

Planetary auroras

Planetary auroras

- At the interface between the atmosphere and the magnetosphere
- Provide an overview of the dynamics of the magnetophere
 - Global vs. Local
 - Transient events
 - Response to external and internal drivers (solar wind, etc.)
- Context for in situ measurements

Auroras are an image of the dynamics of the magnetosphere

UV for auroral observations

- Neutral atomic and molecular emissions
 - H2 Lyman and Werner bands Jupiter
 - H Lyman- α

- Less reflected solar light => high contrast
- UV absorption by the atmosphere (hydrocarbons)

An example of what HST can do:

A spacecraft can not be everywhere at the same time

Juno approaching Jupiter

- Jupiter's response to the solar wind was unclear
- Juno served as a solar wind monitor
- HST provided the UV observations

Juno approaching Jupiter: A Dawn storm

- A study combining Juno, HST, Hisaki and ground based telescopes.
- A dawn storm was observed at the arrival of a SW shock, but it was also partially linked to internal processes
- Evidence of heating of the Io plasma torus
- A window on the plasma and energy transport in the magnetosphere of Jupiter

Long term monitoring

- Several HST campaigns have been carried out to support the Juno mission.
- Monitoring the evolution of the different parts of the aurora.
- ► Identification of "classes" of auroral morphologies.

Dawn storms: Juno close to Jupiter

HST allowed us to track the evolution of dawn storms after Juno moved too far away.

PJ6

Dawn storms: Juno close to Jupiter

These observations revealed that Jovian dawn storms share a lot of similarities with terrestrial sub-storms.

Magnetopause monitoring

- The size magnetopause changes
- Juno can detect magnetopause crossings while HST looks at the aurora
- Some auroral brightenings are typical of compressed states while others are not.

HST observations when Juno in the distant magnetosphere

- HST observations during:
 - Dawn storms with Juno inside (Yao et al. 2020) or outside the reconnection X-line (Swithenbank-Harris et al. 2021)
 - Juno observations of drizzle (i.e. small scale) reconnection (Guo et al. 2021)
 - Juno observations of ULF- waves (large scale Alfvén waves) (Pan et al. 2020).
 - Juno observations of EMIC waves while XMM-Newton observed quasi-periodic flares in X-rays (Yao et al. 2021)

Summary

- HST is a crucial tool to explore and understand the auroras of Jupiter (since 1992).
- Large HST campaigns in support of the Juno mission
 - Multi-instrument studies
 - Temporal context
 - Spatial context