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Abstract

Estimates of the amount of Soil Organic Carbon (SOC) at the regional scale are important to better understand the role of the SOC reservoir in
global climate and environmental issues. This study presents a method for estimating the total SOC stock using data from Flanders (Belgium).
More than 6900 SOC measurements from the national soil survey (database ‘Aardewerk’) are combined with a digital land use map and a digital
soil map of Flanders. The spatial distribution of the SOC stock is studied in its relation to factors such as soil texture, soil moisture (drainage class)
and land use. The resulting map with a resolution of 15 m consists of different classes forming a combination of these environmental factors. The
results show that the lowest SOC amount (kg m−2) is stored under cropland whereas the highest amount is found under grassland. Regarding the
effect of soil properties, a significant correlation between SOC stock and depth of the ground water table is observed. Sandy loam soils stock the
lowest SOC amount (kg m−2), whereas clay soils retain the highest SOC amount. First, the mean SOC amounts of the land use–soil type classes
are calculated and assigned to the corresponding cells in order to obtain a total SOC stock with its spatial distribution for Flanders. Then, a
multiple regression model is applied to predict the SOC value of a particular land use–soil type class on the map. This model is based on the
observed relationships between SOC and land use–soil type characteristics, using the entire dataset. The first approach does not allow to obtain a
(reliable) SOC value for all land use–soil type classes due to a lack of samples in some classes. A major advantage of the regression model
approach is the attribution of class specific SOC values to each land use–soil type class, regardless of the number of observations in the classes.
Consequently, by applying the model approach instead of the mean approach, the area for which a reliable SOC estimate could be obtained
increased by 8.1% (from 9420 km2 to 10179 km2) and the total predicted SOC stock increased by 10.1% (from 88.7±5.6 Mt C to 97.6±1.1 Mt C).
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is generally recognized that soils represent amajor reservoir
in the global C-cycle. Soils contain more organic carbon than the
atmosphere and biosphere together (e.g. Grace, 2004). Never-
theless, the role of this reservoir in global climate and
environmental issues is not clearly understood. Moreover, an
important part of the missing atmospheric carbon sink is most
probably situated in the soil reservoir (e.g. Schimel et al., 2001).
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With the ratification of the Kyoto Protocol, Flanders has to
reduce its CO2 emission level with 5.2% compared to its 1990
emissions. This goal has to be achieved in the period 2008–
2012 (VMM, 2004). Articles 3.3 and 3.4 of the Kyoto Protocol
allow the participating countries to take activities such as
improved management of agricultural land or reforestation into
account in order to realize this reduction (Dendoncker et al.,
2004). As a result of agro-environmental and regional policies,
the Belgian carbon mitigation potential by improved manage-
ment is estimated at 0.47% to 0.90% of the greenhouse gas
emission in 1990 (Dendoncker et al., 2004). Other European
studies show that land use change and management practices
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can even play a more important role in achieving the Kyoto
goals (Cannell et al., 1999; Smith et al., 2000; Janssens et al.,
2005).

The first studies on soil organic carbon examined the SOC
stock at a global scale (Bolin, 1970; Bohn, 1982; Parton et al.,
1987; Batjes, 1996). The global SOC pool is estimated at 1200
to 1600 Gt C (Wang et al., 2003). However, the great spatial
variability of SOC values within the mapping units is an
important source of uncertainty in these assessments (Liebens
and Van Molle, 2003).

More accurate SOC estimates at the sub-regional scale
(country, state) are essential to better understand the signifi-
cance of the soil reservoir. In studies at the regional scale,
different data sources and a large variety of spatial analysis
techniques have been used, often within a GIS environment. A
bottom up approach is common in these surveys: the study area
is stratified by its land use and/or soil type and for each land
use–soil type class, the mean SOCmass is calculated from point
measurements of SOC that can be attributed to the corre-
sponding polygons/grid-cells on the map. Nevertheless, the
selection of the type of SOC database, the land use and/or soil
map, the mapping resolution, bulk density or other information
and choice of reference depth can have a great influence on the
final SOC stock estimation.

Kern (1994) compared three different approaches in his
study to obtain the spatial pattern and total amount of SOC in
the USA. For each approach a different combination of SOC,
soil, and ecosystem data was used, resulting in total SOC stock
estimations ranging from 78.0 Giga (109) ton carbon (Gt C) to
84.5 Gt C (Kern, 1994). Several authors showed another
example of the influence of different databases and maps on
national SOC stock estimations in China ranging from 92 Gt C
(Wang et al., 2003) to 120 Gt C (Ni, 2001). Although the
vegetation map of China was used in both studies, Wang et al.
(2003) combined this map with SOC data from the national soil
surveys, whereas Ni (2001) used a soil texture map and mean
SOC densities from earlier studies.

Batjes and Dijkshoorn (1999) illustrated that reference depth
has an important influence on the total SOC stock. They
calculated that in the Amazon region the top 30 cm of the soil
contains 52% of the total amount of carbon in the top 1 m.

Using different spatial resolutions, Batjes (2000) found that
the total SOC stock of South America ranges from 149.1 Gt C to
159.7 Gt C for the first meter of the soil.

The accuracy of the land use and bulk density information
used also plays a very important role in the assessment of SOC
contents. Howard et al. (1995) used the dominant soil series and
land cover type to calculate the total amount of SOC in the first
meter of Great Britain's soil at 21.8 Gt C. The geographical
distribution of the SOC was mapped for a 10 km grid. Based on
a more realistic land use distribution and more accurate
information about bulk density of the peat soils in Scotland,
Milne and Brown (1997), recalculated the total national SOC
amount for a resolution of 1 km, at 9.8 Gt.

Lettens et al. (2004) estimated Belgian SOC stock at
181 Mega (106) ton carbon (Mt C) in the upper 30 cm and
280 Mt C in the upper 1 m, by intersecting the soil association
map and the land use map of Belgium at a resolution of 250 m.
In this study SOC data were obtained from a national soil
survey, resulting in the soil database called ‘Aardewerk’ (1950–
1970) (Lettens et al., 2004). More recent inventories allowed
Lettens et al. (2005) to calculate the amount of SOC in Belgium
for the year 2000 at 264 Mt C for the upper 1 m (Lettens et al.,
2005).

For Flanders SOC estimates for the top 1 m of soil were
published by Liebens and Van Molle (2003) and Sleutel et al.
(2003a). Liebens and Van Molle (2003) combined carbon
measurements of the national soil survey (database Aardewerk,
1950–1970) with information from the digital land use map of
Flanders and the soil map of Belgium. They illustrated that total
SOC stock estimation ranges from 125.6 to 134.9 Mt C due to
the influence of different SOC density estimations and various
spatial distribution models (Liebens and Van Molle, 2003).
Sleutel et al. (2003a) used a dataset with 190,000 SOC
measurements to calculate SOC amount stored in Flemish
cropland soil by agro-pedological–administrative region. In this
study, the total SOC stock of cropland soils is estimated at
28.2 Mt C (Sleutel et al., 2003a).

Comparison of studies at the national level, revealing
remarkable differences in SOC stock estimates, emphasizes
the need for more detailed research (Rusco et al., 2001). Errors
associated with assigning mean SOC content from a small
number of samples to mapping units can be an important source
of discrepancies. Jones et al. (2004) used a pedo-transfer rule to
predict mapping unit specific SOC content in order to correct
for these errors. The pedo-transfer rule is defined as a series of
‘if–then’ conditions with soil, land use and climate as input
variables. Using this method the geographical distribution of
organic carbon content in European top soils, at a resolution of
1 km, was obtained (Jones et al., 2004).

In the present study, SOC measurements from the national
soil survey (1950–1970, database ‘Aardewerk’) are used to
estimate Flanders SOC stock. The spatial distribution is mapped
at a resolution of 15 m by combining a digital soil map and a
digital land use map of Flanders. Many land use–soil type
combinations resulting from the overlay of the soil map and the
land use map were characterized by no or low number of point
measurements of SOC. Consequently, using the often-used
mean method, i.e. by assigning mean SOC values of the soil
type–land use class to the corresponding areas on the map, no or
unreliable SOC values are obtained for these classes. Hence, a
multiple regression model is constructed predicting a reliable
SOC amount for each land use–soil type combination to
overcome this problem. In order to evaluate this approach, SOC
calculations and spatial distribution resulting from both
methods, i.e. the mean and model approach, are compared.

2. Materials and methods

2.1. SOC data

Information from the Belgian National Soil Survey (1947–
1974) was compiled in a digital database, called Aardewerk
(Van Orshoven and Vandenbroucke, 1993). This database



Fig. 1. Belgian soil texture classification triangle (after Ameryckx et al., 1995).

Table 1
Belgian drainage classification system as a function of the soil texture: (Heavy
clay (U), clay (E), sandy loam (L), loam (A), light sandy loam (P), loamy sand
(S), sand (Z)) after Ameryckx et al. (1995)

Drainage
class

Definition Natural
draining

Depth
oxidation
horizon (cm)
(min. depth
water table)

Depth reduction
horizon (cm)
(max. depth
water table)

Text. A,
L,E, U

Text.
Z, S, P

a Very dry Very
strong

– – –

b Dry Strong N120 90–
120

–

c Moderate dry Moderate-
strong

80–120 60–90 –

d Moderate wet Moderate 50–80 40–60 –
e Wet with

reduction horizon
Moderate-
bad

30–50 20–40 N80

f Very wet with
reduction horizon

Bad 0–30 0–20 40–80

h Wet Moderate-
bad

30–50 20–40 –

i Very wet Bad 0–30 0–20 –
g Extremely wet Very bad 0 0 b40
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contains pedologic information from soil profiles sampled over
the whole of Belgium. For Flanders, Aardewerk contains almost
9000 soil profiles representing 49,000 horizons. The profiles in
the dataset are provided with information about land use, texture
and drainage class, classified according to the Belgian soil
classification system (Fig. 1 and Table 1). Furthermore, for each
horizon the percentages of sand, silt and clay are given, as well
as the amount of SOC (%), determined by wet oxidation using
the bichromate method of Walkey & Black (1934) (Van
Orshoven and Vandenbroucke, 1993).

More than 6900 profiles, including information about soil
type, land use and SOC content, were selected from Aardewerk.
In most cases the first meter of soil contains approximately 5
horizons. The SOC contents (%) of each horizon are
transformed into SOC mass densities (kg m−3) by multiplying
the SOC content of the horizon by the soil bulk density
(kg m−3). Because of incomplete oxidation of carbon when
using the Walkley & Black method, a correction factor of 1.33 is
applied (Schumacher, 2002):

SOCD ¼ qs⁎
SOC
100

⁎1:33 ð1Þ

where: SOCD=SOC density of the horizon (kg m−3)
ρs=bulk density of the soil (kg m−3)
SOC=SOC content of the horizon (%)

Bulk density data are not given in the dataset Aardewerk.
Consequently, the required bulk density values for this study are
derived from a pedotransferfunction (PFT). Boucneau et al.
(1998) compared different PTF's for predicting the soil bulk
density for Flemish soils. The dataset used by Boucneau et al.
(1998) contains 40 soil profiles, representing major soil series in
northern Belgium. For the present study, of all the useable
functions, the general PTF of Manrique and Jones (1991) shows
the best correlation between observed and predicted values
(Boucneau et al., 1998). Hence, the general PTF ofManrique and
Jones (1991), which only uses SOC content as input variable, is
selected to calculate the bulk density of the soil (ρs; Eq. (2)).

qs ¼ 1:66� 0:318⁎
ffiffiffiffiffiffiffiffiffiffi
SOC

p
ð2Þ

The SOC mass per unit surface area (kg m−2) of a profile is
calculated as the weighted average of the SOC mass density
(kg m−3) of every horizon, where the thickness of the horizon (Ti)
is the weighing factor, multiplied by the reference depth (Dr). To
facilitate comparison with international literature a reference
depth of 1 m is selected, as this is the most common reference
depth used in related studies (e.g. Kern, 1994; Batjes, 2000;
Sleutel et al., 2003a; Lettens et al., 2004; Eq. (3)).

SOCm ¼
Pn
i¼1

SOCDi⁎Ti

Pn
i¼1

Ti

⁎Dr ð3Þ

where: SOCm=SOC mass per unit surface area (kg m−2)
SOCDi=SOC density of the ith horizon (kg m−3)
Ti=thickness of the ith horizon (m)
n=number of horizons

The thickness of the last horizon till reference depth (1 m)
can be calculated using Eq. (4).

Tn ¼ Dr �
Xn�1

i¼1

Ti ð4Þ

where: Tn=thickness of the last (nth) horizon to the reference
depth (m)

Ti=thickness of the ith horizon (m)
Dr= reference depth (m)
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2.2. Maps

The digital land use map of Flanders, with a resolution of 15 m,
was derived from Landsat7-ETM+images acquired in 2001.
Classification of these images was accomplished with a semi-
automatic bayesian classification algorithm, using a field inventory
for the training of the classifier. The classification obtained was
refined to 18 land use classes using external road and waterway
information, the digital soil associationmap and the CORINE land
cover dataset (OC GIS Vlaanderen, 2002). For the present study,
four aggregated classes are extracted from the digital land use map
of Flanders: forest, grassland, cropland and heath.

The soil map of Belgium is based on the National Soil
Survey (1947–1974). Since 2001, the “Ondersteunend Centrum
(OC) GIS Vlaanderen” distributes a digital version of the soil
map of Belgium (OC GIS Vlaanderen, 2001). Based on a
morphogenetic classification system for the majority of the area
and a geomorphological classification for the Polders, Coast
and Dunes region the digital soil map containes, 4500 unique
soil codes. From this map a texture–drainage class map was
constructed by extracting the texture-and drainage class
information from the soil code for each morphogenetic
classified area. Soils belonging to the unit Polders, Coast and
Dunes were not classified based on drainage and texture
(morphogenetic) but on geomorphology. Nevertheless, the
textural characteristics of these geomorphologic soil type
classes are well described (OC GIS Vlaanderen, 2002). Based
Fig. 2. Flowchart of the
on this information a reclassification was performed. This
resulted into five corresponding texture groups, differing
significantly in their SOC content: i.e. sand, a combination of
sand (or sandy loam) and clay textured soil layers, clay, heavy
clay (with peat) and land dunes. The Belgian soil drainage
classes were defined based on the depth of occurrence of
oxidation and reduction properties in the soil profile. These
depths correspond to the minimum and maximum ground water
depth, or the position of the winter and summer ground water
table, respectively (Ameryckx et al., 1995). Fig. 1 and Table 1
show the Belgian soil texture and drainage classification
system.

The study area was stratified by overlaying the soil type map
and the reclassified land use map. The resulting map consists of
different land use–soil type classes and has a resolution of 15 m.

2.3. Calculation of total SOC stock

Two methods were applied to determine the spatial
distribution of SOC. In a first approach, called mean approach,
the SOC data from Aardewerk are grouped into 252 possible
land use–soil type classes, based on land use (grassland,
cropland, forest and heath), drainage (Fig. 1) and texture
(Table 1) classification of the database. For each land use–soil
type class the mean SOC mass per unit surface area (kg m−2) is
calculated and attributed to the corresponding grid-cells in the
constructed land use–soil type map with a resolution of 15 m.
statistical analysis.
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For classes with less than 10 samples, the mean SOC mass
obtained is considered not representative. Consequently, these
values were not taken into account during the mapping. These
classes represent 7.46% of total study area.

In a second approach, called “model approach”, a regression
model predicting the SOC stock for each land use–soil type
class on the map, is constructed, based on all observations. Land
use, texture (geometric mean particle size (Dg), proportion of
particle size classes: sand, silt and clay) and drainage (depth of
the water table) are the input variables for the model.

Finally, the total amount of SOC in the study area is
calculated by multiplying the area of each land use–soil type
class by the SOC mass per unit surface area (kg m−2) for that
class, and then summing the SOC masses obtained for all the
classes (Eq. (5)).

SOCT ¼
Xn
i¼1

SOCmi⁎Ai ð5Þ

where: SOCT= total amount of SOC in the entire study
area (kg)
Fig. 3. Mean SOC masses (kg m−2) by texture–drainage class for diffe
SOCmi=SOC mass per unit surface area of land use–soil
type class i (kg m−2)

Ai=area of land use–soil type class i (m2)
n=number of land use–soil type classes

2.4. Statistical analysis

Statistical analysis (Fig. 2) on the results were carried out
using the software packages SPSS 11.5 and MATLAB 6.1. A
Kolmogorov–Smirnov test (e.g. Chakravarti et al., 1967)
indicated that for many land use–soil type combinations SOC
data are non-normally distributed. Therefore, the Wilcoxon test
(e.g. Kanji, 1994) is applied to detect significant differences in
SOC content. Based on this analysis and a multi-collinearity
analysis, input variables for a multiple regression model are
selected. Model parameters are estimated with a Least Squares
(LS) estimator. Analysis of Variance (ANOVA) (pb0.05) is
used to evaluate the contribution of the different input variables
to model prediction. In order to verify if an increase of the
complexity of the model leads to a significant improvement of
its quality (R2), an F-test is applied. Due to the large amount of
rent types of land use: a) pasture, b) cropland, c) forest, d) heath.



Table 2
Correlation coefficients between different site variables: sand, silt and clay
content (%), geometric mean particle size (Dg), acidity (pH), minimum and
maximum depth of the ground water table (h2omin, h2omax), amount of SOC in
kg m−2 (SOC)

Sand
(%)

Silt
(%)

Clay
(%)

Dg pH h2omax

(m)
h2omin

(m)
SOC
(kg m−2)

Sand
(%)

1.000

Silt
(%)

−0.970 1.000

Clay
(%)

−0.707 0.521 1.000

Dg 0.897 −0.844 −0.723 1.000
pH −0.506 0.460 0.461 −0.498 1.000
h2omax

(m)
−0.085 0.132 −0.088 −0.050 −0.010 1.000

h2omin

(m)
−0.438 0.501 0.091 −0.050 0.125 0.498 1.000

SOC
(kg m−2)

0.022 −0.079 0.168 0.020 −0.029 −0.520 −0.306 1.000
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data even a very small increase of R2 (pN0.01) is to be
considered significant. Therefore, the difference between the
observed mean value of a class with more than 10 samples and
the predicted value for that class (R2

class) is also assessed.

3. Results and discussion

3.1. Mean approach

For 101 of the 252 possible land use–soil type combinations
no soil data are available in Aardewerk. Because of the spatial
autocorrelation of soil texture, drainage and land use, these land
use–soil type classes were scarce and only covered 0.74% of the
total study area. For 64 combinations, containing more than one
but less than 10 samples, mean SOC mass is not calculated
because the sample size is considered insufficient for calculat-
ing a representative mean value. These classes represent 6.72%
of the total study area, but describe extreme environments and
so they are characterized by very high/low SOC contents.

Consequently, for only 87 out of 252 classes mean SOC
masses are calculated. The number of samples, mean SOC mass
per unit area and corresponding standard deviations of the differ-
ent land use–soil type classes are given respectively in e-Table 1,
e-Table 2 and e-Table 3 (Meersmans, 2007). Fig. 3 shows the
mean SOC masses per unit area. Probability values of Wilcoxon
tests detecting significant differences in SOC content between
two land use, drainage or texture classes are given in e-Tables 4,5
and 6 (Meersmans, 2007).

3.1.1. Land use
The results indicate that for almost every land use–soil type

class the lowest amount of SOC (kg m−2) can be found under
cropland (Fig. 3). Liebens and Van Molle (2003) obtained a
similar result using the same dataset but a different method.
These results are in accordance with the findings of Paustian
et al. (1997). They found that the amount of SOC decreases with
increasing physical disturbance of the soil. Plowing appears to
be the most important explanatory factor as it causes disaggre-
gation and loss of internal physical protection of SOC against
oxidation (Lal et al., 1997). In 18 of the 30 soil types a significant
lower mean SOCmass (pb0.05) was found under cropland than
under grassland. Comparing cropland with forest, 10 of the 15
soil types have significant lower mean SOC mass in cropland
(pb0.05) (e-Table 4; Meersmans, 2007). For the majority of the
soil types the highest amount of SOC is found under grassland.
On the other hand, the difference in SOC between forest and
grassland is very small for most texture–drainage classes; only
in 2 of the 15 cases a significant difference in mean SOCmass at
0.05 level was detected (e-Table 4; Meersmans, 2007). This is in
accordance with observations of Lettens et al. (2005) on Belgian
soils, indicating that SOC amounts under forest and grassland
were comparable and generally higher than the SOC stocks
under cropland. When comparing the amount of SOC between
different land use classes, the reference depth is very important:
the SOC stock is much higher under forest than under grassland
when only the topsoil (i.e. the first 20 cm) is taken into account
(Wang et al., 2004).
3.1.2. Drainage
For almost every land use–texture combination the same

trend was observed (Fig. 3): the amount of SOC increases from
drainage class b to drainage class f or g. This indicates that high
amounts of SOC can be found in poorly drained soils. For
almost all land use–texture classes, the mean SOC masses (kg
m−2) in wet to extremely wet soils with a reduction horizon less
than 1 m deep (drainage classes e, f, g), are significantly higher
(pb0.01) than those in the better drained soils without a
reduction horizon (but with an oxidation horizon) (b, c, d, h).

In 10 out of the 13 land use–texture classes mean SOC mass
is significantly higher (pb0.01) in wet soils with a reduction
horizon (e) than in wet soils without a reduction horizon (h) (e-
Table 5; Meersmans, 2007). The reduction horizon is an
indicator for the maximum depth of the ground water table. This
means that for soils belonging to drainage classes e, f and g
ground water is permanently present in the soil profile. In soils
with drainage classes b, c, d and h the water table is only
periodically present. The amount of free oxygen atoms is lower
in water than in air. Consequently, oxidation of carbon is lower
in wet soils (with the presence of a permanent ground water
table) as compared to dry soils, where saturated conditions
occur only periodically.

The relationship between SOC and the minimum depth of
the ground water table is weaker than with the maximum depth
of the ground water table (Table 2). Generally, it can be stated
that the effect of the minimum depth of the groundwater table
on SOC depends on texture class, whereas texture class doesn't
affect the impact of the maximum depth of the ground water
table on SOC.

For agricultural soils with a fine texture (i.e. (heavy) clay
(texture class E, U) and loam (A) soils) the mean SOC mass in
wet soils with strongly fluctuating depth of the ground water
table (i.e. maximum depth not present in the profile and
minimum depth within the topsoil, represented by drainage
class h) is higher as compared to the better drained soils with a
larger minimum ground water table depth (b, c, or d). Only for



Fig. 4. Mean SOC mass (kg m–2) per land use–soil type class for the coast, polders and dunes area.
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loam (A) soils under grassland, the difference between wet soils
without a reduction horizon (h) and moderate wet soils without
a reduction horizon (d) is significant at 0.01 level. Sand (Z) soils
under cropland and grassland show an opposite trend: mean
SOC mass in wet soils without a reduction horizon (h) is lower
than in drier soils belonging to drainage classes b, c, or d. Under
cropland the difference between wet soils without a reduction
horizon (h) and moderate wet soils without reduction horizon
(d) is significant (Pb0.01) (e-Table 5; Meersmans, 2007). This
can be explained by the very high input of manure due to
intensive livestock agriculture on dry sand soils in the Campine
area, situated in North Flanders (Sleutel et al., 2003a).

The positive correlation between soil wetness and SOC
found in this study indicates a negative effect of soil drainage on
the SOC stock. This finding is in accordance with the inter-
national literature (Bouwman, 1990; Davidson, 1995; Tan et al.,
2004; Ungaro et al., 2005). Furthermore, different studies
identified the importance of the ground water level on the SOC
stock in wetlands (Updegraff et al., 2001; Lloyd, 2006).
Bouwman (1990) estimated that the soil can lose 10 ton C ha−1

y−1 after draining. This implies that protection of poorly drained
areas such as peat lands, is very important in the context of
global warming (Bouwman, 1990).

3.1.3. Texture
Heavy clay (U) and clay soils (E) store significantly

(pb0.05) more SOC than all other soil texture classes for
most land use–drainage class combinations (e-Table 6; Meers-
mans, 2007). Because clay soils are mostly characterized by
poor drainage, they contain less air and therefore have lower
SOC oxidation rates. Regardless of the drainage status of the
soil, small voids in clay soils promote aggregation and physical
protection of SOC against oxidation (Bouwman, 1990). Under
cropland and grassland, the lowest mean SOC masses occur
within light sandy loam (P) soils. The SOC amounts in dry
sandy soils (Za, Zb, Zc) are remarkably high under cropland.
Under cropland, for dry to moderate wet soils without reduction
horizon (b, c, and d) soils with a sand texture (Z) show
significantly higher (pb0.01) mean SOC masses than finer
textured soils (A, L, P and S) (e-Table 6; Meersmans, 2007).
Under grassland, the difference is only significant (pb0.05) for
dry soils (b). The high SOC value under agricultural sand (Z)
soils is not in accordance with the international literature where
a clear positive linear relationship is found between SOC mass
and clay content or clay + silt content (Zinn et al., 2005). This
implies that lowest amounts of SOC are expected in sand soils
(Z), as this texture class is characterized by the lowest clay (or
clay + silt) content of all texture classes.

Under cropland the differences between sandy soils (Z) and
loam, (light) sandy loam or loamy sand soils (A, L, P, S) become
smaller with increasing soil moisture. These differences are not
significant under wet conditions (e and h). Under grassland,
these wet soils (e and h) show significantly lower (pb0.01)
mean SOC masses for sand soils (Z) than for loam soils (A) (e-
Table 6; Meersmans, 2007). The unexpected high mean SOC
content for dry sandy soils under agricultural land use can again
be explained by the high input rate of manure, due to intensive
livestock agriculture on this soil type in the north of Flanders
(Sleutel et al. 2003a; van Wesemael et al., 2005).

The difference in mean SOC between two texture classes was
significant (pb0.05) in only 1 out of 19 cases under forest. For the
same 19 inter texture class tests, a significant difference was
observed in 5 cases for grassland and in 13 cases for cropland.
This could possibly be a consequence of the much higher number
of observations under agricultural land use (cropland and pasture)
than under forested land, as the number of observations affects the
probability values of the Wilcoxon tests. Nevertheless, agricul-
tural management and particularly manure production, has an
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important impact on SOC stock and varies by texture in Belgium
(vanWesemael et al., 2005). Furthermore, in the present study, the
high input rate of manure in sand soils appears to have a great
influence on the differences in SOC between sand and other
texture classes under agricultural land uses.

3.1.4. Coast, dunes and polders
Coast, dunes and polders cover 7.1% of the study area.

Although a different classification system was used for this
region, a close relation between both classification systems
exists. This allowed grouping the soil codes into 5 corresponding
texture groups: sand, combination of sand (or sandy loam) and
clay textured soil horizons, clay, heavy clay (with peat) and land
dunes. For these groups the database Aardewerk contains more
than 9 samples only for cropland and grassland. For the land
dunes the database includes enough samples (nN9) for each land
use type (grassland, cropland, forest and heath). Mean SOC
contents of these classes are illustrated in Fig. 4. The mean SOC
mass under grassland is higher than under cropland. A positive
correlation between clay content and mean SOC content was
observed.

A last land use class is formed by the peat soils, characterized
by an exceptionally high SOC content (Houghton, 1999). For
Flanders the mean SOC for this class was calculated at 42.7 kg
m−2. This value is close to the peat SOC densities reported by
Liebens and Van Molle (2003) and Lettens et al. (2004),
respectively 44.9 kg m−2 and 45.6 kg m−2. However, the
occurrence of these soils is very restricted in the study area: only
0.03% of the surface is covered by peat soils.
Fig. 5. SOC distribution map for Flanders (Belgium) based on m
The distribution of SOC in Flanders based on the mean SOC
mass for each land use–soil type class is mapped in Fig. 5.
White spots on the map are urban areas or land use–soil type
classes without mean SOC value (i.e. less then 10 representative
samples). The big white spots correspond to the most important
cities or large military domains.

3.2. Model approach

Based on the above-mentioned determining factors and
further analysis a regression model is developed, using the
entire dataset. This model is used to predict a general SOC value
for each land use–soil type class found on the map. This allows
the production of class-specific SOC values for each of the 252
possible land use–soil type combinations. Consequently, a more
comprehensive estimation of the spatial distribution of the total
SOC stock in Flanders can be obtained than the one using the
mean approach.

The depth of the ground water table represents the drainage
status of the soil in the regression model. The drainage classes
from the database are quantified by taking the middle value of
the interval defined by both the minimum and maximum depth
of the water table (h2omin and h2omax; Table 1). For classes
where maximum and/or minimum depth of the water table are
not given or are deeper than 1–2 m, a value of 150 cm was used.

Table 2 shows the correlation coefficients between the
different site variables. SOC shows a negative correlation with
the maximum depth of the water table (r=−0.520). Furthermore,
SOC is also correlated with the minimum depth of the ground
ean SOC mass for each land use–soil type class (kg m−2).



Table 3
Predicted value, standard error and 95% confidence interval of model
parameters

Value Std. error 95% confidence interval

a −10.120 0.292 −9.537 −10.704
b 0.074 0.011 0.097 0.052
c −2.643 0.646 −1.351 −3.936
d 0.031 0.005 0.040 0.021
e 10.025 1.005 12.034 8.015
f −2.925 0.394 −2.137 −3.712
g 0.168 0.011 0.189 0.146
h 8.491 1.433 11.357 5.625
i 2.334 0.558 3.451 1.217
j −1.997 0.410 −1.176 −2.818
γa 22.471 0.566 23.604 21.339
γb 24.090 0.467 25.023 23.156
γw 25.490 0.591 26.672 24.309
γh 24.584 0.743 26.070 23.098
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water table (r=−0.306) and with clay content (r=0.168). The
mutual correlation of the (minimum and maximum) depth of the
ground water table and the clay content is lower than 0.70, which
is, according to Buijs (2000), the maximum value allowing for the
input of these three variables together in themodel. Consequently,
these variables were selected asmost important input variables for
Fig. 6. Predicted SOC mass (kg m–2) by drainage–texture class based on the regressi
the model. Based on regression analysis across map units of area-
weighted estimates of SOC, clay content and drainage class in
Kansas and Montana (USA), Davidson (1995) also found a
remarkably stronger (negative) correlation between SOC content
and drainage class, as compared to the positive correlation with
clay content.

Land use was accounted for in the model by adding a land use
specific constant. From previous studies (Tan et al., 2004), it is
known that relationships between site variables and SOC content
are land use specific. Tan et al. (2004) constructed a different linear
regressionmodel for each land use type in order to predict the SOC
content in relation to texture, drainage, slope gradient and topog-
raphy. We constructed a single model by estimating parameter
values for more than 1 land use. For example, for the variable
“maximal depth of the ground water table (h2omax)” one parameter
value is estimated for all land uses. Nevertheless, because the land
use specific effects of some variables on SOC, some land use
specific parameter values were determined in the proposed model.

A statistical tool was used for the decision of calculating land
use specific parameters. The quality of model variables and their
individual contribution to the predictive power of the model were
evaluated by using the 95% confidence interval of each parameter
(ANOVA test (pb0.05), Table 3). Moreover, an F-test was used
on model for different land use types: a) pasture, b) cropland, c) forest, d) heath.



Fig. 7. SOC distribution map for Flanders (Belgium) based on predicted SOCmass for each land use–soil type class obtained by the use of a regressionmodel (kg m−2).

Table 4
Total SOC stock (Mega ton) and total study area (km2) according to mean and
model approach

Total SOC stock (M ton) Total study area (km2)

Mean approach 88.66±5.63 9419.8
Model approach 97.61±1.05 10179.0
Difference (%) 10.11 8.06
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to check if an increase in model quality, by adding a new variable,
resulted in a significant improvement of model quality (R2).

The remarkable higher SOC mass densities in well-drained
sand soils compared to the SOC mass densities of well-drained
loam soils under agricultural land (Fig. 3) indicates that for
Flanders, a linear relationship between clay content and SOC
mass does not completely reflect the variation in SOC content
due to texture. Therefore it was decided to integrate the
geometric mean particle size (Dg) in the model (Eq. (6)):

Dg ¼ exp
Xn
i¼1

fi ⁎ ln Mi � Nið Þ
 !

ð6Þ

where: fi: relative proportion particle diameter size class i
Mi: particle diameter upper bound of particle diameter

size class i
Ni: particle diameter lower bound of particle diameter

size class i

The geometric mean particle size is very weakly correlated with
SOC content (r=0.02) and is strongly correlated with clay content
(r=0.72) (Table 2). However, adding this variable to the model
considerably improved the quality of the model (higher R2). The
ANOVA test showed that for cropland and grassland, an interaction
term between Dg2 and h2omin had a significant contribution to the
model performance (Table 3). This indicates that the influence of
soil moisture on SOC content depends on texture. Furthermore,
based on theANOVA test, for cropland an interaction term between
(1-clay%) or (silt%+sand%) and h2omin is added to the model.
Finally, the following regression model is constructed:

SOCcropland ¼ a⁎h2omax þ b⁎clay% þ c⁎Dgð
þd⁎ silt%þ sand%ð Þ⁎h2omin þ e⁎Dg2⁎h2omin

þf⁎h2ominÞ þ gcropland
SOCpasture ¼ a⁎h2omax þ g⁎clay% þ c⁎Dgþ h⁎Dg2⁎h2omin

�

þf⁎h2omin Þ þ gpasture
SOCforest ¼ a⁎h2omax þ g⁎clay%þ i⁎Dgþ j⁎h2ominð Þ þ gforest
SOCheath ¼ a⁎h2omax þ g⁎clay% þ i⁎Dgþ j⁎h2ominð Þ þ gheath

where: h2omax=maximum depth of the ground water table
(reduction horizon)

h2omin=minimum depth of the ground water table
(oxidation horizon)

clay%=percentage of clay
silt%=percentage of silt
sand%=percentage of sand
Dg=geometric mean particle size
a,…, j, γi=model parameters



Table 5
SOC stock (Mega ton) and area (km2) according to morphogenetic and
geomorphologic classified soils and peat soils

Morphogenetic class Geomorphologic
class (coast,
polder, dunes)

Peat

Mean
approach

Model
approach

Area (km2) 8692.2 9451.4 724.5 3.1
SOC stock (M ton) 80.78±5.53 89.74±0.26 7.75±1.02 0.13±0.06

For morphogenetic classified soils SOC stock and area resulted from mean and
model approach are given separately.
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Small local disturbances in physical soil properties or
management practices can have a great effect on the SOC
content of the soil. This means that the investigated system is
typically characterized by a lot of noise and outliers.
Consequently, a quite low determination coefficient (R2) is
expected even for models describing the system very well. The
constructed model has a R2 value of 0.36. Despite the presence
of the most important factors in this model, many factors
influencing the SOC status, are not included (e.g. soil
management, erosion). Introducing these variables in the
model could eventually result in an increase of R2. Determina-
tion coefficient values for each land use are: 0.21 under
cropland, 0.47 under grassland, 0.24 under forest and 0.18 under
heath. Grassland has a significant higher R2 value compared to
other types of land use, indicating a better fit of the system by the
model and/or less noise compared to other types of land use.

However, comparing the mean and predicted SOC mass of
each land use–soil type class anR2

class value of 0.92was obtained.
This indicates that the model is a good predictor for mean SOC
mass by land use–soil type class. The use of R2 or R2

class to
describe the performance of the model depends on the research
objectives. When using the model as a pedo-transfer function to
predict the SOC amount, given the input variables for a specific
sample, it is recommended to use the R2 value as an indication of
the predictive power of the model. The R2

class value gives an
indication of model performance when the model is applied to
Fig. 8. Spatial distribution of the difference between predicted SOC m
produce regional estimates from a set of spatial data, as it then
integrates information from the area as a whole and not from one
sample. Fig. 6 lists the mean SOC masses by drainage–texture
class for different land use types predicted by the regression
model. Fig. 7 represents the SOC distribution based on predicted
SOC masses (mean approach) for each land use–soil type class.

Because the model approach allows us to assign a specific
SOC value to each land use–soil type class, a more
comprehensive estimate of the spatial distribution of the total
SOC stock in Flanders is obtained (Fig. 7) compared to the
mean approach. A clear relationship with the fluvial pattern now
appears in the resulting map. Based on the mean approach, the
total amount of SOC is calculated at 88.66±5.63 Mt C for an
area of 9419.8 km2. With the model approach, a total SOC stock
of 97.61±1.05 Mt C is predicted for an area of 10179.0 km2.
The increase of 8.1% in the area to which a SOC value could be
attributed, by using the model approach instead of the mean
approach, results in an increase of 10.1% in the total calculated
SOC stock (Table 4). Table 5 illustrates the calculated total SOC
stock and study area according to morphogenetic and
geomorphologic classified soils and peat soils. For the
morphogenetic classification, the results of the mean and
model approach are given separately. This table indicates that
using the model approach the standard error on the total
calculated SOC stock is 25 times lower. The same trend is
observed on the SOC value errors of the individual land use–
soil type classes, as this error ranges between 1.54 and 17.45 (kg
m−2) for the mean approach and between 0.10 and 0.77 for the
model approach. This can be explained by the fact that
following the model approach a class specific SOC value is
predicted, which is based on all samples (N6900), while
following the mean approach for this calculation only a small
part of dataset was used, because the dataset was initially
divided in 252 classes.

The additional area taken into consideration mainly consists
of poorly drained valley soils, rich in SOC. These soils have
high SOC values. Fig. 8, represents the geographical distribu-
tion of the difference in estimated SOC mass between the model
ass (method 2) and mean SOC mass (method 1) (Fig. 7 – Fig. 5).
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and the mean approach. This difference map clearly shows that
the model approach predicts a lower SOC stock for the Loam
region (south and south-east of Flanders) and a higher SOC
stock for the Sandy Loam region (central and south-west of
Flanders) compared to the mean approach.

A comparison with previous studies assessing the SOC stock
in Flanders, reveals that the total SOC amounts predicted in this
study are lower than the 125.6–134.9 Mt C predicted by
Liebens and Van Molle (2003). Total SOC stock under
cropland, estimated at 53.2 Mt C, is remarkably higher than
the 28.2 Mt C predicted by Sleutel et al. (2003a). The main
reason for this difference is the area assigned as cropland, which
is much lower in the study of Sleutel et al. (2003a) than in this
study, respectively 3594 km2 and 6244 km2. Nevertheless,
mean SOC densities of cropland and grassland are comparable
to earlier studies. The mean SOC density under grassland
(11.4 kg m−2) for this study is lower than those reported by
Lettens et al. (2003) (11.7 kg m−2) and Liebens and Van Molle
(2003) (12.9 kg m−2). For cropland, the calculated mean SOC
mass density (8.5 kg m−2) for this study is higher than the
values published by Liebens and Van Molle (2003) (7.4 kg
m−2), Sleutel et al. (2003a) (7.8 kg m−2) and Sleutel et al.
(2003b) (8.3 kg m−2), but lower than the one found by Lettens
et al. (2004) (8.9 kg m−2). The latter studies used mean SOC
values by land use–soil type classes to obtain a total Flemish
SOC stock. This study shows that the use of the presented SOC
mass regression model, instead of mean SOC masses, results in
much lower standard errors on calculated SOC masses of
individual classes and consequently on total SOC stock of the
study area. As the model approach allows the prediction of a
SOC value for each land use–soil type class, regardless of the
number of observations, this study is characterized by a more
detailed classification. Moreover the present study has a finer
mapping resolution compared to previous estimations.

4. Conclusions

Land use has an important impact on the amount of SOC. In
Flanders, the lowest amounts of SOC are stored under cropland,
regardless of soil type. For most soil types, the highest amounts
can be found in grasslands. The amounts of SOC in forested
soils are comparable to those in grasslands. Ground water level
appears to be the best predictor for SOC content in Flanders. A
strong negative correlation between the SOC stock and depth to
ground water table was found. In wet soils the oxidation of SOC
is limited by the low amount of free oxygen atoms. Although
the results indicate that texture plays a less important role than
the drainage condition, a positive correlation between SOC
content and clay content is observed. In general, clay rich soils
retain the highest amounts of SOC whereas sandy loam soils
stock the lowest quantities. The masses of SOC stocked under
dry sandy soils in this study are surprisingly high, probably as a
result of the very high input of manure and slurry from intensive
livestock breeding.

Depending on the method applied, the total SOC stock in
Flemish soils was assessed at 88.7±5.6 or 97.6±1.1 Mt C. An
important advantage of using SOC values predicted by the
regression model is the possibility to derive reliable class
specific SOC values for land use–soil type classes with a no or a
limited number of observations. Using the model approach, a
large area of poorly drained valley soils rich in SOC, were
included in the calculation of total SOC stock. While the total
area for which SOC stocks could be calculated increased by
8.1%, the total predicted SOC stock increased by 10.1% using
the model approach instead of the mean approach. The use of
the model approach results in a more comprehensive spatial
distribution of the total SOC stock in Flanders compared to the
use of mean values directly obtained from the observations, and
shows a clear relation between the fluvial pattern and the
amount of SOC. Moreover, this study shows that the ap-
plication of a regression model approach instead of a mean
approach results in remarkable lower standard errors of land
use–soil type class specific SOC values and total SOC stock
estimation.
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