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Introduction

Solar PV Global Capacity and Annual Additions, 2009-2019
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accountability! > Applying assessment
technigues to deposition
processes
= Joint economic and

environmental assessment
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Economic and environmental
assessment
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Economic assessment

= Many techniques for economic assessment:

o Techno-economic analysis (TEA), Life Cycle Costing (LCC), Net-
Present Value (NPV), Cash Flow Analysis (CFA) ...

= Use for industrials or business
owners fairly straightforward:
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Environmental assessment

= As many techniques for environmental assessment:

o Life-cycle assessment(LCA), Material Flow analysis(MFA),
Environmental Impact Assessment (EIA), Carbon footprint ...

= Use for industrials or business owners:
-Ecolabel obtention

-Environmental norms regularisation
-Assessment of future damage costs (CO2 tax...)
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Techno-economic analysis (TEA)

= Evaluation and

Goal and Scope <«
aggregation of Capital

Expenditures (CAPEX) and
Operational Expenditures
(OPEX) pretation

Inter-

= Single cost per functional
unit (F.U.) TEA report

=>» Useful to compare competing technologies
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Life-cycle assessment (LCA)

\_

Goal and scope
definition
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Impact
assessment

Apply characterisation
factor: | ;= CF_; x E,
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Interpretation

J

= Listing of emissions

= Whole life cycle

= Assignment of CF to
emissions in # impact
categories

=» Obtention of impacts per
F.U.
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Why joint LCA and TEA?

= Joint assessment = Nuanced multicriteria approach

= Trade-offs O €

= LCA: many aspects of the process are taken into
account

= TEA: useful single cost indicator

=>» Symbiotic relationship between both methodologies:
same goal and scope, F.U., inventory, ...
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Uses for joint TEA-LCA

= Demonstration of 3 different applications for joint TEA-
LCA:

1. ldentification of problematic aspects
2. Decision-making
3. Parametrization/Optimization

+3 PEPs o Qo LEeE
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Uses for joint TEA-LCA

= Demonstration of 3 different applications for joint TEA-
LCA:

1. Identification of problematic aspects Chromiumm
2. Decision-making
3. Parametrization/Optimization o  TIAIN

= Two case studies:
o Replacement of electrodeposited chromium
o HIiPIMS for TiIAIN coated tools
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Applications and case studies

1. Chromium coatings:
Identification of problematic
aspects
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Hard chromium

= Compare impacts of
chromium coatings of 20um
on a cylinder of 80 cmm X @ 40
cm => Functional Unit (F.U.)

Two technologies:
Magnetron-sputtering (MS-
DC) and electrodeposition
(ED)
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Main processes differences

= Environmentally:
-Close to no emissions for MS-DC /5
-Higher energy consumption €/
-Different production path for metallic chromium and
chromium oxide - (kinda...)

= Economically:
-Higher investment cost for MS-DC &/
-Lower productivity (17pum/h vs 25um/h) €/
-Less labour for pre- and post-treatment needed (15 min

vs 30 min) /&
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Methodology

= LCA to determine environmental impacts of both
processes

= Use of common inventory for TEA

= Simapro v9 used
o Ecolnvent database
o Method ReCiPe 2016 (Hierarchist configuration)

¢y SimaPro
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Study scope

\ o“daN |
= Scope: from craddle to ‘%;‘e |
COatIng prOdUCUOn \/« Extraction \
. \
= Not taken into account: _End-of- g
_ life/recycling AN
o Cylinder (substrate) ‘\

production
o Transport

LN /
o Equipment manufacture \
o Coated cylinder use phase \
P
\

= Belgian electricity mix

\
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‘ Inventory : electrodeposition
= Extrapolated and adapted from litterature

Coating Wastewater treatment
Flow  [Amount _ lUnit ____ lSource _ [Flow  [Amount  [unit  [Source |
Electricity 20.2 kWh Present 26 g (Rodriguez,
work m et al., 2018)
Chromium 298.5 g Present 18 g (Rodriguez,
oxide wo.rk - et al., 2018)
0.17 g (Krishnan et ca o (Rodriguez,
al., 2008) w etal., 2018)
332 L (Rodriguez, ’
et al,, 2018) “ 29 g (Rodriguez,
Airborne CrV' LNl mg (US EPA, etal., 2018)
emissions 1996) 19 L (Rodriguez,
WEL L B 54.5 mg (Rodriguez, “ etal., 2018)
CrV'emissions et al., 2018)
28 g (Rodriguez,
et al., 2018)
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Inventory : DC-MS

= Extrapolated and adapted from litterature

Coating

Argon
Tap water

Isopropanol
Chromium

Electricity mix, BE

Outputs

Argon (to air) 25.12 g
25.5 g
8 ke
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Normalized impacts

Water consumption A B Electrodeposition

Fossil resource scarcity o :
. : B Magnetron Sputterin
Mineral resource scarcity - g P 9

Land use -
Human non-carcinogenic toxicity -
Human carcinogenic toxicity
Marine ecotoxicity
Freshwater ecotoxicity
Terrestrial ecotoxicity -
Marine eutrophication -
Freshwater eutrophication -
Terrestrial acidification -
Ozone formation, Terrestrial ecosystems -
Fine particulate matter formation -
Ozone formation, Human health -
lonizing radiation -
Stratospheric ozone depletion A
Global warming , , , : , , ,

0 2 4 ) 8 10 12 14
= Normalization factor: global annual average emissions
for 1 person in 2010 = Detect outlying categories
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Normalized impacts— no carc. tox.

Water consumption Bl Electrodeposition

Fossil resource scarcity B Magnetron Sputtering

Mineral resource scarcity

Land use

Human non-carcinogenic toxicity
Terrestrial ecotoxicity

Marine eutrophication
Freshwater eutrophication
Terrestrial acidification

Ozone formation, Terrestrial ecosystems
Fine particulate matter formation
Ozone formation, Human health
Ionizing radiation

Stratospheric ozone depletion

Global warming . . . .
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Results

= Toxicities most problematic

= CrVl extremely carcinogenic =»high
normalized impact

= Other impacts correlated with electricity
consumption

= Two main problems: CrV! emissions and
electricity consumption
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Cost assessment

Consumables costs more important for MS-DC
(7.46€ vs 3.96€)

Cost/functional unit(€)
N w EAN Ul (@) ~N

=

Magnetron sputtering Electrodeposition

B Chromium/chromium oxide B Water M Isopropanol B Electricity
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Cost assessment

However, main cost is labor (in NW EU)
(49.91€ vs 40.35€)

Ul (o))
o o

IS
o

N
o

Cost per functional unit (€)
w
o

=
o

o

MS-DC Electrodeposition

B Labor ®Consumables m Annuities and maintenance
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Applications and case studies

2. Chromium coatings:
Decision-making
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‘ PVD aviable alternative for hard
chromium?

= Probably not

= Except if specific conditions are met:
o High degree of automation
o Low carbon impact of electricity mix
2 No need for repair operations

=>» Actually pretty good for thinner, decorative coatings!

= Better alternative for hard chromium: HVOF, f.e.

Complete results published in Materials:
e PEPs
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Applications and case studies

3. TiAIN:
Optimization/Parametrization

« + @ CHEMICAL université
e o @ ENGINEERING

e PEPs ¢ LIEGE
&



Goal

= HIPIMS: costlier, but better performing coatings than MS-
DC

= Evaluate costs and impacts for both:
o Coating phase
o Cutting phase

= Higher tool life = Lower downtimes = Higher
productivity and lower passive electricity consumption

= Joint evaluation of costs and environmental impacts

**% PEPs :
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TIAIN and HIPIMS

= Higher performances of HIPIMS coatings=>» Improved
tool life

= Good enough to compensate higher HIPIMS costs?

80 - OTool 1
70 - mTool 2
——
= 60
S ]
@ 50
= 40 -
g 30 -
= 20 -
10
0
TIAIN HIPIMS TIAIN sputtered
(commercial)
- @ P E Ps Weichart, J. (2012). ‘Titanium aluminum nitride sputtered by HIPIMS’, 28 B L I EGE
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Tools considered

= HSS milling tools: 8mm diameter, 8 cm length
= 4um TIAIN

= Tool life of 75 min for
HIPIMS and 50 min for
MS-DC

= 1.8um/h for HIPIMS
3.6um/h for DC-MS
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Installations

= 200 tools per batch
= Rotating and heating substrates

= HIPIMS :1 300 000 €
DC-MS :1 200 000 €

= Same consumptions for both
processes but longer deposition time for
HIPIMS (133 min vs 67 min)
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Cost evaluation

= Two 8h shifts per day (40€ per operator)

= 1464 vs 1094 batches a year (MS-DC vs HIPIMS)

HiPIMS

= 0.08€/kWh

N

=
u

= 5 year payback

Cost per coating (€)

o
U

M Labor W Consumables m Annuities ® Maintenance

% PEPs E
. : CHEMICAL 31 v LI'-"I'VEegtEe

e o @ ENGINEERING



Environmental impact

= CO2 emissions: 320.7 gCO2 for HIPIMS, 191.2 gCO2

= Electricity production is the main factor (Belgian EF: 174
gCO2/kWh

350

300

N
Ul
o

N
o
o

150

CO2 emissions (g)

100

50

HiPIMS DC

B Argon M Nitrogen M Target ™ Electricity
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Cutting phase

= Inclusion of costs and impacts of cutting phase:
0 Substrate
o Coatings
o Cutting fluid
o Electricity consumed
Tool life has an impact on those factors!
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Cutting phase costs

= Longer tool life leads to lower down times = Lower
costs and higher productivity

40

35

(O8)
o

N
U

[EY
(2

Cost per machine piece (€)
N
o

=
o

Ul

o

DC HiPIMS

B Operator M Electricity M Coating HTool mOQil
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Cutting phase impacts

= Higher CO2 emissions for HIPIMS coatings, but:

0 Less substrates used
o Less cutting fluid
0 Less passive electricity usage

800

~
o
o

600

w b U
o O o
o O O

=
o
o

CO2 emissions per machine piece (g)

o

DC HiPIMS

M Electricity ™ Coating mTool mOil mOQil disposal
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Cutting phase evaluation conclusions

= Use of HIPIMS reduces the total cost by around 10%
and CO2 emissions by 15%

= High potential for HIPIMS technology

= Different operating parameters ?
o Lubrification conditions
o Cutting speed

\

° P E Ps Costa, Eder & Bacci Da Silva, Marcio & Machado, Alisson. (2009). Burr Produced on ’ =
© the Drilling Process as a Function of Tool Wear and Lubricant-Coolant Conditions. 36 LIEGE
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Parametrisation: Taylor’s equation

= Parametrisation of cost and CO2 (2 objectives)

= VT" = C =» Use cutting speed as a parameter

R -
- Vv
’E ' c4
o .E Vv
o E C3
- ""'E'- %
£& v
E K h e ———
o Ve iT'hrTE 'Tg. ¥ T4

" Tool life in min (T)

Figure 2: Cutting velocity - tool life relationship
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Parametrisation: Taylor’s equation

= Until experimental data, assumed that tool lives and
powers evolve with speed as in *

80

T(2V) _ Ti(2v") 60
T(V)  Ti(Vr)

Tool life (min)
N
o

17.4 34.8 52.2 69.6 87
Cutting speed (m/min)

—HiPIMS —DC

e PEPs ) LIEGE
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Parametrisation

= Plot of CO2 emissions vS costs
= Several lubrication scenarios
= Cutting speed varies between 5 and 100 m/min

1000 A @ DCFM
4 HiPIMS FM
= * m DCMQL .
T 900 - * % HiPIMS MOL
2 * # DCDry N
- | * + HiPIMS Dry
2 800 | i ] *
v =
L= [ ® 9
i u *
o + Lo -
L 00 A k:t » jx & L 3
i
» x
! I ! ! ! ! I
20 30 40 50 B0 70 B0
Cost(€)
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Parametrisation

= Plot of CO2 emissions vS costs
= Several lubrication scenarios
= Cutting speed varies between 5 and 100 m/min

1000 A @ DCFM
4 HIiPIMS FM
= m DCMOL ¢
T 900 - * % HiPIMS MOL
2 * # DCDry A
b | + HIiPIM5 Dry
S BOO im ¥
E N
g "
2 e ¢
£ 700 -
o
HiPIMS lowers o -
wJ
both costs and _______600/1 *
CO2 impacts ! x
s0 e 70 80
Cust[-E]
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Parametrisation

= Plot of CO2 emissions vS costs
= Several lubrication scenarios
= Cutting speed varies between 5 and 100 m/min

1000 - s e DCFM
A HIPIMS FM . Cutting speeds
- m DCMOL d ts but
T 000 - * x  HiPIMS MQL reduce costs, bu
2 | * & DCDry i increase CO2
. + HiPIMS Dry issi
oo :_E 1 . emissions
o [ |
=] l
7 e ¢
£ 700
i
HiPIMS lowers = "
L
both costs and _______600/1 *
CO2 impacts ! "
| T T '
B0 70 80
Cust[-E]
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Parametrisation conclusions

= HIPIMS in flood machining conditions seems to bring the
best outcomes for both costs and CO2 emissions

= Trade-offs between CO2 emissions and costs
= How to choose the best cutting speed?

=>» Aggregation of CO2 emissions via a carbon tax
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Carbon tax: 120€/tC0O2

30
30 40 50 60 70 80 90 100

Cutting speed (m/min)

Total cost (€)
= = N N
U o Ul o Ul

o

W Base cost M Carbon tax
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Carbon tax: 250€/tCO2

30

25

20
w
7

S 15
o
©

10

5

0

30 40 50 60 70 80 90 100

Cutting speed (m/min)

M Base cost M Carbon tax
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Carbon tax: 5000€/tC0O2

30

25

0
30 40 50 60 70 80 90 100

Cutting speed (m/min)

Total cost (€)
[ ()
ul o

=
o

W Base cost M Carbon tax
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TIAIN Conclusions

= CO2 emissions differences are negligible, even with
aberrant carbon taxes

= HIPIMS in FM at high machining speeds seem to be the
best option

= Need of experimental data to validate assumptions
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Conclusions and perspectives
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Conclusions

= Economic and environmental
assessment methods can be used for
coatings

= Joint use allows for a nuanced and
complete approach

= Many options are still left on the table
for joint assessment
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Thanks for your attention!
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Backup
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Cost evaluation If substrate included

= Avg cost for 8mm HSS milling bits: 6€

=> Negligible difference for both technologies

Cost per coated tool (€)

O R N W &~ U1 O N 0 ©

HiPIMS DC

B Coating M Tool
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Environmental impact with substrate

= Once again, reduced relative difference
m 8/59C02vs 745 gCO2

e PEPs
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Coatings evaluation conclusions

= For the coating only: 41% increased cost and 68%
Increase in CO2 emissions

= With a 50% increase in tool life, increased cost is
justifiable (cost/min)

= If substrate is included, results overwhelmingly positive
for HIPIMS

e PEPs ¢ LIEGE
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Other results: HVOF

= Evaluation of HVOF as another alternative to
chromium electrodeposition

= Results from CRM installation parameters: 370€ (ED)
vs 227€ (HVOF) per F.U.

o Thanks to higher productivity and higher degree of automation

= Also promising due to lower environmental impacts
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‘ Other results: HVOF

E HVOF 150um coating £ Coated piece ED model for 1 UF
100.

%
Ul
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TIAIN and cutting tools

= TIAIN : improvement of tool properties

= Developped from TIiN[5], better corrosion resistance at
higher T° (ox. 500-550°C for TiN vs 600°C for TiAIN) =»
Better performances at high speeds

Table 3. Coating mechamcal properhies [2]

Type of Coating | Hardness (GPa) [':ET:;T Thickness (pm) {:;':E:i':;t H E'Hl{f:gl]h]ht}'
TiN 23 2350 1-4 0.4 SO0
TiCN 27 2750 1-4 0.2 4510
CrN 21 2100 1-4 0.6 7010
TIAIN 32 3300 1-4 0.5 600
Ti1AICN 29 3000 1-4 0.4 SO0
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