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Accurate precipitation maps are essential for ecological, environmental, element cycle and hydrological
models that have a spatial output component. It is well known that topography has a major influence
on the spatial distribution of precipitation and that increasing topographical complexity is associated
with increased spatial heterogeneity in precipitation. This means that when mapping precipitation using
classical interpolation techniques (e.g. regression, kriging, spline, inverse distance weighting, etc.), a
climate measuring network with higher spatial density is needed in mountainous areas in order to obtain
the same level of accuracy as compared to flatter regions. In this study, we present a mean total annual
precipitation mapping technique that combines topographical information (i.e. elevation and slope orien-
tation) with average total annual rain gauge data in order to overcome this problem. A unique feature of
this paper is the identification of the scale at which topography influences the precipitation pattern as
well as the direction of the dominant weather circulation. This method was applied for Belgium and sur-
roundings and shows that the identification of the appropriate scale at which topographical obstacles
impact precipitation is crucial in order to obtain reliable mean total annual precipitation maps. The dom-
inant weather circulation is determined at 260�. Hence, this approach allows accurate mapping of mean
annual precipitation patterns in regions characterized by rather high topographical complexity using a
climate data network with a relatively low density and/or when more advanced precipitation measure-
ment techniques, such as radar, aren’t available, for example in the case of historical data.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Precipitation is widely recognized as an important factor con-
trolling environmental processes and therefore forms an essential
input variable in many applications aimed at predicting or investi-
gating these processes. Some of these applications, such as models
predicting avalanches or landslides (Nolin and Daly, 2006; Van Den
Eeckhaut et al., 2006) require both the temporal and spatial scale of
the input precipitation fields to be very detailed. Other applica-
tions, in contrast, such as regional land use models, biogeochemical
cycle models (e.g. carbon storage) or models of the co-evolution of
mountain ranges and climate systems only require very detailed
spatial scales, while fairly coarse monthly or even annual temporal
scales are sufficient (e.g. Daly et al., 1993; Kittel et al., 1997; Roe
and Baker, 2006; Milne et al., 2007; Meersmans et al., 2012).

Recent studies (e.g. Parsons and Foster, 2011) have suggested
that the spatial variability of long-term average precipitationmight
be fairly large even at a within field/(sub)catchment level (resolu-
tion < 1 km), consequently questioning the use of anthropogenic
radionuclide Cesium (137Cs), i.e. globally deposited following atmo-
spheric nuclear-bomb tests in the past (mainly 1950–1960s), as a
proxy for erosion (Parsons and Foster, 2011). Hence, identification
of the resolution at which topography influences the spatial distri-
bution of precipitation will be essential to evaluate the validity of
commonly used precipitation fallout related radionuclide proxies
(such as 137Cs) at the landscape scale. One of the main reasons for
the very large spatial variability of precipitation is its strong depen-
dence on the terrain altitude and steepness as well as the orienta-
tion of the slopes. The literature indicates that even low elevation
macro-relief structures can exhibit a significant effect on surface
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precipitation rates (e.g. Minder et al., 2008). An extensive review of
the physical mechanisms leading to larger precipitation amounts
over terrain has been given recently by for example Roe (2005)
and Houze (2012). Houze (2012) describes at least two distinct
mechanisms that could lead a pre-existing frontal cloud to be
enhanced and produce a precipitation maximum on the upwind
side of a low barrier. Firstly, the terrain could facilitate the gradual
rise of warm air ahead of frontal systems, while at the lee side of the
hill the precipitating capacity is weakened by the down-slope air
motion (Houze, 2012). Secondly, the feeder-seeder mechanism
could enhance precipitation rates onto a ridge. In this case, an
upper-level cloud (the feeder) is producing precipitation, while a
low, shallow, orographically-induced cloud (the seeder) could act
to enhance the precipitation by accretion of the cloud droplets onto
the precipitating particles from the cloud above. During summer,
convective events also contribute significantly to the total rainfall
in the region of interest (Roe, 2005). Convective events might be
affected by low terrain in various ways, e.g. by triggering by lee-
waves in the wake of a hill (Houze, 2012). By the mechanism listed
above, low elevation barriers do have the potential to influence the
dominant weather circulation and, therefore, could exercise a pri-
mary control on the regional spatial precipitation pattern in these
environments.

Despite the widely recognized importance of the spatial distri-
bution of precipitation over complex terrain, many regional cli-
mate inventories are based on long term observations from
sparse meteorological stations. For example, relatively coarse pre-
cipitation maps are available at the national or continental scale,
from the ATEAM project (Mitchell et al., 2004). Most often, point
data are extrapolated to a continuous grid by using classical inter-
polation techniques, such as nearest neighbor methods, local linear
regression, inverse distance weighting, spline or kriging methods
(without or with external drift) (e.g. Goovaerts, 2000; Lloyd,
2005; Daly, 2006; Basistha et al., 2008; Tobin et al., 2011). In most
cases these techniques are not satisfactory, since the spatial
heterogeneity of precipitation and their resolutions are sub-
optimal for ecological and environmental modeling. Mapping pre-
cipitation in regions characterized by complex topography, such as
mountainous regions, demands higher density measurements in
order to obtain a climate map with a spatially uniform quality level
when using classical interpolation techniques (Daly, 2006). Never-
theless, the cost of monitoring at sufficient density may be pro-
hibitive and there is, therefore, a need to develop strategies for
interpolation of data that capture the structure of precipitation
patterns, which will help in setting-up more efficient monitoring
networks.

This has lead over the last decades to increased efforts in devel-
oping techniques to obtain a more accurate interpolation, based on
elevation data (e.g. Sen and Habib, 2000; Lloyd, 2005; Di Luzio
et al., 2008; Gottardi et al., 2012) or using the slope orientation
of mountain ranges (e.g. Turner et al., 2009; Hughes et al., 2008).
One of the most promising approaches to the characterization of
topographic control on spatial patterns of precipitation is the
Precipitation-elevation Regressions on Independent Slopes Model
(PRISM) (e.g. Daly et al., 2002). In this model precipitation is inter-
polated for each grid cell of the digital elevation model (DEM)
based on a simple weighted precipitation-elevation regression
with distance to station, coastal proximity, general slope orienta-
tion and vertical layer (inversion layer or not) as weighting factors.
In the application of PRISM, it is critical to understand at which
scale precipitation is influenced by the topography. Daly et al.
(2002) explored this question using 6 DEMs with a differing
smoothing level, based on station data density and local terrain
complexity.

Even more advanced techniques combine information obtained
from weather radar with that from rain gauges. Goudenhoofdt and
Delobbe (2009) showed that a recent technique based on the geo-
statistical merging of weather radar and rain gauges provides spa-
tially and temporally accurate daily rainfall accumulation
predictions. While this approach certainly has the potential to
improve our understanding of the relation between topography
and precipitation, the fairly recent advent of weather radars pro-
hibits the application of this approach to historical data, long time
periods or regions not covered by weather radar.

Hence, there is still a need for interpolation techniques of inter-
mediate complexity to obtain reasonable estimates of surface pre-
cipitation with high spatial resolution, only based on information
from rain gauges and terrain characteristics. One of the main
caveats with techniques like PRISM, is that it is not known a priori
what the optimal scale is of the input fields. In addition, informa-
tion on the prevailing rain-bearing wind direction could be a sig-
nificant improvement to PRISM. To overcome this shortcoming,
recently Gottardi et al. (2012) conducted a novel methodology to
map daily precipitation amounts in main mountain ranges in
France (i.e. Pyrenees, Central Massif and Alps) by combining a local
elevation–precipitation model (comparable to PRISM) with a
weather pattern classification. They defined 8 different weather
patterns (e.g. Southwest circulation or anticyclonic) and an
associated linear orographic precipitation gradient. The gridded
precipitation was a function not only of elevation, but also of the
weather-pattern specific gradient, giving weights to neighboring
stations using a ‘‘crossing distance” and taking into account crests
and valleys between the stations and the grid cell of interest. While
this method provides very detailed daily estimates of surface
precipitation, it is also computationally expensive, given the iden-
tification of the weather pattern for each day.

This study discusses a novel, computationally affordable inter-
polation technique, using the dominant rain-bearing wind direc-
tion and the optimal scales of topographical variables, aimed
specifically at regions with sparse data over terrain with interme-
diate complexity or to reconstruct very detailed historical precipi-
tation maps. The scale at which relief influences precipitation will
be investigated, and the direction of the dominant weather circula-
tion identified. These two components form essential elements in
the present novel spatial precipitation model approach, which will
help us to support the hypothesis of the existence of a rain shadow
effect in these environments. More specifically, this methodologi-
cal framework will be applied to a specific case study, i.e. predict-
ing average yearly precipitation (1960–1990) in Belgium and
surroundings, including the Ardennes–Eifel massif situated at the
Belgian–German border (Fig. 1).
2. Material and methods

2.1. Study area

The northern and western parts of Belgium are situated in the
North-west European lowlands and are characterized mainly by
altitudes less than 100 m above sea level. The Ardennes–Eiffel
massif covers the eastern and southern part of the study area
and reaches altitudes up to 700 m (Fig. 1A). The study area is char-
acterized by a temperate maritime climate, with a mean annual
temperature and total annual precipitation amounts ranging from
about 10 �C and 700 mm in the west to about 6 �C and 1400 mm in
the southeast.

Fig. 1B shows that the 30-year average annual precipitation
amounts of the stations in Kall (860 mm yr�1) and Nuerburg
(872 mm yr�1), situated in the eastern part of the Ardennes – Eiffel
massif at altitudes of respectively 550 and 629 m asl, are remark-
ably low compared to the stations near the summit and/or situated
on the western part at similar or even lower altitudes (e.g. La



Fig. 1. (A) Localization of the 197 selected meteostations on the SRTM-DEMwith a resolution of 90 m in and around Belgium. (B) Annotation of the measured 30-year average
annual precipitation amounts (mm yr�1) of the local meteostations along the Ardennes–Eiffel massif.
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Gleize: 1212 mm yr�1 at 412 m asl, Eupen Ternell: 1326 mm yr�1

at 565 m asl, Mont Rigi: 1450 mm yr�1 at 680 m asl). Furthermore,
the 30-year average annual precipitation amount in Mayen (230 m
asl.) at 596 mm yr�1 is remarkably low. This station is situated in
the most eastern part of the Ardennes–Eiffel massif and so proba-
bly very well shielded from east–west precipitation supply by the
configuration of the mountain range. This clearly shows the
existence of a rain shadow effect.

2.2. Climate and topographical data

Mean long-term climate data for the period 1961–1990 were
obtained for Belgian stations from the ‘Koninklijk Meteorologisch
Instituut (KMI)’, for the Southern part of The Netherlands from
the ‘Koninklijk Nederlands Meteorologisch Instuut (KNMI)’, for
West Germany from the ‘Deutscher Wetterdienst (DWD)’ and for
North France from ‘Meteo France’. In total 201 meteorological
stations, with a good geographical spread, were selected for the
analysis (Fig. 1A).
The ‘‘SRTM Digital Elevation Data” distributed by ‘‘The CGIAR
Consortium for Spatial Information (CGIAR-CSI)” with a resolution
of 90 m and produced by the NASA originally, were used as topo-
graphical source data (The CGIAR Consortium for Spatial
Information, 2008).

2.3. Precipitation model

‘Altitude’ and ‘deviation of the orientation of the slope to the
orientation of the dominant weather circulation’ were selected as
input variables for the model. The orientation of the dominant
rain-bearing weather circulation in the study area is from the west,
as shown by e.g. Brisson et al. (2011). This is because all vast water
bodies (i.e. North Sea and Atlantic Ocean) are situated in the west,
and hence the dominant westerly winds at this latitude advect rel-
ative humid maritime air. This implies that under this assumption
the ‘deviation of the orientation of the slope to the ODWC’ will
express the angle between the west and the orientation of the
slope. So under the assumption that west is the direction of the
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dominant weather circulation, the more the slope orientation devi-
ates from the west, the higher this value will be. For example,
north and south oriented slopes are characterized by a value of
90�, while east oriented slopes have a value of 180�.

Moreover, we note that the influence of slope orientation on
precipitation strongly depends on its altitude above sea level. For
example, seawards oriented slopes can influence the weather cir-
culation more efficiently when they are situated at higher altitude.
Consequently, the ‘deviation of the orientation of the slope to the
ODWC’ variable is expressed in the final model as an interaction
term with altitude (Eq. (1)).

prec ¼ a � H1 þ b � H2 � Sþ c ð1Þ
where

prec = long term (30 yrs) average annual precipitation amount
(mm yr�1)
H1 = height above sea level (m)
H2 = height above sea level (m) in the interaction term
S = deviation of the orientation of the slope to the direction of
the dominant weather circulation (ODWC)
a, b, c = model parameters

Note that the present model has been calibrated based on the
30-year average annual precipitation amounts from the 201 mete-
orological stations, but subsequently, this calibrated model has
been applied in a spatial explicit way in order to obtain a precipi-
tation map covering the entire study area. Moreover, although the
H1 and H2 variables in this model both represents the height above
sea level (either as a separate term or embedded in an interaction
term), the associated values will most probably be different as they
can be abstract from different levels of topographical detail as
obtained after applying the present topographical smoothing
procedure (see Section 2.4 and Fig. 2 for more details).

2.4. Detection of the scale of topographical control and orientation of
the dominant weather circulation

As this study aims to detect the scale at which low elevation
topographical barriers within the study area impact the spatial dis-
tribution of mean total annual precipitation, the present model’s
(Eq. (1)) performance was investigated using a wide range of input
variable maps (H1, H2, S), reflecting different degrees of spatial
heterogeneity. This allowed us to identify the optimal level of topo-
graphical detail of these variables in order to map mean total
annual precipitation over the entire study area. In addition, the
detection of the ODWC is another important element in the pre-
sent methodology. Hence, the above made assumption of west as
Fig. 2. Methodolog
ODWC will be tested and refined if needed. A detailed description
of the associated methodological approach can be found below,
and a schematic overview is provided in Fig. 2.

After converting the original DEM into maps presenting the
deviation of the slope toward 19 different potential ODWCs, i.e.
every 10� between South (180�) and North (360�), the model’s
topographical input maps (H1, H2, S) were aggregated to different
spatial resolutions. In total, 80 different levels of aggregation were
considered, resulting in a set of maps ranging in resolution from
90 m to 103.5 km for each of the input variables. The resulting
aggregated input maps were smoothed to remove unrealistically
sharp gradients before running the model and producing spatial
predictions. While all model input maps were resampled to a res-
olution of 90 m during the smoothing procedure, it is important to
note that the same level of detail is maintained (i.e. determined by
the aggregated map prior to smoothing). This allowed us to use
continuous input maps and therefore make more realistic spatial
model predictions. After comparing the performance of two com-
monly used interpolation techniques (i.e. ‘‘Spline” and ‘‘Natural
Neighbor”, e.g. Lam (1983)) for both ‘‘Altitude” and ‘‘Deviation of
the orientation of the slope toward the West”, our analysis led us
to use ‘‘Spline” to smooth H1 and H2 and ‘‘Natural Neighbor” to
smooth Smodel input maps (Fig. 3). For each of the 9,728,000 com-
binations of smoothed H1, H2 and S input maps, corresponding
topographical values for all the meteo-stations were derived from
the maps and the model (Eq. (1)) was applied to estimate 30-year
average annual precipitation amounts (mm yr�1).

For each potential ODWC, a combination of the H1, H2 and S
maps with the highest determination coefficient (R2), was selected
and compared to detect a more accurate ODWC. The finally
selected model output (i.e. with the overall highest R2) was com-
bined with associated H1, H2 and S maps at corresponding resolu-
tions in order to produce a 30-year average annual precipitation
(mm yr�1) map for Belgium.
2.5. Cross validation

In addition, for every potential ODWC, a repeated 10-fold cross
validation procedure was carried out (1000 replicates) on each best
model fit (i.e. map resolutions with highest R2). Thereby, 90% of the
data was randomly chosen for calibration and 10% for validation as
it is commonly recommended (Hastie et al., 2001). By comparing
the predicted and observed values of the validation samples Root
Mean Square Error (RMSE, Eq. (2)) and Ratio of Performance to
Deviation (RPD, Eq. (3)) of the model were calculated. The latter
expresses how many times the predictive ability of the model is
stronger than just using the average precipitation value. In other
ical flowchart.



Fig. 3. Comparison of interpolation techniques ‘‘Spline” and ‘‘Natural Neighbor” used to smooth aggregated model input maps of Altitude and ‘‘Deviation to the orientation of
the slope to the West” at 3 different altitude intervals (<200 m, 200–400 m, >400 m).

Table 1
Estimated parameter values of the selected model (i.e. resolution of H1 = 8.1 km,
H2 = 90 km, S = 30.6 km, and orientation of dominant weather circulation (ODWC) of
260�).

Parameter Value 95% confidence interval

a 1.3309 1.4269 1.2348
b �0.0115 �0.0100 �0.0130
c 777.16 790.73 763.59
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words, RPD values of 2, 3 and 4 mean that respectively 50%, 66.67%
and 75% of the total variation in the validation dataset is captured
by the model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
�
Xn

i¼1
PobsðiÞ � PpredðiÞ
� �2r

ð2Þ

where RMSE is Root Mean Square Error (mm yr�1), n is overall num-
ber of samples used in the validation procedure, Pobs(i) is the
observed value of ith 30-year average annual precipitation
measurement (mm yr�1) and Ppred(i) is the predicted value of ith
30-year average annual precipitation measurement (mm yr�1).

RPD ¼ STD
RMSE

ð3Þ

With RPD being the ratio of performance to deviation and STD is
standard deviation of all total yearly precipitation measurements
(mm yr�1).

3. Results and discussion

3.1. Topographical smoothing

In Fig. 3 the performances of the interpolation techniques
‘‘Spline” and ‘‘Natural Neighbor” in order to smooth ‘‘altitude”
and ‘‘deviation of the orientation of the slope to the West” maps
were analyzed. This was based on RMSE-output obtained by com-
paring the basic topographical data (i.e. SRTM-DEM derived) at a
resolution of 90 m with a range of smoothed maps, i.e. at corre-
sponding aggregation resolution levels of 0.45 km, 0.9 km,
4.5 km, 9 km, 45 km, 90 km, considering 3 different height classes
(i.e. <200 m; 200–400 m and >400 m). These results show that
Spline is the best interpolation method when smoothing the alti-
tude (H1, H2, Eq. (1)) maps (i.e. lowest RMSE), at least when consid-
ering height classes <200 m and >400 m. No clear differences have
been found for the 200–400 m height class. On the contrary, when
considering the ‘‘deviation of the orientation of the slope to the
West” Natural Neighbor seems to be the best interpolation
method, with lower RMSE values than Spline for all altitude
classes. Moreover, it’s important to note that Spline returns values
out of the theoretical possible range of 0–180�, which is an
additional reason why Natural Neighbor is the most appropriate
interpolation technique to be used when smoothing the ‘‘deviation
of the orientation of the slope to the ODWC” (S, Eq. (1)) maps.
3.2. Model parameter identification and performance

Table 2 shows that the best model fit, i.e. with highest R2, was
obtained using the smoothed altitude maps derived from aggre-
gated DEMs with a resolution of 8.1 and 90 km, for respectively
H1 and H2 (Eq. (1)), and a ‘‘deviation of the orientation of the slope
to 260� (i.e. the orientation of the dominant weather circulation,
ODWC) map” with a resolution of 30.6 km. This model fit has an
R2 value of 0.82 and all estimated parameters are significant
(p < 0.05) (Table 1). Table 2 shows an overview of the top 10 of best
model fits, ranked based on R2, with annotation of ODWC and
aggregation resolution of smoothed model input maps (H1, H2

and S (Eq. (1))). It is remarkable that within this top 10 of best
model runs (with R2 values ranging between 0.8149 and 0.8192),
there is only limited variation in ODWC and aggregation resolution
of smoothed model input maps. For example besides 6 model fits
with an ODWC of 260�, 4 model fits have an ODWC of 270�, which
may suggest that more precisely the ODWC is situated somewhere
in between 260� and 270�. Fig. 4 shows the determination coeffi-
cients of the different model runs as function of the aggregation
resolution of the smoothed DEM (H1 and H2) and S maps including
the selected best model run at R2 = 0.82. The trendlines in these fig-
ures are a combination of a power and exponential law. It is inter-
esting to note that for variable H1, an additional linear term was
required to fit the distribution, especially the very low R2 values
at lower resolutions, indicating the importance of the term of vari-



Table 2
Top 10 best model runs ranked following R2 with annotation of the ‘‘Orientation of the
dominant weather circulation” (ODWC) and aggregation resolution of smoothed
model input maps (H1, H2 and S (Eq. (1))).

Rank R2 ODWC (�) Resolution

H1 (km) H2 (km) S (km)

1 0.8192 260 8.1 90.0 30.6
2 0.8187 260 8.1 90.0 27.0
3 0.8186 270 8.1 94.5 27.0
4 0.8181 260 8.1 94.5 30.6
5 0.8179 270 8.1 94.5 30.6
6 0.8178 260 8.1 94.5 27.0
7 0.8155 270 8.1 99.0 27.0
8 0.8155 260 8.1 68.4 30.6
9 0.8154 260 7.2 90.0 30.6

10 0.8149 270 7.2 94.5 30.6
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able H1 in the model as well as the selection of the appropriate
level of spatial detail of these variables. Despite the fact that
8.1 km has been identified as the most appropriate aggregation
resolution of H1 input maps, the trendline (reaching its max. value
at a resolution of 4.5 km) indicates that using an H1 map with a
finer resolution (i.e. within the 4–8 km resolution range) seems
to be a valuable option as well (Fig. 4a). The range of potentially
useful aggregation resolutions of maps representing the variables
in the interaction factor is wider with roughly 50–100 km for H2

(i.e. trendline’s max. value at 70.8 km, Fig. 4b) and 20–40 km for
S (i.e. trendline’s max. value at 30.2 km, Fig. 4c). In addition the
range of R2 values covered by these variables (i.e. 0.64–0.82) shows
that including the interaction factor in the model instead of simpli-
fied version whereby precipitation is only predicted as a linear
function of altitude, results in a significant improvement of the
R2 with 0.18 (Fig. 4b and c). Moreover, the model cross-validation
shows a root mean square error (RMSE) of 66.0 mm yr�1 and ratio
of performance to deviation (RPD) of 2.33. Fig. 5 illustrates RMSE
and RPD values of the H1, H2 and S maps combination with the
Fig. 4. Determination coefficients (R2) of the different precipitation model runs as a fun
(a) H1 and (b) H2 (Eq. (1)), and deviation of the orientation of the slope to the dominant w
run as indicated by ⁄ (R2max = 0.8192) as well as presentation of associated input maps (i.e
maximal R2 as a function of orientation of the dominant weather
circulation. The results show that the selected best model fit has
the best validation statistics, i.e. lowest RMSE and highest RPD,
and underlines that the dominant weather circulation in Belgium
is most probably at or very close to 260�.

The precipitation map we derived (Fig. 6) shows that precipita-
tion increases with increasing altitude (Fig. 6). Furthermore, as this
study detects a ODWC at an aspect of 260� for the study area, the
Ardennes–Eiffel massif is influenced by a mainly west–east ori-
ented weather circulation, resulting in higher precipitation
amounts at the western side of the Ardennes massif (Belgium)
compared to the eastern side (Eiffel – Germany) (Fig. 6). To detect
this effect one should consider the macro relief structure of the
topographical barrier. These findings underline the importance of
the influence of lower elevation relief units on the spatial distribu-
tion of precipitation patterns and clearly show orographic precipi-
tation and the existence of a rain shadow effect, i.e. in this
particular study, in the western and the eastern parts of the Arden-
nes–Eiffel massif, respectively. Furthermore, the model predicts
that smaller topographical barriers (i.e. mostly north–south ori-
ented relief units with dimensions between 10 and 50 km) have
an influence on spatial distribution of precipitation as well, such
as the north–south oriented cuestas in the North-east of France
(A) and the plateau in the eastern part of Limburg (north-east Bel-
gium, B) or as indicated by the higher precipitation values in the
Condroz region (C) as compared to Fagne-Famenne depression
(D) (Figs. 1 and 6).

In general, relative errors are restricted and in most areas to
below 10% (Fig. 6). No clear dominant regional pattern error can
be detected. Nevertheless most important relative errors are found
in the western part of the Ardennes–Eifel massif, characterized by
high precipitation amounts, with more precisely a clear local
underprediction in the South – Southwest and Northwest (I) and
an overprediction in central (II) parts of this particular region. Fur-
thermore, one can observe a general tendency of overprediction
east of the Eifel (i.e. Mosel and Rhine Valley (III), as well as in
ction of the resolution of the aggregation level of the altitude input maps (km), i.e.
eather circulation (260�) maps, i.e. (c) S (Eq. (1)), including the selected best model
. H1 at 8.1 km; H2 at 90 km and S at 30.6 km).



Fig. 5. Root Mean Square Error (RMSE, mm) and Ratio of Performance to Deviation (RPD) of the best model fit (R2max) in function of orientation of dominant weather
circulation (�).

Fig. 6. Estimated long term (1960–1990) total 30-year average annual precipitation map (mm yr�1) for Belgium and surroundings with indication of relative error (%) at
meteo-stations.
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the most western part of Belgium and Northwest of France (IV) and
an underprediction in the North of Belgium (V) as well is in the
Northeastern corner of the study area (VI) (Fig. 5).

The present precipitation mapping method answers two impor-
tant questions:

(1) at which scale does topography influence the spatial pattern
of precipitation? and
(2) what is the orientation of the dominant weather circulation
(ODWC)?

In comparison to classical interpolation techniques, it allows
accurate mapping in regions characterized by high topographical
complexity without the need of a dense measuring network. More-
over, as the input data is restricted, i.e. a rather coarse DEM (e.g.
SRTM 90 m covering entire world and free available) and climate



Fig. 7. Semivariograms of the observed data (gray) versus predicted precipitation values (black). The Spherical and Gaussian models as fitted through the averaged
semivariance values and associated nugget, range and sill values are obtained by using ARC-GIS’ Geostatistical Wizard tool.

J. Meersmans et al. / Journal of Hydrology 540 (2016) 96–105 103
data at commonmeasurement density, we believe that the method
has great potential to be applied in other regions characterized by a
comparable topographical complexity in order to improve particu-
lar spatial prediction of the precipitation pattern. In addition, as
the present method is based on a simple formula, it has the advan-
tage of being a computationally ‘low-cost’ approach, increasing its
applicability, especially as compared to other recently developed
advanced precipitation interpolation methods (e.g. Gottardi et al.,
2012) where for each spatial–temporal unit (pixel/day), a calibra-
tion procedure needs to be carried out. A simplified version of
the present model (i.e. without ODWC detection component) has
been recently applied successfully in a study conducting a spatial
and temporal analysis of soil organic carbon in Belgium
(Meersmans et al., 2011), underlining the need of detailed precip-
itation maps (and mapping methods) as essential input informa-
tion for accurate spatial prediction of (soil) key environmental
parameters. Furthermore, it is important to notice that the present
methodology complements more advanced techniques, making
use of radar and providing spatial information of precipitation at
very fine spatial and temporal scales (Goudenhoofdt and
Delobbe, 2009). This is especially relevant for regions with a high
topographical complexity, but characterized by sparse climatolog-
ical data network and/or when the aim is to map historical precip-
itation data (i.e. when radar was not yet available or for averages
over longer periods in time). Finally, the fact that 8, 36 and
90 km are identified as the optimum scales at which topography
influences precipitation (respectively for H1, S and H2 (see Eq.
(1))), seems to reject Parsons and Foster’s (2011) concern regarding
the use of 137Cs as a proxy for erosion due to a potential significant
variation in fallout by precipitation at the within field scale (i.e. at
resolutions below 1 km). Nevertheless, it should be stressed that
we identified the optimal scales for the topography for this region
specifically, and therefore, it is probable that these optimal scales
might be different for other regions in the world characterized
by different a degrees of terrain complexity or macro meteorolog-
ical settings, such as more alpine environments.

3.3. Comparison against kriging

As previous studies have illustrated the high potential of using
advancedgeostatisticalmethods suchas kriging to interpolatemean
annual and seasonal precipitation amounts at the regional scale,
underlining the importance of the existence of a significant spatial
autocorrelation in the data (e.g. Dingman et al., 1988; Goovaerts,
2000;Masson and Frei, 2014), we have (i) evaluated if the predicted
precipitation amounts obtained by the presented model preserved
the spatial variability of the underlying observations; and (ii) made
a comparison between the precipitation maps obtained with the
model presented in this study and by applying Ordinary Kriging.

Fig. 7 compares the semivariograms, as produced by ARC-GIS’
Geostatistical Wizard tool, from the observed data and the model
predicted values. Although this figure shows that the average semi-
variance (see e.g. Goovaerts (2000) for equation) at any given dis-
tance between points is slightly lower in the case of the estimated
values as compared to the original data, the nugget, range and sill
are rather comparable considering both the Spherical and Gaussian
model fits. When comparing predicted against observed values, the
range is 20% and 15% higher, while the sill is 12% and 8% lower, for
the Spherical and Gaussian model fits respectively (Fig. 7). These
results indicate that the model output preserves to a large extent
the spatial variability of the precipitation data.

The comparison of the spatial patterns in precipitation obtained
by the approach presented in this study (Fig. 8A) with Ordinary
Kriging (Fig. 8B), shows that Ordinary Kriging produces a much less
detailed image in the more topographical complex zone in the
Eastern part of the study area (i.e. along the Ardennes–Eifel mas-
sive) in comparison to the approach presented in this study
(Fig. 8A and B). In contrast, in the Northern and Western parts of
the study area, where no significant topographical features are pre-
sent, Ordinary Kriging predicts a larger spatial variability in precip-
itation as compared to our approach (Fig. 8A and B). In addition,
although the relative differences between both precipitation maps
are generally larger than the relative model errors (bias) of the pre-
sent approach (i.e. typically below 30% and 10%, respectively
(Fig. 8C)), a spatial correlation exists between both. More precisely,
precipitation values are generally higher for this study’s modeled
precipitation map compared to the map generated with Ordinary
Kriging in areas in which the model is characterized by a regional
overall trend of over-predictions (II, III & IV, Figs. 6 and 8C). In areas
in which the model is characterized by a regional overall trend of
under-prediction (I, V & VI Figs. 6 and 8C), precipitation values
are considerably lower on this study’s map compared to the map
created by Ordinary Kriging. This indicates the largely complemen-
tary character of both methodologies, as it seems that Ordinary
Kriging may have the potential to compensate for regional
under/over predictions made by the presented model. Hence, one
can conclude that there exists a scope for future research in which
both interpolation methods could be combined in order to improve
the overall performance of rainfall predictions in this or similar
study areas. Another potential future avenue of research can be
the application of the presented model at smaller temporal scales
such as seasonal or monthly averaged total rainfall amounts.



Fig. 8. Subpanel (A and B) are showing precipitation maps as obtained by the presented approach and the Ordinary Kriging, respectively. Subpanel (C) shows the relative
difference between A and B, including the relative error of the model as presented in Fig. 6.
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4. Conclusion

This study shows that long term mean annual precipitation
amounts are strongly influenced by topography in lower elevation
relief structures and offers a simple methodology to map climato-
logically averaged precipitation patterns in these regions when
lacking a dense meteorological measuring network. Mean annual
precipitation can be modeled as a function of smoothed altitude
and slope orientation maps. Best results were obtained using
smoothed altitude maps at aggregation resolutions of 8.1 km and
90 km (i.e. outside (H1) and within interaction term (H2) of the
model (Eq. (1)), respectively) and a smoothed slope orientation
map showing a deviation of the slope orientation to the north
aspect of 260�, indicating the orientation of the dominant weather
circulation (ODWR), at aggregation resolution of 30.6 km. The
resulting precipitation map shows clearly that the Ardennes–Eiffel
massif range determines, to a large extent, the spatial distribution
of total yearly precipitation amount in the region. As this lower ele-
vation relief units block precipitation supply from dominant west–
east weather circulations, the western part of this topographical
barrier receives remarkably higher precipitation amounts than
the eastern side situated in the rain shadow of this mountain
range. Furthermore, given the limited need for input data, this
method is easily applicable to other regions. Hence, the method
has a large potential to improve the interpolation of spatial pat-
terns of precipitation in mountainous regions, characterized by a
sparse data network and/or when more modern and advanced
techniques, such as weather radars, are not available.
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