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Introduction

◼ Thin films are becoming

more prevalent than

ever

… and there is a need for 

environmental

accountability!

3

➔ Applying assessment

techniques to deposition

processes

◼ Joint economic and 

environmental assessment

1

1 Reve news : https://www.evwind.es/2020/07/05/in-2019-the-solar-pv-

market-increased-an-estimated-12-to-around-115-gw/75561
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Economic and environmental 

assessment



Economic assessment

◼ Many techniques for economic assessment:

❑ Techno-economic analysis (TEA), Life Cycle Costing (LCC), Net-

Present Value (NPV), Cash Flow Analysis (CFA) …

◼ Use for industrials or business

owners fairly straightforward:

Profitability assessment

5

2 Morozovskiy, P. et al., 2019. Cost effectiveness indicators of residential complex 

construction project. E3S Web of Conferences 91:08060

DOI:10.1051/e3sconf/20199108060
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Environmental assessment

◼ As many techniques for environmental assessment:

❑ Life-cycle assessment(LCA), Material Flow analysis(MFA), 

Environmental Impact Assessment (EIA), Carbon footprint …

◼ Use for industrials or business owners:
-Ecolabel obtention

-Environmental norms regularisation

-Assessment of future damage costs (CO2 tax…)
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Techno-economic analysis (TEA)

◼ Evaluation and 

aggregation of Capital 

Expenditures (CAPEX) and 

Operational Expenditures

(OPEX)

◼ Single cost per functional

unit (F.U.)
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➔ Useful to compare competing technologies



Life-cycle assessment (LCA)

◼ Listing of emissions

◼ Whole life cycle

◼ Assignment of CF to 

emissions in ≠ impact 

categories

➔ Obtention of impacts per 

F.U.
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Why joint LCA and TEA?

◼ Joint assessment ➔ Nuanced multicriteria approach

◼ Trade-offs

◼ LCA : many aspects of the process are taken into

account

◼ TEA : useful single cost indicator

➔ Symbiotic relationship between both methodologies: 

same goal and scope, F.U., inventory, …
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Uses for joint TEA-LCA

◼ Demonstration of 3 different applications for joint TEA-

LCA:

1. Identification of problematic aspects

2. Decision-making

3. Parametrization/Optimization
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Uses for joint TEA-LCA

◼ Demonstration of 3 different applications for joint TEA-

LCA:

1. Identification of problematic aspects

2. Decision-making

3. Parametrization/Optimization

◼ Two case studies: 

❑ Replacement of electrodeposited chromium

❑ HiPIMS for TiAlN coated tools

11

Chromium

TiAlN
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Applications and case studies

1. Chromium coatings:
Identification of problematic

aspects



Hard chromium

◼ Compare impacts of 

chromium coatings of 20µm 

on a cylinder of 80 cm X Ø 40 

cm => Functional Unit (F.U.)

◼ Two technologies: 

Magnetron-sputtering (MS-

DC) and electrodeposition

(ED)

13



Main processes differences

◼ Environmentally:

-Close to no emissions for MS-DC 👍

-Higher energy consumption👎

-Different production path for metallic chromium and 

chromium oxide 👍(kinda…)

◼ Economically:

-Higher investment cost for MS-DC 👎

-Lower productivity (17µm/h vs 25µm/h) 👎

-Less labour for pre- and post-treatment needed (15 min 

vs 30 min) 👍
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Methodology

◼ LCA to determine environmental impacts of both

processes

◼ Use of common inventory for TEA

◼ Simapro v9 used

❑ EcoInvent database

❑ Method ReCiPe 2016 (Hierarchist configuration)
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Study scope

◼ Scope: from craddle to 

coating production

◼ Not taken into account:

❑ Cylinder (substrate) 

production

❑ Transport

❑ Equipment manufacture

❑ Coated cylinder use phase

◼ Belgian electricity mix

Extraction

Transport

ProcessingUse phase

End-of-
life/recycling
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Inventory : electrodeposition
◼ Extrapolated and adapted from litterature

Flow Amount Unit Source

Electricity 20.2 kWh Present

work

Chromium 

oxide

298.5 g Present

work

Sulfuric acid 0.17 g (Krishnan et 

al., 2008)

Water 332 L (Rodriguez, 

et al., 2018)

Airborne CrVI

emissions

25.1 mg (US EPA, 

1996)

Waterborne 

CrVI emissions

54.5 mg (Rodriguez, 

et al., 2018)

Lubricating oil 28 g (Rodriguez, 

et al., 2018)

Flow Amount Unit Source

NaOH

26 g (Rodriguez, 

et al., 2018)

SO2 18 g (Rodriguez, 

et al., 2018)

Sulfuric Acid 54 g (Rodriguez, 

et al., 2018)

MgO 29 g (Rodriguez, 

et al., 2018)

Water 19 L (Rodriguez, 

et al., 2018)

Coating Wastewater treatment
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Inventory : DC-MS
◼ Extrapolated and adapted from litterature

Coating

Inputs Amount Unit

Argon 25.12 g

Tap water 8 kg

Isopropanol 0.2 kg

Chromium 0.1685 kg

Electricity mix, BE 71.76 kWh

Outputs

Argon (to air) 25.12 g

Chromium (to soil) 25.5 g

Water to sewer 8 kg
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Normalized impacts
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◼ Normalization factor: global annual average emissions

for 1 person in 2010 ➔ Detect outlying categories



Normalized impacts– no carc. tox.
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Results

◼ Toxicities most problematic

◼ CrVI extremely carcinogenic ➔high

normalized impact

◼ Other impacts correlated with electricity

consumption

➔ Two main problems: CrVI emissions and 

electricity consumption
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Cost assessment

Consumables costs more important for MS-DC

(7.46€ vs 3.96€)
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Cost assessment

However, main cost is labor (in NW EU)

(49.91€ vs 40.35€)
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Applications and case studies

2. Chromium coatings:
Decision-making



PVD a viable alternative for hard 

chromium?

◼ Probably not 😞

◼ Except if specific conditions are met:

❑ High degree of automation

❑ Low carbon impact of electricity mix

❑ No need for repair operations

➔ Actually pretty good for thinner, decorative coatings!

◼ Better alternative for hard chromium: HVOF, f.e.

25

Complete results published in Materials: 
Merlo Antoine, and Léonard Grégoire. 2021. "Magnetron Sputtering vs. Electrodeposition 
for Hard Chrome Coatings: A Comparison of Environmental and Economic Performances" 
Materials 14, no. 14: 3823. https://doi.org/10.3390/ma14143823
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Applications and case studies

3. TiAlN:
Optimization/Parametrization



Goal

◼ HiPIMS: costlier, but better performing coatings than MS-
DC

◼ Evaluate costs and impacts for both:
❑ Coating phase

❑ Cutting phase

◼ Higher tool life ➔ Lower downtimes ➔ Higher
productivity and lower passive electricity consumption

◼ Joint evaluation of costs and environmental impacts
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TiAlN and HiPIMS

◼ Higher performances of HiPIMS coatings➔ Improved

tool life

◼ Good enough to compensate higher HiPIMS costs?

28
Weichart, J. (2012). ‘Titanium aluminum nitride sputtered by HIPIMS’, 
IOP Conference Series Materials Science and Engineering



Tools considered

◼ HSS milling tools: 8mm diameter, 8 cm length

◼ 4µm TiAlN

◼ Tool life of 75 min for

HiPIMS and 50 min for 

MS-DC

◼ 1.8µm/h for HiPIMS

3.6µm/h for DC-MS

29



Installations

◼ 200 tools per batch

◼ Rotating and heating substrates

◼ HiPIMS :1 300 000 €

DC-MS :1 200 000 € 

◼ Same consumptions for both

processes but longer deposition time for

HiPIMS (133 min vs 67 min) 
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Cost evaluation

◼ Two 8h shifts per day (40€ per operator)

◼ 1464 vs 1094 batches a year (MS-DC vs HiPIMS)

◼ 0.08€/kWh

◼ 5 year payback
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Environmental impact

◼ CO2 emissions: 320.7 gCO2 for HiPIMS, 191.2 gCO2

◼ Electricity production is the main factor (Belgian EF: 174 

gCO2/kWh
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Cutting phase

◼ Inclusion of costs and impacts of cutting phase:

❑ Substrate

❑ Coatings

❑ Cutting fluid

❑ Electricity consumed

Tool life has an impact on those factors!
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Cutting phase costs

◼ Longer tool life leads to lower down times ➔ Lower

costs and higher productivity
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Cutting phase impacts

◼ Higher CO2 emissions for HiPIMS coatings, but:
❑ Less substrates used

❑ Less cutting fluid

❑ Less passive electricity usage
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Cutting phase evaluation conclusions

◼ Use of HiPIMS reduces the total cost by around 10% 

and CO2 emissions by 15%

◼ High potential for HiPIMS technology

◼ Different operating parameters ?

❑ Lubrification conditions

❑ Cutting speed

36

Costa, Eder & Bacci Da Silva, Marcio & Machado, Alisson. (2009). Burr Produced on 
the Drilling Process as a Function of Tool Wear and Lubricant-Coolant Conditions. 
Journal of The Brazilian Society of Mechanical Sciences and Engineering - J BRAZ 
SOC MECH SCI ENG. 31. 10.1590/S1678-58782009000100009. 



Parametrisation: Taylor’s equation

◼ Parametrisation of cost and CO2 (2 objectives)

◼ 𝑉𝑇𝑛 = 𝐶➔ Use cutting speed as a parameter
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Parametrisation: Taylor’s equation

◼ Until experimental data, assumed that tool lives and 

powers evolve with speed as in *

◼

𝑇(2𝑉)

𝑇(𝑉)
=

𝑇′(2𝑉′)

𝑇′(𝑉′)
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Parametrisation

◼ Plot of CO2 emissions vs costs

◼ Several lubrication scenarios

◼ Cutting speed varies between 5 and 100 m/min
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Parametrisation

◼ Plot of CO2 emissions vs costs

◼ Several lubrication scenarios

◼ Cutting speed varies between 5 and 100 m/min

40

HiPIMS lowers
both costs and 
CO2 impacts !



Parametrisation

◼ Plot of CO2 emissions vs costs

◼ Several lubrication scenarios

◼ Cutting speed varies between 5 and 100 m/min

41

HiPIMS lowers
both costs and 
CO2 impacts !

Cutting speeds 
reduce costs, but 
increase CO2 
emissions



Parametrisation conclusions

◼ HiPIMS in flood machining conditions seems to bring the 

best outcomes for both costs and CO2 emissions

◼ Trade-offs between CO2 emissions and costs

◼ How to choose the best cutting speed?

➔ Aggregation of CO2 emissions via a carbon tax
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Carbon tax: 120€/tCO2
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Carbon tax: 250€/tCO2
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Carbon tax: 5000€/tCO2
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TiAlN Conclusions

◼ CO2 emissions differences are negligible, even with

aberrant carbon taxes

◼ HiPIMS in FM at high machining speeds seem to be the 

best option

◼ Need of experimental data to validate assumptions

46
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Conclusions and perspectives



Conclusions

◼ Economic and environmental

assessment methods can be used for 

coatings

◼ Joint use allows for a nuanced and 

complete approach

◼ Many options are still left on the table 

for joint assessment
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Thanks for your attention!
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Backup
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Cost evaluation if substrate included

◼ Avg cost for 8mm HSS milling bits: 6€

➔ Negligible difference for both technologies
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Environmental impact with substrate

◼ Once again, reduced relative difference

◼ 875 gCO2 vs 745 gCO2
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Coatings evaluation conclusions

◼ For the coating only: 41% increased cost and 68% 

increase in CO2 emissions

◼ With a 50% increase in tool life, increased cost is

justifiable (cost/min)

◼ If substrate is included, results overwhelmingly positive 

for HiPIMS
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Other results: HVOF

◼ Evaluation of HVOF as another alternative to 

chromium electrodeposition

◼ Results from CRM installation parameters: 370€ (ED) 

vs 227€ (HVOF) per F.U. 
❑ Thanks to higher productivity and higher degree of automation

◼ Also promising due to lower environmental impacts
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Other results: HVOF
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TiAlN and cutting tools

◼ TiAlN : improvement of tool properties

◼ Developped from TiN[5], better corrosion resistance at 

higher T° (ox. 500-550°C for TiN vs 600°C for TiAlN) ➔

Better performances at high speeds

57

[2]


