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Abstract: High-frequency Earth observation (EO) data have been shown to be effective in identifying
crops and monitoring their development. The purpose of this paper is to derive quantitative indicators
of crop productivity using synthetic aperture radar (SAR). This study shows that the field-specific
SAR time series can be used to characterise growth and maturation periods and to estimate the
performance of cereals. Winter wheat fields on the Rothamsted Research farm in Harpenden (UK)
were selected for the analysis during three cropping seasons (2017 to 2019). Average SAR backscatter
from Sentinel-1 satellites was extracted for each field and temporal analysis was applied to the
backscatter cross-polarisation ratio (VH/VV). The calculation of the different curve parameters during
the growing period involves (i) fitting of two logistic curves to the dynamics of the SAR time series,
which describe timing and intensity of growth and maturation, respectively; (ii) plotting the associated
first and second derivative in order to assist the determination of key stages in the crop development;
and (iii) exploring the correlation matrix for the derived indicators and their predictive power for yield.
The results show that the day of the year of the maximum VH/VV value was negatively correlated
with yield (r = −0.56), and the duration of “full” vegetation was positively correlated with yield
(r = 0.61). Significant seasonal variation in the timing of peak vegetation (p = 0.042), the midpoint of
growth (p = 0.037), the duration of the growing season (p = 0.039) and yield (p = 0.016) were observed
and were consistent with observations of crop phenology. Further research is required to obtain
a more detailed picture of the uncertainty of the presented novel methodology, as well as its validity
across a wider range of agroecosystems.

Keywords: Sentinel-1; crop development; remote sensing; productivity indicators; wheat; SAR;
growth dynamics

1. Introduction

Time series analysis of satellite remote sensing (RS) images allows detailed crop monitoring,
an enhanced understanding of the impact of agricultural practices, and can provide early warnings of
low yields [1,2]. There is a wide range of RS data and associate products [3,4], and the most appropriate
form will depend on the challenge, such as crop classification, vegetation modelling, and understanding
water dynamics such as drought stress and irrigation [5]. Data can also support farming decisions
due to the ability to gather and display environmental variables across large areas, providing spatial
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information [5,6]. The increasing availability and frequency of satellite data also support the application
of RS in the context of crop modelling [6–8] to improve regional production estimates. However, in most
cases the use of RS for crop management remains limited as the relationship between the data and crop
development and growth varies with the environment [9–11], and with time and location [12].

Synthetic aperture radar (SAR) data have become freely available from the European Space
Agency (ESA) with the Sentinel-1 (S1) constellation under the Copernicus program [13]. The data
comprise high-temporal resolution images, which can be used for RS applications in agriculture [2,5,14],
although its potential has not been fully established [5,15,16]. The main advantages of active radar
sensors over optical sensors (Sentinel-2 satellite) are the ability to penetrate the clouds and independence
from sun illumination. For these reasons, SAR can provide high-density time series (every 5–6 days).
In addition, SAR can be used to monitor the biophysical properties of agricultural fields [17], as it is
sensitive to changes in the canopy structure and biomass [14,18]. As radar is also sensitive to the water
content in the observed surface [5,19,20], it can be used to quantify the moisture and structural change
in fields [7,21–23].

Another important application of SAR data in agriculture is crop identification [24–26]. In many
cases, the SAR time series were combined with optical images to increase the accuracy of crop
identification [25,27–29]. In some instances, SAR time series were used to derive metrics (e.g., mean
and variance) for identifying irrigated fields [30] or models to simulate the backscatter interaction
with vegetation and soil conditions [31–36] like the water cloud model [37]. Some studies used
backscatter to describe vegetation dynamics, taking into consideration L-, C-, and X-microwave
bands [23,38,39], and there is the potential to use SAR to identify crop development stages in the
field [24,27]. Such information could be used in combination with crop modelling using different
data assimilation techniques [1,8,40]. The use of time series and logistic based methods to simulate
development and growth stages of vegetation can improve the accuracy of the crop development
simulations [41–43].

In Europe, S1 C-band (5.405 GHz) SAR instruments support operation in dual polarisation
(VV+VH), implemented through one vertical transmit chain (V) and two parallel receive chains for H
and V polarisation (horizontal and vertical, respectively) over the land [44]. Thanks to the constellation,
made by two satellites orbiting in near-polar, sun-synchronous orbits, it is possible to benefit from
six-days return time of satellites on the same orbit, leading to a very frequent description of vegetation
growth. The VH/VV ratio, which is derived from the two polarisations, shows great potential to
describe the dynamics of crop development because it is relatively insensitive to changes in soil
moisture [2,20,28,45]. However, so far, there are few quantitative analyses of the dynamic changes of
the SAR cross-polarisation ratio (VH/VV) in the literature.

This study is focused on the comparison of VH/VV ratio time series among wheat fields on an
experimental farm (Rothamsted Research, UK) across three different years to understand and identify
changes in backscatter values that can be related to crop growth and development. The assumption is
that the SAR VH/VV ratio can be used to derive indicators that are related to vegetation dynamics,
which then be used to improve crop management. The objective of the paper is to identify new
SAR-derived indicators of wheat crop development and productivity that can provide insights for crop
yield formation at field scale.

2. Materials and Methods

2.1. Study Area

In total, 18 winter wheat fields were selected for the analysis of S1 backscatter interaction with
vegetation during the 2017 to 2019 agronomic seasons (nine fields were selected in 2017, five fields
in 2018, and four fields in 2019 (Figure 1, Table 1). The fields belong to the Rothamsted Research
experimental farm in Harpenden, UK (51◦48′37.3” N, 0◦22′36.0” W), located 35 km north of London
(Figure 1). The site comprises slightly acid loamy and clayey soils with restricted drainage [46], and the
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main soil series at Rothamsted is the Batcombe series [47]. The annual rainfall at the site ranged from
662 mm in 2017 to 704 mm in 2018, and 616 mm in 2019. June and July 2018 were particularly dry [48]
and the potential soil moisture deficit (PSMD) reached a maximum value of almost 325 mm. The mean
annual air temperature was 10.6 ◦C, ranging from 2.2 ◦C in February to 19.9 ◦C in July (Figure 2).
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Table 1. Wheat field names and number of 10 × 10 m pixels per field on Rothamsted farm.

Field Name No. S1 Pixels
in Field Perimeter (m) Area (ha) Ground Data

Collected

Great_Knott_1 333 805 3.37 2017
Great_Knott_2A 146 555 1.46 2017
Great_Knott_3A 112 457 1.12 2017
Little_Knott_1 122 482 1.22 2017
Osier_1_2_3 479 1046 4.75 2017
Sawyers_3 228 645 2.27 2017, 2019
Whitehorse_2B 191 649 1.90 2017, 2019
Bones_Close 437 810 4.39 2018
Sawyers_2 116 469 1.16 2018
Sawyers_4 131 465 1.30 2017, 2018
Stackyard 276 739 2.77 2017, 2018
West_Barnfield_1_2 365 910 3.62 2018, 2019
Drapers 399 839 3.93 2019



Remote Sens. 2020, 12, 2385 4 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 22 

 

662 mm in 2017 to 704 mm in 2018, and 616 mm in 2019. June and July 2018 were particularly dry [48] 
and the potential soil moisture deficit (PSMD) reached a maximum value of almost 325 mm. The mean 
annual air temperature was 10.6 °C, ranging from 2.2 °C in February to 19.9 °C in July (Figure 2). 

 
Figure 1. Google Earth image of Rothamsted Research experimental farm (coordinate system 
EPSG:27700), with wheat field boundaries from 2017, 2018, and 2019 indicated using red lines (see also 
Table 1). 

 
Figure 2. Total monthly rainfall (mm) and mean air temperatures (◦C) on the primary axis (left) and
maximum potential soil moisture deficit (PSMD; mm) on the secondary axis (right) at Rothamsted farm
from September 2016 to August 2019.

2.2. Site Ground Measurements of Wheat Development and Yield

In situ observations of phenology were made weekly during the growing season to monitor the
wheat development and growth stages. In each field, measurements of grain yield were recorded by
the harvest machinery. These data were used as reference points in the methodology to describe the
response of the VH/VV ratio to the dynamics of the winter wheat development and growth, and explore
the different parameters of the segments with respect to their contribution to yield.

2.3. SAR Data to Obtain VH/VV Time Series in Each Wheat Field

The Sentinel-1 SAR data acquired for the Rothamsted Research farm, over the three-year study
period were derived from orbit 132 (ascending) with a temporal resolution of six days. One of the
reasons for selecting a single orbit is the orientation of the view of the satellite, which plays a significant
role in the direction of the emitted beam from the SAR antenna [49,50]. Using the same orbit also
had the advantage of a similar incidence angle (range of 5◦) for adjacent fields on even terrain [49].
The ascending orbit 132, instead of descending 81, was also used to avoid early morning measurements
when dew may become a confounding factor [14,45]. Temporal profiles of the S1 VH/VV backscatter
ratio were plotted on each field to define the curves’ shapes and amplitude, which were related to
ground observations of wheat at key growth stages, assisting in the definition of periods defined by
the calculated parameters. Figure 3 displays the flow diagram with all the needed steps of the analysis.
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Figure 3. Flow diagram explaining the steps for the temporal analysis of synthetic aperture radar (SAR)
time series, including the data and process.

2.3.1. SAR Preprocessing for Field Specific VH/VV Time Series

The SAR data were derived from the Level-1 Ground Range Detected Interferometric Wide Swath
(GRD-IW) product from Sentinel-1 satellite. The Sentinel-1 toolbox was used to preprocess the data,
including border and thermal noise removal, slice assembly, radiometric calibration, terrain flattening,
speckle filtering using refined Lee filter with a 3 × 3 window, and terrain correction to produce gamma
naught (γ◦) data in VH and VV polarisations. Lastly, each scene was clipped and the γ◦ VH/VV
ratio was calculated. Based on the scale selected for the analysis, a mean value for the whole field
(Table 1) was used to minimise the speckle effect, and the area of each field was buffered to minimise
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the influence of surrounding fields. All of the calculations were conducted using untransformed
data in a linear form. In the presentation of the results, the initial graphs were developed to allow
the reading of both linear and decibel (dB) values, and the final results were presented on decibel
axes. In addition, temporal filtering (in the form of smoothing, Savitzky–Golay filter) was used to
reduce localised weather patterns, such as heavy rainfall, ice or snow, that can temporarily lower the
SAR backscatter. This step avoided the use of additional data (e.g., rainfall used to clean the data)
for automation.

2.3.2. Temporal Analysis and Wheat Development Definition

The curve of the VH/VV ratio time series was used to produce indicators that could describe
wheat crop growth and development across the season. Smoothing approaches for time series of
SAR [51,52] and optical data [42,53] have been used in various studies to reduce noise or fill the gaps
of the datasets. Here, the Savitzky–Golay filter was applied over the whole period with a moving
window of two months and using a second-order polynomial function [54]. Then the associated first
and second derivatives were calculated to define additional wheat growth stages, linked to the SAR
temporal characteristics. Key periods of these three curves were identified, as shown as vertical lines
in Figure 4, and matched with crop development observed in the field.
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Figure 4. (a) Mean VH/VV ratio from Sentinel-1 orbit 132 of wheat field (for the Swayers_4 field in
2018) together with a smoothed curve of the mean (with the date of the maximum point indicated)
and (b) first (f′x) and second (f”x) derivative (bottom) of the smoothed field-averaged line. The date
of the midpoint of the growth period, and the date of the start, midpoint, and minimum value of the
maturation period are indicated as vertical dotted lines. The secondary y axis in the first graph displays
the VH/VV ratio on a decibel scale for reference.

The next stage was to further parameterise and automate the extraction of these dates and
test if they were linked to wheat development. The smoothed VH/VV curve was divided into two
periods: (i) growth and (ii) maturation and senescence to address an observed change in maximum
values in the middle of the season. The splitting of the analysis into two periods was also used by
Che et al. (2014) [41], who analysed the temporal evolution of the leaf area index (LAI) of vegetation
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during development and senescence in Shandong Province, China. The breakpoint of two curves occurs
during the flowering period (anthesis) when the wheat has reached its full height. The calculation of
the breakpoint specifies the start for the VH/VV ratio stabilisation period close to the end of spring.

2.3.3. Logistic Curve Fitting

In order to quantify the characteristics of the temporal curve of VH/VV ratio for winter wheat,
a logistic model was used during both the growth and maturation phases. Two separate curves,
rather than a single double logistic curve, were chosen because the starting value of the VH/VV ratio of
the maturation phase (which coincided with flowering) tended to be lower than the finishing point of
the growth stage (which coincided with booting) (Figure 5). In addition, the baseline at the beginning
of the season can differ from the end. The two sigmoid logistic curves describing the VH/VV ratio in
relation to time t for each stage was characterised by four parameters (Equation (1)):

f (t) = base +
Max

1 + e−b(t−t0)
(1)

where base is the minimum VH/VV ratio value, Max is the maximum VH/VV ratio value, b is the
steepness of the logistic curve, and to is the x-value of the sigmoid inflexion point. The calculated
values are sensitive to a clear definition of the period represented by each sigmoid curve (Figure 5).
The growth period curve was defined from the beginning of the season (Parameter 1 in Figure 5) up to
the time of maximum value of the smoothed curve (Parameter 5). The maturation period curve was
defined as the period after flowering to the minimum value in the maturation period of the temporally
smoothed curve.
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Table 2. Definitions of the VH/VV ratio curve parameters and the anticipated associated crop development stage (Biologische Bundesanstalt, Bundessortenamt und
CHemische Industrie - BBCH or Zadoks scale).

No. Symbol Parameter Name Definition Derived From Associated Crop Development Stage

1 G_base Baseline value for the growth stage VH/VV ratio at the beginning of the season Logistic curve Tillering (GS20)
2 G_steep Steepness of logistic curve for growth period Rate of coefficient in Equation (1) (b G) Logistic curve Stem elongation

3 G_midP Time of midpoint of growth period (t0, G) DOY when the midpoint of the logistic curve
occurs in the growth period Logistic curve Stem elongation

4 G_max Max value for growth stage Maximum VH/VV ratio value for the
full season Logistic curve End of stem elongation (GS39) and

booting (GS49)

5 TZmax Time of maximum point DOY of maximum smoothed value
of VH/VV Smoothed curve Time of booting, flag leaf unrolled

6 S_max Value at the start of grain filling Period of backscatter stabilisation Logistic curve Post anthesis: start of grain filling (GS71)

7 S_steep Steepness of logistic curve for
maturation period Rate of coefficient in Equation (1) (b S) Logistic curve Maturation rate

8 S_midP Time of midpoint of maturation (t0, S) DOY when the midpoint of the logistic curve
occurs in the maturation period Logistic curve Ripening (GS 85–89)

9 S_base Baseline value at the end of the season Background value of the VH/VV ratio Logistic curve After harvest
Period with soil exposed

10 Duration Duration of “full” vegetation to maturation Time difference between midpoints (3, 8) Combination Period of most of the photosynthate
accumulation and translocation

11 D_max Structure change (Inflorescence) VH/VV ratio value differences between
booting and grain filling periods (4–6) Combination Backscatter change during the period

when the ear emerges

12 D_base Tillering backscatter VH/VV ratio value differences between
tillering and bare soil (1–9) Combination Tillering with reduced impact of soil



Remote Sens. 2020, 12, 2385 9 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 22 

 

maturation period are indicated as vertical dotted lines. The secondary y axis in the first graph displays 
the VH/VV ratio on a decibel scale for reference. 

2.3.3. Logistic Curve Fitting 

In order to quantify the characteristics of the temporal curve of VH/VV ratio for winter wheat, a 
logistic model was used during both the growth and maturation phases. Two separate curves, rather 
than a single double logistic curve, were chosen because the starting value of the VH/VV ratio of the 
maturation phase (which coincided with flowering) tended to be lower than the finishing point of the 
growth stage (which coincided with booting) (Figure 5). In addition, the baseline at the beginning of 
the season can differ from the end. The two sigmoid logistic curves describing the VH/VV ratio in 
relation to time t for each stage was characterised by four parameters (Equation 1):  

(ݐ)݂  =  + ݁ݏܾܽ 
ݔܽܯ

1 +  ݁ି௕(௧ି௧బ) (1) 

where base is the minimum VH/VV ratio value, Max is the maximum VH/VV ratio value, b is the 
steepness of the logistic curve, and to is the x-value of the sigmoid inflexion point. The calculated values 
are sensitive to a clear definition of the period represented by each sigmoid curve (Figure 5). The growth 
period curve was defined from the beginning of the season (Parameter 1 in Figure 5) up to the time of 
maximum value of the smoothed curve (Parameter 5). The maturation period curve was defined as the 
period after flowering to the minimum value in the maturation period of the temporally smoothed 
curve. 

 
Figure 5. Mean SAR VH/VV ratio for a wheat field (Swayers_4 in 2018) with 228 pixels (1.3 ha), between 
January and September 2018, showing the standard deviation for each date (n = 41), and displaying 12 
parameters as calculated using a smoothed line and two logistic curves (see Table 2). All calculations 
were completed using a linear scale and the secondary y-axis displays the decibel scale for reference. 

Combining parameters extracted from the two logistic curves allowed us to derive three additional 
vegetation development-related parameters (10, 11, and 12 in Figure 5). The period between the two 
midpoints of the logistic curves (Parameter 10 in Figure 5) was defined as the duration of “full” 
vegetation, which starts with stem elongation and ends with the reduction of the green canopy and 
translocation of carbohydrates into the grain during maturation. The difference in baselines is related 
to the backscatter from the biomass of the crop during tillering. The summary of the extracted 
parameters and their definitions as well as the associated crop development stage is given in Table 2. 

Figure 5. Mean SAR VH/VV ratio for a wheat field (Swayers_4 in 2018) with 228 pixels (1.3 ha), between
January and September 2018, showing the standard deviation for each date (n = 41), and displaying 12
parameters as calculated using a smoothed line and two logistic curves (see Table 2). All calculations
were completed using a linear scale and the secondary y-axis displays the decibel scale for reference.

Combining parameters extracted from the two logistic curves allowed us to derive three additional
vegetation development-related parameters (10, 11, and 12 in Figure 5). The period between the
two midpoints of the logistic curves (Parameter 10 in Figure 5) was defined as the duration of “full”
vegetation, which starts with stem elongation and ends with the reduction of the green canopy and
translocation of carbohydrates into the grain during maturation. The difference in baselines is related to
the backscatter from the biomass of the crop during tillering. The summary of the extracted parameters
and their definitions as well as the associated crop development stage is given in Table 2.

2.3.4. Parameter Optimisation

The calculation of the logistic curve fitting parameters in Table 2 was based on a weighted least
squares (WLS) estimator, which considers the uncertainty of each point by minimising the sum of
the squared difference divided by the respective standard deviation (σ) in each point (Equation (2)).
The incorporation of the standard deviation in the estimator was used to minimise the outlier effects.
The VH/VV ratio points were selected as the observation values in each defined period.

min
∑

i

(
obsi − yi

σι

)2

(2)

2.3.5. Automatic Curve Extraction and Correlation Analysis

By scripting the SAR processing using Python, it was possible to automatically derive a smoothed
VH/VV ratio curve and two logistic curves. Then the 12 parameters were derived for each field
site across three years. A Pearson correlation coefficient (r) was calculated for each pair in a matrix.
This approach allows the illustration of the interactions between the parameters and the direct effect
on final crop yield. A significant test of the r was performed and highlighted in the plots.

3. Results

3.1. Annual Analysis of VH/VV Ratio Curve Parameters, 2017 to 2019

Two logistic curves for the nine fields selected in 2017 (Figure 6), the five fields selected in 2018
(Figure 7), and the four fields selected in 2019 (Figure 8), were plotted. The smoothed time series were
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used to identify the start and end of (i) the growth (start of the year to red line) and (ii) the maturation
periods (purple to min senescence value). Then the midpoints were calculated by fitting the logistic
curves in these periods, creating the time parameters shown in Figures 6–8.
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Figure 8. VH/VV ratio time series (blue dots) with the smoothed curve (green dashed line) and two
logistic curves fitted (black line) for four fields (subplots 1–4) in 2019, orbit 132. The vertical dotted
lines indicate the dates of G_midP (green), TZmax (red), inflorescence (purple), and S_midP (yellow),
as determined from the VH/VV backscatter time series analysis.
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The timing of the mean maximum VH/VV ratio (TZmax) was relatively consistent varying from
day-of-year (DOY) 129 in 2017, to DOY 140 in 2018, and DOY 131 in 2019 (Table 3). The mean values
(Table 4) of the three parameters of the logistic curve for the growth period were also relatively
consistent from year to year: G_base (range 0.13–0.15), G_steep (range: 0.08–0.11), and G_midP (range:
DOY 99 to 109). There was greater variation in G_max, which ranged from a mean of 0.31 in 2017 to
0.40 in 2019. The mean values of two of the parameters of the logistic curve for the maturation period
were also relatively similar across the three years: S_base (range: 0.10–0.13), and S_midP (range: DOY
199 to DOY 208). By contrast, the mean values of S_max (range: 0.23–0.30) and S_steep (range: –0.12 to
–0.21) showed greater interannual variation (Table 4).

The root mean square error (RMSE) of the growth (G) and maturation (S) logistic curves are
shown in the last two columns of Table 3 for the seasons 2017, 2018, and 2019. Statistical comparison
between the parameters of different years showed that TZmax (p = 0.042), the G_midP (p = 0.037),
S_base (p = 0.030) are significantly different at 95% confidence using ANOVA or the Kruskal–Wallis
H-test if there was a non-normal distribution. There was also a significant interannual variation in the
Duration (p = 0.039) and Yield (p = 0.016).

3.2. Relationship Between SAR-Derived Parameters and Yield

The interactions between each of the parameters and yield were further displayed using a
correlation matrix (Figure 9). There were various significant correlations between parameters. As would
be expected, the inflorescence indicator (D_max = G_max – S_max) was correlated with the two
parameters used in the calculation (G_max and S_max), with r values of 0.76 and −0.75, respectively.
At the same time, significant correlations were found between D_max and G_steep (r = −0.54), S_midP
(r = 0.68), and Duration (r = 0.49). By contrast, D_base displayed no significant correlations with the
other parameters, with the exception of G_base (r = 0.65) that was used for its calculation. The definition
of D_base is G_base minus S_base, where S_base represents the VH/VV ratio value on bare soil (that
should remain relatively consistent) and the value of G_base is determined by the combination of soil
and low vegetation during the tillering period.

Starting from the first row in Figure 9, the baseline of growth (G_base) shows a significant positive
correlation (r = 0.58) with the baseline of maturation (S_base). This is because G_base depends on the
shift of the VH/VV ratio during the initial bare/sparse/small vegetation period and the soil background
(S_base). In the second row, the slope of the midpoint of growth (G_steep) has a negative correlation
with the VH/VV ratio at G_max value (r = −0.68). In the third row, the midpoint of growth (G_midP)
is highly correlated with the timing of the max (TZmax) smoothed VH/VV ratio value (r = 0.69),
highlighting the interaction of stem elongation and booting stage. G_midP was also correlated with
the calculated Duration (r = −0.68) and the maturation midpoint (S_midP; r = 0.78). This is because the
Duration value is defined by the difference between these two time indicators. The value of TZmax, the
timing of the maximum value of VH/VV, was positively correlated with S_max (r = 0.50), but negatively
correlated with low Duration values (r = −0.64).

During the maturation period, S_max was negatively correlated with the midpoint S_midP
(r = −0.72) and Duration (r = −0.80). The only correlation shown by the steepness of the curve in this
period was with the yield. The value of S_midP was positively correlated with Duration (r = 0.76)
and D_max (r = 0.68). The value of S_base was not significantly correlated with any of the indicators
except G-base.
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Table 3. Values of derived parameters (linear scale), yield data, and the root mean standard error of the growth (RMSEG) and maturation (RMSES) stages, for each of
the winter wheat fields in 2017, 2018, and 2019. Note: day-of-year, DOY.

Field Season RMSEG RMSES G_base G_steep G_max S_max S_steep S_base G_midP S_midP TZmax Duration D_max D_base Yield

DOY DOY DOY days t/ha

Great_Knott_1 2017 0.051 0.004 0.16 0.077 0.36 0.25 −0.05 0.14 85 194 114 109 0.11 0.020 8.67
Great_Knott_2A 2017 0.092 0.022 0.16 0.115 0.28 0.17 −0.29 0.15 93 196 129 103 0.12 0.010 6.43
Great_Knott_3A 2017 0.020 0.047 0.13 0.11 0.24 0.37 −0.13 0.13 99 190 135 91 −0.13 0.000 9.26
Little_Knott_1 2017 0.090 0.033 0.14 0.108 0.31 0.28 −0.07 0.10 106 184 127 78 0.02 0.040 6.17
Osier_1_2_3 2017 0.054 0.004 0.10 0.072 0.34 0.20 −0.08 0.10 93 190 130 97 0.14 0.000 6.63
Sawyers_3 2017 0.070 0.012 0.14 0.066 0.45 0.07 −0.11 0.12 108 228 128 120 0.38 0.020 6.36
Sawyers_4 2017 0.047 0.004 0.18 0.115 0.33 0.26 −0.12 0.14 108 199 136 90 0.07 0.040 6.85
Stackyard 2017 0.037 0.002 0.16 0.159 0.22 0.30 −0.08 0.13 103 191 139 88 −0.08 0.030 5.04
Whitehorse_2B 2017 0.061 0.035 0.14 0.143 0.30 0.18 −0.11 0.11 93 215 127 122 0.12 0.030 9.59
Bones_Close 2018 0.021 0.017 0.08 0.098 0.28 0.33 −0.11 0.07 117 194 150 78 −0.05 0.010 4.09
Sawyers_2 2018 0.118 0.035 0.13 0.102 0.31 0.23 −0.45 0.10 104 196 141 91 0.08 0.030 6.58
Sawyers_4 2018 0.051 0.069 0.18 0.12 0.40 0.29 −0.18 0.10 111 195 132 84 0.11 0.080 5.49
Stackyard 2018 0.044 0.009 0.13 0.071 0.49 0.39 −0.12 0.11 121 187 143 66 0.10 0.020 4.81
W_Barnfield_1_2 2018 0.057 0.012 0.17 0.094 0.43 0.28 −0.20 0.11 101 189 132 88 0.15 0.060 7.90
Drapers 2019 0.018 0.047 0.15 0.079 0.32 0.26 −0.08 0.13 97 207 129 110 0.06 0.018 9.65
Sawyers_3 2019 0.007 0.026 0.14 0.065 0.41 0.24 −0.26 0.12 108 205 128 97 0.17 0.012 7.99
W_Barnfield_1_2 2019 0.030 0.036 0.14 0.114 0.40 0.23 −0.34 0.15 113 209 133 96 0.17 −0.008 8.28
Whitehorse_2B 2019 0.021 0.029 0.11 0.053 0.47 0.23 −0.12 0.11 112 211 132 99 0.23 −0.002 10.17

Table 4. Mean and standard deviation values of 12 derived parameters (linear scale) and the wheat yield for each season of the analysis.

Season G_base G_steep G_max S_max S_steep S_base G_midP S_midP TZmax Duration D_max D_base Yield

DOY DOY DOY days t/ha

2017
Mean 0.15 0.11 0.31 0.23 −0.12 0.12 99 199 129 100 0.08 0.02 7.22
Std dev 0.02 0.03 0.07 0.09 0.07 0.02 8 14 7 15 0.14 0.02 1.56

2018
Mean 0.14 0.10 0.38 0.30 −0.21 0.10 111 192 140 81 0.08 0.04 5.77
Std dev 0.04 0.02 0.09 0.06 0.14 0.02 8 4 8 10 0.08 0.03 1.50

2019
Mean 0.13 0.08 0.40 0.24 −0.20 0.13 107 208 131 101 0.16 0.01 9.02
Std dev 0.02 0.03 0.06 0.01 0.12 0.01 7 3 2 7 0.07 0.01 1.00
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As illustrated by the matrix (Figure 9), multiple correlations exist among the individual parameters
and between individual parameters and yield (last column). The results suggest that the two parameters,
G_midP and TZmax (which are correlated), had the strongest association with grain yield, i.e., r = −0.45
and r = −0.56, respectively, after Duration (r = 0.61). The negative correlation suggests that earlier
growth, i.e., lower values of G_midP and TZmax were associated with higher end-of-season grain
yields. Figure 10 displays the two most significant parameters that are sensitive to yield.
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4. Discussion

Using the example of winter wheat over three growing seasons, it was possible to derive
field-specific annual coefficients of a generalised two-component empirical model of crop productivity
from the SAR VH/VV ratio. Due to the ubiquitous and high-frequency availability of S1 data,
this approach could offer new opportunities for monitoring and predicting productivity in areas
affected by frequent cloud cover. The characterisation of VH/VV response over a season used three
stages: (i) the creation of a smooth VH/VV time series for each field; (ii) the definition of the timing of the
maximum value using temporal characteristics of the time series, growth, and maturation period using
first and second derivatives; and (iii) the creation of two logistic curves using the observation in the
predefined periods of growth and maturation [41]. The results are discussed as follows: first, in terms
of the robustness of our mathematical method over three seasons to consider multiple factors of
variation; second, the gain of biophysical understanding using this method; and finally, the agronomic
potential of our results.

4.1. Technical and Statistical Process, the Goodness of Fit, Robustness, and Uncertainty

Since 2016, SAR data from Sentinel-1 have become twice as frequent as data used in previous
studies [2,20], which improves the robustness of the possible analysis. However, to reduce the
variability of SAR data we chose to use imagery from only the ascending satellite passing as images
from the descending orbit were often affected by morning dew. Similar observations have been made
in other studies [14,45], indicating greater certainty when using the ascending rather the descending
phase of the satellite for predicting crop state variables in this area. Even so, the results demonstrate
substantial variation of SAR backscatter, which can be due to differences in topography affecting the
incidence angle or changes in canopy architecture [49,50].

As pointed out in an earlier review [5], SAR variability is also connected to diurnal variation
in plant–soil–water relations, which can affect the erectness of the crop canopy and the dielectric
properties of the system. To reduce the effect of such fluctuations in the SAR time series, our approach
used a step of smoothing the data, which resulted in a set of relatively consistent dynamic curves for
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winter cereals [20], and limited the extreme values of the VH/VV (Figure 6). The subsequent logistic
fitting approach enabled the calculation of a specific backscatter value and time-specific parameters
from the VH/VV ratio data (Figure 5). Accounting for the standard deviation during the fitting of the
logistic curves made it possible to give lower weight to data with high uncertainty and improved the
precision of the derived curves. The average RMSE values of the logistic curve fitting in growth (G)
and senescence/maturation (S) periods were 0.05 and 0.07, respectively.

The creation of the fitted curves allowed the derivation of 12 parameters that can be related to
the development, growth, and yield of winter wheat. Two temporal parameters from the analysis
(TZmax and Duration) were significantly correlated with yield (Figure 9). Further analysis could focus
on the opportunity of using a combination of parameters or a combination of VV and VH/VV values.
The approach was effective in each of three years that were characterised by different environmental
conditions and yields. In 2018, there was minimal rainfall in June and July, and the grain yields
obtained in 2018 (4.09–7.01 t ha−1) were substantially lower than in 2017 (5.04–9.59 t ha−1) and 2019
(7.99–10.17 t ha−1).

4.2. Environmental and Biophysical Understanding

The sensitivity of SAR backscatter to surface changes in the structure and the soil and crop water
content means that SAR can be an effective tool to monitor crop development [5,24] starting from early
growth, to the increase in the water volume of the crop through stem elongation, and its decrease
during maturity. In this paper, we assigned two separate logistic curves during the cropping season to
examine whether the resulting parameters were correlated with observations in the field. A specific
feature of creating two curves is the derivation of the D_max value, which would not be captured by
assuming a single curve. Our interpretation is that the change in the VH/VV value at flowering is a
real effect, which equates to a change in the structure of the crop (Figure 6) during the inflorescence
period, as mentioned by other authors [2,14,18]. Even so, the value of D_max was variable, ranging
from –0.13 to 0.38 for an individual field and year (Table 3). Additional research, including perhaps
data focused on structure, is required to further understand this variability.

The correlation analysis (Figure 9) was able to identify two time-based parameters, one derived
from the growth period (G_midP) and one derived from the smoothed VH/VV curve (TZmax),
which were negatively associated with the final grain yield (r = −0.45 and −0.56, respectively).
This means that a delayed occurrence of the midpoint of the growth curve and the timing of the
maximum VH/VV ratio was associated with lower grain yields. The late or slow growth of the
crop canopy is likely to result in a reduced capacity of the crop to intercept solar radiation and use
photosynthesis to produce assimilates required for final yield. For example, in 2018, the late occurrence
of G_midP and TZmax was associated with an unusually dry period in June and July 2018 (Figure 2),
which reduced canopy growth and photosynthesis and resulted in substantially lower grain yields
than in the other two years.

The analysis also showed that the duration of the period of “full” vegetation (Duration) was
positively related to grain yield (r = 0.61). This can be explained by the yield benefitting from a longer
period of photosynthesis and a longer grain-filling period when assimilates are transferred from green
tissue to the grain [55,56]. These results suggest that using the VH/VV ratio to identify the timing of
specific crop periods, which are related to the structural change of the wheat canopy [2,14], may be a
more useful determinant of yield than the actual values of the VH/VV ratio, per se.

4.3. Opportunities for Agronomic Management and Modelling

The analysis raises two questions for crop management. First, what can be learnt about crop
dynamics from monitoring satellite-based SAR data, dynamics, and amplitude? Second, is there
potential for a farmer or agronomist to use SAR-derived indicators for spatially varying crop
management and inputs between fields? The growth and development of a wheat crop depends on
the interaction between the weather (e.g., solar radiation, rainfall, and temperature), crop genetics,
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field characteristics (e.g., aspect and soil type), and field management (e.g., previous cropping history
and the timing, type of cultivation, and drilling). The results from the SAR data analysis indicates that
it is possible to identify seasonal differences in the timing of crop growth, and this may be useful in
identifying the most appropriate schedule of fertilizer and agrochemical application between fields.
The analysis also suggests that it may be possible to improve the prediction of the eventual crop yield
from an analysis of SAR characteristics.

A potential limitation with the method is that some of the parameters are determined retrospectively
from a full temporal dataset, for example, the calculation of TZmax, the timing of the maximum value
of VV/VH, requires data that occur after TZmax. Likewise, the value of S_steep, which occurs during
the maturation of the crop, requires data that occur after that point. Developing a really effective
predictive tool that can be used to modify field management instantaneously will require parameters
that can be estimated in real-time. Further work is needed to improve the estimation of parameters,
as well as the application of the methodology on other farms to validate the robustness of the method.
The correlation of the productivity indicators with field measurements also has the potential to assist in
better model simulations of crop development and growth. At the same time, temporal characteristics,
as well as connection with the biophysical properties of the field, could be examined to improve the
calibration and its incorporation into a data assimilation framework to estimate more efficiently the
field production [1,7,8].

5. Conclusions

This paper describes a new methodology to derive wheat productivity indicators from Sentinel-1
VH/VV time series. The temporal curves, their first and second derivatives, and logistic curve fitting
for growth and maturation periods were used to define 12 phenomorphological parameters. These
provide information about the growth, development, and yield of wheat crop at field scale, offering an
alternative approach to ground survey or yield estimation.

The analysis of the VH/VV ratio time series and the correlation matrix indicates that the time-based
parameters appear to be related to biophysical changes in the field. In particular, the time period of
“full” vegetation (Duration) was positively correlated with yield (r = 0.61), and a delay in the timing of
the maximum VH/VV value (TZmax) was negatively correlated with yield (r = −0.56).

Automation of the SAR image analysis was possible, as the only inputs required were backscatter
data from VH and VV polarisations. Future work will explore the use of this method to estimate
commercial wheat production in other farming landscapes in the UK. It could also be adapted to
monitor growth and development, as well as yield prediction for other arable crops, potentially
allowing the remote quantitative assessment of environment and management impacts.
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