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Abstract

In many areas of science, complex phenomena are modeled by stochastic parametric
simulators, often featuring high-dimensional parameter spaces and intractable
likelihoods. In this context, performing Bayesian inference can be challenging. In
this work, we present a novel method that enables amortized inference over arbitrary
subsets of the parameters, without resorting to numerical integration, which makes
interpretation of the posterior more convenient. Our method is efficient and can
be implemented with arbitrary neural network architectures. We demonstrate the
applicability of the method on parameter inference of binary black hole systems
from gravitational waves observations.

1 Introduction

Formally, a simulator is a stochastic forward model that takes a vector of parameters θ ∈ Θ as input,
samples internally a series z ∈ Z ∼ p(z|θ) of latent variables and finally produces an observation
x ∈ X ∼ p(x|θ, z) as output, thereby defining an implicit likelihood p(x|θ). This likelihood typically
is intractable as it corresponds to p(x|θ) =

´
Z p(x, z|θ) dz, the integral of the joint likelihood

p(x, z|θ) over all possible trajectories through the latent space Z . In Bayesian inference, we are
interested in the posterior

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
p(x|θ)p(θ)´

Θ
p(x|θ′)p(θ′) dθ′

(1)

for some observation(s) x and a prior p(θ), which not only involves the intractable likelihood p(x|θ)
but also an intractable integral over the parameter space Θ. The omnipresence of this problem gave
rise to a rapidly expanding field of research [1] commonly referred to as simulation-based inference.
Recent approaches [2–5] are to learn a surrogate model p̂(θ|x) of the posterior and, then, proceed as
if the latter was tractable.

However, domain scientists are not always interested in the full set of simulator parameters at once.
In particular, when interpreting posterior predictions, they generally study several small parameter
subsets, like singletons or pairs, while ignoring the others. This task corresponds to estimating the
marginal posterior p(θa|x) =

´
Θb
p(θ|x) dθb over parameter subspaces Θa ≤ Θ of interest, while

the complement subspaces Θb : Θa ×Θb = Θ are unobserved. To this end, most applications [4, 5]
resort to numerical integration of a surrogate p̂(θ|x) of the full posterior, which is computationally
expensive if Θb is large.

A solution to get rid of numerical integration is to learn directly a surrogate p̂(θa|x) by considering
θb as part of the latent variables. If we are interested in a single or a few predetermined subspaces,
this approach is reasonable and leads to accurate estimation of marginal posteriors [6, 7]. However, if
we need to choose arbitrarily the subspace Θa at inference time, this solution is not viable anymore
as there exists an exponential number (2dim(Θ) − 1) of marginal posteriors.
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Contribution We build upon neural ratio estimation (NRE) [3, 8] to enable integration-less
marginal posterior estimation over arbitrary parameter subspaces. The key idea is to introduce,
as input of the ratio estimator, a binary mask a ∈ {0, 1}dim(Θ) indicating the current subspace Θa of
interest. Intuitively, this allows the network to distinguish the subspaces and, thereby, to learn a differ-
ent ratio for each of them. Our method, dubbed arbitrary marginal neural ratio estimation (AMNRE),
can be implemented with arbitrary neural network architectures, including multi-layer perceptrons
(MLPs) [9] and residual networks [10]. AMNRE is an amortized method, meaning that inference is
simulation-free and can be repeated several times with distinct observations, without retraining. The
counterpart is that AMNRE could require a lot of training simulations to produce accurate predictions.
The implementation is available at https://github.com/francois-rozet/amnre.

Related work Imputation methods [11–13] were the first to introduce a binary mask to condition
networks with respect to which features are missing. This trick allowed to train a single generative
network for all combinations of missing features. Our method differs in that it does not generate likely
replacements for the missing features but evaluates the likeliness, conditionally to an observation, of
those that are provided.

2 Arbitrary marginal neural ratio estimation

NRE The principle of NRE [3] is to train a classifier network dφ : Θ×X 7→ [0, 1] to discriminate
between pairs (θ, x) equally sampled from the joint distribution p(θ, x) and the product of the
marginals p(θ)p(x). Formally, the optimization problem is

φ∗ = arg min
φ

E
p(θ,x)p(θ′)

[
L(dφ(θ, x)) + L(1− dφ(θ′, x))

]
, (2)

where L(p) = − log p is the negative log-likelihood. For this task, the decision function modeling
the Bayes optimal classifier [3] is

d(θ, x) =
p(θ, x)

p(θ, x) + p(θ)p(x)
, (3)

thereby defining the likelihood-to-evidence (LTE) ratio

r(θ, x) =
d(θ, x)

1− d(θ, x)
=

p(θ, x)

p(θ)p(x)
=
p(x|θ)
p(x)

=
p(θ|x)

p(θ)
. (4)

Consequently, NRE gives access to an estimator log rφ(θ, x) = logit(dφ(θ, x)) of the LTE log-ratio
and a surrogate p̂(θ|x) = rφ(θ, x)p(θ) for the posterior density.

AMNRE With the additional binary mask a ∈ {0, 1}dim(Θ), the classifier takes the form
dφ(θa, x, a) and the optimization problem becomes

φ∗ = arg min
φ

E
p(θ,x)p(θ′)

E
p(a)

[
L(dφ(θa, x, a)) + L(1− dφ(θ′a, x, a))

]
, (5)

where θa = (θi : ai = 1) and p(a) is a mask distribution. In this context, the Bayes optimal classifier
(see Appendix A) is

d(θa, x, a) =
p(θa, x)

p(θa, x) + p(θa)p(x)
, (6)

meaning that AMNRE gives access to an estimator log rφ(θa, x, a) = logit(dφ(θa, x, a)) of all
marginal LTE log-ratios and a surrogate p̂(θa|x) = rφ(θa, x, a)p(θa) for all marginal posteriors.

AMNRE does not have any particular architectural requirements, with the notable exception of the
variable input size of θa. To make the method more convenient, θa is replaced by the element-wise
product θ ·a (θa ·1 and θb ·0), carrying the same information at fixed size. The mask a is still required
as input since a zero in θ · a does not unambiguously indicate a zero in a. To prevent numerical
stability issues when dφ(θa, x, a)→ 1, the approximate log-ratio log rφ(θa, x, a) is extracted from
the neural network and the class prediction is recovered by application of the sigmoid function.

The mask distribution is an important part of AMNRE’s training. If some masks a have a small
probability p(a) to be selected, it is likely that the estimator will not model their respective marginal
posteriors as well as other, more frequent masks. In our experiments, we adopt a uniform mask
distribution p(a) = (2dim(Θ) − 1)−1, leaving the study of this aspect to future work.
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Figure 1: Illustration of AMNRE’s classifier architecture.

3 Experiments and results

3.1 Simple likelihood and complex posterior
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Figure 2: Ground-truth posterior against AMNRE 1d
and 2d marginal surrogates, for an observation x∗ of the
SLCP testing set. Density is averaged over three training
instances. Contours represent the 68.3 %, 95.5 % and
99.7 % highest posterior density regions. Stars represent
the true parameters θ∗ of the observation.

Papamakarios et al. [14] introduce a toy
simulator with a 5-dimensional parame-
ter space Θ ⊆ R5, for which the likeli-
hood is tractable. Despite its simple like-
lihood, the simulator has a complex poste-
rior (SLCP) with four symmetric modes.
Hence, SLCP is a non-trivial posterior es-
timation benchmark that allows to retrieve
the ground-truth posterior through Markov
chain Monte Carlo (MCMC) sampling [15,
16] of the likelihood.

We apply AMNRE on SLCP and compare
the learned surrogates with the ground-
truth posterior. Training details are pro-
vided in Appendix C. In Figure 2, we ob-
serve that AMNRE 1d and 2d surrogates
are in close agreement with the ground-
truth. The structure of the distribution, rep-
resented by the credible regions, is mod-
eled correctly, even in low density regions.
We also note that the four symmetric modes
(see θ3 and θ4) are properly recovered,
which is sometimes challenging for tradi-
tional sampling methods. Concerning the
parameter θ5, we observe that the network
is slightly underconfident around the mode,
which could indicate that, among the five
parameters of SLCP, θ5 is the hardest to infer. Finally, in Figure 4, we see that AMNRE is also able
to recover the full 5d posterior and the predictions are very consistent with the 1d and 2d surrogates.

3.2 Gravitational waves

In recent years, the observations of gravitational waves (GWs) from compact binary coalescences
systems have had a massive impact on our understanding of the Universe, partly thanks to inference
of the systems’ parameters. To obtain posterior samples, the LIGO/Virgo collaboration currently
applies MCMC [15, 16] or nested sampling [17, 18] algorithms to involved physical models of the
likelihood of emitted waves [19, 20]. With these approaches, posterior calculation typically takes
days for binary black hole (BBH) mergers and has to be repeated from scratch for each observation.

As a proof of concept, we employ AMNRE to infer the full 15-dimensional set of precessing quasi-
circular BBH parameters, given GW observations from the LIGO/Virgo detectors. The simulator
details are provided in Appendix B. After training (see Appendix C for details), we evaluate the
learned surrogate model on data surrounding GW150914, the first recorded GW event [21]. As
reference, we use the posterior samples produced by Bilby [20] with the dynesty [18, 22] nested
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sampler (MIT License), which leverages the true likelihood. It takes 3 days for Bilby to complete the
posterior inference of GW150914, while our network builds histograms (100 bins per dimension) of
all 1d and 2d marginal posteriors in about 1 second, on a single 1080Ti GPU.
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Figure 3: AMNRE 1d and 2d surrogate marginal posteriors against marginalized Bilby posterior
samples over a subset of the parameters, for the GW150914 observation. Density is averaged over
three training instances.

As can be seen in Figure 3, the surrogate marginal posteriors of AMNRE share the same structure as
the marginalized posterior inferred by Bilby. For some parameter subsets, especially those containing
the masses m1 and m2 and the inclination angle θJN , the predictions present significant inaccuracies.
For the masses, the surrogates are underconfident but predict the correct modes. For other parameters,
including the coalescence time tc, luminosity distance dL and sky location (α, δ), the surrogates are
in close agreement with Bilby.

4 Conclusions

This work introduces AMNRE, a novel simulation-based inference method that enables integration-
less marginal posterior estimation over arbitrary parameter subspaces. Through our experiment with
the SLCP toy simulator, we demonstrate that the proposed algorithm is indeed able to recover the
ground-truth posterior and marginalize it arbitrarily. This experiment also highlights the capacity of
AMNRE to model multi-modal distributions, even using a very basic MLP architecture.

The second experiment consists in applying AMNRE to the problem of BBH parameter inference
from GW observations. This proof of concept demonstrates that AMNRE is able to analyze GW
events several order of magnitude faster (seconds instead of days) than traditional sampling methods.
However, if most of the surrogate marginal posteriors seem accurate, some present significant
inaccuracies. Possible causes are a lack of estimator expressiveness or insufficient simulation budget;
aspects we do not properly study in this work. Still, we believe these results to be a promising
demonstration of the applicability of AMNRE for convenient interpretation of the posterior in
challenging scientific settings.
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A Correctness of AMNRE

Reformulating (5), we have

L =

˚
Θ×X×Θ

p(θ, x)p(θ′) E
p(a)

[
L(dφ(θa, x, a) + L(1− dφ(θ′a, x, a))

]
dθ dx dθ′

=

¨
Θ×X

E
p(a)

[
p(θ, x)L(dφ(θa, x, a)) + p(θ)p(x)L(1− dφ(θa, x, a))

]
dθ dx

= E
p(a)

¨
Θa×X

[
p(θa, x)L(dφ(θa, x, a)) + p(θa)p(x)L(1− dφ(θa, x, a))

]︸ ︷︷ ︸
`(dφ(θa,x,a))

dθa dx,

which is minimized only if each term `(dφ(θa, x, a)) is itself minimized. Assuming p(θa)p(x) > 0,
if p(θa, x) = 0, ` is uniquely minimized by the value 0. Otherwise, if p(θa, x) > 0, the minimum is
only reached by a value q such that

0 =
d`(q)

dq

= p(θa, x)
dL(q)

dq
+ p(θa)p(x)

dL(1− q)
dq

= p(θa, x)
−1

q
+ p(θa)p(x)

1

1− q

⇔ q =
p(θa, x)

p(θa, x) + p(θa)p(x)
= d(θa, x, a).

Importantly, if p(θa, x) = 0, d(θa, x, a) = 0 and still minimizes `. Therefore, as long as p(θa)p(x) >
0, d(θa, x, a) is the optimal classifier.

B Simulators

B.1 Simple likelihood and complex posterior

In this toy simulator, θ ∈ R5 parametrizes a 2d multivariate Gaussian from which four points are
independently sampled to construct an observation x. The generative process [14] is

θi ∼ U(−3, 3) for i = 1, . . . , 5

s1 = θ2
3, s2 = θ2

4, ρ = tanh(θ5)

µ = (θ1, θ2), Σ =

(
s2

1 ρs1s2

ρs1s2 s2
2

)
x = (z1, . . . , z4) where zj ∼ N (µ,Σ),
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for which the likelihood p(x|θ) =
∏
j p(zj |θ) is tractable.

B.2 Gravitational waves

As we do not have enough knowledge in the domain, we borrow the BBH simulator implemented by
Green et al. [5] (MIT License). We succinctly describe the generative process in this section. For
more information, please refer to the original paper or the implementation.

Prior We perform inference over the full 15-dimensional set of precessing quasi-circular BBH pa-
rameters: component masses (m1,m2), reference phase φc, coalescence time tc, luminosity distance
dL, spin magnitudes (a1, a2), spin angles (θ1, θ2, φ12, φJL), inclination angle θJN , polarization
angle ψ, and sky location (α, δ). To analyze GW150914, we take a prior uniform over

10 M� ≤ mi ≤ 80 M�
−0.1 s ≤ tc ≤ 0.1 s

100 Mpc ≤ dL ≤ 1000 Mpc

0 ≤ ai ≤ 0.88

and standard over the remaining quantities. We take tc = 0 to be the trigger time of GW150914 and
constraint m1 ≥ m2.

Waveform generation The simulator generates waveforms using the IMRphenomPv2 frequency-
domain processing model [23, 24] and assumes stationary Gaussian noise with respect to the noise
power spectral density (PSD) estimated from 1024 s of detector data prior to GW150914. The
frequency ranges from 20 to 1024 Hz and each waveform has a duration of 8 s. The waveforms are
whitened with respect to the estimated PSD.

Waveform processing The observations are quite large (16 384 features) and, thereby, impractical
to store on disk and feed to a neural network. To alleviate this problem, the waveforms are compressed
to a reduced-order basis corresponding to the first 128 components of a singular value decomposition
(SVD). Using more SVD components did not help producing better predictions, likely due to the
higher ratio of noise in less significant components.

Since an observation corresponds to two waveforms from two geographically distant detectors (H1
and L1) and frequency-domain signals are represented by complex-valued vectors, each processed
observation is a vector of 128× 2× 2 = 512 real-valued numbers.

Noise For the training set, the noise of the detectors is not added to the stored waveforms. Instead,
noise realizations are sampled with respect to the PSD in real time during training, which effectively
increases the size of the training set.

C Experimental details

Datasets For each simulator, we use three fixed datasets of pairs (θ, x) ∼ p(θ, x) to train, validate
and test AMNRE, respectively. The sizes of the datasets are provided in Table 1.

Table 1: Dataset sizes for each simulator.

Simulator Training set Validation set Testing set

SLCP 1 048 576 131 072 131 072
GW 4 194 304 131 072 131 072

Architectures For SLCP, we use an MLP with 7 hidden layers of 256 neurons and ELU [25]
activation functions. For GW, the classifier is a residual residual network [10] consisting of 17
residual blocks of 2 linear layers with 512 neurons and ELU [25] activation functions. In the blocks,
we insert batch normalization layers [26] before the activation functions.
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Training All networks are optimized with the AdamW [27, 28] stochastic optimization algorithm.
At each epoch, the batches are built by sampling without replacement from the training set. The
independent parameters θ′ are obtained by shifting circularly (i ← i + 1 and n ← 1) the batch
of parameters θ. Each element in the batch has a different mask, sampled from the uniform mask
distribution.

For SLCP, we apply a “reduce on plateau” scheduling to the learning rate, that is, we divide the
learning rate by a factor 2 each time the loss on the validation set has not decreased for 7 consecutive
epochs. The training stops when the learning rate reaches 10−6 or lower. For GW, we apply a learning
rate cosine annealing [29] over 512 epochs. Other hyperparameters are provided in Table 2.

Table 2: Training hyperparameters.

Hyperparameter SCLP GW

Optimizer AdamW AdamW
Weight decay 10−4 10−4

Batch size 1024 1024
Batches per epoch 256 1024
Epochs - 512
Scheduling reduce on plateau cosine annealing
Initial learning rate 10−3 2× 10−4

Final learning rate 10−6 10−6
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tion of the SLCP testing set. The predictions of AMNRE for the marginal posteriors are consistent
with the predictions for the full posterior, marginalized onto the 1d and 2d subspaces.

8



0 25 50 75 100 125

Epoch

0.4

0.6

0.8

1.0

1.2
L

os
s

validation

training

0 100 200 300 400 500

Epoch

0.4

0.6

0.8

1.0

1.2

L
os

s

validation

training

Figure 5: Mean training and validation losses of AMNRE surrogate models for SLCP (left) and GW
(right) simulators. Each color corresponds to a different training instance. All instances converge
without signs of overfitting. Training takes around 5 minutes for SLCP and 8 hours for GW, on a
single 1080Ti GPU.

−0.5 0.0 0.5 1.0

KL to ground-truth

θ1
θ2
θ3
θ4
θ5

θ1, θ2
θ1, θ3
θ2, θ3
θ1, θ4
θ2, θ4
θ3, θ4
θ1, θ5
θ2, θ5
θ3, θ5
θ4, θ5

MNRE

AMNRE

Figure 6: KL divergence to the marginalized ground-truth posterior of 1d and 2d surrogate marginal
posterior histograms. The bars represent the mean and standard deviation over 64 observations from
the SLCP testing set. AMNRE does not diverges more from the ground-truth than MNRE [3, 7],
despite using a single network for all subspaces.

9



0.0 0.2 0.4 0.6 0.8 1.0

p

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(p

)

θ1

θ2

θ3

θ4

θ5

0.0 0.2 0.4 0.6 0.8 1.0

p

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(p

)

m1

m2

tc

dL

a1

a2

θ1

θ2

θJN

α

δ

Figure 7: Cumulative distribution function (CDF) of the percentiles p of 8192 parameters θ∗ in the
one-dimensional surrogate marginal posteriors p̂(θi|x∗) for pairs (θ∗, x∗) of the SLCP (left) and GW
(right) testing sets. If the surrogate posterior is consistent with the prior, i.e. if Ep(x)

[
p̂(θ|x)

]
≈ p(θ),

the percentiles should be distributed uniformly between 0 and 1. Since the CDFs lie close to the
diagonal, we conclude that the surrogates are consistent with the prior.

Importantly, one cannot conclude that the network models properly the posterior from this result, as
any distribution consistent with the prior, including the prior itself, would present diagonal CDFs.
Green et al. [5] inadvertently draw this erroneous conclusion.
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