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Abstract

A material network consisting of discrete material nodes and their interactions can represent complex
microstructure responses. Under this interaction viewpoint, the material network can be viewed as
a trainable system involving fitting parameters including not only the weights of the material nodes
but also the parameters characterizing their interactions. As opposed to the other existing works,
this interaction-based material network does not rely on the micromechanics of multiple-phase lam-
inates but on constraining all requirements of a truly microscopic boundary value problem including
the stress and strain averaging principles and the Hill-Mandel energetically consistent condition.
Consequently, the proposed framework can be applied to microstructures with the presence of voids,
which is not achievable with the laminate theory. To make a material network become a surrogate
of a full-field microscopic model, this work proposes two different training procedures to calibrate its
fitting parameters. On the one hand, a nonlinear training procedure is proposed considering sequen-
tial data collected from finite element simulations on the full-field model subjected to proportional
loading paths. On the other hand, a linear elastic training procedure considers only the elastic
response of the heterogeneous material. The accuracy and efficiency of the proposed framework
for microstructures with the presence of voids are demonstrated by comparing the predictions of
the trained material networks with the ones of the direct numerical simulations in both contexts of
virtual testing and multiscale simulations. It is also shown that the linear elastic training procedure
requires a lower computational cost but could lead to less accurate predictions in comparison with
the nonlinear training procedure.
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1. Introduction

With the rapidly increasing application of heterogeneous materials in engineering fields, the
accurate evaluation of the relationship between the structural behavior and the intrinsic properties
of the material microstructure is mandatory. To enable the numerical simulation of structures
made of heterogeneous materials, an effective framework known as computational homogenization
(FE2) has been developed to directly account for complex material microstructure and constitutive
behaviors at lower scales [1, 2, 3, 4, 5, 6, 7]. In the FE2 framework, the constitutive relationship at
each macroscopic material point is obtained from the resolution of a microscopic Boundary Value

∗Corresponding author, Phone: +32 4 366 48 26, Fax: +32 4 366 95 05
Email addresses: vandung.nguyen@ulg.ac.be (Van Dung Nguyen), L.Noels@ulg.ac.be (Ludovic Noels)

1Postdoctoral Researcher at the Belgian National Fund for Scientific Research (FNRS)

Preprint submitted to Comp. Meth. in Appl. Mech. and Engng.; (C)2022. Licensed under the Creative Commons (CC-BY-NC-ND)November 4, 2021



Problem (BVP) defined at that point. However, the requirement of solving microscopic BVPs at all
the integration points by the finite element method involves high numerical resources in terms of
time and memory, which limits the applicability of this technique to reduced size problems. We will
address this issue within the context of material network, which is a connected network of discrete
material nodes.

Many studies have been focusing on building surrogate models of the microscopic BVP in the
FE2 framework for improving computational efficiency. The surrogate model is then considered at
each macroscopic integration point in the place of the original full-field microscopic BVP, in which
the computational costs and accuracy are balanced. One possibility is to use Reduced Order Models
(ROM), which have been extensively developed to reduce the computation cost in the finite element
analysis, see e.g. the works [8, 9, 10, 11, 12, 13, 14, 15], generally for the microscopic BVPs. In
these ROM-based surrogate models, governing equations of the full-field model can be solved with
a reduced number of degrees of freedom in a reduced order space based on offline full-field solution
snapshots, leading to considerably reduced computational cost. Alternatively, the surrogate model
of a microscopic BVP can be constructed based on machine learning (ML) techniques, e.g. artificial
neural networks and deep learning, in which the complex input-output relationships representing
the constitutive behavior can be approximated through a training step using data obtained either
from offline simulations or from experimental observations [16, 17, 18, 19, 20, 21, 22, 20, 23, 24, 25,
26, 27]. However, since both the ROM-based and ML-based surrogate models rely on the offline
database which is not easily built large enough when dealing with irreversible material responses,
their prediction could be inaccurate when extrapolating beyond the offline sampling space.

An alternative way to build a computationally efficient surrogate of the microscopic BVP relies
on a network structure based on mechanistic building blocks. Following this idea, the deep Material
Network (MN) method was proposed in [28] for two-phase composite materials with a binary hi-
erarchical topological structure based on two-phase laminates as mechanistic building blocks. The
deep MN was applied to three-dimensional microstructures [29] and augmented by cohesive zone
models [30] and material failure [31]. The thermodynamic consistency of the deep MN was investi-
gated in [32, 33] in which the rotation-free deep MNs based on laminates with variable direction of
lamination were proposed. More complex micro-mechanical models such as mean-field homogeniza-
tion in the mechanistic building blocks was also recently considered for woven composite materials
[34]. A deep MN consists of fitting parameters, which are identified for a given microstructure
through a training process using only linear elastic simulations. Once trained, this deep MN is
able to predict nonlinear material behaviors both accurately and efficiently although only linear
elastic data were used during the offline training, thanks to the ability of the deep MN to learn
the topology representation of the material microstructure. Recently, a MN has been framed from
the interaction viewpoint [35] by satisfying all requirements of a truly microscopic BVP, i.e. stress
and strain averaging principles and Hill-Mandel energetically consistent condition. The interaction
viewpoint allows building a material network, a so-called interaction-based MN, with the material
nodes and their interactions consisting of multiple interaction mechanisms. The interaction view-
point allows not only the easy evaluation of the response of material networks with an arbitrary
constitutive law considered at each material node, through the resolution of well-defined governing
equations, but also the consideration of an arbitrary number of phases independently of the network
architecture. A multiple-phase laminate mechanistic building block can be considered as a special
case consisting of multiple interaction mechanisms. In these mentioned works with the exception
of [34], the material network is built as a tree-hierarchical architecture of multiple-phase laminate
blocks in analogy to deep artificial neural networks. However, the use of multiple-phase laminates
as mechanistic building blocks is not always trivial with microstructures embedding voids. When a
void is considered as a phase in a multiple-phase laminate, the balance of the laminate following the
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laminate direction leads in a zero-stress component in this direction. A laminate of voided laminate
also leads to zero-in-plane stress and, as a result, the possible stress state in each material node
is too restrictive, which limits the learning ability of the material network in general as it will be
discussed. We will address this gap within the framework of the interaction-based MN.

It is noted that the interaction-based MN does not require the definition of an underlying micro-
mechanical model, such as multi-phase laminates [32, 33], although multi-phase laminates provide
an efficient way to construct interaction mechanisms [35]. In this paper, the interaction-based MN
is employed in a general form in which each interaction mechanism is no longer extracted from
multiple-phase laminates but characterized by fitting parameters which are tuned with an offline
training process. The voids are considered as a usual phase giving a zero-stress under all possible
deformations. Since the network interactions do not involve the laminate theory but are unknowns
characterized by fitting parameters, the zero-homogenized stress problem is circumvented. The
main contributions of the work are:

• The interaction MN is built as a network of material nodes with interactions consisting of
multiple interaction mechanisms. Each interaction consists of not only a direction but also
of other fitting parameters characterizing the contribution of each material node involved in
this mechanism. As a result, the fitting parameters of the interaction MN consist of not only
the weights of the material nodes but also the fitting parameters characterizing the network
interactions.

• The inference of the fitting parameters is constrained in the sense of the scale transition,
including the stress and strain averaging principles and the enforcement of the Hill-Mandel
(energetic consistency) condition. The latter ensures that the first law of thermodynamics is
verified. The second-law of thermodynamics is also satisfied by using a thermodynamically
consistent material law governing the mechanical behavior in each material node.

• Because there exist different constraints on fitting parameters in order to satisfy all require-
ments of a truly microscopic BVP, they are eliminated by direct constraint elimination in
order to obtain an unconstrained minimization problem in the offline training process.

• A complete offline training framework of the interaction-based MN is proposed with two
different strategies:

– Linear elastic training procedure with the linear elastic data in terms of the homogenized
elastic tensors collected from the direct finite element simulations of the microscopic
BVP by considering the underlying phases being elastic and their elastic tensors being
artificially and randomly generated.

– Nonlinear training procedure with the sequential data collected from direct finite element
simulations of the microscopic BVP following strain histories provided by a sequence of
discrete values, including micro-structural evolution.

For a given microstructure, the linear elastic training procedure does not require any infor-
mation about the constitutive laws governing its physical phases unlike the nonlinear training
procedure.

• The proposed framework is applied for microstructures with the presence of voids embedded in
an elastoplastic solid. The accuracy of the trained material networks is verified by comparing
the MN predictions with the ones of the direct numerical simulations of the full-field model
in both contexts of virtual testing and multiscale simulations. Moreover, the evolution of the
microstructure, e.g. porosity, is tracked in both the MN and direct numerical simulations.
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The paper is organized as follows. In Section 2, the theory of the FE2 technique is briefly recalled.
A complete framework to make an interaction-based MN being a surrogate of a microscopic BVP is
detailed in Section 3, in which the theory of the interaction MN is recalled and the fitting parameters
are defined. In Section 4, the offline training strategy is proposed to infer the fitting parameters.
In Section 5, the proposed framework is applied on microstructures with voids embedded in an
elastoplastic matrix in which the accuracy, the efficiency and the thermodynamics consistency of
the trained material networks, in both contexts of virtual testing and multiscale simulations, are
demonstrated. Finally, conclusions are given in Section 6.

2. Computational homogenization

2.1. Macroscopic problem

Let us consider a body B subjected to a volumetric force b̄ and whose boundary is ∂B. The
stress equilibrium equation and the strain-displacement relationship are respectively given by

∇̄ · σ̄ + b̄ = 0 and ε̄ = ∇̄⊗s ū on B , (1)

where σ̄ is the Cauchy stress tensor, ∇̄ is the gradient operator, ε̄ is the strain tensor, ū is the
displacement vector, and ⊗s is the symmetric dyadic operator, i.e. a⊗s b = 1

2 (a⊗ b + b⊗ a) for
all arbitrary tensors a and b. In order to find the displacement field ū for prescribed boundary
conditions, a constitutive model must be introduced and can be rewritten under a general form:

σ̄(t) = Σ̄ (ε̄(t), q̄(τ ≤ t)) , (2)

in which q̄ is a vector of internal variables introduced to account for the history dependency. In
a multi-scale problem, this vector of internal variables encompasses the thermodynamics internal
variables distributions of the lower scale BVPs. The macroscopic problem stated by Eqs. (1 - 2) can
be solved by means of the finite element method. The iterative finite element resolution requires
the macroscopic tangent operator, C̄ = ∂σ̄

∂ε̄ , which is directly deduced from the material law (2). In
the context of concurrent multiscale analyzes, the constitutive law (2) at each macroscopic material
point is obtained from the resolution of a microscopic problem attached to that point through the
so-called downscaling and upscaling processes.

2.2. Microscopic problem

The microscopic BVP is defined on a representative volume element (RVE) V whose boundary
is ∂V . By maintaining the small strain assumptions and neglecting the effect of body forces, the
stress equilibrium equation and the strain-displacement relationship are respectively given as

∇ · σ = 0 and ε = ∇⊗s u on V . (3)

In order to find the microscopic displacement field u, constitutive models also have to be introduced.
Assuming that the RVE consists of P constituents

V =

P−1⋃
0

V p with V p being the volume occupied by the constituent p , (4)
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their volume fractions are given by

ω0 =
V 0

V
, . . . , and ωP−1 =

V P−1

V
, satisfying

P−1∑
p=0

ωp = 1 . (5)

The mechanical behavior of each constituent is explicitly provided by

σ(t) = Σp (ε(t),q(τ ≤ t)) with p = 0, . . . , P − 1 , (6)

in which q is a vector of thermodynamics internal variables defined to account for the history
dependency, e.g. the plastic strain tensor and equivalent plastic strain in the context of J2-plasticity.
It is noted that one of the physical phases can be voids, in which case the stress tensor is equal to
0 for all strain states.

2.3. Scale transition

A microscopic boundary condition must be introduced to conduct the deformation state over
the RVE through a downscaling process of ε̄ = 〈ε〉V , where 〈•〉V denotes the volume average of the
quantity • over a volume V

〈•〉V =
1

V

∫
V
• dV . (7)

The macroscopic stress σ̄ = 〈σ〉V and the corresponding tangent operator C̄ are obtained through
an upscaling process, see Appendix A for details. From the computational point of view, the
microscopic model acts as a usual constitutive law. The stress-strain relationship is always available
through the resolutions of the microscopic BVP although its explicit form cannot generally be
achieved. However, a FE2 simulation requires performing a large number of the iterative resolutions
of the microscopic BVP (at all macro-scale Gauss points and for all macroscopic Newton-Raphson
iterations), leading to an intractable computation time and memory. In order to speed up the
multiscale analysis, this work considers the material networks as surrogates to replace the costly
microscopic models.

3. Interaction-based material network as surrogate of the microscopic problem

On the one hand, the microscopic problem described in Section 2.2 results in an implicit stress-
strain response, which can be written under a functional form as[

σ̄ (t)
z̄ (t)

]
= Lch (ε̄ (t) ; q̄ (τ) with 0 ≤ τ ≤ t,G,P) , (8)

where Lch denotes a multiple-input and multiple-output function, G is the RVE geometrical de-
scriptor, and P is the material descriptor of the P constituents of the microstructure. The outputs
z̄ (t) corresponds to properties of interest of the microscopic problem such as the microstructure
evolution, which are thus not inputs of the micromechanical model. In Eq. (8), the vector of in-
ternal variables q̄ corresponds to the set of internal variables defining the microscopic problem, i.e.
the thermodynamics internal variables of the local material law at the different integration points
of its finite element discretization. Alternatively, Eq. (8) can be rewritten as[

σ̄ (t)
z̄ (t)

]
= Lch (ε̄ (τ) with 0 ≤ τ ≤ t,G,P) , (9)
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since the internal variables evolution q̄ (t) depend directly from the strain history ε̄ (τ) with 0 ≤
τ ≤ t.

On the other hand, its surrogate Lsg can be expressed as[
σ̄ (t)
z̄ (t)

]
= Lsg (ε̄ (t) ; q̄ (τ) with 0 ≤ τ ≤ t,P,X (G)) , (10)

where X is a vector consisting of the fitting parameters, which represents the RVE geometrical
descriptor. In the surrogate model (10), the nature of the vector of the thermodynamics internal
variables q̄ will be discussed in the next section. These fitting parameters do not depend on the
material descriptor P, as it will be shown in Section 5.6 which demonstrates the ability of the
trained material network to extrapolate beyond the original material law used for the training.
Alternatively, Eq. (10) can be rewritten as[

σ̄ (t)
z̄ (t)

]
= Lsg (ε̄ (τ) with 0 ≤ τ ≤ t,P,X (G)) . (11)

In the following sections, the theory of the interaction-based MN is first recalled. It is noted
that the general form of the interaction-based MN does not rely on any micro-mechanical model.
The fitting parameters X are then summarized. Since there exist constraints between the fitting
parameters, a constrained optimization problem needs to be considered for the training process.
A direct constraint elimination strategy is thus proposed to eliminate these constraints since an
unconstrained optimization problem facilitates the training process when using a gradient descent-
based optimizer. Finally, the training process is detailed to tune the fitting parameters such that
the discrepancy between the predictions of the surrogate Lsg and the ones of the microscopic model
Lch is small.

3.1. Interaction-based material network

The interaction-based material network derived in [35] is briefly recalled. Let us consider a
material network, denoted by M, consisting of N discrete material nodes indexed from 0 to N − 1
as

K = [0 , 1 , . . . , N − 1] , (12)

where K is its list of indices. An arbitrary material node i ∈ K possesses

• a positive weight W i in order to quantify its contribution to the network; and

• a physical state consisting of the strain εi, the stress σi, and internal state qi governed by a
constitutive law.

The vector of internal variables q̄ of the surrogate model (10) thus corresponds to the set of vectors of

thermodynamics internal variables used in the material nodes constitutive law, i.e. q̄ = [qi
T

i =
0, . . . , N − 1]T , i.e. the plastic strain tensor and equivalent plastic strain in the context of J2-
plasticity.. We consider a microscopic model defined on the RVE V described in Section 2.2, in which
the material network K corresponds to a decomposition of the volume V into N non-overlapping
parts:

V =
N−1⋃
i=0

V i satisfying V i ∩ V j = ∅ ∀i 6= j , and
V i

V
=

W i∑
c∈KW

c
. (13)
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Each part V i ⊂ V corresponds to the material node i in a homogenization sense in which the strain
average, Hill-Mandel and stress average relations arising from the scale transition, see Appendix A,
are postulated as

εi = 〈ε〉V i , (14)

σi : δεi = 〈σ : δε〉V i , and (15)

σi = 〈σ〉V i with i = 0 , . . . , N − 1 , (16)

where 〈•〉V i = 1
V i

∫
V i • dV denotes the averaging operator over V i. As a result of Eqs. (13 - 16),

the strain average, Hill-Mandel and stress average relations arising from the scale transition, see
Appendix A, can be rewritten under the discrete forms as

1∑
c∈KW

c

∑
i∈K

W iεi = ε̄ , (17)

1∑
c∈KW

c

∑
i∈K

W iσi : δεi = σ̄ : δε̄ , and (18)

1∑
c∈KW

c

∑
i∈K

W iσi = σ̄ . (19)

The behavior of each material node is governed by a material law specified in Eq. (6) as

σi(t) = Σpi
(
εi(t),qi(τ ≤ t)

)
, (20)

where pi denotes the constituent index of the material node i among the P physical constituents.
Moreover, one can define the phase decomposition of the list of indices K

K =
P−1⋃
p=0

Kp satisfying Kp ∩ Kq = ∅ ∀p 6= q , (21)

in which Kp includes all material nodes governed by the material law indexed by p.
Equations (17 - 19) govern the response of the material network with ε0 , . . . , εN−1 being un-

knowns. To tie the material nodes together, network interactions are defined through a so-called
interaction mapping I, which is defined by

I :
(
a0 , . . . ,aM−1

)
→

(
ε0 , . . . , εN−1

)
(22)

: εi = ε̄+
M−1∑
j=0

αi,jaj ⊗s nj with i = 0 , . . . , N − 1 .

In the last equation, the following ingredients are considered:

• M is the number of interaction mechanisms;

• Each mechanism indexed by j with j = 0 , . . . ,M − 1 is characterized by:

– the interaction coefficients αj , which are defined by the vector

αj =
[
α0,j . . . αN−1,j

]T
; (23)

– the interaction direction nj , which is a unit vector; and
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– the incompatible vector aj , which is a new unknown vector .

• The M pairs
(
αj ,nj

)
are the fitting parameters assumed to be known, e.g. following an

offline training stage, while the M vectors aj with j = 0 , . . . ,M − 1 are the new unknowns
substituting for the local strains εi with i ∈ K.

Equation (22) is inspired from the strain averaging over a polygonal (polyhedral) domain in
2D (3D). Indeed, let us assume that a material node i corresponds to a polygonal (polyhedral)
subdomain V i

0 of the microstructure. When downscaling, see Appendix A for details, the local
strain inside the subdomain V i

0 can be decomposed into a homogenized part and a fluctuation part
as

ε = ε̄+ ∇⊗s w , (24)

where w is the local fluctuation field, which is present due to the local inhomogeneities. The strain
in the material node i corresponds to the homogenized strain over the subdomain V i

0 , leading to

εi = ε̄+
1

V i
0

∫
V i

0

∇⊗s w dV . (25)

The boundary ∂V i
0 of the polygonal (polyhedral) domain V i

0 can be decomposed into Mi straight
(planar) parts, i.e. ∂V i

0 = ∪Mi−1
j=0 Γi,j0 so that each part Γi,j0 is characterized by its outward unit

normal vector ni,j . Using the Gauss theorem, Eq. (25) can be rewritten as

εi = ε̄+

Mi−1∑
j=0

Γi,j0

V i
0

wi,j ⊗s ni,j , (26)

with wi,j =
1

Γi,j0

∫
Γi,j

0

w dA , (27)

It is found that Eq. (26) takes the same form as Eq. (22), in which the meanings of αi,j , aj , and
nj are elucidated. To obtain such a polygonal (polyhedral) subdomain for each material node, we
assume that there exists a list of M pairs (aj , nj) with j = 0, . . . ,M−1. In Eq. (26), one can define
nk such that ni,j = nk or ni,j = −nk, implying that the value of αi,j with i ∈ K in Eq. (22) does
not need to be positive but can be negative or equal to 0. Consequently, the form (22) is proposed,
in which αi,j with i ∈ K and nj are the fitting parameters that have to be inferred using a training
process.

An interaction mechanism does not have to involve all material nodes in the network. If a
material node i does not contribute to the interaction mechanism j, then the coefficient αi,j = 0.
As a result, one can define a compacted form of αj specified by Eq. (23) for the mechanism j as

α̃j =
[
αi,j for i ∈ Vj

]T
, (28)

where Vj is the ordered list of indices of all material nodes present in the interaction mechanism j.
One has clearly

αi,j = 0 ∀i /∈ Vj with j = 0, . . . ,M − 1 . (29)

Similarly, one can define the list of active interactions for a material node i, denoted by T i, consisting
of all interaction mechanisms in which the material node i contributes. One has the following
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properties

i /∈ Vj ≡ j /∈ T i and i ∈ Vj ≡ j ∈ T i . (30)

One can define the architecture A of the interaction-based MN as a list of all the ordered lists of
indices of all material nodes present in each interaction mechanism as

A =
[
V0 V1 . . . VM−1

]
. (31)

It is noted that the architecture must be chosen before performing the offline training to identify
the fitting parameters. There does not exist any assumption on the network architecture and the
resolution strategy considered in this section can be performed as long as the interaction mapping
(22) is known.

With the material nodes given in a list of indices K in Eq. (12), one can define a list P consisting
of all sub-lists2 of K except empty list and sub-lists with only 1 element, as the following

P = [C|C ⊆ K and size (C) ≥ 2] , (32)

where size (C) denotes the number of elements in C. Generally, an architecture A of an interaction-
based MN specified by Eq. (31) is a sub-list of P. An interaction-based material network can
form either a hierarchical or a non-hierarchical architecture, see Fig. 1 for examples of a material
network of 6 material nodes within a hierarchical and a non-hierarchical architecture. Finding a
network architecture for a given microstructure should rely on an optimization problem stated as
finding A ⊂ P to obtain the best outcome following a suitable criterion. Such an optimization
problem is beyond the scope of this paper and will be considered in a future work. In the presented
applications, we consider hierarchical architectures for porous materials as detailed in Section 5.2.

0 1 2

3 4 5

𝒱0 𝒱1 𝒱2

𝒱3 𝒱4

0 1 2

3 4 5

𝒱0 𝒱1 𝒱2

𝒱3

𝒱4

𝒱5 𝒱6

(a) Hierarchical architecture (b) Non-hierarchical architecture

Figure 1: Interaction-based material network constructed from 6 material nodes: (a) hierarchical architecture A =[
V0 V1 . . . V4

]
and (b) non-hierarchical architecture A =

[
V0 V1 . . . V6

]
. Each interaction is formed with

material nodes inside each contour.

Equation (22) can be rewritten in a more convenient form

εi = ε̄+
∑
j∈T i

αi,jaj ⊗s nj with i ∈ K . (33)

2A list of indices C is a sub-list of K, denoted by C ⊆ K, if C is an empty-list or K contains all components of C.
Two sub-lists C0 and C1 are equal if and only if C0 ⊆ C1 and C1 ⊆ C0.
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Using the interaction mapping described in Eq. (22) and Eq. (16), Eqs. (17, 18) can be respectively
rewritten as

M−1∑
j=0

∑
i∈Vj

W iαi,j

aj ⊗s nj = 0 , and (34)

M−1∑
j=0

∑
i∈Vj

W iσiαi,j

 · nj
 · δaj = 0 . (35)

Eqs. (34, 35) govern the response of the material network and respectively represent the kinematic
constraints and the weak form, from which the solution of this material network can be derived.
It is noted that Eq. (34) is equivalent to the constraint on the fluctuation field arising from the
scale transition theory, see Appendix A (in particular Eq. (A.4)), which has to be satisfied using a
suitable boundary condition in the context of the computational homogenization, e.g. the periodic
boundary condition. Within the context of the material networks, such a boundary condition does
not exist. Instead, to fulfill a priori Eq. (34), an obvious choice follows∑

i∈Vj

W iαi,j = 0 for j = 0 , . . . ,M − 1 . (36)

In [35], for each interaction mechanism j, αi,j for i ∈ Vj were chosen as a function of the weights
of the material nodes inside this mechanism in order to satisfy Eq. (36). However, this way of
constructing the interaction mechanisms is equivalent to putting the material nodes within multiple-
phase laminates as proposed in [32]. In order to be more general, αi,j and W i for i ∈ Vj for the
mechanism j are considered as being independent and Eq. (36) as a constraint. Consequently, αi,j

and W i for i ∈ Vj for the mechanism j need to be inferred during the training stage during which Eq.
(36) must be enforced. The presented formalism is a general framework that can handle arbitrary
network architectures as long as satisfying the condition (36). Therefore a material network based
on laminate building blocks can be still considered, but with a lower number of trainable parameters
to be inferred during the training stage.

Since Eq. (34) is satisfied independently to the values of aj , one can choose a0,a1, . . . ,aM−1

being independent. As a result, Eq. (35) results in the following system of M equations∑
i∈Vj

W iσiαi,j

 · nj = 0 for j = 0 , . . . ,M − 1 . (37)

It is noted that the resolution of Eq. (37) automatically fulfills the Hill-Mandel condition stated by
Eq. (18). The homogenized stress σ̄ is computed using Eq. (19) as an observable quantity.

To summarize, the homogenized stress σ̄ is estimated from ε̄ in the context of the material
network by the following procedure:

• A material network of N material nodes is built with their weights W i and M interaction
mechanisms characterized by αi,j and nj with i ∈ Vj and j = 0 , . . . ,M − 1. These fitting
parameters are identified through an offline training stage.

• With the unknowns aj , j = 0 , . . . ,M − 1, the evaluation of an interaction-based material
network follows an iterative resolution as detailed in [35]. This resolution procedure is detailed
in Appendix C and summarized by the following steps:

10



– Downscaling: the homogenized strain tensor ε̄ is downscaled to all the material nodes
through the network interactions specified by Eq. (22), leading to the local strain at
each material node, which depends not only on ε̄ but also on the unknowns. The local
constitutive law of each material node (20) is used to estimate the local stresses and
tangent operators, in which the nonlinearities could be present.

– Nonlinear system resolution: the system of equations (37) is iteratively solved to find the
unknowns following the methodology detailed in Appendix C.

– Upscaling: the homogenized stress tensor σ̄ is computed by Eq. (19). When this material
network is used within a macro-scale finite element simulation as a constitutive law, the

homogenized tangent operator C̄ =
∂σ̄

∂ε̄
needs to be estimated in order to perform the

Newton-Raphson iterations.

• Several quantities can be extracted from the material network through a volume averaging
operation. For an arbitrary quantity • defined at the local physical state of the material nodes,
a homogenized operator over C, denoted by HC (•) with C ⊆ K, is defined by

HC (•) =
1∑

i∈CW
i

∑
i∈C

W i •i . (38)

It is noted that HK (•) and HKp (•) are respectively equivalent to the operators 〈•〉V and 〈•〉V p

considered in the microscopic model, where V p is the volume occupied by the constituent p.
One has clearly ε̄ = HK (ε) and σ̄ = HK (σ), where ε and σ denote respectively the strain
and stress measures.

3.2. Thermodynamic consistency of the interaction-based material networks

In this section, we show that interaction-based material networks respect the first and second
laws of thermodynamics. As a result, thermodynamically consistent predictions are obtained. Since
a pure mechanical problem is considered, these two laws are written in the context of an isothermal
process.

The first law of thermodynamics states the energy conservation. For an interaction-based ma-
terial network constructed with a list of indices K under an isothermal condition, the specific
macroscopic mechanical power (per unit volume), which is given by σ̄ : ˙̄ε, is applied on the material
network. The energy conservation through the scales implies the following condition

σ̄ : ˙̄ε =
1∑

i∈KW
i

∑
i∈K

W iσi : ε̇i , (39)

where the right-hand-side term corresponds to the specific mechanical power over the material
network. The interaction-based material networks always respect the first law of thermodynamics
since Eq. (39) corresponds to Eq. (18) in its incremental form, which is a constraint used when
inferring the material network fitting parameters.

The second law of thermodynamics leads to the well-known Clausius-Duhem inequality estab-
lishing the positiveness of the dissipation rate. Under isothermal condition, the Clausius-Duhem
inequality reads

˙̄D = σ̄ : ˙̄ε− ˙̄Ψ ≥ 0 , (40)
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where ˙̄D denotes the specific dissipation rate, σ̄ : ˙̄ε is the specific mechanical power, Ψ̄ is the specific
reversible energy. Considering the material network, the specific reversible energy is defined3 by the
following form

˙̄Ψ =
1∑

i∈KW
i

∑
i∈K

W iΨ̇i , (41)

where Ψ̇i is the local specific reversible energy at the material node i. Using Eqs. (39, 41), Eq. (40)
becomes

˙̄D =
1∑

i∈KW
i

∑
i∈K

W i
(
σi : ε̇i − Ψ̇i

)
≥ 0 . (42)

In the last equation, the term σi : ε̇i − Ψ̇i corresponds to the local dissipation rate at the material
node i. In general, the local material law governing the mechanical behavior of this material node
is thermodynamically consistent, i.e. Di = σi : ε̇i − Ψ̇i ≥ 0. As a result the second law of
thermodynamics is always respected in the interaction-based material networks since the condition
˙̄D ≥ 0 is always satisfied.

3.3. Fitting parameters

Let us consider Lsg expressed by Eq. (11) being the functional form of the response of a material
network described in the previous section. To make this model as a surrogate of the full-field model
Lch expressed by Eq. (9), the fitting parameters X must be identified. We assume that the network
architecture A following Eq. (31) has already been designed. A specific form of A is employed in
the numerical applications in Section 5.

3.3.1. Fitting parameters with their constraints

Within the context of the material network described in the previous section, there exist three
following groups of the fitting parameters, each one with its constraints:

• The first group, denoted by W as a column vector, consists of all the weights of the material
nodes

W =
[
W i ∀i ∈ K

]T
. (43)

These weights must satisfy the following constraints:

– Each weight must be positive, i.e.

W i > 0 ∀i ∈ K . (44)

– The initial fraction of each constituent in the full-field model must be recovered at the
end of the training process, i.e.

ωp =

∑
i∈Kp W i∑
i∈KW

i
for p = 0, . . . , P − 1 , (45)

3We note that the scale transition does not enforce the equivalence of elastic energy rate but of the total energy
rate through the Hill-Mandel condition, here recasted in the form (39).
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where ωp is the fraction of the pth constituent in the microscopic model as mentioned in
Eq. (5).

• The second group, denoted by A as a column vector, consists of all the interaction coefficients

A =
[(
α̃j
)T

for j = 0 , . . . ,M − 1
]T

, (46)

where α̃j is given by Eq. (28) as a column vector. Each interaction mechanism α̃j must
satisfy Eq. (36), which can be rewritten by(

α̃j
)T [

W i for i ∈ Vj
]T

= 0 . (47)

• The third group, denoted by N as a column vector, consists of all the interaction directions

N =
[(

nj
)T

for j = 0 , . . . ,M − 1
]T

, (48)

where a unit vector nj is considered in Eq. (22), implying the following constraints

nj · nj = 1 for j = 0 , . . . ,M − 1 . (49)

The constraints given by Eqs. (44, 45, 47, 49) need to be enforced during the training process,
implying that a constrained optimization problem needs to be considered. These constraints should
be eliminated since an unconstrained optimization problem facilitates the training process when us-
ing a gradient descent-based optimizer. For this purpose, ad hoc changes of variables are considered
to satisfy a priori these constraints.

3.3.2. Unconstrained fitting parameters

In order to satisfy both Eqs. (44, 45), the following parameterization of the weights is considered

W i = ωp
f
(
Zi
)∑

l∈Kp f (Z l)
for i ∈ Kp and p = 0, . . . , P − 1 , (50)

where Z l with l = 0 , . . . N −1 are the new un-constrained fitting parameters, f (•) is the activation
function whose output is always positive, and ωp is the fraction of the constituent p. This work
considers the smoothed version of relu, abbreviated by “relus (•)”, as the activation function

f (•) = relus (x) =
1

s
ln (1 + es•) , (51)

where s is the sharpness. In the remaining of the paper, the value s = 10 is chosen as considered in
[35]. As a result of the parameterization (50), Eqs. (44, 45) are always satisfied. The new fitting
parameters for the weights are defined by the following column vector

W̃ =
[
Zi for i ∈ K

]T
. (52)

Equation (47) is enforced by a direct constraint elimination. Let us consider the interaction
mechanism j whose list of indices of the material nodes is Vj . Moreover, one can define the first
element of this list by Vj0 and a location operator loc

(
l,Vj

)
, which returns the location of the node
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l in the list Vj , i.e.

Vj
loc(l,Vj)

= l . (53)

Eq. (47) is enforced by the following constraint elimination
αV

j
0 ,j is fixed to an arbitrarily non-zero value , and

αi,j = −
WV

j
0αV

j
0 ,j

W i

βloc(i,Vj)−1,j∑Lj−2
c=0 βc,j

for i ∈ Vj and loc
(
i,Vj

)
> 0 ,

(54)

where Lj is the number of material nodes in Vj and βr,j for r = 0, . . . , Lj − 2 are new fitting
parameters. These new fitting parameters for this interaction mechanism can be collected in a
column vector

βj =
[
βr,j for r = 0, . . . , Lj − 2

]T
. (55)

Finally, the new fitting parameters for all the interaction coefficients are given by the following
column vector

Ã =
[(
βj
)T

for j = 0 , . . . ,M − 1
]T

. (56)

The constraints (49) are enforced using an angle parameterization [35]. Since any unit vector
can be expressed in terms of either the polar angle in a bidimensional state or the spherical angles
in a general three-dimensional state, the vector nj is rewritten by

nj =


[
cos
(
2πϕj

)
sin
(
2πϕj

)
0
]T

in plane strain ,[
cos
(
2πϕj

)
sin
(
πθj
)

sin
(
2πϕj

)
sin
(
πθj
)

cos
(
πθj
)]T

otherwise ,
(57)

with
[
ϕj θj

]
∈ [0 1) × [0 1] being normalized angles. The relationship above allows defining the

operator angle (•) by

angle (n) =

{
[ϕ] in plane strain ,

[ϕ θ]T otherwise ,
(58)

for any arbitrary unit vector n. As a result, the new fitting parameters for all the interaction
interactions are given by the following column vector

Ñ =
[
ej
T

for j = 0 , . . . ,M − 1
]T

, (59)

where the notation ej = angle
(
nj
)

is used.

3.3.3. Summary

From the known network architecture A, the fitting parameters were detailed. The use of Eqs.
(50, 54, 57) allows Eqs. (44, 45, 47, 49) to be satisfied. The fitting parameters to be inferred are
summarized in a column vector X as

X =
[
W̃T ÃT ÑT

]T
. (60)
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A training stage needs to be performed to identify these fitting parameters by minimizing a loss
function as detailed in Section 4.

4. Machine learning algorithm for tuning fitting parameters

The surrogate model Lsg is an interaction-based MN, in which a number of fitting parameters
X needs to be inferred such that the discrepancy between the predictions of the surrogate Lsg and
the ones of the microscopic model Lch is small. This training process is detailed in this section.
Assuming that the network architecture A defined by Eq. (31) of Lsg is known, we propose two
different strategies to train Lsg:

• Nonlinear training (denoted by NT): We assume that the constitutive laws governing the
physical phases of the microstructure are known. Since the response of Lsg is path-dependent,
e.g. due to plasticity, the training database is provided by nonlinear paths. For each loading
path defined by a strain sequence, the response of Lsg in terms of the stress sequence and of
the microstructure evolution, e.g. porosity, are tracked. The fitting parameters of Lsg can be
found by minimizing the discrepancy between the predictions of Lsg and the corresponding
predictions of the full-field model Lch. We note that the microstructure evolution z̄ and the
stress sequence are outputs of the microscopic model (8) and of the surrogate model (10) but
are not part of their thermodynamics internal variables q̄.

• Linear elastic training (denoted by LET): This method was employed in other works [28,
29, 32, 34, 35], in which linear elastic analyses are used. Each material node belongs to a
physical phase whose behavior is assume to be linearly elastic and characterized by an elastic
tangent operator. The corresponding homogenized response of the interaction-based MN can
be expressed by the homogenized elastic tangent operator, which is a function of the elastic
tangent operators of the underlying phases and of the fitting parameters. As a result, these
fitting parameters result from an optimization procedure using an offline database consisting
of the elastic tangent operators of the underlying phases as inputs and the corresponding
homogenized elastic tangent operators as outputs. This training database can be obtained
with the full-field model Lch in which the elastic behaviors of the phases can be randomly and
numerically generated. Since the interaction-based MN does not involve hierarchical multiple-
phase laminates as employed in [28, 29, 32, 34, 35], a unified approach needs to be used to
estimate its homogenized tangent operator in this work.

In the following sections, the nonlinear training procedure is first presented. We will show that this
procedure can be easily adapted for the linear elastic training.

4.1. Nonlinear training

4.1.1. Sequential data structure

When employing history-dependent material behaviors, the response of the microscopic model
Lch and of the material network Lsg must be provided in terms of sequential data. A sequence B
is defined by

B =
[
b0 b1 . . . bT−1

]
, (61)

where T is the length of the sequence B, i.e. T = len (B), and each component bk can be scalars,
vectors, second-order tensors, etc.

15



4.1.2. Sequential offline data

For the sake of readability, an output of the microscopic full-field model Lch is represented with
the notation •̂ while the notation •̄ is used to refer to its counterpart obtained with the material
network Lsg. During the training process, Lch and Lsg are loaded with the same strain history
given by the strain sequences

Ê = Ē =
[
ε̄0 ε̄1 . . . ε̄T−1

]
. (62)

As a result, Eqs. (9, 11) can be rewritten as
Ŝ
Ẑ0

...

ẐLZ̄−1

 = Lch
(
Ê,G,P

)
, and (63)


S̄
Z̄0

...
Z̄LZ̄−1

 = Lsg
(
Ē,G,P; X

)
, (64)

where Ê, Ŝ, and Ẑq with q = 0, . . . , LZ̄ − 1 are respectively the sequences of the homogenized
strain, the sequences of the homogenized stress, and the sequences LZ̄ of properties of interest such
as microstructure evolution, which are used or predicted by the microscopic model Lch while Ē, S̄,
and Z̄q with q = 0, . . . , LZ̄ − 1 are respectively their counterparts in the material network Lsg. Any
quantity characterizing the microstructure evolution can be considered as a homogenized state, e.g.
using the homogenization operator (38) for Lsg and the operator (7) as its counterpart for Lch, to
define the properties of interest zq. Since Lsg does not possesses any microstructure, Kp consisting of
all material nodes of the phase indexed by p and K are considered in the homogenization operator
(38) for Lsg while V p and V are respectively considered in the homogenization operator (7) for
Lch. In the numerical examples with porous materials in Section 5, the homogenized porosity is
investigated. When using LZ̄ = 0, the training process is considered without any homogenized
properties of interest.

Training the surrogate model Lsg for a given RVE geometrical descriptor G and a given ma-
terial descriptor P of P constituents requires collecting a set of sequential strain paths and their
corresponding sequential responses from the microscopic model Lch. For this purpose, a training
dataset Dtrain of Ntrain samples of strain paths is first generated

Ê
[0]
, . . . , Ê

[Ntrain−1]
. (65)

Then the corresponding outputs of Lch are collected as

Ŝ
[0]
, . . . , Ŝ

[Ntrain−1]
(66)

Ẑq,[0], . . . , Ẑq,[Ntrain−1] with q = 0 , . . . , LZ̄ − 1 . (67)

To investigate overfitting, a validation dataset Dvalid consisting of Nvalid samples is also created.
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4.1.3. Loss function and its gradient with respect to fitting parameters

The training stage requests the definition of the error between the predictions obtained by the
microscopic model Lch and the ones obtained by the material network Lsg. For an offline sample l,
the corresponding error reads

C [l] (X) = εrel
(
Ŝ

[l]
, S̄ [l]

)
+

LZ̄−1∑
q=0

λqεrel
(
Ẑq,[l], Z̄q,[l]

)
, (68)

where S̄ [l]
and Z̄q,[l] predicted by the material network are function of X, λq are the penalty

parameters introduced in order to efficiently combine different losses, and εrel (B,H) is the relative
difference operator between two arbitrary sequences B and H of the same length T as

εrel (B,H) =
1

T

T−1∑
k=0

||bk − hk||2
||bk||2

with (69)

|| • ||2 =


| • | if • is a scalar ,[∑

i (| •i |)2
] 1

2
if • is a vector , and[∑

i,j (| •ij |)2
] 1

2
if • is a second-order tensor .

(70)

In practice λq = 1 ∀q are chosen in Eq. (68) since all errors are dimensionless. The gradient of the
error (68) with respect to the tuning parameters X must be estimated in the context of the gradient
descent algorithm. One has

g[l] =
∂C [l]

∂X
, (71)

where the computation details can be found in Appendix D. Over Ntrain samples, the total loss
function is computed as

Ctrain =
1

Ntrain

Ntrain−1∑
l=0

C [l] . (72)

The validation error Cvalid of the validation set is also estimated using Eq. (72).
For minimizing the difference between the predictions obtained by the microscopic model Lch

and the ones obtained by the material network Lsg, optimization iterations for adjusting the tuning
parameters X are performed using a stochastic gradient descent algorithm with adaptive moment
estimation (Adam) [36], see Appendix E for details.

4.2. Linear elastic training

The training procedure detailed in the previous section is adapted for the linear elastic training in
this section. First, a unified strategy for estimating the homogenized elastic tensor of an interaction-
based MN is presented. Then the training procedure using only elastic data is detailed by defining
a new cost function in the optimization iterations.
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4.2.1. Linear elastic response of an interaction-based material network and its gradient with respect
to fitting parameters

For the ease of implementation, the Voigt’s notations of stress and strain tensors are considered
with the order

[
00 11 22 01 02 12

]
. As a result, the material tensor C can also be written

in a matrix form mat (C), see Appendix F. When a plane strain state is employed, one has its
reduced 9-component form mat2D (C).

From P elastic tensors C(0), . . . ,C(P−1) governing the P phases, the corresponding elastic tensor
C̄ of the homogenized material and its gradient with respect to the fitting parameters can be
estimated in a unified way, which does not rely on any assumption about the architecture A of the
material network under consideration, see Appendix F.

In the following, the homogenized elastic matrix is defined as

L̄ =

{
mat

(
C̄
)

for a general 3-dimensional strain state ,

mat2D
(
C̄
)

for a plane strain state .
(73)

As a result, the P elastic tensors C(0), . . . ,C(P−1) governing the P phases can be rewritten as L(0),
. . ., L(p−1) in their matrix forms and the estimation of the corresponding homogenization elastic
matrix L̄ can be rewritten under a functional form

L̄ = L̄ (X; X) , (74)

where

X =
[
L(0), . . . ,L(P−1)

]
. (75)

The gradient of L̄ with respect to the fitting parameters,
∂L̄

∂Xj
for each component Xj of X, is also

known following Appendix F.

4.2.2. Training procedure

In order to identify X, a training dataset Dtrain of Ntrain samples of material tensors of the
physical phases is first generated

X[0], . . . ,X[Ntrain−1] . (76)

Then the corresponding outputs of Lch are collected as

L̂[0], . . . , L̂[Ntrain−1] . (77)

A validation dataset Dvalid consisting of Nvalid samples is also created to investigate overfitting.
The same optimization procedure as in the non-linear training case of Section 4.1, which is

described in Appendix E, is used but with the following cost function

C [l] (X) =
||L̄
(
X[l]; X

)
− L̂[l]||F

||L̂[l]||F
, (78)

where || • ||F represents the Frobenius norm. The gradient of the error (68) with respect to the
tuning parameters X must be estimated in the context of the gradient descent algorithm. The
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corresponding gradient of the loss function (78) with respect to the fitting parameters reads

g[l] =

(
L̄
(
X[l]; X

)
− L̂[l]

||L̄
(
X[l]; X

)
− L̂[l]||F × ||L̂[l]||F

)
◦

L̄
(
X[l]; X

)
∂X

, (79)

where
L̄(X[l];X)

∂X is a block vector whose components are matrices with the dimension of L̄ and ◦
represents the element-wise product of a matrix with each component of the block vector.

5. Numerical examples: porous materials

In this section, a surrogate of the microscopic problem defined on a voided microstructure is
constructed based on the interaction-based MN using the theory in Section 3 and the training
procedure in Section 4. The contribution of voids in the interaction-based MN is accounted for by
considering a network of material nodes of the solid phase and of the material nodes representing
the voids. A void material node has the stress being equal to zero for any strain state and does not
contain any internal state, while the strain at this node represents its volumetric change.

In the following, we consider the microscopic problem Lch defined on a microstructure V con-
sisting of a solid phase (V 0) and voids (V 1). The initial solid volume fraction is equal to ω0 and the
void volume fraction is equal to ω1 = 1−ω0, in which the values of ω0 and ω1 are known. The solid
phase is governed by a J2 elastoplastic model, see Appendix G for details. The material parameters
of the solid phase are reported in Tab. 1. Both the NT and LET procedures detailed in Section 4
are used to train the material network Lsg as surrogate of the microscopic model Lch. In the NT
procedure, the training of Lch is achieved by minimizing the error between not only the homoge-
nized stresses σ̄ = 〈σ〉V following Eq. (19), but also between the microstructure evolution, which is
characterized by the global porosity evolution. In the LET procedure, only the homogenized elastic
behavior is employed. The online prediction of the trained material networks successively trained
with these two strategies is investigated in both contexts of a virtual test and of FE2 multiscale
simulations.

Table 1: Elastoplastic parameters of the solid phase.

Young modulus (E [GPa]) 3

Poisson ratio (ν [-]) 0.3

Isotropic flow stress σy (γ) [MPa] 100 + 60γ
(γ - equivalent plastic strain)

5.1. Evaluation of the porosity evolution

Let us consider an infinitesimal volume dV (x) at a material point x undergoing a strain ε. The
volumetric change of dV (x) reads

δdV (x) = tr (ε (x)) dV (x) , (80)

where tr (•) is the trace operator of an arbitrary second-order tensor •. Consequently, the volumetric
change of the whole solid part can be estimated by

∆V 0 =

∫
V 0

δdV (x) =

∫
V 0

tr (ε) dV = 〈tr (ε)〉V 0 V
0 , (81)
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where V 0 denotes the volume occupied by the solid part. Moreover, the volume V of the RVE
undergoes the homogenized strain ε̄, leading to the change of the RVE volume

∆V = tr (ε̄)V . (82)

As a result, the porosity evolution η̂ can be extracted from the solution of the microscopic problem
by

η̂ = 1− V 0 + ∆V 0

V + ∆V
= 1−

〈1 + tr (ε)〉V 0

1 + tr (ε̄)
ω0 . (83)

Equivalently, the porosity evolution η̄ can be obtained with the material network Lsg as

η̄ = 1− HK0 (1 + tr (ε))

1 + tr (ε̄)
ω0 , (84)

where K0 is the list of indices of all material nodes of the solid phase and HK0 (1 + tr (ε)) is defined
in Eq. (38). As a result, one can consider LZ̄ = 1 in Eqs. (63, 64) and use{

ẑ0 =
〈
z0
〉
V 0

z̄0 = HK0

(
z0
) with z0 = 1 + tr (ε) . (85)

It is noted that the porosity evolution is not used in the linear elastic training, in which only
the homogenized elastic tangent operator is considered. Once trained, the predictions with the
interaction-based MN of both the homogenized stress and the porosity evolution are compared to
the corresponding evaluations of the microscopic full-field model.

5.2. Interaction-based material network with a hierarchical architecture

The framework in Sections 3 and 4 is not limited to any particular architecture. However,
the network architecture A of the material network following Eq. (31) must be defined before
performing the training and is not modified during the training. MNs based on laminate building
blocks should not be used due to their limitations. Indeed, in a laminate consisting of void as a
phase (so-called voided laminate), the stress state is constrained as the result of the stress balance in
the lamination direction. Any combination of co-planar voided laminates will also yield zero-stress
in the plane, which limits the training ability of the network as shown in Appendix B. In this work,
we investigate only the following hierarchical architecture of Nlevels levels, which are recursively
constructed as follows:

• At level 0: 2Nlevels−1 separate interaction mechanisms of 4 material nodes are created. It is
noted that an arbitrary number of material nodes larger than 2 in each interaction mechanism
at this lowest level can be employed4. In this work, we consider 4 material nodes per interaction
mechanism since it is the smallest number of material nodes that can be used under the
assumption that the solid phase and voids play an equivalent role in the material network, i.e.
the number of material nodes of the solid phase and the ones of the voids in each interaction
mechanism are equal.

4The learning ability of the material network is limited with a number of 2 material nodes because of voids. Indeed,
considering an interaction j of two material nodes: a solid node i and a void node k, Eq. (37) becomes σi · nj = 0
because σk = 0. As a result, the stress state in the material node i is too restrictive, which limits the learning ability
of the material network.
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• At level k + 1 with 0 ≤ k ≤ Nlevels − 2: we divide the 2Nlevels−1−k interaction mechanisms at
level k into 2Nlevels−2−k pairs, from which 2Nlevels−2−k interaction mechanisms are created with
all the material nodes in each pair. Clearly, this recursive procedure stops at level Nlevels − 1
when all material nodes are present in a unique interaction mechanism.

Figure 2 shows an example of an interaction-based MN with Nlevels = 3, N = 16- number of material
nodes numbered from 0 to 15, and M = 7 - number of interaction mechanisms. Its architecture A
reads

A =
[
V0 V1 V2 V3 V4 V5 V6

]
, (86)

in which 

V0 = [0, 1, 8, 9] ,

V1 = [2, 3, 10, 11] ,

V2 = [4, 5, 12, 13] ,

V3 = [6, 7, 14, 15] ,

V4 = [0, 1, 2, 3, 8, 9, 10, 11] ,

V5 = [4, 5, 6, 7, 12, 13, 14, 15] , and

V6 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] .

(87)

1 2

8 9

3 4

10 11

5 6

12 13

70

14 15

Figure 2: Example of an architecture of 16 material nodes with Nlevels = 3. The filled nodes and blank nodes
correspond to the solid nodes and the the void nodes respectively. The number inside each node corresponds to its
index.

In general, an interaction-based MN constructed by the procedure above consists of 2Nlevels+1

material nodes and 2Nlevels − 1 interaction mechanisms. The number of fitting parameters in an
architecture of Nlevels levels, denoted by NX, relates to Nlevels by the following relation

NX = 2Nlevels+1︸ ︷︷ ︸
size of W̃

+Nlevels2
Nlevels+1 − 2Nlevels + 1︸ ︷︷ ︸

size of Ã

+ (2Nlevels − 1)d︸ ︷︷ ︸
size of Ñ

, (88)

where d = 1 for a plane strain problem and d = 2 for a general 3-dimensional problem. In the
following sections, we consider there different architectures with Nlevels equal to 3, 4, and 5.
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5.3. Offline training for various microstructures

Interaction material networks are trained for three different microstructures as shown in Fig. 3,
which illustrates their finite element meshes:

• A two-dimensional microstructure with a single void, see Fig. 3(a), is denoted by 2D-RVE1.
The volume fraction of the void is equal to 0.1257 and the finite element mesh consists of 1160
six-node triangular elements.

• A two-dimensional microstructure with multiple voids, see Fig. 3(b), is denoted by 2D-RVE2.
The volume fraction of the voids is equal to 0.17 and the finite element mesh consists of 3544
six-node triangular elements.

• A three-dimensional microstructure with spherical voids, see Fig. 3(c), is denoted by 3D-RVE.
The volume fraction of the voids is equal to 0.1272 and the finite element mesh consists of
10315 10-node tetrahedral elements.

Both the NT and LET procedures are performed for these three microstructures.

(a) 2D-RVE1 (b) 2D-RVE2 (c) 3D-RVE

Figure 3: Microstructures with voids embedded in an elastoplastic matrix: (a) two-dimensional single void (denoted
by 2D-RVE1), (b) two-dimensional multiple voids (denoted by 2D-RVE2), and (c) three-dimensional with spherical
voids (denoted by 3D-RVE) microstructures.

5.3.1. Nonlinear training

To collect the sequential data as described in Section 4.1.2, multi-axial and proportional loading
paths in terms of strain sequences are generated. Once the bound ε̄max, i.e. so-called maximal
homogenized strain, is known, the whole path is given by

Ē =

[
i+ 1

T
ε̄max for i = 0, . . . , T − 1

]
, (89)

where T is the number of data points. The maximal homogenized strain ε̄max is generated such
that a wide range of the multi-axial states is covered and the following condition is satisfied

Rmax =

√
(ε̄max

00 )2 + (ε̄max
11 )2 + (ε̄max

22 )2 + (ε̄max
01 )2 + (ε̄max

02 )2 + (ε̄max
12 )2 , (90)

where Rmax is the maximal radius of the sampling space. Rmax is chosen to obtain a nonlinearity
effect in the local state inside the microscopic model while remembering that the model is written
in a small strain setting. In this section, we set Rmax = 0.2 since a considerable plastic strain
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is accumulated at this strain level. To satisfy the condition (90), ε̄max can be parameterized by
generalized spherical coordinates as

ε̄max
00 = Rmax cos (φ0) ,

ε̄max
11 = Rmax sin (φ0) cos (φ1) ,

ε̄max
22 = Rmax sin (φ0) sin (φ1) cos (φ2) ,

ε̄max
01 = Rmax sin (φ0) sin (φ1) sin (φ2) cos (φ3) ,

ε̄max
02 = Rmax sin (φ0) sin (φ1) sin (φ2) sin (φ3) cos (φ4) , and

ε̄max
12 = Rmax sin (φ0) sin (φ1) sin (φ2) sin (φ3) sin (φ4) .

(91)

with

{
[φ0 φ1 φ2 φ3 φ4] ∈ [0π]4 × [0 2π) for a 3-dimensional path ,

[φ0 φ1] ∈ [0π]× [0 2π) , φ2 = π
2 , and φ3 = φ4 = 0 for a plane strain path .

To randomly generate ε̄max, all angles are randomly generated using uniform distributions over
their admissible ranges.

An offline dataset Doffline of Nsample samples is generated. Since LZ̄ = 1 is considered in Eqs.
(63, 64) and the property of interest (85), which characterizes the microstructure evolution, also
needs to be extracted. The data generation process is summarized as follows:

• for l from 0 to Nsample − 1:

(i) generate Ē [l]
as follows:

∗ For a 3-dimensional state:

φi ∈ U (0, π) for i = 0, 1, 2, 3 , and φ4 ∈ U (0, 2π) ; (92)

∗ For a plane strain problem:

φ0 ∈ U (0, π) , φ1 ∈ U (0, 2π) , φ2 =
π

2
, φ3 = 0 , and φ4 = 0 ; (93)

∗ estimate ε̄max following Eq. (91);

∗ create a strain sequence following Eq. (89);

(ii) run the microscopic simulation as described in Section 2.2:

∗ initialize the sequences of Ŝ
[l]

and Ẑ0,[l] with the same length as Ē [l]
;

∗ for k from 0 to len
(
Ē [l]
)
− 1:

· solve (incrementally) the microscopic problem for the homogenized strain ε̄
[l]
k ;

· extract the homogenized stress following Appendix A and store in σ̂
[l]
k ;

· extract the homogenized value of z0 following Eq. (85) and store in ẑ
0,[l]
k ;

· store thermodynamics internal variables of the microscopic problem for next step
k + 1;

(iii) append Ē [l]
, Ŝ

[l]
, and Ẑ0,[l] to the offline dataset Doffline.

(iv) exit.

From Doffline, two non-overlapping subsets Dtrain and Dvalid respectively of Ntrain samples and of
Nvalid samples are randomly extracted for the training and validation stages. For the cases of 2D-
RVE1 and 2D-RVE2, 60 samples are generated for each case and then randomly divided into 50
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training samples and 10 validation samples. In the case of 3D-RVE, 100 samples are generated and
divided into 80 training samples and 20 validation samples.

The histories of the training error Ctrain and validation error Cvalid evolutions using the NT
procedure are reported in Fig. 4 for the different material network architectures with Nlevels equal
to 3, 4, and 5 and for the microstructures reported in Fig. 3. The oscillation of the training
and validation errors are observed at the beginning as a result of the stochastic gradient descent
stepping. The saturation of the training and validation errors are found and further reduction of
these errors could not be achieved by continuing more epochs. We can see from the figures that a
material network with a higher Nlevels involving more interaction mechanisms allows reducing the
saturation values of these errors. For the case of 3D-RVE with Nlevels = 5, the training process is
stopped after 400 epochs when the saturation of the training error is attained while in other cases,
the maximal number of epochs is set to 500.
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Figure 4: Nonlinear training (NT) - histories of the training error Ctrain and validation error Cvalid for the RVEs
reported in Fig. 3.

The computational times for generating the offline dataset and for the NT procedure are summa-
rized in Tab. 2. For generating the offline dataset Doffline, the cases of 2D-RVE1, 2D-RVE2, and 3D-
RVE respectively took 3.5h, 6.5h, and 800h with a single processor, in which the three-dimensional
analysis is seen to be time-consuming. Since the generation of each sample is independent, the
wall-clock time for the generation process linearly decreases with the number of processors. The
training time increases with the number of fitting parameters involved in the material networks and
the number of samples considered during the training.

5.3.2. Linear elastic training

An offline dataset Doffline of Nsample samples is generated for the linear elastic training mentioned
in Section 4.2.2. For a given microstructure, the data generation process is summarized as follows:
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Table 2: Computational time for generating the offline training dataset and for training the network with the nonlinear
training (NT) procedure using a single processor. The number of fitting parameters NX following Eq. (88) is also
reported.

Case Doffline (Nsample) Nlevels = 3 (NX) Nlevels = 4 (NX) Nlevels = 5 (NX)

2D-RVE1, NT 3.5h (60) 2.3h (64) 6.3h (160) 19.1h (384)

2D-RVE2, NT 6.5h (60) 2.2h (64) 6h (160) 20.3h (384)

3D-RVE, NT 800h (100) 4.2h (71) 11.5h (175) 29.7h (415)

• for l from 0 to Nsample − 1:

(i) generate the input X[l] of P elastic matrices. The generation procedure for a general 3-
dimensional problem is found in [29], in which P material matrices are generated through
randomly generating the Young’s moduli and Poison ratios of an arbitrary orthotropic
elastic matrix. The particular plane strain problem follows the work [35] and is reported
in Appendix H;

(ii) assign these P random elastic matrices in X[l] governing the elastic behaviors of the P
physical phases in this microstructure;

(iii) compute the corresponding homogenization material tensor L̂[l] of the microscopic model
defined on this microstructure with the periodic boundary condition following the work
[37];

(iv) append the pair
(
X[l], L̂[l]

)
to the offline dataset Doffline.

Two non-overlapping subsets Dtrain and Dvalid respectively of Ntrain samples and of Nvalid samples
are randomly extracted from Doffline for training and validation. For each microstructure reported
in Fig. 3, 300 samples are generated and then randomly separated into 250 training samples and
50 validation samples.

The histories of the training error Ctrain and validation error Cvalid evolutions using the LET
procedure are reported in Fig. 5 for the different material network architectures with Nlevels equal
to 3, 4, and 5 and for the three microstructures reported in Fig. 3. The training iterations are
stopped after 100 epochs when the saturation of the training error is observed. Similarly to the
nonlinear training procedure reported in Fig. 4, a material network with a higher Nlevels allows
reducing the saturation value of the training error.

The computational times for generating the offline dataset and for the LET procedure are
summarized in Tab. 3. The training time increases with the number of fitting parameters involved
in the material networks. Compared to the NT procedure reported in Tab. 2, a LET procedure
is less time consuming in both the data generation and the training. However, a material network
trained with the NT procedure allows improving the accuracy of its online prediction as shown in
the next sections.

Table 3: Computational time for generating the offline training dataset and for training the network with the linear
elastic training (LET) procedure using a single processor. The number of fitting parameters NX following Eq. (88) is
also reported.

Case Doffline (Nsample) Nlevels = 3 (NX) Nlevels = 4 (NX) Nlevels = 5 (NX)

2D-RVE1, LET 133s (300) 0.16h (64) 0.4h (160) 1.1h (384)

2D-RVE2, LET 161s (300) 0.14h (64) 0.43h (160) 1.12h (384)

3D-RVE, LET 4.5h (300) 0.3h (71) 0.8h (175) 2.7h (415)
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Figure 5: Linear elastic training (LET) - histories of the training error Ctrain and validation error Cvalid for the RVEs
reported in Fig. 3.

5.4. Online prediction of the trained material networks

The online predictions of the trained material network using the NT and LET procedures de-
scribed in Section 5.3 are assessed with loading cases that are not used for training. Three different
scenarios involving loading-unloading, including non-proportional cases, and at different strain levels
are considered:

• US1 and US2: uniaxial tensions following the x-direction are conducted with two prescribed
ε̄xx loading paths as illustrated in Fig. 6(a). All shear components of ε̄ are set to 0 and the
remaining components are found by constraining the uniaxial stress condition. It is noted
that a truly uniaxial stress state is obtained in a three-dimensional problem while, in a plane
strain problem, the uniaxial stress state is obtained only in-plane.

• MA: a multiaxial strain loading path is prescribed by a non-proportional loading-unloading
paths of ε̄xx, ε̄yy and ε̄xy while the other strain components are set to 0, as illustrated in Fig.
6(b).

5.4.1. Material networks trained with the nonlinear training (NT) procedure

In the case of the 2D-RVE1 microstructure, the evolutions of the homogenized stress and of
the porosity are reported in Fig. 7 for the three trained material networks with the US1, US2,
and MA loading conditions. The corresponding results using the microscopic problem (denoted by
direct numerical simulation -DNS) are also reported for comparison purpose. In the cases of Nlevels

equal to 4 and 5, the full-field results are well reproduced by the material networks for all loading
conditions while the case of Nlevels equal to 3 yields a more erroneous prediction.
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Figure 6: Loading paths considered in the online predictions: (a) uniaxial stress conditions (US1 and US2) with
prescribed loading-unloading path of ε̄xx and other strain components obtained to reach the uniaxial stress condition
and (b) multiaxial strain condition (MA) with prescribed loading-unloading paths of ε̄xx, ε̄yy, and ε̄xy and other
strain components set to 0.

In the case of the 2D-RVE2 microstructure, good predictions in terms of the evolutions of the
homogenized stress and of the porosity are also obtained in comparison with the corresponding DNS
results with the trained material networks when Nlevels is equal to 4 and 5 as shown in Fig. 8. The
case of Nlevels equal to 3 leads to an erroneous prediction.

In the case of the 3D-RVE microstructure, good predictions in terms of the evolutions of the
homogenized stress and of the porosity are also obtained with the three trained material networks
compared to the corresponding DNS results using the microscopic problem as shown in Fig. 9.

It is thus shown that a sufficiently high number of material nodes and interaction mechanisms is
necessary for a good prediction. Moreover, although the strain value goes beyond the range of 0.2
used during the training, the prediction remains accurate when extrapolating beyond this offline
sampling space.

5.4.2. Material networks trained with the linear elastic training (LET) procedure

The evolutions of the homogenized stress and of the porosity are reported in Figs. 10, 11, and
12 for the three trained material networks with the US1, US2, and MA loading conditions and
respectively for the 2D-RVE1, 2D-RVE2, and 3D-RVE microstructures. The corresponding DNS
results are also reported for comparison purpose. For the cases of Nlevels equal to 4 and 5, good
predictions are obtained for the US1 and US2 loading conditions but they are less accurate for the
MA loading condition. The simple network of Nlevels equal to 3 yields an erroneous prediction in
all loading conditions.

We found that a sufficiently high number of material nodes and interaction mechanisms is
necessary for a good prediction. Although the LET procedure requires only elastic behavior for the
training stage, satisfying predictions in the online prediction can still be obtained with a suitable
network architecture. In comparison with the material networks trained by the NT procedure
for a given network architecture, the ones trained by the LET procedure provides less accuracy
while the ones trained by the NT procedure are time-consuming. The choice between the NT and
LET procedures needs to consider the compromise between the offline computational cost and the
accuracy.
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Figure 7: 2D-RVE1, NT - comparison of the results predicted by the material network with different architectures
and by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA
(e,f).

5.4.3. Computational speedup

The use of the material networks allows accelerating the prediction. The computational efficiency
in comparison with the full-field finite element simulation is characterized by a speedup factor, which
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Figure 8: 2D-RVE2, NT - comparison of the results predicted by the material network with different architectures
and by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA
(e,f).

is defined as

Speedup =
TDNS

TMN
, (94)
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Figure 9: 3D-RVE, NT - comparison of the results predicted by the material network with different architectures and
by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA (e,f).

where TDNS and TMN denote the wall-clock times required to complete the DNS and MN predictions,
respectively. The speedup obtained by the material network is shown in Fig. 13 for the online
predictions reported in Figs. 7, 8, 9, 10, 11, and 12. It can be seen that the material network
predictions are much faster than the DNS, especially for the three-dimensional microstructure.
Additional, a higher speedup is obtained with a smaller number of the material nodes since the
resolution involves fewer degrees of freedom and less evaluations of the local constitutive behavior.
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Figure 10: 2D-RVE1, LET - comparison of the results predicted by the material network with different architectures
and by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA
(e,f).

Although the material networks require the creation of an offline dataset and a training stage,
their use provides a promising computational efficiency. Especially, when the NT procedure is
employed, the material networks are trained only once with the proportional loading paths and
can subsequently be used as a predictive model for different loading paths. The use of the NT
procedure to train a material network allows improving its accuracy in comparison with using the
LET procedure. However, as opposed to other materials networks [28, 29, 32, 33], the material
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Figure 11: 2D-RVE2, LET - comparison of the results predicted by the material network with different architectures
and by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA
(e,f).

behaviors of the physical phases are used for the NT training, although extrapolation capabilities
with respect to the material parameters set will be demonstrated in Section 5.6.

5.5. Thermodynamics of the interaction-based material network

In this section, we show that the trained material network respects the first and second laws
of thermodynamics. We consider the material network with Nlevels = 5 trained for 3D-RVE using
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Figure 12: 3D-RVE, LET - comparison of the results predicted by the material network with different architectures
and by the direct numerical simulation (DNS) under different loading conditions: US1 (a, b), US2 (c, d), and MA
(e,f).

the NT procedure as reported in Section 5.3.1. This material network is loaded by two other more
complex loading scenarios:

• US3: uniaxial tensions following the x-direction are conducted with two prescribed ε̄xx loading
paths as illustrated in Fig. 14(a). All shear components of ε̄ are set to 0 and the remaining
components are found by constraining the uniaxial stress condition.
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Figure 13: Speedup achieved with the material networks trained by the NT and LET procedures for the online
predictions reported in Figs. 7, 8, 9, 10, 11, and 12.

• RANDOM: a multiaxial strain loading path is prescribed by a non-proportional loading-
unloading paths of ε̄xx, ε̄yy and ε̄xy while the other strain components are set to 0, as illustrated
in Fig. 14(b).
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Figure 14: Complex loading paths: (a) uniaxial stress condition (US3) with prescribed cyclic loading-unloading path
for ε̄xx and other strain components obtained to reach the uniaxial stress condition and (b) random loading condition
(RANDOM) with random paths for ε̄xx, ε̄yy, and ε̄xy and other strain components set to 0.

As shown in Fig. 15, good predictions in terms of the evolutions of the homogenized stress and
of the porosity are also obtained with the trained material network compared to the corresponding
DNS results using the microscopic problem. In particular, with the US3 loading condition (see Figs.
15(a) and (b)), the accuracy is maintained through multiple cycles.

In Fig. 16, the energy balance and the non-negative dissipation respectively following the first
and second laws of thermodynamics are investigated for this trained material network with the US3
and RANDOM loading conditions. Considering a time step [tl tl+1] with l = 0, 1, . . ., on the one
hand, the applied increment of the total mechanical energy reads

∆Wl =

∫ tl+1

tl

σ̄ : ˙̄ε dt . (95)
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Figure 15: 3D-RVE, NT, Nlevels = 5 - comparison of the results predicted by the material network and by the direct
numerical simulation (DNS) under different loading conditions: US3 (a, b) and RANDOM (c, d).
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Figure 16: 3D-RVE, NT, Nlevels = 5 - homogenized increments of the total mechanical energy, elastic energy, and
plastic energy versus the applied increment of the total mechanical energy: US3 (a) and RANDOM (b).

On the other hand, the increment of the total mechanical energy in each material node is estimated
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by

∆W i
l =

∫ tl+1

tl

σ̄i : ˙̄εi dt for i ∈ K . (96)

In each time step [tl tl+1], the increment of the total mechanical energy ∆W i
l can also be decomposed

into a reversible part (so-called elastic energy) and an irreversible part (so-called plastic energy).
From these local values at material nodes, the homogenized increments of the total mechanical
energy, elastic energy, and plastic energy are estimated using Eq. (38) over the whole material
network, i.e. by using C = K. As shown in Fig. 16, the energy balance and the non-negative plastic
dissipation of the trained material network with the US3 and RANDOM loading conditions in all
time steps are demonstrated.
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Figure 17: 3D-RVE, NT, Nlevels = 5 - comparison of the homogenized increments of the total mechanical energy,
elastic energy, and plastic energy predicted by the material network (MN) and by the direct numerical simulation
(DNS) under different loading conditions: US3 (a) and RANDOM (b).

Figure 17 compares the homogenized increments of the total mechanical energy, elastic energy,
and plastic energy predicted by the material network and the corresponding results predicted by the
microscopic problem (denoted by DNS) in all time steps. For both loading cases, the increments of
the total mechanical energy obtained by the material network and by DNS are in good agreement,
which results from the enforcement of the Hill-Mandel condition (15) in the interaction-based MN
definition. The increments of elastic energy and plastic energy obtained by the material network and
by DNS are slightly different. This was expected since these equivalences are not enforced during
the scale transition. However, the difference between the elastic and plastic energies predicted by
the material network and by DNS can be improved by considering the plastic energy as a property
of interest z when training in Eqs. (63, 64).
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5.6. Extrapolation for new materials of the interaction-based material network trained by nonlinear
training procedure

In the nonlinear training (NT) procedure, we consider given constitutive laws governing the
physical phases of the microstructure. As a result, the training database is provided by the full-field
microscopic simulations with nonlinear paths using these material laws. In this section, we show
that the trained material network can extrapolate the RVE response to new material parameters
sets with high accuracy. We consider two new sets of material properties respectively denoted as
NEW-MAT1 and NEW-MAT2, as reported in Tab. 4. Two different cases are considered:

• NEW-MAT1 is used for the material network with Nlevels = 5 trained for the 2D-RVE2 with
the NT procedure as reported in Section 5.3.1. This trained material network is loaded with
the US1 and US2 loading paths as shown in Fig. 6(a).

• NEW-MAT2 is used for the material network with Nlevels = 5 trained for the 3D-RVE with
the NT procedure as reported in Section 5.3.1. This trained material network is loaded with
the US3 and RANDOM loading paths as shown in Fig. 14.

Table 4: New elastoplastic parameters of the solid phase.

Elastoplastic parameters NEW-MAT1 NEW-MAT2

Young modulus (E [GPa]) 10 5

Poisson ratio (ν [-]) 0.3 0.25

Isotropic flow stress σy (γ) [MPa]

(γ - equivalent plastic strain) 100 (1 + 20γ)0.1 120 (1 + 20γ)0.15

The evolutions of the homogenized stress and of the porosity are reported respectively in Figs.
18 and 19. The corresponding results using the microscopic problem (denoted by direct numerical
simulation -DNS) are also reported for comparison purpose. It is shown that the prediction remains
accurate when extrapolating beyond the material laws used during the offline training. In a NT
procedure, the material network is trained not only with elastic behavior but also with nonlinear
behavior. The latter allows the trained material network to better capture the network interactions
in comparison with the one trained with a LET procedure.

0.1 0.0 0.1 0.2 0.3
xx

100

50

0

50

100

xx
 (M

Pa
)

DNS, US1
Nlevels = 5, US1

DNS, US2
Nlevels = 5, US2

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.8

1.0

1.2

1.4

1.6

1.8

/
1

DNS, US1
Nlevels = 5, US1
DNS, US2
Nlevels = 5, US2

(a) US1 & US2 - stress (b) US1 & US2 - porosity

Figure 18: 2D-RVE2, NT with NEW-MAT1 - comparison of the results predicted by the material network and by the
direct numerical simulation (DNS) under the US1 and US2 loading conditions.
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Figure 19: 3D-RVE, NT with NEW-MAT2 - comparison of the results predicted by the material network and by the
direct numerical simulation (DNS) under different loading conditions: US3 (a, b) and RANDOM (c, d).

5.7. Multiscale simulation of a notched sample

The trained material networks can be used as a surrogate of a microscopic model in the corre-
sponding FE2 simulation. In this section, the simulation of a notched sample under tensile loading
is considered. The result obtained with a fully coupled FE2 simulation is compared to the ones
obtained using the material network as a constitutive law in the macro-scale simulation.

The multiscale setting of the notched sample is illustrated in Fig. 20(a). The sample is loaded on
its top edge under the prescribed displacement depicted in Fig. 20(b). Because of the geometrical
and loading symmetries, only one quarter of the sample is modeled with symmetrical boundary
conditions. The microscopic problem considers the single-hole microstructure (2D-RVE1) reported
in Fig. 3(a). The corresponding material networks with Nlevels equal to 3, 4, and 5 were trained
using the NT and LET procedures and can be readily used in this section as surrogates of the
microscopic problem.

The result in terms of the reaction force versus prescribed displacement is reported in Fig. 21.
Fig. 21(a) shows the comparison between the FE-MN result using the material network trained by
the NT procedure and the DNS result. While the FE-MN model using the material network with
Nlevels equal to 3 underestimates the reference solution, the cases of Nlevels equal to 4 and 5 provide
good predictions. A similar remark is observed in Fig. 21(b) in which the FE-MN result using the
material network trained by the LET procedure is compared to the DNS result. However, a lower
accuracy is achieved with the FE-MNs using the material network trained by the LET procedure
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Figure 20: Notched sample: (a) multiscale setting and (b) prescribed displacement at the top boundary of the sample.
The microstructure volume element in Fig. 20(a) corresponds to the single-hole microstructure shown in Fig. 3(a).
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Figure 21: Notched sample - comparison of the reaction force versus prescribed displacement curves between the
FE2 and the finite element simulation (abbreviated by FE-MN) using the material networks trained by: (a) the NT
procedure and (b) the LET procedure as surrogates.

with a similar network architecture.
Figure 22 compares the distributions of the macroscopic strain component ε̄yy and stress com-

ponent σ̄yy obtained with the FE2 simulation and with the simulations using the material networks
trained by the NT procedure as surrogates. It can be seen that the models considering Nlevels equal
to 4 and 5 as surrogates predict the strain and stress distributions in good agreement with the FE2

simulation while the case of Nlevels equal to 3 does not. In particular, the case with Nlevels equal to
5 and FE2 yield almost the same results. Although the strain is out of the offline sampling space,
in which the strain tensor components were limited to 0.2, the prediction remains accurate when
extrapolating beyond this offline sampling space, see Fig. 22(a) where the maximal value of ε̄yy
reaches 0.4.

Figure 23 compares the distributions of the macroscopic strain component ε̄yy and stress com-
ponent σ̄yy obtained with the FE2 simulation and with the simulations using the material networks
trained by the LET procedure as surrogates. It can be seen that the model considering Nlevels

equal to 5 as surrogates predicts the strain and stress distributions in good agreement with the FE2

simulation while the other cases do not. Overall, the predictions by the material networks trained
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Figure 22: Notched sample - comparison between the FE2 and the finite element simulation using the material
networks trained by the NT procedure as surrogates: (a, c) the distribution of the macroscopic strain ε̄yy, and (b, d)
the distribution of the macroscopic stress σ̄yy at 0.8s (corresponding to ūy = 0.15mm) and at 1s (corresponding to
ūy = 0mm), where the specimen is totally unloaded.

by the LET procedure are less accurate than the ones by the material networks trained by the NT
procedure.

The computational cost breakdown for multiscale analyzes with the different methodologies
is reported in Tab. 5. The computation time of the FE2 simulation took around 24h using 300
processors on a cluster. The computational efficiency of the finite element simulations using material
networks as surrogates is demonstrated. The computational times required for training and online
simulations are relatively small compared to the one of the FE2 simulation.

Table 5: Notched sample - computational cost of the multiscale simulations.

Offline sampling Training Online

FE2 - - 7200 hour-cpu

Nlevels = 3, NT 3.5 hour-cpu 2.3 hour-cpu 0.17 hour-cpu

Nlevels = 4, NT 3.5 hour-cpu 6.3 hour-cpu 0.31 hour-cpu

Nlevels = 5, NT 3.5 hour-cpu 19.1 hour-cpu 1.1 hour-cpu

Nlevels = 3, LET 0.04 hour-cpu 0.16 hour-cpu 0.2 hour-cpu

Nlevels = 4, LET 0.04 hour-cpu 0.4 hour-cpu 0.4 hour-cpu

Nlevels = 5, LET 0.04 hour-cpu 1.1 hour-cpu 1 hour-cpu
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Figure 23: Notched sample - comparison between the FE2 and the finite element simulation using the material
networks trained by the LET procedure as surrogates: (a, c) the distribution of the macroscopic strain ε̄yy, and (b,
d) the distribution of the macroscopic stress σ̄yy at 0.8s (corresponding to ūy = 0.15mm) and at 1s (corresponding to
ūy = 0mm), where the specimen is totally unloaded.

6. Conclusion

A general framework for the interaction-based material networks is developed. Based on the
network interaction, a material network is viewed as a trainable system involving fitting parameters,
which consist of not only the weights of the material nodes but also the parameters that characterize
the network interactions. The latter involve not only the directions of the interaction mechanism but
also the contribution of the material nodes in each mechanism. We show a complete machine learning
process to identify these fitting parameters by minimizing the difference between the predictions of
the material network and the corresponding full-field simulation in the context of both the nonlinear
training, which is based on the nonlinear response in terms of the stress-strain sequences and the
microstructure evolution, and of the linear elastic training strategy, which is based on the elastic
response only.

The efficiency and accuracy of the proposed framework are demonstrated on the prediction of
the highly nonlinear behaviors of porous microstructure. Once trained, the material network can
be used to predict the homogenized response with good accuracy and at much lower computational
time as compared to the use of a direct finite element simulation of microscopic BVP. A trained
material network can be used as a surrogate of the microscopic model within a FE2 simulation. It is
noted that the proposed framework is not limited to the porous microstructure but can be applied
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to a general one.
For a material network constructed by a sufficient number of interaction mechanisms and trained

by the nonlinear training procedure, its online prediction extrapolates well the behavior since an
accurate prediction can be obtained beyond the training sampling space and beyond the material
laws used during training, although only proportional loading paths and a single material model
parameters set were using during the nonlinear training. The linear elastic training strategy can be
used to train the interaction-based material network at a lower computational cost in comparison
with the nonlinear training strategy. However, less accurate predictions could be obtained with this
training strategy.

The proposed framework opens new possibilities in the design and concurrent simulation of
material systems involving multiple scales, in which case the offline training dataset can be obtained
from experiments. In the future, the framework should be extended to more complex scenarios, e.g.
failure under coalescence of voids, in which the challenges come from not only the microscopic
simulations but also from the modeling of the crack propagation at the macroscopic scale. The
proposed framework could extend to the finite strain regime, in which the physical phases obey
finite strain constitutive models.
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Appendix A. Scale transition in computational homogenization

To close the formulation statement of the microscopic problem governed by Eqs. (3, 6), a
microscopic boundary condition must be introduced to apply the macroscopic deformation over the
RVE through a downscaling process while the macroscopic stress σ̄ and the corresponding tangent
operator C̄ are obtained through an upscaling process.

Appendix A.1. Downscaling

In a kinematically driven framework, at a macroscopic material point, the macroscopic strain ε̄
is known. Assuming the separation of scales [5], the microscopic displacement u can be decomposed
as

u = ε̄ · x + w (A.1)

where w is the fluctuation field which is present due to the local inhomogeneities. Once the macro-
scopic strain ε̄ is known, the strain averaging allows defining the deformation state of the microscopic
problem as

ε̄ = 〈ε〉V , (A.2)
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with the volume average operator (7). As a result of Eqs. (3, A.1), one has the decomposition of
the local strain

ε = ε̄+ ∇⊗s w . (A.3)

Using Eq. (A.3) and the Gauss theorem, Eq. (A.2) leads to a constraint of the fluctuation field∫
∂V

w ⊗s n dA = 0 , (A.4)

where n is the outward unit normal to the RVE boundary ∂V .

Appendix A.2. Upscaling

The microscopic problem governed by Eqs. (3, 6) coupled with the boundary condition (A.4)
can be solved using the finite element method [39]. For upscaling the microscopic response to the
macroscopic scale, the energy consistency between the different scales, which corresponds to the
Hill-Mandel condition, has to be satisfied, yielding

σ̄ : ˙̄ε = 〈σ : ε̇〉V , (A.5)

in which the macroscopic mechanical power σ̄ : ˙̄ε is equal to the volume averaging of its respective
microscopic counterpart σ : ε̇. Using Eq. (A.3), Eq. (A.5) can be rewritten as

(σ̄ − 〈σ〉V ) : ˙̄ε− 〈σ : (ẇ ⊗∇)〉V = 0 . (A.6)

Since the last equation should be true for all deformation states, one has the stress averaging relation

σ̄ = 〈σ〉V , (A.7)

from which not only the macroscopic stress but also the tangent operator C̄ =
∂σ̄

∂ε̄
can be computed

[37]. Using Eq. (A.7) and the Gauss theorem, Eq. (A.6) becomes∫
V
σ : (ẇ ⊗∇) dV = 0 . (A.8)

It is noted that Eq. (A.8) is also the weak form of the microscopic BVP, implying that the finite
element solution always satisfies the Hill-Mandel condition.

In general, Eq. (A.4) is satisfied a priori by defining specific microscopic boundary conditions.
Several commonly applied boundary conditions are known as the linear displacement boundary
condition, periodic boundary condition, and the minimal kinematic boundary condition [39]. In this
work, the periodic boundary condition is adopted by constraining the periodicity of the fluctuation
field on the boundary ∂V as

w
(
x+
)

= w
(
x−
)
∀x+ ∈ ∂V + and corresponding x− ∈ ∂V − , (A.9)

where the boundary ∂V is separated into non-overlapping opposite surfaces ∂V + and ∂V −. The
application of the periodic boundary condition (A.9) for an arbitrary mesh topology follows from
the interpolation method proposed in [40].

For a given ε̄ history, the microscopic problem governed by Eqs. (3, 6) coupled with the boundary
condition (A.9) is iteratively solved as detailed in [37]. Finally, the extraction of the macroscopic
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stress σ̄ follows from Eq. (A.7). The estimation of the homogenized tangent operator C̄ can be
found in the unified framework proposed in [37].

Appendix B. Limitations of the hierarchical material networks based on laminate
building blocks in the presence of a void phase.

Let us consider a rotation-free hierarchical material network constructed by a general perfect
binary tree of depth K (K ≥ 1) and consisting of 2K−1 leaves as proposed in [32], in which laminates
with a variable direction of lamination are used. A similar material network proposed in [28] can
be equivalently formed by considering rotation matrices for laminates with a fixed direction of
lamination. In this section, we show that such a hierarchical material network results generally in
zero-homogenized stress in the plane of a laminate made of the other laminates having a void phase,
and that this limits the training ability of the material network.

Appendix B.1. Laminate building block at the first interaction level

Let us consider a 2-phase laminate of 2 materials indexed from 0 to 1 stacking following the
direction n. We demote by Vj1 the list of the 2 material nodes belonging to the first interaction
level laminate j. We can define an in-plane unit vector ξ, which is parallel to the interface between
these phases and satisfies ξ · n = 0, and the out-of-plane unit vector χ = n × ξ. As a result, the
orthogonal triple (n, ξ,χ) forms a local coordinate system of the laminate. The volume fractions of
phases are f j,i1 with i = 0, 1, satisfying f j,01 + f j,11 = 1. Each phase obeys a linear elastic law as

σi = Ci : εi with i = 0, 1 , (B.1)

in which the index i is used to indicate a quantity belonging to the phase i of the laminate, and ε,
σ, and C denote respectively the strain tensor, the stress tensor, and the elastic tangent operator.

The homogenized stress-strain relation over this laminate can be expressed as

HVj
1

(σ) =

1∑
i=0

f j,i1 σ
i and HVj

1
(ε) =

1∑
i=0

f j,i1 ε
i . (B.2)

The stress balance at the interfaces of these phases reads(
σ0 − σ1

)
· n = 0 . (B.3)

In the local coordinate
(
nj , ξj , χj

)
of the laminate, Eq. (B.3) can be equivalently rewritten as

(
σ0 − σ1

)
:
(
nj ⊗ nj

)
= 0(

σ0 − σ1
)

:
(
ξj ⊗ nj

)
=
(
σ0 − σ1

)
:
(
nj ⊗ ξj

)
= 0 , and(

σ0 − σ1
)

:
(
χj ⊗ nj

)
=
(
σ0 − σ1

)
:
(
nj ⊗ χj

)
= 0 ,

(B.4)

in which the symmetric properties of the stress tensor is used. The strain compatibility condition
between two phases reads

(
ε0 − ε1

)
:
(
ξj ⊗ ξj

)
= 0(

ε0 − ε1
)

:
(
ξj ⊗ χj

)
=
(
ε0 − ε1

)
:
(
χj ⊗ ξj

)
= 0 , and(

ε0 − ε1
)

:
(
χj ⊗ χj

)
= 0 .

(B.5)
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Equations (B.1, B.2, B.4, B.5) can be solved, and the homogenized response can be found, see [35]
for details.

Considering a 2-phase laminate formed in a local coordinate system
(
nj , ξj ,χj

)
and the phase

indexed by 1 being void. Since the stress always vanish in the void part, i.e. σ1 = 0, Eq. (B.3)
leads to

σ0 · nj = 0 . (B.6)

Clearly, these stress states are not three-dimensional. As a result of Eq. (B.4), the homogenized
stress of this voided laminate can be rewritten as

HVj
1

(σ) =
1∑
i=0

f j,i1 σ
i = aξj ⊗ ξj + b

(
ξj ⊗ χj + χj ⊗ ξj

)
+ cχj ⊗ χj , (B.7)

in which a, b, c are respectively the components of the homogenized stress HVj
1

(σ) in the local

coordinate of the laminate.

Appendix B.2. Laminate building block at the second interaction level

Considering a laminate of 2 phases whose homogenized stress-strain relations are obtained from
2 voided laminates, this case corresponding to a material network of 22 leaves and is defined by
the interaction list V l2. This laminate is formed in a local coordinate system (n, ξ,χ). The voided
laminates indexed by 0 and 1 are built from the interaction sets Vj1 and Vj+1

1 , and are defined in
the

(
nj , ξj ,χ

)
, . . . and

(
nj+1, ξj+1,χ

)
referentials, respectively. Indeed the 2 laminates are always

co-planar so that one direction (the normal χ to the plane) is unique. Eq. (B.7) is then written for
each voided laminate as

HVj+k
1

(σ) = akξj+k ⊗ ξj+k + bk
(
ξj+k ⊗ χ+ χ⊗ ξj+k

)
+ ckχ⊗ χ for k = 0, 1 . (B.8)

In this context, Eq. (B.3) rewritten at the interaction level 2 becomes(
a0ξj + b0χ

) (
ξj · n

)
−
(
a1ξj+1 + b1χ

) (
ξj+1 · n

)
= 0 , (B.9)

since χ ·n = 0. Applying the dot product of Eq. (B.9) with nj+1 and nj and using χ ·nj = ξj ·nj =
χ · nj+1 = ξj+1 · nj+1 = 0, one has{

a0
(
ξj · nj+1

) (
ξj · n

)
= 0 and

a1
(
ξj+1 · nj

) (
ξj+1 · n

)
= 0

. (B.10)

Since the laminate directions in a hierarchical material network are randomly initialized when
training [28, 29, 32, 35], one has generally ξj · nj+1 6= 0, ξj · n 6= 0, ξj+1 · nj 6= 0, and ξj+1 · n 6= 0,
leading to

a0 = a1 = 0 . (B.11)

In this case, the homogenized stress of this laminate is expressed by

HVl
2

(σ) =

1∑
k=0

f l,k2 HVj+k
1

(σ) =

1∑
k=0

f l,k2 bk
(
ξj+k ⊗ χ+ χ⊗ ξj+k

)
+

(
1∑

k=0

f l,k2 ci

)
χ⊗ χ ,

(B.12)
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which consists of only the out-of-plane components. As a result of Eq. (B.12), all in-plane stress
components of a laminate of a laminate are equal to zero at the second level.

Appendix B.3. Training of a binary laminate-based material network
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Figure B.24: Material networks based on a binary architecture using laminate building blocks with voids - histories
of the training error Ctrain and validation error Cvalid for 3D-RVE reported in Fig. 3(c).

In a general three-dimensional case, a hierarchical material network considering one of its phases
being void can still stand a certain amount of stress. However, because of the fact that the in-plane
stress components of a laminate of a voided laminate are equal to zero the training cannot be
optimized, as illustrated by the histories of the training error and validation error shown in Fig.
B.24. In these material networks, voids are considered as a physical phase without any stiffness.
The training is performed with the offline data reported in the LET training for the case of 3D-RVE
in Section 5.3.2. It is shown that the training and validation errors stabilize at relative high values
(> 0.4 for all cases) while in Fig. 5 much smaller values (< 0.04 for all cases) were reported with the
new interaction-based approach. This poor training capability of the material networks based on
a binary architecture using laminate building blocks with voids can be explained by too restrictive
stress state inside each material node.

Appendix C. Material network evaluation

In this section, the iterative procedure proposed in [35] to solve the governing equation (37)
of the material network M indexed in K is summarized in the context of the small strain setting.
Assuming its weights and its network interactions have been determined, the unknowns involve only
the M vectors aj considered in Eq. (22). These unknown vectors are collected in a column vector
denoted by U as

U =
[(

aj
)T

for j = 0 , . . . ,M − 1
]T

. (C.1)

The state of the material network is driven by the homogenized strain history ε̄ (t). By knowing
the values of U (t−∆t) and the history data at all the material nodes qi (t−∆t), ∀i ∈ K, at the
previous converged solution (at time t −∆t), the response of the material network at time t with
a time step ∆t for the current value of ε̄ (t) is first computed. Then the outputs consist of the
homogenized stress σ̄ (t) and the tangent operator of the homogenized solution

C̄ (t) =
∂σ̄ (t)

∂ε̄ (t)
. (C.2)
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The computation of C̄ is mandatory when integrating the material network in a multiscale finite
element setting as a surrogate model predicting the local stress-strain behavior. In the following, a
quantity at time t is written without time argument for ease of readability. The iterative resolution
follows a downscaling procedure, a nonlinear system resolution, and an upscaling procedure as
follows:

Appendix C.1. Downscaling

The homogenized strain ε̄ is downscaled. With two arbitrary vectors a and n, we can define an
operator H (•) to convert a dyadic tensor product into a matrix-vector multiplication as

vecε (a⊗s n) = H (n) a = H (a) n , (C.3)

where the operator vecε (•) is defined by

vecε (ε) =
[
ε00 ε11 ε22 2ε01 2ε02 2ε12

]T
, (C.4)

and the operator H (•) is defined by

H (n) =



n0 0 0
0 n1 0
0 0 n2

n1 n0 0
n2 0 n0

0 n2 n1

 . (C.5)

Consequently, the interaction mapping described by Eq. (22) can be rewritten for a material node
i ∈ K under the vector form using the unknown vector U defined by Eq. (C.1), yielding

vecε
(
εi
)

= vecε (ε̄) + DiU ∀i ∈ K , (C.6)

where Di is a row-block matrix depending only on the weights and interaction directions,

Di =
[
Zi,j for j = 0, . . . ,M − 1

]
with Zi,j =

{
αi,jH

(
nj
)

if i ∈ Vj

06×3 if i /∈ Vj
. (C.7)

In the last equation, 06×3 denotes a 6× 3 zero matrix.
From the local deformation gradient estimated by Eq. (C.6) at each material node, the material

constitutive law associated to this node as defined by Eq. (20) is used to estimate the local stress σi

and the internal variables qi with an appropriate integration scheme in the time interval [t−∆t , t]
from the current strain εi and the internal variables of the previous converged solution qi (t−∆t):{

σi = P̂
pi (
εi,qi (t−∆t)

)
qi = Q̂

pi (
εi,qi (t−∆t)

) ∀i ∈ K , (C.8)

where t and ∆t denote respectively the current time and time step. The local tangent operator
Ci = ∂σi

∂εi
is also computed.
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Appendix C.2. Nonlinear system resolution

The system of equations (37) is iteratively solved. Using the matrix Di expressed in Eq. (C.7),
the residual vector of the system of 3M equations described by the system (37) can be rewritten as

r =
∑
i∈K

W i
(
Di
)T

vecσ
(
σi
)
, (C.9)

where the operator vecσ (•) is defined by

vecσ (σ̄) =
[
σ00 σ11 σ22 σ01 σ02 σ12

]T
. (C.10)

The convergence is achieved if the following condition is satisfied:

||r||∞ < τabs or ||r||∞ < τ rel||r0||∞ , (C.11)

where || • ||∞ represents the infinity norm operator, τabs and τ rel are respectively the absolute and
relative tolerances, and r0 is the initial residual. In this work, τabs = 10−12 and τ rel = 10−6 are
considered.

If the condition (C.11) is not satisfied, the unknown vector U is corrected with

δU = −K−1r and U← U + δU , (C.12)

where K is the Jacobian matrix

K =
∂r

∂U
. (C.13)

Using Eqs. (C.6, C.8, C.9), the estimation of K following Eq. (C.13) is given by

K =
∑
i∈K

W i
(
Di
)T

mat
(
Ci
)
Di , (C.14)

where mat (•) is the matrix representation operator of a fourth order tensor as

mat (C) =



C0000 C0011 C0022 C0001 C0002 C0012

C1100 C1111 C1122 C1101 C1102 C1112

C2200 C2211 C2222 C2201 C2202 C2212

C0100 C0111 C0122 C0101 C0102 C0112

C0200 C0211 C0222 C0201 C0202 C0212

C1200 C1211 C1222 C1201 C1202 C1212

 . (C.15)

Appendix C.3. Upscaling

The homogenized stress tensor σ̄ is computed by Eq. (19). If the material network is considered
in an iterative multiscale simulation as a constitutive law, the homogenized tangent operator C̄ also
needs to be estimated following Eq. (C.2). Using Eqs. (19, C.6), Eq. (C.2) yields

mat
(
C̄
)

=
1∑

i∈KW
i

∑
i∈K

W imat
(
Ci
)

+ Y
∂U

∂vecε (ε̄)
, (C.16)
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where

Y =
1∑

i∈KW
i

∑
i∈K

W imat
(
Ci
)
Di . (C.17)

In order to estimate C̄ following Eq. (C.16), the matrix
∂U

∂vecε (ε̄)
needs to be computed. To this

end, the consistency of Eq. (C.9) is expressed as

δr =
∑
i∈K

W i
(
Di
)T

mat
(
Ci
) (

vecε (δε̄) + DiδU
)

= 0 . (C.18)

This last equation allows the computation of
∂U

∂vecε (ε̄)
by

∂U

∂vecε (ε̄)
= −K−1M , (C.19)

where K is given by Eq. (C.14) and

M =
∑
i∈K

W i
(
Di
)T

mat
(
Ci
)
. (C.20)

Equation (C.19) corresponds to a set of linear systems, one for each column of the right hand side
matrix, and whose matrix K was previously factorized in order to solve the system of Eq. (C.12).
The resolution of the set of linear systems (C.19) is then performed using this factorized matrix at
a reduced computational time.

Appendix C.4. Summary

For a material network M indexed in K, and assuming its weights and its network interactions
are known, the resolution framework [35] for estimating its response is summarized as follows:

(I) Initialization:

(i) assemble U following Eq. (C.1);

(ii) initialize U = 0;

(iii) assemble Di ∀i ∈ K following Eq. (C.7).

(II) Evaluation at time t with a time step ∆t for the current value of ε̄ (t), and knowing the values
of U (t−∆t) and the history data at material nodes qi (t−∆t), ∀i ∈ K, at the previous
converged solution (at time t−∆t):

(i) initialize U(t) = U (t−∆t) and qi (t) = qi (t−∆t), ∀i ∈ K;

(ii) downscale ε̄(t) and U(t) following Eq. (C.6);

(iii) evaluate the local constitutive law at all material nodes following Eq. (C.8), yielding
σi (t), qi (t), and Ci (t), ∀i ∈ K;

(iv) evaluate the residual r following Eq. (C.9);

(v) if the convergence criterion following Eq. (C.11) is achieved go to (viii); else go to (vi);

(vi) correct the value of U(t) following Eq. (C.12);

(vii) go to (ii);
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(viii) compute the homogenized stress σ̄(t) following Eq. (19);

(ix) compute the homogenized tangent operator C̄(t) following Eq. (C.16) if required;

(x) store U(t) and history data qi (t) at all material nodes for the next step;

(xi) exit.

Appendix D. Computation of the gradient of the loss function

In this section, the computation of the gradient of the cost function C [l] (X) given by Eq. (68)
with respect to the fitting parameter X is detailed. In the following, the index l is omitted for
simplicity. One has

g =
∂εrel

(
Ŝ, S̄

)
∂X

+

LZ̄−1∑
q=0

λq
∂εrel

(
Ẑq, Z̄q

)
∂X

. (D.1)

Using Eq. (69), the last equation can be rewritten as

g = 1

len(Ŝ)

len(Ŝ)−1∑
k=0

1

||σ̂k||2
∂||σ̂k − σ̄k||2

∂σ̄k
:
∂σ̄k
∂X

(D.2)

+

LZ̄−1∑
q=0

λq
len(Ŝ)−1∑
k=0

1

||ẑqk||2
∂||ẑqk − z̄

q
k||2

∂z̄qk

∂z̄qk
∂X

 ,

where
∂||σ̂k − σ̄k||2

∂σ̄k
and

∂||ẑqk − z̄
q
k||2

∂z̄qk
are known using Eq. (70) as

∂|| • ||2
∂•

=


| • |
•

if • is a scalar ,

(|| • ||2)−1 • if • is a vector , and

(|| • ||2)−1 • if • is a second-order tensor ,

(D.3)

for an arbitrary quantity •. As a result, to compute g, we have to compute

∂σ̄k
∂X

and
∂z̄qk
∂X

for k = 0, . . . , len
(
Ŝ
)
− 1 and q = 0, . . . , LZ̄ − 1 . (D.4)

Since X consists of W̃, Ã, and Ñ as described in Section 3.3, one needs to estimate

∂σ̄k

∂W̃
,
∂σ̄k

∂Ã
,
∂σ̄k

∂Ñ
,
∂z̄qk

∂W̃
,
∂z̄qk

∂Ã
, and

∂z̄qk

∂Ñ
(D.5)

for k = 0, . . . , len
(
Ŝ
)
− 1 and q = 0, . . . , LZ̄ − 1 .

Without loss of generality, we consider a quantity v̄ which can be extracted from the material
network M using Eq. (38) as

v̄ = HC (v) , (D.6)
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in which C can be K for averaging over the whole material networks or Kp if only the average on
the phase indexed by p is of interest. At a material node i, the quantity vi is defined ∀i ∈ C and its

tangent with respect to the local strain, i.e. Gi =
∂vi

∂vecε (εi)
, is known. The computation procedure

for

∂v̄

∂W̃
,
∂v̄

∂Ã
, and

∂v̄

∂Ñ
, (D.7)

is detailed here below. The results of Eq. (D.5) can be directly obtained by substituting v̄ by either
vecσ (σ̄) or zq and respectively either setting C = K or particularizing C depending on the context.
Moreover, we consider the following cases:

• vi = vecσ
(
σi
)
, leading to Gi = mat

(
Ci
)
.

• vi = 1 + tr
(
εi
)
, which is used to quantify the porosity evolution in a porous microstructure,

leading to

Gi =
[
1 1 1 0 0 0

]
. (D.8)

Appendix D.1. Computation of
∂v̄

∂W̃

For each component Z l ∈ W̃ ∀l ∈ K, one has the following chain rule

∂v̄

∂Z l
=
∑
i∈C

∂v̄

∂W i

∂W i

∂Z l
. (D.9)

As a result, the computations of
∂v̄

∂W i
and of

∂W i

∂Z l
are required. Using Eq. (50), one has

∂W i

∂Z l
=



ωp∑
c∈Kp f (Zc)

(
1−

f
(
Zi
)∑

c∈Kp f (Zc)

)
f ′
(
Z l
)

if l = i ,

−ωp
f
(
Zi
)(∑

c∈Kp f (Zc)
)2f ′ (Z l) if l 6= i and l ∈ Kp , and

0 otherwise ,

(D.10)

for i ∈ Kp and p = 0, . . . , P − 1 ,

where f ′ is the derivative of the activation function defined by Eq. (51), yielding

f ′(x) =
d

dx
relus (x) =

esx

1 + esx
. (D.11)

Following Eqs. (38, D.6), one has

∂v̄

∂W i
=


vi − v̄∑
c∈CW

c
+

1∑
c∈CW

c

∑
l∈CW

lGl
∂vecε

(
εl
)

∂W i
if i ∈ C ,

1∑
c∈CW

c

∑
l∈CW

lGl
∂vecε

(
εl
)

∂W i
otherwise .

(D.12)
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Eqs. (33, C.6) lead to

∂vecε
(
εl
)

∂W i
=
∑
j∈T l

∂αl,j

∂W i
vecε

(
aj ⊗s nj

)
+ Dl ∂U

∂W i
, (D.13)

where
∂αl,j

∂W i
= 0 for l /∈ Vj or i /∈ Vj and

∂αl,j

∂W i
for l ∈ Vj and i ∈ Vj are estimated using Eq. (54) as

∂αl,j

∂W i
=



0 if loc
(
l,Vj

)
= 0 ,

−
αV

j
0 ,j

W l

βloc(l,Vj)−1,j∑Lj−2
c=0 βc,j

if loc
(
l,Vj

)
> 0 and loc

(
i,Vj

)
= 0 ,

WV
j
0αV

j
0 ,j

(W l)
2

βloc(l,Vj)−1,j∑Lj−2
c=0 βc,j

if loc
(
l,Vj

)
> 0 and loc

(
i,Vj

)
> 0 and l = i , and

0 otherwise ,

(D.14)

for l ∈ Vj and i ∈ Vj .

Finally,
∂U

∂W
=

[
∂U

∂W i
∀i ∈ K

]
in Eq. (D.13) needs to be estimated and is detailed in Appendix

D.4.

Appendix D.2. Computation of
∂v̄

∂Ã

For each element βj ∈ Ã, one has from Eq. (D.6) the following relation

∂v̄

∂βj
=

1∑
c∈CW

c

∑
i∈C

W iGi∂vecε
(
εi
)

∂βj
. (D.15)

Using Eq. (33, C.6), one has

∂vecε
(
εi
)

∂βj
=
∂αi,j

∂βj
vecε

(
aj ⊗s nj

)
+ Di ∂U

∂βj
, (D.16)

where
∂αi,j

∂βj
is computed using Eq. (54) as

∂αl,j

∂βr,j
=



0 if l /∈ Vj or loc
(
l,Vj

)
= 0

−
WV

j
0αV

j
0 ,j

W l

1∑Lj−2
c=0 βc,j

(
1−

βr,j∑Lj−2
c=0 βc,j

)
if loc

(
l,Vj

)
= r + 1

WV
j
0αV

j
0 ,j

W l

βloc(l,Vj)−1,j(∑Lj−2
c=0 βc,j

)2 if loc
(
l,Vj

)
6= r + 1

(D.17)

for l ∈ Vj and r = 0, . . . , Lj − 2 ,

Finally,
∂U

∂Ã
=

[
∂U

∂βj
for j = 0, . . . ,M − 1

]
needs to be estimated and is detailed in Appendix D.4.
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Appendix D.3. Computation of
∂v̄

∂Ñ

For each element ej ∈ Ñ, one has from Eq. (D.6)

∂v̄

∂ej
=

1∑
c∈CW

c

∑
i∈C

W iGi∂vecε
(
εi
)

∂ej
. (D.18)

Using Eq. (33, C.6), one has

∂vecε
(
εi
)

∂ej
= αi,jH

(
aj
) ∂nj

∂ej
+ Di ∂U

∂ej
, (D.19)

where the operator H (•) is given in Eq. (C.5), and
∂nj

∂ej
is computed using Eq. (57) as

∂nj

∂ej
=


[
−2π sin

(
2πϕj

)
2π cos

(
ϕj
)

0
]T

in plane strain ,[
−2π sin

(
2πϕj

)
sin
(
πθj
)

2π cos
(
2πϕj

)
sin
(
πθj
)

0

π cos
(
2πϕj

)
cos
(
πθj
)

π sin
(
2πϕj

)
cos
(
πθj
)
−π sin

(
πθj
)]T otherwise ,

(D.20)

Finally,
∂U

∂Ñ
=

[
∂U

∂ej
for j = 0, . . . ,M − 1

]
needs to be estimated and is detailed in Appendix D.4.

Appendix D.4. Computation of
∂U

∂W
,
∂U

∂Ã
, and

∂U

∂Ñ

Finally, we must compute
∂U

∂W i
,
∂U

∂βj
,
∂U

∂ej
for i ∈ K and j = 0, . . . ,M − 1. For this purpose, Eq.

(C.9) is first rewritten as

r =


r0

r1

...
rM−1

 = 0 , (D.21)

where

rj =

∑
i∈Vj

W iσiαi,j

 · nj = 0 with j = 0 , . . . ,M − 1 . (D.22)

The consistency of Eq. (D.21) for a given ε̄ reads

δr = KδU +
∑
i∈K

∂r

∂W i
δW i +

M−1∑
j=0

(
∂r

∂βj
δβj +

∂r

∂ej
δej
)

= 0 , (D.23)

leading to [
∂U

∂W

∂U

∂Ã

∂U

∂Ñ

]
= −K−1

[
∂r

∂W

∂r

∂Ã

∂r

∂Ñ

]
, (D.24)
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where

∂r

∂W
=

[
∂r

∂W l
for l ∈ K

]
, (D.25)

∂r

∂Ã
=

[
∂r

∂α̃j
for j = 0, . . . ,M − 1

]
, and (D.26)

∂r

∂Ñ
=

[
∂r

∂ej
for j = 0, . . . ,M − 1

]
. (D.27)

Equation (D.24) is a set of linear systems, one per column of the right hand side matrix, and
the matrix K was previously factorized in order to solve the system of Eq. (C.12). The resolution
of the set of linear systems (C.19) is then performed using this factorized matrix at a reduced
computational time.

The following elements of the right hand side of Eq. (D.24) are computed as

∂rj

∂W i
=

∂̃rj

∂̃W i
+
∑
k∈T i

∂̃rj

∂̃α̃k
∂α̃k

∂W i
, (D.28)

∂rj

∂βk
=

∂̃rj

∂̃α̃k
∂α̃k

∂βk
, and (D.29)

∂rj

∂ek
=

∂̃rj

∂̃nk
∂nk

∂ek
, (D.30)

where
∂α̃k

∂W i
,
∂α̃k

∂βk
and

∂nk

∂ek
are computed by Eqs. (D.14, D.17, D.20), respectively, and the following

terms

∂̃rj

∂̃W i

∂̃rj

∂̃α̃k
and

∂̃rj

∂̃nk
, for j = 0, . . . ,M − 1 , i ∈ K , and k = 0, . . . ,M − 1 , (D.31)

are computed from Eq. (D.22) as follows:

• For each element W i ∈W, one has (no sum intended)

∂̃rj

∂̃W i
=

{
αi,jσi · nj if i ∈ Vj , and

0 otherwise .
(D.32)

• For each element αi,k ∈ α̃k, one has (no sum intended)

∂̃rj

∂̃αi,k
=


W iσi · nj +W iαi,j

[
Ci

... nj ⊗
(
ak ⊗s nk

)]
if j = k and i ∈ Vj ,

W iαi,j
[
Ci

... nj ⊗
(
ak ⊗s nk

)]
if j 6= k and i ∈ Vj , and

0 otherwise .

(D.33)
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• For each element nk, one has (no sum on j or k intended)

∂̃rj

∂̃nk
=


∑

i∈Vj W iαi,jσi +
∑

i∈Vj W iαi,jCi
... nj ⊗

(
αi,kak ⊗ I

)
if j = k , and∑

i∈Vj∩Vk W iαi,jCi
... nj ⊗

(
αi,kak ⊗ I

)
if j 6= k .

(D.34)

Appendix E. Optimization iterations

A stochastic gradient descent algorithm with adaptive moment estimation (Adam) [36] is adopted
for the parameters update as follows:

• initialize the fitting parameters X0 following uniform distributions as follows:

– generate Z l ∈ U (0.1, 1) ∀l ∈ K and normalize these values as

W i ← ωp
Zi∑
l∈Kp Z l

for i ∈ Kp and p = 0, . . . , P − 1 , (E.1)

and then

Z l = f−1

(
NpW l

ωp

)
for l ∈ Kp and p = 0, . . . , P − 1 , (E.2)

where Np is the number of material nodes governed by the constituent p and f−1 is the
inverse of the activation function f ;

– generate βj ∈ [U (−1, 1)]Lj−1 for j = 0, . . . ,M − 1; and

– generate ej ∈ [U (0, 1)]d for j = 0, . . . ,M − 1 and d being the number of components in
ej ;

• set the number of epochs Nepochs and initial learning rate l0r ;

• initialize the first moment vector m0 = 0 and the second moment vector s0 = 0;

• for i from 0 to Nepochs − 1:

– update learning rate li+1
r following a decay plan;

– shuffle Ntrain training samples;

– for l from 0 to Ntrain − 1:

∗ compute C
[l]
i = C [l] (Xi) for sample l following Eq. (68);

∗ compute g
[l]
i = g[l] (Xi) for sample l following Eq. (71) as detailed in Appendix D;
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∗ update Xi+1:

mi+1 = κ1mi + (1− κ1) g
[l]
i , (E.3)

si+1 = κ2si + (1− κ2)
(
g

[l]
i

)2
, (E.4)

m̂i+1 =
mi+1

1− κi+1
1

, (E.5)

ŝi+1 =
si+1

1− κi+1
2

, and (E.6)

Xi+1 = Xi − li+1
r

m̂i+1√
ŝi+1 + γ

, (E.7)

where the values κ1 = 0.9, κ2 = 0.999, and γ = 10−8 proposed in [36] are used;

– compute the total loss Ctrain and the validation error Cvalid following Eq. (72) respec-
tively using the training dataset and the validation dataset for monitoring.

• exit.

The value Nepochs can be adapted on-the-fly using an early stopping criterion. Nepochs = 500 is set
since the loss is almost unchanged after this value. It is often recommended to lower the learning
rate by a decay plan during the training progress in order to obtain a better convergence near a
minimum. The following decay plan is considered

li+1
r = l0r0.5

i

100 , (E.8)

where l0r = 0.002.

Appendix F. Homogenized elastic tensor and its gradient with respect to the fitting
parameters

For the ease of implementation, the Voigt’s notations of stress and strain tensors respectively
corresponding to the bijective operators vecε (•) and vecσ (•) are introduced in order to convert the
strain and stress tensors into vectors as follows:

• For the strain tensor ε:

vecε (ε) =
[
ε00 ε11 ε22 2ε01 2ε02 2ε12

]T
. (F.1)

In particular, when a plane strain state is employed, one has its reduced form

vecε,2D (ε) =
[
ε00 ε11 2ε01

]T
. (F.2)

• For the stress tensor σ̄:

vecσ (σ̄) =
[
σ00 σ11 σ22 σ01 σ02 σ12

]T
. (F.3)

When a plane strain state is employed, one has its reduced form

vecσ,2D (σ̄) =
[
σ00 σ11 σ01

]T
. (F.4)
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As a result, the material tensor C can also be written in a matrix form of 36 components to preserve
the tensor operations through matrix-vector multiplications as

mat (C) =



C0000 C0011 C0022 C0001 C0002 C0012

C1100 C1111 C1122 C1101 C1102 C1112

C2200 C2211 C2222 C2201 C2202 C2212

C0100 C0111 C0122 C0101 C0102 C0112

C0200 C0211 C0222 C0201 C0202 C0212

C1200 C1211 C1222 C1201 C1202 C1212

 , (F.5)

where mat (•) is the operator for this tensor-matrix conversion. Moreover, when a plane strain state
is employed, one has its reduced form

mat2D (C) =

C0000 C0011 C0001

C1100 C1111 C1101

C0100 C0111 C0101

 . (F.6)

The computation of the homogenized elastic tensor C̄ for given P elastic tensors C(0), . . . ,C(P−1)

and given fitting parameters X is obtained as follows:

(i) The P elastic tensors are assigned to the material nodes;

(ii) A mode-wise strain sequence is defined as

Ē =


[
ε̄0 ε̄1 ε̄2 ε̄3 ε̄4 ε̄5

]
for a general 3-dimensional strain state ,[

ε̄0 ε̄1 ε̄3

]
for a plane strain state ,

(F.7)

where

ε̄0 =

1 0 0
0 0 0
0 0 0

 , ε̄1 =

0 0 0
0 1 0
0 0 0

 , ε̄2 =

0 0 0
0 0 0
0 0 1

 , (F.8)

ε̄3 =

 0 0.5 0
0.5 0 0
0 0 0

 , ε̄4 =

 0 0 0.5
0 0 0

0.5 0 0

 , and ε̄5 =

0 0 0
0 0 0.5
0 0.5 0

 ;

(iii) The corresponding response of the material network in terms of the homogenized stress se-
quence is estimated as

S̄ =


[
σ̄0 σ̄1 σ̄2 σ̄3 σ̄4 σ̄5

]
for a general 3-dimensional strain state ,[

σ̄0 σ̄1 σ̄3

]
for a plane strain state .

(F.9)

(iv) The homogenized elastic tensor C̄ is given by

– For a general 3-dimensional strain state:

mat
(
C̄
)

=
[
vecσ (σ̄0) vecσ (σ̄1) vecσ (σ̄2) vecσ (σ̄3) vecσ (σ̄4) vecσ (σ̄5)

]
.

(F.10)
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– For a plane strain state:

mat2D
(
C̄
)

=
[
vecσ,2D (σ̄0) vecσ,2D (σ̄1) vecσ,2D (σ̄3)

]
, (F.11)

in which the components corresponding to the out-of-plane deformation mode are ig-
nored.

(v) The derivatives of mat
(
C̄
)

with respect to the fitting parameters X can also be estimated.

For each component Xj of X, since the terms
∂σ̄i

∂Xj
with i = 0, 1, 3 for a plane strain state and

i = 0, . . . , 5 for a general 3-dimensional strain state, are computed by the procedure detailed

in Appendix D, consequently,
∂C̄

∂Xj
can be easily obtained as follows:

– For a general 3-dimensional strain state:

mat

(
∂C̄

∂Xj

)
=

[
vecσ

(
∂σ̄0

∂Xj

)
vecσ

(
∂σ̄1

∂Xj

)
vecσ

(
∂σ̄2

∂Xj

)

vecσ

(
∂σ̄3

∂Xj

)
vecσ

(
∂σ̄4

∂Xj

)
vecσ

(
∂σ̄5

∂Xj

)]
. (F.12)

– For a plane strain state:

mat2D

(
∂C̄

∂Xj

)
=

[
vecσ,2D

(
∂σ̄0

∂Xj

)
vecσ,2D

(
∂σ̄1

∂Xj

)
vecσ,2D

(
∂σ̄3

∂Xj

)]
. (F.13)

Appendix G. J2 plasticity model and implicit time integration

For small strain plasticity, the total strain ε is decomposed following the rate form as

ε̇ = ε̇e + ε̇p , (G.1)

where εe and εp are the elastic and plastic parts respectively. The elastic constitutive equation
reads

σ = H : (ε− εp) with Hijkl =
Eν

(1 + ν) (1− 2ν)
δijδkl +

E

2 (1 + ν)
(δikδjl + δilδjk) , (G.2)

where H is the fourth order Hooke tensor, E and ν are the Young’s modulus and Poisson’s ratio,
respectively. The boundary of the elastic domain is described by the von Mises yield surface

fy = σVM − σy (γ) ≤ 0 , (G.3)

where σVM =
√

3
2dev (σ) : dev (σ) is the von Mises equivalent stress with dev (•) being the devia-

toric operator, i.e dev (A) = A−
Aii

3
I for an arbitrary symmetric second order tensor A, σy is the

isotropic yield stress, which is a function of γ being the equivalent plastic strain. The evolution of
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γ is estimated from the plastic deformation tensor εp as

γ̇ =

√
2

3
ε̇p : ε̇p . (G.4)

The evolution of the plastic strain is governed by an associated flow rule

ε̇p = γ̇
∂fy
∂σ

. (G.5)

The plastic evolution has to fulfill the Karush-Kuhn-Tucker condition

fy ≤ 0 , γ̇ ≥ , and fyγ̇ = 0 . (G.6)

The internal state is defined by q = [εp , γ].
From the previous state (εn, qn) at time tn, for given εn+1, the current stress tensor σn+1,

the current tangent operator Cn+1, and the current internal state qn+1 at time tn+1 are computed
using a predictor-corrector scheme as follows:

(i) Elastic predictor :

– Assume: εppr = εpn and γpr = γn.

– Compute predictor stress following Eq. (G.2): σpr = H : (εn+1 − εppr).
– Estimate the yield condition (G.3) as

fpry = σVMpr − σy (γn) with σVMpr =

√
3

2
dev (σpr) : dev (σpr) . (G.7)

∗ If fpry ≤ 0: σn+1 = σpr, Cn+1 = H, εpn+1 = εppr, γn+1 = γpr, and go to (iii).

∗ If fpry > 0: go to (ii) for plastic corrector.

(ii) Plastic corrector : The plastic flow rule (G.5) can be integrated using the implicit radial return
mapping, leading to

∆εpn+1 =

∫ tn+1

tn

γ̇
3dev (σ)

2σVM
dt ≈ ∆γn+1

3dev (σn+1)

2σVM
n+1

, (G.8)

where

∆εpn+1 = εpn+1 − ε
p
n and ∆γn+1 = γn+1 − γn . (G.9)

As a result, Eq. (G.2) becomes

σn+1 = σpr −H : ∆εpn+1 and dev (σn+1) = dev (σpr)− 2G∆γn+1
3dev (σn+1)

2σVM
n+1

(G.10)

where G = E
2(1+ν) . The last equation leads to

dev (σn+1) =
dev (σpr)

1 +
3G∆γn+1

σVM
n+1

, (G.11)
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and consequently

σVM
n+1 = σVMpr − 3G∆γn+1 . (G.12)

As a result, the yield condition (G.3) becomes

σVMpr − 3G∆γn+1 − σy (γn + ∆γn+1) = 0 , (G.13)

which is an equation in ∆γn+1. Once ∆γn+1 is known from the solution of Eq. (G.13) and
using Eqs. (G.8, G.11), one has

∆εpn+1 = ∆γn+1Npr , (G.14)

where

Npr =
3dev (σpr)

2σVMpr
. (G.15)

Finally, Eqs. (G.9, G.10) lead to

εpn+1 = εpn + ∆εpn+1 , (G.16)

γn+1 = γn + ∆γn+1 , and (G.17)

σn+1 = σpr −H : ∆εpn+1 . (G.18)

The tangent operator Cn+1 =
∂σn+1

∂εn+1
is estimated using Eq. (G.18) as

Cn+1 =
∂σn+1

∂εn+1
= H−H :

∂∆εpn+1

∂εn+1
. (G.19)

The term
∂∆εpn+1

∂εn+1
is estimated using Eq. (G.14) by

∂∆εpn+1

∂εn+1
=
∂∆γn+1

∂εn+1
Npr + ∆γn+1

∂Npr

∂εn+1
. (G.20)

As a result, the computation of Cn+1 following Eq. (G.19) requires the terms
∂∆γn+1

∂εn+1
and

∂Npr

∂εn+1
to be estimated. The two terms are computed as follows:

– The consistency of Eq. (G.13) reads

Npr : H : δεn+1 −
(

3G+
σy (γn+1)

∂γn+1

)
δ∆γn+1 = 0 . (G.21)

As a result, one has

∂∆γn+1

∂εn+1
=

Npr : H
3G+Hn+1

, (G.22)
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where Hn+1 =
σy (γn+1)

∂γn+1
is the isotropic hardening modulus, which is known from mate-

rial setting.

– The term
∂Npr

∂εn+1
is estimated using Eq. (G.15) as

∂Npr

∂εn+1
=

1

σVMpr

(
3dev (I)

2
− Npr ⊗ Npr

)
: H , (G.23)

where dev (I) denotes the deviatoric part of the fourth order unit tensor I.

(iii) End.

Appendix H. Material sampling in the plane strain state

The generation procedure in [35] is summarized. For plane strain problems, P elastic matrices
L(i) with i = 0 , . . . , P−1 in each sample X[l] are directly generated. The orthotropic elastic material
of each phase is written as

L(i) =

C
(i)
00 C

(i)
01 0

C
(i)
01 C

(i)
11 0

0 0 C
(i)
22

 with i = 0, . . . , P − 1 . (H.1)

It is noted that the conditions C
(i)
00C

(i)
11 −

(
C

(i)
01

)2
> 0 and C

(i)
22 > 0, with i = 0, . . . , P − 1, are

enforced to obtain a positive definite matrix.
Since the set [L(0), . . ., L(P−1)] and the set [γL(0), . . . ,γL(P−1)] for γ 6= 0 yield the same results,

in order to avoid this scaling issue, we first generate

C
(0)
00 = 1 and ln

(
C

(i)
00

C
(i−1)
00

)
∈ U (−1, 1) with i = 1, . . . , P − 1 , (H.2)

while all others components are then generated as

ln

(
C

(i)
11

C
(i)
00

)
∈ U (−1, 1) ,

C
(i)
01√

C
(i)
00 C

(i)
11

∈ U (0, 0.9) , and ln

(
C

(i)
22√

C
(i)
00 C

(i)
11

)
∈ U (−1, 1) , (H.3)

for i = 0, . . . , P − 1,

where U (a, b) denotes a uniform distribution in the range [a, b].
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[6] M. G. Geers, V. G. Kouznetsova, K. Matouš, J. Yvonnet, Homogenization methods and multi-
scale modeling: nonlinear problems, Encyclopedia of Computational Mechanics Second Edition
(2017) 1–34 (2017).

[7] K. Matous̆, M. G. Geers, V. G. Kouznetsova, A. Gillman, A review of predictive nonlinear
theories for multiscale modeling of heterogeneous materials, Journal of Computational Physics
330 (2017) 192 – 220 (2017). doi:https://doi.org/10.1016/j.jcp.2016.10.070.
URL http://www.sciencedirect.com/science/article/pii/S0021999116305782

[8] J. Yvonnet, E. Monteiro, Q.-C. He, Computational homogenization method and reduced
database model for hyperelastic heterogeneous structures, International Journal for Multiscale
Computational Engineering 11 (3) (2013).

[9] J. Hernández, J. Oliver, A. Huespe, M. Caicedo, J. Cante, High-performance model reduc-
tion techniques in computational multiscale homogenization, Computer Methods in Applied
Mechanics and Engineering 276 (2014) 149 – 189 (2014). doi:https://doi.org/10.1016/j.

cma.2014.03.011.
URL http://www.sciencedirect.com/science/article/pii/S0045782514000978

[10] Z. Liu, M. Bessa, W. K. Liu, Self-consistent clustering analysis: An efficient multi-scale scheme
for inelastic heterogeneous materials, Computer Methods in Applied Mechanics and Engineer-
ing 306 (2016) 319 – 341 (2016). doi:https://doi.org/10.1016/j.cma.2016.04.004.
URL http://www.sciencedirect.com/science/article/pii/S0045782516301499

[11] J.-C. Michel, P. Suquet, A model-reduction approach in micromechanics of materials preserving
the variational structure of constitutive relations, Journal of the Mechanics and Physics of Solids
90 (2016) 254 – 285 (2016). doi:https://doi.org/10.1016/j.jmps.2016.02.005.
URL http://www.sciencedirect.com/science/article/pii/S0022509616300928

[12] D. Soldner, B. Brands, R. Zabihyan, P. Steinmann, J. Mergheim, A numerical study of dif-
ferent projection-based model reduction techniques applied to computational homogenisation,
Computational mechanics 60 (4) (2017) 613–625 (2017).

[13] M. J. Zahr, P. Avery, C. Farhat, A multilevel projection-based model order reduction framework
for nonlinear dynamic multiscale problems in structural and solid mechanics, International
Journal for Numerical Methods in Engineering 112 (8) (2017) 855–881 (2017). arXiv:https:

//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5535, doi:10.1002/nme.5535.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5535

62

https://www.sciencedirect.com/science/article/pii/S0045782599002248
https://www.sciencedirect.com/science/article/pii/S0045782599002248
https://doi.org/https://doi.org/10.1016/S0045-7825(99)00224-8
https://www.sciencedirect.com/science/article/pii/S0045782599002248
http://www.sciencedirect.com/science/article/pii/S0021999116305782
http://www.sciencedirect.com/science/article/pii/S0021999116305782
https://doi.org/https://doi.org/10.1016/j.jcp.2016.10.070
http://www.sciencedirect.com/science/article/pii/S0021999116305782
http://www.sciencedirect.com/science/article/pii/S0045782514000978
http://www.sciencedirect.com/science/article/pii/S0045782514000978
https://doi.org/https://doi.org/10.1016/j.cma.2014.03.011
https://doi.org/https://doi.org/10.1016/j.cma.2014.03.011
http://www.sciencedirect.com/science/article/pii/S0045782514000978
http://www.sciencedirect.com/science/article/pii/S0045782516301499
http://www.sciencedirect.com/science/article/pii/S0045782516301499
https://doi.org/https://doi.org/10.1016/j.cma.2016.04.004
http://www.sciencedirect.com/science/article/pii/S0045782516301499
http://www.sciencedirect.com/science/article/pii/S0022509616300928
http://www.sciencedirect.com/science/article/pii/S0022509616300928
https://doi.org/https://doi.org/10.1016/j.jmps.2016.02.005
http://www.sciencedirect.com/science/article/pii/S0022509616300928
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5535
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5535
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5535
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5535
https://doi.org/10.1002/nme.5535
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5535


[14] J. Oliver, M. Caicedo, A. Huespe, J. Hernández, E. Roubin, Reduced order modeling strategies
for computational multiscale fracture, Computer Methods in Applied Mechanics and Engineer-
ing 313 (2017) 560 – 595 (2017). doi:https://doi.org/10.1016/j.cma.2016.09.039.
URL http://www.sciencedirect.com/science/article/pii/S0045782516303322

[15] S. Wulfinghoff, F. Cavaliere, S. Reese, Model order reduction of nonlinear homogenization
problems using a hashinshtrikman type finite element method, Computer Methods in Applied
Mechanics and Engineering 330 (2018) 149 – 179 (2018). doi:https://doi.org/10.1016/j.

cma.2017.10.019.
URL http://www.sciencedirect.com/science/article/pii/S0045782517306904

[16] B. A. Le, J. Yvonnet, Q. C. He, Computational homogenization of nonlinear elastic materials
using neural networks, International Journal for Numerical Methods in Engineering 104 (12)
(2015) 1061–1084 (Dec. 2015). doi:10.1002/nme.4953.

[17] M. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, W. Liu, A
framework for data-driven analysis of materials under uncertainty: Countering the curse of
dimensionality, Computer Methods in Applied Mechanics and Engineering 320 (2017) 633 –
667 (2017). doi:https://doi.org/10.1016/j.cma.2017.03.037.
URL http://www.sciencedirect.com/science/article/pii/S0045782516314803

[18] F. Fritzen, M. Fernndez, F. Larsson, On-the-fly adaptivity for nonlinear twoscale simulations
using artificial neural networks and reduced order modeling, Frontiers in Materials 6 (2019) 75
(2019). doi:10.3389/fmats.2019.00075.
URL https://www.frontiersin.org/article/10.3389/fmats.2019.00075

[19] H. Yang, X. Guo, S. Tang, W. K. Liu, Derivation of heterogeneous material laws via data-driven
principal component expansions, Computational Mechanics 64 (2) (2019) 365–379 (2019).

[20] M. B. Gorji, M. Mozaffar, J. N. Heidenreich, J. Cao, D. Mohr, On the potential of recurrent
neural networks for modeling path dependent plasticity, Journal of the Mechanics and Physics
of Solids 143 (2020) 103972 (2020). doi:https://doi.org/10.1016/j.jmps.2020.103972.
URL http://www.sciencedirect.com/science/article/pii/S0022509620302076

[21] D. Huang, J. N. Fuhg, C. Weienfels, P. Wriggers, A machine learning based plasticity model
using proper orthogonal decomposition, Computer Methods in Applied Mechanics and Engi-
neering 365 (2020) 113008 (2020). doi:https://doi.org/10.1016/j.cma.2020.113008.
URL http://www.sciencedirect.com/science/article/pii/S0045782520301924

[22] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M. A. Bessa, Deep learning
predicts path-dependent plasticity, Proceedings of the National Academy of Sciences 116 (52)
(2019) 26414–26420 (2019). arXiv:https://www.pnas.org/content/116/52/26414.full.

pdf, doi:10.1073/pnas.1911815116.
URL https://www.pnas.org/content/116/52/26414

[23] F. Ghavamian, A. Simone, Accelerating multiscale finite element simulations of history-
dependent materials using a recurrent neural network, Computer Methods in Applied Me-
chanics and Engineering 357 (2019) 112594 (2019). doi:https://doi.org/10.1016/j.cma.

2019.112594.
URL http://www.sciencedirect.com/science/article/pii/S0045782519304700

63

http://www.sciencedirect.com/science/article/pii/S0045782516303322
http://www.sciencedirect.com/science/article/pii/S0045782516303322
https://doi.org/https://doi.org/10.1016/j.cma.2016.09.039
http://www.sciencedirect.com/science/article/pii/S0045782516303322
http://www.sciencedirect.com/science/article/pii/S0045782517306904
http://www.sciencedirect.com/science/article/pii/S0045782517306904
https://doi.org/https://doi.org/10.1016/j.cma.2017.10.019
https://doi.org/https://doi.org/10.1016/j.cma.2017.10.019
http://www.sciencedirect.com/science/article/pii/S0045782517306904
https://doi.org/10.1002/nme.4953
http://www.sciencedirect.com/science/article/pii/S0045782516314803
http://www.sciencedirect.com/science/article/pii/S0045782516314803
http://www.sciencedirect.com/science/article/pii/S0045782516314803
https://doi.org/https://doi.org/10.1016/j.cma.2017.03.037
http://www.sciencedirect.com/science/article/pii/S0045782516314803
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
https://doi.org/10.3389/fmats.2019.00075
https://www.frontiersin.org/article/10.3389/fmats.2019.00075
http://www.sciencedirect.com/science/article/pii/S0022509620302076
http://www.sciencedirect.com/science/article/pii/S0022509620302076
https://doi.org/https://doi.org/10.1016/j.jmps.2020.103972
http://www.sciencedirect.com/science/article/pii/S0022509620302076
http://www.sciencedirect.com/science/article/pii/S0045782520301924
http://www.sciencedirect.com/science/article/pii/S0045782520301924
https://doi.org/https://doi.org/10.1016/j.cma.2020.113008
http://www.sciencedirect.com/science/article/pii/S0045782520301924
https://www.pnas.org/content/116/52/26414
https://www.pnas.org/content/116/52/26414
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
https://doi.org/10.1073/pnas.1911815116
https://www.pnas.org/content/116/52/26414
http://www.sciencedirect.com/science/article/pii/S0045782519304700
http://www.sciencedirect.com/science/article/pii/S0045782519304700
https://doi.org/https://doi.org/10.1016/j.cma.2019.112594
https://doi.org/https://doi.org/10.1016/j.cma.2019.112594
http://www.sciencedirect.com/science/article/pii/S0045782519304700


[24] L. Wu, V. D. Nguyen, N. G. Kilingar, L. Noels, A recurrent neural network-accelerated multi-
scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-
proportional loading paths, Computer Methods in Applied Mechanics and Engineering 369
(2020) 113234 (2020). doi:https://doi.org/10.1016/j.cma.2020.113234.
URL http://www.sciencedirect.com/science/article/pii/S0045782520304199

[25] H. J. Logarzo, G. Capuano, J. J. Rimoli, Smart constitutive laws: Inelastic homogenization
through machine learning, Computer Methods in Applied Mechanics and Engineering 373
(2021) 113482 (2021). doi:https://doi.org/10.1016/j.cma.2020.113482.
URL http://www.sciencedirect.com/science/article/pii/S0045782520306678

[26] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural
networks for constitutive modeling, Journal of the Mechanics and Physics of Solids 147 (2021)
104277 (2021). doi:https://doi.org/10.1016/j.jmps.2020.104277.
URL https://www.sciencedirect.com/science/article/pii/S0022509620304841

[27] J. N. Fuhg, C. Bhm, N. Bouklas, A. Fau, P. Wriggers, M. Marino, Model-data-driven constitu-
tive responses: Application to a multiscale computational framework, International Journal of
Engineering Science 167 (2021) 103522 (2021). doi:https://doi.org/10.1016/j.ijengsci.
2021.103522.
URL https://www.sciencedirect.com/science/article/pii/S0020722521000690

[28] Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and acceler-
ated nonlinear modeling of heterogeneous materials, Computer Methods in Applied Mechanics
and Engineering 345 (2019) 1138 – 1168 (2019). doi:https://doi.org/10.1016/j.cma.2018.
09.020.
URL http://www.sciencedirect.com/science/article/pii/S0045782518304729

[29] Z. Liu, C. Wu, Exploring the 3d architectures of deep material network in data-driven multiscale
mechanics, Journal of the Mechanics and Physics of Solids 127 (2019) 20 – 46 (2019). doi:

https://doi.org/10.1016/j.jmps.2019.03.004.
URL http://www.sciencedirect.com/science/article/pii/S0022509618310688

[30] Z. Liu, Deep material network with cohesive layers: Multi-stage training and interfacial failure
analysis, Computer Methods in Applied Mechanics and Engineering 363 (2020) 112913 (2020).
doi:https://doi.org/10.1016/j.cma.2020.112913.
URL http://www.sciencedirect.com/science/article/pii/S0045782520300967

[31] Z. Liu, Cell division in deep material networks applied to multiscale strain localization mod-
eling, Computer Methods in Applied Mechanics and Engineering 384 (2021) 113914 (2021).
doi:https://doi.org/10.1016/j.cma.2021.113914.
URL https://www.sciencedirect.com/science/article/pii/S0045782521002516

[32] S. Gajek, M. Schneider, T. Bhlke, On the micromechanics of deep material networks, Journal
of the Mechanics and Physics of Solids 142 (2020) 103984 (2020). doi:https://doi.org/10.
1016/j.jmps.2020.103984.
URL http://www.sciencedirect.com/science/article/pii/S0022509620302192
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