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Abstract

Siting Strategies for Variable Renewable Generation Assets in Capacity
Expansion Planning Frameworks

by David-Constantin RADU

In the eve of a climate crisis generated by the sustained combustion of fossil fuels
across various economic sectors, decarbonising worldwide power systems has been
a cornerstone in reaching net-zero targets in the upcoming decades. To this end,
widely-available renewable energy sources (RES) such as solar irradiance or wind
have been recently harnessed at scale in order to replace fossil-based generators in
the electricity mix of power systems around the world. However, such resources
are inherently variable on time scales ranging from minutes to years and integrating
them in power systems typically complicates planning and operational procedures.
Several solutions have been advocated to alleviate these issues, including the large-
scale deployment of electricity storage systems or the implementation of demand re-
sponse programs. Alternatively, since RES are heterogeneously-distributed in space
and time, it has been suggested that siting RES electricity production assets so as to
exploit this diversity may reduce the aggregate output variability of power plants
as well as the residual electricity load (i.e., total load minus renewable production).
The concept of renewable sources spatiotemporal complementarity formalises this
idea and makes for the chief concept investigated in this thesis.

The manuscript starts by revealing how connecting remote RES sites could lead to
reduced probabilities of low-generation events. Then, a framework explicitly de-
signed to assess the spatiotemporal complementarity between geographically dis-
persed RES assets is introduced and leveraged to devise optimisation models seek-
ing to identify deployment patters with maximum complementarity among sites.
Once an optimisation problem for siting RES assets based on complementarity cri-
teria is made available, the value of spatiotemporal complementarity for power sys-
tems is assessed. Essentially, this is made possible via a multi-stage approach that
works as follows. In the first stage, a highly-granular siting problem identifies a
suitable set of sites where RES assets could be deployed according to a pre-specified
criterion (e.g., spatiotemporal complementarity, output maximisation). In the sec-
ond stage, the subset of previously identified sites is passed to a capacity expansion
planning framework that sizes the power generation, transmission and storage as-
sets that should be deployed and operated in order to satisfy pre-specified electricity
demand levels at minimum cost. Furthermore, a third stage may also be leveraged
should a more accurate estimation of the impact of different siting criteria on the
operation of power systems is sought. This stage is formulated as a classical unit
commitment and economic dispatch problem and, given the capacities of power
generation, transmission and storage assets resulted from the second stage, provides
a more detailed view on the daily operation of the power system assets. Finally, in-
spired by the workings of the aforementioned routine, a method to reduce the spatial
dimension and decrease the computational burden of capacity expansion planning
problems while preserving a detailed representation of RES assets is proposed.
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Chapter 1

Introduction

First, this chapter frames the research questions pursued in the thesis in the context of the on-
going climate crisis. It starts by discussing the role of power systems in the decarbonisation
efforts of societies before addressing the need for planning tools required to understand this
process in its full complexity. The concept of spatiotemporal renewable resource complemen-
tarity is then introduced in the context of renewable generation asset siting decisions. Then,
the contributions of the thesis are briefly stated and a detailed description of the structure of
the manuscript follows. Finally, the list of peer-reviewed publications forming the core of the
current manuscript is provided.
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1.1 Context and Motivation

In times characterized by the socio-economic effects of a coronavirus pandemic, the
world appears to be on the brink of another crisis that affects the climate system as
a whole (e.g., the atmosphere, the oceans, the land masses or the biosphere, as well
as the interaction between them) and has long been the subject of a fierce debate
on whether it has anthropogenic roots or not. In this regard, the Sixth Assessment
Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) recently
concluded that “it is unequivocal that human influence has warmed the atmosphere,
ocean and land” [1].

The warming of these climate elements is a direct consequence of the fact that the
natural carbon sinks (e.g., oceans, forestry) could not keep up with the emissions
associated with the ever-increasing use of fossil fuels since the start of the indus-
trial revolution in the 1850s. This imbalance has steadily led to an accumulation of
greenhouse gases (GHG, i.e., mainly CO2, CH4 and N2O) in the atmosphere which,
in turn, started the process of climate system warming. In the same report [1], the
IPCC quantified some of the effects of this compounded stock of GHG. On average,
the global surface temperature in the first two decades of this century has been 1 °C
higher than at the end of the 1800s. In addition, more frequent and extreme heat
waves, heavy precipitation events, as well as agricultural and ecological droughts
are all side-effects (with high confidence in the anthropogenic factor) of climate sys-
tem warming. All these effects are expected to persist over the current century, given
the inertia of the climate system. Nonetheless, in order to mitigate the damage
inflicted upon it, corrective measures (i.e., limiting GHG emissions) are necessary
across all economic sectors and with a global reach.

The multi-lateral agreement at the 21st Conference of Parties (COP21) of the UN-
FCCC marked an unprecedented milestone in the fight against climate change [2].
This agreement came as a hybrid of legally binding and non-binding provisions for
tackling the climate crisis and was adopted by 196 countries with the chief goal of
limiting the warming of the global climate system by 2100 to “well below 2 °C” com-
pared to pre-industrial levels. Out of the five scenarios proposed in the AR6 in order
to assess the climate response to corrective measures throughout the rest of the cen-
tury, two of these were found to limit the increase of the global surface temperature
in line with the COP21 targets. In both these scenarios, yearly GHG emission rates
are curbed after 2025, net-zero CO2 emissions are reached around or shortly after
2050 and negative CO2 emissions are required for the remainder of the century.

Reaching net-zero energy systems in a matter of decades is going to be a daunt-
ing task. The International Energy Agency (IEA) recently commented on the im-
plications of such an endeavour in their “Net-Zero by 2050” report [3]. This study
clearly states that “the path to net-zero emissions is narrow” and that it requires
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swift action on multiple levels, from the deployment of renewable energy technolo-
gies (e.g., wind, solar photovoltaics), to the electrification of energy-intensive and
currently fossil-based sectors (e.g., transportation), the development of cost-efficient
storage technologies or the advent of carbon-free fuels (e.g., hydrogen) and the tran-
sition towards more efficient energy utilization in the residential and commercial
sectors. The “World Energy Transitions Outlook” study of the International Renew-
able Energy Agency (IRENA) doubles down on this idea and emphasizes the fact
that current national and regional climate pledges “do no more than stabilise global
emissions” [4]. It also draws attention to the critical importance of limiting invest-
ments in the oil and gas industries, phasing out fossil fuel subsidies across sectors
(from coal-based power generation to aviation fuels) and being pragmatic with re-
spect to the role of carbon capture technologies in the decarbonisation of energy
systems. Similar pathways are envisioned by stakeholders even at regional levels.
The “Net-Zero America” study of the Andlinger Center for Energy and the Environ-
ment at Princeton University concludes that curbing GHG emissions in the USA re-
quires “large-scale mobilization of capital, policy and societal commitment” [5]. The
authors suggest that the transition towards a net-zero economy relies on extensive
efforts in six directions, namely, electrification and end-use energy efficiency, invest-
ment in power generation and transmission capacity, adoption of zero-carbon fuels
and feedstocks, CO2 capture and utilization, reduced emissions of GHGs other than
CO2 and enhancing the natural carbon sinks. Similarly, the “14th Domestic Five-
Year-Plan” report of the fastest growing and second largest economy in the world
(China) envisions a series of measures to achieve carbon neutrality in its economy
by 2060 [6]. Among others, halting any new coal-based power plant project, accel-
erating the development of wind-, solar- or hydro-based projects, as well as incor-
porating a carbon pricing system by 2030 when domestic CO2 would have peaked
are considered [7]. At European level, the 2019 “Clean Energy for all Europeans” [8]
and the 2021 “European Green Deal” [9] packages gather a set of policy initiatives
paving the way towards the implementation of a long-term climate strategy of the
European Union (EU) aiming at carbon-neutrality by 2050. The actions suggested in
these packages span across multiple economic sectors, from energy transformation
to industry, transport or agriculture and are the cornerstone of a recently drafted Eu-
ropean Climate Law supposed to safeguard their implementation towards 2050 and
beyond.

1.1.1 The Role of Power Systems in the Decarbonisation of Economies

One of the common denominators across all these studies [3]–[5], [7], [9] is the fact
that power and heat generation have to be at the forefront of decarbonisation ef-
forts. According to the 15th Special Report of the IPCC [10], electricity and heat pro-
duction was the economic sector with the highest contribution to the global GHG
emissions in 2010, with a share of 25%. This is not particularly surprising consid-
ering that coal and natural gas were, the same year, ranked as the first and third
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sources of electricity production worldwide, with 40.3% and 22.5% shares, respec-
tively [11]. However, over the following ten years alone, electricity generation from
renewable sources (RES) has gained substantial ground. While RES were covering
a share of 20% of total electricity generation in 2010, ten years later they were sup-
plying 29% (in addition to the 10% covered by other low-carbon generation, such
as nuclear power plants) [3]. This was made possible mainly via a swift adoption
of wind and solar photovoltaics (PV). More specifically, the capacity of the former
technology went from 180 GW to 690 GW between 2010 and 2020, while an astound-
ing 17-fold uptake in solar PV capacity (40 GW to 710 GW) happened between the
same two years [12]. Nonetheless, according to the “Net-Zero 2050” report of the
IEA, such deployment rates should be consistently maintained over the next three
decades to stand a chance of meeting the climate neutrality targets in due time [3].
That is, while global wind and solar PV additions in 2020 represented 114 GW and
134 GW, respectively, they should reach 350 GW and 630 GW, respectively, by mid-
century. Such deployment efforts would enable 88% of the electricity generation to
be supplied by RES by 2050, in addition to 43% of residential heating needs, 35%
of industrial heat requirements and 8% of road transport energy needs. Practically,
power systems would transition from the economic sector with the biggest share of
GHG emissions to one that relies entirely on low-carbon generation technologies.

A key aspect to consider when designing such systems is that, as stated in [13], the
power sector “not only contributes to climate change but is also vulnerable to cli-
mate change”. This vulnerability of power systems against the various effects of the
climate crisis has recently been showcased in Africa (when Cyclone Idai forced the
South-African Transmission System Operator (TSO) to begin shedding load) [14],
Texas (where a recent cold spell caused over 30 GW of dispatchable capacity to go
offline, which resulted in massive load shedding across the state) [15] or, more re-
cently, Northwestern Europe (where floods caused several substations to trip, thus
leaving thousands without electricity for sustained periods of time) [16]. Thus, with
the inevitable advent of weather-driven generation technologies (e.g., wind or solar
PV, among others), the vulnerability of power systems to climate change and its ef-
fects becomes a relevant issue to consider when planning the future energy systems
[17].

1.1.2 Centralised versus Distributed Power System Development

The development of power systems has historically happened in a centralised fash-
ion, yet more recently the distributed generation paradigm has started to gain ground
and play a crucial role in the context of their decarbonisation. On the one hand,
the centralised development paradigm refers to the production of electricity through
large-scale generation facilities connected to high-voltage transmission lines and
usually located far from end-consumers. This paradigm has mainly been driven
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by i) the economies of scale and the potential for efficiency gains in thermal gen-
eration units (e.g., coal, nuclear or gas-fired power plants which could be scaled
up while decreasing the cost of producing electricity), ii) the low operational costs
of transmission technologies and iii) the necessity of locating polluting (e.g., coal-
based) facilities far away from populated areas. It is worth noting that, even though
this paradigm relied extensively on the development of large-scale thermal or hydro
generation facilities, more recent offshore wind farms or gigawatt-scale solar PV or
onshore wind parks still constitute centralised generation facilities.

On the other hand, the distributed development paradigm refers to the generation
of electricity via a series of technologies located in the vicinity of the place where it
is consumed. These technologies include, e.g., solar PV panels, combined heat and
power units, fuel cells or Diesel-fuelled back-up generators, and can serve anything
from a single home to large industrial or residential facilities. In the latter case, dis-
tributed generation units are usually part of a microgrid (operating in island mode
or connected to the distribution system), as well. The drivers behind the distributed
development paradigm include, among others, i) the possibility of energy access in
areas where the establishment of centralised facilities and transmission infrastruc-
ture is not practical, ii) the potential of a more reliable energy supply, as it enables
consumers to hedge against network outages or iii) the provision of an alternative
to distribution network expansion and the sense of energy independence and eco-
nomic hedging it provides to end-customers.

1.1.3 The Relevance of Planning Tools in Decarbonisation Efforts

Regardless of whether the development of the power system occurs in a centralised
or distributed fashion, the process of power (or, more generally, energy) systems
planning involves a complex blend of technical, economic and policy considerations
and often times drives the development course of the underlying system for sev-
eral decades. As such, mathematical models have been developed in order to assist
stakeholders in the process and inform them with respect to the benefits and risks
of certain planning decisions or development pathways [18]. In time, these mod-
els have evolved into powerful tools for the design, analysis and implementation
of energy system decarbonisation policies. Such models are typically referred to as
expansion planning models and usually focus on a specific subset of power system
assets, e.g., generation technologies (via generation expansion planning [19]) or trans-
mission infrastructure (via transmission expansion planning [20]). Another approach
(and the approach followed in this thesis) tackles the planning of power systems by
simultaneously accounting for multiple classes of power system assets, e.g., gener-
ation, transmission or storage technologies [21], in a distinct class of problems that
will be referred to as capacity expansion planning problems (or frameworks), or CEPs.
It should be noted that the planning in CEP refers to investment decisions in the
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long term and not to the scheduling of units on shorter time frames, e.g., day- or
week-ahead.

In broad terms, the capacity expansion planning (CEP) problem provides informa-
tion about which technologies (and in which quantities) are necessary to supply a
given demand under certain technical, economic or policy constraints. This prob-
lem is formulated as an optimization problem that can have a monetary objective
(e.g., cost minimization or profit maximization) or can seek to optimize some non-
monetary indicator (e.g., minimizing CO2 emissions or the installed capacity of a
given technology). Its constraints model i) the physical processes governing the op-
eration of the system (e.g., power flows in transmission lines), ii) the technical limits
of certain technologies (e.g., ramp rates of dispatchable generation units), as well
as iii) potential economic or policy considerations (e.g., monetary or emissions bud-
gets). Depending on how accurate the representation of these modelling aspects is,
the CEP problem can be expressed through a wide range of formulations, e.g., from
simplified continuous linear formulations preserving the basic features of the sys-
tem (and often times the most relevant features in a planning context) to non-convex
non-linear formulations emulating as accurately as possible the components of the
system, as well as their dynamics and interaction [19], [20]. With respect to the objec-
tive of the underlying investment decisions, the CEP problems are usually classified
in two categories. On the one hand, the central planner approach seeks to maximize
social welfare resulting from a given (set of) investment decision(s). In this class of
problems, the central planner is an entity assumed to control the planning and op-
eration of all power system assets (e.g., transmission, generation, storage, etc.). On
the other hand, the decentralised approach seeks to maximize profits of market agents
(i.e., producers, consumers) in a competitive environment overseen by an entity in
charge of controlling the market, i.e., the market operator [22]. The CEP problems
proposed and leveraged in this thesis are cast as continuous linear programs and
follow the central planner approach.

Throughout the literature, there exists plenty of tools implementing CEP problems
and whose implementations are at different stages of development. A brief sum-
mary of such tools is provided in the following. A familiar name in the industry is
The Integrated MARKAL EFOM Model (TIMES) developed by the IEA [23], which
is implemented in GAMS and comes with a GNU v3 license and applications cov-
ering a wide range (from global to local) of spatial scales [24]. In addition, the Bal-
morel framework (also implemented in GAMS and) published under an ISC license
[25] has long been used for planning of energy systems over long temporal hori-
zons. The tool has been used for assessments in Central America [26] or Europe
[27], [28], among others. Similarly, the OSeMOSYS framework [29], implemented in
GNU Mathprog and released under a Apache 2.0 license, has been used for over a
decade for long-term planning studies at European [30] and even global scales [31].
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More recently, the Python-based PyPSA framework was released as a toolbox focus-
ing on long-term CEP problems with high spatial and temporal resolutions [32]. It
comes with an MIT license and was leveraged in multiple large-scale applications in
Europe [33], [34], China [35], Africa [36] or India [37]. PyPSA is also the modelling
framework on top of which the contributions of this thesis are built. Then, Calliope
also comes as a Python-based open-source framework for planning energy systems
with high spatial and temporal resolutions [38]. It is released under an Apache 2.0
license and has been used for large-scale studies in Europe [39], Africa [40] or even
at district level [41]. Furthermore, GenX is a Julia-based CEP framework recently
made available under a GNU v2 license [42], with case studies in the US [5] and Eu-
rope [43]. More recently, the REISE framework, implemented in Julia and released
under a MIT license [44] has also received a great deal of attention with a US-focused
case study [45]. The proposed list of selected tools is by no means exhaustive, yet
it contains frameworks that meet the following criteria: i) they are provided with
open-source licenses, ii) they are relatively mature in their development timeline
(i.e., peer-reviewed studies using them are available) and iii) they are developed
mainly for planning purposes (as opposed to frameworks that are mainly used for
operational studies, e.g., Dispa-SET [46] or PowerModels.jl [47]). For a more com-
prehensive list of such frameworks, the reader is directed to the work of Ringkjøb et
al [48].

1.1.4 Siting of Renewable Generation Assets in Planning Studies

The relatively recent uptake of RES in power systems across the world [12] has ren-
dered their planning an increasingly complex task. The chief reason behind this is-
sue is the variability of the underlying resources (e.g., wind speed or direction, solar
irradiance) over both short (i.e., minutes to hours) [49] and long (years to decades)
[50] time frames. This inherent variability has costly consequences on the design and
operation of the system (e.g., the activation of fast-responding dispatchable genera-
tion in times of renewable resource scarcity in order to match the electricity demand)
and has prompted researchers to acknowledge the critical importance of spatially-
and temporally-resolved models in long-term planning studies. In one of the first
article on this topic, Pfenninger et al. conclude that “resolving time and space be-
comes important to accurately answer questions about the energy system” [51]. In
addition, Wohland et al. state that “improved spatial planning [...] offers multiple
options to mitigate [...] renewable generation variability” [50]. However, the ob-
vious issue arising with spatially- and temporally-resolved models is the resulting
problem size which, when it doesn’t translate into instances that are intractable alto-
gether, leads to impractical solving times [52].

In consequence, modellers have resorted to various techniques that enabled them
to reduce the size of resulting problems. From a temporal standpoint, plenty of
research has been conducted to develop time series reduction techniques able to
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identify subsets of data containing the most relevant features from a power system
planning standpoint [53]. Less work has been conducted on spatial dimension re-
duction, though, even though the authors of [51] suggest that the “spatial detail may
be critically important for renewables: their economic potential and generation costs
depend greatly on their location”. Nevertheless, expansion planning studies for sys-
tems with high shares of RES have been usually tackled by spatially aggregating
renewable resources at rather coarse resolutions, e.g., at country-level (that is, the
wind or solar resource is represented via one single time series for an entire coun-
try). Examples of such studies abound in the literature and they all suffer from the
same drawback, as renewable resources cannot be accurately modelled in countries
or regions with otherwise diverse RES regimes across their territory, such as Ger-
many or France in [54], [55] or Europe or any other region in [56]. The impact of this
drawback on the design of power systems and the incurred costs has been assessed
in recent years in a series of publications.

For instance, Krishnan et al. [57] revealed that representing RES via one time se-
ries per US state (i.e., 48 profiles per RES technology, as the study focuses on the
contiguous territory) leads to sub-optimal results, with overall less renewable gen-
eration capacity and more conventional generation capacity compared to the set-up
where RES are modelled via the native spatial resolution of the underlying model
(i.e., 356 profiles for onshore wind and 134 profiles for solar PV, respectively). An-
other work [58] investigated the same issue, this time at a spatial scope covering
the state of California. They conclude that using highly-granular RES data (in this
case, the locations of individual sites were determined based on a previous screening
step) leads to 10% cost savings and 20% curtailment mitigation in systems with in-
creased RES penetration levels compared to set-ups where RES assets are modelled
at a county level. Then, a similar study performed by Hörsch and Brown also reveals
up to 10% cost differences and interesting wind-solar trade-offs between model in-
stances based on the European power system where RES are modelled via 37 (i.e.,
one profile per country) or 362 profiles [59]. More recently, a study by Frysztacki
et al. [60] further supports these findings with a study focusing on the European
power system. They confirm the findings of [57], [59] and point out that modelling
RES via 1024 different profiles leads to 10.5% lower system costs and significant in-
stalled capacity differences compared to more simplified set-ups using only 37 dis-
tinct profiles per renewable resource. Thus, all these studies point out the value of
spatially-resolved RES modelling as a key feature in achieving proper siting of such
assets in expansion planning frameworks.

1.1.5 On the Spatiotemporal Complementarity of Renewable Resources

A conventional method for siting RES assets considers resource quality (i.e., the av-
erage capacity factor or the expected power output) as the chief criterion once land
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eligibility constraints are met. This siting strategy has been a mainstay in the indus-
try over the last decades, as can be observed for existing wind [61] or solar PV [62]
developments. In addition, in the context of the recent European Commission plan
of developing up to 450 GW of offshore wind across European Seas [63], the lion’s
share of this capacity is expected to be developed in a relatively limited area within
the North Sea [64]. Such deployment strategies are expected to lead to complex in-
tegration issues given the variable nature of RES over both short- and long-term
time frames. A familiar example of such an issue is the occurrence of sustained
periods (i.e., days to weeks) of system-wide renewable generation shortage, also
dubbed “dunkelflaute” [65]. With RES assets clustered in areas with similar weather
regimes, a “dunkelflaute” event could easily render the entire power system depen-
dent on fossil fuel-based generation and thus curb its decarbonisation attempts. In
the opposite situation, during times with high RES-based generation levels, over-
production of these units needs to be shifted in time in order to avoid curtailment
and ensure their economic profitability.

Several solutions have been proposed to alleviate these issues and foster the large-
scale integration of RES units, e.g., investment in storage assets [66] or developing
demand response capabilities [67]. An alternative to these solutions proposes to
spatially distribute RES assets and take advantage of the different weather regimes
available such that the variability of the aggregate output, as well as the residual
demand are minimised [68]. This idea, empirically observed in the operation of
power systems as a “smoothing effect” [69], has led to the concept and investiga-
tion of (spatiotemporal) complementarity of renewable resources [70]. It is worth
specifying clearly at this stage that, throughout this thesis, locations are considered
complementary if they experience simultaneous low-production events very rarely.

1.2 Thesis Structure and Contributions

From here on, the manuscript is structured as follows.

The topic of renewable resource complementarity is first discussed in Chapter 2.
In this chapter, a first application-related contribution of this thesis is represented
by a comparison of wind regimes in Western Europe and Greenland, respectively.
The analysis is conducted by leveraging a regional atmospheric model with proven
results in polar conditions and reveals that Southern Greenland local climate pat-
terns exhibit specific characteristics that facilitate extensive wind generation levels
at times of resource scarcity in Europe.

The first methodological contribution of this thesis is showcased in Chapter 3,
where the critical time windows framework is introduced and then leveraged to
site RES assets based on resource complementarity criteria. The usefulness of this
method in identifying deployment patterns that maximise complementarity among
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RES sites is shown in a case study with roughly 300 candidate wind locations in con-
tinental Western Europe and Southern Greenland and ten years of reanalysis data
with hourly resolution. Deployment patterns maximising complementarity with
and without deployment constraints are proposed and analysed before a compar-
ison with more conventional siting strategies opting for the candidate locations with
the highest average capacity factors is conducted.

Then, Chapter 4 begins by defining the second application-related contribution of
the thesis, i.e., evaluating the impact of RES siting strategies on the design and eco-
nomics of power systems. To this end, a two-stage method is developed as a sec-
ond methodological contribution of the current work. In the first stage, a highly-
granular siting problem is solved in order to identify a suitable subset of candidate
sites where RES power plants could be deployed. Then, in the second stage, the
subset of locations selected in the first stage is passed to a capacity expansion plan-
ning framework that sizes the power generation, transmission and storage assets
that should be deployed in order to satisfy pre-specified electricity demand levels at
minimum cost subject to technical and policy constraints. The proposed case study
makes for a third application-related contribution of this thesis, as it investigates
siting options and their associated impact on planning decisions for the large-scale
deployment of offshore wind throughout European Seas in accordance with recent
European Commission guidelines.

Chapter 5 builds upon the investigation proposed in Chapter 4 and provides a fourth
application-related contribution. More specifically, a third stage formulated as a
mixed-integer linear program accounting for unit commitment costs and constraints
of relevant power generation assets is hereby leveraged to assess the impact of sit-
ing outcomes on the short-term operation of power systems. In addition, a set of
modelling aspects leveraged in Chapter 4 are refined. For example, multiple renew-
able sources are considered in the siting stage (onshore and offshore wind), while
a higher-resolution network representation, as well as an enhanced modelling of
power flows in transmission lines are leveraged in the sizing stage.

Chapter 6 proposes a method to reduce the spatial dimension and decrease the com-
putational requirements of capacity expansion planning problems while preserving
a detailed representation of RES assets. This is presented as the third methodolog-
ical contribution of the thesis and is achieved by leveraging a heuristic that can be
described as follows. First, a linear program is used to screen a set of candidate sites
and identify sites that have little impact on optimal system design, which are then
discarded. Then, information about the remaining sites is used as input data in a
capacity expansion planning framework that determines the installed capacities of
generation, storage and transmission assets leading to a minimum-cost system con-
figuration. The proposed method makes it possible to reduce the size of the capacity
expansion planning problem, and therefore enables memory and computation time
savings.
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Chapter 7 concludes the manuscript and proposes future work avenues. A common
software-related contribution across all chapters of this thesis is represented by the
development of open-data, open-source tools for power system planning and op-
erations purposes. These tools include a comprehensive data-preprocessing pack-
age [71], a module comprising the integer programming complementarity-based
siting formulation, as well as a set of solution methods to tackle the problem [72]
and a set of methods required for their integration in expansion planning studies
[73]. Then, the curation and processing work leading to the datasets summarized
in Appendix A represent data-related contribution fostering the analysis of realistic
Europe-centred case studies across Chapters 4, 5 and 6 of this manuscript. Finally,
the work gathered in Appendix B constitutes an additional modelling contribution,
as it enables a highly-granular representation of the European hydro units within
power system expansion planning, as well as operations models.

1.3 List of Publications

The following peer-reviewed publications gather the contributions and define the
structure of the thesis as stated in the previous sections:

• David-Constantin Radu, Mathias Berger, Raphaël Fonteneau, Simon Hardy,
Xavier Fettweis, Marc Le Du, Patrick Panciatici, Lucian Balea, Damien Ernst,
“Complementarity Assessment of South Greenland Katabatic Flows and West
Europe Wind Regimes”, Energy 175, 393-401, 2019, https://doi.org/10.1016/
j.energy.2019.03.048

• Mathias Berger1, David-Constantin Radu1, Raphaël Fonteneau, Robin Henry,
Mevludin Glavic, Xavier Fettweis, Marc Le Du, Patrick Panciatici, Lucian Balea,
Damien Ernst, “Critical Time Windows for Renewable Resource Complemen-
tarity Assessment”, Energy 198, 117308, 2020, https://doi.org/10.1016/j.
energy.2020.117308

• David-Constantin Radu, Mathias Berger, Antoine Dubois, Raphaël Fonteneau,
Hrvoje Pandžić, Yury Dvorkin, Quentin Louveaux, Damien Ernst, “Assess-
ing the Impact of Offshore Wind Siting Strategies on the Design of the Euro-
pean Power System”, Applied Energy 305, 117700, 2022, https://doi.org/
10.1016/j.aplen.2021.117700

• David-Constantin Radu, Antoine Dubois, Mathias Berger, Damien Ernst, "Model
Reduction in Capacity Expansion Planning Problems via Renewable Gener-
ation Site Selection," 2021 IEEE Madrid PowerTech, 2021, pp. 1-6, https:

//doi.org/10.1109/PowerTech46648.2021.9495027

• Mathias Berger, David-Constantin Radu, Damien Ernst, “On the role of re-
source complementarity in siting renewable power plants and its impact on

1Equally contributing authors.

https://doi.org/10.1016/j.energy.2019.03.048
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https://doi.org/10.1016/j.energy.2020.117308
https://doi.org/10.1016/j.energy.2020.117308
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https://doi.org/10.1016/j.aplen.2021.117700
https://doi.org/10.1109/PowerTech46648.2021.9495027
https://doi.org/10.1109/PowerTech46648.2021.9495027
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power system design and economics”, in “Complementarity of variable re-
newable energy sources”, Jakub Jurasz & Alexandre Beluco (Eds.), ISBN: 978-
0-323-85527-3, April 2022

In addition, the following peer-reviewed publications have been published during
the course of the doctoral studies, yet they are not included in the current thesis:

• Mathias Berger, David-Constantin Radu, Raphaël Fonteneau, Thierry Deschuyte-
neer, Ghislain Detienne, Damien Ernst, “Centralised Planning of National In-
tegrated Energy System with Power-to-Gas and Gas Storages”, accepted in
11th Mediterranean Conference on Power Generation, Transmission, Distri-
bution and Energy Conversion (Medpower2018), Dubrovnik, Croatia, 2018,
https://doi.org/10.1049/cp.2018.1912

This paper proposes an optimisation-based framework to tackle long-term centralised
planning problems of integrated energy systems with bi-directional electricity-gas car-
riers coupling under various policy constraints. The framework is leveraged to gain
insight into possible configurations of the future Belgian energy system, and identify
the cost-optimal energy mix as well as short and long-term storage requirements to
satisfy CO2 emissions reduction targets. Results shed light on the economics of a tran-
sition to a low-carbon energy system and reveal the potential of power-to-gas and gas
storage to help achieve ambitious emissions reduction goals.

• Mathias Berger, David-Constantin Radu, Raphaël Fonteneau, Thierry Deschuyte-
neer, Ghislain Detienne, Damien Ernst, “The Role of Power-to-Gas and Car-
bon Capture Technologies in Cross-Sector Decarbonisation Strategies”, Elec-
tric Power Systems Research 180, 106039, 2020, https://doi.org/10.1016/j.
epsr.2019.106039

This paper proposes an optimisation-based framework to tackle long-term centralised
planning problems of multi-sector, integrated energy systems including electricity, hy-
drogen, natural gas, synthetic methane and carbon dioxide. The model selects and sizes
the set of power generation, energy conversion and storage as well as carbon capture
technologies minimising the cost of supplying energy demand in the form of electricity,
hydrogen, natural gas or synthetic methane across the power, heating, transportation
and industry sectors whilst accounting for policy drivers, such as energy indepen-
dence, carbon dioxide emissions reduction targets, or support schemes. The usefulness
of the model is illustrated by a case study evaluating the potential of sector coupling
via power-to-gas and carbon capture technologies to achieve deep decarbonisation tar-
gets in Belgium. Results indicate that power-to-gas can only play a minor supporting
role in cross-sector decarbonisation strategies in Belgium, as electrolysis plants are de-
ployed in moderate quantities whilst methanation plants do not appear in any studied
scenario. However, given the limited renewable potential, post-combustion and direct
air carbon capture technologies clearly play an enabling role in any decarbonisation
strategy, but may also exacerbate the dependence on fossil fuels.

https://doi.org/10.1049/cp.2018.1912
https://doi.org/10.1016/j.epsr.2019.106039
https://doi.org/10.1016/j.epsr.2019.106039
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• Mathias Berger, David-Constantin Radu, Thierry Deschuyteneer, Ghislain De-
tienne, Aurore Richel, Damien Ernst, “Remote Renewable Hubs for Carbon-
Neutral Synthetic Fuel Production”, Frontiers in Energy Research 9:671279,
2021, https://doi.org/10.3389/fenrg.2021.671279

This paper studies the economics of carbon-neutral synthetic fuel production from re-
newable electricity in remote areas where high-quality renewable resources are abun-
dant. To this end, a graph-based optimisation modelling framework directly applica-
ble to the strategic planning of remote renewable energy supply chains is proposed.
More precisely, a hypergraph abstraction of planning problems is introduced, wherein
nodes can be viewed as optimisation subproblems with their own parameters, vari-
ables, constraints and local objective. Nodes typically represent a subsystem such as
a technology, a plant or a process. Hyperedges, on the other hand, express the con-
nectivity between subsystems. The framework is leveraged to study the economics of
carbon-neutral synthetic methane production from solar and wind energy in North
Africa and its delivery to Northwestern European markets. The full supply chain is
modelled in an integrated fashion, which makes it possible to accurately capture the
interaction between various technologies on an hourly time scale. Results suggest
that the cost of synthetic methane production and delivery would be slightly under
150 /MWh (higher heating value) by 2030 for a system supplying 10 TWh annually
and relying on a combination of solar photovoltaic and wind power plants, assuming a
uniform weighted average cost of capital of 7%. A comprehensive sensitivity analysis
is also carried out in order to assess the impact of various techno-economic parameters
and assumptions on synthetic methane cost, including the availability of wind power
plants, the investment costs of electrolysis, methanation and direct air capture plants,
their operational flexibility, the energy consumption of direct air capture plants, and
financing costs. The most expensive configuration (around 200 /MWh) relies on solar
photovoltaic power plants alone, while the cheapest configuration (around 88 /MWh)
makes use of a combination of solar PV and wind power plants and is obtained when
financing costs are set to zero.

• Priyanka Shinde, Ioannis Boukas, David-Constantin Radu, Miguel Manuel de
Villena, Mikael Amelin, “Analyzing Trade in Continuous Intra-Day Electricity
Market: An Agent-Based Modeling Approach”, Energies 14(13), 2021, https:
//doi.org/10.3390/en14133860

In this paper, we propose an agent-based modelling framework to analyse the behaviour
and the interactions between renewable energy sources, consumers and thermal power
plants in the European Continuous Intra-day (CID) market. Additionally, we propose
a novel adaptive trading strategy that can be used by the agents that participate in
CID market. The agents learn how to adapt their behaviour according to the arrival
of new information and how to react to changing market conditions by updating their
willingness to trade. A comparative analysis was performed to study the behaviour of
agents when they adopt the proposed strategy as opposed to other benchmark strategies.

https://doi.org/10.3389/fenrg.2021.671279
https://doi.org/10.3390/en14133860
https://doi.org/10.3390/en14133860
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The effects of unexpected outages and information asymmetry on the market evolution
and the market liquidity were also investigated.

• Mathias Berger, David-Constantin Radu, Antoine Dubois, Hrvoje Pandžić,
Yury Dvorkin, Quentin Louveaux, Damien Ernst, “Siting Renewable Power
Generation Assets with Combinatorial Optimization”, Optimization Letters,
2021, https://doi.org/10.1007/s11590-021-01795-0

This paper studies the problem of siting renewable power generation assets using large
amounts of climatological data while accounting for their spatiotemporal complemen-
tarity. The problem is cast as a combinatorial optimisation problem selecting a pre-
specified number of sites so as to minimise the number of simultaneous low electricity
production events that they experience relative to a pre-specified reference production
level. It is shown that the resulting model is closely related to submodular optimisation
and can be interpreted as generalising the well-known maximum coverage problem.
Both deterministic and randomised algorithms are discussed, including greedy, local
search and relaxation-based heuristics as well as combinations of these algorithms. The
usefulness of the model and methods is illustrated by a realistic case study inspired by
the problem of siting onshore wind power plants in Europe, resulting in instances fea-
turing over ten thousand candidate locations and ten years of hourly-sampled meteoro-
logical data. The proposed solution methods are benchmarked against a state-of-the-art
mixed-integer programming solver and several algorithms are found to consistently
produce better solutions at a fraction of the computational cost. The physical nature of
solutions provided by the model is also investigated, and all deployment patterns are
found to be unable to supply a constant share of the electricity demand at all times.
Finally, a cross-validation analysis shows that, except for an edge case, the model can
successfully and reliably identify deployment patterns that perform well on previously
unseen climatological data from historical data spanning a small number of weather
years.

https://doi.org/10.1007/s11590-021-01795-0
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Chapter 2

Quantifying the Complementarity
of Renewable Resources

One promising solution for decarbonising economies worldwide consists in harnessing high-
quality variable renewable energy resources (RES, e.g., wind or solar irradiation) in remote
locations and using transmission infrastructure to send the power towards end-users. In this
context, the current chapter proposes a comparison of wind regimes in Western Europe and
Greenland, respectively. By leveraging a regional atmospheric model (Modèle Atmosphérique
Régional) with proven results in polar conditions, Southern Greenland local climate patterns
are found to exhibit specific characteristics that facilitate extensive wind generation levels. In
addition, a methodology to assess how connecting remote locations to major demand centres
would benefit the latter from a resource availability standpoint is introduced and leveraged
to reveal complementary wind generation potential in Greenland with respect to selected
European sites.

This chapter is a reprint of David-Constantin Radu, Mathias Berger, Raphaël Fonteneau,
Simon Hardy, Xavier Fettweis, Marc Le Du, Patrick Panciatici, Lucian Balea, Damien
Ernst, “Complementarity Assessment of South Greenland Katabatic Flows and West Europe
Wind Regimes”, Energy 175, 393-401, 2019, https: // doi. org/ 10. 1016/ j. energy.
2019. 03. 048 . Reprinted with permission from the publisher.

https://doi.org/10.1016/j.energy.2019.03.048
https://doi.org/10.1016/j.energy.2019.03.048
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2.1 Introduction

A current trend in the power system community addresses renewable energy har-
vesting in remote, yet resource-rich locations and their subsequent integration via
large-scale interconnections. In a future power system context defined by dominant
RES generation and increased shares of electrical loads, linking separate power sys-
tems offers benefits on various operational levels. From a generation standpoint, one
may see the potential of RES harnessing in resourceful sites and subsequent deliv-
ery to major load centres via adequate transmission links. In addition, the negative
impact that high RES generation intermittency has on the operation of power sys-
tems could be reduced effectively through complementary production profiles orig-
inated from different resource patterns arising from time zone difference (on various
latitudes) and the timing of seasons (across different longitudes). From a load per-
spective, exploiting shifted consumption patterns between regions induced by the
geographical positioning of the consumers at different longitudes and latitudes has
the potential to level out aggregated load profiles. These would, in turn, lead to-
wards a less challenging operation of power systems, reduction of operational and
planning costs, and greenhouse gas emission level mitigation.

Coupling distinct power systems from a country, to a regional and ultimately an
intercontinental level would result in a globally interconnected electricity network
[56]. This idea was first proposed in [74], where the authors envision RES technolo-
gies as crucial in meeting the ever-increasing electricity demand, with high-capacity
interconnections being the backbone of the corresponding transmission infrastruc-
ture. The same article also describes various operational opportunities emerging
from such a large-scale project and it highlights regulatory hurdles likely to arise
in such a complex set-up. A more comprehensive, yet still conceptual view on the
topic is provided in [75]. The book provides a more detailed assessment of the moti-
vation behind the development of a global grid before mapping specific regions for
energy harvesting and routes for long-haul interconnections, and finally discussing
the technical innovation required for the successful deployment of this project. Also,
an economic dispatch model is the subject of ongoing work for a CIGRE Working
Group [56] that is investigating the technical feasibility of a global grid, as well as its
economic competitiveness by assessing the trade-off between the cost of intercon-
nectors and the benefits associated with remote RES harvesting.

The scope of this chapter is to assess the wind resource complementarity between
two geographically adjacent macro-regions, namely, Europe and Greenland. Wind
availability in the former is sometimes an issue that leads to increased utilization
of balancing units (usually fossil fuel-based generators) and storage capabilities. In
this regard, seasonal patterns generally show inferior resource availability during
summer time [76], while winter conditions could also display wind resource scarcity
coupled with usually low solar irradiation. A resource-rich and load-free region



2.2. Related Works 17

such as Greenland has the potential to provide wind energy to European users in
times of local scarcity, while mitigating the balancing and storage requirements.

For the remainder of the chapter, Section 2.2 documents previous works related to
remote RES harvesting and resource potential assessment. Section 2.3 introduces
the sources of wind data and briefly discusses local features of wind regimes in
Greenland (i.e., katabatic winds) that are favourable for extensive RES generation.
Locations for wind power generation to be investigated are selected in Section 2.5.
Section 2.4 details the methodology proposed to study the resource complementar-
ity before results of the Europe-Greenland case study are presented in Section 2.6.
Finally, Section 2.7 concludes the chapter and proposes related future research direc-
tions.

2.2 Related Works

Harnessing RES in remote locations to supply major load centres is not a novel ap-
proach, as the available literature reveals. One of the first projects of this kind is the
DESERTEC initiative [77], which studies the supply of Mediterranean countries by
RES-abundant North African and Middle Eastern (MENA) territories. The project
emphasizes the vast potential of solar power in the MENA region that could ac-
count for 15% of the electricity demand in Europe by 2050. The same approach is
followed in the Gobitec proposal [78]. This programme investigates the potential
of harvesting RES in the resource-rich Gobi Desert and its subsequent delivery to
major load centres in China, Japan, South Korea or Russia. The report estimates the
cumulated potential of the Gobi Desert in terms of wind and PV installed capacity
at 2.6 TW. A GIS-based analysis makes the topic of another study that investigates
the technical potential of wind, PV and concentrated solar power (CSP) to cover the
full electricity demand of Europe and North Africa by 2050 [79]. An IEA study [80]
also documents the theoretical potential of solar power generation in various regions
known for their characteristic high solar irradiation, while a more recent article in-
vestigates the potential for RES (e.g., wind and PV) harvesting in Australia to supply
major demand centres in East and South-East Asia [81]. The references stated above
are just a small subset of what has been investigated in the literature. For a more
comprehensive view of relevant studies and projects, the reader is advised to look
into Chapter 2 of [56].

On a more distinct note, Greenland has also been the subject of RES resource anal-
ysis for power generation. A first PhD thesis on this topic investigates the potential
of wind power generation in Greenland by using a mesoscale atmospheric model to
recreate local wind regimes [82]. Certain locations are selected for large-scale wind
turbine (e.g., 3 MW units) deployment and the study concludes that, even though
the site selection process is highly complex, there is undisputed potential for wind



18 Chapter 2. Quantifying the Complementarity of Renewable Resources

FIGURE 2.1: An illustration of katabatic winds in Greenland, carrying
high-density air from a higher elevation down a slope under the force

of gravity.

power generation in Greenland. A second PhD thesis on the same subject com-
bines micro- and mesoscale climate modelling for an accurate representation of local
wind circulation [83]. The conclusion of the study supports the resource potential
of Greenland for wind generation, with specific features of local wind regimes (e.g.,
semi-permanent occurrence of katabatic flows) found to facilitate increased levels
of electricity generation. A work authored by a Nordic consortium also studies the
potential of renewable energy sources (e.g., hydro, wind, PV) in Greenland and dif-
ferent interconnection possibilities between the latter and northern Europe [84]. In
addition, the author of [75] envisions Arctic regions (e.g., Greenland, Norwegian
Sea, Barents Sea) as a next step of wind generation deployment in the North Sea,
with a cumulated potential of electricity delivery to Europe and North America es-
timated at 1800 TWh per year.

In addition to assessing regional RES resources in terms of electricity generation po-
tential, the current work provides a first account of quantifying complementarity
between renewable resources in both space and time by means of a parametrised
family of scalar indicators. Moreover, the wind resource assessment in Greenland is
conducted via a mesoscale climate model proven to accurately replicate wind circu-
lation in polar regions [85].
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2.3 Reanalysis Data and Katabatic Winds

The process of wind resource assessment, as proposed in this chapter, starts with
data acquisition. In this regard, collection of wind signals in Europe and Greenland
at hourly resolution and covering the last ten years (i.e., 2008-2017) is achieved via
two different sources. The first source, used for data collection in Europe, is the state-
of-the-art ERA5 reanalysis [86] developed by the European Centre for Medium-
Range Weather Forecasts (ECMWF) through the Copernicus Climate Change Service
(C3S). It is an atmospheric reanalysis model1 that incorporates in situ and satellite
observations at high temporal (i.e., down to hourly) and spatial (i.e., 0.28◦ × 0.28◦)
resolution, at various pressure levels and currently covering the last ten years (i.e.,
2008 - present). Within the scope of the current chapter, the ERA5 data used here
is provided at a height of 100 meters above ground level and the hourly sampling
rate chosen for wind potential assessment is achieved via linear interpolation from
three-hourly output snapshots. Nevertheless, the limitations of reanalysis models in
estimating wind energy potential are reported in the particular case of another re-
analysis model (i.e., MERRA2) used in the European context, with significant spatial
bias being identified for specific sub-regions [88], partly resulting from the coarse
spatial resolution used to model the local or topography-induced winds. A com-
parison between the two reanalysis models [89] concludes that such tools are not
recommended for estimating mean wind speeds for given locations due to their lim-
itations in solving “local variations, especially in more complex terrain”.

In order to overcome the limitations of the aforementioned tools when investigat-
ing the wind generation potential of Greenland, wind signals are retrieved from a
second source, i.e., the regional MAR (Modèle Atmosphérique Régional) model. MAR
is a climate model developed specifically for simulating climatic conditions of po-
lar regions and has been repeatedly validated over Greenland [85]. MAR, as an
atmospheric model2, solves a set of dynamical equations over a limited integration
domain by using reanalysis-based fields (here coming from ERA5) as lateral bound-
ary conditions (e.g., temperature, wind, humidity, pressure at each vertical level of
the MAR model). The choice of MAR for estimating Greenland’s wind potential is
based on its specific ability to accurately represent, at higher resolution (down to
5 km×5 km), physical processes in Greenlandic regions, including the local, gravity-
driven katabatic winds. For this work, MAR output at hourly resolution is generated
at the same altitude level as ERA5 data (i.e., 100 meters above ground level).

The most promising, yet underestimated source of wind generation potential in
Greenland stems from the existence of katabatic flows. These local atmospheric

1Reanalysis is the process of using a data assimilation system (i.e., a sequential procedure in which
model states are updated on-line while previous forecasts are continuously compared to available
measurements) providing “a consistent reprocessing of meteorological observations” [87].

2An atmospheric model is a mathematical model based on a set of dynamical equations governing
atmospheric motions and using numerical methods to obtain approximate solutions of the studied
system of coupled equations.
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movements are the result of heat transfer processes between the cold ice cap and
the warmer air mass above it. In brief, when the air mass temperature is higher than
that of the ice sheet, the former is cooled down by radiation, thus the air density
increases forcing it down the sloping terrain, as depicted in Figure 2.1. The flow
of katabatic winds is driven by gravity, temperature gradient and inclination of the
slope of the ice sheet [82]. This wind develops in the first tens of meters above sur-
face (in the boundary layer) with a relatively constant direction down the slope of
the terrain, is quasi-constant, but is strengthened when an atmospheric low-pressure
area approaches the coast. Katabatic winds develop on a daily basis, regardless of
the season, with a slight diurnal shift in their occurrence according to the season
(i.e., arrival at the edge of the ice cap during early mornings throughout the win-
ter, around noon during the summer). In addition, the highest intensity of katabatic
winds is reported to occur on the south-eastern coast of Greenland, mainly due to
steep slopes and flow-channelling conditions [83].

2.4 Methodological Framework

2.4.1 Preliminaries

In this manuscript, it is assumed that geographical areas are represented by a finite
set of locations, and that simultaneously and uniformly sampled time series describ-
ing RES signals, e.g. wind speeds, are available at each location. Let L denote the set
of all locations, while L ⊂ L and l ∈ L will be used to denote a subset of locations
and an individual location, respectively. Then, let T stand for the discretised time
horizon over which data is available, and let t ∈ T denote a time period.

It is hereby assumed in the following that a single RES type, e.g. wind or solar
irradiance, can be harvested at a given location l. The associated resource signal
will be denoted as sl ∈ R

|T |
+ , with |T | the cardinality of T . In a power systems

context, working with capacity factors is more appropriate, as they directly express
the amount of energy that may be recovered using a given technology. Hence, the
raw signal time series sl is converted into a capacity factor time series by means of
an appropriate transfer function. Let π l ∈ [0, 1]|T | denote this capacity factor time
series, while hl : R

|T |
+ 7→ [0, 1]|T | stands for the transfer function of the candidate

technology at location l, such that π l = hl(sl).

The selection of an appropriate transfer function hl is based on a multi-turbine power
curve approach leveraged in [88] and introduced in [90]. In this regard, we make use
of an aggregated transfer function modelled via a Gaussian filter (depicted in Figure
2.2) that emulates the dynamics of a wind farm comprised of identical individual
units, while taking as input the wind signal of one single point within this farm.
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FIGURE 2.2: Single turbine and wind farm transfer functions. Ex-
ample of wind farm aggregation based on multiple 8MW - aerodyn
SCD 8.0/168 units. Wind regimes (1, 2) associated with the two wind

speed thresholds - vmed
low , vhigh

med - also displayed.

2.4.2 Spatiotemporal Complementarity Factors

Two wind speed thresholds are considered, such that vα
min and vα

max define the high-
output operating regime of a generic wind farm, as shown in Figure 2.2. Let Z =

{1, 2} be a set of labels denoting wind regimes and z : R 7→ Z be a mapping associ-
ating a wind speed class in Z to each resource sample slt, such that:

z(slt) =

2, slt ∈ [vα
min, vα

max)

1, otherwise .

According to this mapping, any wind time series sl ∈ RT
+ is clustered into two

classes, depending on the relative position of each element (slt) with respect to the
previously mentioned wind speed thresholds. Distribution of wind signals in two
classes is suggested here as example, while the proposed clustering method is appli-
cable for any other number of wind signal classes. In this particular case, the sectors
correspond to wind regimes leading to i) little-to-no wind production (i.e., when
wind speed is either too low or above the cut-out speed) and ii) to capacity factors
above 25%. Furthermore, we define a family of mappings gij : Z × Z 7→ {0, 1}
associating a binary digit value to a pair of wind regime labels, such that:

gij(x, y) =

1, (x, y) = (i, j)

0, otherwise .
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For any two locations (l1, l2) ∈ L× L, we associate a (|Z| × |Z|)-dimension matrix
M(l1,l2) with entries:

m(l1,l2)
ij =

1
T

T−1

∑
t=0

gij

(
z(sl1t), z(sl2t)

)
. (2.1)

The coefficients mij that may be computed as given in Eq. 2.1 will be referred to as
complementarity factors in what follows. Put simply, the complementarity factor
mij quantifies how often the signal observed at location l1takes values correspond-
ing to class i, whilst the signal recorded at location l2 takes values associated with
class j. In general, one therefore has mij 6= mji. In the complementarity analysis
proposed in this work, the underlying signal represents the hourly average capacity
factors, while the associated classes correspond to low and high power generation
regimes, respectively. It should be mentioned at this point that complementarity
should not be understood in the usual sense of correlation (as computed on de-
trended signals via standard measures, such as Pearson, Spearman or Kendall corre-
lation coefficients), but rather as the assessment of situations in which system-side,
low-generation events occur, a detrimental feature of power systems characterized
by high shares of RES generation. Roughly speaking, in terms of complementarity
factors, such behaviour would translate into high mij values for classes i and j asso-
ciated with low power generation regimes. Thus, in later developments, signals will
be considered complementary if mij values associated with low production regimes
are small.

2.5 Experimental Set-up

Site selection in Greenland relies on an a priori screening process of the local wind
regimes. As seen in Figure 2.3, Greenland’s southernmost region is the most promis-
ing from a wind resource perspective, therefore selection of the assessment point
is constrained within the yellow and red-coloured areas plotted on the chart, ones
with modelled average wind speeds above 13 m/s. In fact, availability of such high
average wind speeds is the consequence of the common direction of the general cir-
culation driven winds (as shown on the same chart) and the local katabatic winds
that prevents the two atmospheric motions from cancelling each other out. Selection
of an onshore point (i.e., GRon) in this area of interest is further supported by year-
long high temperatures (associated with low icing risks for the components of wind
turbines - Figure 2.4) and the absence of a permanent ice sheet, as well as by the
characteristic low elevation (Figure 2.5). In addition, an offshore location (i.e., GRoff),
just south from the onshore one, will be assessed. The choice of the latter location is
also supported by the bathymetry of Greenland’s territorial waters, with depths up
to 100 metres. The two sites are marked with a black cross in Figure 2.4.
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FIGURE 2.3: Greenland average wind speed magnitudes (m/s) as
provided by MAR for 2008-2017. Underlying data represents aver-
age wind speeds at a 50 m height above ground level and a spatial

resolution of 5 km×5 km.

FIGURE 2.4: South Greenland average temperature profiles as com-
puted via MAR for 2008-2017. Underlying data represents annual
mean temperature in ◦C at 100 m above ground level, at a spatial res-

olution of 5 km×5 km.
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FIGURE 2.5: South Greenland topography superimposed over the
land area not covered by permanent ice. Underlying data expressed

in metres, at a spatial resolution of 1 km×1 km.

FIGURE 2.6: Location of the two European wind farms investigated.
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Selection of the European generation sites to be compared with the locations in
Greenland is initially bound to the region adjacent to or within the North Sea basin,
one of the most productive areas on the continent [91]. Within these boundaries,
two locations are selected based on the existence of operational wind farms. More
specifically, the selected points coincide with the geographical coordinates of the
Horns Rev (Danish offshore) - DK - and Portes de Bretagne (French onshore) - FR - wind
farms. The location of the two wind farms is depicted with a blue cross in Figure 2.6.

2.6 Results

2.6.1 Wind Resource Assessment

The descriptive statistics of the wind time series associated with the studied loca-
tions are provided in Figure 2.7. The ten-year mean wind speed in both Greenland
locations (i.e., around 14 m/s) is significantly higher than in both European sites
(headed by the Danish offshore site, with an average wind speed of close to 10 m/s).
In addition, a larger spread of modelled wind speeds in the Greenlandic regions
can be observed. We note that, as reported in [92], a high standard deviation of the
wind signals usually corresponds to increased turbulence intensity (i.e., short-term
wind magnitude fluctuations relative to the mean velocity) that may negatively af-
fect the performance of the wind farm. Nonetheless, it has been observed that larger
standard deviation values corresponding to the sites in Greenland are not the result
of intra-hourly variations of the underlying wind signal, but are rather due to the
strong influence of seasonality of the local natural resource, and may therefore not
be associated with high turbulence intensities.

Bivariate histograms of wind speed time series are displayed in Figure 2.8 as a first
indicator of resource complementarity associated with selected pairs of locations.
The first plot (Figure 2.8a) shows the approximate joint distribution of wind speeds
inDK and FR (i.e., the European locations). Firstly, better wind resource at the former
site is evident from the histogram, but high wind speeds (above 20 m/s) seldom oc-
cur in any of the two European locations. Then, a structured pattern featuring a very
high concentration of data points between 5 and 10 m/s reveal a non-negligible de-
gree of correlation between these sites. This analysis is further supported by a Pear-
son correlation coefficient value of 0.17, which, although modest, is much higher
than that computed for pairs of remotely located sites, as discussed later. In Figure
2.8b, a clear linear pattern is observed in the histogram, suggesting a large degree of
correlation between wind regimes at the two Greenlandic locations (an expected out-
come considering the close geographical proximity of the two locations). This claim
is further backed by a Pearson correlation coefficient score of 0.84, by far the largest
among all considered cases. The same analysis for pairs of onshore (FR-GRon)and
offshore (DK-GRoff) locations, respectively, is depicted in the last two subplots. The
shape of the distribution in Figure 2.8c reveals significantly superior resource at the
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FIGURE 2.7: Box plots providing descriptive statistics of 100 m wind
signals for the four locations under consideration. More specifically,
the blue bar denotes the mean wind speed across the ten years in-
vestigated, while the box bounds define the first and third quartiles.
In addition, outliers above the upper whisker (black round markers)

represent data points outside the 95th quantile.

Greenlandic onshore location compared to the European one, as well as very little
correlation between wind signals (with an r score of 0.05). Regarding the offshore
sites (Figure 2.8d), slightly superior resource is observed in Greenland compared to
the European offshore location. Moreover,a relatively wide-spread and even distri-
bution of data points,especially for wind speeds between 5 and 20 m/s, suggests
lack of correlation between signals, a feature supported by the associated r index of
0.04.

2.6.2 Wind Farm Capacity Factor Comparison

Table 2.1 shows estimated values for average capacity factors computed as proposed
in Section 2.4.1, assuming a 100% availability of the wind farm (no losses due to ic-
ing, down times, etc.). Compared to available operational data, the average capacity
factor of the European sites is inflated by approximately 10%, assuming the currently
in-use cut-out speed value of 25 m/s [93], [94]. These overestimates were expected
considering the 100% availability assumption and the overestimation in reanalysis
models of wind resource potential in northern and western Europe, as reported in
[88]. Therefore, given the recurrent validation of MAR in accurately replicating wind
conditions in polar regions [85], the differences between the capacity factors in the
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FIGURE 2.8: Bivariate histograms of wind signals for (a) the Euro-
pean, (b) Greenlandic, (c) the two onshore and (d) the two offshore
locations. Each histogram bin corresponds to a 0.5 × 0.5 m/s square.

TABLE 2.1: Average capacity factors for the studied wind generation
sites considering a transfer function associated with an aggregated
wind farm for a single turbine (i) cut-out wind speed that is currently
the state-of-the-art in the wind industry and (ii) an ideal cut-out wind
speed superior to the maximum wind speed observed at different lo-

cations.

vout
cut (m/s) DK FR GRon GRoff

25 0.55 0.32 0.49 0.60

max
l,t

sl
t 0.56 0.33 0.64 0.69

two Greenlandic locations and the ones associated with the European sites are even
greater than those which can be inferred from Table 2.1. The second row of the same
table shows the maximum theoretical capacity factor under the assumption that the
individual units comprising a wind farm have a cut-out speed superior to any lo-
cal wind speed to which they are exposed. In this case, while the average capacity
factors of the European sites are barely affected (indicating very few occurrences
of wind velocities above the current cut-out speeds), the same thing cannot be said
about the locations in Greenland. There, under increased cut-out speed conditions,
the onshore site would have the highest capacity factor gain (i.e., 15%), while an
offshore wind farm could reach capacity factors of almost 70%.

These findings are supported by the duration curves depicted in Figure 2.9. On the
one hand, overlapping curves in the two subplots at the top reflect marginal gains
in terms of wind farm output for the European locations, when technological de-
velopment (i.e., increased cut-out speeds of wind converters) is assumed. On the
other hand, assuming availability of wind converters with cut-out speeds above the
maximum wind speeds of each location results in massive output improvements in
Greenland. In fact, for both locations, capacity factors of 90% or higher occur during
more than half of the time. In this context, Figure 2.9 clearly shows the lost potential
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FIGURE 2.9: Duration curves of the four considered locations over
the entire time horizon (2008-2017) assuming (i) a cut-out speed of
individual wind converters of 25 m/s and (ii) an ideal cut-out speed

superior to the maximum wind speed observed at each location.

of wind-based electricity generation in Greenland due to current technological lim-
itations and indicates that novel wind turbine designs are required to fully harness
the superior wind resource available in such regions.

2.6.3 Potential of Wind Generation Complementarity

In line with the previously detailed methodology, power output complementarity
factors for selected pairs of locations will be evaluated in the upcoming section. Two
classes representing a low-and a high-generation regime, respectively, are defined by
wind speed values associated with a given capacity factor threshold, for a particular
conversion technology. Figure 2.2 shows the separation of these classes via two wind
speeds (vα

min and vα
max, respectively) for a capacity factor threshold (α) of 30% and

assuming the conversion technology introduced in Section 2.4.1.

Power output complementarity factors for selected pairs of Greenlandic and Euro-
pean sites and for a capacity factor threshold of 30% are displayed in Table 2.2. Each
cell in these tables corresponds to a pair of capacity factor classes (as depicted in Fig-
ure 2.2) and a pair of locations, and contains information simultaneously recorded at
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each location and belonging to each corresponding class. Firstly, the aggregation of
the two European locations (DK-FR) reveals a 17% (34%, respectively) probability of
both sites yielding low (high, respectively) output, while the two locations comple-
ment each other for 49% of the time. Moreover, superior resource at DK is observed
in the complementarity factors associated with different output regimes (the prob-
ability of high output at DK occurring simultaneously with low output at FR is 36%,
while the opposite situation happens only 13% of the time). Secondly, considering
the aggregation of both locations in Greenland (GRon-GRoff), we observe a fairly high
probability (74%) of both locations generating similar levels of output. Such a result
was expected though, given the close geographical proximity of the two locations.
In addition, using a conversion technology unable to harness frequently occurring
high wind speeds in Greenland (due to relatively low cut-out speeds) can further
justify increased proportions of simultaneously occurring low-output events in both
Greenlandic locations compared to the all-European case, which is translated into a
high value of the m11 coefficient. The two remaining cases assessing the effects of
aggregating European and Greenlandic locations show contrasting results. Looking
at the joint assessment of the two onshore generation sites (FR-GRon), one sees a fairly
even distribution of occurrences across the four possible bins and a rather high share
of simultaneously low-output occurrences (22%) in both locations, an aspect that can
be attributed to (i) the use of a sub-optimal conversion technology in Greenland and
(ii) a relatively poor wind resource associated to the European location. In opposi-
tion, the aggregation of the two offshore locations (DK-GRoff) reveals a very good score
for high output in at least one of the locations (91%), a result that supports the high
quality wind potential suggested in Section 2.6.1, as well as the lack of correlation
between wind regimes.

When defining the concept of complementarity, the emphasis was placed on the oc-
currence of detrimental low-generation events across systems. Indeed, when analysing
complementarity factors as in Table 2.2, we are mostly interested in assessing simul-
taneous occurrences of low power output (that is, the m11 element of the complemen-
tarity matrices above) for a given location pair. In this regard, Figure 2.10 displays
the evolution of the m11 score for each considered location pair against different
capacity factor threshold values. First, for the aggregation of the two European loca-
tions (DK-FR), a linear increase in the proportion of low-output events is observed as
the capacity factor threshold increases. Next, the close geographical proximity (and,
thus, the highly correlated resource) of the two Greenlandic locations (GRon-GRoff) re-
sults in relatively high m11 values for low capacity factor thresholds. For larger val-
ues of the latter, the influence of superior wind resource leads to a milder increase
in low-generation events probability compared to the three other cases. Considering
the FR-GRon case, inferior resource associated with the European onshore node and
a sub-optimal use of the conversion technology in the onshore Greenlandic location
lead to higher shares of low-output events compared to the aggregation of European
locations, for capacity factor thresholds smaller than 55%. Above this threshold, the
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TABLE 2.2: Complementarity factors m(l1,l2)
ij for each pair (l1, l2) of

considered locations, assuming a capacity factor threshold (α) of 30%.
Two wind speed thresholds define two different classes for low - 1 -
(below vα

min and above vα
max) and high - 2 - (between vα

min and vα
max)

power output for a given conversion technology.

FR

1 2

DK
1 0.17 0.13

2 0.36 0.34

GRoff

1 2

GRon
1 0.23 0.19

2 0.07 0.51

GRoff

1 2

DK
1 0.09 0.21

2 0.21 0.49

GRon

1 2

FR
1 0.22 0.31

2 0.20 0.27

two curves intersect, driven mainly by superior wind resource in GRon with respect
to FR. By far, the lowest occurrences of low-generation events for any capacity factor
threshold considered is associated with the aggregation of the two offshore locations
(DK-GRoff),which are characterized by high-quality and uncorrelated wind regimes.

2.7 Conclusion and Future Work

The current work evaluates Greenlandic wind resource quality through standard
statistical metrics applied to raw wind data and to typical power generation proxies
(i.e., capacity factors), as well as its complementarity with western European wind
regimes via a systematic framework quantifying the occurrence of system-wide low-
generation events. By leveraging a state-of-the-art regional climate model that has
been repeatedly validated over polar regions, a promising area in southern Green-
land is identified and found to exhibit vast wind power generation potential and
possess complementary regimes with respect to European locations known for their
high quality wind resource. These results lend further support to the claim that tap-
ping into extensive renewable energy generation potential located in remote areas
can prove beneficial for a secure and reliable supply of electricity in future power
systems dominated by renewable energy sources. Another takeaway of this study
pertains to the need for technological innovation in wind turbine design, a key as-
pect that could enable the achievement of even higher capacity factors in Green-
landic regions swept by high quality wind resource.

Regarding further research directions, analysis of wind regimes at different heights
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FIGURE 2.10: Proportion of low-output occurrences against various
capacity factor thresholds (α) for a given conversion technology. For
a capacity factor threshold of 30%, the values can be read in the upper

left cell of the low-generation event assessment in Table 2.2.

above ground level is of considerable interest taking into account the particular fea-
tures of Greenlandic katabatic flows. In this regard, increased average capacity fac-
tors are anticipated at lower elevations (e.g., 50 m above ground level), where the
increased influence of topography and heat transfer processes bolsters a more fre-
quent occurrence of semi-permanent katabatic flows, while the cut-out speeds of
wind converters are reached less often. Another assessment path consists in devel-
oping a tailored analysis to quantify the potential benefits of a Greenlandic wind
farm supplying Europe through an HVDC interconnection. In addition, devising
a method able to quantify the spatiotemporal complementarity between RES sites
on different time scales and spatial scopes could be paramount in properly under-
standing the role of complementarity in the design and operation of power systems
dominated by renewable-based generation assets.
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Chapter 3

Critical Time Windows for
Renewable Resource
Complementarity Assessment and
Siting

This chapter proposes a framework to assess the complementarity between geographically
dispersed variable renewable energy resources over arbitrary time scales. More precisely,
the framework relies on the concept of critical time windows, which offers an accurate time-
domain description of low probability power production events impacting power system op-
eration and planning. A scalar criticality indicator is derived to quantify the spatiotemporal
complementarity that renewable generation sites may exhibit, and it is leveraged to propose
optimisation models seeking to identify deployment patterns with maximum complementar-
ity. The usefulness of the framework is shown in a case study investigating the complemen-
tarity between wind regimes in continental western Europe and southern Greenland, using
roughly 300 candidate locations and ten years of reanalysis and simulated data with hourly
resolution. Besides showing that the occurrence of low wind power production events can be
reduced on a regional scale by exploiting diversity in local wind patterns, results highlight
the fact that aggregating wind power production sites located on different continents may
result in a lower occurrence of system-wide low wind power production events.

This chapter is a reprint of Mathias Berger, David-Constantin Radu, Raphaël Fonteneau,
Robin Henry, Mevludin Glavic, Xavier Fettweis, Marc Le Du, Patrick Panciatici, Lucian
Balea, Damien Ernst, “Critical Time Windows for Renewable Resource Complementar-
ity Assessment”, Energy 198, 117308, 2020, https: // doi. org/ 10. 1016/ j. energy.
2020. 117308 . Reprinted with permission from the publisher.

https://doi.org/10.1016/j.energy.2020.117308
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Assessment and Siting

3.1 Introduction

The large-scale deployment of technologies harnessing variable renewable energy
sources (RES) for power generation has lead to novel challenges for power system
operators and planners, mostly as a result of the intermittency of such resources.
Several solutions have been envisaged to improve power system flexibility, includ-
ing the deployment of additional storage capacity or the introduction of demand
response programmes. An alternative solution, which seeks to smooth the variabil-
ity of aggregate RES, consists in developing new electricity interconnections on a
continental or global scale to take advantage of the diversity of resource types and
profiles across vast geographical areas [68], [95], while exploiting time differences in
production and consumption profiles in different regions [56], [74].

The topic of renewable energy resource (RES) complementarity has received in-
creased interest in recent years [96]. More precisely, both the complementarity that
may exist between different RES types and the spatiotemporal complementarity dis-
persed power plants harnessing the same RES may exhibit have been studied. In
each of these contexts, a variety of definitions of complementarity have been pro-
posed and different metrics have been developed to quantify it [96]. From a power
systems perspective, however, an appropriate definition of complementarity should
account for at least one key aspect of power systems operation and planning. In-
deed, it should reflect the fact that simultaneous low power generation events are
particularly detrimental to the power system, as back-up dispatchable capacity must
be kept in the system to satisfy given adequacy criteria, possibly at a high cost. In-
terestingly, a vast proportion of complementarity studies rely on correlation analy-
ses, e.g. [97] or [98], which fail to accurately capture such events, as they usually
correspond to tail behaviour of the probability distribution of aggregate production
signals. Comparatively few metrics embody such considerations, and, to the best
of the authors’ knowledge, very few of them have been applied to cases compris-
ing hundreds of locations and several years of data with hourly resolution. Though
this would provide a more robust complementarity assessment, the extent to which
these methods scale up to tackle such cases is unclear.

To address these issues, this chapter leverages the critical windows framework, which
allows to evaluate the spatiotemporal complementarity between a set of dispersed
power plants harnessing various types of RES. In this framework, locations are con-
sidered complementary if they experience simultaneous low-production events very
rarely. The spirit of the method can be described as follows. First, resource signal
time series are divided into a set of time windows of fixed length, and, for each lo-
cation considered, signal quality is evaluated over each time window via a given
metric, e.g. the average signal value. A location is considered critical over a given
window if the value produced by the metric is lower than a pre-specified threshold.
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Then, the system-wide criticality is evaluated based on the number of critical loca-
tions over each time window, thereby producing a binary classification of time win-
dows accurately capturing system-wide critical events. The approach is designed to
exploit vast amounts of climatological data, e.g. retrieved from reanalysis databases
[86], and can also be used as a basis to derive optimisation models addressing the
RES siting problem while accounting for RES complementarity.

The methodology is illustrated on a case study focusing on western Europe and
Greenland. More precisely, the framework is leveraged to evaluate the complemen-
tarity between the wind regimes in France and southern Greenland, in the context
of the development of an interconnection between continental western Europe and
Greenland. Then, optimisation problems are formulated to identify locations with
the best complementarity within and between these regions. Finally, the framework
is exploited to highlight the differences between wind power plants deployment
schemes seeking to maximise complementarity and annual electricity output, re-
spectively.

This chapter is structured as follows. Section 3.2 reviews related works and em-
phasises how this work contributes to the literature. Section 3.3 then introduces the
framework of critical time windows and discusses how it may be leveraged in a RES
siting context. Section 3.4 describes the case study illustrating the usefulness of the
framework, and results are presented in section 3.5. Finally, section 3.6 concludes
the chapter and formulates research questions to be addressed in future work.

3.2 Related Works

The complementarity between dispersed renewable production sites on different
time scales has been studied extensively in recent years [70], [96]. Throughout the
surveyed literature, two different definitions of renewable resources complemen-
tarity are used. On the one hand, RES complementarity refers to the output vari-
ability reduction effect incurred by the aggregation of spatially distributed variable
resources (e.g., wind, solar). On the other hand, complementarity is defined as the
synergy between two or more renewable resources (e.g., wind and solar). In the up-
coming section, the physical implications of RES complementarity under both afore-
mentioned definitions are briefly summarized before a detailed account of various
methods employed to tackle it is provided.

An early investigation of wind resource spatial complementarity is provided by
Giebel [68], who computes the cross-correlation coefficient between wind signals
recorded at pairs of generation sites in Europe as a function of the distance sepa-
rating the locations, revealing mitigated correlation levels with increasing distances
between sites. Subsequently, the statistical properties of spatially averaged signals
reveal the existence of a smoothing effect, whereby increasing the geographical scope
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and the number of generation sites appears to decrease the variability of the aggre-
gated wind output. In the same vein, Olauson et al. [99] investigate the correlation
between pairs of wind signals in Europe on various time scales and aggregated at
country levels. The paper concludes, in line with the previous study, that wind cor-
relation decreases with increasing distance between regions. In another paper [100],
the authors investigate the output variability of utility-scale solar PV plants in Gu-
jarat (India) on multiple time scales and the results reveal diminishing marginal re-
turns in variability reduction as more plants are aggregated within the state. In [101],
Sterl et al. assess the synergy between wind and solar resources in West Africa and
conclude that wind power has great potential for complementing solar resources
over daily time frames. Likewise, Slusarewicz et al. [102] investigate the wind-solar
synergies over pairs of generation sites in Texas (USA), revealing different degrees
of complementarity depending on the site locations and time horizons considered.

The methods employed in resource complementarity analyses are manifold. Stan-
dard statistical tools have most often been invoked and correlation analysis have
proved very popular in the literature. In particular, methods relying on various
correlation coefficients, such as Pearson, Kendall, Spearman, exponential or sample
coefficients, as well as cross-correlation coefficients have all been used to evaluate
RES complementarity in various spatial settings, e.g., in Sweden [97], Britain [103],
Europe [68], [104], Brazil [105], the United States [95], [102], China [106], or even be-
tween locations on different continents (Canada and Australia) [98]. Similarly, Jurasz
et al. [107] use the Pearson correlation coefficient to investigate the resource comple-
mentarity within small-scale hybrid systems comprising wind and solar PV units
and their load-matching capabilities. In [108], the authors evaluate wind-solar com-
plementarity in Canada using descriptive statistics (percentile ranking). Montforti
et al. [109] propose a Monte Carlo-based analysis of renewable resource comple-
mentarity across locations in Italy, where multiple randomly generated deployment
patterns are investigated to retrieve the location set with the lowest associated Pear-
son coefficient. In [110], the authors assess the smoothing effect using frequency-
domain analysis methods introduced in [111] instead of statistical tools, again high-
lighting the reduction in short-term variability as the geographical scope increases.
Principal component analysis (PCA) has also been used to assess wind-solar com-
plementarity in [112] and [113]. In particular, Li et al. [112] define a complementarity
index for wind and solar radiation impacted by more than fifty variables (incl. terrain,
precipitation, temperature or pressure levels) to investigate wind-solar complemen-
tarity across Oklahoma (USA). Lastly, methods relying on custom scalar indicators
have also been proposed in the literature. For instance, Prasad et al. [114] investi-
gate potential synergies between wind and solar resources at hourly time scales in
Australia. To this end, the authors define wind-solar complementarity as the pro-
portion of hours during which at least one of the two aforementioned resources is
available above pre-defined power density thresholds. In [101], the authors assess
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the complementarity between the same two renewable resources via a stability coeffi-
cient representing the variance reduction of capacity factors associated with a hybrid
solar-wind system, relative to a solar-only set-up. In [115], Ren et al. evaluate com-
plementarity of wind resources across neighbouring sites in China through a score
computed from wind power densities across adjacent locations. Beluco et al. [116]
tackle the assessment of complementarity between pairs of resources at one given
location through a complementarity index incorporating correlation, resource quality
and variation amplitude of any two resource signals.

Although the aforementioned studies have provided a better understanding of RES
complementarity in various settings, the underlying methods appear to have been
overwhelmingly geared towards the evaluation of complementarity in terms of the
reduction in output variability that may be achieved by aggregating RES power
plants. From a power systems operation and planning perspective, this approach
makes sense but still fails to account for other key considerations. In particular,
solely focussing on output variability overlooks the fact that simultaneous low RES
production events are particularly detrimental, in that additional dispatchable backup
capacity must be kept in the system or other flexibility options must be deployed to
satisfy given adequacy criteria. Such simultaneous low production events typically
correspond to tail behaviour of the underlying probability distributions and most
methods invoked above are ill-suited to capture such phenomena. In addition, very
few of the methods reviewed allow for the straightforward comparison and ranking
of arbitrary deployment patterns, e.g. via a meaningful score quantifying the level of
complementary displayed by the underlying locations and resources. Hence, apply-
ing such methods in a RES siting context seems particularly cumbersome. Finally,
the extent to which the aforementioned methods can scale up to tackle problems
featuring hundreds or thousands of locations and years of climatological data with
temporal resolution is unclear. The methodology proposed in this chapter addresses
these drawbacks, as detailed in the forthcoming sections.

3.3 Introducing the Time Windows Framework

Recall from Section 2.4.1 that, in this manuscript, it is assumed that geographical
areas are represented by a finite set of locations, and that simultaneously and uni-
formly sampled time series describing RES signals, e.g. wind speeds, are available
at each location. Let L denote the set of all locations, while L ⊂ L and l ∈ L will be
used to denote a subset of locations and an individual location, respectively. Then,
let T stand for the discretised time horizon over which data is available, and let
t ∈ T denote a time period. In addition, a single RES type, e.g. wind or solar ir-
radiance, can be harvested at a given location l. The associated resource signal will
be denoted as sl ∈ R

|T |
+ , while the corresponding capacity factor time series are

expressed by π l ∈ [0, 1]|T |, with hl : R
|T |
+ 7→ [0, 1]|T |, such that π l = hl(sl).
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3.3.1 Time Windows

Let δ ∈ N be the time window duration. Then, for time periods t ∈ T and (t +
δ− 1) ∈ T , the time window wδ

t spanning the time interval between these periods
writes as wδ

t = [t, t + δ− 1] ∩N. Then, letW be the set of time windows of length δ

that may be extracted from the discretised time horizon, which is constructed as

W = {wδ
t |t ∈ T , (t + δ− 1) ∈ T }. (3.1)

A time window w ∈ W can be seen as a subset Tw ⊆ T of δ successive time periods,
and all time windows w ∈ W have the same length δ. It is worth noting that given
this definition, successive time windows overlap and have δ− 1 periods in common.

Critical Locations

Once time series have been divided into time windows, the quality of renewable
resource signals is measured at each location over the duration of each time window.
If the resulting score is smaller than a pre-specified quality threshold, the location
is labelled as critical. The opposite also holds, i.e., if the score is higher than the
quality threshold, the location is deemed non-critical. Thus, for each window, this
procedure allows to identify a set of (non-)critical locations, and repeating it for all
time windows yields a complete picture of the local criticality properties of the area
under consideration.

More formally, let ql : [0, 1]δ 7→ [0, 1] be the metric used to evaluate local resource
quality at candidate location l. This mapping essentially produces a score πlw =

ql({πlt}t∈Tw) capturing how well location l performs over window w. In particular,
ql may compute an average value but other metrics, e.g., the median, can be readily
employed in this framework. Then, let αlw ∈ [0, 1] be the local criticality threshold,
which defines the condition under which individual locations are considered critical
during window w. Note that this threshold can be defined independently for each
location l and time window w. However, in the current chapter, α is assumed to be
constant in time and space, i.e., αlw = α (e.g., a capacity factor threshold that applies
to all locations and across all time windows). Therefore, for any window w ∈ W
and subregion L ⊆ L, the subset of non-critical locations J L

w ⊆ L can be constructed
as

J L
w = {l ∈ L|πlw ≥ α}. (3.2)

Note that, for any window w ∈ W , the number of non-critical locations NL
w is given

by the cardinality of J L
w, i.e., NL

w = |J L
w | ≤ |L|.
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Critical Windows

Recall that, in this manuscript, the spatiotemporal complementarity assessment re-
lies on a binary classification of time windows capturing the occurrence of system-
wide critical events, e.g., simultaneous low-production events recorded across most
of the locations considered, and from which a criticality indicator is derived. Such a
score can be computed for any subset L ⊆ L, which therefore permits to evaluate
the respective merits of different deployment patterns.

The classification of time windows is made possible by the introduction of the global
criticality threshold parameter, which specifies the proportion of locations that should
be (non-)critical for a time window to be counted as system-wide (non-)critical. Let
c ∈ N denote this parameter. For a given deployment pattern L ⊆ L, the set of
non-critical time windowsW L

C is constructed as

W L
C = {w ∈ W|NL

w ≥ c}, (3.3)

where c represents the number of locations that should be non-critical for a time
window to be considered system-wide non-critical. The criticality indicator cL ∈ [0, 1]
of a deployment pattern L is then simply computed as

cL = 1−
|W L

C |
|W| , (3.4)

i.e., it gives the proportion of critical time windows observed throughout the entire
horizon T . Hence, a value of cL close to 1 suggests that most time windows in the
horizon considered are critical, which is indicative of poor complementarity between
locations in L. By contrast, a low value of cL shows some level of complementarity
between locations in L.

Even though the dependence of the criticality indicator upon the time window du-
ration δ, local criticality threshold α and global criticality threshold c has been made
implicit in prior developments, it must not be overlooked. Indeed, in reality cL =

cL(δ, α, c). In other words, for a given region L, different values of the criticality
indicator can be produced by adjusting the values of the three aforementioned pa-
rameters. In particular, updating the value of δ will allow to assess criticality and
complementarity on different time scales. Furthermore, the values of α and c can
be modified to update the definition of criticality. For instance, α or c could be ex-
pressed as functions of exogenous quantities such as the electricity load in order to
tailor the definition of criticality to one’s needs.

Finally, a probabilistic interpretation of the criticality indicator is provided. Indeed,
since cL represents a proportion, it can also be interpreted as the likelihood of obtain-
ing a critical time window when drawing uniformly at random from the set of time
windowsW . With this in mind, sets of locations corresponding to higher values of
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the criticality indicator can be understood to have a higher empirical probability of
experiencing critical events.

3.3.2 Critical Windows for Siting of Renewable Generation Assets

Besides providing a way of evaluating the spatiotemporal complementarity between
dispersed power plants harnessing RES, the machinery of the critical windows frame-
work can be leveraged to formulate optimisation models seeking to deploy RES so
as to maximise their complementarity. Indeed, such deployment patterns can be
identified via optimisation models minimising the value of the criticality indicator.

More formally, let P(L) be the power set of L, that is, the set of all subsets of L.
Then, let fC : P(L) 7→ [0, 1] be a function associating its criticality indicator value to
any set of locations L ⊂ L, i.e., cL = fC(L). Moreover, let k ∈ N be the number of
locations which should be deployed. An optimisation problem seeking to deploy k
power plants whilst maximising their complementarity then writes as

min
L⊂L

fC(L) (3.5)

s.t. |L| = k,

where the constraint |L| = k enforces that exactly k sites are selected. This formu-
lation can be readily extended to include geographical deployment constraints, e.g.,
deploying a pre-defined number of sites in subregions. In such a context, if NB de-
notes the subregions, with |NB| = B, L would be replaced by a collection of (disjoint)
locations sets {Ln}n∈NB such that L = ∪B

n=1Ln and |Ln| = kn, with kn the number of
sites to deploy in subregion n. A greedy algorithm to solve problem (3.5) is hereafter
proposed. For an un-partitioned case (i.e., B = 1), this algorithm works as follows.
Starting from the full set of candidate sites L, locations are removed from the incum-
bent solution as long as its cardinality is greater than k ∈ N. At each iteration, sites
whose removal from L would minimise the difference (in absolute value) between
the criticality index values computed at consecutive steps are stored in set l?. If more
than one site leads to the same difference between criticality indicators, the cardinal-
ity of l? is greater than one and one location is sampled at random and added to the
incumbent solution. These ideas are summarized in Algorithm 1.

3.4 Test Case

In this section, a particular application is proposed in order to illustrate the use-
fulness of the indicator defined in Section 3.3. More specifically, a wind regime
analysis is conducted in South Greenland and France in the context of an electri-
cal interconnection between Greenland and mainland Europe, as part of a broader
global grid. At first, a general assessment of the spatiotemporal criticality observed



3.4. Test Case 41

Algorithm 1 Backward Randomised Greedy Algorithm

Require: L, k, fC
L← L
while |L| > k do

l? ← arg minl∈L\L fC(L \ {l})
l ← one location sampled from l? uniformly at random
L← L \ {l}

end while
Ensure: L, fC(L)

in wind signals across (i) Greenland, (ii) France and (iii) within their spatial aggre-
gation is carried out via the proposed criticality indicator. Recall from the previous
chapter that the critical window framework relies on a tuple of three parameters,
i.e., (α, δ, c), defining the local criticality threshold, the time window length and the
global criticality threshold, respectively. In this exercise, the value of α is constant
across all candidate locations and time windows (i.e., αlw = α), and the impact of
different window lengths (δ) and c values is assessed. Then, the optimal distribution
of wind generation sites within those geographical areas is analysed under various
deployment constraints.

3.4.1 Data Acquisition

This subsection introduces the wind signal datasets used in the current work and
briefly discusses the selection of geographical regions employed in the Section 3.5
analyses.

Two distinct data sources are used in the wind signal acquisition process for the
geographical regions under consideration. Resource data within the boundaries of
mainland France is acquired via the ERA5 climate reanalysis model. Set on a reg-
ular geodesic grid, hourly-sampled wind data at 100 meters above ground level is
provided at a spatial resolution of 0.28◦ × 0.28◦ [86]. Besides multiple features that
have contributed to the success of such methods in energy-related applications [117],
the shortcomings of these datasets in the context of wind power generation studies
stem mainly from the relatively coarse spatial resolution of their underlying grids.
More specifically, in complex terrain conditions, this latter aspect limits the accurate
replication of local, topography-induced winds patterns [89].

A second source of data, the MAR regional atmospheric model, is leveraged to al-
leviate some of the previously mentioned limitations of reanalysis frameworks for
wind data acquisition in Greenland. Repeatedly validated over the aforementioned
island, MAR has been specifically developed for simulating atmospheric conditions
over polar regions [118]. The main advantage of this tool lies in its ability to ac-
curately reproduce, at refined spatial resolution (down to 5 km×5 km), particular
features of the atmospheric circulation over this region, including the local, semi-
permanent katabatic flows that may enable high levels of wind power generation.
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FIGURE 3.1: Locations considered for the wind resource assessment
in France and South Greenland. The upper-left corner of the map
displays the geographical points included in LG, while the locations

superimposed over the French mainland territory comprise LF.

For this study, ERA5 fields (e.g., wind speeds, air temperature, humidity or pressure)
are used as forcing at the spatial boundaries above Greenland to retrieve MAR-based
hourly wind time series at 100 meters above ground level.

The selection of South Greenland as the focus of this analysis is done via a MAR-
based visual inspection of the entire Greenlandic land mass that reveals vast wind
resource, relatively high temperatures and favourable topography for the sub-region
considered [119]. The locations sets used in the following analysis comprise geo-
graphical points which exist in both the ERA5 and MAR grids, respectively. In the
following, the set of all locations in France is denoted by LF, while sites in South
Greenland are grouped in LG. A third set, denoted by LFG, is defined as the union
of the two location sets LFG = LF ∪ LG . The total number of 294 candidate sites are
depicted in Figure 3.1.

3.4.2 Defining the Conversion Technology

The mapping of wind speeds to hourly average capacity factors is performed via a
transfer function mimicking the normalised power output of a wind farm compris-
ing identical units which are geographically distributed in the direct vicinity of the
site of interest. This approach is consistent with power system planning processes,
where one is usually interested in developing wind farms rather than constructing
a single turbine. As proposed in [88], such a transfer function is derived from the
power curve of a representative wind turbine (the aerodyn SCD 8.0/168, in this par-
ticular case) by means of a Gaussian fit, where a 100% availability of the individual
units is assumed (i.e., no down times due to maintenance, icing etc.). In addition,
this specific wind energy converter is selected for illustration purposes only, regard-
less of its appropriateness for deployment at the locations considered. The result of
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this approach leads to the same power curve as the one used in the previous chapter
and displayed in Figure 2.2.

3.5 Results

This section presents a detailed discussion of results generated with the criticality
indicator introduced in Section 3.3. Firstly, the values of the criticality indicator are
examined for various instances of the (δ, α, c) triplet within the selected geographi-
cal areas. Then, the optimal deployment of generation sites in different geographical
set-ups is discussed. Lastly, the current framework is leveraged to highlight poten-
tially undesirable consequences of current power systems planning practices, which
primarily favour electricity generation potential and disregard the complementarity
in electricity production regimes when selecting wind farm deployment sites.

3.5.1 Spatiotemporal Complementarity Assessment

Initially, a comprehensive evaluation of wind resource complementarity in the avail-
able locations sets over a time period stretching the last ten years (2008-2017) is
conducted using the criticality index. In the following example, as well as in all
other applications subsequently proposed, the local criticality threshold (α) is set to
35%. That is, a given location l is considered to be critical during time window w if
πlw falls below this value. This choice stems from it standing between the average
capacity factors of the two regions, as computed from available data (i.e., 22% for
French sites and 48% for the locations in Greenland). The process of mapping wind
signals to normalised power output values is done using the methodology intro-
duced in Section 3.4.2. Formally, fC(L) is computed for L ∈ {LF,LG,LFG}, α = 0.35,
for all window lengths δ ∈ {1, 24, 72, 168} and for all global criticality thresholds
c/|L| ∈ {0.5, . . . , 1.0}. The results of this analysis are shown in Figure 3.2. In this
plot, the x-axis is defined as the ratio between the global criticality threshold c and
the cardinality of candidate sites |L|. In this context, criticality is harder to achieve as
the value of c/|L| increases. For instance, for c/|L| = 0.5, a time window is critical
if 50% of locations are critical across its duration. For c/|L| = 1.0, all locations must
be critical for the window to be critical. In other words, a single non-critical location
during a given time window renders the entire time window non-critical.

First, as can be observed in all subplots of Figure 3.2, the value of fC decreases as
the c/|L| increases, regardless of the time window length (δ) considered. This is
happening since time window criticality is easier to achieve at lower c/|L| values,
where less locations are required to have insufficient generation in order for the time
window to be critical. In addition, for all locations sets observed, it appears that
considering c/|L| = 1.0 in the computation of fC leads to values of the criticality
indicator close to zero, an aspect that highlights significant wind regime diversity
even at regional scale.
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FIGURE 3.2: Criticality indicator fC values for a local criticality thresh-
old (i.e., α) of 35% for all locations in (a) France (LF), (b) Greenland

(LG) and (c) the aggregation of the two (LFG).
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TABLE 3.1: Percent values of the criticality index fC for various global
criticality threshold values (c) and for all considered locations sets,
considering a local criticality threshold (α) of 35% and a window

length (δ) of 24 hours.

L
c/|L| 0.5 0.6 0.7 0.8 0.9 1.0

LF 85.1 80.4 74.8 66.6 50.9 10.6

LG 29.4 20.4 13.9 8.5 4.4 0.3

LFG 77.4 58.8 32.4 15.4 5.3 0.1

The change in criticality index values associated with the locations in France (LF) for
different (δ, α, c) instances is depicted in Figure 3.2a. For a time window length of
24 hours, as the global criticality threshold decreases, the proportion of critical win-
dows drops from 85.1% (c/|L| = 0.5) to 66.6% (c/|L| = 0.8) and, finally, to 10.6% if
c/|L| = 1.0. The same decreasing trend applies for all other δ values, with the score
of the fC index observed to be increasing as the window length is extended. Results
corresponding to the available locations in Greenland are presented in Figure 3.2b.
Superior resource quality in this region is evidenced by the range of the resulting
criticality indices. For instance, in case of a δ value of 24 hours, a drop in the pro-
portion of critical time windows from 29.4% (for c/|L| = 0.5) to 8.5% (c/|L| = 0.8)
and 0.3%, when c/|L| = 1.0, can be seen. Contrary to the change in criticality index
values for the locations in France, it can be observed that, for each global criticality
threshold (c), the criticality index values in Greenland decrease as the length of the
time window increases.

In this particular (δ, α, c) configuration, the opposing development of fC with respect
to δ stems from (i) the positioning of α between the average capacity factors of the
two regions and (ii) the utilisation of a resource quality mapping q returning the
mean signal over each time window. Under these assumptions, the following can
be observed. On the one hand, the chosen α is greater than the average capacity fac-
tor observed in France (i.e., 22%). Given the resource quality mapping considered,
the probability of a random time window sample being critical is greater for large
values of δ since less frequent occurrences of high energy output in this region are
averaged over the time window length (thus cancelling the extreme wind events and
rendering the time window critical overall). On the other hand, α is smaller than the
estimated average capacity factor in Greenland (i.e., 48%). In this case, the opposite
of the aforementioned situation holds, with short time windows being more likely
to turn out critical for a given (α, c) pair. This happens since, for a resource-rich area,
low wind events have a greater impact (in terms of time window criticality) on short
time horizons, while the effects of those same events are often annihilated when
computing the resource quality mapping for larger δ values.

Lastly, the outcome of coupling the two regions (LF and LG) is displayed in Figure
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3.2c. As for Greenland, the criticality index decreases as the time window length (δ)
increases. It should also be noted that, except for the c/|L| = 1.0 case, the criticality
indices in Figure 3.2c are, for all (δ, c) configurations, smaller than the ones associ-
ated with the locations in France (LF) and greater than the ones corresponding to
the sites in Greenland (LG). This can be explained by the fact that the influence of
the inferior wind resource in France is more pronounced for lower values of c/|L|.
Nevertheless, the impact of the high-quality wind resource of Greenland is observed
in the shape of the plotted curves which, compared to the ones associated to France
(Figure 3.2a), change curvature, leading to a steeper drop of the fC values as the c
factor increases. Numerically, given a window length of 24 hours, the criticality in-
dex decreases from 77.4% (c/|L| = 0.5) to 15.4% (c/|L| = 0.8) and, to 0.1%, for a
c/|L| value of 1. These observations already give a clear indication of the benefits
of harvesting wind energy in Greenland in order to complement the existing wind
regimes in France. For the sake of clarity, the output values of the criticality indica-
tor for different locations sets, global criticality threshold values and considering a
24-hour time-window length are summarised in Table 3.1.

3.5.2 Optimal Deployment of Generation Sites

This subsection details the results of the minimisation problem defined in Eq. (3.5).
More specifically, the optimal deployment of n generation sites across B areas is
assessed for different input regions (e.g., LF,LG,LFG), a given triplet (δ, α, c) and
taking account of pre-defined constraints on the geographical repartition of wind
farms throughout the B sub-regions. A time window length δ of 168 hours (one
week), a local criticality threshold α of 35% and a global criticality threshold c/|L|
of 1 are considered for illustrative purposes in the following example. Algorithm 1
provides a suboptimal solution to the optimisation problem at hand, and results are
shown in Figure 3.3.

The optimal deployment of five generation sites within the available locations in
southern Greenland and continental France is shown in Figure 3.3a and Figure 3.3b,
respectively. At first glance, it can be observed that the identified generation sites
are evenly distributed over the regions of interest, again revealing (this time visu-
ally) the complementarity of wind regimes across dispersed locations even on the
regional scale. Also, the actual wind farm locations in both cases can be explained
via well-documented, prevailing local or regional wind regimes. For Greenland, the
deployment of all but one wind farm is in line with the spatial occurrence of lo-
cal katabatic flows [119]. Shifting to France, two wind farms are deployed in the
resource-richer north, while the remaining ones are built in southern areas often
swept by strong, local winds (the Mistral and Tramontane) [120]. Numerically, the
five locations in France display a 15% probability of critical windows occurrence,
while the superior wind resource in Greenland translates to an almost zero (0.4%)
criticality index value.
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FIGURE 3.3: Visualisation of the optimal deployment of five wind
farms in (a) Greenland, (b) France, (c) the aggregation of the two with-
out and (d) with constraints on the geographical repartition. Results
corresponding to a time window length (δ) of one week, a local criti-
cality threshold (α) of 35% and a global criticality threshold (c/|L|) of

1.
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The results of two variations on the same minimisation problem applied to the ag-
gregated locations set (LFG) are discussed next. Figure 3.3c displays the optimal
distribution of generation sites in France and Greenland without any deployment
constraints. This variant corresponds to the case of a single, aggregated input re-
gion (i.e., B = 1). Numerically, the proportion of one-week-long time windows with
generation levels under 35% capacity factor across all five sites is only 0.005% over
the full time horizon. Nevertheless, constraints on the geographical repartition of
the generation sites can play a decisive role, as can be observed in Figure 3.3d. This
plot shows the optimal deployment of the five sites considering the number of wind
farms to be developed in Greenland is limited to two, in which case the criticality
index score increases to 0.06%.

3.5.3 Comparison with Average Capacity Factors as Primary Criterion

It is particularly insightful to compare the generation site selection according to dif-
ferent criteria. In particular, the usual criterion used for wind farm deployment is
the generation potential (or the average capacity factor) of the site. A comparison
between this indicator and the complementarity criterion proposed in this chapter
is presented in Figure 3.4 for the case of France. In this plot, the red markers are
associated with the solution of the minimisation problem (3.5). The yellow ones cor-
respond to the five best locations in LF (see Figure 3.1), strictly from a generation
potential perspective (i.e., locations are ranked based on integrated capacity factor
values over the available time horizon). The green point represents a generation site
common to both solutions.

The minimisation problem returns a deployment pattern whose criticality indicator
value stands at roughly 0.15, which corresponds to a 15% probability of observing
simultaneous low-production events. The criticality indicator value associated with
the five most productive sites is much higher (23.6%). In other words, for a capac-
ity factor threshold of 35% and compared with the locations set identified through
the minimisation problem, the likelihood of recording a 168-h long critical window
across the five most productive sites is 60% higher. This increase stems from the geo-
graphical proximity of the locations, which makes them subject to very similar wind
regimes. However, the improvement in criticality indicator value for the locations
with highest complementarity comes at the expense of total annual output. While
the five most productive wind farms boast an aggregated capacity factor value of
46% over the entire time horizon considered, the locations with highest complemen-
tarity only have an aggregated capacity factor value of 34%.

Overall, these results suggest that a trade-off exists between high production levels
and a reduced occurrence of simultaneous low-production events, and such consid-
erations should be accounted for in planning decisions and incentive schemes.
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FIGURE 3.4: Comparison of criticality index-based (blue) and elec-
tricity yield-based (red) deployment of wind farms within a given
subset of locations, based on the criticality indicator values. Exam-
ple depicting the results for the subset of potential generation sites in

France, LF.
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TABLE 3.2: Influence of the local criticality threshold (α) on the trade-
off between criticality index gain and average capacity factor loss in
the context of deployment strategy comparison between (i) criticality
index minimisation and (ii) average capacity factor as selection crite-
rion. Numerical results displayed for one-week-long time windows

(δ = 168) and global criticality thresholds (c/|L|) of 1.

α - 0.15 0.35 0.40 0.45 0.65

∆fC % -99.6 -36.4 -27.6 -20.4 -1.9

∆π̃ % -28.2 -26.0 -26.0 -26.0 -16.6

3.5.4 Discussion

A key factor impacting the accuracy of results presented in Section 3.5 is the accuracy
of the raw data used throughout the analysis. In this respect, it has been previously
shown that significant spatial bias can be identified in the ability of reanalysis mod-
els to recreate RES patterns in certain topographies [88]. This undesirable feature
is also observed in the current study that uses ERA5 as reanalysis database. Com-
paring modelled average capacity factors (as computed from ERA5 resource data)
with actual realisations of the regions where the generation sites in Figure 3.4 are
located, non-negligible differences can be observed. On the one hand, for the lo-
cations in Southern France, the computed average capacity factor is close to 25%,
a value which is just about the official statistics (27.4% in 2016) [94]. On the other
hand, a clear positive bias of the reanalysis model can be observed for the six lo-
cations in Northern France. For these locations, a modelled average capacity factor
of 45% is significantly higher than the reported 19-22% values associated with the
corresponding French regions in 2016 [94] but it seems unlikely that the aforemen-
tioned bias alone leads to such a substantial difference. At any rate, the sole purpose
of the wind database used in this work is to illustrate the mathematical framework
proposed in Section 3.3 and the continuous improvement of reanalysis models over
the years suggests that these tools could be used more reliably in such applications
in the near future. Nevertheless,final decisions on wind farm site selection should
be confirmed by extensive in-situ measurements.

One interesting implication of the proposed methodology stems from the results pre-
sented in Section 3.5.3, which suggest the existence of a trade-off between maximis-
ing energy volumes (and revenues, in current regulatory settings) and maximising
continuity of supply (via the criticality index) in the planning process of RES gen-
eration. This aspect brings into question the regulatory frameworks favouring the
former option and potential enhancements that can be addressed in this regard. In a
regulatory set-up that incentivises producers to provide ancillary network services
(e.g., contributing to a base load provision of electricity from renewable sources),
novel business cases could emerge by optimally deploying (from a criticality indi-
cator standpoint) production sites in power systems relying heavily on renewable
energy generation.
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Table 3.2 provides additional insight into how the local criticality threshold value
influences the properties of the deployment patterns obtained via Eq. (3.5), and how
these properties compare with those of the deployment pattern maximising annual
electricity output. More precisely, each entry in the second row shows the relative
difference in criticality indicator values between the deployment pattern maximis-
ing complementarity and the one maximising electricity output, respectively. Thus,
each entry expresses the change in the number of critical time windows between de-
ployment patterns, and a negative sign indicates that the pattern maximising com-
plementarity has fewer critical time windows.Then, the third row gives the rela-
tive difference in average capacity factor values. A negative sign indicates that the
power generation potential of the deployment pattern maximising complementarity
is lower than that of the pattern maximising electricity output. Now, inspecting the
second row reveals that the change in criticality indicator values becomes smaller
as the value of the local criticality threshold increases. In other words, a deploy-
ment pattern produced by (3.5) for a high value of the local criticality threshold has
a number of critical time windows roughly equal to that observed for the deploy-
ment pattern maximising electricity output. A similar trend is observed in the third
row. It therefore appears that the deployment patterns produced by (3.5) converge
towards the deployment pattern maximising electricity output as the local criticality
threshold value increases. It is also worth noting that, in contrast to the differences
in criticality indicator values, the differences in average capacity factor values re-
main constant over a range of α values. This observation suggests that deployment
patterns displaying the same level of annual electricity output can exhibit different
levels of complementarity. Hence, the method developed in this work also allows
for the identification of deployment patterns maximising complementarity within
a subset of locations with a pre-specified level of electricity output, which can be
simply achieved by tuning the local criticality threshold parameter.

3.6 Conclusion and Future Work

A framework to systematically assess the complementarity of dispersed variable re-
newable energy resources over arbitrary time scales has been presented. The frame-
work relies on the concept of critical time windows, which provide an accurate,
time-domain description of low probability RES power generation events impacting
power system operation and planning. A scalar indicator quantifying the comple-
mentarity dispersed RES generation sites may exhibit is derived, providing a practi-
cal tool to evaluate the respective merits of different RES deployment patterns. This
indicator is also leveraged to formulate optimisation models seeking to identify de-
ployment patterns with the smallest occurrence of low production events within a
region of interest.

The usefulness of the proposed framework is illustrated by a case study investi-
gating the complementarity between wind regimes within and between continental



52
Chapter 3. Critical Time Windows for Renewable Resource Complementarity

Assessment and Siting

France and southern Greenland. The analysis reveals that a significant reduction in
the occurrence of system-wide low RES generation events can be achieved when the
two areas are spatially aggregated, pointing to potential benefits of such interconti-
nental electrical interconnections. Moreover, the solutions to optimisation problems
derived from the criticality indicator shows that the occurrence of low power pro-
duction events can also be reduced on a regional scale by exploiting the diversity
in local wind regimes. In essence, results confirm the intuition that deploying gen-
eration sites across continents makes it possible to simultaneously take advantage
of high-quality resources and exploit the greater diversity in wind regimes in or-
der to substantially reduce the occurrence of simultaneous low power generation
events. The relevance of the proposed methodology in a power systems planning
context is further supported by a comparison of two wind farm deployment strate-
gies favouring complementarity and seeking to maximise annual electricity output,
respectively. These two approaches, which were tested in continental France, yield
starkly different deployment patterns, with implications for planning strategies in
future power systems dominated by vast shares of renewable-based generation,
where maintaining adequate levels of security of electricity supply may require a
comprehensive assessment of renewable resource complementarity.

Several research avenues can be pursued in future work. For instance, a straightfor-
ward extension of the present analysis would consist in applying the framework to
investigate the complementarity between different renewable resource types across
much greater geographical areas, possibly spanning several continents simultane-
ously. From a computational standpoint, recasting the proposed optimisation prob-
lems in a more structured form would be beneficial, as it would enable the use of effi-
cient off-the-shelf solvers, e.g. branch-and-bound, which would provide certificates
of optimality. If such efforts prove fruitless, a comprehensive analysis and extension
of the proposed heuristic to cases in which c/|L| 6= 1.0 would be needed. Finally,
further exploring the trade-off between maximising complementarity and annual
electricity output would be particularly useful for planning purposes. More pre-
cisely, quantifying the value of complementarity in economic terms would make it
possible to identify whether transmission, dispatchable generation or storage capac-
ity expansion strategies should be pursued to ensure adequacy in a power system
with ever-increasing shares of variable renewable resources. In the same vein, up-
dating the optimisation problems to include other constraints and costs, for instance
reflecting a desired level of installed renewable generation capacity or the difficulty
to connect to existing infrastructure, would allow for a more complete assessment of
renewable generation deployment options.
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Chapter 4

Evaluating the Impact of Siting
Strategies on the Design of Power
Systems

This chapter provides a detailed account of the impact of different offshore wind siting strate-
gies on the design of the European power system. To this end, a two-stage method is pro-
posed. In the first stage, a highly-granular siting problem identifies a suitable set of sites
where offshore wind plants could be deployed according to a pre-specified criterion. Two
siting schemes are analysed and compared within a realistic case study. These schemes
essentially select a pre-specified number of sites so as to maximise their aggregate power
output and their spatiotemporal complementarity, respectively. In addition, two variants
of these siting schemes are provided, wherein the number of sites to be selected is specified
on a country-by-country basis rather than Europe-wide. In the second stage, the subset of
previously identified sites is passed to a capacity expansion planning framework that sizes
the power generation, transmission and storage assets that should be deployed and operated
in order to satisfy pre-specified electricity demand levels at minimum cost. Results show
that the complementarity-based siting criterion leads to system designs which are up to 5%
cheaper than the ones relying on the power output-based scheme when offshore wind plants
are deployed with no consideration for country-based deployment targets. On the contrary,
the power output-based scheme leads to system designs which are consistently 2% cheaper
than the ones leveraging the complementarity-based siting strategy when such constraints
are enforced. The robustness of the reported results is supported by a sensitivity analysis on
offshore wind capital expenditure and inter-annual weather variability, respectively.

This chapter is a reprint of David-Constantin Radu, Mathias Berger, Antoine Dubois,
Raphaël Fonteneau, Hrvoje Pandžić, Yury Dvorkin, Quentin Louveaux, Damien Ernst,
“Assessing the Impact of Offshore Wind Siting Strategies on the Design of the European
Power System”, Applied Energy 305, 117700, 2022, https: // doi. org/ 10. 1016/ j.
aplen. 2021. 117700 . Reprinted with permission from the publisher.

https://doi.org/10.1016/j.aplen.2021.117700
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4.1 Introduction

The large-scale deployment of technologies harnessing renewable energy sources
(RES) for electricity production has been a mainstay of climate and decarboniza-
tion policies. In Europe, solar photovoltaic and onshore wind power plants have
formed the bulk of new renewable capacity additions for over a decade [121]. Nev-
ertheless, in spite of the need for extra capacity deployments required to achieve
ambitious decarbonization targets [3], the pace at which these technologies are de-
ployed in a number of countries has remained sluggish of late [121], often as a result
of social acceptance issues [122] and the phasing out of renewable support schemes.
On the other hand, the economics of offshore wind power generation have greatly
improved in recent years [123]. Offshore wind power plants are also located in un-
populated areas and are therefore less subject to social acceptance issues than on-
shore ones. Furthermore, the offshore wind resource is most often of much better
quality than the onshore one [124]. Hence, the large-scale deployment of offshore
wind power plants has increasingly been viewed as a key enabler of European de-
carbonization efforts [63], [91].

However, widely-available RES such as solar irradiance or offshore wind are inher-
ently variable on time scales ranging from minutes to years and integrating them
in power systems typically complicates planning and operational procedures [70].
Several solutions have been advocated to alleviate these issues, including the large-
scale deployment of electricity storage systems [66], [125] or the implementation
of demand response programs [67]. Alternatively, since RES are heterogeneously-
distributed in space and time, it has been suggested that siting RES electricity pro-
duction assets so as to exploit this diversity may reduce the aggregate output vari-
ability of RES power plants as well as the residual electricity load (i.e., total load
minus renewable production) [68], [126]. The concept of RES complementarity for-
malises this idea [96].

From a modelling perspective, the interplay between investment (both siting and
sizing) and operational decisions should be accounted for in order to evaluate the
impact of siting strategies on system design and economics. Hence, ideally, models
should perform both siting and sizing simultaneously, have a high spatiotemporal
resolution as well as a high level of technical detail. Unfortunately, such models
quickly become impractical (e.g., require tens of thousands of core-hours [52]) or in-
tractable. Thus, the siting and sizing problems have traditionally been tackled sepa-
rately in the literature, but the outcomes of siting models have rarely been leveraged
in sizing models.

In this paper, the role that offshore wind power plants may play in the European
power system is analysed, with a particular focus on the impact that plant siting
strategies have on system design and economics. To this end, a two-stage method is
developed. In the first stage, a highly-granular siting problem is solved in order to
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identify a suitable subset of candidate sites where offshore wind power plants could
be deployed. Then, in the second stage, the subset of locations selected in the first
stage is passed to a capacity expansion planning framework that sizes the power
generation, transmission and storage assets that should be deployed and operated
in order to satisfy pre-specified electricity demand levels at minimum cost subject to
technical and policy constraints. An open source tool implementing the two-stage
method is also provided for the sake of transparency.

Two types of deployment schemes that select sites so as to maximise their aggregate
power output and spatiotemporal complementarity are analysed. Roughly speak-
ing, sites are considered complementary if they rarely experience simultaneous low
electricity production events [127]. Two variants of these siting schemes are studied,
wherein the number of sites to be selected is specified on a country-by-country basis
rather than Europe-wide. A few hundred sites are identified using each scheme, by
leveraging a high resolution grid and ten years of reanalysis data [86]. These sites are
then passed to a capacity expansion planning framework relying on a stylised model
of the European power system where each country corresponds to an electrical bus
and including an array of power generation and storage technologies. The frame-
work sizes gas-fired power plants, offshore wind power plants, battery storage and
electricity transmission assets and operates the system so as to supply electricity de-
mand levels consistent with current European electricity consumption at minimum
cost while reducing carbon dioxide emissions from the power sector by 90% com-
pared with 1990 levels and taking a broad range of legacy assets into account. A
detailed sensitivity analysis is also performed in order to evaluate the impact of off-
shore wind cost assumptions and inter-annual weather variability on system design
and economics.

This manuscript is organised as follows. Section 4.2 reviews the relevant studies in
the literature. Section 4.3 presents the two-stage method used to evaluate the impact
of RES siting strategies on power system design and economics. The case study is
introduced in Section 4.4, while results are presented and analysed in Section 4.5.
Section 4.6 concludes the chapter and discusses future work avenues.

4.2 Related Works

The precise estimation of required capacities and incurred costs in RES-dominated
power systems relies heavily on the detailed modelling of RES assets [51]. In one of
the first studies to quantify the impact of this modelling aspect, Krishnan and Cole
[57] reveal that using 356 and 134 profiles to model the wind and solar resource,
respectively, within the contiguous US leads to significantly different capacity out-
comes compared to the case where the same resources are modelled via one single
profile per state (i.e., 48 profiles per resource). For example, the solar PV capacity
difference between the two set-ups exceeded 32 GW, or 10% of the total installed
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capacity for this technology. In a more recent assessment, Frysztacki et al. [60]
evaluate the role of high-resolution RES siting in a study focusing on the European
power system. They confirm the findings of [57] regarding the considerable im-
pact of RES representation on the installed capacity requirements and, in addition,
point out that modelling RES via 1024 different profiles leads to 10.5% lower system
costs compared to more simplified set-ups using only 37 distinct profiles (i.e., one
per country) per renewable resource. In the following, the detailed representation
of RES to produce an accurate (i.e., high-resolution) assessment of the most suitable
locations for asset deployment will be referred to as siting. A set-up where the de-
tailed RES representation is integrated in models whose outcomes include installed
capacities and associated costs, will be referred to as sizing.

The siting of RES assets has been a growing research topic lately. The models tack-
ling this problem typically put more emphasis on the representation of renewable re-
sources at the expense of other modelling features such as network or time-coupling
constraints. In addition, they use non-monetary objectives such as, e.g., residual load
or resource variability minimization. For instance, Jerez et al. [128] propose a tool
which enables the distribution of RES capacities, as well as their output estimation
via several transfer functions, across a regular grid with a spatial resolution of 0.44◦.
The problem is tackled by first computing distribution keys that take into account
resource quality, population density and the existence of protected areas and then
leveraging them to spread pre-defined capacities of RES across the system. Becker
and Thrän [129] propose a method that sites wind generators such that the corre-
lation (estimated via the Pearson coefficient) of the underlying resource with that
of existing assets is minimized. A heuristic is also designed to solve the problem.
Then, Musselman et al. [130] tackle the wind farm siting problem via two differ-
ent bi-objective models formulated as mixed-integer linear programs (MILP). The
first model seeks to simultaneously minimize i) the average residual demand and
ii) the average power output variability (measured as the absolute change in resid-
ual demand between consecutive periods), while the second model simultaneously
minimizes i) the average residual demand and ii) the maximum increase in resid-
ual demand over a set of time periods of pre-specified length. Furthermore, Hu et
al. [131] use linear programming and portfolio optimisation concepts to site RES
assets such that the standard deviation of their aggregate feed-in (i.e., the portfolio
volatility) is minimized. However, overlooking the electricity demand in this pro-
cess brings into question the ability of some of these methods [129], [131] to achieve
proper siting. A framework siting RES assets such that the occurrence of simultane-
ous, system-wide low-generation events is minimized has been recently proposed
by Berger et al. [127]. The problem has since been cast as an integer program (IP)
for which several solution methods have been proposed [132]. Although they offer
a valuable overview of different siting criteria proposed in the literature, a common
drawback of all these studies is that they fall short in evaluating the implications of
the corresponding outcomes on the design and economics of power systems. Such a
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feature usually surfaces once a sizing model reveals the configuration of the power
system.

The sizing of renewable power generation plants has been traditionally achieved
via capacity expansion planning (CEP) frameworks, a class of problems which has
received a great deal of attention in recent years [19]. For example, Baringo and
Conejo [133] have studied the strategic investment in wind power generation assets
by making use of a bi-level formulation in which investment decisions (siting and
sizing) define the upper level and market clearing forms the lower level problem. In
addition, Munoz et al. [134] tackled the joint generation and transmission expansion
planning via a MILP where investment decisions are done in two stages, such that
corrective actions are possible once uncertainty is revealed. In theory, such models
are capable of evaluating the implications of RES siting on the design and economics
of power systems. However, owing to computational limitations, these models usu-
ally have relatively low spatial and temporal resolutions, an aspect that makes it dif-
ficult to accurately capture correlations between variable renewable resources and
properly site RES assets. Several attempts to integrate spatially-resolved siting of
RES assets have been made, yet a common drawback can be identified across all
of them. On the one hand, in line with [133], [134] where purely economic criteria
are optimised, a study by MacDonald et al. [52] leverages a CEP framework cast
as a linear program (LP) to jointly optimise generation, transmission and storage
capacities. The model is instantiated with hourly-sampled RES and demand data,
while a 13 km regular grid is used for an accurate representation of renewable re-
sources. However, the approach is reported to require thousands of core hours to
solve large-scale instances, a feature which makes it difficult to reproduce and limits
its use in practice. Another study making use of a cost-minimization CEP frame-
work cast as an LP sites RES assets over a 0.75◦ regular grid [135]. This time, the
formulation of the CEP problem relies on a highly simplified temporal representa-
tion of the renewable resource availability (i.e., the hourly resolution is replaced by
a 144-step duration curve), an aspect that often limits the ability of the underlying
model to accurately estimate system needs [136]. On the other hand, non-economic
optimisation criteria have also been used in sizing set-ups. For instance, Wu et al.
[137] propose an IP for siting and sizing wind generation at high spatial resolutions
(e.g., 3.6 km used in their study) such that the need for peak conventional gener-
ation feed-in is minimised. Nevertheless, their formulation, which relies on a full
coefficient matrix, is computationally inefficient and its scalability is limited to a few
hundred locations and one year of data with hourly resolution. In a similar fash-
ion, Zappa and van den Broek [138] minimize year-round residual demand through
a linearly constrained quadratic program. In the proposed model, RES assets are
sited over the same regular grid used in [135]. However, their method suffers from
similar scalability issues as [137], which limits the scale of problems tackled to a few
hundred of RES sites and one year with hourly resolution.
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FIGURE 4.1: Workflow of the proposed two-stage method. Dotted
arrows denote exogenous input streams, while full arrows represent

output streams, respectively.

In this chapter, a method that enables the screening of thousands of candidate sites
and tens of years of resources data is leveraged to evaluate the economic impact
of different strategies for siting offshore wind across European Seas. To this end, a
two-stage routine that bridges the gap between the streams of literature indepen-
dently tackling the siting and sizing of RES assets in CEP frameworks is proposed.
At first, siting of RES assets is addressed via an integer programming problem with
a non-monetary objective. Then, linear programming is used to formulate a cost-
minimization capacity expansion planning problem that unfolds some of the impli-
cations of siting RES assets according to predefined criteria.

4.3 Methodology

This section describes the two-stage method combining asset siting schemes and
a capacity expansion planning model. Some basic notation used throughout this
section is first introduced. The models and solution methods used in the siting stage
are discussed next. Finally, the capacity expansion planning framework is presented.
A visual representation of the proposed workflow is shown in Figure 4.1.

4.3.1 Preliminaries

A finite time horizon T ∈ N and associated set of time periods T = {1, . . . , T} are
considered. A geographical area is represented by a finite set of sites L, |L| = L,
which may be partitioned into a collection of disjoint regions Ln ⊆ L, ∀n ∈ NB,
whereNB, |NB| = B, may for instance represent the set of electrical buses in a power
system and Ln may represent a set of candidate RES sites that may be connected
to bus n ∈ NB. Each location l ∈ L is assumed to have a fixed technical poten-
tial κl ∈ R+, which represents the maximum capacity that may be deployed at this
location. In addition, some legacy capacity κl ∈ R+ may have already been de-
ployed at sites l ∈ L0 ⊆ L. A time series sl =

(
sl1, . . . , slT

)
∈ RT

+ describing
renewable resource data (e.g., wind speed, solar irradiation) over T is assumed to
be available at each location l ∈ L. Furthermore, the instantaneous power output
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of location l ∈ L is estimated via a suitable transfer function hl that returns per-
unit capacity factor values πlt = hl(slt), ∀t ∈ T , which are stored in a time series
π l =

(
πl1, . . . , πlT

)
∈ {0, 1}T. This transfer function may be that of a single RES

power generation technology (e.g., a wind turbine or a solar PV module) or that of
an entire power station (e.g., a wind farm or a PV power station).

4.3.2 Siting Schemes

The models and solution methods used in asset siting schemes are described in this
section.

Models

Models that select a pre-specified number of suitable candidate sites so as to opti-
mise a given criterion are introduced. Two different criteria are considered, leading
to two different siting schemes. The first criterion measures the aggregate power
output (PROD), while the second one measures the spatiotemporal complementar-
ity that sites exhibit (COMP). Both siting problems are cast as integer programming
models.

Aggregate Power Output This siting scheme selects a collection of disjoint subsets
of locations so as to maximise their average capacity factor. More precisely, a pre-
specified number of locations kn ∈N (including legacy locations) is selected in each
region Ln, and the total number of locations that must be deployed is k = ∑n∈NB

kn.
In order to formulate this problem as an IP, a set of binary variables is introduced.
Indeed, a binary variable xl ∈ {0, 1} is used to indicate whether location l is selected
for deployment, that is, xl = 1 if location l is selected for deployment and xl = 0
otherwise. A binary matrix with entries Anl ∈ {0, 1} is also used to indicate whether
location l belongs to region Ln, such that Anl = 1 if this is the case and Anl = 0
otherwise. Note that since regions are disjoint, each column of this matrix has exactly
one nonzero entry, and we may assume without loss of generality that locations are
ordered such that matrix A is block diagonal. The problem at hand then reads

max
xl

1
k ∑

l∈L
xl

[
1
T ∑

t∈T
πlt

]
(4.1a)

s.t. ∑
l∈L

Anlxl = kn, ∀n ∈ NB, (4.1b)

xl = 1, ∀l ∈ L0, (4.1c)

xl ∈ {0, 1}, ∀l ∈ L. (4.1d)

The objective function (4.1a) computes the average capacity factor of the locations
selected for deployment. The cardinality constraints (4.1b) ensure that exactly kn
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locations are selected in region Ln, ∀n ∈ NB, while constraints (4.1c) guarantee that
legacy assets are taken into account. Finally, constraints (4.1d) express the binary
nature of location selection decisions.

Spatiotemporal Complementarity This siting scheme selects a collection of dis-
joint subsets of locations so as to maximise their spatiotemporal complementarity.
Recall that, in this manuscript, locations are considered complementary if they rarely
experience simultaneous low electricity production events (compared with a pre-
specified reference production level) [127], [132]. The framework that makes it pos-
sible to cast this problem as an IP is discussed next.

First, a set of time windows W , |W| = W, is constructed from the set of time pe-
riods T . More precisely, a time window w ∈ W can be seen as a subset Tw ⊆ T
of δ successive time periods, and all time windows w ∈ W have the same length
δ. Note that successive time windows overlap and share exactly δ− 1 time periods,
while the union of all time windows covers the set of time periods T . Then, the
per-unit power generation level πlw ∈ [0, 1] of each candidate site l ∈ L is evalu-
ated over the duration of each time window w ∈ W using a prescribed measure ql ,
such that πlw = ql({πlt}t∈Tw). This measure may for instance compute the average
production level over each window w ∈ W . This would essentially be equivalent to
applying a moving average-based filter to the original power production signal and
result in a smoothed power output signal. The degree of smoothing would be con-
trolled by δ, which makes it possible to study resource complementarity on different
time scales. A local, time-dependent reference production level αlw ∈ R+ is also
specified at each candidate site l ∈ L, and may for instance be proportional to the
electricity demand. A location l ∈ L is considered productive enough over window
w if πlw ≥ αlw. Location l is then said to cover window w and be non-critical. Check-
ing whether this condition is satisfied for all locations and time windows enables the
construction of a binary matrix with entries Dlw ∈ {0, 1}, such that Dlw = 1 if loca-
tion l covers window w and Dlw = 0 otherwise. In order to formalise the intuitive
definition of resource complementarity introduced earlier, a threshold c ∈N is spec-
ified, such that for any subset of candidate locations L ⊆ L, a window w ∈ W is said
to be c-covered or non-critical if at least c locations cover it (i.e., produce enough elec-
tricity over its duration). More formally, window w is non-critical if ∑l∈L Dlw ≥ c.

Using the notation introduced for the first siting scheme, formulating the integer
programming problem only requires the definition of a set of additional binary vari-
ables. More precisely, for each window w ∈ W , a binary variable yw ∈ {0, 1} indi-
cating whether window w is non-critical is introduced, such that yw = 1 if window
w is non-critical and yw = 0 otherwise. The problem of siting renewable power
plants so as to maximise their spatiotemporal complementarity then reads
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max
xl ,yw

∑
w∈W

yw (4.2a)

s.t. ∑
l∈L

Dlwxl ≥ cyw, ∀w ∈ W , (4.2b)

∑
l∈L

Anlxl = kn, ∀n ∈ NB, (4.2c)

xl = 1, ∀l ∈ L0, (4.2d)

xl ∈ {0, 1}, ∀l ∈ L, (4.2e)

yw ∈ {0, 1}, ∀w ∈ W . (4.2f)

The objective function (4.2a) simply computes the number of non-critical time win-
dows observed over the time horizon of interest. Dividing the objective by the total
number of time windows shows that it can be interpreted as quantifying the empir-
ical probability of having sufficient levels of electricity production across at least c
locations simultaneously. A low objective value therefore implies that simultaneous
low electricity production events occur often, which indicates poor complementarity
between locations. Note that this interpretation is opposite to the definition of c in
Chapter 2, however a simple re-formulation of (4.2a-4.2f) as a minimisation problem
would level the definitions. Constraints (4.2b) define the binary classification of time
windows and express the fact that a time window w ∈ W is non-critical if at least c
locations selected for deployment cover it. The cardinality constraints (4.2c) ensure
that exactly kn locations are selected in region Ln, ∀n ∈ NB, while constraints (4.2d)
guarantee that legacy assets are accounted for in siting decisions. Finally, constraints
(4.2e-4.2f) express the binary nature of location selection decisions and time window
criticality, respectively.

Solution Methods

The solution methods used to tackle problems (4.1) and (4.2) are discussed next.

Aggregate Power Output Since the objective function (4.1a) is separable and the
coefficient matrix in Eq. (4.1b) is block diagonal, problem (4.1a-4.1d) is straightfor-
ward to decompose and solve. More precisely, the kn most productive locations can
be selected independently in each region Ln, ∀n ∈ NB. In each region Ln, this can be
achieved by successively i) computing the average capacity factor of each location
π̃l = (1/T)∑t∈T πlt, ∀l ∈ Ln, ii) sorting locations based on their average capac-
ity factor π̃l , iii) adding the locations with the highest average capacity factors to a
set Ln ⊆ Ln that initially contains the legacy locations belonging to region n, until
|Ln| = kn. The solution L to problem (4.1) is then obtained by taking the union of
these sets, L =

⋃
n∈NB

Ln.
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Spatiotemporal Complementarity An approximate solution method relying on a
mixed-integer relaxation of problem (4.2) followed by a local search algorithm in-
spired by the simulated annealing algorithm [139] is used to tackle (4.2a-4.2f) [132].
The mixed-integer relaxation is formed by relaxing the integrality constraint (4.2f) of
the time window variables. The key advantage of this approach lies in the fact that
the siting variables xl , ∀l ∈ L, remain integer in the solution and subsets of locations
Ln ⊆ Ln, ∀n ∈ NB, can be directly extracted from them. The number of non-critical
windows associated with this collection of subsets L =

⋃
n∈NB

Ln can be computed
via a function fC such that

fC(L) =
∣∣∣{w ∈ W

∣∣∣∑
l∈L

Dwl ≥ c
}∣∣∣. (4.3)

The local search algorithm starts from a subset of locations L0 ⊆ L obtained by
solving the mixed-integer relaxation of problem (4.2). Note that by construction, L0

includes legacy locations and satisfies the cardinality constraints (4.2c). Since legacy
locations cannot change, they are first removed from L0 in order to initialise the in-
cumbent solution L ⊆ L. Likewise, legacy locations are removed from the set of can-
didate sites that may be selected in each region Ln, ∀n ∈ NB. Then, the algorithm
performs a fixed number of iterations I ∈N in the hope of improving the incumbent
solution. More specifically, in each iteration, a fixed number N ∈ N of neighbour-
ing solutions or radius r ∈ N, r ≤ k is drawn at random from the neighbourhood
of the incumbent solution. This neighbourhood is formed by solutions that satisfy
the cardinality constraints (4.2c) and share exactly k − r locations with the incum-
bent solution. A neighbouring solution L̂ can be constructed from the incumbent
solution as follows. For each region Ln, s(n) different locations are sampled uni-
formly at random from both Ln \ L and Ln ∩ L, and these locations are swapped.
The numbers of locations sampled in different regions are chosen at random such
that the cardinality constraints (4.2c) remain satisfied and ∑n∈NB

s(n) = r. Then,
each of the N neighbouring solutions is tested against the incumbent solution and
stored in a temporary candidate solution L̃ if it is found to outperform previously-
explored neighbouring solutions. Their performance is evaluated via the difference
∆̃ between the objectives achieved by the neighbouring and incumbent solutions.
Once N neighbouring solutions have been explored, the candidate solution corre-
sponds to a neighbouring solution that maximises ∆̃ among all sampled solutions.
Note that ∆̃ may be negative (i.e., if the algorithm does not manage to improve on the
incumbent). If ∆̃ > 0, the candidate solution becomes the new incumbent solution.
By contrast, if ∆̃ < 0, whether the candidate solution becomes the new incumbent
solution depends on the outcome b of a random variable drawn from a Bernoulli
distribution with parameter p. This parameter depends on both ∆̃ and the so-called
annealing temperature T(i). Roughly speaking, the temperature controls the extent
to which the search space is explored in an attempt to find better solutions and exit
local optima. The temperature is specified by a temperature schedule that provides a
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Algorithm 2 Local Search Algorithm

Require: L0, L0, NB, {Ln}n∈NB , I, N, r, T(i), fC
1: L← L0 \ L0
2: for n ∈ NB do
3: Ln ← Ln \ L0
4: end for
5: i← 0
6: while i < I do
7: ∆̃← −∞
8: j← 0
9: while j < N do

10: L̂← L
11: s← vector storing the number of locations to sample per region
12: for n ∈ NB do
13: S+ ← s(n) locations sampled from Ln \ L uniformly at random
14: S− ← s(n) locations sampled from Ln ∩ L uniformly at random
15: L̂← (L̂ \ S−) ∪ S+

16: end for
17: ∆̂← fC(L̂ ∪ L0)− fC(L ∪ L0)
18: if ∆̂ > ∆̃ then
19: L̃← L̂
20: ∆̃← ∆̂
21: end if
22: j← j + 1
23: end while
24: if ∆̃ > 0 then
25: L← L̃
26: else
27: p← exp(∆̃/T(i))
28: draw b from Bernoulli distribution with parameter p
29: if b = 1 then
30: L← L̃
31: end if
32: end if
33: i← i + 1
34: end while
35: L← L ∪ L0
Ensure: L, fC(L)
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temperature T(i) for each iteration i. This procedure is repeated until the maximum
number of iterations I is reached. Algorithm 2 summarises these ideas.

4.3.3 Capacity Expansion Planning Framework

Upon retrieving a suitable subset of locations L ⊆ L from the siting stage, the as-
sociated capacity factor time series {π l}l∈L, legacy capacities {κl}l∈L and technical
potentials {κl}l∈L are passed as input data to a capacity expansion planning (CEP)
framework that determines the optimal power system design. More precisely, the
CEP model described in (4.4a-4.4s) selects and sizes the power generation, trans-
mission and storage assets that should be deployed and operated in order to satisfy
pre-specified electricity demand levels across Europe at minimum cost subject to
a set of technical and environmental constraints. In the formulation below, Latin
letters denote optimization variables, while Greek characters represent problem pa-
rameters.

A set of working assumptions characterize the capacity expansion planning frame-
work used in the current study. First, investment decisions in power system assets
are made by a central planner that also operates the system, has perfect foresight,
and whose goal is to minimise total system cost in a purely deterministic set-up. A
static investment horizon is considered and the investment and operation problems
are solved concurrently. Investment decisions are made once (at the beginning at
the optimisation horizon), while operational decisions are taken on an hourly basis.
Second, investments in generation, transmission or storage capacities are continu-
ous variables and transmission expansion is limited to the reinforcement of existing
corridors. Third, the network is represented by i) a set of existing nodes, which rep-
resent an aggregation of real electrical nodes and ii) a set of existing transmission
corridors, which connect the aforementioned nodes. Legacy generation assets at ex-
isting nodes are taken into account. Additional dispatchable capacity (e.g., gas-fired
power plants) may be added at those nodes, while additional RES generation capac-
ity may also be built at existing nodes, provided that the local renewable potential
is not fully exploited. Finally, as seen in (4.4a-4.4s), no unit commitment constraints
are considered and the full operating range of dispatchable power plants is assumed
stable.

The objective (4.4a) includes the capacity-dependent investment and fixed operation
and maintenance (O&M) costs and the output-dependent variable O&M expendi-
tures1. In addition, an economic penalty is enforced on electricity demand shedding.
Then, the electricity supply and demand balance is enforced via (4.4b).

1Note that the VOM, as defined here, include the plan-specific variable operation and maintenance
costs, fuel costs, as well as CO2-related expenses.
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min
K, S, (pt)t∈T , (et)t∈T

∑
n∈NB
l∈Ln

(
ζ l + θl

f
)
Kl + ∑

n∈NB
j∈G∪R∪S

(
ζ j + θ

j
f

)
Knj + ∑

n∈NB
s∈S

ζs
SSns + ∑

i∈I

(
ζ i + θi

f
)
Kc

+ ∑
t∈T

ωt

[
∑

n∈NB
l∈Ln

θl
v plt + ∑

n∈NB
g∈G∪R

θ
g
v pngt + ∑

n∈NB
s∈S

θs
v(pC

nst + pD
nst) + ∑

i∈I
θi

v|pit|+ ∑
n∈NB

θens pens
nt

]
(4.4a)

s.t. ∑
n∈NB
l∈Ln

plt + ∑
g∈G∪R

pngt + ∑
s∈S

pD
nst + ∑

i∈I+n

pit + pens
nt = λnt + ∑

s∈S
pC

nst + ∑
i∈I−n

pit,

∀n ∈ NB, ∀t ∈ T (4.4b)

The operation and deployment of the RES units whose locations are determined by
leveraging the siting models in Section 4.3.2 are constrained by (4.4c) and (4.4d), re-
spectively. The next six equations model the operation and sizing of the remaining
generation units, including RES technologies that are not sited. More specifically,
modelling aspects such as instantaneous in-feed (4.4e), ramp rates (4.4f-4.4g), mini-
mum operating levels (4.4h), CO2 emission levels (4.4i) or technical potential limita-
tions (4.4j) are considered.

plt ≤ πlt(κl + Kl), ∀l ∈ Ln, ∀n ∈ NB, ∀t ∈ T (4.4c)

κl + Kl ≤ κl , ∀l ∈ Ln, ∀n ∈ NB (4.4d)

pngt ≤ πnt(κng + Kng), ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (4.4e)

pngt − png(t−1) ≤ ∆+
g (κng + Kng), ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T \ {0} (4.4f)

pngt − png(t−1) ≥ −∆−g (κng + Kng), ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T \ {0} (4.4g)

µg(κng + Kng) ≤ pngt, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (4.4h)

qCO2
ngt = νCO2

g pngt/ηg, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (4.4i)

κng + Kng ≤ κng, ∀n ∈ NB, ∀g ∈ G (4.4j)

It is worth mentioning the two most common situations in which the latter six con-
straints are enforced. On the one hand, if dispatchable units are modelled (e.g.,
gas-fired power plants), the time-dependent availability πnt in Eq. (4.4e) is set to
one across the entire optimisation horizon. On the other hand, if a RES technology
not sited via the models in Section 4.3.2 is addressed, the aforementioned parameter
is instantiated with a per-unit capacity factor time series that is aggregated at the
spatial resolution represented by bus n ∈ NB. Furthermore, the per-unit ramp rates
∆+

g and ∆−g in Eq. (4.4f-4.4g) are set to one, while the must-run and the specific CO2

emission levels µg and νCO2
g , respectively, are set to zero.

pD
nst ≤ Kns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (4.4k)

pC
nst ≤ φsKns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (4.4l)



66
Chapter 4. Evaluating the Impact of Siting Strategies on the Design of Power

Systems

enst = ηSD
s ens(t−1) + ωsη

C
s pC

nst −ωs
1

ηD
s

pD
nst, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (4.4m)

µsSns ≤ enst ≤ Sns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (4.4n)

κns ≤ Sns ≤ κns, ∀n ∈ NB, ∀s ∈ S (4.4o)

Storage units are modelled via (4.4k) to (4.4o), assuming independent energy and
power ratings and asymmetric charge and discharge rates, while constraints (4.4p)
and (4.4q) define the transportation model governing the flow in transmission assets.

|pit| ≤ (κi + Ki), ∀i ∈ I , ∀t ∈ T (4.4p)

κi + Ki ≤ κi, ∀i ∈ I (4.4q)

∑
n∈NB
g∈G
t∈T

ωtqCO2
ngt ≤ ΨCO2 (4.4r)

∑
d∈D

Knd + ∑
r∈R

ΠnrKnr + ∑
l∈Ln

ΠlKl ≥ (1 + Φn)λ̂n, ∀n ∈ NB (4.4s)

A system-wide CO2 budget is enforced via (4.4r). Then, a system adequacy con-
straint is enforced via (4.4s) following the definition provided in [140], according to
which a system is adequate in the long-term by ensuring that the amount of firm
capacity exceeds the peak demand by a planning reserve margin. According to Eq.
(4.4s), this constraint is enforced at every bus n ∈ NB and the corresponding peak
demands and reserve margins are defined by λ̂n and Φn, respectively. There are two
main sources providing firm capacity. On the one hand, set D in the first term on
the left-hand side gathers dispatchable power generation technologies. On the other
hand, RES assets also contribute to the provision of firm capacity and their partici-
pation is proportional to their capacity credit, as defined in [141]. To this end, two
sets of RES technologies are defined. The one in the second term of (4.4s) gathers the
subset of RES technologies which are not sited, while Ln defines, for every n ∈ NB

the collection of sites obtained from the previous siting stage.

4.3.4 Implementation

With the exception of the siting algorithm (detailed in Section 4.3.2) which was im-
plemented in Julia 1.4, the implementation of the proposed framework is based on
Python 3.7. All simulations were run on a workstation running under CentOS, with
an 18-core Intel Xeon Gold 6140 CPU clocking at 2.3 GHz and 256 GB RAM. The
sizing problem (4.4a-4.4s) is implemented in PyPSA 0.17 [32]. Gurobi 9.1 was used
to solve the MIR of (4.2a-4.2f), as well as (4.4a-4.4s).

4.4 Case Study

The upcoming section describes the case study used to investigate i) the outcome
of siting offshore wind plants within European borders by leveraging the two siting
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strategies introduced in Section 4.3.2 and ii) the impact these siting strategies have
on the resulting power system configurations. First, the realistic set-up used in the
siting stage is presented. Then, the main features of the CEP framework are intro-
duced. Recall that, in this exercise, offshore wind is the only renewable resource for
which siting decisions are analysed, while the other RES technologies (i.e., onshore
wind, utility-scale and distributed PV) are modelled via aggregate, per-country pro-
files obtained from the renewables.ninja data platform [142], [143].

4.4.1 Offshore Wind Siting

Renewable Resource Data For this analysis, ten years (i.e., 2010 to 2019) of hourly-
sampled wind speed data at a spatial resolution of 0.25° are obtained from the ERA5
reanalysis dataset [86]. The time series are then re-sampled by preserving the mean
of each consecutive subset of three hours across the entire time horizon, yielding
T = 29216 time periods. The conversion of raw resource data into capacity fac-
tor time series (a step required in both siting strategies introduced in Section 4.3.2)
is achieved by applying the transfer function of a wind farm to the time series of
wind speeds. Determining the appropriate wind farm transfer function for each
candidate site involves a two-step process. First, the ten-year average wind speed
is computed and the relevant IEC wind class is determined [144]. Once the wind
class is known, an appropriate wind turbine is selected (in this exercise, two wind
turbines are available, i.e., the Vestas V90 and V164 models) and the corresponding
farm-specific transfer function is determined via a power curve smoothing proce-
dure inspired from [90].

Deployment Targets Initially, an a priori filtering of candidate offshore wind loca-
tions is performed in order to discard sites where it would be impractical to deploy
wind power plants. To this end, the following criteria are considered. First, a latitude
threshold of 70◦ N is considered and all candidate locations beyond that limit are dis-
carded. Second, sites with an average depth (i.e., the water depth across the entire
reanalysis grid cell associated with the site) beyond 999 m are also discarded. Third,
only candidate sites situated between 12 nm and 120 nm (i.e., nautical miles) from
the shore are further considered [145]. Finally, sites where operational or already
planned offshore wind farms exist [61] are added back to the set of candidate loca-
tions, in case they were discarded following the application of the aforementioned
filters. As a result, a total of L = 2472 candidate offshore sites (whose distribution
per EEZ can be seen in the |Ln| column of Table 4.1) are available in the siting stage.
A visualization of the set of candidate sites is provided in Appendix A.1.

In order to compute the number of sites k that should be considered for deployment,
the siting stage assumes the need for up to 450 GW of offshore wind across 19 Ex-
clusive Economic Zones (EEZ) within Europe, in line with a recent study published
under the aegis of the European Commission [91]. The conversion of the capacity
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requirements within each EEZ (κn) into the cardinality constraints (kn) required in
(4.1a-4.1d) and (4.2a-4.2f) is achieved through Eq. (4.5), where d·e denotes the ceil-
ing function, ρr denotes the power density of the RES technology r ∈ R (expressed
in MW/km2), σsite represents the surface area of a (generic) candidate location (ex-
pressed in km2) and εsite denotes the dimensionless cell surface utilisation factor
(since only a share of the cell surface area can be exploited for RES deployment pur-
poses due to competing land uses). Given that, at this stage, the geo-positioning of
the k sites to be identified is not known, average values for the last two parameters
are considered. In particular, an offshore power density of 6 MW/km2 (consistent
recent developments in the North Sea basin [146]), a candidate site surface area of
442.5 km2 (corresponding to a 0.25°-resolution cell at a latitude of 55◦ N) and a cell
surface utilization factor of 50% were considered. In consequence, a total of 350 sites
(whose per-country distribution can be seen in column k̃n of Table 4.1) are required
to accommodate the targeted 450 GW of offshore wind.

k̃n =

⌈
κn

ρr × σsite × εsite

⌉
, ∀n ∈ NB (4.5)

According to a recent survey [61], around 99 GW of offshore wind capacity are cur-
rently in operation or in various stages of planning (e.g., construction, permitting,
etc.) within European borders. When siting RES assets, taking into account the
existence of legacy installations has a significant impact on the final outcome, as
their location (and the corresponding generation patterns) influences the resulting
deployment schemes. In the exercise at hand, the exact geo-positioning of the avail-
able legacy wind installations (retrieved from [61]) is mapped to the reanalysis grid
used to perform the siting exercise, such that each wind farm is associated with an
ERA5 grid point. This procedure reveals that, among the L = 2472 candidate sites,
|L0| = 135 of them (whose distribution per country is given in column |L0,n| of
Table 4.1) have at least 100 MW of legacy wind installations. At this point, a final
adjustment is required to determine the values of kn. This adjustment is necessary in
two particular cases, i.e, i) when the number of legacy sites exceeds the previously
computed k̃n or ii) when the number of candidate sites does not suffice to accom-
modate the required capacity under the aforementioned (ρr, σsite, εsite) assumptions,
and is enforced via Eq. (4.6). As a result of this final adjustment, three additional
sites (i.e., all of them associated with the EEZ of Greece) are added to the sets of
required deployments and candidate locations, respectively. The resulting values
for kn are gathered under the column with the same name in Table 4.1. Throughout
the analysis, both partitioned (i.e., B = 19, where offshore wind sites are deployed
whilst respecting the kn values per EEZ specified in Table 4.1) and un-partitioned
(i.e, B = 1, where the k = ∑n∈NB

kn sites are freely deployed across the European
Seas) siting strategies will be investigated.
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TABLE 4.1: Capacity requirements and cardinalities of various loca-
tions sets for the 19 European countries included in this study. Ta-
ble entries sorted in descending order based on the capacity require-

ments per EEZ.

EEZ κn |Ln| |L0,n| k̃n kn

[GW] [sites] [sites] [sites] [sites]

UK 80 700 39 61 61
NL 60 102 8 46 46
FR 57 231 7 43 43
DE 36 81 17 28 28
DK 35 119 15 27 27
NO 30 187 1 23 23
PL 28 51 10 22 22
IE 22 219 5 17 17
IT 20 112 2 16 16
SE 20 254 9 16 16
FI 15 128 5 12 12
ES 13 77 0 10 10
GR 10 39 11 8 11
PT 9 17 1 7 7
BE 6 4 2 5 4
LV 4 8 1 4 4
LT 3 49 0 3 3
EE 1 47 2 1 2
HR 1 47 0 1 1

kn = min{|Ln|, max{|L0,n|, k̃n}}, ∀n ∈ NB (4.6)

COMP Siting Set-Up The COMP siting strategy is carried out for a time window
length δ of one time period (i.e., three hours). Then, a location l ∈ L is considered
non-critical during time window w if its maximum theoretical generation potential
exceeds a pre-defined share of the system-wide electricity demand. By expressing
the former as the product between the technical potential κl and the capacity factor
πlw, this condition can be written as

κlπlw ≥
ςλw

k
, (4.7)

where ς represents the proportion of the electricity demand during window w (i.e,
λw) to be covered by offshore wind plants (which in this exercise is uniformly set to
30%, as suggested in [147]) and k denotes the number of system-wide offshore wind
deployments, whose per-partition distribution is detailed in Table 4.1. Dividing both
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sides of Eq. (4.7) by κl yields the local criticality definition introduced in Section
4.3.2, where the reference production level αlw = ςλw/κlk. Furthermore, threshold c
in Eq. (4.2b) is set such that at least half of the locations must cover any time window
for it to be labeled non-critical. In order to retrieve the COMP set of sites, Algorithm
2 is run thirty times and the solution with the highest objective function (i.e., the
highest number of non-critical windows) is retrieved and passed to the subsequent
CEP stage. With respect to the algorithm parameters, a neighbourhood radius r of
1, an initial temperature T of 100 and an exponential temperature schedule T(i) =

100× exp(−10× i/I) were considered. Additionally, I = 5000 iterations with N =

500 neighbouring solutions each are considered for each run of the algorithm.

4.4.2 Capacity Expansion Problem

Network Topology The set of countries considered in the sizing stage includes,
aside from the ones listed in Table 4.1, Austria, Hungary, The Czech Republic, Slo-
vakia, Switzerland (as landlocked territories), Bulgaria, Romania and Slovenia (with
no offshore wind capacity mentioned in [91]). It should be noted that Ln = ∅ for
the subset of countries previously mentioned (i.e., no offshore wind sites available).
Each country is modelled as one node, while the network topology is based upon
that used for the 2018 version of the TYNDP [55]. A map of the topology is pro-
vided in in Figure 4.2. It is hereby assumed that all interconnections crossing bodies
of water are developed as DC cables, while the remainder are AC cables. As men-
tioned previously, transmission expansion decisions are limited to the reinforcement
of existing corridors. The connection costs of offshore sites to the associated onshore
buses depend on the capacity of the generation unit (representing a 20% share of
the capital expenditure [148]), but not on the distance to shore. Hourly-sampled de-
mand data covering the same ten years used in the siting stage (i.e., 2010 to 2019)
is retrieved from [149]. Then, as in the previous siting stage, time series are resam-
pled at three-hourly resolution by preserving the mean of each consecutive subset
of three hours across the entire time horizon.
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FIGURE 4.2: Network topology used in the capacity expansion plan-
ning stage.
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Electricity Generation Assets There are nine technologies available for electricity
generation, i.e., offshore and onshore wind, utility-scale and distributed solar PV,
run-of-river and reservoir-based hydro, nuclear plants, open- and combined-cycle
gas turbines (OCGT and CCGT, respectively). Only a subset of these technologies
(i.e., the offshore wind and the gas-fired units) are sized, while installed capacities
of onshore wind, solar PV, hydro and nuclear power plants remain fixed throughout
the optimisation. Recall that the technical potentials of the offshore wind sites are
inputs from the siting stage. By contrast, those of the remaining generation tech-
nologies to be sized in the CEP framework (i.e., OCGT and CCGT) are assumed
to be unconstrained. All generation technologies except the gas-fired power plants
are assumed to have non-zero installed capacities at the beginning of the optimisa-
tion exercise. More specifically, 61.5 GW of nuclear power capacity, 33.5 GW of run-
of-river hydro power capacity and 98.1 GW of reservoir-based hydro power capac-
ity are available throughout the selected European countries [150], [151]2. Existing
wind capacity is obtained from [61], where 99.1 GW of offshore wind and 160.5 GW
of onshore wind capacity in various development stages are reported across Europe.
Utility-scale solar PV capacity data is retrieved from [62], where a legacy capacity of
45.5 GW is reported throughout Europe. Finally, country-aggregated capacities for
distributed PV installations are retrieved from [152], where the existence of 77.7 GW
of such installations is reported within European borders.

Electricity Storage Assets Two technologies are available for storing electricity,
namely, pumped-hydro (PHS) and battery storage (Li-Ion). It is assumed that no
legacy capacity is available in Europe for the latter. Pumped-hydro units are not
sized within the CEP framework at hand and the power ratings of existing plants are
retrieved from [151], where a total of 54.5 GW/1950 GWh of PHS units are reported3.
A summary of the techno-economic data used to instantiate the CEP problem is pro-
vided in Table 4.2.

Policy Constraints A set of policy-related constraints are enforced in the CEP prob-
lem. One of the main constraints driving the design of power systems under deep
decarbonization targets is the CO2 budget. In the current exercise, this budget is en-
forced system-wide and its value imposes a 90% reduction in carbon dioxide emis-
sions throughout the optimisation horizon relative to 1990 levels. Then, a planning
reserve margin of 20% is considered at each bus n ∈ NB via Eq. (4.4s). The set
D gathering dispatchable generation units providing firm capacity includes OCGT,
CCGT, nuclear and reservoir-based hydro power plants. Furthermore, at each bus
n ∈ NB, the capacity credit of RES sites is computed during the top 5% time instants
of peak electricity demand.

2The modelling of run-of-river capacity factors and of inflows into the water storage of reservoir-
based plants is detailed in Appendix B.

3The specific durations of these units is estimated on a unit-by-unit basis via a procedure that is
detailed in Appendix B.
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A detailed account of the techno-economic assumptions considered in this study
is provided in Appendix A.1. The input data used to set-up the siting and sizing
models is available at [153]. The code used to run both models is available at [154]
and [155], respectively.

4.5 Results

In this section, a series of experiments that compare the implications of the proposed
siting schemes on the design and economics of power systems is conducted. In
particular, the impact of two variants (i.e., partitioned and un-partitioned) of PROD
and COMP on the siting of roughly 350 offshore wind power plants in the European
power system is discussed.

4.5.1 Impact of Siting Decisions on Offshore Production and Residual
Load

The first set of results provides insight into the impact of the two siting strategies
on the aggregate offshore wind and residual demand signals. To this end, an un-
partitioned set-up is used (i.e., where sites are deployed with no consideration for
territorial constraints), whose outcome can be seen in Figure 4.3 for both PROD and
COMP schemes, where green markers depict the 135 legacy offshore wind sites. In
the left-hand side figure, the PROD strategy concentrates all remaining sites to be
deployed in two of the most productive areas within the European Seas (i.e., the
Atlantic region offshore the British Isles and the North Sea area between Denmark
and Norway) [124]. By contrast, the right-hand side subplot shows that the COMP
strategy distributes sites across several distinct areas found within European EEZ.
More specifically, offshore wind deployments under this strategy seem to follow
two directions. On the one hand, resource-rich sites in the Atlantic region are still
exploited, though to a lesser extent considering that the very good resource in the
North Sea basin is already well represented in the set of legacy sites. On the other
hand, a significant share of the sites picked by COMP are spread in two regions (i.e.,
Iberia and Southeastern Europe) that are known to have distinct and complementary
wind regimes to the ones in Northern Europe, as pointed out in [156], [157].

The effects of offshore wind power plant siting decisions on the aggregate offshore
wind and residual load signals can be seen in Figures 4.4 and 4.5. More specifically,
Figure 4.4 displays the aggregate offshore wind signal (top subplot) as well as the
aggregate residual demand signal (bottom subplot). The signal shown in the top
subplot is obtained by spatially averaging the capacity factor time series of the 353
locations selected by the two siting schemes under consideration, while the aggre-
gate residual demand signal is calculated as follows i) the technology power density
and site area assumptions considered in Section 4.4.1 are preserved and ii) the de-
mand signals of every country in Table 4.1 are summed to yield a single EU-wide
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FIGURE 4.3: Deployment patterns for the PROD (left) and COMP
(right) siting schemes for the unpartitioned (B = 1) case. In both
plots, legacy locations are displayed in green. Exclusive Economic
Areas depicted by the grey contours outside the European land mass.
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FIGURE 4.4: Visual examples of aggregate offshore wind (top) and
residual demand (bottom) signals for the unpartitioned (B = 1)

PROD and COMP schemes.

FIGURE 4.5: Statistical distribution of the residual demand under the
unpartitioned (B = 1) PROD and COMP siting schemes (left). Sta-
tistical distribution of the (max-min) spread for 12-hourly and daily
disjoint intervals of the residual demand time series under the un-
partitioned (B = 1) PROD and COMP siting schemes (right). Boxes
depicting the first quartile, median and third quartile of time series,

respectively.
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profile from which the aggregate offshore wind feed-in is subtracted. Figure 4.5,
on the other hand, shows the statistical distribution of the residual demand (4.5a)
as well as the statistical distribution of the spread between the maximum and mini-
mum residual demand for 12-hourly and daily (disjoint) time periods (4.5b and 4.5c).
All distributions are constructed using data from ten weather years (2010-2019).

Figure 4.4 suggests that the COMP scheme is indeed able to select sites with fewer
periods of simultaneous low electricity production than the PROD. More precisely,
aggregate capacity factor values stay between (roughly) 30% and 60% for the COMP
scheme while the range of capacity factor values covered by the PROD scheme is
much broader. This observation is consistent with the fact that the COMP deploy-
ment pattern covers 29031 time windows (out of 29218), while the PROD pattern
covers 27147 time windows (around 6.5% fewer than COMP), which also implies
that instances of high residual load are more frequent in the PROD pattern. This
claim is supported by Figure 4.5a, which shows that the COMP scheme leads to
an overall reduction in residual demand. Indeed, the first quartile, the median, the
third quartile and the maximum of the COMP scheme all correspond to significantly
lower residual demand values than those of the PROD scheme. Furthermore, Fig-
ure 4.4 suggests that some degree of aggregate output variability reduction on time
scales ranging from hours to days may be obtained as a by-product of the COMP
scheme. This intuition is also supported by the box plots in Figures 4.5b and 4.5c,
which indicate that both the full and interquartile ranges of siting patterns produced
by the COMP scheme are narrower than those obtained by the PROD scheme. Fi-
nally, in Figure 4.4c, it can be seen that the COMP scheme sometimes produces less
than PROD for a few days in a row, which can partly be attributed to the fact that
the PROD scheme maximises the average capacity factor.

Variants of the PROD and COMP siting schemes that select locations while satisfy-
ing country-based deployment targets (B = 19, as shown in Table 4.1) are analyzed
next. The associated PROD and COMP deployment patterns are shown in Figure
4.6, where green markers depict legacy locations. In this context, the PROD scheme
(left-hand side map) yields a set of clusters of locations, which correspond to the
most productive areas of each EEZ. Hence, the resulting deployment pattern is much
more scattered than the one observed in the unpartitioned set-up and benefits from
much more diverse wind regimes, as suggested by Grams et al. [156]. The COMP
pattern (right-hand side map) is even more scattered than the PROD one. Legacy lo-
cations are common to both schemes and about 19% of non-legacy locations selected
by the COMP scheme are also selected by the PROD scheme, up from 6% in the
unpartitioned set-up. The partitioned PROD and COMP patterns therefore share
a total of 176 locations (i.e., roughly 50% of all selected locations). Furthermore, in
several countries, the number of candidate locations available is only slightly greater
than the number of locations that must be deployed there. Hence, even though lo-
cations selected in these countries by the PROD and COMP schemes may not be
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FIGURE 4.6: Deployment patterns for the PROD (left) and COMP
(right) siting schemes for the unpartitioned (B = 19) case. In both
plots, legacy locations are displayed in green. Exclusive Economic
Areas depicted by the grey contours outside the European land mass.
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FIGURE 4.7: Statistical distributions of residual demand time series i)
aggregated across Europe and ii) in countries with more than kn = 10
deployments under the partitioned (B = 19) PROD and COMP siting

schemes.

exactly identical, they nevertheless end up being in the direct vicinity of one another
and therefore experience very similar wind regimes. This is especially true in the
Baltic Sea and in countries like Denmark or the Netherlands. This also happens in
countries such as France and Ireland, though to a lesser extent, in spite of the fact
that the numbers of candidate locations available far exceed the numbers of locations
that must be deployed there.

Overall, this analysis suggests that the two siting schemes are likely to yield de-
ployment patterns whose performance are comparable. Inspecting the COMP siting
objectives achieved by both deployment patterns confirms this intuition. More pre-
cisely, the COMP pattern covers 27981 windows, while the PROD pattern covers
27688 windows. In other words, there is only a 1% difference between them. In
addition, Figure 4.7 shows the distributions of residual demand aggregated across
Europe and on a country-by-country basis. At the notable exception of Norway,
where the median residual load of the COMP scheme is slightly higher than that of
the PROD scheme, the residual demand distributions that both schemes yield are
virtually identical. Interestingly, the first quartile, median and third quartile of the
EU-wide COMP distribution correspond to residual demand levels that are slightly
higher than those observed for the PROD distribution, while maximum residual
levels are virtually identical for both schemes. Hence, these results suggest that
enforcing country-based deployment targets and selecting locations in the most pro-
ductive areas is enough to take advantage of the diversity that exists in European
offshore wind regimes.

4.5.2 Impact of Siting Decisions on Capacity Expansion Planning Out-
comes

In this section, the impact of different siting schemes on the outcomes of the capacity
expansion planning set-up described in Section 4.3.3 are investigated. To this end,
the outcomes of the two variants of the two siting schemes introduced in Section
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FIGURE 4.8: Capacity expansion objectives of single-year set-ups in-
stantiated with the outcomes of partitioned (B = 19) and unparti-

tioned (B = 1) PROD and COMP siting schemes.

4.3.2 (four in total, i.e., B = 1 vs B = 19 for both PROD and COMP) are used
to run the CEP stage over the ten individual weather years included in the siting
optimization problem (i.e., 2010 to 2019).

Impact on Power System Economics

Figure 4.8 gathers the objectives (i.e., annualized system costs) achieved in the forty
aforementioned runs. First, the scatter plot shows distinct trends across partitioned
and unpartitioned siting schemes, respectively. On the one hand, COMP seems to
outperform PROD consistently (i.e., by 0.4% to 5.9% depending on the weather year
considered) across the ten weather years when partitioning constraints are not en-
forced (B = 1). By contrast, when country-based deployment targets (B = 19) are
accounted for in the siting of offshore wind power plants, the PROD scheme leads to
annualized system costs that are between 1.2% and 2.8% lower than those achieved
by the COMP scheme, depending on the weather year considered. In addition, this
plot shows a great deal of variability in the sizing objectives achieved by different
siting schemes and for different weather years (e.g., differences of up to 20% be-
tween the partitioned and unpartitioned PROD schemes). This suggests that both
siting decisions and inter-annual weather variability can have a substantial impact
on the economics of power systems relying heavily on weather-dependent renew-
able generation assets such as offshore wind power plants. Unless otherwise stated,
the analyses carried out in the next sections focus on the two extreme weather years
(i.e., 2010 and 2014) in order to gain a better understanding of how siting decisions
affect power system design.
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Impact on Power System Design

A summary of relevant system design indicators is provided in Table 4.3, where the
CEP outcomes of eight different runs (i.e., two weather years, two siting strategies,
two deployment set-ups) are reported.

The first half of Table 4.3 gathers results obtained for CEP instances constructed us-
ing unpartitioned deployment patterns (B = 1, depicted in Figure 4.3). A number
of observations can be made. First, higher offshore wind capacities are observed in
COMP-based configurations. This is due to the fact that the average capacity factors
(41.5% and 41.6% for 2010 and 2014, respectively) are lower than the ones of the set
of sites corresponding to PROD (43.0% and 45.0% for 2010 and 2014, respectively),
an aspect which inherently leads to higher installed capacities in the former scheme
(considering that both PROD and COMP are required to meet the same electricity
demand profile). More installed capacity leads to more electricity generation from
these units in the 2010 instance and also to a significant reduction of curtailment vol-
umes in both weather years considered. Moreover, maybe the most notable effect
of deploying sites based on COMP is a reduction in dispatchable capacity require-
ments. Recall that COMP is designed to minimize the occurrence of system-wide
resource scarcity events, such as the one depicted in Figure 4.4a. As a result, the cor-
responding sizing instances consistently reveal smaller capacities for dispatchable
generation units. More specifically, OCGT and CCGT capacities are reduced by up
to 18.2% and 49.8% compared to the corresponding PROD runs. This also translates
into considerably smaller generation volumes from these units, with the exception
of OCGT in the 2014 run, where the additional 2.4 TWh are used to replace the gen-
eration deficit brought up by offshore wind. Furthermore, Li-Ion does not seem to
play a significant role in the design of the resulting systems (an aspect that holds
across all subsequent runs). This outcome has two main causes. First, considerable
pumped-hydro storage capabilities exist as legacy installations in the system under
study. Second, the time resolution used in this exercise (i.e., three-hourly) does not
capture short-term balancing events for which Li-Ion storage is particularly appeal-
ing. With respect to transmission capacities, it appears that COMP is on par with
PROD in the 2010 instance (though a 15.7% increase in flows leads to a more effi-
cient utilization of the infrastructure), while a reduction of 16.4% is observed in the
2014 run. Put together, these outcomes lead to total system cost reductions under
the COMP scheme of 5.9% (for 2010) and 3.6% (for 2014). It is worth pointing out
that cost savings achieved by a reduction in dispatchable capacity deployment and
use are partly offset by an increase in offshore wind capacity deployment, which is
comparatively much more expensive per unit capacity.

Results pertaining to CEP instances constructed from partitioned deployment pat-
terns (B = 19, shown in Figure 4.6) are provided in the second half of Table 4.3.
To begin with, the number of non-critical windows obtained for these set-ups re-
veal a much tighter difference between the two deployment schemes, i.e., 94.71% (or
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TABLE 4.3: Comparison of annualized system costs and installed ca-
pacities for various technologies sized in the CEP framework. The
analysis is conducted for the partitioned (B = 1) and un-partitioned
(B = 19) variants of the PROD and COMP siting schemes and for a
weather year with inferior (i.e., 2010) and superior (i.e., 2014) wind

quality, respectively.

Weather Year 2010 2014
Siting Scheme PROD COMP PROD COMP
Indicator K1 p2 K p K p K p

un
-p

ar
ti

ti
on

ed
(B

=
1) Woff

3 416.4 1532.4 463.8 1679.2 397.0 1517.9 411.3 1514.1
(29.7) (25.4) (41.3) (15.7)

OCGT 298.6 5.3 286.2 4.7 308.6 7.1 252.4 9.5
CCGT 73.7 179.2 36.9 56.8 25.0 24.7 20.3 21.4
Li-Ion 0.01 0.01 N/A 0.01 N/A 0.01 N/A
Transm.4 189.0 1802.5 188.9 2085.3 188.8 2015.9 157.8 1839.67
ASC5 84.8 79.8 70.4 67.9

pa
rt

it
io

ne
d
(B

=
19
) Woff 464.3 1696.3 478.8 1687.9 400.8 1521.3 412.4 1519.4

(38.4) (39.7) (22.4) (23.7)
OCGT 268.0 7.7 267.1 7.8 230.5 9.6 226.1 9.8
CCGT 34.3 46.6 32.9 51.4 24.7 23.4 25.5 26.0
Li-Ion 0.0 N/A 0.0 N/A 0.01 N/A 0.0 N/A
Transm. 124.3 1359.3 124.4 1371.7 116.3 1319.6 115.8 1306.9
ASC 74.2 76.3 63.3 64.7

1 K denotes the system-wide capacity of a given technology (incl. legacy capacity), as resulted from
the optimisation exercise and it is expressed in energy units. For instance, capacities of generation
technologies (e.g., offshore wind, OCGT, CCGT) are reported in GW. For lithium-ion storage (Li-Ion),
the same quantity it is expressed in GWh, while transmission capacities are expressed in TWkm.

2 p denotes the amount of electricity produced (for generation technologies) or transported (for trans-
mission technologies) across over a full year. Values are expressed in TWh.

3 Values in parentheses represent offshore wind curtailment volumes (expressed in the same units as p).
4 In this table, both electricity transmission technologies (i.e., AC and DC) are aggregated into one term.
5 ASC stands for "annualized (total) system cost", is expressed in billion e and represents the objective

function of the expansion planning stage.
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27688) and 95.77% (or 27981) for PROD and COMP, respectively. In terms of sys-
tem costs, partitioned PROD regularly out-performs partitioned COMP, as already
revealed in Figure 4.8. Specifically, the latter scheme leading to system configura-
tions which are 2.8% (for the 2010 instance) and 2.3% (for the 2014 case) more ex-
pensive than the corresponding PROD-based runs. This outcome can be explained
as follows. Regardless of the weather year considered, the COMP-based runs de-
ploy more offshore wind capacity (additional 3.1% and 2.9% in the 2010 and 2014
runs, respectively), which translates into higher capital expenditures. Nevertheless,
the associated generation levels are slightly inferior to those of the PROD-specific
instances due to the differences between the capacity factors of the sets of sites as-
sociated with the two siting schemes (recall that PROD is by design selecting the
locations with the highest capacity factors in all B = 19 regions). More specifically,
the average capacity factors for the PROD set of k = 353 sites are 42.3% and 43.8%
(2010 and 2014, respectively), compared to 40.9% (during 2010) and 42.3% (during
2014) for the COMP set of locations. This time, however, the PROD deployment
pattern also exploits a great deal of resource diversity itself, which leads to signif-
icantly mitigated dispatchable capacity and generation requirements compared to
the un-partitioned PROD case. The COMP siting scheme enables, even in these
conditions, an overall capacity reduction of dispatchable units (i.e., of 2.4 GW and
3.6 GW in 2010 and 2014, respectively) compared to PROD, which indicates that
the complementarity-based siting method still manages to provide a set of sites that
decreases the peak residual demand across the system. However, power genera-
tion from VOM-intensive dispatchable power plants is now used to cover for the
offshore wind feed-in deficit, thus resulting in increased O&M expenditures com-
pounding the additional capital costs due to wind offshore deployments. Finally, no
significant differences can be seen in terms of transmission capacity or transited vol-
umes. These results suggest that, as opposed to the un-partitioned scenario, COMP
slightly under-performs compared to a siting strategy that assumes the deployment
of the most productive offshore sites across the 19 Exclusive Economic Zones.

4.5.3 Sensitivity Analysis

In this section, a sensitivity analysis is performed in order to evaluate the robustness
of results obtained for the partitioned deployment patterns with respect to offshore
wind cost assumptions and inter-annual weather variability.

Impact of Offshore Wind Cost Assumptions

In view of recent offshore wind cost projections suggesting that costs are likely to
decrease substantially by 2050 [158] and considering the small difference between
annualized system costs reported in Table 4.3 for the PROD and COMP schemes
(especially for the partitioned set-ups), evaluating the sensitivity of these results to
the economic assumptions laid out in Table 4.2 is warranted. More precisely, the
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FIGURE 4.9: Relative differences in annualized system costs achieved
by expansion planning instances using the outcomes of partitioned
(B = 19) COMP and PROD siting schemes, for different offshore
wind CAPEX multiplicative factors. The analysis is carried out for

two weather years (i.e., 2010 and 2014).

outcomes of the partitioned PROD and COMP schemes are used in CEP set-ups
where the capital expenditure of offshore wind is varied between 25% and 125% of
the reference cost, by increments of 25%. The results of this experiment are gathered
in Figure 4.9, where the red and blue markers represent the relative difference (in
percentage points) between the objectives of PROD- and COMP-based runs (a pos-
itive value indicates higher costs for the latter) for the 2010 and 2014 weather years,
respectively.

It is clear from Figure 4.9 that COMP-based power system designs are consistently
more expensive than their PROD counterparts, regardless of the offshore wind cost.
The relative difference between the sizing objectives decreases steadily as the value
of the cost multiplier decreases and falls below 2% for both weather years consid-
ered, when offshore wind CAPEX is assumed to be only 25% of the reference value.
Overall, the COMP schemes lead to system designs that are 1.37% to 2.51% and
1.83% to 2.88% more expensive than their PROD counterparts for the 2014 and 2010
weather years, respectively. The main reason behind PROD consistently leading to
cheaper system configurations is the fact that, regardless of the offshore wind cost,
the total cost of COMP-based system designs is offset by additional offshore wind
capacity deployments. As already discussed in Section 4.5.2, this outcome is driven
by lower average capacity factors for the COMP sites compared to the ones corre-
sponding to the PROD sets of locations.

Impact of Inter-Annual Weather Variability

The variance in the sizing outcomes obtained for problem instances with a time
horizon of one year (shown in Figure 4.8) supports previous findings suggesting
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TABLE 4.4: Breakdown of installed capacities and costs per technol-
ogy for the partitioned PROD- and COMP-based system designs
obtained for a sizing problem instance with a time horizon of ten
years (corresponding to the ten weather years used in the siting stage,

namely 2010-2019).

Scheme ASC OCGT CCGT Woff Transm.

PROD 722.68
(be)

K (GW/TWkm) 291.3 36.4 435.7 129.4
CAPEX (be) 106.6 17.4 420.6 41.7

p (TWh) 88.0 590.6 16512.5 14270.5
OPEX (be) 8.2 41.1 0.0 0.0

COMP 740.22
(be)

K (GW/TWkm) 288.4 36.6 444.3 129.4
CAPEX (be) 105.6 17.5 431.4 41.7

p (TWh) 80.4 696.3 16334.0 14147.4
OPEX (be) 7.5 48.4 0.0 0.0

that inter-annual weather variability may have a substantial impact on the cost of
operating power systems with high shares of RES-based generation [159]. Conse-
quently, this experiment seeks to evaluate the performance of power system designs
obtained with the partitioned PROD and COMP schemes when the full time series
of weather data leveraged in the siting stage (i.e., 2010-2019) is used to instantiate
the CEP problem that sizes the system.

The figures in Table 4.4 indicate that the intuition provided by the sizing runs re-
lying on extreme weather years (see Section 4.5.2) still holds when the inter-annual
variability of the offshore wind resource is properly accounted for. More specifically,
the system configuration based on the COMP siting strategy is 2.4% more expensive
than the one relying on the PROD deployment scheme. Two main factors are behind
this cost difference. First, the partitioned PROD siting scheme naturally yields a col-
lection of very productive offshore wind sites. Indeed, a ten-year average capacity
factor of 43.2% is achieved across the 353 sites. Moreover, as previously reported
in Section 4.5.2, the partitioned PROD deployment pattern achieves a COMP sit-
ing objective that is only 1% lower than that of the COMP deployment pattern. On
the other hand, the average capacity factor of the 353 COMP sites is around 41.9%.
This drives the investment in an additional 8.6 GW of offshore wind capacity in the
COMP system, which represents more than half of the annualized system cost dif-
ference between PROD and COMP in Table 4.4. Second, although the COMP siting
scheme leads to a system design with more offshore wind capacity, the slightly in-
ferior capacity factors lead to a generation deficit of 178 TWh across the ten-year
optimisation horizon. Legacy generation units, e.g., run-of-river or reservoir-based
hydro plants, with non-zero operating costs (as opposed to offshore wind genera-
tion) and CCGT power plants (with high O&M costs) are used to cover the afore-
mentioned shortfall. In total, the additional operating costs incurred by this shift
from offshore wind to other generation technologies make up for the remainder of
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the total cost difference observed between the PROD- and COMP-based configura-
tions in Table 4.4.

4.5.4 Discussion

It is worth pointing out that, even in the most extreme of situations (represented in
Figure 4.8 by the 2010 un-partitioned set-up), the relative cost difference between
system designs using PROD or COMP siting outcomes does not exceed 6%. The
reasons for this limited difference are twofold. First, the case study proposed in
this chapter investigates solely the siting of offshore wind sites. In the ten-year runs
detailed in Section 4.5.3, offshore wind represents 38.7% and 45.4% of the Europe-
wide total installed capacity and generation volumes, respectively (values for the
COMP-based run), while the remainder corresponds to power generation, storage
and transmission technologies which are modelled in an identical fashion in both
PROD- and COMP-based CEP set-ups. Therefore, the system cost differences iden-
tified throughout Section 4.5.2 should be interpreted accordingly as the economic
impact of one offshore wind siting strategy or the other on the design of the power
system. Second, it should be emphasized that 135 out of a total of k = 353 sited off-
shore locations (i.e., a share of 38%) belong to the subset of legacy sites. This aspect
further explains the relatively limited differences in total system costs as, in practice,
only 218 offshore wind locations are being sited via the investigated siting strategies.
In other words, at most 218 offshore wind resource profiles can differ between the
outcomes of COMP and PROD.

An observation consistently made throughout the results section is that COMP out-
performs PROD as long as the latter does not fully exploit the resource diversity
available across European EEZs (i.e., the un-partitioned set-ups). This suggests that
concentrating offshore wind installations in rich, but relatively limited geographical
scopes (e.g., the North Sea [64]), while deferring their deployment in regions swept
by distinct wind regimes (e.g., the Baltic or Mediterranean areas) could lead to unde-
sirable outcomes. One example of such an outcome would be the heavy deployment
of thermal dispatchable capacity that would be required to guarantee system ade-
quacy which, considering the duration of investment cycles in the power sector and
unless carbon-neutral fuels can be used, would lead to investment decisions that
are not consistent with the pathways enabling the achievement of ambitious climate
targets by 2050 [3].

Another finding in Section 4.5.2 concerns the differences observed between the sys-
tem configurations leveraging the un-partitioned and partitioned siting schemes,
respectively. In particular, the two COMP schemes will be discussed. On the one
hand, as the un-partitioned set-up is a relaxation of the partitioned case, the former
outperforms the latter in terms of siting scores. Specifically, the B = 1 case yields a
set of locations covering 99.36% of the time windows, while 95.77% of the time win-
dows are non-critical under the B = 19 set-up. Interestingly, the superior siting score
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of the unpartitioned scheme does not translate into a cheaper system configuration,
as observed in Figure 4.8, where x markers fall below the o markers, regardless of
the weather year considered.

This outcome can be partly explained by the workings of the system adequacy con-
straint (4.4s) of the CEP framework, according to which offshore wind (as any other
RES technology) can contribute to the provision of firm capacity. More precisely, this
constraint is such that system adequacy must be ensured at country-level in order to
avoid situations where certain countries excessively depend on electricity imports.
Thus, in the partitioned set-up, offshore wind contributes to the provision of firm
capacity in all B = 19 countries across Europe where capacity could be deployed
[91]. On the contrary, ignoring the partitioning constraints (i.e., B = 1) results in
some countries having less (e.g., Germany, the Netherlands, Norway, etc.) wind de-
ployments compared with the partitioned set-up, as seen in Figure 4.3. For those
countries, the offshore wind potential (which is proportional to the number of de-
ployed sites) becomes lower than in the partitioned set-up (where more sites were
deployed) and, in turn, cannot contribute as much to system adequacy. The two
dispatchable power generation technologies sized in the CEP problem (i.e., OCGT
and CCGT) become the alternatives for firm capacity (since other RES are not sized
in the CEP) and the optimiser ends up deploying additional OCGT capacity due to
its lower cost per unit capacity, thus augmenting the total system cost of the unpar-
titioned set-up.

Another explanation for the partitioned cases outperforming the un-partitioned ones
in terms of system cost pertains to the limited amount of system-related informa-
tion that is made available to the siting stage, irrespective of the siting strategy con-
sidered. An example of such information whose implications are relatively easy
to gauge are the network constraints. Recall that the siting stage relies solely on
renewable resource and electricity demand data and that the classification of time
windows is oblivious to limits on transmission capacity between regions. In conse-
quence, even though the unpartitioned COMP siting scheme leads to a higher siting
score than the partitioned case, the CEP stage does not manage to take full advan-
tage of the offshore sites identified in the B = 1 set-up. Indeed, on average (across
the ten single-year COMP runs reported in Figure 4.8), the capacities deployed at
92.2% of the 218 offshore sites selected by the partitioned COMP scheme (excluding
legacy sites) exceed 100 MW, while only 73.4% of them exceed the same capacity
threshold in the CEP set-up based on the unpartitioned COMP outcome. Most of
the unexploited sites in the B = 1 scheme are located in the densely deployed ar-
eas of Southwestern and Southeastern Europe. From a siting perspective, the wind
regimes of these regions are particularly appealing, since they differ from the ones
that prevail in the Northern half of the continent [156]. Nevertheless, in this case,
the benefits of resource diversity cannot be reaped due to the limited options for
electricity transmission between the Iberian peninsula and Central-Western Europe,
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and between Greece and Central Europe.

4.6 Conclusion

In this chapter, a realistic case study evaluating the role that offshore wind power
plants may play in the European power system is proposed, with a particular fo-
cus on the impact that plant siting strategies have on system design and economics.
The chapter builds upon a method that combines a siting stage selecting a subset of
promising locations for deployment and a capacity expansion framework identify-
ing the power system design that supplies pre-specified demand levels at minimum
cost while satisfying technical and policy constraints. In the interest of transparency,
an open source tool implementing the two-stage method is also made available.

Two types of deployment schemes that select sites so as to maximise their aggregate
power output (PROD) and spatiotemporal complementarity (COMP) are analysed.
Two variants of these siting schemes are also considered, wherein the number of sites
to be selected is specified on a country-by-country basis rather than Europe-wide. A
few hundred sites are identified by each scheme using a high resolution grid and ten
years of reanalysis data, and these sites are then passed to a capacity expansion plan-
ning framework in order to assess the impact of siting decisions on power system
design and economics. The framework relies on a stylised model of the European
power system where each country corresponds to an electrical bus and includes an
array of power generation and storage technologies. The framework seeks to size
gas-fired power plants, offshore wind power plants, battery storage and electricity
transmission assets and operate the system in order to supply electricity demand
levels consistent with current European electricity consumption at minimum cost
while reducing carbon dioxide emissions from the power sector by 90% compared
with 1990 levels and taking a broad range of legacy assets into account. A detailed
sensitivity analysis is also performed in order to evaluate the impact of offshore
wind cost assumptions and inter-annual weather variability on system design and
economics.

Results show that the COMP scheme yields deployment patterns that have both a
much steadier aggregate power output and much lower residual load levels than
the PROD scheme if sites are selected without enforcing country-based deployment
targets. However, when such constraints are enforced, the siting schemes produce
deployment patterns that lead to similar levels of residual load. This suggests that
systematically deploying offshore wind sites in the most productive areas of most
European countries makes it possible to take full advantage of the diverse wind
regimes available in European seas. In addition, power system designs obtained us-
ing COMP deployment patterns consistently feature more offshore wind capacity
and less dispatchable capacity than PROD-based designs. This difference does not
always translate into power systems that are cheaper for either of the siting schemes.
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More precisely, the COMP scheme leads to system designs that are up to 5% cheaper
than PROD-based ones when sites are selected without enforcing country-based de-
ployment targets. When such targets are enforced, however, the PROD scheme leads
to system designs that are consistently 2% cheaper than COMP-based ones. These
results are shown to hold under a broad range of offshore wind cost assumptions
and are not affected by inter-annual weather variability.

In future work, several directions can be envisioned for refining the analysis. First,
integrating the siting of other RES technologies (e.g., onshore wind, solar PV) into
the proposed two-stage method would be of interest to evaluate their synergies in
supplying European demand at minimal cost. Then, enhancing the network mod-
elling by i) using a higher spatial resolution and a refined topology, ii) relying on
a better approximation of network flows (e.g., a DC-OPF model) would improve
the accuracy of the analysis. Evaluating the impact of unit commitment costs and
constraints on system designs obtained for different siting schemes would also be of
interest. Finally, representing the effect of short-term RES uncertainty in dispatch de-
cisions could also provide some insight into the benefits that different siting schemes
may bring about.
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Chapter 5

Assessing the Impact of Siting
Strategies on the Design and
Operation of Power Systems: A
Refined Analysis

In this chapter, the impact of two siting strategies for wind assets on the design and operation
of the Continental European power system is investigated. A three-stage routine is leveraged
to this end. In the first stage, a highly-granular siting problem identifies a suitable set of
sites where wind assets could be deployed according to a pre-specified criterion. Two siting
schemes are analysed and compared in a realistic case study. These schemes essentially se-
lect a pre-specified number of sites so as to maximise their aggregate power output and their
spatiotemporal complementarity, respectively. In the second stage, the subset of previously
identified sites is passed to a capacity expansion planning framework that sizes the power
generation, transmission and storage assets that should be deployed and operated in order to
satisfy pre-specified electricity demand levels at minimum cost. Once the capacities of these
assets are known, a third stage, formulated as a unit commitment and economic dispatch
problem, is leveraged to investigate the impact of the aforementioned wind siting strategies
on the short-term operation of the power system. Results seem to confirm the findings from
the previous section. More specifically, deploying wind sites in the most productive areas
throughout Europe already captures a significant degree of spatiotemporal resource comple-
mentarity and thus leads to lower costs for the design and operation of the power system
compared to a deployment strategy where resource complementarity is explicitly leveraged
as siting criterion.
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5.1 Motivation

The results of the analysis proposed in Chapter 4 revealed that different Europe-
wide offshore wind siting criteria lead to very similar system costs, albeit fairly dis-
tinct power system configurations. It was thus suggested that further work has to be
conducted and the underlying models to be refined in order to improve the accuracy
of investment decisions in different siting scenarios.

A first modelling aspect that was identified as potentially relevant in a follow-up
analysis consisted of including multiple RES technologies in the siting stage. Such
a modelling feature was particularly interesting due to the interplay different re-
newable resources manifest in planning ventures [160]. Then, relying on a more
refined grid topology improves the representation of transmission bottlenecks and,
thus, of system costs [60]. In addition, leveraging a more accurate model of power
flows in transmission lines further enhances the representation of bottlenecks in
transmission infrastructure, particularly in highly-meshed grids [161]. Finally, ac-
counting for unit commitment costs and constraints in the operation of dispatch-
able generators may also play an important role when assessing the economic value
of a complementarity-based siting strategy that minimizes the occurrence of low-
generation RES states.

However, accounting for all these features within a model that also sizes the system
(i.e., a CEP framework) quickly leads to impractical solving times or even intractable
instances. Thus, modellers have usually resorted to various solution methods to
tackle such problems [162]. For instance, the frameworks proposed in [38], [163],
[164] include most of these features in a single model that tackles both the design
and operation of the underlying system. However, owing to the resulting compu-
tational complexity of such instances, unit commitment constraints are usually dis-
carded or stylized, while power flows in transmission infrastructure are modelled
via a simplified transportation model. In order to overcome the aforementioned
downsides, a first solution modellers have resorted to is represented by the unidi-
rectional soft-linking, where the outcome of the planning model is given as input to
the operational model without any feedback from the latter to the former. Examples
of such studies include works by Lew et al. [165], Deane et al. [166], Poncelet et al.
[167] or Kiviluoma et al. [168]. Their solution methods enable the consideration of
unit commitment constraints, as well as of linearized power flow equations yet, with
no feedback between the planning and operational stages, investment decisions are
likely to be sub-optimal [162]. One straightforward way to tackle this issue proposes
a bidirectional link between the planning and operational models. In such a set-up,
feedback from the operational model is available to the planning stage and the two
stages are run for a pre-specified number of iterations until convergence (e.g., of ob-
jective function value or installed capacities across consecutive iterations) is reached.
Studies by Mills and Wiser [169] or Pina et al. [170] leverage such a solution method.
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FIGURE 5.1: Workflow of the proposed three-stage method. Dotted
arrows denote exogenous input streams, while full arrows represent

output streams, respectively.

A fourth approach to embed all the aforementioned modelling features consists of
co-optimising investment and operational decisions. Typically, this approach lever-
ages the decomposable structure of the co-optimisation problem at hand and uses
decomposition techniques (e.g., Benders or Danzig-Wolfe) to alleviate the associated
computational burden. For example, in a classic Benders-like algorithm, the opera-
tional model produces optimality cuts that are included in the planning problem at
each iteration until convergence is reached. This approach is employed in studies by
Pudjianto et al. [171], Koltsaklis and Georgiadis [172], Palmintier and Webster [173]
or Flores-Quiroz et al. [174].

In this chapter, a method to assess the impact of different siting criteria for both
on- and offshore wind assets on the planning and operation of the European power
system is proposed. To this end, a unidirectional soft-linking approach is pursued
[162]. At first, two RES deployment schemes that select sites so as to maximise their
aggregate power output and spatiotemporal complementarity, respectively, are anal-
ysed. Once the most appropriate sites for RES deployment are identified, they are
passed to a capacity expansion planning framework which sizes gas-fired power
plants, RES assets, battery storage and electricity transmission infrastructure. Upon
retrieving the optimal capacities of the aforementioned power system technologies,
they are passed as input to a unit commitment and economic dispatch problem that
provides detailed information with respect to their short-term operation.

From here on, the chapter is structured as follows. Section 5.2 describes the method
used to investigate the impact of siting criteria on the design and operation of power
systems. Then, Section 5.3 detail the proposed case study and modelling set-ups,
respectively, before results are reported in Section 5.4. Section 5.5 concludes the
chapter and proposes future work avenues.

5.2 Method

In this section, the models at the core of the proposed three-stage method are de-
scribed. The proposed workflow is depicted in Figure 5.1.
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5.2.1 Siting Models

The models and solution methods for RES assets siting described in Sections 4.3.2
and 4.3.2 of this manuscript, respectively, are used without any modification to iden-
tify the sets of sites that maximise their aggregate power output (i.e., PROD) and
spatiotemporal complementarity (i.e., COMP), respectively. As seen in Figure 5.1,
inputs to this problem include the time horizon T , the set of candidate locations
L and a vector of partition-based deployment constraints {kn}n∈NB . In addition,
for each candidate location l ∈ L, renewable resource time series covering the entire
time horizon (i.e., {π l}l∈L), the technical potential (i.e., {κl}l∈L) and the correspond-
ing legacy capacity (i.e., {κl}l∈L) are made available. Upon solving the model, the
same last three quantities are returned for every selected location l ∈ L, with L ⊆ L.

5.2.2 Capacity Expansion Planning Framework

Once the subset of selected RES sites L ⊆ L is known, {π l}l∈L, {κl}l∈L and {κl}l∈L

are passed as input data to a CEP framework that determines the cost-optimal power
system design and whose mathematical formulation differs from the one proposed
in Section 4.3.3 of this manuscript in way power flows are modelled. More specifi-
cally, in this chapter, a linearized optimal power flow (i.e., a dc-opf) formulation is
employed. In consequence, the CEP framework leveraged in this section writes as

min (4.4a) (5.1a)

s.t. (4.4b)− (4.4s) (5.1b)

∑
i∈Iac

Cicxi pit = 0, ∀c ∈ C, ∀t ∈ T (5.1c)

Note that the additional constraint (5.1c) represents the cycle-based Kirchhoff Volt-
age Law [175] and is applied solely on the power flows across the subset of non-
controllable transmission assets, i.e., I ac.

5.2.3 Unit Commitment and Economic Dispatch Problem

Let κ∗ and σ∗ denote the optimal installed capacities (incl. legacy capacity) of gen-
eration, storage and transmission assets identified in the expansion planning stage
(5.1a-5.1c). The unit commitment and economic dispatch (UCED) problem enabling
the evaluation of the impact of siting strategies on the operation of power systems is
thus formulated via (5.2a-5.2o). The objective function of this problem (5.2a) mini-
mizes the VOM, start-up and shut-down costs of dispatchable generation units1, the

1Note that the VOM of generation assets, as defined here, include the plan-specific variable opera-
tion and maintenance costs, fuel costs, as well as CO2-related expenses.
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VOM of RES assets, storage units and transmission assets, as well as the economic
penalties associated with unserved demand.

min
(ut)t∈T , (pt)t∈T , (et)t∈T
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The energy balance constraint (5.2b) ensures that supply matches demand at every
node and time step t ∈ T . The feasibility of this constraint is ensured via the slack
variable pens

nt , whose associated cost is the value of lost load also featuring in the ob-
jective function. Furthermore, the operation of RES assets belonging to technologies
sited in the Section 5.2.1 is modelled via Eq. (5.2c), which simply limits the output
of the corresponding units to their maximum production capabilities.

s.t. ∑
n∈NB
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∀n ∈ NB, ∀t ∈ T (5.2b)

plt ≤ πltκ
∗
l , ∀l ∈ Ln, ∀n ∈ NB, ∀t ∈ T (5.2c)

The operation of the remaining generation units, i.e., dispatchable assets and RES
units not sited via Section 5.2.1, is modelled via Eqs. (5.2d-5.2i). More specifically, Eq.
(5.2d) defines the feed-in from such units, taking into account minimum operational
levels (µngt), maximum availabilities (πngt) and unit commitment decisions (ungt).
Then, Eq. (5.2e) defines the unit commitment logic, thus enabling the accounting of
start-ups and shut-downs, while Eqs. (5.2f-5.2g) bounds the ramp rates of dispatch-
able units to pre-specified ramping capabilities. The last set of constraints (5.2h-5.2i)
enforce the minimum up and down times for these generators, respectively.

ungtµngtκ
∗
ng ≤ pngt ≤ ungtπngtκ

∗
ng, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (5.2d)

ungt = ungt−1 + uSU
ngt − uSD

ngt, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (5.2e)

pngt − png(t−1) ≤ ∆+
g κ∗ng, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T \ {0} (5.2f)

pngt − png(t−1) ≥ −∆−g κ∗ng, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T \ {0} (5.2g)

t+δmut
g

∑
τ=t

ungτ ≥ δmut
g (ungτ − ung(τ−1)), ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (5.2h)

t+δmdt
g

∑
τ=t

(1− ungτ) ≥ δmdt
g (ung(τ−1) − ungτ), ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (5.2i)
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It should be noted that, when RES assets are modelled via (5.2d-5.2i), the minimum
operational level µngt is set to zero, the ramp rates (i.e., ∆−g and ∆+

g ) are set to one,
while the mininum up and down times (i.e., δmut

g and δmdt
g ) are set to the working

time resolution. In addition, it is assumed these assets are non-controllable, thus
ungt is also set to one. On the other hand, when (5.2d-5.2i) are leveraged to model
the operation of dispatchable generators, the maximum availability πngt is set to one,
while the remainder of technology-dependent parameters are set exogeneously.

pD
nst ≤ κ∗ns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (5.2j)

pC
nst ≤ φsκ

∗
ns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (5.2k)

enst = ηSD
s ens(t−1) + ωsη

C
s pC

nst −ωs
1

ηD
s

pD
nst, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (5.2l)

µsσ
∗
ns ≤ enst ≤ σ∗ns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (5.2m)

Then, Eqs. (5.2j-5.2m) define the operation of storage units, which are modelled with
asymmetrical charge-to-discharge rates. Constraints (5.2n-5.2o) model the power
flows in trasnsmission assets.

|pit| ≤ κ∗i , ∀i ∈ I , ∀t ∈ T (5.2n)

∑
i∈Iac

Cicxi pit = 0, ∀c ∈ C, ∀t ∈ T (5.2o)

It should be emphasized here, as in the previous section, that constraint 5.2o (i.e.,
the cycle-based Kirchhoff Voltage Law) is enforced solely on the subset of non-
controllable transmission assets, i.e., the ones developed as HVAC corridors.

5.2.4 Implementation

As in the previous chapter, with the exception of the siting algorithm (detailed in
Section 4.3.2) which was implemented in Julia 1.4, the implementation of the pro-
posed framework is based on Python 3.7. All simulations were run on a workstation
running under CentOS, with an 18-core Intel Xeon Gold 6140 CPU clocking at 2.3
GHz and 256 GB RAM. Problems (5.1a-5.1c), as well as (5.2a-5.2o) are implemented
in PyPSA 0.18 [32]. Gurobi 9.1 was used to solve the mixed-integer relaxation of
the siting algorithm described in Section 4.3.2, as well as problems (5.1a-5.1c) and
(5.2a-5.2o).

5.3 Experimental Set-up

This section describes the case study used to investigate the impact of the two siting
strategies on the design and operation of power systems, as well as the modelling
set-ups leveraged to this end. Throughout the proposed analysis solely wind (both
onshore and offshore) generation assets are sited via the models discussed in Section
4.3.2. Solar-based technologies, on the other hand, are modelled via one profile per
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bus, i.e., the capacity factor time series corresponding to a given bus is derived from
the solar irradiance profile associated with the closest reanalysis grid point to the bus
itself). It should be mentioned that the current analysis is limited to twelve European
countries within Continental Europe, namely, Austria (AT), Belgium (BE), Czechia
(CZ), Denmark (DK), France (FR), Germany (DE), Italy (IT), Luxembourg (LU), the
Netherlands (NL), Portugal (PT), Spain (ES) and Switzerland (CH)2. Lastly, it should
be noted that the upcoming exercise investigates solely partitioned siting instances
(i.e., where sites are deployed taking into account the territorial boundaries of the
B = 12 previously listed countries), unlike the test case proposed in the previous
chapter that also analysed un-partitioned schemes (i.e., where siting of RES assets
did not account for territorial boundaries).

5.3.1 Siting RES Assets

Renewable Resource Data As was the case in Chapter 4, ten years (i.e., 2010 to
2019) of hourly-sampled wind speed data at a spatial resolution of 0.25◦ are used
in this analysis [86]. Unlike the set-up proposed in the previous chapter, time se-
ries are not re-sampled to a coarser temporal resolution. The conversion of resource
data into capacity factor time series is managed via the transfer function of a wind
farm comprising appropriate (based on the IEC61400 classification [144]) wind tur-
bines for the renewable resource regimes found at each individual location [90]. The
available wind turbines for wind deployment include the Vestas V90, V110, V117
and V164 models, each suitable for particular wind regimes [176].

Candidate Sites The set of candidate locations for onshore and offshore wind de-
ployment, respectively, is determined via a filtering procedure that discards the re-
analysis grid points where the installation of such technologies would be imprac-
tical. With respect to the onshore wind deployments, three distinct filters are ap-
plied. More specifically, all reanalysis grid points with an average population den-
sity above 200 inhabitants/km2 are discarded. Then, grid points whose average ter-
rain slope is greater than 3% or whose forestry cover is above 80% are also removed.
A single filter is applied for offshore wind deployments, i.e., distance to shore. In
particular, offshore wind deployments are possible in a band between 12 nm and
120 nm from the shore, in accordance with the considerations suggested in [145].
As a result of this filtering procedure, a total of 4573 onshore and offshore points
(seen in Figure A.3) are available for deployment across the territories of the twelve
European countries under investigation.

Deployment Targets The estimation of the country-specific cardinality constraints
in 4.1c and 4.2d, respectively, starts from the outcome of two previous studies quan-
tifying the pan-European requirements for wind power capacity to achieve deep

2The main reason for limiting the analysis to these twelve countries is the availability of reliable,
highly-granular topology data for the British Isles and South-Eastern Europe.
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decarbonisation targets in the electricity system by 2050 [91], [177]. According to
these studies, up to 450 GW of offshore wind would be needed to supply 30% of the
European electricity demand, while additional 253 GW of onshore wind capacity
would contribute to an augmentation of 20% of the aforementioned supply target.
It is hereby assumed that the capacity targets (on- and offshore) of the twelve coun-
tries considered in this exercise lead to the same system-wide wind-based electricity
supply share of 50%. In other words, the current analysis envisions the deployment
of 236 GW of offshore wind and 179 GW of onshore wind capacity, respectively.

Converting these capacity targets to cardinality constraints kn necessitates yet an-
other set of assumptions with respect to i) the area of a grid cell, ii) the power density
of the underlying generation technology and iii) the land utilization factor, according
to Eq. (4.5). In this regard, the assumptions considered in Section 4.4.1 are still valid
for offshore wind deployment, whereas a site surface area of 442.5 km2 (correspond-
ing to a 0.25°-resolution cell at a latitude of 55◦ N), a power density of 5 MW/km2

and a land utilization factor of 30% are assumed for onshore wind installations. Put
together with the capacity targets in Eq. (4.5), these assumptions yield a total of
k = 452 deployments to host the 415 GW of wind installations. Among these 452
sites, 180 are offshore locations while the remainder (i.e., 272) are onshore deploy-
ments. The distribution of these sites per country and technology is provided in
Table 5.1.

COMP Siting Set-up The parameters of the COMP siting set-up (e.g., time win-
dow length δ, global criticality threshold c, local search algorithm parameters) are
identical to the ones used to instantiate the exercise proposed in Chapter 4 with the
exception of i) ς in Eq. (4.7), which is set to 50%, in line with the estimations pro-
vided in [91], [177] and ii) the global criticality threshold c which is set such that 10%
of the locations must cover any time window for it to be labeled non-critical.

5.3.2 Capacity Expansion Planning Framework

Network Topology The network topology leveraged in this exercise is based on
the interactive ENTSOE map [178]. In order to reduce the computational complexity
of the problem, the sets of electrical buses and transmission lines provided by [178]
were aggregated at a spatial resolution defined by the NUTS2 administrative regions
[179] via the clustering procedure proposed in [59]. The resulting topology can be
observed in Figure 5.2. It is hereby assumed, as in the exercise proposed in Chapter
4, that transmission expansion is limited to the reinforcement of existing corridors,
while development of new transmission corridors is not taken into account at this
stage.

Electricity Demand Ten years of electricity demand time series covering the twelve
countries previously mentioned and simultaneously sampled with the resource data
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TABLE 5.1: Capacity requirements and cardinalities of various loca-
tions sets for the twelve European countries included in this study.
Table entries sorted in descending order based on the wind (onshore

and offshore) capacity requirements per country.

Country Technology κn |Ln| kn

[-] [GW] [sites] [sites]

DE
Won 70 449 53
Woff 36 78 14

FR
Won 36 804 28
Woff 57 392 22

NL
Won 8 10 7
Woff 60 98 23

ES
Won 35 629 27
Woff 13 646 5

DK
Won 5 86 4
Woff 35 110 14

IT
Won 14 197 11
Woff 20 691 8

PT
Won 7 123 6
Woff 9 235 4

BE
Won 4 22 4
Woff 6 3 3

AT
Won 01 0 0
Woff N/A2 N/A N/A

CH
Won 0 0 0
Woff N/A N/A N/A

CZ
Won 0 0 0
Woff N/A N/A N/A

LU
Won 0 0 0
Woff N/A N/A N/A

1 Values of zero justified by limited capacity targets, as
provided in [177], for Czechia, Luxembourg and Switzer-
land. For Austria, it represents a modelling assumption.

2 N/A stands for “Not Applicable” and applies to land-
locked countries, e.g., Austria, Czechia, Luxembourg or
Switzerland.
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FIGURE 5.2: Network topology based on the NUTS2 administrative
regions. AC transmission corridors are shown on top while DC links

are depicted in the bottom subplot.
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leveraged in the siting stage are retrieved from [149]. The distribution of electricity
demand across the NUTS2 regions is carried out by taking into account the popula-
tion density [180] and the gross domestic product [181], respectively, of the regions
in the corresponding countries.

Electricity Generation Technologies There are nine technologies available for elec-
tricity generation, i.e., offshore and onshore wind, utility-scale and distributed solar
PV, run-of-river and reservoir-based hydro, nuclear plants, open- and combined-
cycle gas turbines (OCGT and CCGT, respectively). Only a subset of these tech-
nologies (i.e., the wind-based and gas-fired units, respectively) are sized, while in-
stalled capacities of solar-, hydro- and nuclear power plants remain fixed throughout
the optimisation. All generation technologies except the wind-based and gas-fired
power plants are assumed to have non-zero installed capacities at the beginning
of the optimisation exercise. More specifically, 44.5 GW of nuclear power capacity,
24.8 GW of run-of-river hydro power capacity and 37.3 GW of reservoir-based hy-
dro power capacity are available throughout the selected European countries [150],
[151]. Utility-scale solar PV capacity data is retrieved from [62], where a legacy ca-
pacity of 33.9 GW is reported throughout Europe. Finally, country-aggregated ca-
pacities for distributed PV installations are retrieved from [152], where the existence
of 68.8 GW of such installations is reported within European borders. Recall that
the technical potentials of wind-based technologies are inputs from the siting stage.
The technical potentials of the remaining generation technologies to be sized in the
expansion planning framework (i.e., OCGT and CCGT) are assumed to be uncon-
strained.

Electricity Storage Technologies Two technologies are available for storing elec-
tricity, namely, pumped-hydro (PHS) and battery storage (Li-Ion). It is assumed that
no legacy capacity is available in Europe for the latter. Pumped-hydro units are not
sized within the CEP framework at hand and the power ratings of existing plants are
retrieved from [151], where a total of 43.1 GW/1236 GWh of PHS units are reported.
A summary of the techno-economic data used to instantiate the CEP problem is pro-
vided in Table A.1.

Policy Considerations The expansion planning problem (5.1a-5.1c) contains the
same two policy constraints featured in Chapter 4. More specifically, a CO2 reduc-
tion of 90% compared to 1990 levels is enforced system-wide (i.e., not on a country
by country basis), while a 20% planning reserve margin is considered in the defini-
tion of the system adequacy constraint.

Solution Method Solving the CEP problem (5.1a-5.1c) is a daunting computational
task, given the temporal resolution and horizon proposed by this instance (i.e., 1 h
and ten years, respectively) and the spatial resolution chosen to model RES assets
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(with more than 450 sizing variables for wind sites only), as well as dispatchable
generation units or transmission infrastructure. In order to mitigate the computa-
tional burden brought by these modelling features, two simplifying techniques are
hereby leveraged.

First, a temporal reduction technique based on the selection of typical periods is em-
ployed to reduce the temporal dimension of the underlying instance [53]. In partic-
ular, the ten-year planning horizon with hourly resolution was reduced to seventy
unlinked representative days3 with hourly intra-daily resolution. In other words,
ωs = 1 in Eq. (4.4m), while ωt in Eqs. (4.4a) and (4.4r) is equal to the number of
days associated to each of the seventy representative periods [183]. Second, since
transmission lines are expanded in the proposed CEP, their series reactance xi in Eq.
(5.1c) would also decrease and would thus introduce a bilinear term with the vari-
able denoting the power flows (namely, pit). In order to keep the CEP formulation
continuous linear, the following iterative solution method inspired from the works
of Hagspiel et al. [184] is proposed. According to this method, the CEP problem is
run with the series reactance of all non-controllable lines as parameters. Once the
solution of the problem is retrieved, reactances are updated4 and the process is re-
peated until the relative difference between consecutive iterations falls below 3%.
A list of solver parameters whose values were tuned for the purpose of this CEP
exercise is provided in Table A.5.

5.3.3 Unit Commitment and Economic Dispatch Problem

Electricity Generation Technologies There are three electricity generation tech-
nologies whose unit commitment costs and constraints are modelled, namely, nu-
clear, OCGT and CCGT units. In particular, the following modelling aspects are
taken into account for these three technologies: start-up costs, ramp rates and min-
imum operating levels, as well as minimum up- and down-times. The values as-
sumed for these parameters are gathered in Table A.4.

Solution Method In order to solve the UCED problem stated in (5.2a-5.2o), two
simplifying assumptions are made. First, the generation technologies whose unit
commitment costs and constraints are modelled do not represent individual units,
but aggregation of multiple units per electrical bus. In other words, a CCGT plant
at a particular bus represented in Figure 5.2 can represent multiple individual units
with identical techno-economic parameters and operating regimes. The second as-
sumption made to mitigate the computational requirements of the UCED problem
at hand relates to splitting the ten-year time horizon in 3653 daily blocks with hourly
resolution that are tackled independently by the solver. Put differently, |T | = 24, ωt =

3The details and modelling implications of using unlinked typical periods in CEP frameworks are
addressed in a recent article by Gonzato et al. [182]

4The procedure for updating line characteristics in the proposed iterative method are detailed in
[185].
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1 and ωs = 1 for each UCED instance modelled via (5.2a-5.2o). It should also be
noted that the proposed solution method does not consider a rolling horizon5, how-
ever it accounts for the inter-daily coupling of storage units (i.e., the state of charge
of storage units is passed from the end of one day to the beginning of the next one).
The solver parameters whose values were tuned in the context of the current UCED
problem are summarized in Table A.6.

5.4 Results

In this section, a series of experiments that compare the implications of the proposed
siting schemes on the design and operation of power systems is conducted. In par-
ticular, the impact of siting of roughly 450 wind power plants in the continental
European power system according to deployment criteria that maximise their ag-
gregate power output - PROD - and spatiotemporal complementarity - COMP -,
respectively, is discussed.

5.4.1 Siting of Renewable Generation Assets

The outcome of siting wind power plants across continental Europe according to the
two proposed siting criteria is displayed in Figure 5.3. In this plot, the set union of
red and yellow markers denote the sites associated with the PROD scheme, while
the union of blue and yellow markers depicts the COMP deployment pattern. A
number of 256 onshore and offshore wind sites (or 56% of the total number of de-
ployments) are common across the two siting schemes. For the remainder, signifi-
cant differences are observed between PROD and COMP. For instance, while the
former strategy deploys virtually all German onshore wind sites in the Northern re-
gions (swept by high quality winds [124]), the COMP scheme deploys a considerable
share of these sites in the Eastern, South-Western and Southern part of the country.
In a similar fashion, yet to a lesser extent, sites in Northern France are re-located via
COMP in the Mediterranean region, as already revealed in the analysis proposed in
Chapter 3. Significant differences in onshore wind deployments are also observed
in Italy (where a number of sites deployed by PROD in Sardinia are re-located by
COMP in Sicily and the South-Eastern regions of the country) or Spain (where some
sites in the Atlantic region are deployed by COMP in Andalusia). However, more
striking differences between the two siting schemes are observed for the offshore de-
ployments. For example, under the COMP scheme, the Dutch and Danish offshore
deployments cover a larger surface in the North Sea, while some of the German sites
in the same area are re-located in the Baltic Sea. In addition, PROD-based French
and Spanish deployments in the Atlantic region are re-located to the Mediterranean,

5The decision to discard the rolling horizon method from the proposed UCED implementation is
supported by the lack of two modelling features that would justify its utilization and the associated
increase in computational complexity, i.e., the availability and update of RES forecasts on intra-day
time horizons and the availability of power plant outage rates.
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FIGURE 5.3: Sets of sites deployed via the PROD and COMP
schemes, respectively. The red markers show sites that are exclusively
selected by PROD, while the blue markers denote sites chosen by the
COMP scheme. Yellow markers show common sites across the two

siting schemes.

a region with distinct wind regimes [159]. Moreover, differences between PROD
and COMP in the deployment of offshore sites can also be seen in Italy. Around ten
locations located south of Sicily and Sardinia in the former scheme are found in the
Adriatic region under the latter strategy. Overall, in terms of siting objective, these
differences lead to 74786 non-critical windows (or 85.3% of the total number of time
windows) for the PROD scheme and 76066 non-critical windows (or 86.8% of the
total number of windows) for the COMP strategy, respectively.

5.4.2 Cost-Optimal System Design

Before analysing the results of the sizing stage, i.e., capacities and costs of power
system assets, a closer look into the outcome of the temporal reduction technique
employed within this problem is provided. To this end, Figure 5.4 summarizes
some relevant information with respect to how the seventy representative days are
selected within the capacity expansion problems leveraging the PROD (red) and
COMP (blue) siting schemes, respectively. In this figure, the top subplot shows the



5.4. Results 105

FIGURE 5.4: Representative day selection for the two expansion plan-
ning problems, i.e., COMP and PROD (top). The subplots below de-
pict histograms of the selected time steps per year (left), month (mid-

dle) and day of week (right), respectively.

sequence of the seventy selected days (among a total of 3652 days between January
1, 2010 and December 31, 2019) for the two expansion planning problems. In this
plot, each unitary segment represents one full day, or 24 h, and they are ordered
chronologically. This subplot is accompanied by the three bottom figures, which
show histograms of representative day selection per year (left), month (middle) and
day of week (right), for each of the two sizing problems. At a first glance, these his-
tograms reveal a fairly balanced choice of representative periods between the two
instances. For instance, the years of 2011, 2015, 2016, 2018 or 2019 have fairly similar
weights in the two cases. The same applies for the months of January, May, August,
October, November or December, as well as for all days of week except for Fridays.

This result is supported by the figures in Table 5.2, where a series of relevant metrics
in the two expansion planning problems are summarized. More specifically, these
metrics include peak and total demand, as well as average and standard deviation
values for PV and ROR capacity factors and inflows in reservoir-based hydro units,
respectively. It can be seen in this table that all but one metric, namely, the standard
deviation of hydro inflows, are virtually equal across the two sizing problems. This
points out the balanced selection of representative days across the two CEP problems
and, thus, enables a fair comparison between the two siting schemes in terms of
system design and costs within the same problem.

Table 5.3 gathers installed capacities and associated costs for the technologies which
are sized in the PROD- and COMP-based CEP problems. In general, the outcomes
reported in this table support the findings of Chapter 4. First, the total cost (i.e.,
CAPEX and VOM of generation, storage and transmission units) of the system lever-
aging the COMP siting scheme for wind assets is 2.1% more expensive than the
PROD counterpart. Second, Li-Ion storage does not play a significant role in the
system design for the same reasons stated in Section 4.5.2. Third, the COMP siting
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TABLE 5.2: Comparative view of time series statistics across the two
capacity expansion planning instances considered. Values reflecting
peak demand, total demand, average and standard deviation of PV
capacity factors, run-of-river hydro capacity factors and reservoir-

based hydro inflows, respectively.

λ̂ ∑ λ π̄PV σPV π̄ROR σROR π̄STO σSTO

[GW] [TWh] [-] [-] [-] [-] [-] [-]

PROD 311.87 376.99 0.122 0.185 0.441 0.324 0.307 0.600
COMP 311.19 377.18 0.122 0.184 0.437 0.330 0.306 0.669

strategy seems to lead to reduced installed capacities, yet a more pronounced utiliza-
tion of natural gas-fired power plants compared to the sizing instance leveraging the
PROD siting scheme. More specifically, the former leads to a total of 243 GW, while
the latter scheme leads to a total of 270 GW of OCGT and CCGT units across the
studied system. In contrast, 871 TWh are produced via the natural gas-based units
in the COMP instance, while only 580 TWh are generated by the same installations
in the PROD instance. This difference of over 290 TWh is required under the for-
mer scheme to make up for most of the deficit in wind feed-in, which has two main
causes. On the one hand, PROD deploys less offshore wind capacity than COMP,
which results in annual cost savings of 5.5 be. However, the superior capacity fac-
tors at the PROD-specific sites (47.2% compared to only 44.2% for the COMP sites)
enables a production from these units which is 152 TWh greater than the one associ-
ated with the COMP sites. On the other hand, an additional 7 GW of onshore wind
are deployed in the PROD instance (mainly because of the better trade-off between
upfront costs and average capacity factors). This aspect, corroborated by the fact that
the average capacity factor of PROD-based onshore wind units is 1.2% higher than
the one of the COMP onshore wind sites (i.e., 33.8% for the former against 32.4% for
the latter) leads to an additional 254 TWh of wind feed-in deficit for the COMP based
instance. In total, 406 TWh of missing wind feed-in are thus supplied via natural gas
power plants, as well as (in a smaller proportion) by hydro power units. Overall,
the COMP strategy leads to marginal cost savings from wind investments, i.e., 0.16
be. Nonetheless, roughly 10 beworth of savings each year result from transmission
investments, with results showing 35% less additional AC capacity and 40% less ad-
ditional DC capacity needed in this instance. However, these savings turn out to
be insufficient to cover for the VOM-intensive operation of OCGT and CCGT units
required to make up for the deficit in onshore and offshore wind feed-in across the
system.

Another interesting result in Table 5.3 relates to the fact that onshore wind capacity
targets are (almost) fully met, while offshore capacity requirements stated in Section
5.3.1 are covered in a proportion of 76% and 78% for the PROD and COMP-based
instances, respectively. An aspect worth mentioning at this stage is that the total
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TABLE 5.3: Comparison of additional (excl. legacy) installed capaci-
ties, electricity volumes and associated costs for various technologies
sized in the CEP framework according to the two siting strategies.
Even if Li-Ion storage is sized in the current exercise, it plays a lim-
ited role and thus is not reported in this table. CAPEX include FOM

costs, as well.

Technology OCGT CCGT Won Woff AC DC

PROD

K [GW/TWkm] 232.06 38.01 181.04 180.53 35.92 8.29
p [TWh] 59.08 520.24 5318.49 7252.75

CAPEX [be] 84.94 18.18 132.22 224.61 26.04 5.39
VOM [be] 5.49 36.42 0.00 0.00 N/A N/A

COMP

K [GW/TWkm] 196.95 46.25 173.80 184.90 23.88 5.04
p [TWh] 87.75 783.28 5064.09 7099.47

CAPEX [be] 72.09 22.12 126.94 230.05 17.31 3.28
VOM [be] 8.16 54.83 0.00 0.00 N/A N/A

capacity of onshore wind deployed under the PROD scheme seems to be greater
than the 179 GW targeted in Section 5.3.1. This is a result of the assumption made
in Eq. (4.5) with respect to the area of each grid cell, whose value was assumed
to represent the surface of a grid cell at 55◦ N. However, once wind locations are
known, their capacity potential is computed ex-post based on the surface area of the
corresponding grid cell and used as input data in the capacity expansion planning
problem. Wind sites located South of the aforementioned reference point have larger
surface areas and, thus, more capacity potential that the initial estimate (while the
opposite is valid for sites North of the reference point). In consequence, the aggre-
gate deployment of onshore and/or offshore wind may be greater than 179 GW and
236 GW, respectively.

Further on, Figure 5.5 provides a more detailed view of how wind capacities are
deployed across the 472 sites in the two CEP instances. In this figure, the plots on
the left show the site-specific installed capacity of onshore deployments, while the
right hand-side plots depict the site-by-site capacities of offshore farms selected via
the two siting criteria. In all these four subplots, wind sites represented by dark red
markers denote locations whose installed capacity in the sizing problem is below
50 MW (and are thus considered under-developed considering their total potential
of over 800 MW or 1750 MW, respectively). The onshore wind deployments asso-
ciated with the PROD siting scheme are fully developed in the sizing problem in
all but two countries, namely, Germany (North and North-East) and Italy (Sardinia
and Sicily). With respect to the offshore sites, it is mainly Dutch and French sites
that are not exploited in the CEP instance. For the COMP-based instance, things
are slightly different. On the one hand, onshore sites are not developed in South
and South-West Germany, South-East Italy, as well as North and North-West Spain
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FIGURE 5.5: Installed capacity across the 472 wind locations identi-
fied by the capacity expansion planning problem. The two plots on
the top (bottom) show the installed capacities of onshore and offshore
installations whose locations were identified via the PROD (COMP)

siting algorithms.

FIGURE 5.6: Breakdown of additional (excl. legacy capacities) in-
stalled capacities of different technologies sized within the capacity
expansion planning problem per country and siting strategy. Values
expressed in GW, GWh and TW × km for generation, storage and
transmission technologies, respectively. For transmission assets, ca-
pacity is assigned to both ends of the interconnector. Therefore, an
additional 1 GW of capacity for an AC interconnection between a bus
in DE and another one in BE will be reflected in both the DE and BE

squares in the heatmap above.



5.4. Results 109

(additional offshore wind in this country under the COMP scheme replaces onshore
wind generation). Offshore sites, on the other hand, are less exploited in Denmark,
Germany (the Baltic area), but also Italy (North of Corsica, as well as South of Sicily)
and, to a lesser extent, the Netherlands. More details about these changes in the
generation fleet of specific countries are provided in the following paragraph based
on observations from Figure 5.6.

Figure 5.6 gathers installed capacities for different classes of power system assets
sized in the CEP instances, namely, OCGT and CCGT units, onshore and offshore
wind farms, Li-Ion battery storage systems, AC and DC transmission links. A cou-
ple of interesting outcomes that support the previous findings can be observed in
this plot. First, the Netherlands and France deploy significantly more offshore wind
capacity under the COMP scheme at the expense of less deployments in Denmark
and Germany. Slightly more offshore wind capacity in Spain is compensated by less
onshore wind in the same country. Otherwise, onshore wind deployments are fairly
consistent across the two siting strategies, with the exception of Germany, where an
additional 6 GW are installed under the COMP-based instance. In the same sizing
instance, OCGT deployments decrease across most of the twelve countries compared
to PROD, again indicating a less stringent need for peak dispatchable capacity. As
seen in Table 5.3, the overall CCGT capacity increases by 20% in the COMP set-up
compared to the PROD one, mainly to cover for the wind feed-in deficit in the for-
mer scheme. This difference of 20% is largely attributed to Germany (going from
14 GW in the PROD instance to 19 GW in the COMP one), Italy and Belgium. Stor-
age (i.e., Li-Ion) capacity is greater in the COMP scheme, yet limited to 250 MWh
system-wide. Then, in terms of transmission expansion, the sizing instance based
on the COMP siting scheme leads to lower installed capacities with very few ex-
ceptions. For instance, HVAC ties are less needed across the entire twelve coun-
tries investigated, except in the Netherlands where additional capacity is required
to evacuate all the surplus electricity produced by offshore wind capacity (relative
to PROD) discussed earlier. Similarly, HVDC connections are less required in the
COMP scheme. The sole exception are the connections of Spain and Italy to France,
which are reinforced more than in the PROD scheme in order to supply the South
European countries with power from generators located in Central-Western Europe.

5.4.3 Impact on the Operation of Power Systems

In this section, the results of the UCED problems (5.2a-5.2o) instantiated with the
COMP- and PROD-based sizing outcomes and, in particular, the costs of operat-
ing the underlying power systems are discussed. Figure 5.7 depicts overlapping
(normed) histograms of daily operating system costs throughout the ten year hori-
zon considered in the study (i.e., a total of 3653 samples per histogram). Some im-
portant outcomes should be emphasized here. First, as can be seen in the zoomed
area within the plot, it appears that the COMP siting scheme leads to a reduction of
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FIGURE 5.7: Distribution of daily system operation costs [Me] result-
ing from running the UCED problem with the sizing outcomes of the
COMP (blue) and PROD (red) instances, respectively. A total of one

hundred bins are used to generate each of the two histograms.

the spread in the daily operating costs. In other words, the complementarity-based
strategy for wind asset deployment manages to reduce the maximum daily opera-
tional cost by roughly 10%. However, a second outcome worth discussing is the fact
that PROD still leads to lower operating costs than COMP across the full horizon
of 3653 days. More specifically, the total operating costs resulting from the PROD
siting strategy are 3.7% lower than the costs of operating the system with the COMP
deployment pattern (153.7 be under the former scheme and 159.5 beunder the lat-
ter). This difference supports the findings from the previous sections and can mainly
be explained by the more frequent occurrence of days with very low operating costs
(i.e., dominated by RES feed-in) under the scheme maximizing capacity factors of
wind assets, as can be seen in the top left area of Figure 5.7.

A day-by-day comparison of operating costs provides further insight into the two
instances. To this end, Figure 5.8 shows the cumulative distribution of the operating
cost differences between pairs of days, resulting from the UCED problems instan-
tiated with COMP and PROD sizing outcomes, respectively. In this plot, negative
values reflect cheaper operating costs for COMP compared to PROD, for a given
day. Two interesting aspects are worth mentioning here. Even though PROD leads
to overall lower costs for operation, the COMP siting scheme leads to cheaper daily
operating cost more than 60% of the time. In addition, one can observe that the
underlying cumulative distribution function grows steeply in the [-25, 25] interval,
which represents less than 10% of the full range of variation. In other words, the
daily operating costs of the COMP- and PROD-based systems are very close most
of the time. This points to the sensitivity of this comparison to the economic as-
sumptions made to instantiate the UCED problems and hints at the potential for an
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FIGURE 5.8: Cumulative distribution of the difference in daily sys-
tem operation costs [Me] between COMP- and PROD-based UCED
instances. A negative (positive) value indicates a lower daily operat-

ing cost for the COMP-based (PROD-based) instance.

in-depth analysis that takes into account the techno-economic development of the
flexible technologies considered in this study.

Figure 5.9 further contributes to this analysis by providing a more detailed view of
how the total operating costs of power generation assets whose unit commitment
constraints were considered in the corresponding COMP- and PROD-based UCED
instances are split between different categories (e.g., variable cost of operation, start-
up cost, ramping cost) and technologies, respectively. The plot on top shows the
break-down of costs (associated with OCGT, CCGT and nuclear units) per type of
expense and reveals that the VOM (incl. fuel and CO2-related, shown in light yellow)
fraction takes the lion’s share of the operating expenses for any of the two UCED
instances. Start-up costs (shown in dark yellow) also make a visible, yet limited
(around 5%) contribution to the total, while ramping costs (not visible in this plot)
account for under 0.1% of the total cost of operating these units. Overall, it can
be observed in this subplot that most of the 3.4% difference revealed in one of the
previous paragraphs is attributed to the higher VOM of generation units under the
COMP instance, which simply stem from their more frequent utilisation.

Then, the three plots in the lower half of Figure 5.9 reveal further information about
how these costs are split among technologies and how they compare between the
two UCED instances investigated. To begin with, the costs of OCGT units are con-
sistently higher under the PROD scheme. Higher installed capacities (see Table
5.3) corroborated by higher average capacity factors (see Figure 5.10) lead to greater
VOM costs, as see in the bottom left subplot of Figure 5.9. These peaking units are
also started-up and ramped more often under the PROD scheme, an aspect which
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FIGURE 5.9: Unit commitment and economic dispatch costs associ-
ated with the three technologies with such constraints modelled in
the UCED problem (i.e., OCGT, CCGT, nuclear) and the two siting
strategies considered (i.e., COMP and PROD). On top, the break-
down of operating expenses per type (e.g., VOM, start-up, ramping),
expressed in Me. Below, break-down per technology for each indi-
vidual type of operational cost, namely, VOM (left), start-up (middle),
ramping (right), and the two siting strategies investigated. Ramping

costs are estimated ex-post, based on cost assumptions from [186].

hints at the ability of the proposed complementarity-based siting scheme to avoid
system-wide RES scarcity events. Then, according to Figure 5.10, nuclear units (with
equal installed capacity across the two UCED instances) have higher capacity factors
under the COMP scheme, which translates into higher VOM costs. However, this
deployment scheme for wind assets also enables a more steady operation of such
units, which experience fewer start-ups and fewer ramping events, according to the
middle and right subplots of Figure 5.9. Lastly, the increased costs of CCGT units un-
der the COMP scheme can be explained as follows. As already discussed in the sec-
tion describing the results of the CEP stage, the wind feed-in deficit associated with
the complementarity-based siting scheme leads to a more sustained utilization of the
higher-efficiency dispatchable option. This outcome persists in the UCED stage and
translates into higher VOM costs for CCGT generators. More specifically, a 340 TWh
deficit of wind feed-in corresponding to the COMP scheme is covered partially by a
more efficient utilization of hydro and nuclear units (as seen in Figure 5.10), but also
by ramping up CCGT generation by a total of 184 TWh across the ten year horizon.
The higher start-up costs for this technology under the COMP instance are mainly
due to the associated increases in installed capacities across Belgium, Germany and
Switzerland (see Figure 5.6). Finally, the higher ramping costs for CCGT units un-
der the COMP scheme compared to the PROD-based one are a by-product of their
increased utilization, considering that they are used in a load-following mode for
most of the time they are generating electricity.
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FIGURE 5.10: Ten-year average capacity factors for various genera-
tion technologies considered in the UCED problems. In blue, val-
ues associated with the COMP-based instance. In red, outcomes de-
rived from the PROD-based model. Labels sorted in descending or-

der based on the COMP value.

5.5 Conclusion

In this chapter, the impact of two siting strategies for wind assets on the design and
operation of the Continental European power system is investigated. A three-stage
routine is leveraged to this end. In the first stage, a highly-granular siting problem
identifies a suitable set of sites where wind assets could be deployed according to a
pre-specified criterion. Two siting schemes are analysed and compared in a realistic
case study. These schemes essentially select a pre-specified number of sites so as to
maximise their aggregate power output and their spatiotemporal complementarity,
respectively. In the second stage, the subset of previously identified sites is passed
to a capacity expansion planning framework that sizes the power generation, trans-
mission and storage assets that should be deployed and operated in order to satisfy
pre-specified electricity demand levels at minimum cost. Once the capacities of these
assets are known, a third stage, formulated as a unit commitment and economic dis-
patch problem, is leveraged to investigate the impact of the aforementioned wind
siting strategies on the short-term operation of the power system.

Results seem to support the findings of the analysis proposed in the previous chap-
ter, in that the COMP siting scheme leads to a system design that is roughly 2% more
expensive than the PROD counterpart. This suggests that leveraging a more refined
network topology and relying on a better approximation of network flows does not



114
Chapter 5. Assessing the Impact of Siting Strategies on the Design and Operation

of Power Systems: A Refined Analysis

lead to a more appealing case for the complementarity-based wind asset siting strat-
egy. From an operational standpoint, results are similar. On the one hand, the unit
commitment and economic dispatch problem proposed in this chapter revealed that
the COMP siting strategy leads to lower daily system operating costs in almost two
thirds of the over 3653 days included in the study. However, a view across the full
ten year horizon revealed that the PROD siting strategy leads to overall lower (i.e.,
3.7%) operating costs mainly due to the less sustained utilization of CCGT units for
load following purposes.
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Chapter 6

Model Reduction in Capacity
Expansion Planning Problems via
Renewable Generation Site
Selection

The accurate representation of variable renewable generation (RES, e.g., wind, solar PV)
assets in capacity expansion planning (CEP) studies is paramount to capture spatial and
temporal correlations that may exist between sites and impact both power system design and
operation. However, it typically has a high computational cost. This paper proposes a method
to reduce the spatial dimension of CEP problems while preserving an accurate representation
of renewable energy sources. A two-stage approach is proposed to this end. In the first stage,
relevant sites are identified via a screening routine that discards the locations with little
impact on system design. In the second stage, the subset of relevant RES sites previously
identified is used in a CEP problem to determine the optimal configuration of the power
system. The proposed method is tested on a realistic EU case study and its performance is
benchmarked against a CEP set-up in which the entire set of candidate RES sites is available.
The method shows great promise, with the screening stage consistently identifying 90% of
the optimal RES sites while discarding up to 54% of the total number of candidate locations.
This leads to a peak memory reduction of up to 41% and solver runtime gains between 31%
and 46%, depending on the weather year considered.

This chapter is a reprint of David-Constantin Radu, Antoine Dubois, Mathias Berger,
Damien Ernst, "Model Reduction in Capacity Expansion Planning Problems via Renew-
able Generation Site Selection," 2021 IEEE Madrid PowerTech, 2021, pp. 1-6, https: //
doi. org/ 10. 1109/ PowerTech46648. 2021. 9495027 . ©2021 IEEE. Reprinted with
permission from the publisher.

https://doi.org/10.1109/PowerTech46648.2021.9495027
https://doi.org/10.1109/PowerTech46648.2021.9495027
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6.1 Introduction

Capacity expansion planning (CEP) problems are powerful tools for the design,
analysis and implementation of energy system decarbonisation policies. In such
frameworks, the accurate spatiotemporal representation of variable renewable en-
ergy generation (RES, e.g., wind, solar PV) is paramount for the precise estimation
of capacity requirements [51]. However, the detailed modelling of RES comes at a
high computational cost and ways to mitigate this issue in order to strike the right
balance between accuracy and computational effort when solving such problems
are necessary, yet seldom proposed. For example, a highly detailed representation
of RES within a CEP set-up cast as a linear program (LP) is proposed by MacDon-
ald et al. [52], yet the reported runtimes (thousands of core hours for large-scale
instances) limit its use in practice and its reproducibility. Wu et al. [137] also pro-
pose an LP-cast CEP framework in which high-resolution RES modelling is made
possible via a GIS-based resource assessment tool. Nonetheless, the coefficient ma-
trix stores hourly capacity factor values at each location and is therefore full, which
limits the scalability of the proposed method to a few hundreds of candidate RES
sites only, thus rendering it unsuitable for large-scale applications.

Although plenty of work has been carried out in recent years to develop temporal
reduction techniques for RES in CEP settings [53], studies tackling the issue of spa-
tial model reduction are scarce. Cohen et al. [187] suggest the aggregation of RES
in resource regions, with wind and solar PV resources over the contiguous United
States being modelled via 356 and 134 profiles, respectively. In a similar vein, Hörsch
and Brown [59] leverage a CEP framework formulated as an LP to assess the impact
of spatial resolution on the outcomes of co-optimizing generation and transmission
assets across Europe. A network reduction process based on k-means clustering
is incorporated in their method and the resulting topology serves as the basis for
modelling renewable resources. More precisely, Europe-wide RES are represented
via 37 to 362 different aggregate profiles, depending on the desired number of net-
work clusters. While spatial aggregation approaches, as the ones proposed in [59],
[187], partly mitigate the aforementioned computational issues [52], [137], the lim-
ited number of RES profiles considered hinders their ability to exploit the benefits of
resource diversity which, in turn, can lead to system cost overestimation [58].

This chapter proposes a method to reduce the spatial dimension and decrease the
computational requirements of CEP problems while preserving a detailed represen-
tation of RES assets. This is achieved by leveraging a two-stage heuristic that can
be described as follows. The first stage, which is cast as an LP, is used to screen
a set of candidate sites and identify sites that have little impact on optimal system
design, which are then discarded. In the second stage, information (geo-positioning
and capacity factors time series) about the remaining sites is used as input data in a
CEP framework that determines the installed capacities of generation, storage and
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transmission assets leading to a minimum-cost system configuration. Thus, the pro-
posed method makes it possible to reduce the size of the CEP problem, and therefore
enables memory and computation time savings.

The chapter is structured as follows. Section 6.2 details the methods at the core
of the proposed two-stage approach. Then, Section 6.3 briefly describes the case
study used to showcase the applicability of the suggested approach before results
are reported in Section 6.4. Section 6.5 concludes the chapter and discusses future
work avenues.

6.2 Method

The proposed solution method (or SM) is introduced in this section. Firstly, the stan-
dard CEP framework (from hereon, the FLP) is formulated. In the remainder of this
chapter, the FLP denotes the CEP set-up that simultaneously tackles the siting and
sizing of RES assets, as well as the sizing of other power system (e.g., generation,
storage or transmission) technologies. Then, the screening method for candidate
RES sites (SITE) that enables the formulation of a reduced-size CEP framework (from
hereon, the RLP) is described. The SITE-RLP sequence will hereafter be referred to as
the SM.

6.2.1 Capacity Expansion Planning Framework

Let NB and I be the sets of existing buses and transmission corridors, respectively.
Let Ln be a set of candidate RES sites that are connected to buses n ∈ NB, which is
partitioned into disjoint subsets Lr

n, with r denoting a given renewable technology
∈ R. Therefore, note that a single RES technology r ∈ R is associated with each site
l ∈ Ln. The static CEP formulation reads

min
K, (pt)t∈T

∑
n∈NB
l∈Ln

(
ζ l + θl

f
)
Kl + ∑

n∈NB
j∈G∪S

(
ζ j + θ

j
f

)
Knj + ∑

i∈I

(
ζ i + θi

f
)
Ki

+ ∑
t∈T

[
∑
i∈I

θi
v|pit|+ ∑

n∈NB
l∈Ln

θl
v plt + ∑

n∈NB
j∈G∪S

θ
j
v|pnjt|+ ∑

n∈NB

θens pens
nt

]
(6.1a)

s.t. ∑
l∈Ln

plt + ∑
g∈G

pngt + ∑
s∈S

pD
nst + ∑

i∈I+n

pit + pens
nt = λnt + ∑

s∈S
pC

nst + ∑
i∈I−n

pit,

∀n ∈ NB, ∀t ∈ T (6.1b)

plt ≤ πlt(κl + Kl), ∀n ∈ NB, ∀l ∈ Ln, ∀t ∈ T (6.1c)

κl + Kl ≤ κl , ∀n ∈ NB, ∀l ∈ Ln (6.1d)

pngt ≤ κng + Kng, ∀n ∈ NB, ∀g ∈ G, ∀t ∈ T (6.1e)

κng + Kng ≤ κng, ∀n ∈ NB, ∀g ∈ G (6.1f)



118
Chapter 6. Model Reduction in Capacity Expansion Planning Problems via

Renewable Generation Site Selection

pnst = −pC
nst + pD

nst, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (6.1g)

|pnst| ≤ φEP
s (κns + Kns), ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (6.1h)

enst ≤ κns + Kns, ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (6.1i)

enst = ηSD
s ens(t−1) + ηC

s pC
nst − pD

nst/ηD
s , ∀n ∈ NB, ∀s ∈ S , ∀t ∈ T (6.1j)

κns + Kns ≤ κns, ∀n ∈ NB, ∀s ∈ S (6.1k)

|pit| ≤ κi + Ki, ∀i ∈ I , ∀t ∈ T (6.1l)

κi + Ki ≤ κi, ∀i ∈ I (6.1m)

The problem described in (6.1a-6.1m) minimizes total annualized system cost sub-
ject to a set of constraints of the underlying assets1. The objective function (6.1a)
comprises capital expenditure, fixed and variable operating costs2 of the generation,
storage and transmission assets, as well as the economic penalties associated with
unserved demand. Constraint (6.1b) enforces the energy balance at each bus, while
the operation and sizing of RES assets is modelled via (6.1c-6.1d). Then, conven-
tional generators are modelled via (6.1e-6.1f) and the operation and sizing of storage
units follows (6.1g-6.1k). Finally, constraints (6.1l-6.1m) encode the transportation
model governing the power flows in transmission links. It is worth noting that, al-
though the absolute values in Eqs. (6.1a), (6.1h) or (6.1l) render the CEP problem
described in (1a-m) non-linear, it can be cast as an LP using standard reformulation
techniques.

6.2.2 Renewable Sites Selection Method

The proposed SM works by decoupling the siting and sizing of RES assets. At first,
the SITE stage is leveraged to screen the sets of candidate RES locations and iden-
tify those sites that play a role in the optimal system design, while discarding the
rest. To this end, the siting problem is formulated by i) discarding some complicat-
ing variables and approximating a subset of complicating constraints (i.e., the ones
associated with dispatchable power generation, storage systems and power flows in
transmission lines) and ii) relaxing and taking linear combinations, as well as scaling
the right-hand site coefficients of certain equality constraints (i.e., the power balance
equations). The objective function (6.2a) is obtained by preserving the terms related
to the costs of deploying and operating RES technologies and the economic penalty
associated with unserved demand. Then, the constraints discarded from (6.1a-6.1m)
are approximated via two parameters found in (6.2b). More formally, let T be the
set of time periods, let Tτ ⊆ T , |Tτ| = δτ, τ = 1, . . . , T, be a collection of disjoint

1Note that the current formulation holds for a static representation of the CEP with a time horizon
of one year. A more generic formulation would require the addition of a weighting factor in the CAPEX
side of the objective function, such that the length of the time horizon is properly accounted for in the
estimation of fixed costs.

2Note that the VOM, as defined here, include the plan-specific variable operation and maintenance
costs, fuel costs, as well as CO2-related expenses.
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subsets forming a partition of T into time slices of length δτ. More precisely, δτ

represents the length of a time slice (e.g., one hour, one day) over which the energy
balance in (6.2b) is enforced and its role is to emulate the behavior of storage assets
shifting RES supply in time. Furthermore, let ξn

τ ∈ R+ denote regional minimum
RES feed-in targets enforced over every time slice Tτ, τ = 1, . . . , T. This param-
eter enforces a minimum level of local power production from renewable sources
which i) mirrors the effect of transmission constraints and ii) accounts for low-carbon
legacy generation capacity that would offset the country-specific RES requirements.
Constraints (6.1c-6.1d) are preserved as such and the siting problem thus reads

min
K, (pt)t∈T

∑
n∈NB
l∈Ln

(
ζ l + θl

f
)
Kl + ∑

t∈T

[
∑

n∈NB
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θl
v plt + ∑

n∈NB

θens pens
nt

]
(6.2a)

s.t. ∑
t∈Tτ

[
∑

l∈Ln

plt + pens
nt

]
≥ ξn

τ ∑
t∈Tτ

λnt, ∀n ∈ NB, ∀τ ∈ {1, . . . , T} (6.2b)

plt ≤ πlt(κl + Kl), ∀n ∈ NB, ∀l ∈ Ln, ∀t ∈ T (6.2c)

κl + Kl ≤ κl , ∀n ∈ NB, ∀l ∈ Ln (6.2d)

For every n ∈ NB, the problem returns the set of candidate RES sites identified as
relevant (i.e., with an installed capacity above 1 MW) in the optimal system design,
i.e. LSITE

n . Then, the RLP is built by replacing Ln with LSITE
n in constraints (6.1a-6.1d)

of the CEP problem.

6.3 Case Study

6.3.1 Input Data

The analysis is conducted for three individual weather years (i.e., 2016, ’17 and ’18)
and over 33 countries within the ENTSOE system. The siting stage relies on hourly-
sampled resource data obtained from the ERA5 reanalysis database [86] at a spatial
resolution of 1.0°. The mapping of resource data to capacity factors time series is
achieved via the transfer functions of appropriate conversion equipment for each
individual technology. More precisely, a site-specific selection of wind generators is
carried out based on the IEC 61400 standard [144] and four different converters are
available for deployment (i.e., the Vestas V110, V90, V117 and V164), each of them
suitable for specific wind regimes. The selection of solar energy converters is done
on a technology basis, with the TrinaSolar DEG15MC module available for utility-
scale PV deployment and the TrinaSolar DD06M array available for distributed PV
generation. A greenfield approach is adopted, i.e., no legacy capacity of RES assets
is considered, while the technical potential is estimated via a land eligibility assess-
ment framework [188] that yields eligible surface areas for RES deployment for a
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FIGURE 6.1: System topology in the capacity expansion planning
framework. AC connections displayed in full lines, DC links shown

in dotted lines.

set of 1740 candidate sites. A set of assumptions pertaining to the power densities
of different generation technologies are then made to map surface areas into maxi-
mum allowable installed capacities, i.e., technical potentials. Specifically, a density
of 5 MW/km2 is considered for wind deployments [91]. With respect to solar PV
units, power densities of 40 MW/km2 and 16 MW/km2 are considered for utility-
scale and residential installations, respectively [189]. Electricity demand time series
for all considered countries are retrieved from the OPSD platform [190].

The CEP frameworks (i.e., both the FLP and RLP) follow a centralized planning ap-
proach and build upon the 2018 TYNDP dataset, where each European country is
modelled as one node [55]. The resulting network topology is displayed in Figure
6.1. In this exercise, the expansion of the transmission network is limited to the re-
inforcement of existing links. Furthermore, the total capacity of each link may not
exceed twice the 2040 capacity estimated for this link in the TYNDP. Besides the
four RES technologies sited in the previous stage, three more generation technolo-
gies are available for power generation, namely run-of-river (ROR) and reservoir-
based (STO) hydro, as well as combined-cycle gas turbines (CCGT), with the latter
being the only of the three that is also sized in (6.1a-6.1m). The existing capaci-
ties of the other two are retrieved from [151], where the existence of 34 GW of ROR
and 98 GW of STO installations is reported. Then, two technologies are available
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for electricity storage, namely pumped-hydro (PHS) units and Li-Ion batteries. The
latter is the only one being sized in (6.1a-6.1m) and a fixed energy-to-power ratio
of 4 h is assumed. The legacy capacity of the former is retrieved from [151], where
55 GW/1950 GWh of PHS storage is reported. The CEP problem is implemented in
PyPSA 0.17 [32], while the techno-economic assumptions are gathered in [191].

6.3.2 Parametrization of the SITE Stage

The two parameters of (6.2a-6.2d) are defined as follows. First, the slicing period δτ

is considered to be equal to 24 h, which corresponds to the nonzero frequency com-
ponent of the aggregate EU-wide RES capacity factor time series with the largest
amplitude (i.e., as provided by a discrete Fourier transform). Then, the country-
dependent ξn

τ values are assumed not to be time-dependent and their estimation
proceeds as follows. First, the residual demand (i.e., the difference between demand
and generation potential of legacy dispachable units) is computed at peak load con-
ditions. Then, the RES generation potential during the same time instants is deter-
mined. For each country, if RES potential exceeds the electricity demand for at least
half the time steps in the optimization horizon, its potential transmission capabilities
(i.e., 2040 TYNDP capacity limits times the length of slicing period δτ) are added to
the residual demand, as the country is a potential exporter of electricity in the EU-
wide system. Conversely, if the electricity demand is higher than the RES potential
most of the time, the transmission capabilities of that country are subtracted from
the residual demand, as cross-border exchanges will oftentimes be used to cover for
the domestic electricity needs. Finally, the ξn

τ values are determined as the ratio be-
tween the RES potential and the transmission capacity-adjusted residual demand,
respectively.

6.3.3 Implementation

The SM, as well as the FLP are implemented in Python 3.7 and the proposed instances
are run on a workstation running under CentOS, with an 18-core Intel Xeon Gold
6140 CPU clocking at 2.3 GHz and 256 GB RAM. Gurobi 9.0 was used to solve both
(6.1a-6.1m) and (6.2a-6.2d). The dataset and code used in these simulations are avail-
able at [191] and [155].

6.4 Results

The results of a set of experiments evaluating the performance of the SM against the
FLP are detailed in this section.

Table 6.1 summarizes the performance of the siting stage by means of two indica-
tors. First, the technology-specific spatial reduction share (γr) denotes the propor-
tion of initial candidate RES sites discarded via SITE. Then, the screening accuracy
(βr) measures the ability of the method to identify the relevant candidate RES sites.
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More formally, if R is the set of renewable technologies, let Lr
n be the subset of sites

with technology r ∈ R (these subsets are disjoint for different r and form a partition
of Ln). Note that for the purpose of this exercise, offshore and onshore wind are
considered as different resources. In addition, let LFLP

r and LSITE
r be the subsets of Lr

n

selected by FLP and SITE where at least 1 MW of capacity is deployed, respectively.
Then, the screening accuracy is defined as

βr =
|LSITE

r ∩ LFLP
r |

|LFLP
r |

, ∀r ∈ R, (6.3)

where | · | denotes the cardinality of a given set. First, in this table, it can be seen
that the relative reduction achieved by SITE varies from 6% for utility-scale PV to
62% for distributed PV installations in the 2017 instance, with an average reduction
in onshore and offshore wind sites of 38% and 54%, respectively. Furthermore, an
overall reduction of the number of selected RES sites of up to 54% is observed across
the three considered instances. In other words, less than half of the candidate RES
sites are found to be relevant in the optimal system configuration by SITE and sub-
sequently passed to the RLP. With respect to the ability of SITE to identify relevant
RES locations, only the distributed PV sites have a selection accuracy score below
85%. However, the limited deployment of this technology in the solution of the pro-
posed CEP instances enables the screening stage to properly identify over 90% of
the relevant RES sites (i.e., the ones appearing in the FLP solution), irrespective of
the weather year considered.

However, not all candidate RES sites found in the FLP solution are identified by
SITE which selects different locations instead. For instance, when the latter is run
with 2016 weather data, it fails to identify a total of 45 sites (14 onshore wind, 12 off-
shore wind and 19 distributed PV locations, respectively) out of 418 identified in the
benchmark. Investigating how far these locations are from the ones selected by the
FLP provides a first insight into how different the system designs associated with the
two methods are. If the distances between the locations selected via SITE and FLP

were found to be small, one would expect the effect of misidentifying sites to be lim-
ited, as RES patterns are usually comparable at neighboring sites. Conversely, large

TABLE 6.1: Technology-specific sites reduction (γr) and screening ac-
curacy (βr) of SITE. Number of candidate sites used in the FLP speci-

fied in parantheses.

Won (590) Woff (417) PVu (128) PVd (605)

γr βr γr βr γr βr γr βr

2016 0.40 0.94 0.55 0.85 0.10 1.00 0.57 0.54

2017 0.37 0.94 0.55 0.86 0.06 1.00 0.62 0.83

2018 0.36 0.93 0.52 0.85 0.16 1.00 0.59 0.59
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FIGURE 6.2: (a) Distribution of geographical distances between pairs
of sites identified via SITE and the FLP. (b) Site-specific installed ca-

pacity correlation between the RLP and the FLP.
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distances between sites identified via the two methods would often imply distinct
RES patterns and could thus lead to substantial differences in the way the technolo-
gies are sized. The result of this analysis is shown in Figure 6.2a. These plots depict,
for each technology and weather year, the distribution of distances (expressed in
kilometres) between pairs of sites selected via the FLP and SITE, respectively. The
procedure used to generate these curves is as follows. First, distances of zero are
associated to the pairs of sites found by both methods (βr shares in Table 6.1). Then,
each unidentified site in the FLP solution is matched with the geographically closest
(based on the geodesic distance) location in the set of SITE-exclusive locations. Once
two sites are paired, none of them can be subsequently matched with another. Upon
pairing all unidentified sites in the FLP with a counterpart in SITE, a cumulative dis-
tribution function of technology-specific distances is plotted. It can be observed in
these three plots that, without exception, the 95th percentile of the matching distance
for any of the four RES technologies falls below 500 km. In a European context,
it has been previously shown that country-aggregated wind output (usually more
spatially heterogeneous than PV generation) is remarkably correlated at distances
below the aforementioned threshold, especially in the North Sea basin where most
onshore and offshore sites are deployed in the studied instances [192]. Furthermore,
a maximum distance between matched sites of under 1600 km is reported for all
technologies and weather years, with the largest discrepancies being consistently
observed for onshore wind locations.
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TABLE 6.3: Computational performance assessment of the SM. Nu-
merical values represent reductions associated with the SM expressed

in relative terms (%) with respect to the FLP.

Year Variables Constraints Non-Zeros PMR SRT

2016 34.54 34.67 33.48 41.37 36.56

2017 33.31 33.39 32.22 40.11 30.90

2018 33.72 33.82 32.67 39.28 46.57

Upon screening the candidate RES locations via SITE, the RLP is run in order to re-
trieve, among others, the associated installed capacities. Figure 6.2b shows, for each
weather year, the correlation between installed capacities of i) the sites identified
in the FLP and ii) the sites identified by SITE and sized via RLP. In this plot, round
markers (o) denote data points associated with locations that are common to FLP

and SITE, while crosses (x) represent data points corresponding to the pairs of sites
matched according to the procedure described in the previous paragraph. The first
remark in these plots is that in 76% (for 2016) to 79% (for 2018) of the cases, the in-
stalled capacities of FLP and RLP sites are matched to MW-order precision. Then, it
can be observed that most of the (x) markers are situated on the bottom of the cor-
responding subplots. A complementary analysis of the resource signals associated
with these data points suggests the existence of high-quality RES sites exploited by
the FLP, but whose SITE counterparts (determined via the distance-based pairing al-
gorithm) exhibit inferior resource quality and thus end up not being part of the RLP

solution. In such a situation, the missing capacity, i.e., FLP capacity of the (x) data
points in the lower part of the plot, is compensated in the RLP by superior power
ratings at (o) sites above the trend line in Figure 6.2b.

Table 6.2 reports, for different data years and for various technologies sized within
the CEP stage, the difference between the system-wide installed capacities obtained
by the FLP and RLP models, respectively (positive values indicate more capacity in
the latter). In the last column, it can be seen that the relative objective function
difference (i.e., the TSCE) between the two CEP set-ups does not exceed 0.52%, irre-
spective of the weather year considered. However, as suggested in a recent study by
Neumann and Brown [160], rather small differences in total system costs can trans-
late into fairly distinct system configurations. In this exercise, differences of 23.3%,
2.9%, 1.9% and 7.3% are reported for onshore wind, offshore wind, utility-scale and
distributed PV, respectively, between the RLP and the FLP. A closer look at the break-
down of capacities per country reveals the reasons behind such differences, as the
large majority of the discrepancies observed in Table 6.2 are associated to a handful
of resource-rich countries (e.g., Ireland, Italy, Spain or the UK). For instance, in 2017
and 2018, the FLP over-sizes onshore wind (and, thus, selects more sites) in Ireland
and the UK, and uses it to supply Central Europe. Under the proposed (δτ, ξn

τ) set-
up of the SITE stage, a subset of these locations are not identified (see discussion
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on the (x) markers in Figure 6.2a) and the associated capacity in the FLP is replaced
in the RLP by a mix of offshore wind and distributed PV. Further on in Table 6.2,
transmission capacities vary within 2.9% of the FLP outcome, while a maximum of
4.1% Li-Ion storage capacity difference can be observed during the same year where
distributed PV differed the most from the benchmark (i.e., 2017).

Finally, Table 6.3 summarizes the computational performance gains (relative to the
FLP) achieved by leveraging the SM. More specifically, the reductions in i) the CEP
problem size (number of variables, constraints and non-zeros), ii) the peak mem-
ory requirements (PMR) and iii) the solver runtime (or SRT, taking into account the
solver runtime of both the SITE and RLP stages of the SM) are reported. In this table,
it can be observed that the proposed SM leads to an average CEP problem size reduc-
tion of 33% which, in turn, enables an average PMR reduction of 40% and runtime
savings between 31% and 46% across the studied instances.

6.5 Conclusion

This chapter proposes a method to reduce the spatial dimension of CEP frameworks
while preserving an accurate representation of renewable energy sources. This is
achieved via a two-stage heuristic. First, a screening stage is used to identify the
most relevant sites for RES deployment among a pool of candidate locations and
discard the rest. Then, the subset of RES sites identified in the first stage is used in a
CEP problem to determine the optimal power system configuration. The proposed
method is tested on a realistic EU case study and its performance is assessed against
a CEP set-up in which the entire set of candidate RES sites is available. The method
shows great promise and manages to consistently identify more than 90% of the
optimal sites while reducing peak memory consumption and solver runtime by up
to 41% and 46%, respectively.

Capacity differences between the solutions provided by the proposed method and
the benchmark observed for some weather years suggest that further work on the
selection of parameters used in the first-stage siting routine would be useful. More-
over, re-casting the proposed heuristic into a more structured form, e.g., where the
siting and sizing of RES assets are used as stages in a Benders-like decomposition
framework, is also envisaged as a promising development avenue.
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Chapter 7

Conclusion

This chapter concludes the work and proposes future research avenues that could improve the
methods and analysis proposed in the current manuscript.
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This thesis seeks to assess whether the spatiotemporal complementarity of variable
renewable resources has an economic value for power systems. In order to answer
this research question, a series of methods and analyses are proposed. From the off-
set, a custom definition of spatiotemporal complementarity of renewable resources
is proposed, such that it aligns with the current challenges of power system planners
and operators. More specifically, renewable resources are considered complemen-
tary in this thesis if they rarely lead to system-wide low production events. With this
definition, a means to quantify RES complementarity on arbitrary spatial and tempo-
ral scopes is proposed and an optimisation problem identifying subset of sites with
maximum complementarity is devised. Once a way of leveraging the spatiotempo-
ral RES complementarity in siting decisions was available, a comprehensive analysis
assessing its value for power systems follows. In addition, the impact of such screen-
ing methods on the computational complexity of CEP problems is also analysed.

In Chapter 2, the spatiotemporal complementarity of the wind resource between
remote locations is evaluated via a systematic framework quantifying the occur-
rence of system-wide low-generation events. Results reveal complementary wind
regimes in the investigated regions and support the idea according to which dis-
tributing renewable generation assets in space can prove beneficial for a secure and
reliable supply of electricity in future power systems dominated by renewable en-
ergy sources. Then, in Chapter 3, the time windows framework is presented. This
framework provides an accurate, time-domain description of low probability RES
power generation events impacting power system operation and planning and en-
ables the definition of a scalar indicator quantifying the complementarity of renew-
able resources on arbitrary spatial and temporal scopes. This indicator is then lever-
aged to formulate optimisation models seeking to identify deployment patterns with
maximum complementarity within a region of interest. The solutions to optimisa-
tion problems derived from the criticality indicator shows that the occurrence of
low production events can be reduced on a regional scale by exploiting the diver-
sity in local wind regimes. The relevance of the proposed methodology in a power
systems planning context is further supported by a comparison between two wind
farm deployment strategies favouring the spatiotemporal complementarity between
RES and seeking to maximise annual average capacity factors, respectively. These
two approaches, which were tested at country level, yield starkly different deploy-
ment patterns, with implications for planning strategies in future power systems
dominated by vast shares of renewable-based generation.

Chapter 4 then leverages the aforementioned siting schemes in a realistic case study
evaluating the role that offshore wind power plants may play in the European power
system, with a particular focus on the impact that plant siting strategies have on
system design and economics. The chapter builds upon a method that combines
a siting stage selecting a subset of promising locations for deployment and a CEP
framework identifying the power system design that supplies pre-specified demand
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levels at minimum cost while satisfying technical and policy constraints. Results
show that the complementarity-based siting schemes yields deployment patterns
that have both a much steadier aggregate power output and much lower residual
load levels than the capacity factor-maximizing scheme if sites are selected without
enforcing country-based deployment targets. However, when such constraints are
enforced, the two siting schemes produce deployment patterns that lead to similar
levels of residual load. In economic terms, the complementarity-based scheme leads
to system designs that are up to 5% cheaper than capacity factor-based ones when
sites are selected without enforcing country-based deployment targets. When such
targets are enforced, however, the capacity factor-based scheme leads to system de-
signs that are consistently 2% cheaper than complementarity-based ones. These re-
sults are shown to hold under a broad range of offshore wind cost assumptions and
are not affected by inter-annual weather variability. Chapter 5 builds upon the two-
stage method previously proposed and considers an additional UCED stage in order
to properly model the limited flexibility of thermal units and thus more accurately
approximate the cost of operating the system. A similar case study is proposed,
where the economic impact of the two aforementioned siting strategies for onshore
and offshore wind assets across twelve countries within the continental European
synchronous grid is investigated. Results show that deploying wind assets based
on the proposed definition of sptatiotemporal complementarity leads to a system
design which is 2% more expensive than the system where wind assets are located
in the most productive locations. In other words, the findings in Chapter 4 seem to
hold even for more refined set-ups that take into account i) more detailed network
topologies, ii) a more accurate representation of network flows and iii) the unit com-
mitment constraints of dispatchable units. Furthermore, it is shown that deploying
wind assets based on capacity factor criteria leads to total system operating costs
which are 3.7% lower than the costs of operating a system where wind generation
assets are deployed based on the proposed complementarity criterion. It is revealed
that this difference is mostly attributed to the need of more gas-based electricity gen-
eration via CCGT units to compensate for the wind feed-in deficit brought by the
lower average capacity factors associated with the deployment patterns leveraging
resource complementarity.

Lastly, Chapter 6 contributes to the literature by proposing a method to reduce the
computational complexity of CEP frameworks while preserving an accurate repre-
sentation of RES in space and time. This is achieved via a two-stage method that
works as follows. Initially, a screening stage is used to identify the most relevant sites
for RES deployment among a pool of candidate locations and discard the rest. The
complementarity-based siting criterion leveraged throughout the previous chapters
of the manuscript could be seen as such a screening stage. Then, the subset of RES
sites identified in the first stage is used in a CEP problem to determine the optimal
power system configuration. The proposed method is tested on a realistic Europe-
based case study and its performance is assessed against a CEP set-up in which the
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entire set of candidate RES sites is available. The method shows great promise and
manages to consistently identify a large share (i.e., more than 90%) of the optimal
sites while almost halving peak memory consumption and solver runtime.

In times of a climate crisis doubled down by an energy crisis in Europe and beyond,
this thesis addresses a timely topic for the development of future power systems,
namely, evaluating the impact of different siting strategies for RES assets. With the
expected evolution of variable renewable generation into the chief contributor to the
electricity supply in Europe, the next decades of power system planning must be
well-informed with respect to the economic and technical implications of different
siting strategies for such assets in both planning and operational time frames. It is
thus the author’s hope that the contributions included in this manuscript will be of
use to future research and policy-making by broadening the search space of potential
solutions for power system decarbonisation.

7.1 Future Work

As for future work, a list of promising research avenues that could potentially en-
hance the methods and analysis proposed in this manuscript are discussed in the
following. These propositions are grouped in two main categories, namely, method-
ological and algorithmic enhancements (i.e., improvements to the methods and algo-
rithms chosen to study the underlying problems) and modelling improvements (i.e.,
aspects mainly pertaining to the modelling choices).

Methodological and Algorithmic Enhancements

The current manuscript proposes a means to site RES assets based on criteria rely-
ing on a pre-specified spatiotemporal complementarity definition. It would be of
great interest to compare the results of this deployment scheme with others trying
to achieve similar outcomes. For instance, the works of Wu et al. [137], Musselman
et al. [130] or Paz et al. [193] propose methods to deploy RES assets such that their
aggregate output has desirable properties from a power system planning and op-
eration standpoint. Although the notion of spatiotemporal complementarity is not
explicitly addressed in these articles, the resulting siting schemes are expected to
lead to insightful deployment patterns when compared to the strategy proposed in
this document. A methodological improvement that could potentially impact the
outcomes of the proposed analysis refers to the integration of the multiple stages
proposed in Chapters 4, 5 or 6 into a single problem with decomposable structure.
Solving such an problem would require tailored solution methods (e.g., a Benders
decomposition scheme), yet would lead to more accurate outcomes in the planning
and operational stages [162]. Another aspect not taken into account in the routines
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proposed in this thesis relates to the consideration of uncertainties in both short- (in-
duced by, e.g., renewable resource variability) and long-term (driven by, e.g., tech-
nology costs, policy implementation, demand growth). On the one hand, short-term
uncertainties, such that the realization of renewable generators or loads, could be
embedded in the proposed models via, e.g., stochastic programming or robust op-
timisation [194]. The same techniques have also been used in the representation
of long-term uncertainties within energy systems models. Nevertheless, the MGA
(modelling to generate alternatives) technique [195], is hereby seen as a promising
research avenue in this direction for two reasons. First, it enables the mapping of a
plethora of configurations for RES-dominated power systems, some of which being
more appealing than others from different considerations than the techno-economic
feasibility of a given solution (e.g., social acceptance of a technology, policy drivers).
Second, this technique could also enable the development of a solution space rich
enough to accurately identify the system set-ups where siting RES assets based on
spatiotemporal complementarity criteria actually leads to cost savings in the plan-
ning and/or operational stages of the underlying power system.

Modelling Aspects

A set of modelling aspects should also be pursued in order to improve the under-
lying analyses. First of all, taking into account solar-based generation in the siting
schemes could play a significant role in showcasing the value of complementarity
for power systems, given the documented synergies between the two resources at
regional and continental scales [101]. Second, one could argue that the spatial and
temporal resolutions utilized in this manuscript for wind resource assessment are
rather coarse. Indeed, a visual inspection of the Global Wind Atlas (a tool with a
spatial resolution of 250 m) [124] reveals numerous local regimes that are not cap-
tured in a reanalysis dataset with a spatial resolution of 0.25◦. In addition, a re-
cent study by Pichault et al. [196] revealed significant intra-hourly variations in the
power output of representative wind farms. Both these caveats could play a con-
siderable role in selecting the location of power generation assets fuelled by vari-
able renewable resources. Therefore, more refined spatial and temporal resolutions
could be of high interest in the context of the proposed topic. A couple of additions
to the sizing stages proposed in Chapters 4, 5 or 6 would also be of interest. For
instance, taking into account operating reserve requirements in the planning stage
of power system design has a substantial impact on installed capacities and result-
ing costs [197]. Then, having a better representation of the connection costs for RES
assets to the corresponding network bus is also of high interest, as it leads to a more
accurate representation of system costs [60]. Still on the transmission assets topic, a
valuable addition to the sizing models considers the development of novel transmis-
sion corridors between subsets of network buses. Such a feature would support a
more comprehensive comparison of the proposed siting schemes and their value for
power systems. Furthermore, a deeper look into the temporal reduction techniques
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leveraged in the expansion planning stage could be of use in order to have a more
accurate approximation storage utilization on intra- and inter-period time frames
[198]. In the unit commitment and economic dispatch problem, one straightforward
improvement relates to accounting for dispatchable generation ramping costs [186]
in the objective function of the underlying problem. In addition, extending the op-
erational analysis to the entire European power network could also be of interest, as
it enables the user to leverage the continent-wide spatiotemporal complementarity
of renewable resources.
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Modelling Assumptions

A.1 Chapter 4 - Evaluating the Impact of Siting Strategies on
the Design of Power Systems

This section lists the main techno-economic assumptions used in Chapter 4 of the
current manuscript.

This section gathers information which is relevant for instantiating the siting and
sizing stages of the method proposed in Chapter 4. The document is split in two
sections, similar to the sequential structure of the proposed method. First, a mapping
of all candidate sites available for offshore wind deployment within European Seas
is presented in Section A.1.1. Furthermore, a set of relevant expansion planning
features are discussed. First, the simplified network topology is revealed in Section
A.1.2. Then, Sections A.1.3 and A.1.4 gathers all techno-economic assumptions used
to instantiate the capacity expansion planning model determining the cost-optimal
design of the European power system.

A.1.1 Candidate Sites

The set of candidate sites for offshore wind deployment is shown in Figure A.1. In
this plot, it can be easily seen that the latitude and distance-to-shore filters are the
ones mainly driving the selection of candidate sites. In addition, candidate sites
within several Exclusive Economic Zones (EEZ) are not included in this study for
different reasons. First, as Albania, Bosnia and Herzegovina, as well as Montene-
gro are not considered in this study, their EEZs and the corresponding candidate
offshore wind sites are not shown in Figure A.1. Second, the EEZ of the Russian ex-
clave of Kaliningrad is not considered for similar reasons. In addition, the territorial
waters around the British dependencies of Jersey and Guersney are not included, as
they are not officially part of the EEZ of Great Britain.
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FIGURE A.1: Set of candidate locations for offshore wind deployment
(in yellow).
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FIGURE A.2: Network topology used in the capacity expansion plan-
ning stage.

A.1.2 Network Topology

The power system topology used in the capacity expansion planning stage is based
on the 2018 version of the Ten Year Network Development Plan of ENTSO-E [55].
More specifically, each country is represented by one node (to which demand and
generation signals are attached) and a copper plate assumption is made for power
flows within its borders. The links between countries represent aggregations of the
total cross-border capacities projected in 2027. For costing purposes, all interconnec-
tors crossing bodies of water are assumed to be developed as DC cables, while the
remainder are assumed to be built as AC underground cables. These assumptions
can be visualized in Figure A.2.

A.1.3 Economic Parameters

Economic parameters of every generation, storage or transmission technology are
displayed in Table A.1. USD/EUR conversions are made assuming a conversion
rate of 0.8929 EUR per USD. Then, GBP/EUR conversions are made assuming a
conversion rate of 1.1405 EUR per GBP. Similarly, a AUD/EUR conversion rate of
0.6209 EUR per AUD is considered.



138 Appendix A. Modelling Assumptions

Plant CAPEX FOM VOM Lifetime Source
Me/GW(h) Me/GW× yr Me/GWh years

Onshore wind 1088.16 29.47 0.00 25 [199]
Offshore wind 1881.08 49.11 0.00 25 [199]
Utility-scale PV 687.79 7.14 0.00 25 [199]
Distributed PV 858.00 5.36 0.00 25 [199]
OCGT 838.87 3.03 0.0076 30 [200]
CCGT 1005.27 7.58 0.0053 30 [200]
Nuclear N/A 106.25 0.0018 N/A [199]
Run-of-river hydro N/A 0.00 0.0119 N/A [201]
Reservoir hydro N/A 0.00 0.0152 N/A [201]
Li-Ion (power) 100 0.54 N/A 101 [202]
Li-Ion (energy) 94 N/A 0.0017 101 [202]
PHS N/A 14.20 0.0002 N/A [203]
HVAC 2.222 0.017 N/A 401 [204]
HVDC 1.763 0.021 N/A 401 [204]
1 Assumed value.
2 Expressed per km and derived from a single circuit 1000 MVA, 400 kV cable.
3 Expressed per km and derived from a 1100 MW, 350 kV underground DC cable pair.

TABLE A.1: Economic parameters of generation, storage and transmission technologies.

A.1.4 Technical Parameters

For generation technologies, efficiencies represent the ratio between primary en-
ergy input and electricity output. For storage technologies, three efficiencies are
provided, i.e. for the discharging (D) and charging (S) states, as well as the self-
discharge (SD) efficiency (i.e., one minus this value corresponds to the state-of-charge
internal losses). For transmission technologies, the efficiency is provided per 1000
km. Besides efficiency values, some technologies are modelled with hourly ramp
rates (up- and down-regulation), as well as with minimum must-run levels. At this
stage the only technology with such constraints is the nuclear power generator, i.e.,
those generators can ramp their production up or down by a maximum of 10% per
hour and must always output power at a minimum of 80% of their capacity. All
values are centralized in Table A.2.

Some technologies (OCGT and CCGT) are using fuels which release CO2 when
burnt. Specific CO2 emissions and associated feedstock costs of different fuels are
collected in Table A.3.

The capacity expansion framework includes a carbon budget constraint reflecting
the total amount of CO2 that can be emitted by the underlying power system over
one year. In line with the latest climate agreements, this budget is enforced as a share
of the EU-wide 1990 emission levels. Data collection for yearly emission levels relies
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Plant Efficiency Ramp rates1 Must-run1

D S SD Up Down
[%] [%] [%] [%/hr] [%/hr] [%]

OCGT 41.02

CCGT 58.02

Nuclear 36.03 10.0 10.0 80.0
Run-of-river hydro 85.01

Reservoir hydro 85.01

Pumped-hydro storage 90.04 90.04 100.01

Li-Ion storage 93.05 93.05 99.51

1 Assumed values.
2 Retrieved from [200].
3 Retrieved from [199].
4 Retrieved from [205].
5 Retrieved from [203].
6 Retrieved from [206].

TABLE A.2: Generation, storage and transmission technologies oper-
ational parameters.

Plant Fuel Fuel Cost CO2
e/MWhth ton/MWhth

OCGT gas 26.51 0.2252

CCGT gas 26.51 0.2252

Nuclear uranium 1.71 0.0
1 Values are obtained from the TYNDP2020 Scenario Re-

port, reference year 2040 [207].
2 Values for stationary combustion from the IPCC Emis-

sions Factor Database [208].

TABLE A.3: Fuels and associated costs and specific emissions.

on carbon intensity information released by the Europe Environment Agency (EEA)
[209] and on yearly electricity generation data from the International Energy Agency
(IEA) [210]. The baseline cost of CO2 is set to 41.85 e/tCO2 and it reflects its price
on the EU ETS on March 30, 2021.
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A.2 Chapter 5 - Assessing the Impact of Siting Strategies on
the Design and Operation of Power Systems: A Refined
Analysis

A.2.1 Candidate Sites

The current study takes into account the deployment of wind generation assets (both
on- and offshore) in twelve European countries, namely, Austria (AT), Belgium (BE),
Czechia (CZ), Denmark (DK), France (FR), Germany (DE), Italy (IT), Luxembourg
(LU), the Netherlands (NL), Portugal (PT), Spain (ES) and Switzerland (CH). The set
of candidate locations for onshore and offshore wind deployment, respectively, is
determined via a filtering procedure that discards the reanalysis grid points where
the installation of such technologies would be impractical. With respect to the on-
shore wind deployments, three distinct filters are applied. More specifically, all re-
analysis grid points with an average population density above 200 inhabitants/km2

are discarded. Then, grid points whose average terrain slope is greater than 3%
or whose forestry cover is above 80% are also removed. A single filter is applied
for offshore wind deployments, i.e., distance to shore. In particular, offshore wind
deployments are possible in a band between 12 nm and 120 nm from the shore, in
accordance with the considerations suggested in [145]. As a result of this filtering
procedure, a total of 4573 onshore and offshore points (seen in Figure A.3) are avail-
able for deployment across the territories of the twelve European countries under
investigation. It should be noted that the absence of candidate onshore points in
Austria and Switzerland is justified by the lack of capacity deployments in these
countries.

A.2.2 Unit Commitment Parameters

There are three electricity generation technologies whose unit commitment costs and
constraints are modelled, namely, nuclear, OCGT and CCGT units. In particular,
the following modelling aspects are taken into account for these three technologies:
start-up costs, ramp rates and minimum operating levels, as well as minimum up-
and down-times. The values assumed for these parameters are centralized in Table
A.4.

A.2.3 Solver Parameters

A list of solver parameters whose values were tuned in the context of the current
planning exercise is provided in Table A.5. Furthermore, a list of solver parame-
ters whose values were tuned in the context of the unit commitment and economic
dispatch problem tackled in Chapter 5 is provided in Table A.6.
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FIGURE A.3: Set of candidate sites for onshore and offshore wind
deployment, respectively.

TABLE A.4: Unit commitment techno-economic assumptions.

µ ∆−/∆+ δmdt δmut θSD
1 θSU

2 Source
[%] [%] [h] [h] [e/MW] [e/MW]

Nuclear 0.5 0.1 24 12 0.0 3.5 [211]
OCGT 0.48 1.0 6 1 0.0 42.3 [186]
CCGT 0.48 0.5 6 2 0.0 46.8 [186]
1 Assumed values.
2 Typical warm start data from [186].
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TABLE A.5: Solver parameters used in the capacity expansion plan-
ning problem [212].

Parameter Meaning Default Value

Threads Number of parallel threads to use 0 15
Method Algorithm used to solve continuous models -1 2
Crossover Barrier crossover strategy -1 0
BarConvTol Barrier convergence tolerance 10−8 10−5

FeasibilityTol Primal feasibility tolerance 10−9 10−6

AggFill Allowed fill during presolve aggregation -1 0
PreDual Presolve dualization -1 0

TABLE A.6: Solver parameters used in the unit commitment and eco-
nomic dispatch planning problem [212].

Parameter Meaning Default Value

Threads Number of parallel threads to use 0 15
Method Algorithm used to solve continuous models -1 2
Crossover Barrier crossover strategy -1 0
NodeMethod Method used to solve MIP node relaxations -1 2
MIPGap Relative MIP optimality gap 10−4 0.03
MIPFocus Set the focus of the MIP solver 0 3
Heuristics Turn MIP heuristics up or down 0.05 0.8
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A.3 Chapter 6 - Model Reduction in Capacity Expansion Plan-
ning Problems via Renewable Generation Site Selection

This section lists the main techno-economic assumptions used in Chapter 6 of the
current manuscript.

A.3.1 Economic parameters

Economic parameters of every generation, storage or transmission technology are
displayed in Table A.7. All USD-EUR conversions are made assuming a conversion
rate of 0.8928 EUR per USD. All GBP-EUR conversions are made assuming a con-
version rate of 1.1405 EUR per GBP. All AUD-EUR conversions are made assuming
a conversion rate of 0.6209 AUD per EUR.
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A.3.2 Technical parameters

For generation technologies, efficiencies represent the ratio between primary en-
ergy input and electricity output. For storage technologies, three efficiencies are
provided, i.e. for the discharging (D) and charging (S) states, as well as the self-
discharge (SD) efficiency (i.e., one minus this value corresponds to the state-of-charge
internal losses). For transmission technologies, the efficiency is provided per 1000
km. All values are centralized in Table A.8.

TABLE A.8: Generation, storage and transmission technolo-
gies operational parameters.

Plant Type Efficiency
D S SD

[%] [%] [%]

NGPP CCGT 58.01

Hydro Reservoir 85.02

Hydro Run-of-river 85.02

Storage Pumped-hydro 90.03 90.03 100.04

Storage Li-ion 93.05 93.05 99.56

Transmission HVAC 93.07

Transmission HVDC 97.07

1 Average efficiency values from [148].
2 Assumed values.
3 Values from Appendix B.4.1 of [205].
4 Assumed value.
5 Values for Li-Ion battery from [203].
6 Assumed value.
7 Values from [206].

Some technologies (only CCGT at this stage) are using fuels which release CO2 when
burnt. The cost of CO2 is set to 40 e/tCO2 and is based on the Global Ambitions
scenario (reference year 2030) of the 2020 TYNDP [207]. Specific CO2 emissions and
associated feedstock costs of different fuels are collected in Table A.9.

TABLE A.9: Fuels and associated costs and specific emis-
sions.

Plant Type Fuel Fuel Cost CO2
1

e/MWhth ton/MWhth

NGPP CCGT gas 26.52 0.225
1 Values for stationary combustion from the IPCC Emissions

Factor Database [208].
2 From [207].
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Appendix B

Modelling Hydro Inflows and
Capacities

Hydro power plants modelling requires specific attention, as their operation is in-
herently constrained by resource- and design-related aspects, e.g., reservoir size,
water inflows. The current assessment is hereby explained for a network topology
where each country represents one equivalent electrical bus. However, the proposed
workflow remains unchanged even if more granular network topologies are pur-
sued (e.g., see Chapter 5). The first step in the workflow constitutes the mapping of
individual power plants to their corresponding countries. To this end, geo-location
data of hydro units is provided in [150], [151]. The result of this mapping is shown
in Figure B.1 for run-of-river (ROR), reservoir-based (STO) and pumped-hydro storage
units (PHS), respectively.

B.1 Run-of-River Hydro Power Plant Inflows

In modelling the ROR units, inspiration is drawn from the operation of variable RES
technologies (e.g., wind, solar PV). Indeed, these former class of plants relies on
the availability of water flows to operate, as they do not have significant storage
capabilities to regulate their operation. Therefore, after distributing the 33.5 GW
of ROR capacity across the 28 countries (based on their geo-location), these plants
are modelled as non-dispatchable, aggregated installations whose per-unit, hourly
capacity factors are assumed proportional to the runoff1 available in the country
where the aggregate ROR capacity is located.

More specifically, let C be the set of all countries and T be the time horizon under
investigation. For any country c ∈ C, the runoff associated with all reanalysis data
points (sampled on a regular grid at, e.g., 0.25deg spatial resolution in both coor-
dinate directions) found within its borders is first spatially aggregated into a single
runoff time series (B.1a). Then, the resulting time series is normalized (B.1b) and

1Surface and sub-surface water draining away from precipitation, snow melting, etc. Hourly runoff
time series covering the studied temporal horizon (2010 to 2019) are obtained from the same reanalysis
dataset as wind speeds and solar irradiation data [86].
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FIGURE B.1: Installed capacities (in GW) of run-of-river (left),
reservoir-based (middle) and pumped-hydro units (right) across Eu-
ropean countries. Each subplot is accompanied by its own colorbar.

data outliers (i.e., in this case, flood-related events during which the runoff spikes
for short periods of time) are removed. The latter processing step is tackled via (B.1c)
by defining a country-specific, dimensionless flood event threshold. In this equation, fc
denotes the aforementioned threshold, while q fc(roc) denotes the fc

th quantile of the
runoff vector in country c. The values of this threshold (listed in Table B.1) are set
such that the yearly average ROR capacity factors reaches 50% across all countries2.
Finally, the hourly availability of ROR plants can be obtained via (B.1d), where KROR

c

denotes the ROR installed capacity in country c.

roc,t = ∑
cell∈c

rocell,t, ∀c ∈ C (B.1a)

roc,t =
roc,t

max(roc)
, ∀c ∈ C, ∀t ∈ T (B.1b)

r̃oc,t = min(roc,t, q fc(roc)), ∀c ∈ C, ∀t ∈ T (B.1c)

pROR
c,t = r̃oc,t KROR

c , ∀c ∈ C, ∀t ∈ T (B.1d)

B.2 Reservoir-based Hydro Power Plant Inflows

Reservoir-based hydro power plants (STO) are modelled as dispatchable units with
limited generation capabilities, as their feed-in is usually limited by two aspects, i.e.,

2Considering a flood event threshold of 0.9, the aggregate runoff time series within a region is clipped
to its 90th percentile. From a ROR plant design standpoint, this is equivalent to considering that a given
plant is designed for a rated flow of p90 of the historical flow duration curve, a usual approach in the
design of such units.
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TABLE B.1: Hydro run-of-river (ROR) flood event threshold values
(p.u.) for various countries in Europe.

ISO2 fc ISO2 fc ISO2 fc

AT 0.9 GB 0.85 NO 0.9

BE 0.8 GR 0.9 PL 0.9

BG 0.9 HR 0.9 PT 0.9

CH 0.9 HU 0.9 RO 0.9

CZ 0.9 IE 0.85 RS 0.9

DE 0.7 IT 0.9 SE 0.9

ES 0.9 LT 0.9 SI 0.9

FI 0.9 LU 0.9 SK 0.9

FR 0.9 LV 0.9

water inflow availability and storage capabilities. At first, as unit-specific STO reser-
voir capacity data is scarce in the literature [151], a procedure to approximate wa-
ter retention capabilities of such units on a country-by-country basis is employed.
Subsequently, inflow estimation in the form of hourly time series is pursued. The
accurate estimation of these two parameters prove fundamental in replicating the
generation patterns of STO installations, which are often driven by seasonal fluctua-
tions.

The assessment of country-based reservoir capacities develops in three steps. First,
the results of a peer-reviewed hydropower modelling framework [216] are queried.
In case STO reservoir data is not available at this source for a specific country, infor-
mation is sought for on the ENTSOE Transparency Platform [217], within time series
of historical (i.e., 2014 to 2019) water reservoir levels. In this case, it is assumed that
the maximum reported value for a country across the five available years coincides
with its STO storage capabilities. Finally, if data is not found in any of the two afore-
mentioned sources, the another database that stores more generic reservoir-specific
data (that is, water storage capacities in reservoirs that also serve other purposes
than hydro power generation) [218] is queried. More explicitly, the STO storage ca-
pabilities of a given country are assumed equal to the sum of the capacities of all
reservoirs in that country whose main usage is linked to hydroelectricity. Upon us-
ing the three aforementioned data sources, 189 TWh of storage capacity for reservoir-
based plants are found within the European countries of interest. The distribution
of STO capacity is shown in the left subplot of Figure B.2.

The estimation of country-based inflows in STO reservoirs relies on reanalysis-based
runoff time series [86]. However, instead of being expressed as per-unit values, the
STO inflows are expressed in energy units (e.g., GWh). In this regard, let G denote
the set of all reanalysis grid cells for which the inflow is computed. For each reanal-
ysis grid cell cell ∈ G, the product between the runoff and the corresponding grid
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FIGURE B.2: Energy storage capacities (in GWh) of reservoir-based
(left) and pumped-hydro units (right) across European countries.

Each subplot is accompanied by its own colorbar.

cell surface area (αcell) is computed, as seen in (B.2a). Given the fact that the runoff
is natively expressed in meters3, the product returns the equivalent volume of wa-
ter available in each cell per unit time (i.e., water flow). Subsequently, the resulting
time series are aggregated on a country basis, thus taking into account the grid cell
geo-positioning with respect to country borders (as per (B.2b)) and converted into
an energy-based inflow via (B.2c). In the latter equation, ρH2O represents the wa-
ter density (assumed 1000 km/m3 and g stands for the gravitational constant (i.e.,
9.81 m/s2). Additionally, hc stands for the the country-average water head (assumed
unitary in a first stage).

qcell,t = rocell,t αcell , ∀cell ∈ G, ∀t ∈ T (B.2a)

qc,t = ∑
cell∈c

qcell,t, ∀c ∈ C, ∀t ∈ T (B.2b)

iSTO,init
c,t = qc,t ρH2O g hc, ∀c ∈ C, ∀t ∈ T (B.2c)

ESTO
c = EHYDRO

c −∑
t∈T

pROR
c,t , ∀c ∈ C (B.2d)

f mc =
ESTO

c

∑t∈T iSTO,init
c,t

, ∀c ∈ C (B.2e)

iSTO
c,t = iSTO,init

c,t f mc, ∀c ∈ C, ∀t ∈ T (B.2f)

3The runoff variable in use expresses "the depth the water would have if it were spread evenly over
the grid box" [219].
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TABLE B.2: Reservoir-based hydro (STO) flow multiplier values (ex-
pressed in metres) for various countries in Europe.

ISO2 f mc ISO2 f mc ISO2 f mc

AT 114.3 GB 9.8 NO 279.3

BE 64.3 GR 82.7 PL 33.9

BG 116.9 HR 123.9 PT 194.5

CH 191.3 HU 11.3 RO 168.1

CZ 96.3 IE 0.07 RS 392.6

DE 48.7 IT 83.9 SE 159.9

ES 279.2 LT 44.4 SI 103.1

FI 22.7 LU 499.1 SK 129.5

FR 118.9 LV 3.6

At this stage, the modelled STO water inflows are expressed in energy units, yet a
brief comparison with historical yearly generation volumes reveals significant dif-
ferences in favour of the latter. Indeed, on the one hand, a unitary water head is
assumed in (B.2c), while the actual values of this parameter for individual plants
vary between tens and hundreds of metres. On the other hand, it has been assumed
that the entirety of the modelled inflows are used for hydroelectricity generation,
whereas this is expected to be an unrealistic assumption, as e.g., part of the runoff
is draining into the ground, part of it flows unconstrained through dam gates for
environmental purposes, etc. In order to take these two factors (i.e., water head and
the retain factor) into account in the definition of the STO inflow, a country-specific
flow multiplier or f mc is derived. For each country, yearly integrated ROR production
data (whose estimation has been previously discussed) is subtracted from the total
hydroelectricity generation volumes (EHYDRO

c obtained from [220]) and the remain-
der is attributed to reservoir-based plants, as described by (B.2d). The ratio (B.2e)
between the expected generation and the yearly integrated STO inflows assuming a
unitary water head defines the flow multiplier mentioned above and centralized in
Table B.2. The corrected STO inflow time series are therefore obtained by multiplying
their initial values with this country-specific scalar, as seen in Eq. (B.2f).

B.3 Pumped-Hydro Storage Capacities

In the exercise at hand, pumped-hydro storage (PHS) is modelled as storage technol-
ogy without the possibility of expansion. PHS units are modelled without natural
inflows (i.e., closed-loop schemes) and with a unitary self-discharge efficiency (e.g.,
evaporation losses are not taken into account). Additionally, it is assumed that, for
all PHS units, both turbine and pumping modes have identical rated powers and ef-
ficiencies. Installed capacities of such units are retrieved from [151] yet, as for STO
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TABLE B.3: Pumped-hydro storage (PHS) power and energy capaci-
ties for various countries in Europe.

ISO2 Kc Sc ISO2 Kc Sc ISO2 Kc Sc

[GW] [GWh] [GW] [GWh] [GW] [GWh]

AT 3.6 159.4 GB 2.9 26.7 NO 1.3 472.6

BE 1.3 5.7 GR 0.7 5.1 PL 1.7 7.3

BG 1.4 41.1 HR 0.5 4.4 PT 3.9 130.7

CH 4.5 648.5 HU RO

CZ 1.2 5.57 IE 0.3 1.8 RS 0.6 3.6

DE 7.8 45.6 IT 7.9 81.0 SE 0.1 116.5

ES 7.9 83.1 LT 0.9 10.8 SI 0.2 0.5

FI LU SK 1.0 4.6

FR 5.3 85.6 LV

units, information regarding to their storage capabilities is scarce. However, an ac-
curate assessment of such information is paramount for an accurate modelling of
PHS plants which, with over 54 GW of installed capacity, have a significant impact in
the integration of RES throughout Europe. In this regard, the following unit-based
approach is proposed. At first, storage capabilities data is sought for each individual
plant obtained from [151] within a peer-reviewed database [125]. If for a given plant,
unit-specific data does not exist, but country-specific duration (i.e., energy-to-power
ratio) data is available, the latter is used to approximate storage capacities starting
from the installed capacities in each individual country (i.e., if the specific duration
for a PHS plant in France is not available, yet the country-specific parameter is pro-
vided and equal to 4 h, that PHS plant will have a specific duration of 4 h). In case
country- and plant-specific data is missing, a default specific duration of 6 h is used
to derive pumped-hydro storage capabilities for the remainder of the units. This
procedure results in a total European pumped-hydro storage potential of 1930 GWh
whose distribution is presented in Table B.3, as well as on the right subplot of Figure
B.2.



153

Bibliography

[1] V. Masson-Delmotte, P. Zhai, A. Pirani, et al., “Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth Assess-
ment Report of the Intergovernmental Panel on Climate Change,” 2021. [On-
line]. Available: https://www.ipcc.ch/report/ar6/wg1/.

[2] United Nations Framework Convention on Climate Change - UNFCCC, “The
Paris Agreement - the Conference of the Parties on its twenty-first session,”
2015. [Online]. Available: https : / / unfccc . int / process / conferences /
pastconferences/paris- climate- change- conference- november- 2015/

paris-agreement.
[3] “Net Zero by 2050 - A Roadmap for the Global Energy Sector,” International

Energy Agency, Tech. Rep., 2021. [Online]. Available: https://www.iea.org/
reports/net-zero-by-2050.

[4] International Renewable Energy Agency (IRENA), “World Energy Transi-
tions Outlook: 1.5°C Pathway,” 2021. [Online]. Available: https : / / www .
irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.

[5] E. Larson, C. Greig, J. Jenkins, et al., “Net-Zero America: Potential Pathways,
Infrastructure, and Impacts,” 2020. [Online]. Available: https://netzeroamerica.
princeton.edu/.

[6] S. Mallapaty, How China could be carbon neutral by mid-century, published in
Nature 586, 482-483, 2020. DOI: 10.1038/d41586- 020- 02927- 9. [Online].
Available: https://www.nature.com/articles/d41586-020-02927-9.

[7] S. Zhang, J. Liu, G. Yin, Y. Bi, J. Qiao, and Y. Ji, “China Nationally Determined
Contribution (NDC) and Domestic 14th Power Five-Year-Plan (FYP),” 2020.
[Online]. Available: https://energyandcleanair.org/publication/china-
nationally-determined-contribution-ndc-and-domestic-14th-power-

five-year-plan-fyp/.
[8] “Clean energy for all Europeans package,” European Commission, Tech. Rep.,

2019. [Online]. Available: https://ec.europa.eu/energy/topics/energy-
strategy/clean-energy-all-europeans_en.

[9] “A European Green Deal,” European Commission, Tech. Rep., 2021. [Online].
Available: https://ec.europa.eu/info/strategy/priorities- 2019-
2024/european-green-deal_en.

[10] V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, et al., “Global Warming of 1.5°C.
An IPCC Special Report on the impacts of global warming of 1.5°C above

https://www.ipcc.ch/report/ar6/wg1/
https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement
https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement
https://unfccc.int/process/conferences/pastconferences/paris-climate-change-conference-november-2015/paris-agreement
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook
https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook
https://netzeroamerica.princeton.edu/
https://netzeroamerica.princeton.edu/
https://doi.org/10.1038/d41586-020-02927-9
https://www.nature.com/articles/d41586-020-02927-9
https://energyandcleanair.org/publication/china-nationally-determined-contribution-ndc-and-domestic-14th-power-five-year-plan-fyp/
https://energyandcleanair.org/publication/china-nationally-determined-contribution-ndc-and-domestic-14th-power-five-year-plan-fyp/
https://energyandcleanair.org/publication/china-nationally-determined-contribution-ndc-and-domestic-14th-power-five-year-plan-fyp/
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/energy/topics/energy-strategy/clean-energy-all-europeans_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en


154 Bibliography

pre-industrial levels and related global greenhouse gas emission pathways,
in the context of strengthening the global response to the threat of climate
change, sustainable development, and efforts to eradicate poverty,” World
Meteorological Organization, 2018.

[11] The International Energy Agency, World Energy Balances: Overview, 2020. [On-
line]. Available: https://www.iea.org/reports/world-energy-balances-
overview.

[12] ——, Renewables 2020 Data Explorer, 2020. [Online]. Available: https://www.
iea.org/articles/renewables-2020-data-explorer.

[13] S. G. Yalew, M. T. H. van Vliet, D. E. H. J. Gernaat, et al., “Impacts of climate
change on energy systems in global and regional scenarios,” Nature Energy,
vol. 5, pp. 794–802, 2020. DOI: https://doi.org/10.1038/s41560- 020-
0664-z.

[14] Energy Realpolitik, South Africa’s Blackouts Demonstrate Need for Distributed
Energy Resources, 2019. [Online]. Available: https://www.cfr.org/blog/
south - africas - blackouts - demonstrate - need - distributed - energy -

resources.
[15] J. W. Busby, K. Baker, M. D. Bazilian, et al., “Cascading risks: Understanding

the 2021 winter blackout in Texas,” Energy Research & Social Science, vol. 77,
p. 102 106, 2021, ISSN: 2214-6296. DOI: https : / / doi . org / 10 . 1016 / j .
erss.2021.102106. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214629621001997.

[16] Vanessa Dezem (for Bloomberg Green), Thousands left in the dark in Germany
as floods cut power supply, 2021. [Online]. Available: https://www.bloomberg.
com/news/articles/2021- 07- 16/thousands- left- in- the- dark- in-

germany-as-floods-cut-power-supply.
[17] D. E. H. J. Gernaat, H. S. de Boer, V. Daioglou, S. G. Yalew, C. Müller, and

D. P. van Vuuren, “Climate change impacts on renewable energy supply,”
Nature Climate Change, vol. 11, pp. 119–125, 2021. DOI: https://doi.org/10.
1038/s41558-020-00949-9.

[18] A. Conejo, L. Baringo, S. Kazempour, and A. Siddiqui, “Investment in gen-
eration and transmission facilities,” in Investment in Electricity Generation and
Transmission, 2nd ed. Springer, 2016, ch. 1. DOI: 10.1007/978-3-319-29501-
5_1.

[19] N. E. Koltsaklis and A. S. Dagoumas, “State-of-the-art generation expansion
planning: A review,” Applied Energy, vol. 230, 2018. DOI: doi:10.1016/j.
apenergy.2018.08.087.

[20] M. Mahdavi, C. Sabillon Antunez, M. Ajalli, and R. Romero, “Transmission
expansion planning: Literature review and classification,” IEEE Systems Jour-
nal, vol. 13, no. 3, pp. 3129–3140, 2019. DOI: 10.1109/JSYST.2018.2871793.

[21] V. Krishnan, J. Ho, B. F. Hobbs, et al., “Co-optimization of electricity trans-
mission and generation resources for planning and policy analysis: Review

https://www.iea.org/reports/world-energy-balances-overview
https://www.iea.org/reports/world-energy-balances-overview
https://www.iea.org/articles/renewables-2020-data-explorer
https://www.iea.org/articles/renewables-2020-data-explorer
https://doi.org/https://doi.org/10.1038/s41560-020-0664-z
https://doi.org/https://doi.org/10.1038/s41560-020-0664-z
https://www.cfr.org/blog/south-africas-blackouts-demonstrate-need-distributed-energy-resources
https://www.cfr.org/blog/south-africas-blackouts-demonstrate-need-distributed-energy-resources
https://www.cfr.org/blog/south-africas-blackouts-demonstrate-need-distributed-energy-resources
https://doi.org/https://doi.org/10.1016/j.erss.2021.102106
https://doi.org/https://doi.org/10.1016/j.erss.2021.102106
https://www.sciencedirect.com/science/article/pii/S2214629621001997
https://www.sciencedirect.com/science/article/pii/S2214629621001997
https://www.bloomberg.com/news/articles/2021-07-16/thousands-left-in-the-dark-in-germany-as-floods-cut-power-supply
https://www.bloomberg.com/news/articles/2021-07-16/thousands-left-in-the-dark-in-germany-as-floods-cut-power-supply
https://www.bloomberg.com/news/articles/2021-07-16/thousands-left-in-the-dark-in-germany-as-floods-cut-power-supply
https://doi.org/https://doi.org/10.1038/s41558-020-00949-9
https://doi.org/https://doi.org/10.1038/s41558-020-00949-9
https://doi.org/10.1007/978-3-319-29501-5_1
https://doi.org/10.1007/978-3-319-29501-5_1
https://doi.org/doi:10.1016/j.apenergy.2018.08.087
https://doi.org/doi:10.1016/j.apenergy.2018.08.087
https://doi.org/10.1109/JSYST.2018.2871793


Bibliography 155

of concepts and modeling approaches,” Energy Systems, vol. 7, pp. 297–332,
2016. DOI: 10.1007/s12667-015-0158-4.

[22] A. Botterud, M. Ilic, and I. Wangensteen, “Optimal investments in power gen-
eration under centralized and decentralized decision making,” IEEE Transac-
tions on Power Systems, vol. 20, no. 1, pp. 254–263, 2005. DOI: 10.1109/TPWRS.
2004.841217.

[23] R. Loulou and U. Remne and A. Kanudia and A. Lehtila and G. Goldstein,
Documentation for the TIMES Model - PART I, 2005. [Online]. Available: https:
//iea-etsap.org/index.php/etsap-tools/model-generators/times.

[24] The International Energy Agency, Energy Technology Systems Analysis Program
(ETSAP), 2021. [Online]. Available: https://iea-etsap.org/index.php/
applications.

[25] F. Wiese, R. Bramstoft, H. Koduvere, et al., “Balmorel open source energy
system model,” Energy Strategy Reviews, vol. 20, pp. 26–34, 2018, ISSN: 2211-
467X. DOI: https://doi.org/10.1016/j.esr.2018.01.003. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S2211467X18300038.

[26] C. Barragán-Beaud, A. Pizarro-Alonso, M. Xylia, S. Syri, and S. Silveira, “Car-
bon tax or emissions trading? An analysis of economic and political feasi-
bility of policy mechanisms for greenhouse gas emissions reduction in the
Mexican power sector,” Energy Policy, vol. 122, pp. 287–299, 2018, ISSN: 0301-
4215. DOI: https://doi.org/10.1016/j.enpol.2018.07.010. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S0301421518304579.

[27] J. Gea-Bermúdez, L.-L. Pade, M. J. Koivisto, and H. Ravn, “Optimal genera-
tion and transmission development of the North Sea region: Impact of grid
architecture and planning horizon,” Energy, vol. 191, p. 116 512, 2020, ISSN:
0360-5442. DOI: https://doi.org/10.1016/j.energy.2019.116512. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0360544219322078.

[28] P. Meibom and K. Karlsson, “Role of hydrogen in future North European
power system in 2060,” International Journal of Hydrogen Energy, vol. 35, no. 5,
pp. 1853–1863, 2010, ISSN: 0360-3199. DOI: https://doi.org/10.1016/j.
ijhydene.2009.12.161. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S036031990902120X.

[29] M. Howells, H. Rogner, N. Strachan, et al., “OSeMOSYS: The open source
energy modeling system: An introduction to its ethos, structure and devel-
opment,” Energy Policy, vol. 39, pp. 5850–5870, 2011. DOI: 10.1016/j.enpol.
2011.06.033.

[30] H. Henke, The Open Source energy Modelling Base for Europe (OSeMBE), 2019.
[Online]. Available: https://kth.diva- portal.org/smash/get/diva2:
1135883/FULLTEXT01.pdf.

https://doi.org/10.1007/s12667-015-0158-4
https://doi.org/10.1109/TPWRS.2004.841217
https://doi.org/10.1109/TPWRS.2004.841217
https://iea-etsap.org/index.php/etsap-tools/model-generators/times
https://iea-etsap.org/index.php/etsap-tools/model-generators/times
https://iea-etsap.org/index.php/applications
https://iea-etsap.org/index.php/applications
https://doi.org/https://doi.org/10.1016/j.esr.2018.01.003
https://www.sciencedirect.com/science/article/pii/S2211467X18300038
https://www.sciencedirect.com/science/article/pii/S2211467X18300038
https://doi.org/https://doi.org/10.1016/j.enpol.2018.07.010
https://www.sciencedirect.com/science/article/pii/S0301421518304579
https://www.sciencedirect.com/science/article/pii/S0301421518304579
https://doi.org/https://doi.org/10.1016/j.energy.2019.116512
https://www.sciencedirect.com/science/article/pii/S0360544219322078
https://www.sciencedirect.com/science/article/pii/S0360544219322078
https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.12.161
https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.12.161
https://www.sciencedirect.com/science/article/pii/S036031990902120X
https://www.sciencedirect.com/science/article/pii/S036031990902120X
https://doi.org/10.1016/j.enpol.2011.06.033
https://doi.org/10.1016/j.enpol.2011.06.033
https://kth.diva-portal.org/smash/get/diva2:1135883/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1135883/FULLTEXT01.pdf


156 Bibliography

[31] K. Löffler, K. Hainsch, T. Burandt, P.-Y. Oei, C. Kemfert, and C. Von Hirschhausen,
“Designing a model for the global energy system—genesys-mod: An ap-
plication of the open-source energy modeling system (osemosys),” Energies,
vol. 10, no. 10, 2017, ISSN: 1996-1073. DOI: 10.3390/en10101468. [Online].
Available: https://www.mdpi.com/1996-1073/10/10/1468.

[32] T. Brown, J. Hörsch, and D. Schlachtberger, “PyPSA: Python for Power Sys-
tem Analysis,” Journal of Open Research Software, vol. 6, 1 2018. DOI: 10.5334/
jors.188. eprint: 1707.09913. [Online]. Available: https://doi.org/10.
5334/jors.188.

[33] J. Hörsch, F. Hofmann, D. Schlachtberger, and T. Brown, “PyPSA-Eur: An
open optimisation model of the European transmission system,” Energy Strat-
egy Reviews, vol. 22, pp. 207–215, 2018, ISSN: 2211-467X. DOI: https://doi.
org/10.1016/j.esr.2018.08.012. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S2211467X18300804.

[34] T. Brown, D. Schlachtberger, A. Kies, S. Schramm, and M. Greiner, “Syner-
gies of sector coupling and transmission reinforcement in a cost-optimised,
highly renewable European energy system,” Energy, vol. 160, pp. 720–739,
2018, ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2018.
06.222. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S036054421831288X.

[35] H. Liu, T. Brown, G. B. Andresen, D. P. Schlachtberger, and M. Greiner, “The
role of hydro power, storage and transmission in the decarbonization of the
Chinese power system,” Applied Energy, vol. 239, 1308–1321, 2019, ISSN: 0306-
2619. DOI: 10.1016/j.apenergy.2019.02.009. [Online]. Available: http:
//dx.doi.org/10.1016/j.apenergy.2019.02.009.

[36] Maximilian Parzen, PyPSA meets Africa, 2021. [Online]. Available: https://
pypsa-meets-africa.github.io/.

[37] Thomas Spence and Neshwin Rodrigues and Raghav Pachouri and Shubham
Thakre, A model-based assessment of variable renewable grid integration costs in
India, 2021. [Online]. Available: https://www.teriin.org/sites/default/
files/2021-02/A_Modal-Based_Assessment_Report_0.pdf.

[38] S. Pfenninger and B. Pickering, “Calliope: A multi-scale energy systems mod-
elling framework,” Journal of Open Source Software, 2018. DOI: 10.21105/joss.
00825.

[39] T. Tröndle, J. Lilliestam, S. Marelli, and S. Pfenninger, “Trade-offs between
geographic scale, cost, and infrastructure requirements for fully renewable
electricity in Europe,” Joule, vol. 4, no. 9, pp. 1929–1948, 2020, ISSN: 2542-
4351. DOI: https : / / doi . org / 10 . 1016 / j . joule . 2020 . 07 . 018. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S2542435120303366.

[40] S. Pfenninger and J. Keirstead, “Comparing concentrating solar and nuclear
power as baseload providers using the example of South Africa,” Energy,

https://doi.org/10.3390/en10101468
https://www.mdpi.com/1996-1073/10/10/1468
https://doi.org/10.5334/jors.188
https://doi.org/10.5334/jors.188
1707.09913
https://doi.org/10.5334/jors.188
https://doi.org/10.5334/jors.188
https://doi.org/https://doi.org/10.1016/j.esr.2018.08.012
https://doi.org/https://doi.org/10.1016/j.esr.2018.08.012
https://www.sciencedirect.com/science/article/pii/S2211467X18300804
https://www.sciencedirect.com/science/article/pii/S2211467X18300804
https://doi.org/https://doi.org/10.1016/j.energy.2018.06.222
https://doi.org/https://doi.org/10.1016/j.energy.2018.06.222
https://www.sciencedirect.com/science/article/pii/S036054421831288X
https://www.sciencedirect.com/science/article/pii/S036054421831288X
https://doi.org/10.1016/j.apenergy.2019.02.009
http://dx.doi.org/10.1016/j.apenergy.2019.02.009
http://dx.doi.org/10.1016/j.apenergy.2019.02.009
https://pypsa-meets-africa.github.io/
https://pypsa-meets-africa.github.io/
https://www.teriin.org/sites/default/files/2021-02/A_Modal-Based_Assessment_Report_0.pdf
https://www.teriin.org/sites/default/files/2021-02/A_Modal-Based_Assessment_Report_0.pdf
https://doi.org/10.21105/joss.00825
https://doi.org/10.21105/joss.00825
https://doi.org/https://doi.org/10.1016/j.joule.2020.07.018
https://www.sciencedirect.com/science/article/pii/S2542435120303366
https://www.sciencedirect.com/science/article/pii/S2542435120303366


Bibliography 157

vol. 87, pp. 303–314, 2015, ISSN: 0360-5442. DOI: https://doi.org/10.1016/
j.energy.2015.04.077. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360544215005320.

[41] C. D. Pero, F. Leonforte, F. Lombardi, et al., “Modelling of an integrated multi-
energy system for a nearly zero energy smart district,” in 2019 International
Conference on Clean Electrical Power (ICCEP), 2019, pp. 246–252. DOI: 10.1109/
ICCEP.2019.8890129.

[42] Jesse D. Jenkins and Nestor A. Sepulveda andDharik Mallapragada and Sam-
buddha Chakrabati and Jack Morris and Neha Patankar and Aaron Schwartz
and Qingyu Xu, GenX, a new tool for investment planning in the power sector,
2021. [Online]. Available: https://energy.mit.edu/genx/.

[43] M. Schulthoff, I. Rudnick, A. Bose, and E. Gençer, “Role of hydrogen in a
low-carbon electric power system: A case study,” Frontiers in Energy Research,
vol. 8, p. 344, 2021, ISSN: 2296-598X. DOI: 10 . 3389 / fenrg . 2020 . 585461.
[Online]. Available: https://www.frontiersin.org/article/10.3389/
fenrg.2020.585461.

[44] Breakthrough Energy Sciences, REISE - Renewable Energy Integration Simu-
lation Engine, 2021. [Online]. Available: https : / / breakthrough - energy .
github.io/docs/index.html.

[45] Y. Xu, N. Myhrvold, D. Sivam, et al., U.S. Test System with High Spatial and
Temporal Resolution for Renewable Integration Studies, 2020. arXiv: 2002.06155.

[46] I. H. Gonzales and S. Q. A. Zucker, “Dispa-SET 2.0: unit commitment and
power dispatch model,” Publications Office of the European Union, 2014. DOI:
http://dx.doi.org/10.2790/967448.

[47] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “Powermodels.jl: An
open-source framework for exploring power flow formulations,” in 2018 Power
Systems Computation Conference (PSCC), 2018, pp. 1–8. DOI: 10.23919/PSCC.
2018.8442948.

[48] H.-K. Ringkjøb, P. M. Haugan, and I. M. Solbrekke, “A review of modelling
tools for energy and electricity systems with large shares of variable renew-
ables,” Renewable and Sustainable Energy Reviews, vol. 96, pp. 440–459, 2018,
ISSN: 1364-0321. DOI: https://doi.org/10.1016/j.rser.2018.08.002.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1364032118305690.

[49] H.-K. Ringkjøb, P. M. Haugan, P. Seljom, A. Lind, F. Wagner, and S. Mes-
fun, “Short-term solar and wind variability in long-term energy system mod-
els - a European case study,” Energy, vol. 209, p. 118 377, 2020, ISSN: 0360-
5442. DOI: https : / / doi . org / 10 . 1016 / j . energy . 2020 . 118377. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0360544220314845.

https://doi.org/https://doi.org/10.1016/j.energy.2015.04.077
https://doi.org/https://doi.org/10.1016/j.energy.2015.04.077
https://www.sciencedirect.com/science/article/pii/S0360544215005320
https://www.sciencedirect.com/science/article/pii/S0360544215005320
https://doi.org/10.1109/ICCEP.2019.8890129
https://doi.org/10.1109/ICCEP.2019.8890129
https://energy.mit.edu/genx/
https://doi.org/10.3389/fenrg.2020.585461
https://www.frontiersin.org/article/10.3389/fenrg.2020.585461
https://www.frontiersin.org/article/10.3389/fenrg.2020.585461
https://breakthrough-energy.github.io/docs/index.html
https://breakthrough-energy.github.io/docs/index.html
https://arxiv.org/abs/2002.06155
https://doi.org/http://dx.doi.org/10.2790/967448
https://doi.org/10.23919/PSCC.2018.8442948
https://doi.org/10.23919/PSCC.2018.8442948
https://doi.org/https://doi.org/10.1016/j.rser.2018.08.002
https://www.sciencedirect.com/science/article/pii/S1364032118305690
https://www.sciencedirect.com/science/article/pii/S1364032118305690
https://doi.org/https://doi.org/10.1016/j.energy.2020.118377
https://www.sciencedirect.com/science/article/pii/S0360544220314845
https://www.sciencedirect.com/science/article/pii/S0360544220314845


158 Bibliography

[50] J. Wohland, D. Brayshaw, and S. Pfenninger, “Mitigating a century of euro-
pean renewable variability with transmission and informed siting,” Environ-
mental Research Letters, vol. 16, no. 6, p. 064 026, 2021. DOI: 10.1088/1748-
9326/abff89. [Online]. Available: https://doi.org/10.1088/1748-9326/
abff89.

[51] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for
twenty-first century energy challenges,” Renewable and Sustainable Energy Re-
views, vol. 33, pp. 74 –86, 2014, ISSN: 1364-0321. DOI: https://doi.org/10.
1016/j.rser.2014.02.003. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1364032114000872.

[52] A. MacDonald, C. Clack, A. Alexander, A. Dunbar, J. Wilczak, and Y. Xie, “Fu-
ture cost-competitive electricity systems and their impact on US CO2 emis-
sions,” Nature Climate Change, vol. 6, 2016. DOI: doi:10.1038/NCLIMATE2921.

[53] M. Hoffmann, L. Kotzur, D. Stolten, and M. Robinius, “A review on time se-
ries aggregation methods for energy system models,” Energies, vol. 13, no. 3,
2020. DOI: 10.3390/en13030641.

[54] D. Schlachtberger, T. Brown, S. Schramm, and M. Greiner, “The benefits of
cooperation in a highly renewable European electricity network,” Energy,
vol. 134, pp. 469–481, 2017, ISSN: 0360-5442. DOI: https://doi.org/10.1016/
j.energy.2017.06.004. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360544217309969.

[55] ENTSO-E, Maps & Data: TYNDP2018, 2018. [Online]. Available: https://
tyndp.entsoe.eu/maps-data.

[56] J. Yu, G. Sanchis, K. Bakic, et al., “Global Electricity Network Feasibility Study,”
CIGRE, Tech. Rep. 775, 2019.

[57] V. Krishnan and W. Cole, “Evaluating the value of high spatial resolution in
national Capacity Expansion Models using ReEDS,” 2016 IEEE PES General
Meeting, 2016.

[58] B. A. Frew and M. Z. Jacobson, “Temporal and spatial tradeoffs in power sys-
tem modeling with assumptions about storage: An application of the POWER
model,” Energy, vol. 117, pp. 198 –213, 2016, ISSN: 0360-5442. DOI: https:
//doi.org/10.1016/j.energy.2016.10.074. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0360544216315110.

[59] J. Hörsch and T. Brown, “The role of spatial scale in joint optimisations of
generation and transmission for European highly renewable scenarios,” 2017
14th Intl. Conf. on the European Energy Market (EEM), 2017.

[60] M. M. Frysztacki, J. Hörsch, V. Hagenmeyer, and T. Brown, “The strong ef-
fect of network resolution on electricity system models with high shares of
wind and solar,” Applied Energy, vol. 291, p. 116 726, 2021, ISSN: 0306-2619.
DOI: https : / / doi . org / 10 . 1016 / j . apenergy . 2021 . 116726. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S0306261921002439.

https://doi.org/10.1088/1748-9326/abff89
https://doi.org/10.1088/1748-9326/abff89
https://doi.org/10.1088/1748-9326/abff89
https://doi.org/10.1088/1748-9326/abff89
https://doi.org/https://doi.org/10.1016/j.rser.2014.02.003
https://doi.org/https://doi.org/10.1016/j.rser.2014.02.003
http://www.sciencedirect.com/science/article/pii/S1364032114000872
http://www.sciencedirect.com/science/article/pii/S1364032114000872
https://doi.org/doi:10.1038/NCLIMATE2921
https://doi.org/10.3390/en13030641
https://doi.org/https://doi.org/10.1016/j.energy.2017.06.004
https://doi.org/https://doi.org/10.1016/j.energy.2017.06.004
https://www.sciencedirect.com/science/article/pii/S0360544217309969
https://www.sciencedirect.com/science/article/pii/S0360544217309969
https://tyndp.entsoe.eu/maps-data
https://tyndp.entsoe.eu/maps-data
https://doi.org/https://doi.org/10.1016/j.energy.2016.10.074
https://doi.org/https://doi.org/10.1016/j.energy.2016.10.074
http://www.sciencedirect.com/science/article/pii/S0360544216315110
http://www.sciencedirect.com/science/article/pii/S0360544216315110
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.116726
https://www.sciencedirect.com/science/article/pii/S0306261921002439
https://www.sciencedirect.com/science/article/pii/S0306261921002439


Bibliography 159

[61] M. Pierrot, The Wind Power - Wind Energy Market Intelligence, 2020. [Online].
Available: https://www.thewindpower.net/store_continent_en.php?id_
zone=1001.

[62] P. Wolfe, Wiki Solar - The authority on utility-scale solar power, 2020. [Online].
Available: https://www.wiki-solar.org/data/index.html.

[63] “A Clean Planet for all - A European strategic long-term vision for a prosper-
ous, modern, competitive and climate neutral economy,” European Commis-
sion, Tech. Rep., 2018. [Online]. Available: https://ec.europa.eu/clima/
policies/strategies/2050_en.

[64] “Towards the first hub-and-spoke project,” North Sea Wind Power Hub Con-
sortium, Tech. Rep., 2021. [Online]. Available: https://northseawindpowerhub.
eu/knowledge/towards-the-first-hub-and-spoke-project.

[65] B. Li, S. Basu, S. J. Watson, and H. W. J. Russchenberg, “Mesoscale modeling
of a “dunkelflaute” event,” Wind Energy, vol. 24, no. 1, pp. 5–23, 2021. DOI:
https://doi.org/10.1002/we.2554. eprint: https://onlinelibrary.
wiley . com / doi / pdf / 10 . 1002 / we . 2554. [Online]. Available: https : / /
onlinelibrary.wiley.com/doi/abs/10.1002/we.2554.

[66] D. Stenclik, P. Denholm, and B. Chalamala, “Maintaining Balance: The In-
creasing Role of Energy Storage for Renewable Integration,” IEEE Power and
Energy Magazine, vol. 15, no. 6, pp. 31–39, 2017. DOI: https://doi.org/10.
1109/MPE.2017.2729098.

[67] N. O’Connell, P. Pinson, H. Madsen, and M. O’Malley, “Benefits and Chal-
lenges of Electrical Demand Response: A Critical Review,” Renewable and
Sustainable Energy Reviews, vol. 39, pp. 686–699, 2014, ISSN: 1364-0321. DOI:
https://doi.org/10.1016/j.rser.2014.07.098.

[68] G. Giebel, “On the benefits of distributed generation of wind energy in Eu-
rope,” PhD thesis, University of Oldenburg, Germany, 2001.

[69] International Energy Agency (IEA), Getting Wind and Solar onto the Grid, 2017.
[Online]. Available: https://www.iea.org/reports/getting-wind-and-
solar-onto-the-grid.

[70] K. Engeland, M. Borga, J.-D. Creutin, B. François, M.-H. Ramos, and J.-P. Vi-
dal, “Space-time variability of climate variables and intermittent renewable
electricity production – a review,” Renewable and Sustainable Energy Reviews,
vol. 79, pp. 600 –617, 2017, ISSN: 1364-0321. DOI: https://doi.org/10.1016/
j.rser.2017.05.046.

[71] A. Dubois and D. Radu, EPIPPy - Input Pre-processing for Expansion Planning in
Python, 2020. [Online]. Available: https://github.com/montefesp/EPIPPy.

[72] D. Radu and M. Berger, Resite - a framework for RES siting leveraging resource
complementarity, 2021. [Online]. Available: https://github.com/dcradu/
resite_ip/.

https://www.thewindpower.net/store_continent_en.php?id_zone=1001
https://www.thewindpower.net/store_continent_en.php?id_zone=1001
https://www.wiki-solar.org/data/index.html
https://ec.europa.eu/clima/policies/strategies/2050_en
https://ec.europa.eu/clima/policies/strategies/2050_en
https://northseawindpowerhub.eu/knowledge/towards-the-first-hub-and-spoke-project
https://northseawindpowerhub.eu/knowledge/towards-the-first-hub-and-spoke-project
https://doi.org/https://doi.org/10.1002/we.2554
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2554
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2554
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2554
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2554
https://doi.org/https://doi.org/10.1109/MPE.2017.2729098
https://doi.org/https://doi.org/10.1109/MPE.2017.2729098
https://doi.org/https://doi.org/10.1016/j.rser.2014.07.098
https://www.iea.org/reports/getting-wind-and-solar-onto-the-grid
https://www.iea.org/reports/getting-wind-and-solar-onto-the-grid
https://doi.org/https://doi.org/10.1016/j.rser.2017.05.046
https://doi.org/https://doi.org/10.1016/j.rser.2017.05.046
https://github.com/montefesp/EPIPPy
https://github.com/dcradu/resite_ip/
https://github.com/dcradu/resite_ip/


160 Bibliography

[73] A. Dubois, D. Radu, and M. Berger, Replan - a framework for bulk energy sys-
tems planning and analysis, 2020. [Online]. Available: https://github.com/
montefesp/replan.

[74] S. Chatzivasileiadis, D. Ernst, and G. Andersson, “The global grid,” Renewable
Energy, vol. 57, pp. 372–383, 2013. DOI: 10.1016/j.renene.2013.01.032.

[75] Z. Liu, Global electricity interconnection. Academic Press, 2016.
[76] G. Ingeborg and M. Korpås, “Variability characteristics of European wind

and solar power resources - A review,” Energies, vol. 9, no. 6, 2016. DOI: 10.
3390/en9060449.

[77] S. Erdle, “The DESERTEC initiative: powering the development perspectives
of Southern Mediterranean countries?” German Development Institute / Deutsches
Institut für Entwicklungspolitik (DIE), Discussion Papers 12/2010, 2010. [On-
line]. Available: https://ideas.repec.org/p/zbw/diedps/122010.html.

[78] S. Mano, B. Ovgor, Z. Samadov, et al., “Gobitec and Asian Super Grid for
renewable energies in Northeast Asia,” 2014. [Online]. Available: https://
www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_

and_the_Asian_Supergrid_2014_en.pdf.
[79] W. Platzer, I. Bole, A. Vogel, N. Tham, and P. Bretschneider, “Supergrid study

- Approach for the integration of renewable energy in Europe and North
Africa,” 2016. [Online]. Available: https://www.ise.fraunhofer.de/en/
publications/studies/supergrid.html.

[80] K. Komoto, T. Ehara, H. Xu, et al., “Energy from the desert: Very large scale
PV power plants for shifting to renewable energy future,” 2015.

[81] A. Gulagi, D. Bogdanov, M. Fasihi, and C. Breyer, “Can Australia power
the energy-hungry Asia with renewable energy?” Sustainability, vol. 9, no. 2,
2017, ISSN: 2071-1050. DOI: 10.3390/su9020233.

[82] J. P. da Silva Soares, “Wind energy utilization in the Arctic climate,” Ph.D.
dissertation, Uppsala University, 2016. [Online]. Available: https://www.
diva-portal.org/smash/get/diva2:1046990/FULLTEXT01.pdf.

[83] K. R. Jakobsen, “Renewable energy potential of Greenland with emphasis on
wind resource assessment,” Ph.D. dissertation, DTU, 2016. [Online]. Avail-
able: https : / / orbit . dtu . dk / en / publications / renewable - energy -
potential-of-greenland-with-emphasis-on-wind-res.

[84] Orkustofnun, Norges Arktiske Universitet, Energy Styrlesen, Jardfeingi, Shet-
land Islands Council, and Greenland Innovation Centre, “North Atlantic En-
ergy Network,” 2016. [Online]. Available: https://orkustofnun.is/gogn/
Skyrslur/OS-2016/North-Atlantic-Energy-Network-Report.pdf.

[85] X. Fettweis, J. E. Box, C. Agosta, et al., “Reconstructions of the 1900–2015
Greenland ice sheet surface mass balance using the regional climate MAR
model,” The Cryosphere, vol. 11, pp. 1015–1033, 2 2017. DOI: 10.5194/tc-11-
1015-2017. [Online]. Available: https://tc.copernicus.org/articles/11/
1015/2017/.

https://github.com/montefesp/replan
https://github.com/montefesp/replan
https://doi.org/10.1016/j.renene.2013.01.032
https://doi.org/10.3390/en9060449
https://doi.org/10.3390/en9060449
https://ideas.repec.org/p/zbw/diedps/122010.html
https://www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_and_the_Asian_Supergrid_2014_en.pdf
https://www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_and_the_Asian_Supergrid_2014_en.pdf
https://www.energycharter.org/fileadmin/DocumentsMedia/Thematic/Gobitec_and_the_Asian_Supergrid_2014_en.pdf
https://www.ise.fraunhofer.de/en/publications/studies/supergrid.html
https://www.ise.fraunhofer.de/en/publications/studies/supergrid.html
https://doi.org/10.3390/su9020233
https://www.diva-portal.org/smash/get/diva2:1046990/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1046990/FULLTEXT01.pdf
https://orbit.dtu.dk/en/publications/renewable-energy-potential-of-greenland-with-emphasis-on-wind-res
https://orbit.dtu.dk/en/publications/renewable-energy-potential-of-greenland-with-emphasis-on-wind-res
https://orkustofnun.is/gogn/Skyrslur/OS-2016/North-Atlantic-Energy-Network-Report.pdf
https://orkustofnun.is/gogn/Skyrslur/OS-2016/North-Atlantic-Energy-Network-Report.pdf
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://tc.copernicus.org/articles/11/1015/2017/
https://tc.copernicus.org/articles/11/1015/2017/


Bibliography 161

[86] European Centre for Medium-Range Weather Forecasts - ECMWF, ERA5 data
documentation, https://confluence.ecmwf.int//display/CKB/, 2018.

[87] R. Gelaro, W. McCarty, M. J. Suárez, et al., “The modern-era retrospective
analysis for research and applications, version 2 (MERRA-2),” Journal of Cli-
mate, vol. 30, no. 14, pp. 5419–5454, 2017. DOI: 10.1175/JCLI-D-16-0758.1.

[88] I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate cur-
rent and future wind power output,” Energy, vol. 114, pp. 1224–1239, 2016,
ISSN: 0360-5442. DOI: 10.1016/j.energy.2016.08.068. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0360544216311811.

[89] J. Olauson, “ERA5: The new champion of wind power modelling?” Renewable
Energy, vol. 126, pp. 322–331, 2018. DOI: 10.1016/j.renene.2018.03.056.

[90] P. Norgaard and H. Holttinen, “A multi-turbine power curve approach,”
2004.

[91] K. Freeman, C. Frost, G. Hundleby, et al., “Our energy, our future - How off-
shore wind will help Europe to go carbon-neutral,” WindEurope, Tech. Rep.,
2019. [Online]. Available: https://windeurope.org/wp-content/uploads/
files/about-wind/reports/WindEurope-Our-Energy-Our-Future.pdf.

[92] L. J. L. Stival, A. K. Guetter, and F. O. de Andrade, “The impact of wind
shear and turbulence intensity on wind turbine power performance,” Espaço
Energia, pp. 11–20, 27 2017.

[93] Danish Energy Agency, “Overview of the energy sector - Master data register
of wind turbines,” 2018. [Online]. Available: https : / / ens . dk / en / our -
services/statistics-data-key-figures-and-energy-maps/overview-

energy-sector.
[94] RTE, “Bilan électrique et perspectives - Bretagne,” 2016. [Online]. Available:

https://www.rte-france.com/analyses-tendances-et-prospectives/

bilans-electriques-nationaux-et-regionaux.
[95] H. Louie, “Correlation and statistical characteristics of aggregate wind power

in large transcontinental systems,” Wind Energy, vol. 17, no. 6, pp. 793–810,
2013. DOI: 10.1002/we.1597.

[96] J. Jurasz, F. Canales, A. Kies, M. Guezgouz, and A. Beluco, “A Review on
the Complementarity of Renewable Energy Sources: Concept, Metrics, Ap-
plication and Future Research Directions,” Solar Energy, vol. 195, pp. 703–
724, 2020. DOI: https://doi.org/10.1016/j.solener.2019.11.087.

[97] J. Widen, “Correlations between large-scale solar and wind power in a future
scenario for Sweden,” IEEE Transactions on Sustainable Energy, vol. 2, no. 2,
pp. 177–184, 2011, ISSN: 1949-3029. DOI: 10.1109/TSTE.2010.2101620.

[98] C. M. S. Martin, J. K. Lundquist, and M. A. Handschy, “Variability of intercon-
nected wind plants: Correlation length and its dependence on variability time
scale,” Environmental Research Letters, vol. 10, no. 4, 2015. DOI: 10.1088/1748-
9326/10/4/044004.

https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1016/j.energy.2016.08.068
https://www.sciencedirect.com/science/article/pii/S0360544216311811
https://doi.org/10.1016/j.renene.2018.03.056
https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Our-Energy-Our-Future.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Our-Energy-Our-Future.pdf
https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/overview-energy-sector
https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/overview-energy-sector
https://ens.dk/en/our-services/statistics-data-key-figures-and-energy-maps/overview-energy-sector
https://www.rte-france.com/analyses-tendances-et-prospectives/bilans-electriques-nationaux-et-regionaux
https://www.rte-france.com/analyses-tendances-et-prospectives/bilans-electriques-nationaux-et-regionaux
https://doi.org/10.1002/we.1597
https://doi.org/https://doi.org/10.1016/j.solener.2019.11.087
https://doi.org/10.1109/TSTE.2010.2101620
https://doi.org/10.1088/1748-9326/10/4/044004
https://doi.org/10.1088/1748-9326/10/4/044004


162 Bibliography

[99] J. Olauson and M. Bergkvist, “Correlation between wind power generation in
the European countries,” Energy, vol. 114, pp. 663 –670, 2016, ISSN: 0360-5442.
DOI: https://doi.org/10.1016/j.energy.2016.08.036.

[100] K. Klima and J. Apt, “Geographic smoothing of solar PV: Results from Gu-
jarat,” Environmental Research Letters, vol. 10, no. 10, p. 104 001, 2015. DOI:
10.1088/1748-9326/10/10/104001.

[101] S. Sterl, S. Liersch, H. Koch, N. P. M. van Lipzig, and W. Thiery, “A new
approach for assessing synergies of solar and wind power: Implications for
west africa,” Environmental Research Letters, vol. 13, no. 9, 2018. DOI: 10.1088/
1748-9326/aad8f6.

[102] J. H. Slusarewicz and D. S. Cohan, “Assessing solar and wind complementar-
ity in texas,” Renewables: Wind, Water, and Solar, vol. 5, no. 1, p. 7, 2018, ISSN:
2198-994X. DOI: 10.1186/s40807-018-0054-3.

[103] P. E. Bett and H. E. Thornton, “The climatological relationships between wind
and solar energy supply in Britain,” Renewable Energy, vol. 87, pp. 96 –110,
2016, ISSN: 0960-1481. DOI: https://doi.org/10.1016/j.renene.2015.10.
006.

[104] M. M. Miglietta, T. Huld, and F. Monforti-Ferrario, “Local complementarity
of wind and solar energy resources over europe: An assessment study from
a meteorological perspective,” Journal of Applied Meteorology and Climatology,
vol. 56, no. 1, pp. 217–234, 2017. DOI: 10.1175/JAMC-D-16-0031.1.

[105] P. S. dos Anjos, A. S. A. da Silva, B. Stosic, and T. Stosic, “Long-term cor-
relations and cross-correlations in wind speed and solar radiation temporal
series from Fernando de Noronha Island, Brazil,” Physica A: Statistical Me-
chanics and its Applications, vol. 424, pp. 90 –96, 2015, ISSN: 0378-4371. DOI:
https://doi.org/10.1016/j.physa.2015.01.003.

[106] G. Ren, J. Wan, J. Liu, and D. Yu, “Spatial and temporal assessments of com-
plementarity for renewable energy resources in china,” Energy, vol. 177, pp. 262
–275, 2019, ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.
2019.04.023.

[107] J. Jurasz, A. Beluco, and F. A. Canales, “The impact of complementarity on
power supply reliability of small scale hybrid energy systems,” Energy, vol. 161,
pp. 737 –743, 2018, ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.
energy.2018.07.182.

[108] C. E. Hoicka and I. H. Rowlands, “Solar and wind resource complementarity:
Advancing options for renewable electricity integration in Ontario, Canada,”
Renewable Energy, vol. 36, no. 1, pp. 97 –107, 2011.

[109] F. Monforti, T. Huld, K. Bódis, L. Vitali, M. D’Isidoro, and R. Lacal-Arántegui,
“Assessing complementarity of wind and solar resources for energy produc-
tion in Italy. a Monte Carlo approach,” Renewable Energy, vol. 63, pp. 576 –586,
2014, ISSN: 0960-1481. DOI: https://doi.org/10.1016/j.renene.2013.10.
028.

https://doi.org/https://doi.org/10.1016/j.energy.2016.08.036
https://doi.org/10.1088/1748-9326/10/10/104001
https://doi.org/10.1088/1748-9326/aad8f6
https://doi.org/10.1088/1748-9326/aad8f6
https://doi.org/10.1186/s40807-018-0054-3
https://doi.org/https://doi.org/10.1016/j.renene.2015.10.006
https://doi.org/https://doi.org/10.1016/j.renene.2015.10.006
https://doi.org/10.1175/JAMC-D-16-0031.1
https://doi.org/https://doi.org/10.1016/j.physa.2015.01.003
https://doi.org/https://doi.org/10.1016/j.energy.2019.04.023
https://doi.org/https://doi.org/10.1016/j.energy.2019.04.023
https://doi.org/https://doi.org/10.1016/j.energy.2018.07.182
https://doi.org/https://doi.org/10.1016/j.energy.2018.07.182
https://doi.org/https://doi.org/10.1016/j.renene.2013.10.028
https://doi.org/https://doi.org/10.1016/j.renene.2013.10.028


Bibliography 163

[110] W. Katzenstein, E. Fertig, and J. Apt, “The variability of interconnected wind
plants,” Energy Policy, vol. 38, no. 8, pp. 4400–4410, 2010.

[111] J. Apt, “The spectrum of power from wind turbines,” Journal of Power Sources,
vol. 169, no. 2, pp. 369 –374, 2007, ISSN: 0378-7753. DOI: https://doi.org/
10.1016/j.jpowsour.2007.02.077.

[112] W. Li, S. Stadler, and R. Ramakumar, “Modeling and assessment of wind
and insolation resources with a focus on their complementary nature: A case
study of Oklahoma,” Annals of the Association of American Geographers, vol. 101,
no. 4, pp. 717–729, 2011. DOI: 10.1080/00045608.2011.567926.

[113] H. Zhang, Y. Cao, Y. Zhang, and V. Terzija, “Quantitative synergy assessment
of regional wind-solar energy resources based on MERRA reanalysis data,”
Applied Energy, vol. 216, pp. 172 –182, 2018. DOI: 10.1016/j.apenergy.2018.
02.094.

[114] A. A. Prasad, R. A. Taylor, and M. Kay, “Assessment of solar and wind re-
source synergy in australia,” Applied Energy, vol. 190, pp. 354 –367, 2017, ISSN:
0306-2619. DOI: https://doi.org/10.1016/j.apenergy.2016.12.135.

[115] G. Ren, J. Wan, J. Liu, and D. Yu, “Characterization of wind resource in china
from a new perspective,” Energy, vol. 167, pp. 994 –1010, 2019, ISSN: 0360-
5442. DOI: https://doi.org/10.1016/j.energy.2018.11.032.

[116] A. Beluco, P. K. de Souza, and A. Krenzinger, “A dimensionless index eval-
uating the time complementarity between solar and hydraulic energies,” Re-
newable Energy, vol. 33, no. 10, pp. 2157 –2165, 2008, ISSN: 0960-1481. DOI:
https://doi.org/10.1016/j.renene.2008.01.019.

[117] S. Rose and J. Apt, “What can reanalysis data tell us about wind power?”
Renewable Energy, vol. 83, pp. 963–969, 2015. DOI: 10.1016/j.renene.2015.
05.027.

[118] X. Fettweis, J. E. Box, C. Agosta, et al., “Reconstructions of the 1900–2015
Greenland ice sheet surface mass balance using the regional climate MAR
model,” The Cryosphere, vol. 11, no. 2, p. 1015, 2017. DOI: 10.5194/tc-11-
1015-2017.

[119] D. Radu, M. Berger, R. Fonteneau, et al., “Complementarity assessment of
South Greenland katabatic flows and West Europe wind regimes,” Energy,
vol. 175, pp. 393–401, 2019, ISSN: 0360-5442. DOI: https://doi.org/10.1016/
j.energy.2019.03.048. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0360544219304529.

[120] A. Obermann, S. Bastin, S. Belamari, et al., “Mistral and Tramontane wind
speed and wind direction patterns in regional climate simulations,” Climate
Dynamics, vol. 51, pp. 1059–1076, 2016. DOI: 10.1007/s00382-016-3053-3.

[121] International Energy Agency (IEA), Renewables 2020 Data Explorer, 2020. [On-
line]. Available: https://www.iea.org/articles/renewables-2020-data-
explorer.

https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.02.077
https://doi.org/https://doi.org/10.1016/j.jpowsour.2007.02.077
https://doi.org/10.1080/00045608.2011.567926
https://doi.org/10.1016/j.apenergy.2018.02.094
https://doi.org/10.1016/j.apenergy.2018.02.094
https://doi.org/https://doi.org/10.1016/j.apenergy.2016.12.135
https://doi.org/https://doi.org/10.1016/j.energy.2018.11.032
https://doi.org/https://doi.org/10.1016/j.renene.2008.01.019
https://doi.org/10.1016/j.renene.2015.05.027
https://doi.org/10.1016/j.renene.2015.05.027
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/10.5194/tc-11-1015-2017
https://doi.org/https://doi.org/10.1016/j.energy.2019.03.048
https://doi.org/https://doi.org/10.1016/j.energy.2019.03.048
https://www.sciencedirect.com/science/article/pii/S0360544219304529
https://www.sciencedirect.com/science/article/pii/S0360544219304529
https://doi.org/10.1007/s00382-016-3053-3
https://www.iea.org/articles/renewables-2020-data-explorer
https://www.iea.org/articles/renewables-2020-data-explorer


164 Bibliography

[122] M. Segreto, L. Principe, A. Desormeaux, et al., “Trends in Social Acceptance of
Renewable Energy Across Europe—A Literature Review,” International Jour-
nal of Environmental Research and Public Health, vol. 17, no. 24, 2020. DOI: 10.
3390/ijerph17249161.

[123] “Renewable Power Generation Costs in 2019,” International Renewable En-
ergy Agency, Tech. Rep., 2020. [Online]. Available: https://www.irena.org/
publications/2020/Jun/Renewable-Power-Costs-in-2019.

[124] J. Badger, I. Bauwens, P. Casso, et al., Global Wind Atlas 3.0, 2021. [Online].
Available: https://globalwindatlas.info/.

[125] F. Geth, T. Brijs, J. Kathan, J. Driesen, and R. Belmans, “An Overview of Large-
Scale Stationary Electricity Storage Plants in Europe: Current Status and New
Developments,” Renewable and Sustainable Energy Reviews, vol. 52, pp. 1212–
1227, Dec. 2015. DOI: https://doi.org/10.1016/j.rser.2015.07.145.

[126] M. R. Milligan and R Artig, “Choosing Wind Power Plant Locations and
Sizes Based on Electric Reliability Measures Using Multiple-Year Wind Speed
Measurements,” NREL, Tech. Rep. CP-500-26724, 1999. [Online]. Available:
https://www.osti.gov/biblio/750939.

[127] M. Berger, D.Radu, R. Fonteneau, et al., “Critical time windows for renewable
resource complementarity assessment,” Energy, vol. 198, 2020. DOI: 10.1016/
j.energy.2020.117308. [Online]. Available: https://www.sciencedirect.
com/science/article/abs/pii/S0360544220304151.

[128] S. Jerez, F. Thais, I. Tobin, et al., “The CLIMIX model: A tool to create and
evaluate spatially-resolved scenarios of photovoltaic and wind power devel-
opment,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 1–15, 2015.
DOI: doi:10.1016/j.rser.2014.09.041.

[129] R. Becker and D. Thrän, “Optimal siting of wind farms in wind energy dom-
inated power systems,” Energies, vol. 11, no. 4, p. 978, 2018, ISSN: 1996-1073.
DOI: 10.3390/en11040978. [Online]. Available: http://dx.doi.org/10.
3390/en11040978.

[130] A. Musselman, V. M. Thomas, N. Boland, and D. Nazzal, “Optimizing wind
farm siting to reduce power system impacts of wind variability,” Wind En-
ergy, vol. 22, no. 7, pp. 894–907, 2019. DOI: https://doi.org/10.1002/we.
2328.

[131] J. Hu, R. Harmsen, W. Crijns-Graus, and E. Worrell, “Geographical optimiza-
tion of variable renewable energy capacity in China using modern portfolio
theory,” Applied Energy, vol. 253, p. 113 614, 2019, ISSN: 0306-2619. DOI: https:
//doi.org/10.1016/j.apenergy.2019.113614.

[132] M. Berger, D. Radu, A. Dubois, et al., “Siting renewable power generation
assets with combinatorial optimisation,” Optimization Letters, 2020. [Online].
Available: https://orbi.uliege.be/handle/2268/251037.

https://doi.org/10.3390/ijerph17249161
https://doi.org/10.3390/ijerph17249161
https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019
https://globalwindatlas.info/
https://doi.org/https://doi.org/10.1016/j.rser.2015.07.145
https://www.osti.gov/biblio/750939
https://doi.org/10.1016/j.energy.2020.117308
https://doi.org/10.1016/j.energy.2020.117308
https://www.sciencedirect.com/science/article/abs/pii/S0360544220304151
https://www.sciencedirect.com/science/article/abs/pii/S0360544220304151
https://doi.org/doi:10.1016/j.rser.2014.09.041
https://doi.org/10.3390/en11040978
http://dx.doi.org/10.3390/en11040978
http://dx.doi.org/10.3390/en11040978
https://doi.org/https://doi.org/10.1002/we.2328
https://doi.org/https://doi.org/10.1002/we.2328
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113614
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113614
https://orbi.uliege.be/handle/2268/251037


Bibliography 165

[133] L. Baringo and A. J. Conejo, “Strategic wind power investment,” IEEE Trans-
actions on Power Systems, vol. 29, no. 3, pp. 1250–1260, 2014. DOI: 10.1109/
TPWRS.2013.2292859.

[134] F. D. Munoz, B. F. Hobbs, J. L. Ho, and S. Kasina, “An engineering-economic
approach to transmission planning under market and regulatory uncertain-
ties: WECC case study,” IEEE Transactions on Power Systems, vol. 29, no. 1,
pp. 307–317, 2014. DOI: 10.1109/TPWRS.2013.2279654.

[135] W. Zappa, M. Junginger, and M. van den Broek, “Is a 100% renewable Euro-
pean power system feasible by 2050?” Applied Energy, vol. 233-234, pp. 1027–
1050, 2019. DOI: doi:10.1016/j.apenergy.2018.08.109.

[136] L. Kotzur, P. Markewitz, M. Robinius, and D. Stolten, “Impact of different
time series aggregation methods on optimal energy system design,” Renew-
able Energy, vol. 117, pp. 474 –487, 2018, ISSN: 0960-1481. DOI: https://doi.
org/10.1016/j.renene.2017.10.017.

[137] G. Wu, R. Deshmukh, K. Ndhlukulac, et al., “Strategic siting and regional grid
interconnections key to low-carbon futures in African countries,” Proceedings
of the National Academy of Sciences, vol. 114, 14 2017. DOI: doi:10.1073/pnas.
1611845114.

[138] W. Zappa and M. van den Broek, “Analysing the potential of integrating
wind and solar power in Europe using spatial optimisation under various
scenarios,” Renewable and Sustainable Energy Reviews, vol. 94, pp. 1192 –1216,
2018. DOI: doi:10.1016/j.rser.2018.05.071.

[139] D. Bertsimas and J. Tsitsiklis, “Simulated annealing,” Statist. Sci., vol. 8, no. 1,
pp. 10–15, Feb. 1993. DOI: 10.1214/ss/1177011077.

[140] T. Mertens, K. Bruninx, J. Duerinck, and E. Delarue, “The impact of planning
reserve margins and demand uncertainty in generation expansion models,”
IAEE Proceedings, 2018. [Online]. Available: https://www.mech.kuleuven.
be/en/tme/research/energy_environment/Pdf/wp-en2018-16.

[141] C. Ensslin, M. Milligan, H. Holttinen, M. O’Malley, and A. Keane, “Current
methods to calculate capacity credit of wind power, IEA collaboration,” Aug.
2008, pp. 1 –3, ISBN: 978-1-4244-1905-0. DOI: 10.1109/PES.2008.4596006.

[142] I. Staffell and S. Pfenninger, “Using bias-corrected reanalysis to simulate cur-
rent and future wind power output,” Energy, vol. 114, pp. 1224 –1239, 2016,
ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.energy.2016.08.068.
[Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0360544216311811.

[143] S. Pfenninger and I. Staffell, “Long-term patterns of European PV output us-
ing 30 years of validated hourly reanalysis and satellite data,” Energy, vol. 114,
pp. 1251 –1265, 2016, ISSN: 0360-5442. DOI: https://doi.org/10.1016/j.
energy.2016.08.060. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0360544216311744.

https://doi.org/10.1109/TPWRS.2013.2292859
https://doi.org/10.1109/TPWRS.2013.2292859
https://doi.org/10.1109/TPWRS.2013.2279654
https://doi.org/doi:10.1016/j.apenergy.2018.08.109
https://doi.org/https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/https://doi.org/10.1016/j.renene.2017.10.017
https://doi.org/doi:10.1073/pnas.1611845114
https://doi.org/doi:10.1073/pnas.1611845114
https://doi.org/doi:10.1016/j.rser.2018.05.071
https://doi.org/10.1214/ss/1177011077
https://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wp-en2018-16
https://www.mech.kuleuven.be/en/tme/research/energy_environment/Pdf/wp-en2018-16
https://doi.org/10.1109/PES.2008.4596006
https://doi.org/https://doi.org/10.1016/j.energy.2016.08.068
http://www.sciencedirect.com/science/article/pii/S0360544216311811
http://www.sciencedirect.com/science/article/pii/S0360544216311811
https://doi.org/https://doi.org/10.1016/j.energy.2016.08.060
https://doi.org/https://doi.org/10.1016/j.energy.2016.08.060
http://www.sciencedirect.com/science/article/pii/S0360544216311744
http://www.sciencedirect.com/science/article/pii/S0360544216311744


166 Bibliography

[144] International Electrotechnical Commission, IEC 61400-1:2019: Wind energy gen-
eration systems - Part 1: Design requirements, 2019. [Online]. Available: https:
//webstore.iec.ch/publication/26423.

[145] European Commission - Joint Research Centre, ENSPRESO - an open, EU-
28 wide, transparent and coherent database of wind, solar and biomass energy po-
tentials, 2019. [Online]. Available: https : / / data . jrc . ec . europa . eu /
collection/id-00138.

[146] Deutsche WindGuard GmbH, “Capacity densities of European offshore wind
farms,” VASAB, Tech. Rep., 2018. [Online]. Available: https://vasab.org/
10564-2/.

[147] “Clean energy transition - technologies and innovations, accompanying the
report on progress of clean energy competitiveness,” European Commission,
Tech. Rep., 2020. [Online]. Available: https : / / ec . europa . eu / energy /
topics/technology-and-innovation/clean-energy-competitiveness_en.

[148] Danish Energy Agency, Technology Data for Generation of Electricity and Dis-
trict Heating, 2020. [Online]. Available: https://ens.dk/en/our-services/
projections-and-models/technology-data/technology-data-generation-

electricity-and.
[149] ENTSO-E, Power Statistics, 2021. [Online]. Available: https://www.entsoe.

eu/data/power-stats/.
[150] European Commission - Joint Research Centre, The Joint Research Centre Power

Plant Database (JRC-PPDB), 2019. [Online]. Available: https://ec.europa.
eu/jrc/en/publication/joint-research-centre-power-plant-database-

jrc-ppdb.
[151] ——, JRC Hydro-power plants database, 2020. [Online]. Available: https://

github.com/energy-modelling-toolkit/hydro-power-database.
[152] A. Beauvais, M. Herrero Cangas, N. Chevillard, M. Heisz, M. Labordena, and

R. Rossi, “EU Market Outlook for Solar Power 2019-2023,” Solar Power Eu-
rope, Tech. Rep., 2019. [Online]. Available: https://www.solarpowereurope.
org/eu-market-outlook-for-solar-power-2019-2023/.

[153] D. Radu, A. Dubois, and M. Berger, Assessing the impact of offshore wind siting
strategies on the design of the European power system - dataset, 2021. [Online].
Available: https://dox.uliege.be/index.php/s/u6kPFWKRG0GlDqg.

[154] D. Radu and M. Berger, Resite - a framework for RES siting leveraging resource
complementarity, 2021. [Online]. Available: https://github.com/dcradu/
resite_ip/releases/tag/v0.0.1.

[155] A. Dubois, D. Radu, and M. Berger, Replan - a framework for bulk energy sys-
tems planning and analysis, 2020. [Online]. Available: https://github.com/
montefesp/replan/releases/tag/v0.0.4.

[156] C. M. Grams, R. Beerli, S. Pfenninger, I. Staffell, and H. Wernli, “Balancing eu-
rope’s wind-power output through spatial deployment informed by weather

https://webstore.iec.ch/publication/26423
https://webstore.iec.ch/publication/26423
https://data.jrc.ec.europa.eu/collection/id-00138
https://data.jrc.ec.europa.eu/collection/id-00138
https://vasab.org/10564-2/
https://vasab.org/10564-2/
https://ec.europa.eu/energy/topics/technology-and-innovation/clean-energy-competitiveness_en
https://ec.europa.eu/energy/topics/technology-and-innovation/clean-energy-competitiveness_en
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-generation-electricity-and
https://www.entsoe.eu/data/power-stats/
https://www.entsoe.eu/data/power-stats/
https://ec.europa.eu/jrc/en/publication/joint-research-centre-power-plant-database-jrc-ppdb
https://ec.europa.eu/jrc/en/publication/joint-research-centre-power-plant-database-jrc-ppdb
https://ec.europa.eu/jrc/en/publication/joint-research-centre-power-plant-database-jrc-ppdb
https://github.com/energy-modelling-toolkit/hydro-power-database
https://github.com/energy-modelling-toolkit/hydro-power-database
https://www.solarpowereurope.org/eu-market-outlook-for-solar-power-2019-2023/
https://www.solarpowereurope.org/eu-market-outlook-for-solar-power-2019-2023/
https://dox.uliege.be/index.php/s/u6kPFWKRG0GlDqg
https://github.com/dcradu/resite_ip/releases/tag/v0.0.1
https://github.com/dcradu/resite_ip/releases/tag/v0.0.1
https://github.com/montefesp/replan/releases/tag/v0.0.4
https://github.com/montefesp/replan/releases/tag/v0.0.4


Bibliography 167

regimes,” Nature Climate Change, vol. 7, 557–562, Jul. 2017. DOI: 10.1038/
nclimate3338.

[157] N. Cortesi, V. Torralba, N. González-Reviriego, A. Soret, and F. J. Doblas-
Reyes, “Characterization of european wind speed variability using weather
regimes,” Climate Dynamics, vol. 53, 4961–4976, Jun. 2019. DOI: 10 . 1007 /
s00382-019-04839-5.

[158] R. Wiser, J. Rand, J. Seel, et al., “Expert elicitation survey predicts 37% to 49%
declines in wind energy costs by 2050,” Nature Energy, vol. 53, 4961–4976,
Apr. 2021. DOI: 10.1038/s41560-021-00810-z.

[159] S. Collins, P. Deane, B. Ó Gallachóir, S. Pfenninger, and I. Staffell, “Impacts
of inter-annual wind and solar variations on the european power system,”
Joule, vol. 2, no. 10, pp. 2076–2090, 2018, ISSN: 2542-4351. DOI: https://doi.
org/10.1016/j.joule.2018.06.020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S254243511830285X.

[160] F. Neumann and T. Brown, “The near-optimal feasible space of a renewable
power system model,” Electric Power Systems Research, vol. 190, p. 106 690,
2021, ISSN: 0378-7796. DOI: https://doi.org/10.1016/j.epsr.2020.106690.

[161] F. Neumann, V. Hagenmeyer, and T. Brown, Approximating power flow and
transmission losses in coordinated capacity expansion problems, 2020. arXiv: 2008.
11510 [physics.soc-ph].

[162] N. Helistö, J. Kiviluoma, H. Holttinen, J. D. Lara, and B.-M. Hodge, “Includ-
ing operational aspects in the planning of power systems with large amounts
of variable generation: A review of modeling approaches,” WIREs Energy and
Environment, vol. 8, no. 5, e341, 2019. DOI: https://doi.org/10.1002/wene.
341. eprint: https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/
wene.341. [Online]. Available: https://wires.onlinelibrary.wiley.com/
doi/abs/10.1002/wene.341.

[163] B. A. Frew, S. Becker, M. J. Dvorak, G. B. Andresen, and M. Z. Jacobson,
“Flexibility mechanisms and pathways to a highly renewable us electricity
future,” Energy, vol. 101, pp. 65–78, 2016, ISSN: 0360-5442. DOI: https : / /
doi.org/10.1016/j.energy.2016.01.079. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0360544216300032.

[164] M. Brown, W. Cole, K. Eurek, et al., Regional Energy Deployment System (ReEDS)
Model Documentation: Version 2019, NREL/TP-6A20-74111, 2019. [Online]. Avail-
able: https://www.nrel.gov/docs/fy20osti/74111.pdf.

[165] D. Lew, G. Brinkman, E. Ibanez, et al., “Western Wind and Solar Integration
Study Phase 2,” Sep. 2013. DOI: https://dx.doi.org/10.2172/1095399.
[Online]. Available: https://www.osti.gov/biblio/1095399.

[166] J. Deane, F. Gracceva, A. Chiodi, M. Gargiulo, and B. P. Gallachóir, “Assessing
power system security. a framework and a multi model approach,” Interna-
tional Journal of Electrical Power & Energy Systems, vol. 73, pp. 283–297, 2015,
ISSN: 0142-0615. DOI: https://doi.org/10.1016/j.ijepes.2015.04.020.

https://doi.org/10.1038/nclimate3338
https://doi.org/10.1038/nclimate3338
https://doi.org/10.1007/s00382-019-04839-5
https://doi.org/10.1007/s00382-019-04839-5
https://doi.org/10.1038/s41560-021-00810-z
https://doi.org/https://doi.org/10.1016/j.joule.2018.06.020
https://doi.org/https://doi.org/10.1016/j.joule.2018.06.020
https://www.sciencedirect.com/science/article/pii/S254243511830285X
https://www.sciencedirect.com/science/article/pii/S254243511830285X
https://doi.org/https://doi.org/10.1016/j.epsr.2020.106690
https://arxiv.org/abs/2008.11510
https://arxiv.org/abs/2008.11510
https://doi.org/https://doi.org/10.1002/wene.341
https://doi.org/https://doi.org/10.1002/wene.341
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wene.341
https://wires.onlinelibrary.wiley.com/doi/pdf/10.1002/wene.341
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.341
https://wires.onlinelibrary.wiley.com/doi/abs/10.1002/wene.341
https://doi.org/https://doi.org/10.1016/j.energy.2016.01.079
https://doi.org/https://doi.org/10.1016/j.energy.2016.01.079
https://www.sciencedirect.com/science/article/pii/S0360544216300032
https://www.sciencedirect.com/science/article/pii/S0360544216300032
https://www.nrel.gov/docs/fy20osti/74111.pdf
https://doi.org/https://dx.doi.org/10.2172/1095399
https://www.osti.gov/biblio/1095399
https://doi.org/https://doi.org/10.1016/j.ijepes.2015.04.020


168 Bibliography

[Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0142061515002021.

[167] K. Poncelet, E. Delarue, D. Six, J. Duerinck, and W. D’haeseleer, “Impact of
the level of temporal and operational detail in energy-system planning mod-
els,” Applied Energy, vol. 162, pp. 631–643, 2016, ISSN: 0306-2619. DOI: https:
//doi.org/10.1016/j.apenergy.2015.10.100. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0306261915013276.

[168] J. Kiviluoma, E. Rinne, and N. Helistö, “Comparison of flexibility options
to improve the value of variable power generation,” International Journal of
Sustainable Energy, vol. 37, no. 8, pp. 761–781, 2018. DOI: 10.1080/14786451.
2017.1357554.

[169] A. D. Mills and R. H. Wiser, “Changes in the economic value of photovoltaic
generation at high penetration levels: A pilot case study of california,” in 2012
IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2, 2012, pp. 1–9. DOI:
10.1109/PVSC-Vol2.2012.6656763.

[170] A. Pina, C. A. Silva, and P. Ferrão, “High-resolution modeling framework for
planning electricity systems with high penetration of renewables,” Applied
Energy, vol. 112, pp. 215–223, 2013, ISSN: 0306-2619. DOI: https://doi.org/
10.1016/j.apenergy.2013.05.074. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S030626191300487X.

[171] D. Pudjianto, M. Aunedi, P. Djapic, and G. Strbac, “Whole-systems assess-
ment of the value of energy storage in low-carbon electricity systems,” IEEE
Transactions on Smart Grid, vol. 5, no. 2, pp. 1098–1109, 2014. DOI: 10.1109/
TSG.2013.2282039.

[172] N. E. Koltsaklis and M. C. Georgiadis, “A multi-period, multi-regional gener-
ation expansion planning model incorporating unit commitment constraints,”
Applied Energy, vol. 158, pp. 310–331, 2015, ISSN: 0306-2619. DOI: https://
doi.org/10.1016/j.apenergy.2015.08.054. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0306261915009873.

[173] B. S. Palmintier and M. D. Webster, “Impact of operational flexibility on elec-
tricity generation planning with renewable and carbon targets,” IEEE Trans-
actions on Sustainable Energy, vol. 7, no. 2, pp. 672–684, 2016. DOI: 10.1109/
TSTE.2015.2498640.

[174] A. Flores-Quiroz, R. Palma-Behnke, G. Zakeri, and R. Moreno, “A column
generation approach for solving generation expansion planning problems
with high renewable energy penetration,” Electric Power Systems Research,
vol. 136, pp. 232–241, 2016, ISSN: 0378-7796. DOI: https://doi.org/10.1016/
j.epsr.2016.02.011. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0378779616300177.

[175] F. Neumann and T. Brown, “Transmission expansion planning using cycle
flows,” in Proceedings of the Eleventh ACM International Conference on Future
Energy Systems, ser. e-Energy ’20, Virtual Event, Australia: Association for

https://www.sciencedirect.com/science/article/pii/S0142061515002021
https://www.sciencedirect.com/science/article/pii/S0142061515002021
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.10.100
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.10.100
https://www.sciencedirect.com/science/article/pii/S0306261915013276
https://www.sciencedirect.com/science/article/pii/S0306261915013276
https://doi.org/10.1080/14786451.2017.1357554
https://doi.org/10.1080/14786451.2017.1357554
https://doi.org/10.1109/PVSC-Vol2.2012.6656763
https://doi.org/https://doi.org/10.1016/j.apenergy.2013.05.074
https://doi.org/https://doi.org/10.1016/j.apenergy.2013.05.074
https://www.sciencedirect.com/science/article/pii/S030626191300487X
https://www.sciencedirect.com/science/article/pii/S030626191300487X
https://doi.org/10.1109/TSG.2013.2282039
https://doi.org/10.1109/TSG.2013.2282039
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.08.054
https://doi.org/https://doi.org/10.1016/j.apenergy.2015.08.054
https://www.sciencedirect.com/science/article/pii/S0306261915009873
https://www.sciencedirect.com/science/article/pii/S0306261915009873
https://doi.org/10.1109/TSTE.2015.2498640
https://doi.org/10.1109/TSTE.2015.2498640
https://doi.org/https://doi.org/10.1016/j.epsr.2016.02.011
https://doi.org/https://doi.org/10.1016/j.epsr.2016.02.011
https://www.sciencedirect.com/science/article/pii/S0378779616300177
https://www.sciencedirect.com/science/article/pii/S0378779616300177


Bibliography 169

Computing Machinery, 2020, 253–263. DOI: 10.1145/3396851.3397688. [On-
line]. Available: https://doi.org/10.1145/3396851.3397688.

[176] S. Haas, B. Schachler, and U. Krien, Windpowerlib - a python library to model
wind power plants, 2020. [Online]. Available: 10.5281/zenodo.3403360.

[177] WindEurope, Wind energy and on-site energy storage - exploring market oppor-
tunities, 2017. [Online]. Available: https://windeurope.org/wp-content/
uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-

for-2030.pdf.
[178] B. Wiegmans, Gridkit extract of entso-e interactive map [data set]. zenodo. 2016.

[Online]. Available: https://doi.org/10.5281/zenodo.55853.
[179] E. Commission, Nomenclature of territorial units for statistics, 2016. [Online].

Available: https://ec.europa.eu/eurostat/web/nuts/background.
[180] Eurostat, Population density by NUTS 2 region, 2021. [Online]. Available: https:

//ec.europa.eu/eurostat/web/products-datasets/-/tgs00024.
[181] ——, Regional gross domestic product (million PPS) by NUTS 2 regions, 2021.

[Online]. Available: https : / / ec . europa . eu / eurostat / web / products -
datasets/-/tgs00004.

[182] S. Gonzato, K. Bruninx, and E. Delarue, “Long term storage in generation
expansion planning models with a reduced temporal scope,” Applied Energy,
vol. 298, p. 117 168, 2021, ISSN: 0306-2619. DOI: https://doi.org/10.1016/j.
apenergy.2021.117168. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0306261921006000.

[183] J. H. W. Jr., “Hierarchical grouping to optimize an objective function,” Journal
of the American Statistical Association, vol. 58, no. 301, pp. 236–244, 1963. DOI:
10.1080/01621459.1963.10500845.

[184] S. Hagspiel, C. Jägemann, D. Lindenberger, T. Brown, S. Cherevatskiy, and
E. Tröster, “Cost-optimal power system extension under flow-based market
coupling,” Energy, vol. 66, pp. 654–666, 2014, ISSN: 0360-5442. DOI: https:
//doi.org/10.1016/j.energy.2014.01.025. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0360544214000322.

[185] F. Neumann and T. Brown, “Heuristics for transmission expansion planning
in low-carbon energy system models,” in 2019 16th International Conference on
the European Energy Market (EEM), 2019, pp. 1–8. DOI: 10.1109/EEM.2019.
8916411.

[186] N. Kumar, Update of Reliablity and Cost Impacts of Flexible Generation on Fossil-
fueled Generators for Western Electricity Coordination Council, 2020. [Online].
Available: https://www.wecc.org/Reliability/1r10726%20WECC%20Update%
20of%20Reliability%20and%20Cost%20Impacts%20of%20Flexible%20Generation%

20on%20Fossil.pdf.
[187] NREL, “Regional Energy Deployment System (ReEDS) model documenta-

tion: version 2018,” National Renewable Energy Laboratory, Tech. Rep., 2019,
https://www.nrel.gov/docs/fy19osti/72023.pdf.

https://doi.org/10.1145/3396851.3397688
https://doi.org/10.1145/3396851.3397688
10.5281/zenodo.3403360
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
https://doi.org/10.5281/zenodo.55853
https://ec.europa.eu/eurostat/web/nuts/background
https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00024
https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00024
https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00004
https://ec.europa.eu/eurostat/web/products-datasets/-/tgs00004
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117168
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117168
https://www.sciencedirect.com/science/article/pii/S0306261921006000
https://www.sciencedirect.com/science/article/pii/S0306261921006000
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/https://doi.org/10.1016/j.energy.2014.01.025
https://doi.org/https://doi.org/10.1016/j.energy.2014.01.025
https://www.sciencedirect.com/science/article/pii/S0360544214000322
https://www.sciencedirect.com/science/article/pii/S0360544214000322
https://doi.org/10.1109/EEM.2019.8916411
https://doi.org/10.1109/EEM.2019.8916411
https://www.wecc.org/Reliability/1r10726%20WECC%20Update%20of%20Reliability%20and%20Cost%20Impacts%20of%20Flexible%20Generation%20on%20Fossil.pdf
https://www.wecc.org/Reliability/1r10726%20WECC%20Update%20of%20Reliability%20and%20Cost%20Impacts%20of%20Flexible%20Generation%20on%20Fossil.pdf
https://www.wecc.org/Reliability/1r10726%20WECC%20Update%20of%20Reliability%20and%20Cost%20Impacts%20of%20Flexible%20Generation%20on%20Fossil.pdf
https://www.nrel.gov/docs/fy19osti/72023.pdf


170 Bibliography

[188] D. S. Ryberg, M. Robinius, and D. Stolten, “Methodological framework for
determining the land eligibility of renewable energy sources,” arXiv preprint
arXiv:1712.07840, 2017.

[189] T. Tröndle, S. Pfenninger, and J. Lilliestam, “Home-made or imported: On the
possibility for renewable electricity autarky on all scales in Europe,” Energy
Strategy Reviews, vol. 26, p. 100 388, 2019, ISSN: 2211-467X. DOI: https://
doi.org/10.1016/j.esr.2019.100388. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2211467X19300811.

[190] Open Power System Data, Data Package Time series, https://data.open-
power-system-data.org/time_series/2019-06-05, 2019. DOI: 10.25832/
time_series/2019-06-05.

[191] A. Dubois, D. Radu, and M. Berger, Model reduction in capacity expansion plan-
ning problems via renewable generation site selection - dataset, https://dox.
uliege.be/index.php/s/errFWRnFbfroi17, 2020.

[192] A. Malvaldi, S. Weiss, D. Infield, J. Browell, P. Leahy, and A. M. Foley, “A spa-
tial and temporal correlation analysis of aggregate wind power in an ideally
interconnected Europe,” Wind Energy, vol. 20, no. 8, pp. 1315–1329, 2017.

[193] F. deLlano Paz, A. Calvo-Silvosa, S. I. Antelo, and I. Soares, “Energy plan-
ning and modern portfolio theory: A review,” Renewable and Sustainable En-
ergy Reviews, vol. 77, pp. 636–651, 2017, ISSN: 1364-0321. DOI: https://doi.
org/10.1016/j.rser.2017.04.045. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S136403211730552X.

[194] X. Yue, S. Pye, J. DeCarolis, F. G. Li, F. Rogan, and B. Gallachóir, “A review of
approaches to uncertainty assessment in energy system optimization mod-
els,” Energy Strategy Reviews, vol. 21, pp. 204–217, 2018, ISSN: 2211-467X. DOI:
https://doi.org/10.1016/j.esr.2018.06.003. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2211467X18300543.

[195] J. F. DeCarolis, “Using modeling to generate alternatives (mga) to expand
our thinking on energy futures,” Energy Economics, vol. 33, no. 2, pp. 145–152,
2011, ISSN: 0140-9883. DOI: https://doi.org/10.1016/j.eneco.2010.
05.002. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0140988310000721.

[196] M. Pichault, C. Vincent, G. Skidmore, and J. Monty, “Characterisation of
intra-hourly wind power ramps at the wind farm scale and associated pro-
cesses,” Wind Energy Science, vol. 6, no. 1, pp. 131–147, 2021. DOI: 10.5194/
wes - 6 - 131 - 2021. [Online]. Available: https : / / wes . copernicus . org /
articles/6/131/2021/.

[197] A. van Stiphout, K. De Vos, and G. Deconinck, “The impact of operating re-
serves on investment planning of renewable power systems,” IEEE Transac-
tions on Power Systems, vol. 32, no. 1, pp. 378–388, 2017. DOI: 10.1109/TPWRS.
2016.2565058.

https://doi.org/https://doi.org/10.1016/j.esr.2019.100388
https://doi.org/https://doi.org/10.1016/j.esr.2019.100388
http://www.sciencedirect.com/science/article/pii/S2211467X19300811
http://www.sciencedirect.com/science/article/pii/S2211467X19300811
https://data.open-power-system-data.org/time_series/2019-06-05
https://data.open-power-system-data.org/time_series/2019-06-05
https://doi.org/10.25832/time_series/2019-06-05
https://doi.org/10.25832/time_series/2019-06-05
https://dox.uliege.be/index.php/s/errFWRnFbfroi17
https://dox.uliege.be/index.php/s/errFWRnFbfroi17
https://doi.org/https://doi.org/10.1016/j.rser.2017.04.045
https://doi.org/https://doi.org/10.1016/j.rser.2017.04.045
https://www.sciencedirect.com/science/article/pii/S136403211730552X
https://www.sciencedirect.com/science/article/pii/S136403211730552X
https://doi.org/https://doi.org/10.1016/j.esr.2018.06.003
https://www.sciencedirect.com/science/article/pii/S2211467X18300543
https://www.sciencedirect.com/science/article/pii/S2211467X18300543
https://doi.org/https://doi.org/10.1016/j.eneco.2010.05.002
https://doi.org/https://doi.org/10.1016/j.eneco.2010.05.002
https://www.sciencedirect.com/science/article/pii/S0140988310000721
https://www.sciencedirect.com/science/article/pii/S0140988310000721
https://doi.org/10.5194/wes-6-131-2021
https://doi.org/10.5194/wes-6-131-2021
https://wes.copernicus.org/articles/6/131/2021/
https://wes.copernicus.org/articles/6/131/2021/
https://doi.org/10.1109/TPWRS.2016.2565058
https://doi.org/10.1109/TPWRS.2016.2565058


Bibliography 171

[198] L. Kotzur, P. Markewitz, M. Robinius, and D. Stolten, “Time series aggre-
gation for energy system design: Modeling seasonal storage,” Applied En-
ergy, vol. 213, pp. 123–135, 2018, ISSN: 0306-2619. DOI: https://doi.org/
10.1016/j.apenergy.2018.01.023. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0306261918300242.

[199] National Renewable Energy Laboratory, Annual technology baseline, https:
//atb.nrel.gov, 2020.

[200] MBB Group Pty Ltd, AEMO Transmission Cost Database Report, 2020. [Online].
Available: https://aemo.com.au/energy-systems/major-publications/
integrated - system - plan - isp / 2022 - integrated - system - plan - isp /

current-inputs-assumptions-and-scenarios.
[201] International Energy Agency, “Projected costs of generating electricity,” 2020.

[Online]. Available: https://www.iea.org/reports/projected-costs-of-
generating-electricity-2020.

[202] Danish Energy Agency, Technology data for energy storage, 2020. [Online]. Avail-
able: https : / / ens . dk / en / our - services / projections - and - models /
technology-data/technology-data-energy-storage.

[203] K. Mongird, V. Viswanathan, P. Balducci, et al., “Energy Storage Technology
and Cost Characterization Report,” U.S. Department of Energy, Tech. Rep.,
2019. [Online]. Available: https://www.energy.gov/sites/prod/files/
2019/07/f65/Storage\%20Cost\%20and\%20Performance\%20Characterization\

%20Report_Final.pdf.
[204] A. L’Abbate and G. Migliavacca, “Review of costs of transmission infrastruc-

tures, including cross border connections,” 2011. [Online]. Available: https:
//realisegrid.rse-web.it/Publications-and-results.asp.

[205] A. Akhil, G. Huff, A. Currier, et al., “DOE/EPRI Electricity Storage Handbook
in Collaboration with NRECA,” Sandia National Laboratories, Tech. Rep.,
2013. [Online]. Available: https://prod-ng.sandia.gov/techlib-noauth/
access-control.cgi/2015/151002.pdf.

[206] G. Simbolotti and G. Tosato, “Technology Brief E12 - Electricity Transmission
and Distribution,” IEA, Tech. Rep., 2014. [Online]. Available: https://iea-
etsap.org/E-TechDS/PDF/E12_el-t&d_KV_Apr2014_GSOK.pdf.

[207] D. McGowan, T. Rzepczyk, C. Sonmez, et al., “TYNDP 2020 Scenario Report,”
ENTSO-E; ENTSO-G, Tech. Rep., 2019. [Online]. Available: https://www.
entsos-tyndp2020-scenarios.eu/wp-content/uploads/2019/10/TYNDP_

2020_Scenario_Report_entsog-entso-e.pdf.
[208] D. Gómez, J. Watterson, A. Branca, et al., “IPCC Emissions Factor Database,”

IPCC, Tech. Rep., 2006. [Online]. Available: https : / / ghgprotocol . org /
Third-Party-Databases/IPCC-Emissions-Factor-Database.

[209] European Environment Agency, CO2 Intensity of Electricity Generation, 2020.
[Online]. Available: https://www.eea.europa.eu/data-and-maps/data/
co2-intensity-of-electricity-generation.

https://doi.org/https://doi.org/10.1016/j.apenergy.2018.01.023
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.01.023
https://www.sciencedirect.com/science/article/pii/S0306261918300242
https://www.sciencedirect.com/science/article/pii/S0306261918300242
https://atb.nrel.gov
https://atb.nrel.gov
https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp/current-inputs-assumptions-and-scenarios
https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp/current-inputs-assumptions-and-scenarios
https://aemo.com.au/energy-systems/major-publications/integrated-system-plan-isp/2022-integrated-system-plan-isp/current-inputs-assumptions-and-scenarios
https://www.iea.org/reports/projected-costs-of-generating-electricity-2020
https://www.iea.org/reports/projected-costs-of-generating-electricity-2020
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
https://www.energy.gov/sites/prod/files/2019/07/f65/Storage\%20Cost\%20and\%20Performance\%20Characterization\%20Report_Final.pdf
https://www.energy.gov/sites/prod/files/2019/07/f65/Storage\%20Cost\%20and\%20Performance\%20Characterization\%20Report_Final.pdf
https://www.energy.gov/sites/prod/files/2019/07/f65/Storage\%20Cost\%20and\%20Performance\%20Characterization\%20Report_Final.pdf
https://realisegrid.rse-web.it/Publications-and-results.asp
https://realisegrid.rse-web.it/Publications-and-results.asp
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2015/151002.pdf
https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2015/151002.pdf
https://iea-etsap.org/E-TechDS/PDF/E12_el-t&d_KV_Apr2014_GSOK.pdf
https://iea-etsap.org/E-TechDS/PDF/E12_el-t&d_KV_Apr2014_GSOK.pdf
https://www.entsos-tyndp2020-scenarios.eu/wp-content/uploads/2019/10/TYNDP_2020_Scenario_Report_entsog-entso-e.pdf
https://www.entsos-tyndp2020-scenarios.eu/wp-content/uploads/2019/10/TYNDP_2020_Scenario_Report_entsog-entso-e.pdf
https://www.entsos-tyndp2020-scenarios.eu/wp-content/uploads/2019/10/TYNDP_2020_Scenario_Report_entsog-entso-e.pdf
https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database
https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database
https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation
https://www.eea.europa.eu/data-and-maps/data/co2-intensity-of-electricity-generation


172 Bibliography

[210] International Energy Agency, Data and statistic - CO2 emissions by sector, 2020.
[Online]. Available: https://www.iea.org/data-and-statistics?country=
WORLD&fuel=CO2\%20emissions&indicator=CO2\%20emissions\%20by\

%20sector.
[211] K. Van den Bergh and E. Delarue, “Cycling of conventional power plants:

Technical limits and actual costs,” Energy Conversion and Management, vol. 97,
pp. 70–77, 2015, ISSN: 0196-8904. DOI: https : / / doi . org / 10 . 1016 / j .
enconman.2015.03.026. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0196890415002368.

[212] Gurobi Optimization, Gurobi 9.1 - Parameters, 2021. [Online]. Available: https:
//www.gurobi.com/documentation/9.1/refman/parameters.html.

[213] M. Wittenstein and G. Rothwell, “Projected Costs of Generating Electricity,”
IEA, Tech. Rep., 2015. [Online]. Available: https://www.oecd-nea.org/ndd/
pubs/2015/7057-proj-costs-electricity-2015.pdf.

[214] Danish Energy Agency and Energinet, “Technology Data for Energy Stor-
age,” Danish Energy Agency, Tech. Rep., 2020. [Online]. Available: https:
/ / ens . dk / en / our - services / projections - and - models / technology -

data/technology-data-energy-storage.
[215] S. Samsatli, I. Staffell, and N. J. Samsatli, “Optimal design and operation of

integrated wind-hydrogen-electricity networks for decarbonising the domes-
tic transport sector in great britain,” International Journal of Hydrogen Energy,
vol. 41, no. 1, pp. 447 –475, 2016, ISSN: 0360-3199. DOI: https://doi.org/
10 . 1016 / j . ijhydene . 2015 . 10 . 032. [Online]. Available: http : / / www .
sciencedirect.com/science/article/pii/S0360319915300574.

[216] P. Härtel and M. Korpås, “Aggregation methods for modelling hydropower
and its implications for a highly decarbonised energy system in europe,” En-
ergies, vol. 10, no. 11, p. 1841, 2017, ISSN: 1996-1073. DOI: 10.3390/en10111841.

[217] ENTSOE, Water Reservoirs and Hydro Storage Plants, 2020. [Online]. Available:
https://transparency.entsoe.eu/dashboard/show.

[218] B. Lehner, C. R. Liermann, C. Revenga, et al., “High-resolution mapping of
the world’s reservoirs and dams for sustainable river-flow management,”
Frontiers in Ecology and the Environment, vol. 9 (9), pp. 494–502, 2011. [Online].
Available: http://globaldamwatch.org/grand/.

[219] ECMWF, ERA5 hourly data on single levels from 1979 to present, 2020. [Online].
Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview.

[220] Eurostat, Gross and net production of electricity and derived heat by type of plant
and operator, 2020. [Online]. Available: https://ec.europa.eu/eurostat/
web/products-datasets/-/nrg_ind_peh.

https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2\%20emissions&indicator=CO2\%20emissions\%20by\%20sector
https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2\%20emissions&indicator=CO2\%20emissions\%20by\%20sector
https://www.iea.org/data-and-statistics?country=WORLD&fuel=CO2\%20emissions&indicator=CO2\%20emissions\%20by\%20sector
https://doi.org/https://doi.org/10.1016/j.enconman.2015.03.026
https://doi.org/https://doi.org/10.1016/j.enconman.2015.03.026
https://www.sciencedirect.com/science/article/pii/S0196890415002368
https://www.sciencedirect.com/science/article/pii/S0196890415002368
https://www.gurobi.com/documentation/9.1/refman/parameters.html
https://www.gurobi.com/documentation/9.1/refman/parameters.html
https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf
https://www.oecd-nea.org/ndd/pubs/2015/7057-proj-costs-electricity-2015.pdf
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-energy-storage
https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.10.032
https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.10.032
http://www.sciencedirect.com/science/article/pii/S0360319915300574
http://www.sciencedirect.com/science/article/pii/S0360319915300574
https://doi.org/10.3390/en10111841
https://transparency.entsoe.eu/dashboard/show
http://globaldamwatch.org/grand/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://ec.europa.eu/eurostat/web/products-datasets/-/nrg_ind_peh
https://ec.europa.eu/eurostat/web/products-datasets/-/nrg_ind_peh

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Context and Motivation
	The Role of Power Systems in the Decarbonisation of Economies
	Centralised versus Distributed Power System Development
	The Relevance of Planning Tools in Decarbonisation Efforts
	Siting of Renewable Generation Assets in Planning Studies
	On the Spatiotemporal Complementarity of Renewable Resources

	Thesis Structure and Contributions
	List of Publications

	Quantifying the Complementarity of Renewable Resources
	Introduction
	Related Works
	Reanalysis Data and Katabatic Winds
	Methodological Framework
	Preliminaries
	Spatiotemporal Complementarity Factors

	Experimental Set-up
	Results
	Wind Resource Assessment
	Wind Farm Capacity Factor Comparison
	Potential of Wind Generation Complementarity

	Conclusion and Future Work

	Critical Time Windows for Renewable Resource Complementarity Assessment and Siting
	Introduction
	Related Works
	Introducing the Time Windows Framework
	Time Windows
	Critical Locations
	Critical Windows

	Critical Windows for Siting of Renewable Generation Assets

	Test Case
	Data Acquisition
	Defining the Conversion Technology

	Results
	Spatiotemporal Complementarity Assessment
	Optimal Deployment of Generation Sites
	Comparison with Average Capacity Factors as Primary Criterion
	Discussion

	Conclusion and Future Work

	Evaluating the Impact of Siting Strategies on the Design of Power Systems
	Introduction
	Related Works
	Methodology
	Preliminaries
	Siting Schemes
	Models
	Solution Methods

	Capacity Expansion Planning Framework
	Implementation

	Case Study
	Offshore Wind Siting
	Capacity Expansion Problem

	Results
	Impact of Siting Decisions on Offshore Production and Residual Load
	Impact of Siting Decisions on Capacity Expansion Planning Outcomes
	Impact on Power System Economics
	Impact on Power System Design

	Sensitivity Analysis
	Impact of Offshore Wind Cost Assumptions
	Impact of Inter-Annual Weather Variability

	Discussion

	Conclusion

	Assessing the Impact of Siting Strategies on the Design and Operation of Power Systems: A Refined Analysis
	Motivation
	Method
	Siting Models
	Capacity Expansion Planning Framework
	Unit Commitment and Economic Dispatch Problem
	Implementation

	Experimental Set-up
	Siting RES Assets
	Capacity Expansion Planning Framework
	Unit Commitment and Economic Dispatch Problem

	Results
	Siting of Renewable Generation Assets
	Cost-Optimal System Design
	Impact on the Operation of Power Systems

	Conclusion

	Model Reduction in Capacity Expansion Planning Problems via Renewable Generation Site Selection
	Introduction
	Method
	Capacity Expansion Planning Framework
	Renewable Sites Selection Method

	Case Study
	Input Data
	Parametrization of the SITE Stage
	Implementation

	Results
	Conclusion

	Conclusion
	Future Work

	Modelling Assumptions
	Chapter 4 - Evaluating the Impact of Siting Strategies on the Design of Power Systems
	Candidate Sites
	Network Topology
	Economic Parameters
	Technical Parameters

	Chapter 5 - Assessing the Impact of Siting Strategies on the Design and Operation of Power Systems: A Refined Analysis
	Candidate Sites
	Unit Commitment Parameters
	Solver Parameters

	Chapter 6 - Model Reduction in Capacity Expansion Planning Problems via Renewable Generation Site Selection
	Economic parameters
	Technical parameters


	Modelling Hydro Inflows and Capacities
	Run-of-River Hydro Power Plant Inflows
	Reservoir-based Hydro Power Plant Inflows
	Pumped-Hydro Storage Capacities

	Bibliography

