Xc, are now changed one by one, and their effect on ℓh and the d-line
layout is numerically monitored and commented in the rest of the section.

6.3.1 Influence of tSiO2
on ℓh

First, let us investigate the effect of the strength of the magnetic coupling between the
square and the rectangular film. The intensity of the reaction field generated by one of
the superconducting films decays as one gets further from the surface of the film. In the
simulations, this can be done by changing the thickness of the insulating SiO2 layer, tSiO2 ,
that separates the two superconducting films.

In these upcoming simulations, the maximal value of Ha was set to 25 kA/m ≈ 315 Oe,
in order to reach full penetration during the raising stage of the applied field. A shell-
transformation technique was used, with A = 75 µm. tSiO2 ranges over several orders
of magnitude, from 3 nm to 300 µm. Since the effect of the coupling between the films
is investigated here, the insulating layer is subdivided in 10 layers in order to ensure a
good interpolation of ϕ in between the films. To keep the duration of the simulations
acceptable, the in-plane mesh of the extruded layers was reduced in consequence, so that
the mean mesh size is uniform in the whole square and rectangular films and equal to 5
µm. The uncertainty on the reported values of ℓh is thus expected to be larger than in
the previous simulations. Simulations with a finer mesh size ∼ 1 µm in both films were
also carried out for tSiO2 = 3 nm, 300 nm and 3 µm, yielding a more precise estimation of
ℓh. Nonetheless, the obtained values were the same as those computed with the coarser
mesh.

Whatever the thickness of the insulating layer, the d-line patterns are the same as that
described in Subsection 6.2.3. The ℓh-values are collected for each value of tSiO2 and the
results are displayed in Figure 6.11 on a logarithmic-scaled plot. Up to tSiO2 ∼ 10 µm,
ℓh is almost constant. When tSiO2 ≳ 10 µm, ℓh decreases monotically with tSiO2 . For
very large tSiO2 ≫ d, for which ℓh ≪ L, alongside the shrinkage of ℓh, the kinks that
affect the d-lines at the junction between the overlap region and the rest of the square
film progressively vanish, and d-lines stemming from the corners of the film progressively
align with the diagonals of the square.

The results of Figure 6.11 materialize the intricate relation between the intensity of
the magnetic coupling between the films and the architecture of the critical states, in
particular, the length ℓh. In fact, the closer the films, the stronger the coupling between
the films, and the more the d-lines are distorted. By contrast, if the films are far from each
other, the mutual influence of both films weakens, and the current distribution in the films
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Figure 6.11: Dimensionless extension of the horizontal d-line, ℓh/L, as a function of
normalized insulating thickness between both films, tSiO2/d. In each simulation, the values
of ℓh/L are measured when the two-layer assembly is in the remanent state, after an initial
magnetization from a virgin state up to 315 Oe (50 kA/m). The values of ℓh/L correspond
to the blue circles. The red curve depicts the evolution of the normalized scalar magnetic
potential, ϕ/ϕ0, as a function of the dimensionless distance from the square-film surface,
Z/L. ϕ0 is the magnetic potential on the upper surface of the film, evaluated at O, the
center of the square film, and ϕ is evaluated at a distance Z from O, as shown in the left
inset. L = 200 µm, W = L/2 and d = 300 nm. The parameters of the generalized Kim
law are Jc(0) = 4 MA/cm2, B0 = 20 mT and α = 1.

approaches the undisturbed distribution that is observed in isolated films. Interestingly,
the decrease of ℓh/L as a function of tSiO2/d is reminiscent of the decay of the scalar
magnetic potential, ϕ/ϕ0, as a function of the distance from the top surface of the film.
This is illustrated by the red curve in Figure 6.11, which corresponds to the value of ϕ/ϕ0

derived in Appendix B for a fully penetrated square film.

6.3.2 Influence of W on ℓh

Now, let us consider variations of the rectangular strip width W . The motivation behind
this analysis starts with Equation 6.5, which gives a theoretical estimate of ℓh as a function
of the average trapped field in the overlap region and in the outer bands of the square
film. When W is increased, the area of the overlap region increases, which implies the
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reduction of the area covered by the outer regions. This might influence the average
amount of trapped magnetic field in each region, and consequently the values of ℓh. The
aim of this subsection is therefore to evaluate the influence of W on ℓh. To this aim, tSiO2

is set to 300 nm again, while W is allowed to vary.

Figure 6.12 shows the out-of-plane component of the magnetic field, Bz = µ0Hz, in the
square film for various widths (a) W = L/12, (b) W = L/4, (c) W = L/2 and (d)
W = 3L/4, respectively, with L = 200 µm. The maximal applied field is now set to
500 Oe to ensure the full penetration of magnetic field in the assembly before decreasing
Ha to zero. The d-line network is fairly similar to what was observed previously. The
diagonal d-lines undergo several kinks and clear changes of directions that remind the ones
obtained with the simplified model, see Figure 6.9. The length of the central horizontal
line, ℓh, does not vary monotonously with W . For the smallest W = L/12, see panel
(a), ℓh ∼ W . Then, as W increases, ℓh increases as well, as shown in panel (b), where
W = L/4. It then increases slightly for W = L/2, see panel (c), and finally decreases
when W = 3L/4, as shown in panel (d).

A more detailed picture of the evolution of ℓh as a function of W is shown in Figure 6.13.
One can verify that ℓh first increases as ∼ W for the smallest W , before it reaches a
maximum, which is close to 5W/12 for this particular set of parameters. In the extreme
configuration W = L, ℓh vanishes. This situation corresponds to a stack of two square
films, a configuration where the out-of-plane symmetry of the assembly is recovered, so
that the d-lines correspond to the diagonals of the square films.

One can also refer to the generalization of the simplified critical-state model of Subsection
6.2.5 to the case of a centred strip of arbitrary width W ≤ L, whose mathematical
developments are derived in Appendix C.2, see for instance Equation C.12, which is
verified if the condition described by Equation C.14 holds. As W → L, |Bint| decreases
because the area of the overlap region increases and includes less intense magnetic field
levels, as it can be inferred from panels (b), (c) and (d) of Figure 6.12. Therefore, Jc,s−int

is enhanced, leading to a reduction of the ratio Jc,s−ext/Jc,s−int and ℓh, in agreement
with Equation C.12. Note that, according to Equation C.12, this reduction is further
exacerbated by the factor 1−W/L.

It is worth noting that the simplified model leading to Equation 6.5 is not valid for small
W , as explained in Appendix C.2. Instead, it appears that ℓh is limited to the width
of the strip, with clear kinks on the diagonal d-lines that arise in the regions where the
films do not overlap. This trend is shown in Figure 6.13 by drawing the line ℓh = W ,
which corresponds to the red dotted line. One can indeed see that the simulated results
fall on this line until W ≈ L/10. Put differently, Figure 6.13 exemplifies the non-trivial
and non-linear impact of the magnetic interaction between the films on the geometrical
characteristics of the d-lines, including the ℓh-values.

6.3.3 Influence of Xc on ℓh

Up to this point, the rectangular film was always centred with respect to the square film,
i.e. the projection of the longest median of the rectangular film coincides with one of the
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Figure 6.12: Distributions of Bz = µ0Hz in the square film of the two-layer assembly for
different values of the strip width, W . The assembly is in the remanent state, after an
initial magnetization from a virgin sample to 500 Oe. (a) W = L/12, (b) W = L/4, (c)
W = L/2 and (d) W = 3L/4. In each simulation, L = 200 µm and d = 300 nm. The
parameters of the generalized Kim law are Jc(0) = 4 MA/cm2, B0 = 20 mT and α = 1.
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Figure 6.13: Dimensionless extension of the horizontal d-line, ℓh/L, as a function of the
dimensionless width of the rectangular strip, W/L. The two-layer assemblies are in the
remanent state after an initial magnetization from a virgin sample up to 500 Oe. For all
values of W , the longest median of the rectangular strip is aligned with one median of
the square film. The dashed line serves as a guide for the eye and corresponds to ℓh = W .
For all simulations, L = 200 µm, and d = 300 nm. The parameters of the generalized
Kim law are Jc(0) = 4 MA/cm2, B0 = 20 mT and α = 1.

median of the square. If the rectangular strip is moved to the right by a distance Xc,
the total magnetic field to which the square film is subjected changes, since it includes
the contribution of the reaction field coming from the rectangular film. Modifications of
the critical-state structure in the two-layer assembly are therefore expected. Hence, this
subsection focuses on the layout of the critical states in these off-centred geometries. To
this aim, the width of the rectangular strip is set again to W = L/2. The out-of-plane
component of the magnetic field in the square film, µ0Hz, is represented in Figure 6.14
for Xc = 10, 20, 30 and 40 µm.

In all cases, one can clearly see the imprint of the d-lines arising in the square film, which
consists in the deviated diagonals of the square that meet at the centre and form the
horizontal line, and the one from the rectangular film, which is the ‘double Y’-shaped set
of d-lines. However, two distinct features can be highlighted with respect to the centred
case. First, it appears that the horizontal line shrinks to zero as the lateral offset of the
strip is increased. For Xc = 40 µm, it has almost completely vanished, and the d-lines
originating from the corners of the square film coincide with the diagonals of the square.
Second, the magnetic-field imprint of the thin strip is not a straight ‘double Y’, as it was
the case in the centred case. Instead, one can note a slight bending of the vertical branch
of the ‘double Y’ pattern. One can also observe that the Hz distributions are no longer
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symmetric with respect to the longest median of the overlap region, where, on average,
the Hz levels are larger to the left than to the right of the vertical branch.

These simulations hence highlight the influence of the lateral position of the rectangular
film on the magnetic interaction between the films, as it determines the exact three-
dimensional shape of the magnetic field to which each film is subjected. Therefore, the
role played by the magnetic coupling between films of different cross sections on the
magnetic-field distributions in two-layer assemblies was once again underlined.

6.4 Magnetic response of three-layer assemblies

Finally, let us extend the study of the critical states in assemblies of superimposed films
with different cross sections to the case of three-layer assemblies. By investigating three-
layer arrangements of films, one is able to verify whether the critical structures in three-
layer assemblies change with respect to those observed in two-layer assemblies, but also
to visualize the effect of the out-of-plane film ordering on the d-line networks. In what
follows, two different assemblies will be considered, both of them being sketched in Figure
6.15. The first assembly, which is depicted in panel (a) of Figure 6.15, consists in a
square film that is sandwiched in between two rectangular strips. It will be referred to
as the rectangle-square-rectangle (RSR) assembly. Proximity effects between the square
film and the rectangular strips are avoided by depositing a SiO2 layer between them. This
layout is thus symmetric with respect to the x-y plane. The second assembly, which is
represented in panel (b) of Figure 6.15, still involves a superconducting square film and
two rectangular strips, but this time, the strips are placed on the same side of the square
film. By contrast to the RSR assembly, the out-of-plane symmetry of the arrangement is
therefore broken. This arrangement of films will be referred to as the square-rectangle-
rectangle (SRR) assembly.

Whatever the configuration, all the superconducting films have the same thickness, d =
300 nm, while the insulating layers have all the same thickness, tSiO2 = 300 nm. The
square films consist in L × L films, with L = 200 µm, while the rectangular ones are
L × W films, with W = L/2. The longest medians of the rectangular strips are here
aligned with one of the medians of the square film, so that the assembly is symmetric
with respect to the selected median. In these simulations, Jc(0) = 4 MA/cm2, B0 = 20
mT and α = 1 in all films. The average mesh size is 1 µm in the whole strip and is relaxed
back to 5 µm on the left and right edges of the square film.

The simulated distributions of Bz in each film and for each configuration are shown in
Figure 6.16. The results for the RSR assembly are shown in the left column (panels
(a), (c) and (e)), while those of the SRR assembly are shown in the right column (panels
(b), (d) and (f)). As in the case of the two-layer assembly, the out-of-plane magnetic field
remains the same in all the films, whatever the configuration. Barely noticeable variations
of the maximal intensity occur from one film to another one. In the RSR configuration, the
Bz distributions in the rectangular films are rigorously the same due to the out-of-plane
symmetry of this layout. Moreover, a horizontal d-line is present in both cases. However,
some differences can be noticed. First, in the SRR layout, two ‘double Y’-shaped patterns
appear at the center of each film, while a single magnetic-field footprint is observed in the
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Figure 6.14: Distributions of Bz in the square film of a two-layer assembly made of a square
and a rectangular film. The rectangular strip is off-centred by a horizontal distance Xc

which is equal to (a) 10, (b) 20, (c) 30 and (d) 40 µm. The arrows above the upper side of
each image represent the distance Xc from the vertical median of the square film, which
is indicated by the dashed lines. The width of the rectangular film is W = 100 µm, while
the length and the thickness of both films are L = 200 µm and d = 300 nm, respectively.
The parameters of the generalized Kim law are Jc(0) = 4 MA/cm2, B0 = 20 mT and
α = 1.
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Figure 6.15: Geometries of three-layer assemblies made of two rectangular strips and one
thin square film, where the rectangular films are either placed (a) on each side of the
square film (RSR assembly), or (b) on the same side of the square film (SRR assembly).
The applied field, Ha, is perpendicular to the cross section of the films. The length of the
square and the rectangular films is L, while the width of the rectangular film is W . The
thickness of each film is d, and the thickness of each intermediate insulating SiO2 layer is
equal to tSiO2 . The longest medians of the rectangular strips are aligned with one of the
medians of the square film.

RSR assembly. In the SRR configuration, which is non-symmetric along the out-of-plane
direction, two pairs of branches spread from the corners of the rectangular films, with
an angle that differs from the π/4-angle that is observed in the two-layer and the RSR
assemblies. Besides, the length of the horizontal line depends on the disposition of the
films, as ℓh/L is equal to 0.17 and 0.19 in the RSR and SRR configurations, respectively.
In the case of the centred (Xc = 0) two-layer assembly, ℓh/L = 0.12, which is lower than
in the two three-layer arrangements. Therefore, the number of films and their ordering
has a tangible impact on the magnetic-field distribution in the films.

Considering equal spacing between successive films, the fact that ℓh is longer in three-layer
assemblies than in two-layer assemblies can be understood in the light of the simplified
model from Section 6.2.5. In the remanent state, when another strip is added, the
magnetic field that is trapped in the region where the films overlap is increased. As a
consequence, the difference between Jc,s−int and Jc,s−ext is exacerbated, and ℓh increases,
as indicated by Equation 6.4.

Although the distributions of Bz in the rectangular and the square films are roughly the
same for a given three-layer structure, one should expect different current-density patterns
from one film to another. These differences can be explained as follows. Although the
mechanism that is responsible for the apparition of the additional kinked d-lines stays the
same as in the two-layer case, the relative positions between the different films influence
the strength and the orientation of the total reaction field that threads a given film.
For example in the RSR layout, the penetration of magnetic field in the square film is
determined by the strength of the applied field, but also by the equal influence of each
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Figure 6.16: Distributions of Bz in the rectangular and square films in the three-layer
RSR configuration (panels (a), (c) and (e)) or in the SRR configuration (panels (b), (d)
and (f)), see panel (a) and (b) of Figure 6.15, respectively, for a visual description of
the two assemblies. Panel (a) and (b) correspond to the uppermost rectangular films in
the RSR and SRR layouts, respectively. The width of the rectangular films is W = 100
µm, while the length and the thickness of the films are L = 200 µm and d = 300 nm,
respectively. The parameters of the generalized Kim law are Jc(0) = 4 MA/cm2, B0 = 20
mT and α = 1.
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equally distant rectangular strip. The magnetic-field penetration in the rectangular strips
is instead feeling the influence of the square film predominantly, as the second rectangular
strip lies further, meaning that its contribution to the reaction-field strength and direction
is weakened. A similar argument can be enunciated to explain why the current-density
distributions in the two rectangular films of the SRR disposition differ from each other.
Therefore, the induced-current loops might become very complex, so that it is difficult
to predict how the d-lines are organized inside multilayer samples. In any case, as it was
already highlighted for the two-layer assembly, one cannot simply assume that the current-
density patterns in these structures, where the cross sections of the films are dissimilar,
will correspond to those of individual isolated films.

6.5 Conclusion

This chapter was devoted to the description of the critical states in three-dimensional
assemblies made of a square film and a thin rectangular strip superimposed on top of
each other. MOI has revealed non-trivial networks of d-lines that cannot be obtained by
a simple superposition of the d-lines of each isolated film. Moreover, the d-line patterns
are observed to vary with the applied field. More specifically, at the center of the assembly,
a central d-line appears with a vertical orientation for increasing fields and a horizontal
orientation for decreasing fields.

Numerical modelling then helped to emphasize the underlying phenomenology. First, the
magnetic coupling between the rectangular strip and the square film induce the breaking
of the C4 symmetry of the square film. The films interact with each other through their
reaction field, which influences the magnetic-field penetration. Then, most crucially,
a magnetic-field dependence of the critical current density generates imbalances in the
critical-current-density distribution within the square film, which in turn force the current
to go along distorted loops to ensure current conservation.

Based on a simplified two-dimensional model constructed on the critical-state model, a
systematic numerical study of the parameters that describe the magnetic-field dependence
of the critical current density was then carried out. Despite being rudimentary, the
simplified model gives significant insight on how the d-line networks are modified. Simple
expressions of the lengths of the vertical or horizontal d-lines as a function of the mean
values of the trapped field in the overlap and outer regions were derived in Appendix C.

Thereafter, an extended investigation of the role played by the magnetic coupling between
the two films on the position of the d-lines was carried out. This was achieved by modifying
some geometrical parameters of the assembly, such as the separation between the films,
the width of the rectangular strip, and the lateral position of the strip. It was clearly
shown that the closer the films, the more perturbed the d-line patterns. Besides, a vast
and rich variety of critical-states patterns was displayed as the lateral position and the
aspect ratio of the strip were changed. This allowed one to verify the importance of the
magnetic coupling between the films on the shape of the d-line patterns, as the strength
and the orientation of the reaction field that embraces each film were changed for each
set of parameters.
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Finally, the magnetic-flux penetration in three-layer assemblies that include two rectangu-
lar and one square films was also studied. Although the obtained critical states were close
to those observed in the two-layer assemblies, it appeared that the ordering of the films
in the out-of-plane direction was able to induce variations of the current loops from one
film to another one. These tangible differences further corroborated the sensitivity of the
d-line architecture to the shape of the reaction field that is perceived by each film in the
assembly, when a magnetic-field dependence of the critical current density is accounted
for.

The results of this chapter show how cautious one has to be when considering stacks
of tapes with non-uniform cross sections, since the geometry of one layer could heavily
perturb the magnetic-field and the current distributions across the various layers, forcing
the current density to follow unexpected routes. However, to the best of my knowledge,
the kind of critical states that were described here are not observed in stacks of films of
identical cross sections, such as the commercial ones, given that they are subjected to a
uniform out-of-plane magnetic field. Deviations of the current patterns in superconducting
tapes subjected to the stray field of a rotating magnet have however been reported, even
with constant Jc [258]. Besides, the spacing between the films also has a non negligible
effect on the field distributions, as it fine-tunes the strength of the interaction between
the different films. All of this calls for further investigation concerning the shape of the
different films, their thickness, and their spacing, which could be used for heterostructures
based on superconducting films, such as shifted strip arrays, magnetic cloaking, or fast
logic devices [44].
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This thesis was devoted to the numerical investigation of the penetration of magnetic
flux in structured systems made up of superconducting films and subjected to a uniform
out-of-plane magnetic field. The focus was essentially put on elucidating the question of
the physical or phenomenological origin of unexpected observed d-line patterns in several
experiments. To this aim, numerical methods proved to be a crucial tool to test the
validity of hypotheses and to collect insightful information on the electromagnetic fields,
which would be otherwise complicated, or even impossible, to evaluate experimentally.

The numerical modelling of the magnetic field penetration in thin superconducting films
was addressed by means of a finite-element method, based on the H-ϕ formulation. This
numerical method requires to mesh the non-conducting domain, which increases the num-
ber of degrees of freedom of the problem. Usually, a domain truncation is used to keep
the non-conducting domain finite, at the cost of imposing a Dirichlet boundary condition
at a finite distance of the conducting domain. By contrast, shell-transformation tech-
niques map infinite domains onto finite ones, so that the Dirichlet boundary condition
is correctly applied at an infinite distance from the superconductors. Therefore, it was
investigated whether the latter approach could reduce the number of degrees of freedom in
the non-conducting domain by reducing the size of the shell domain as much as possible,
while achieving a given level of accuracy for the interpolation of the magnetic field and
the induced currents. The optimal size and mesh quality for the shell domain were nu-
merically investigated for single films with different aspect ratios, and recommendations
were made for the choice of the transformation parameter. For thin superconducting
disks, it was found that using a spherical shell transformation was the most beneficial
shell-transformation shape, as the simulation time was reduced by 35% with respect to
the truncation method. However, the spherical shell transformation only reduced the sim-
ulation time by 5% in the case of rectangular films. Unidirectional shell transformations,
which were the most investigated shell transformation, did not reduce the simulation
time significantly, and therefore appear to be of marginal interest. Besides, it was shown
throughout the manuscript that the shell-transformation approach was as accurate as the
method of truncation for a variety of film geometries and three-dimensional supercon-
ducting assemblies, independently of the choice of the constitutive laws, such as isotropic
or anisotropic E-J laws, or magnetic-field-dependent critical current density, Jc(B).

The H-ϕ formulation was then used to investigate the origins of the excess magnetic
field penetrations and the temperature widening of the parabolic discontinuity lines that
develop around edge indentations in thin niobium films. In particular, the plausibility
of the suggestion of [41], which argues that the deviations from the Bean model stem
from a depletion of the Bean-Livingston barrier at the tip of the indentation, was tested.
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Surface barriers effects were included in the finite-element simulations by means of an
artificial peripheral region of enhanced pinning. The numerical simulations then confirmed
the phenomenology of the experiments, as the indentation indeed acted as a tiny flux
faucet through which magnetic flux penetrates more easily, leading to enhanced excess
penetration depths and wider parabolic discontinuity lines than what is predicted by the
Bean model. However, unambiguous evaluation of the temperature dependence of the
surface barriers at the indentation and away from it are currently lacking for niobium
films. Further experimental work is therefore needed to conclude on the opening of the
parabolic d-lines with increasing the temperature, which were observed in [41].

A major finding of this work concerns the fundamental influence that the magnetic field
dependence of the critical current density can have on the critical states in systems made
of superconducting thin films. Usually, the Jc(B) dependence only influences the magnetic
field and current density levels in the films, but the d-lines, which mark the position of
the abrupt current density changes of orientation always coincide with symmetry lines
that depend on the geometry of the sample and the distribution of the critical current
density in the sample. Besides, once the system is fully penetrated, the d-line patterns no
longer evolve. These two generally accepted principles were however found to be violated
in two radically different cases.

The first case concerns thin square superconducting films which are pierced with a regular
array of triangular antidots. The C3 symmetry of the triangular holes breaks the C4 sym-
metry of the square cross section of the sample. At the micro-scale, vortices escape more
easily from the triangular holes through their vertices than through their flat edges, since
current crowding is enhanced in the vicinity of the sharp tips of the triangular holes. The
system is therefore inherently anisotropic. Moreover, time-dependent Ginzburg-Landau
simulations revealed the magnetic field dependence of the system anisotropy. These ob-
servations were transposed at the macro-scale, by considering a magnetic-field-dependent
anisotropic E-J law. Finite-element numerical simulations then highlighted critical state
structures that change with the applied field, qualitatively reproducing the experimental
observations.

The second category of systems consists in three-dimensional assemblies made of a rect-
angular film superimposed on a square film. In the region where the films overlap, the
total field to which the square film is subjected includes the contribution of the reaction
field emanating from the rectangular film and differs from that in the rest of the film.
Hence, because of the Jc(B) dependence, the critical current density in the overlap region
differs from that in the region where the films do not overlap and the C4 symmetry of the
square sample is broken. This non-uniform distribution of the critical current density is
at the origin of the applied-field-dependent critical states. Numerical modelling of these
systems allowed one to evidence the role of the Jc(B) dependence and to carry out a sys-
tematic investigation of the role of the magnetic coupling in these multilayer assemblies,
in very good phenomenological and good qualitative agreement with the experimental
observations.

In both cases, the metamorphosis of the d-lines are unambiguously illustrated with the
reversal of an additional d-line that arises in the centre of the assembly. As the applied
magnetic field is decreased back to zero after a first magnetization from a virgin state, it
can in fact be observed that this central d-line goes from a vertical position to a horizontal
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one, or, by contrast, from a horizontal to a vertical position. Besides, it is worth noting
that these critical states are not related to any kind of extrinsic anisotropy that would
stem from applying an external in-plane field [97]. Instead, these peculiar critical states
were reported in systems whose geometrical characteristics are non-symmetric, such as
the array of triangular antidots or the different film cross sections in the three-dimensional
assemblies. Therefore, it is not expected to observe such distortions of the critical states
in stacks of identical centred tapes.

Besides, the magnetic field dependence of the critical current density not only influences
the critical states that progressively develop during the smooth penetration of the mag-
netic field, but also impacts the regime of magnetic flux avalanches. The magnetic field
dependence was suggested as a possible explanation for the triggering of flux avalanches
along the smooth edges of niobium films, while they are expected to nucleate instead
at the tip of the edge indentation, according to the literature. When the magnetic field
dependence of the critical current density is accounted for, numerical modelling of the
magnetic field penetration in a square film with a triangular indentation showed that,
although the electric field is the highest at the indentation tip, the current density is
depleted in the vicinity of the indentation. This contradicts the commonly accepted
statement that current crowding occurs at the indentation tip. At the tip of the indenta-
tion, the combination of the electric field enhancement with the current density depletion
can sometimes result in a lower threshold magnetic field along the smooth border than at
the indentation, whereas this threshold field will always be lower at the indentation when
the critical current density is assumed to be field-independent.

In its current form, the finite-element model could be improved on several aspects. For
instance, in the simulations that were carried out in this thesis, the mesh across the thick-
ness of the film is made of only one element. By doing so, the eddy currents generated
by in-plane variations of the magnetic field are disregarded. This assumption also ne-
glects the induced currents along the thickness of the film, which might be detrimental in
more complex situations where the distribution of the magnetic field across the thickness
must be determined with precision. In this case, the number of degrees of freedom in the
conducting domains might become a limiting factor, numerically speaking. Therefore, ap-
proaches that reduce the number of degrees of freedom associated to the superconducting
films might be required [259]. Besides, since the asymptotic behaviour of the magnetic
potential scales as ϕ ∼ Z−2, it would be interesting to test whether using second-order
elements in the shell domain could reduce the number of degrees of freedom. Finally, it
is worth stressing out that the mesh quality in the immediate vicinity of the supercon-
ducting films influences a lot the quality of the approximation of the magnetic field inside
the films. For this reason, using fine structured meshes in the surroundings of the films
is recommended.

The models could also be adapted to account for several phenomenological elements that
were omitted. For example, the anisotropy that is induced by in-plane fields was not
modelled in our simulations of the critical states in multilayer assemblies. Although the
in-plane field that was applied in the experiments of [44] was not large enough to induce
anisotropy in the film, it would be interesting to see if the critical states are significantly
modified when a large enough in-plane field is applied. To this aim, one could use the
anisotropic model of [108] to account for this additional phenomenon. Surface barriers
could also be taken into account in the model, and it would be interesting to study how
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they influence the magnetic flux distributions in such assemblies and how the subsequent
changes in the magnetic field levels modify the corresponding current density patterns.

Moreover, in the anisotropic model that was used for describing the magnetic flux pene-
tration in films with the square array of triangular holes, the interstitial current density
that flows in between the holes is not fully modelled, so that its influence on the magnetic
field dependence of the anisotropic current density is not entirely described. Including
this contribution in the anisotropic model could improve the quantitative comparison
between simulations and the experiments. It is also worth noting that the macroscopic
anisotropic E-J law does not exactly reflect the C3 symmetry of the antidots. Adapting
the shape of the critical curve to the symmetry of the holes must however conserve the
convexity of the curve, so that more complex mathematical expressions than the ovoid-
shaped critical curve should be considered. This would allow for a better estimation of
the critical current densities when the current density is forced to flow along directions
that are not aligned with the principal axes of the ovoid, i.e. for more elaborated film
cross sections. In any case, the direct and naive approach, where the array of antidots
is described explicitly, seems unrealistic, as meshing a very fine array of tiny triangular
holes with enough resolution in the superconducting film is out of reach for nowadays
computers.

Finally, it is worth stressing out that modelling surface barriers in three-dimensional
geometries remains a challenge that needs to be tackled. The choice that was assumed in
this work was to emulate the surface currents by means of a peripheral region of enhanced
pinning. Although the approach reproduces quantitatively the expected behaviour of
surface barriers, it does not capture the phenomenology entirely. On the one hand, the
current model allows unphysical negative field values in the peripheral region. This is
a consequence of the current density distribution that results from the delimitations of
the regions with uneven critical current densities. Moreover, due to numerical issues, the
dummy critical current density in the peripheral region could not be set to a value as high
as the depairing current, while the actually realized value of the peripheral current density
depends on the n-exponent of the E-J law. On the other hand, the delayed entrance of
magnetic field that is concomitant with surface barriers also needs to be improved. A
three-dimensional surface barrier model that replicates all the main characteristics of
a non-uniform surface barrier is therefore still to be devised, and could be useful for
practical reasons, since surface barriers were found to enhance the critical current density
in superconducting films coupled with magnetic layers [260, 261], or to play a role in
SQUIDs and single photons detectors [221, 222]. Coupling a complete surface barrier
model to thermomagnetic simulations would also help to evidence whether surface barriers
play a role on the onset of magnetic flux avalanches in superconducting films. Last, more
accurate models of the geometrical variations of surface barriers could also be investigated
and compared to the first-order approach that was selected here.

Despite these shortcomings, the numerical models that were developed in this thesis con-
stitute a set of tools that can be used in future works in a more applicative context.
The anisotropic feature that is induced by the arrays of triangular antidots could be
exploited to fabricate single films with a slight flux-concentrating or flux-expulsion prop-
erty, depending on the orientation of the triangular holes. For instance, by making all
the triangular holes point towards the centre of the sample, the motion of the vortices
would in principle be facilitated as they head towards the centre while their motion would
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be hindered as they leave the sample. The anisotropic model that was developed could
therefore be adapted to the study of the macroscopic flux penetration in such systems.

Besides, the advantages of using thin films and tapes over bulk samples [8] could be
considered for assemblies of films with different cross sections to design superconducting
metamaterials [44, 256, 262] or magnetic flux concentrators [263, 264], which could in
turn be combined with SQUIDs. More complex arrangements of films also seem to be
beneficial for the performance of levitating devices [12]. For these kinds of applications, it
would be interesting to investigate whether using films with non-identical cross sections
would significantly impact their characteristics. Combining different planar geometries
indeed influence the way magnetic field is distributed and penetrates in the assembly, so
that it might be possible to come with material designs with a non-uniform magnetic
permeability, concentrating the magnetic flux on given target areas. Numerical modelling
would then reveal particularly useful for designing such materials, particularly if the Jc(B)
dependence must be accounted for in the films, since the current patterns might become
complex.

Finally, the experimentally observed deflections of the critical states could be used for
material characterization. For example, the extension of the horizontal line in bi-layer
assemblies could give some information about the presence and the characteristics of the
magnetic field dependence of the critical current density of a given superconducting wafer.
Similarly, measuring the curvature of the parabolic d-lines around indentations could also
provide information on surface barriers or on the nature of the surface defects.
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Appendix A

Newton-Raphson ∂E/∂J tensor

A.1 Isotropic superconductor

Consider the electrical resistivity of an isotropic superconductor, which is given by Equa-
tion 2.18. From this expression, one obtains the derivative of the component Eα with
respect to Jβ, where α and β can both be taken among x, y or z,

∂Eα

∂Jβ
=

∂

∂Jβ

{
Ec

Jc

( |J|
Jc

)n−1

Jα

}

=
Ec

Jn
c

{
|J|n−1δαβ + (n− 1)|J|n−2 Jβ

|J|Jα
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( |J|
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Ec

J3
c

( |J|
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)n−3

JαJβ, (A.1)

where δαβ is the Kronecker function. The expression of the ∂E/∂J tensor immediately
follows

∂E

∂J
=
Ec

Jc

( |J|
Jc

)n−1

I3 + (n− 1)
Ec

J3
c

( |J|
Jc

)n−3

JJT, (A.2)

where JT = (Jx, Jy, Jz) is the transpose of J, and I3 is the 3× 3 identity tensor.

A.2 Asymmetric anisotropic superconductor

Let us start from the generic phenomenological dissipation function, described by Equa-
tion 5.6, and a three-dimensional extension of Equation 5.7, Equation 5.8, and a gener-
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alized version of Equation 5.9, that are now written as

E = Es + Ea, (A.3)
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According to [108], the components of the electric field, E, can be obtained as the deriva-
tives of F with respect to the components of the current density, J. Consequently, one
can write
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, (A.6)
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where α can be taken among x, y or z. Together, Equation A.6 and Equation A.7 yield
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where one has assumed n = 2M − 1 and F0 = EcJc,x/2M .

Now that E = (Ex, Ey, Ez) has been derived, one can calculate the ∂E/∂J tensor. One
has, with α and β being both equivalent to one of the arbitrarily selected indices x, y or
z,
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where δαβ is the Kronecker function. Equation A.9 is a non-symmetric tensor, given that
the parameters Cα and Jc,α are not equal. When the relations Jc,x = Jc,y = Jc,z and
Cx = Cy = Cz = 0 stand true, one recovers the symmetric tensor ∂E/∂J described by
Equation A.2. In practice, the divergence that arises when J = 0 is skirted by adding
an extremely small offset ∼ 100 µA/km2 each time Es appears at the denominator of a
fractional expression.
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Decay of the scalar magnetic
potential as a function of the
out-of-plane distance from the film

B.1 Out-of-plane decay of the scalar magnetic poten-

tial in a superconducting thin disk

The aim of this appendix is to determine how the scalar magnetic potential ϕ varies as
a function of the out-of-plane distance from a thin superconducting film when it is fully
penetrated. To this end, the following calculations are based on the thin-film approxima-
tion, which consists in approaching a thin film of thickness d as an infinitely thin sheet of
current, Js, which intensity is the integral of the current density over the thickness. This
simplification is justified when one can assume that L/d ≫ 1. In what follows, it will
also be assumed that the current density is uniform in the whole film, and its value will
be denoted by Jc. Consequently, when the sample is fully penetrated, the sheet current
density is uniform across the thickness, and one can write |Js| = Jcd.

First, let us consider the case of a superconducting thin disk of radius R and thickness
d. It is assumed that R/d ≫ 1, see Figure B.1 for an illustration of the geometry. A
reference Cartesian orthonormal basis will be used throughout the section. Its equivalent
cylindrical basis is also shown for an arbitrary point which is rotated by an angle θ with
respect to ex. Its origin, the point O (0, 0, 0), corresponds to the centre of the thin disk.
Biot-Savart law over the infinitely thin superconducting sheet, Ωc, can be formulated in
cylindrical coordinates, and takes the form

B(r) =
µ0

4π

∫ 2π

0

∫ R

0

Js(r
′)
dl× (r− r′)

|r− r′|3 r dr dθ, (B.1)

where r stands for the cylindrical coordinates of a given point in the three-dimensional
space, while r′ summarizes the cylindrical coordinates of a point in Ωc. dl is a vector
that indicates the orientation of the sheet current density Js at r

′ and Js(r′) is the sheet
current density intensity at r′. The integral is performed over the whole section of the
film, which lies in the plane Z = 0.
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Figure B.1: Sketch of a random current loop, C in an infinitely thin superconducting disk
of radius R. The loop lies in the plane Z = 0. The current density flows azimuthally so
that C describes a circular pattern that is parallel to the edge of the film. The light red
arrow shows the direction of the azimuthal induced current. A translated orthonormal
basis is shown for the sake of clarity. Point O (0, 0, 0), in dark blue, coincides with the
centre of the film. δ is a parameter ranging from 0 to 1 labelling each current loop.

A few remarks allow one to simplify the following calculations. First, the observation
point, P , may be located everywhere in the three-dimensional space. However, for the
sake of the conciseness of the following calculations, it will be assumed that P (0, 0, Z),
where Z is the distance from the thin-film surface, so that r = Z ez. Second, since
only the z dependence of ϕ is sought, the relation H = −∇ϕ holding in the current-free
regions implies that only the determination of Bz needs to be addressed. Therefore, not all
components of Equation B.1 requires evaluation. In a fully penetrated superconducting
disk, current density circulates parallel to the sample borders, i.e. it flows azimuthally.
Thereby, one has r′ = r er, and dl = eθ.

Based on these simplifications, one can recast Equation B.1 as

Bz(r) = −µ0Jcd

4π

∫ 2π

0

∫ R

0

r2

(r2 + Z2)3/2
dr dθ. (B.2)

Using the changes of variables c = Z/R and r = Rδ, with δ ∈ [0, 1], Equation B.2 is
equivalent to

Bz(r) = −µ0Jcd
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The integral in Equation B.3 is solved by using the substitution u = sin (arctan (δ/c)),
which amounts to

∫
δ2

(δ2 + c2)3/2
dδ =

∫
u2

1− u2
du

=
1

2
log

∣∣∣∣∣

√
δ2 + c2 + δ√
δ2 + c2 − δ

∣∣∣∣∣−
δ√

δ2 + c2
. (B.4)

Substituting Equation B.4 in Equation B.3 leads to the analytical expression of Bz as a
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function of the out-of-plane distance from the centre of the disk

Bz(r) =
µ0Jcd

2

[
−1

2
log

∣∣∣∣∣

√
1 + c2 + 1√
1 + c2 − 1

∣∣∣∣∣+
1√

1 + c2

]
. (B.5)

Once the Z dependence of Bz has been obtained, the out-of-plane variations of the scalar
magnetic potential, ϕ, can be obtained from the relation Hz = −∂ϕ/∂Z, by integrating
by parts Equation B.5 with respect to Z and accounting for the boundary condition
limZ→∞ ϕ(r) = 0. This gives

ϕ(r) =
Jcd

2
R

[
1− c

2
log

∣∣∣∣∣

√
1 + c2 + 1√
1 + c2 − 1

∣∣∣∣∣

]
, (B.6)

where the integral from c to +∞ of the second term of Equation B.5 cancels with the
integration by parts of its first term, and where the limit

lim
c→+∞

c

2
log

∣∣∣∣∣

√
1 + c2 + 1√
1 + c2 − 1

∣∣∣∣∣ = 1 (B.7)

was used. Equation B.6 is represented in Figure 2.7 on a logarithmic-scale plot. In order
to determine the value of A, which is the out-of-plane extension of the shell region, Ωsh,
one needs to determine the value at which ϕ/ϕ0 is equal to 1/2, in accordance with the
criterion proposed in Chapter 2, and one finds A ≈ 0.23×R.

B.2 Out-of-plane decay of the scalar magnetic poten-

tial in a rectangular superconducting thin film

Now, consider the case of a thin rectangular superconducting film of length L, width
W , and thickness d. It is assumed that L ≥ W and L/d ≫ 1, see Figure B.2 for
a representation of the geometry and the set of axes that will be used in the rest of
this section. The centre of the coordinate system, O (0, 0, 0), lies at the intersection of
the diagonals of the rectangular sample. Without loss of generality, the length of the
rectangular film is supposed to be directed along the y-axis.

According to Bio-Savart law over the infinitely thin superconducting sheet, Ωc,

B(r) =
µ0

4π

∫

Ω

Js(r
′)
dl× (r− r′)

|r− r′|3 dx dy. (B.8)

In a fully penetrated rectangular superconducting sample, current density circulates paral-
lel to the sample borders and makes sharp turns along the d-lines, as discussed in Chapter
1. The sample can then be divided in four sectors, labelled from 1 to 4, which exact shape
depends on the length and width of the rectangular sample. Nevertheless, under these
assumptions, a random current loop C always takes the shape of a rectangle that is par-
allel to the edges of the sample. Consequently, one can decompose C as C1 ∪ C2 ∪ C3 ∪ C4,
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Ha

δW2 O

Figure B.2: Sketch of a random current loop C in an infinitely thin rectangular film of
length L and widthW . The film lies in the plane z = 0. The current density flows parallel
to the sample border, and one can decompose the current loop C as C1 ∪ C2 ∪ C3 ∪ C4,
where C1, C3 are parallel to the x-axis and C2, C4 are parallel to the y-axis. The abrupt
redirection of the current density is demarcated by d-lines, in dark blue. The light red
arrow shows the direction of the induced current. A translated orthonormal basis is shown
for the sake of clarity. Point O (0, 0, 0), in dark blue, corresponds to the intersection of
the diagonals of the film. δ is a parameter that ranges from 0 to 1 labelling each current
loop.

as shown in Figure B.2, where dl = −ex on C1, dl = −ey on C2, dl = ex on C3 and
dl = ey on C4. Finally, due to the symmetry of the rectangle, the contributions of C1
(resp. C2) and C3 (resp. C4) to Bz are identical. Hence, only the contributions of C1 and
C2 are treated in what unfolds. Again, one notices that only the Bz component needs to
be calculated, since it exclusively encompasses the variations of ϕ along the out-of-plane
direction.

On C1, r′ can be expressed as

r′ = x1ex + y1ey, (B.9)

x1 ∈
[
−δW

2
, δ
W

2

]
, (B.10)

y1 = −L−W (1− δ)

2
, (B.11)

where δ ∈ [0, 1]. The integration of Biot-Savart law over sector 1 then yields, after a
change of variables from y1 to δ,

Bz,1(r) = −µ0Jcd

4π

W

2

∫ 1

0

∫ δW
2

−δW
2

y1

(x21 + y21 + Z2)
3/2

dx1dδ. (B.12)

The solution of the integral with respect to x1 in Equation B.12 can be obtained by
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substituting tan θ = x1/
√
y21 + Z2 and gives

∫
dx1

(x21 + y21 + Z2)
3/2

=
1

y21 + Z2
sin

(
arctan

[
x1√

y2 + Z2

])

=
1

y21 + Z2

x1√
x21 + y21 + Z2

. (B.13)

Hence, one can rewrite Equation B.12 in the light of Equation B.13, so that the contri-
bution of sector 1 to the reaction field is given by

Bz,1(r) =
µ0Jcd

4π

∫ 1

0

2

(δ + b)2 + c2
δ(δ + b)√

δ2 + (δ + b)2 + c2
dδ, (B.14)

where and b ≡ (L−W )/W and c ≡ 2Z/W .

Similarly, on the path C2 the following relations hold

r′ = x2ex + y2ey, (B.15)

x2 = δ
W

2
, (B.16)

y2 ∈
[
−L−W (1− δ)

2
,
L−W (1− δ)

2

]
. (B.17)

After a change of variables from x2 to δ, the previous equations lead to an expression of
the contribution of sector 2 to the reaction field, i.e.

Bz,2(r) =
µ0Jcd

4π

W

2

∫ 1

0

∫ L−W (1−δ)
2

−L−W (1−δ)
2

x2

(x22 + y22 + Z2)
3/2

dy2 dδ. (B.18)

Following the same steps as in the integration of the Biot-Savart law over sector 1, Equa-
tion B.18 is equivalent to

Bz,2(r) =
µ0Jcd

4π

∫ 1

0

2

δ2 + c2
δ(δ + b)√

δ2 + (δ + b)2 + c2
dδ. (B.19)

The out-of-plane dependence of the reaction field at the centre of the rectangular strip is
thus obtained from the combination of Equation B.14 and Equation B.19, which yields,
once the contributions of sector 3 and 4 have been added,

Bz(r) =
µ0Jcd

4π

∫ 1

0

(
4

(δ + b)2 + c2
+

4

δ2 + c2

)
δ(δ + b)√

δ2 + (δ + b)2 + c2
dδ. (B.20)

Such integral cannot be solved analytically, with the noteworthy exception of the case of
a square film, where b = 0. The resolution of Equation B.20 for b > 0 is handled by
means of numerical integration. In the case b = 0, Equation B.20 becomes

Bz(r) =
µ0Jcd

4π

∫ 1

0

8

δ2 + c2
δ2√

2δ2 + c2
dδ. (B.21)
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With the help of the substitution u = sin
(
arctan

(√
2δ/c

))
, the integral in Equation B.21

rewrites as
∫

1

δ2 + c2
δ2√

2δ2 + c2
dδ =

1√
2

∫
u2

2− u2
du

1− u2

=
1

2
√
2
log

∣∣∣∣∣

√
c2 + 2δ2 +

√
2δ√

c2 + 2δ2 −
√
2δ

∣∣∣∣∣−
1

2
log

∣∣∣∣∣

√
c2 + 2δ2 + δ√
c2 + 2δ2 − δ

∣∣∣∣∣. (B.22)

Thus, one finally obtains

Bz(r) =
µ0Jcd

π

(
1√
2
log

∣∣∣∣∣

√
c2 + 2 +

√
2√

c2 + 2−
√
2

∣∣∣∣∣− log

∣∣∣∣∣

√
c2 + 2 + 1√
c2 + 2− 1

∣∣∣∣∣

)
. (B.23)

The variations of ϕ with respect to the out-of-plane distance from the centre of the film
is obtained by integrating with respect to Z the result of the numerical integration of
Equation B.20 with respect to δ, accounting for the boundary condition limZ→∞ ϕ(r) = 0.
In the case of the thin square film (b = 0) one can obtain ϕ(r) by integrating by parts
Equation B.23, so that

ϕ(r) =
Jcd

π

W

2

(
c√
2
log

∣∣∣∣∣

√
c2 + 2 +

√
2√

c2 + 2−
√
2

∣∣∣∣∣ − c log

∣∣∣∣∣

√
c2 + 2 + 1√
c2 + 2− 1

∣∣∣∣∣

−2

∫ ∞

c

1

v2 + 1

1√
v2 + 2

dv

)
. (B.24)

The last integral in Equation B.24 can be solved with the help of the henceforth usual
substitution u = sin

(
arctan

(
v/
√
2
))
, which leads to

∫
1

v2 + 1

1√
v2 + 2

dv = arctan

(
v√
v2 + 2

)
. (B.25)

Substituting Equation B.25 into Equation B.24, one finally obtains the ultimate ana-
lytical form of the dependence of ϕ as a function of c = 2Z/W from the centre of a thin
square superconducting film

ϕ(r) =
Jcd

π

W

2

[
c√
2
log

∣∣∣∣∣

√
c2 + 2 +

√
2√

c2 + 2−
√
2

∣∣∣∣∣ − c log

∣∣∣∣∣

√
c2 + 2 + 1√
c2 + 2− 1

∣∣∣∣∣

+2arctan

(
c√
c2 + 2

)
− π

2

]
, (B.26)

where the term −π/2 is the result of the limit to +∞ of Equation B.25.

The variations of ϕ along the out-of-plane direction in a rectangular film are shown in
Figure B.3 for various values of L/W . These curves were obtained by means of numerical
integration. The determination of the value of A follows the same criterion as in Section
B.1, which is ϕ/ϕ0 = 1/2. The estimation of A is repeated for a fine equally spaced set
of values of L/W , ranging from 1 to 10. The results are exposed in Figure 2.13.
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Figure B.3: Magnetic scalar potential, ϕ/ϕ0, as a function of 2Z/W , the out-of-plane
distance from a superconducting thin strip of length L, width W and thickness d, on a
logarithmic-scale plot, for various aspect ratios L/W . ϕ0 is the scalar magnetic potential
on the film surface. The dashed line is a guide to the eye indicating the Z−2 decay of ϕ
far enough from the film surface.
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Appendix C

Simplified critical state model of
superposed films

This appendix aims at calculating the length of the additional central d-line in a three-
dimensional assembly made of a thin superconducting square of length L on which a
centred rectangular strip of length L and width W is superimposed. The thickness of
both films is denoted by d. The complexity of the magnetic flux penetration and the
coupling between the films do not allow for an easy model to be devised. Instead, a
simplified two-dimensional model is used. This is motivated by the observation that the
modifications of the d-lines that entail the additional vertical or horizontal d-line, of length
ℓv and ℓh respectively, develop exclusively in the square film, while the current loops in
the rectangular strip remain mostly invariable with respect to the d-line network in an
isolated strip, as discussed in Subsection 6.2.4.

A possible simplification that gives access to an analytical model consists in considering
the average of the magnetic field in three rectangular sectors: a central rectangular band
that matches the projection of the thin strip on the square film, and the two lateral
regions that surround it. The average magnetic field in the central region (overlap region)
is denoted by Bint. In the two outer parts, due to the axial symmetry along the longest
median of the strip, the average magnetic field levels are the same, and are labelled as
Bext. The magnetic field is therefore assumed to vary discontinuously from one region
to another. In other words, the sheet critical current density is constant within each
sector, their value being denoted by Jc,s−int and Jc,s−ext in the overlap and outer regions,
respectively. Based on this last assumption, analytical expressions of ℓv and ℓh in the
scope of the critical state model (CSM) are derived.

C.1 Length of the additional vertical d-line in a fully

penetrated thin square film (Jc,s−int > Jc,s−ext)

First, consider the case of a fully penetrated film. In this case, current lines are equidistant
to each other. In fully penetrated samples, the magnetic field is higher in peripheral
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Section C.1. Length of the additional vertical d-line in a fully penetrated thin square
film (Jc,s−int > Jc,s−ext)
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Figure C.1: Critical state in a fully penetrated square with non-uniform Jc,s, assuming
Jc−int = 2Jc−ext and W = L/2. Only the upper right part of the structure is shown.
The other parts can be obtained by reflection symmetry, the axes of symmetry being
highlighted with dashed lines. The dark blue lines correspond to the d-lines, while the
light red lines show the current lines in the square film. The filled circles mark the
locations where the d-lines abruptly change direction, and are labelled with capital letters.
Circled numbers indicate the different sectors within which the orientation of the current
density remains unchanged. The following annotations are used throughout Section C.1:
∠BDA = α, ∠BAE = β, ∠DOA = π/4, |BD| = L1, |AB| = L2.

regions than in the central one, because vortices have first to engage through the borders
before they reach the overlap region. On average, one has |Bint| < |Bext|, and thus
Jc,s−ext < Jc,s−int. For the sake of illustration, the current lines in the upper right quarter
of the square film are depicted in Figure C.1, in the specific case of W = L/2 and
Jc,s−int = 2Jc,s−ext. Nonetheless, the following developments are valid for other values
of W/L < 1 and Jc,s−int/Jc,s−ext > 1. The remaining parts of the critical state can be
obtained by reflection symmetry along the medians of the square. The notations that will
be used throughout the calculations of this section are also indicated in Figure C.1.

The d-line patterns are governed by the conservation of current density, accounting for
the non-uniform Jc,s distribution. The current loops first progress parallel to the edges
of the sample. In the outer regions, where the critical current density is uniform, a sharp
change of the current orientation occurs between sectors 1 and 2 , both of them being
separated by the d-line [OA], forming an π/4 angle with the upper edge, which coincides
with the straight line OD. The vortices that have entered the sample through this side
generate parallel current lines, but the condition Jc,s−ext < Jc,s−int implies a higher current
line density in the overlap region. According to current conservation, the current lines
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Appendix C. Simplified critical state model of superposed films

undergo a sharp change of orientation from sector 3 to sector 4. These two sectors are
separated by another d-line, [BD], defining the angle ∠BDA = α with respect to the line
AD. Similarly, current conservation implicates the d-line [AB] that separates sectors 4 and
5, where the current density flows again parallel to the vertical edge of the square film,
and forming the angle ∠BAE = β with the straight line DA. Finally, the transition from
sector 3 to sector 5 is delimited by a d-line, [BC], which makes a π/4 angle with respect
to the horizontal edge, so that the vertical current lines originating from the right edge
meet the horizontal ones that are parallel to the top edge. C lies on the vertical median
of the square, and a d-line of length ℓv/2 extends from C to the center of the sample,
separating currents that circulate in opposite directions, owing to the mirror symmetry
of the system.

The change of the current line direction between sectors 3 and 4 and that between sectors
4 and 5 depend on Jc,s−ext and Jc,s−int. Moreover, the mismatch between the current
density in sector 2 and that in sector 3 is the reason for the existence of sector 4, where
the orientation of the current lines is deflected by an angle 2α with respect to those in
sector 2. α verifies current conservation across the line AD, so that [95]

Jc,s−int

Jc,s−ext

=
1

cos 2α
. (C.1)

The angle ∠BAE = β can be found by a simple angle chasing, given that the current
lines are horizontal in sector 3 and become vertical in sector 5. One has

π/2 + (π − 2β) + 2α = π

⇒ β =
π

4
+ α. (C.2)

The length ℓv is determined from the difference between the projections of the path OABC
along the vertical and the horizontal directions, which yields

ℓv = 2 (sin β − cos β)L2, (C.3)

with L2 = |AB|. The sine law in triangle ABD yields the value of L2 as a function of
|AD| = L/2−W/2,

L2 =
sinα

sin (β − α)

[
L

2
− W

2

]
. (C.4)

Finally, substituting Equation C.1, Equation C.2 and Equation C.4 in Equation C.3
gives

ℓv
L

= (1− cos 2α)

[
1− W

L

]

⇔ ℓv
L

=

(
1− Jc,s−ext

Jc,s−int

)[
1− W

L

]
. (C.5)

In particular, if W = L/2, one recovers the result of Equation 6.4 i.e.

ℓv
L

=
1

2

(
1− Jc,s−ext

Jc,s−int

)
. (C.6)

It is worth stressing out that the previous developments are valid if and only if point B
exists, i.e. that the projection of [BD] on the upper edge is less than W/2. In the extreme

187



Section C.2. Length of the additional horizontal d-line in the thin square film in the
remanent state (Jc,s−int < Jc,s−ext)

case α = π/4 and thus β = π/2, B is located on the vertical median of the square and
coincides with C. Sectors 4 and 5 merge, as the current lines do not change abruptly their
direction from one sector to the other one any more. Hence, [BA] becomes horizontal but
is no longer a d-line.

C.2 Length of the additional horizontal d-line in the

thin square film in the remanent state (Jc,s−int <
Jc,s−ext)

Now, let us turn to the case of the remanent state in the same model. Assuming that
the maximal applied field is large enough to achieve a full magnetic field penetration,
the current lines can be assumed to be equidistant to each other in the remanent state.
However, one now has |Bext| < |Bint|, and thus Jc,s−int < Jc,s−ext, because magnetic
field mainly stays trapped around the center of the sample. Figure C.2 then shows
the current loops and the subsequent sets of d-lines, in the specific case W = L/2 and
Jc,s−int =

√
3/2Jc,s−ext, although the upcoming developments remain valid for other values

of W/L < 1 and Jc,s−int/Jc,s−ext < 1. Again, only the upper right quarter of the film is
drawn. The current lines and d-lines can be extended to the rest of the film by reflection
symmetry. The reader is invited to refer to Figure C.2 to access the necessary notations.

Similarly to the case of fully penetrated films, the following calculations rely on current
conservation. Current lines that are parallel to the upper and right edges reunite along the
d-line [OA], separating sector 1 from sector 2 and forming a π/4 angle with respect to both
edges. Because of the relation Jc,s−int < Jc,s−ext, [OA] does not extend to the boundary of
the overlap region. Indeed, consecutive current lines are now closer to each other in the
outer regions than in the overlap one. Current density, which is divergence-free, entails
an abrupt change of orientation from sector 2 to sector 4 to compensate the difference in
flux penetration between sector 2 and sector 3. The non-uniform critical current density
hence generates the d-lines [AB] and [AD], the former demarcating currents with different
orientations in sector 4 and in sector 1. Finally, sector 3, where current lines are horizontal,
and sector 5, where current lines are vertical, rejoin along [BC]. B is located at the limit
between the outer and the overlap regions, while C lies on the horizontal median of the
square. Owing to the mirror symmetry of the sample, a d-line of length ℓh/2 going from
C to the center of the sample appears, separating currents flowing in opposite directions.
In what follows, let us define the angles ∠ADB = α and ∠ABD = β.

The steps are the same as in Section C.1. The unequal values of Jc,s−ext and Jc,s−int

govern the changes of direction of the current lines occurring at the separation between
sectors 1, 2 and 3 and sector 4, according to current conservation. For instance, the
horizontal current lines are deflected by an angle 2α going from sector 3 to sector 4, so
that current conservation along BD gives [95]

Jc,s−ext

Jc,s−int

=
1

cos 2α
. (C.7)

The current lines undergo two successive changes of orientation, in such a way that they
go from flowing horizontally in sector 3 to flowing vertically in sector 1. These deflections
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Figure C.2: Critical state in a square with non-uniform Jc,s in the remanent state, assum-
ing Jc,s−int =

√
3/2 × Jc,s−ext and W = L/2. Only the upper right part of the structure

is shown. The other parts can be obtained by reflection symmetry, the axes of symmetry
being highlighted with dashed lines. The dark blue lines correspond to the d-lines, while
the light red lines show the current lines in the square film. The filled circles mark the
locations where the d-lines abruptly change direction, and are labelled with capital letters.
Circled numbers indicate the different sectors within which the orientation of the current
density remains unchanged. The following annotations are adopted throughout Section
C.2: ∠BDA = α, ∠ABD = β, ∠AOD = π/4, |AD| = L1, |AB| = L2.

occur across [BD] and across [AB]. Taking into account the successive orientations of the
current lines, one finds

2α− (π − 2β) = −π/2
⇒ β = π/4− α. (C.8)

The length ℓh is given by subtracting the projection of the path OABC on the horizontal
median of the square from its projection on the vertical median, which reads as

ℓh = 2 (cos β − sin β)L2. (C.9)

Finding an expression of ℓh as a function of the critical current densities and the geomet-
rical parameters of the assembly requires slightly more work than in the previous section.
The sine law in triangle ABD yields |AB| = L2 as a function of |AD| = L1, which is

L2 =
sinα

sin β
L1. (C.10)

Similarly, the sine law in triangle OAD allows to relate L1 to |OD| = L/2−W/2 as

L1 =
sin π/4

sin (π/4 + α)

[
L

2
− W

2

]
. (C.11)
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Section 6.2. Length of the additional horizontal d-line in the thin square film in the
remanent state (Jc,s−int < Jc,s−ext)

Combining Equation C.7, Equation C.8, Equation C.9, Equation C.10 and Equation
C.11 allows for finding the final expression of ℓh, which is

ℓh
L

=

(
1

cos 2α
− 1

)[
1− W

L

]

⇔ ℓh
L

=

(
Jc,s−ext

Jc,s−int

− 1

)[
1− W

L

]
. (C.12)

In particular, if W = L/2, one recovers Equation 6.4, which is in this case

ℓh
L

=
1

2

(
Jc,s−ext

Jc,s−int

− 1

)
. (C.13)

These analytical developments are only valid when the segment [AB] intersects the bound-
ary demarcating the regions with uneven critical current densities, i.e. BD. If not, B lies
on the horizontal median of the square, outside the overlap region rather than inside
it, and sector 5 disappears subsequently, invalidating Equation C.12. This condition is
equivalent to

cos 2α > 1− W

L
, (C.14)

which relates the critical current densities in each region to the geometrical parameters of
the rectangular and square films, by virtue of Equation C.7. For the sake of illustration,
if W = L/2, one must verify cos 2α > 1/2, i.e. 2Jc,s−int > Jc,s−ext > Jc,s−int.

190



Bibliography

[1] E. A. Borodianskyi and V. M. Krasnov. Josephson emission with frequency span
1–11 THz from small Bi2Sr2CaCu2O8+δ mesa structures. Nature Communications,
8:1742, November 2017.

[2] M. I. Faley, E. A. Kostyurina, K. V. Kalashnikov, Yu. V. Maslennikov, V. P.
Koshelets, and R. E. Dunin-Borkowski. Superconducting Quantum Interferome-
ters for Nondestructive Evaluation. Sensors, 17(12):2798, December 2017.

[3] M. H. Devoret and R. J. Schoelkopf. Superconducting Circuits for Quantum Infor-
mation: An Outlook. Science, 339(6124):1169–1174, March 2013.

[4] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney,
Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harri-
gan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor
Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh nad Salva-
tore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi,
Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley,
Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt,
Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel
Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Tre-
vithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao,
Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum
supremacy using a programmable superconducting processor. Nature, 574:505–510,
October 2019.

[5] Teng Tan, M. A. Wolak, X. X. Xi, T. Tajima, and L. Civale. Magnesium diboride
coated bulk niobium: a new approach to higher acceleration gradient. Scientific
Reports, 6:35879, October 2016.

[6] V. Selvamanickam, M. Heydari Gharahcheshmeh, A. Xu, Y. Zhang, and E. Gal-
styan. Critical current density above 15 MA cm−2 at 30 K, 3 T in 2.2 µm thick
heavily-doped (Gd,Y)Ba2Cu3Ox superconductor tapes. Superconductor Science and
Technology, 28(7):072002, May 2015.

[7] Lucio Rossi and Carmine Senatore. HTS Accelerator Magnet and Conductor De-
velopment in Europe. Instruments, 5(1):8, February 2021.

191



Section 6.2. BIBLIOGRAPHY

[8] A. Dadhich and E. Pardo. Modeling cross-field demagnetization of superconduct-
ing stacks and bulks for up to 100 tapes and 2 million cycles. Scientific Reports,
10:19265, November 2020.

[9] D. Uglietti. A review of commercial high temperature superconducting materials
for large magnets: from wires and tapes to cables and conductors. Superconductor
Science and Technology, 32(5):053001, April 2019.

[10] Anup Patel, Algirdas Baskys, Tom Mitchell-Williams, Aoife McCaul, William
Coniglio, Jens Hänisch, Mayraluna Lao, and Bartek A. Glowacki. A trapped field
of 17.7 T in a stack of high temperature superconducting tape. Superconductor
Science and Technology, 31(9):09LT01, July 2018.

[11] A. Patel, S. Hahn, J. Voccio, A. Baskys, S. C. Hopkins, and B. A. Glowacki. Mag-
netic levitation using a stack of high temperature superconducting tape annuli.
Superconductor Science and Technology, 30(2):024007, December 2016.

[12] Zhaoxin Liu, Wenjiang Yang, Long Yu, Yu Ji, Mingliang Bai, Fawzi, and Xiaodong
Li. Testing and Comparison of Levitation Forces and Rotational Friction in Different
Superconducting Tape Stacks. Journal of Superconductivity and Novel Magnetism,
33:3035–3041, July 2020.

[13] Charalampos Manolopoulos, Matteo Iacchetti, Alexander Smith, Kévin Berger,
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[31] Ráı M. Menezes, José F. S. Neto, Clécio C. de Souza Silva, and Milorad V. Milošević.
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[99] É. A. Pashitskĭı, V. I. Vakaryuk, S. M. Ryabchenko, and Yu. V. Fedotov. Temper-
ature dependence of the critical current in high-Tc superconductors with low-angle
boundaries between crystalline blocks. Low Temperature Physics, 27(2):96, Febru-
ary 2001.

[100] E. Zeldov, N. M. Amer, G. Koren, A. Gupta, M. W. McElfresh, and R. J. Gambino.
Flux creep characteristics in high-temperature superconductors. Applied Physics
Letters, 56(7):680, December 1989.

[101] Elia Zeldov. Flux creep and vortex potential well structure in high-temperature
superconductors. Physica A: Statistical Mechanics and its Applications, 168(1):260–
267, September 1990.

[102] P. W. Anderson. Theory of Flux Creep in Hard Superconductors. Physical Review
Letters, 9(7):309, October 1962.

[103] R. G. Mints and E. H. Brandt. Flux jumping in thin films. Physical Review B,
54(17):12421, November 1996.

[104] Teruo Matsushita. Longitudinal Magnetic Field Effect in Superconductors. Japanese
Journal of Applied Physics, 51(1R):010111, December 2011.

[105] John R. Clem, Marcus Weigand, J. H. Durrell, and A. M. Campbell. Theory and ex-
periment testing flux-line cutting physics. Superconductor Science and Technology,
24(6):062002, March 2011.

199



Section 6.2. BIBLIOGRAPHY
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mulations for Systems With High-Temperature Superconductors. IEEE Transac-
tions on Applied Superconductivity, 30(3):8200113, April 2020.
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G. Pinheiro, Roman B. G. Kramer, Maycon Motta, Karl Fleury-Frenette, Wilson
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