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Structure de la présentation

➢ Introduction

➢ Evaluation économique et environnementale

➢ Utilisation et cas d’étude:

➢ Identification des aspects problématiques

➢ Prise de décision

➢ Optimisation/paramétrisation

➢ Perspectives et conclusions
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Introduction

◼ Utilisation de 

revêtements en hausse

… et besoin de 

transparence 

environnementale!
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➔ Application de techniques 

d’évaluations sur les 

technologies de déposition

◼ Evaluation économique et 

environnementale jointe
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1 Reve news : https://www.evwind.es/2020/07/05/in-2019-the-solar-pv-

market-increased-an-estimated-12-to-around-115-gw/75561
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Evaluation économique et 

environnementale



Evaluation économique

◼ Beaucoup de techniques pour l’évaluation économique:

❑ Analyse techno-economique(TEA), Coût du cycle de vie(LCC), 

Net-Present Value (NPV), Cash Flow Analysis (CFA) …

◼ Utilisation pour industriels

ou propriétaires:

Profitabilité

Planning
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2 Morozovskiy, P. et al., 2019. Cost effectiveness indicators of residential complex 

construction project. E3S Web of Conferences 91:08060

DOI:10.1051/e3sconf/20199108060
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Evaluation environnementale

◼ Tout autant de techniques pour l’évaluation 

environnementale:

❑ Analyse de cycle de vie(LCA), Material Flow analysis(MFA), 

Etude d’impact(EIA), Empreinte carbone …

◼ Pour industriels/propriétaires:
-Ecolabel

-Conformité aux normes

-Evaluation de futurs dommages (taxe CO2…)

-EPD
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Analyse technico-économique(TEA)

◼ Evaluation et aggrégation

des dépenses capitales 

(CAPEX) et 

opérationnelles (OPEX)

◼ Unique coût par unité 

fonctionnelle (U.F.)
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➔ Utile pour comparer des technologies en compétition



Analyse de cycle de vie(LCA)

◼ Listage des émissions

◼ Cycle de vie

◼ Assignation de CF aux 

émissions dans ≠ 

catégories d’impact

➔ Obtention d’impacts par 

UF
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Pourquoi étude jointe LCA et TEA?

◼ Evaluation jointe➔ Approche multicritère nuancée

◼ Compromis

◼ LCA : complète prise en compte d’aspects du procédé

◼ TEA : indicateur unique utile (€/FU)

➔ Symbiose entre les deux méthodologies: inventaire 

commun, UF, limite et but, …
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Application pour TEA-LCA jointe

◼ Démonstration de 3 différentes applications pour TEA-

LCA jointe:

1. Identification d’aspects problématiques

2. Prise de décision

3. Paramétrisation/Optimisation
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Application pour TEA-LCA jointe

◼ Démonstration de 3 différentes applications pour TEA-

LCA jointe:

1. Identification d’aspects problématiques

2. Prise de décision

3. Paramétrisation/Optimisation

◼ Deux cas d’étude: 

❑ Remplacement du chrome en électrodéposition

❑ HiPIMS pour revêtements de TiAlN sur outils de découpe
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Chrome

TiAlN
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Application et cas d’étude

1. Chrome:
Identification d’aspects 

problématiques



Chrome dur

◼ Comparer impacts de film de 

chrome de 20µm sur cylindre 

de 80 cm X Ø 40 cm => Unité 

fonctionnelle(UF)

◼ Deux technologies: 

Pulvérisation magnétron 

(MS-DC) et 

électrodéposition (ED)
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Différences entre les procédés

◼ Environnementalement:

-Presqu’aucune émission pour MS-DC 👍

-Plus grande consommation d’électricité👎

-Différent chemin de production pour métal et oxide 

👍(+-…)

◼ Economiquement:

-Investissement + coûteux  pour MS-DC 👎

-Plus basse productivité (17µm/h vs 25µm/h) 👎

-Moins de main-d’œuvre pour pré- et post-traitement (15 

min vs 30 min) 👍

14



Méthodologie

◼ LCA pour impacts des 2 procédés

◼ Utilisation de l’inventaire obtenu pour TEA

◼ Simapro v9 utilisé

❑ Base de données EcoInvent

❑ Methode ReCiPe 2016 (Hierarchist configuration)
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Champ de l’étude

◼ Scope: du berceau au 

revêtement

◼ Pas pris en compte:

❑ Production du cylindre 

(substrat) 

❑ Transport

❑ Equipement

❑ Phase d’utilisation

◼ Mix électrique belge

Extraction

Transport

ProcessingUse phase

End-of-
life/recycling
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Inventaire : électrodéposition 
◼ Extrapolé et adapté de la littérature

Flow Amount Unit Source

Electricity 20.2 kWh Present

work

Chromium 

oxide

298.5 g Present

work

Sulfuric acid 0.17 g (Krishnan et 

al., 2008)

Water 332 L (Rodriguez, 

et al., 2018)

Airborne CrVI

emissions

25.1 mg (US EPA, 

1996)

Waterborne 

CrVI emissions

54.5 mg (Rodriguez, 

et al., 2018)

Lubricating oil 28 g (Rodriguez, 

et al., 2018)

Flow Amount Unit Source

NaOH

26 g (Rodriguez, 

et al., 2018)

SO2 18 g (Rodriguez, 

et al., 2018)

Sulfuric Acid 54 g (Rodriguez, 

et al., 2018)

MgO 29 g (Rodriguez, 

et al., 2018)

Water 19 L (Rodriguez, 

et al., 2018)

Coating Wastewater treatment
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Inventory : DC-MS
◼ Extrapolé et adapté de la littérature

Coating

Inputs Amount Unit

Argon 25.12 g

Tap water 8 kg

Isopropanol 0.2 kg

Chromium 0.1685 kg

Electricity mix, BE 71.76 kWh

Outputs

Argon (to air) 25.12 g

Chromium (to soil) 25.5 g

Water to sewer 8 kg
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Impacts normalisés
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◼ Facteur de normalisation: émissions moyenne pour une 

personne en 2010 ➔ Détection de catégories hors 

normes



Impacts normalisés– sans tox.
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Résultats

◼ Toxicités le plus problématique

◼ CrVI extrêmement carcinogénique

➔haut impact normalisé

◼ Autres impacts corrélés avec la consommation 

d’électricité

➔ Deux problèmes principaux: émissions de CrVI et 

consommation d’électricité
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Estimation des coûts

Coûts des consommables plus important pour 

MS-DC (7.46€ vs 3.96€)
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Estimation des coûts

Cependant main-d’œuvre le plus important (en 

Europe de l’ouest) (49.91€ vs 40.35€)
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Application et cas d’étude

2. Chrome:
Prise de décision



Une alternative viable?

◼ Probablement pas😞

◼ Sauf si conditions spécifiques:

❑ Haut degré d’automation

❑ Faible impact du mix énergétique

❑ Techno pas utilisée pour réparer revêtements ou substrats

➔ Intéressant pour revêtements plus fins, décoratifs!

◼ HVOF plus prometteur comme alternative, p.e.
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Complete results published in Materials: 
Merlo Antoine, and Léonard Grégoire. 2021. "Magnetron Sputtering vs. Electrodeposition 
for Hard Chrome Coatings: A Comparison of Environmental and Economic Performances" 
Materials 14, no. 14: 3823. https://doi.org/10.3390/ma14143823
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Application et cas d’étude

3. TiAlN:
Optimisation/Paramétrisation



But: TiAlN pour outils de découpe

◼ HiPIMS: plus coûteux, mais meilleure performance pour 
outils de découpe que MS-DC

◼ Extension du champ:
❑ Phase de dépôt ➔

❑ Phase de découpe

◼ Plus long temps de vie➔ Moins d’interruptions➔ Plus 
de productivité, moins d’outils consommés

◼ Evaluation économique et environnementale jointe
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TiAlN et l’HiPIMS

◼ Meilleures performances➔ Meilleure durée de vie

◼ Compense les coûts de l’HiPIMS?

28
Weichart, J. (2012). ‘Titanium aluminum nitride sputtered by HIPIMS’, 
IOP Conference Series Materials Science and Engineering



Outils

◼ Outils HSS: 8mm diamètre, 8 cm longueur

◼ 4µm TiAlN

◼ Temps de vie: 75 min pour

HiPIMS et 50 min pour 

MS-DC

◼ 1.8µm/h for HiPIMS

3.6µm/h for DC-MS
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Installations

◼ 200 outils par batch

◼ Substrats chauffants et tournants

◼ HiPIMS :1 300 000 €

DC-MS :1 200 000 € 

◼ Même consommation mais temps de 

déposition plus long pour HiPIMS

(133 min vs 67 min) 
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Evaluation des coûts (revêtements)

◼ Deux shifts (8h) par jour (40€ pour l’opérateur)

◼ 1464 vs 1094 batchs par an (MS-DC vs HiPIMS)

◼ 0.08€/kWh

◼ Payback sur 5 ans
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Impact environnemental (revêtements)

◼ Emissions de CO2: 320.7 gCO2 for HiPIMS, 191.2 

gCO2 for MS-DC

◼ Electricité facteur principal (Belgian EF: 174 gCO2/kWh)
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Phase de découpe

◼ Inclusion des coûts et impacts de la phase de découpe:

❑ Substrats

❑ Revêtements

❑ Fluide de découpe

❑ Electricité consommée

Le temps de vie aura un impact sur ces facteurs!
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Coûts (phase de découpe)

◼ Moins de temps d’arrêt ➔ Plus faible coûts et plus 

grande productivité
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Impacts (phase d’utilisation)

◼ Plus d’émissions de CO2 pour l’HiPIMS, mais:
❑ Moins de substrats

❑ Moins de fluide de découpe

❑ Moins d’électricité utilisée passivement
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Conclusions

◼ HiPIMS réduirait les coûts de10% et les émissions de 

CO2 par 15%

◼ Haut potentiel pour HiPIMS

◼ Différentes conditions ?

❑ Conditions de lubrification

❑ Vitesse de découpe

36

Costa, Eder & Bacci Da Silva, Marcio & Machado, Alisson. (2009). Burr Produced on 
the Drilling Process as a Function of Tool Wear and Lubricant-Coolant Conditions. 
Journal of The Brazilian Society of Mechanical Sciences and Engineering - J BRAZ 
SOC MECH SCI ENG. 31. 10.1590/S1678-58782009000100009. 



Paramétrisation: équation de Taylor

◼ Paramétrisation du coût et du CO2 (2 objectifs)

◼ 𝑉𝑇𝑛 = 𝐶➔ Vitesse de découpe comme paramètre
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Paramétrisation: équation de Taylor

◼ Hypothèse: évolution des temps de vie comme dans *

◼

𝑇(2𝑉)

𝑇(𝑉)
=

𝑇′(2𝑉′)

𝑇′(𝑉′)
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Paramétrisation

◼ Graphe des émissions CO2 contre coûts

◼ Différents scénarios de lubrification

◼ Variation de vitesse entre 5 et 100 m/min
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Paramétrisation

◼ Graphe des émissions CO2 contre coûts

◼ Différents scénarios de lubrification

◼ Variation de vitesse entre 5 et 100 m/min

40

Réduction des 
coûts et du CO2 
via HiPIMS!



Paramétrisation

◼ Graphe des émissions CO2 contre coûts

◼ Différents scénarios de lubrification

◼ Variation de vitesse entre 5 et 100 m/min

41

Cutting speeds 
reduce costs, but 
increase CO2 
emissions

Réduction des 
coûts et du CO2 
via HiPIMS!



Paramétrisation conclusions

◼ Revêtements par HiPIMS les plus intéressants

◼ Compromis entre émissions de CO2 et coûts

◼ Choix d’une vitesse de découpe?

➔ Agrégation des émissions de CO2 par une taxe carbone
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Taxe carbone : 120€/tCO2
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Taxe carbone : 250€/tCO2
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Taxe carbone : 5000€/tCO2
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Conclusions et perspectives



Conclusions

◼ Les techniques d’évaluation peuvent 

être utilisées sur des revêtements

◼ Importance des choix de revêtements

◼ Approche nuancée via une utilisation 

jointe

◼ Encore de nombreuses options pas 

encore explorées
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Merci de votre attention!
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Backup
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Cost evaluation if substrate included

◼ Avg cost for 8mm HSS milling bits: 6€

➔ Negligible difference for both technologies
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Environmental impact with substrate

◼ Once again, reduced relative difference

◼ 875 gCO2 vs 745 gCO2
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Coatings evaluation conclusions

◼ For the coating only: 41% increased cost and 68% 

increase in CO2 emissions

◼ With a 50% increase in tool life, increased cost is

justifiable (cost/min)

◼ If substrate is included, results overwhelmingly positive 

for HiPIMS
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Other results: HVOF

◼ Evaluation of HVOF as another alternative to 

chromium electrodeposition

◼ Results from CRM installation parameters: 370€ (ED) 

vs 227€ (HVOF) per F.U. 
❑ Thanks to higher productivity and higher degree of automation

◼ Also promising due to lower environmental impacts
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Other results: HVOF
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TiAlN and cutting tools

◼ TiAlN : improvement of tool properties

◼ Developped from TiN[5], better corrosion resistance at 

higher T° (ox. 500-550°C for TiN vs 600°C for TiAlN) ➔

Better performances at high speeds

56

[2]



TiAlN Conclusions

◼ CO2 emissions differences are negligible, even with

aberrant carbon taxes

◼ HiPIMS in FM at high machining speeds seem to be the 

best option

◼ Need of experimental data to validate assumptions
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