Pulsatec workshop: Sarrebrücken

Life-cycle and techno-economic analyses

> Antoine Merlo 5/10/2021

Fonds européen de développement régional | Europäischer Fonds für regionale Entwicklung

Presentation structure

Introduction

Economic and environmental assessment

Uses and coatings case studies:

- Identification of problematic aspects
- Decision-making
- Optimization/parametrization
- Perspectives and conclusions

Introduction

- Thin films are becoming more prevalent than ever
- ... and there is a need for environmental accountability!

Note: Data are provided in direct current (DC). Totals may not add up due to rounding. Source: Becquerel Institute and IEA PVPS.

1

REN21 RENEWABLES 2020 GLOBAL STATUS REPORT

Solar PV Global Capacity and Annual Additions, 2009-2019

 Applying assessment techniques to deposition processes

Joint economic and environmental assessment

3

¹ Reve news : https://www.evwind.es/2020/07/05/in-2019-the-solar-pvmarket-increased-an-estimated-12-to-around-115-gw/75561

Economic and environmental assessment

Economic assessment

- Many techniques for economic assessment:
 - Techno-economic analysis (TEA), Life Cycle Costing (LCC), Net-Present Value (NPV), Cash Flow Analysis (CFA) ...
- Use for industrials or business owners fairly straightforward:

Profitability assessment

Environmental assessment

- As many techniques for environmental assessment:
 - Life-cycle assessment(LCA), Material Flow analysis(MFA), Environmental Impact Assessment (EIA), Carbon footprint ...
- Use for industrials or business owners:
 - -Ecolabel obtention
 - -Environmental norms regularisation
 - -Assessment of future damage costs (CO2 tax...)

Techno-economic analysis (TEA)

- Evaluation and aggregation of Capital Expenditures (CAPEX) and Operational Expenditures (OPEX)
- Single cost per functional unit (F.U.)

→ Useful to compare competing technologies

Life-cycle assessment (LCA)

FNGINFFRING

Listing of emissions

- Whole life cycle
- Assignment of CF to emissions in ≠ impact categories

➔ Obtention of impacts per F.U.

Why joint LCA and TEA?

- Joint assessment → Nuanced multicriteria approach
- Trade-offs

- LCA : many aspects of the process are taken into account
- TEA : useful single cost indicator
- ➔ Symbiotic relationship between both methodologies: same goal and scope, F.U., inventory, …

Uses for joint TEA-LCA

- Demonstration of 3 different applications for joint TEA-LCA:
- 1. Identification of problematic aspects
- 2. Decision-making
- 3. Parametrization/Optimization

Uses for joint TEA-LCA

 Demonstration of 3 different applications for joint TEA-LCA:

- Two case studies:
 - Replacement of electrodeposited chromium
 - HiPIMS for TiAIN coated tools

Applications and case studies

1. Chromium coatings: Identification of problematic aspects

Hard chromium

 Compare impacts of chromium coatings of 20µm on a cylinder of 80 cm X Ø 40 cm => Functional Unit (F.U.)

ENGINEERING

 Two technologies: Magnetron-sputtering (MS-DC) and electrodeposition (ED)

13

Main processes differences

- Environmentally:
 - -Close to no emissions for MS-DC 👍
 - -Higher energy consumption \mathbf{P}
 - -Different production path for metallic chromium and chromium oxide 👍 (kinda...)
- Economically:
 - -Higher investment cost for MS-DC \bigtriangledown
 - -Lower productivity (17µm/h vs 25µm/h) 🖓
 - -Less labour for pre- and post-treatment needed (15 min vs 30 min) 👍

Methodology

- LCA to determine environmental impacts of both processes
- Use of common inventory for TEA
- Simapro v9 used
 - Ecolnvent database
 - Method ReCiPe 2016 (Hierarchist configuration)

Study scope

- Scope: from craddle to coating production
- Not taken into account:
 - Cylinder (substrate) production
 - Transport
 - Equipment manufacture
 - Coated cylinder use phase
- Belgian electricity mix

Inventory : electrodeposition

Extrapolated and adapted from litterature

Wastewater treatment

<u>Coating</u>				Wastewater treatment			
Flow	Amount	Unit	Source	Flow	Amount	Unit	Source
Electricity	20.2	kWh	Present		26	g	(Rodriguez,
			work	NaOH			et al., 2018)
Chromium	298.5	g	Present	SO,	18	g	(Rodriguez,
oxide			work	-		-	et al., 2018)
Sulfuric acid	0.17	g	(Krishnan et	Sulfuric Acid	54	g	(Rodriguez.
			al., 2008)			0	et al., 2018)
Water	332	L	(Rodriguez,	Ma	20	a	(Podriguoz
			et al., 2018)	INIGO	29	б	(Rounguez,
Airborne Cr ^{vi}	25.1	mg	(US EPA,				et al., 2018)
emissions			1996)	Water	19	L	(Rodriguez,
Waterborne	54.5	mg	(Rodriguez,				et al., 2018)
Cr ^{vi} emissions			et al., 2018)				
Lubricating oil	28	g	(Rodriguez,				
			et al., 2018)				

Inventory : DC-MS

Extrapolated and adapted from litterature

<u>Inputs</u>	<u>Amount</u>	<u>Unit</u>
Argon	25.12	g
Tap water	8	kg
Isopropanol	0.2	kg
Chromium	0.1685	kg
Electricity mix, BE	71.76	kWh
<u>Outputs</u>		
Argon (to air)	25.12	g
Chromium (to soil)	25.5	g
Water to sewer	8	kg

<u>Coating</u>

Normalized impacts

ENGINEERING

for 1 person in 2010 → Detect outlying categories

Normalized impacts- no carc. tox.

CHEMICAL

Results

- Toxicities most problematic
- Cr^{∨I} extremely carcinogenic → high normalized impact

- Other impacts correlated with electricity consumption
- ➔ Two main problems: Cr^{VI} emissions and electricity consumption

Cost assessment

Consumables costs more important for MS-DC (7.46€ vs 3.96€)

22

CHEMICAL
ENGINEERING

Cost assessment

60

However, main cost is labor (in NW EU) (49.91€ vs 40.35€)

Applications and case studies

2. Chromium coatings:

Decision-making

PVD a viable alternative for hard chromium?

- Probably not 😟
- Except if specific conditions are met:
 - High degree of automation
 - Low carbon impact of electricity mix
 - No need for repair operations

→ Actually pretty good for thinner, decorative coatings!

Better alternative for hard chromium: HVOF, f.e.

Complete results published in **Materials**: Merlo Antoine, and Léonard Grégoire. 2021. "Magnetron Sputtering vs. Electrodeposition for Hard Chrome Coatings: A Comparison of Environmental and Economic Performances" Materials 14, no. 14: 3823. https://doi.org/10.3390/ma14143823

25

Applications and case studies

3. TiAIN: Optimization/Parametrization

Goal

- HiPIMS: costlier, but better performing coatings than MS-DC
- Evaluate costs and impacts for both:
 - Coating phase
 - Cutting phase
- Higher tool life
 Lower downtimes
 Higher

 productivity and lower passive electricity consumption
- Joint evaluation of costs and environmental impacts

TiAIN and HiPIMS

- Higher performances of HiPIMS coatings → Improved tool life
- Good enough to compensate higher HiPIMS costs?

Tools considered

- HSS milling tools: 8mm diameter, 8 cm length
- 4µm TiAIN
- Tool life of 75 min for HiPIMS and 50 min for MS-DC
- 1.8µm/h for HiPIMS
 3.6µm/h for DC-MS

29

Installations

- 200 tools per batch
- Rotating and heating substrates
- HiPIMS :1 300 000 €
 DC-MS :1 200 000 €

 Same consumptions for both processes but longer deposition time for HiPIMS (133 min vs 67 min)

Cost evaluation

- Two 8h shifts per day (40€ per operator)
- 1464 vs 1094 batches a year (MS-DC vs HiPIMS)

Environmental impact

- CO2 emissions: 320.7 gCO2 for HiPIMS, 191.2 gCO2
- Electricity production is the main factor (Belgian EF: 174 gCO2/kWh

Cutting phase

- Inclusion of costs and impacts of cutting phase:
 - Substrate
 - Coatings
 - Cutting fluid
 - Electricity consumed

Tool life has an impact on those factors!

Cutting phase costs

■ Longer tool life leads to lower down times → Lower costs and higher productivity

34

• • • CHEMICAL • • • ENGINEERING

Cutting phase impacts

• Higher CO2 emissions for HiPIMS coatings, but:

- Less substrates used
- Less cutting fluid
- Less passive electricity usage

35

CHEMICAL
ENGINEERING

Cutting phase evaluation conclusions

- Use of HiPIMS reduces the total cost by around 10% and CO2 emissions by 15%
- High potential for HiPIMS technology
- Different operating parameters ?
 - Lubrification conditions
 - Cutting speed

36

Costa, Eder & Bacci Da Silva, Marcio & Machado, Alisson. (2009). Burr Produced on the Drilling Process as a Function of Tool Wear and Lubricant-Coolant Conditions. Journal of The Brazilian Society of Mechanical Sciences and Engineering - J BRAZ SOC MECH SCI ENG. 31. 10.1590/S1678-58782009000100009.

Parametrisation: Taylor's equation

- Parametrisation of cost and CO2 (2 objectives)
- $VT^n = C \rightarrow$ Use cutting speed as a parameter

Figure 2: Cutting velocity - tool life relationship

37

Parametrisation: Taylor's equation

Until experimental data, assumed that tool lives and powers evolve with speed as in *

Parametrisation

ENGINEERING

- Plot of CO2 emissions vs costs
- Several lubrication scenarios
- Cutting speed varies between 5 and 100 m/min

Parametrisation

- Plot of CO2 emissions vs costs
- Several lubrication scenarios
- Cutting speed varies between 5 and 100 m/min

Parametrisation

- Plot of CO2 emissions vs costs
- Several lubrication scenarios
- Cutting speed varies between 5 and 100 m/min

Parametrisation conclusions

- HiPIMS in flood machining conditions seems to bring the best outcomes for both costs and CO2 emissions
- Trade-offs between CO2 emissions and costs
- How to choose the best cutting speed?
- → Aggregation of CO2 emissions via a carbon tax

Carbon tax: 120€/tCO2

PEPS CHEMICAL ENGINEERING

Carbon tax: 250€/tCO2

PEPS CHEMICAL ENGINEERING

44

Carbon tax: 5000€/tCO2

PEPS CHEMICAL ENGINEERING

TiAIN Conclusions

- CO2 emissions differences are negligible, even with aberrant carbon taxes
- HiPIMS in FM at high machining speeds seem to be the best option
- Need of experimental data to validate assumptions

Conclusions and perspectives

Conclusions

- Economic and environmental assessment methods can be used for coatings
- Joint use allows for a nuanced and complete approach
- Many options are still left on the table for joint assessment

Thanks for your attention!

Références

- [1] IndustryArc (2021). 'Cutting Tools Market Forecast(2021 2026)'
- [2] Bobzin, K. (2016). 'High-performance coatings for cutting tools', CIRP Journal of Manufacturing Science and Technology
- [3] Jindal, P.C. et al. (1999). 'Performance of PVD TiN, TiCN, and TiAIN coated cemented carbide tools in turning', *International Journal of Refractory Metals & Hard Materials*, 17, pp. 163-170.
- [4] Kottfer, D. et al. (2013). 'Investigation of Ti and Cr based PVD coatings deposited onto HSS Co 5 twist drills', *Applied Surface Science*, 282, pp. 770-776.
- [5] Münz, V.-D. (1986), 'Titanium aluminum nitride films: A new alternative to TiN coatings', Journal of Vacuum Science & Technology A, 4(6)
- [6] Weichart, J. (2012). 'Titanium aluminum nitride sputtered by HIPIMS', IOP Conference Series Materials Science and Engineering
- [7] Anders, A. (2010). 'Deposition rates of high power impulse magnetron sputtering: Physics and economics', *Journal of Vacuum Science & Technology* A 28, p. 783
- [8] Li, C. (2015). 'A quantitative approach to analyze carbon emissions of CNC-based machining systems', *Journal of Intelligent Manufacturing 26*, pp. 911-922

Backup

Cost evaluation if substrate included

Avg cost for 8mm HSS milling bits: 6€

FNGINFFRING

→ Negligible difference for both technologies

Environmental impact with substrate

- Once again, reduced relative difference
- 875 gCO2 vs 745 gCO2

Coatings evaluation conclusions

- For the coating only: 41% increased cost and 68% increase in CO2 emissions
- With a 50% increase in tool life, increased cost is justifiable (cost/min)
- If substrate is included, results overwhelmingly positive for HiPIMS

Other results: HVOF

- Evaluation of HVOF as another alternative to chromium electrodeposition
- Results from CRM installation parameters: 370€ (ED) vs 227€ (HVOF) per F.U.
 - Thanks to higher productivity and higher degree of automation
- Also promising due to lower environmental impacts

Other results: HVOF

• • • ENGINEERING

TiAIN and cutting tools

- TiAIN : improvement of tool properties
- Developped from TiN[5], better corrosion resistance at higher T° (ox. 500-550°C for TiN vs 600°C for TiAIN) → Better performances at high speeds

Type of Coating	Hardness (GPa)	Hardness (HV _{0.05})	Thickness (μm)	Friction Coeficient	Heat Stability (°C)
TiN	23	2350	1 - 4	0.4	500
TiCN	27	2750	1 - 4	0.2	450
CrN	21	2100	1 - 4	0.6	700
TiAlN	32	3300	1 - 4	0.5	600
TiAlCN	29	3000	1 - 4	0.4	500

Table 3. Coating mechanical properties	2		
--	---	--	--

