Multiple scales solution for a beam with a small bending
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Abstract

This paper considers the problem of a beam with a small bending stiffness, within the frame-
work of a non-linear beam model that includes both the classical cable and the linear beam as
limiting cases. This problem, treated as a perturbation of the catenary solution, is solved with
the multiple scales method. The resulting expressions of the beam deflection and of the internal
forces, as well as those obtained with the more commonly applied matched asymptotics method,
are compared with numerical results. This comparison indicates that a better accuracy can be
achieved with the multiple scales approach, for a similar computational effort. These results also
suggest that application of the multiple scales method to the solution of beam problems involving
boundary layers extend the range of values of the small parameter, for which accurate analytical

solutions can be obtained by a perturbation technique.

Matched asymptotics, multiple scales, boundary layer, catenary, rod theory, small bending stiffness.
Introduction

Beams are structural elements that resist transverse loads by means of their bending stiffness, while
cables (or more traditionally, catenaries) resist transverse loads by means of large displacements and

axial forces. There is a wide category of problems, however, for which structural elements exhibit
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a behavior intermediate to these two limiting cases. Indeed, cables with a non-negligible bending
stiffness or highly taut beams are encountered in many engineering applications, such as clamped
stay-cables, suspension cables, electric transmission lines, drillstrings, pipeline installation, and taut-
strip models for wind-tunnel measurements. In these structures, boundary layers develop in zones
where the inclination is perturbed from the catenary solution, essentially because of locally applied
forces or moments. In these zones numerical solutions require careful attention, as small steps or fine
meshes are needed to achieve reasonable accuracy. Alternatively, approximate analytical solutions
can be constructed by viewing the problem as a singular perturbation of the classical cable problem,
with the bending stiffness considered as a small parameter.

Perturbation methods can be classified into two main techniques: matched asymptotics expansion
and multiple scales (Hinch, 1991). With the matched asymptotics method, the solution of a perturbed
equation is expressed in different scales, each essentially dedicated to a part of the domain. This
method is typically applied to solving differential equations characterized by the existence of boundary
layers. Indeed, a coordinate at the scale of the whole domain is appropriate for representing the
global solution, whereas a stretched coordinate is required to capture the solution inside a boundary
layer. On the other hand, the multiple scales method postulates the existence of different scales,
without requiring that these scales occur in separate regions of the domain. This method is naturally
more general than the matched asymptotics and can also be applied to the solution of boundary value
problems, whenever analytical developments remain feasible. The multiple scales method gives a
similar but more accurate result than the matched asymptotic expansion for moderate values of the
small parameter (Kevorkian and Cole, 1996). This is evidently justified by a better mixing of the
different scales.

A review of the literature reveals that the problem of a cable with a small bending stiffness has so
far been studied only within the framework of the matched asymptotics method. Early contributions
were made by Esipova (1975) and Vasileva and Butuzov (1973), who developed a general theory for
boundary value problems that are modeled by singularly perturbed systems of ordinary differential
equations. This theory was first applied by Schmeiser (1985) and Schmeiser and Weiss (1986) to
the analysis of a beam with hinged and clamped supports. In Schmeiser’s pure mathematical de-

velopments, the beam is modeled by a set of four differential equations, not all involving the small



parameter. Wolfe (1993) gave a more formal description of the problem by means of a Cosserat rod
(accounting therefore for the extensibility of the cable), and solved a similar set of perturbed differ-
ential equations. The matched asymptotic expansion method has been applied to various engineering
problems, like conducting wires in magnetic fields (Wolfe, 1991), stay-cables (Irvine, 1993), transport
of thin-sheet materials as paper mills, steel sheets, textile fabric (Stump and Fraser, 2000), bending
and twisting of rods (Stump and van der Heijden, 2000) and unwinding process from cylindrical yarn
packages (Clark et al., 2001).

While addressing applications that deal with drillstrings and hanging cables, Plunkett (1967) ap-
pears to be the first to point out the existence of boundary layers and to attempt to construct a matched
asymptotics solution. His small rotation hypothesis in the boundary layer led, however, to an erro-
neous matching, as pointed out by Stump and Fraser (2000). Historically, the first rigorous mathe-
matical development of a non-linear beam with small bending stiffness was given by Flaherty and
O’Malley (1982). Based on their seminal work, Rienstra (1987) considered, with a simple beam
model, the problem of abandoning and recovering a pipe from a lay barge at sea. The simplicity of
the description of the beam used by Rienstra makes his contribution intuitively appealing. His ap-
proach serves as a basis for the problem considered in this paper, which is solved using the alternative
multiple scales method, however.

In parallel to these theoretical developments, significant efforts have been devoted to the numerical
solution of singularly perturbed boundary value problems. Elegant finite difference methods (Jain
et al., 1984), finite element methods (Stynes and Oriordan, 1986), shooting methods (Maier, 1986),
collocation methods (Ascher and Weiss, 1983; Rao and Kumar, 2007) and mixed methods (Bieniasz,
2008) have been proposed and are still being refined (Kumar et al., 2007). These efforts aim at
establishing robust techniques to bypass the meshing problems or the necessity of using small steps in
the iterative solution procedure. In spite of considerable research efforts invested in the improvement
of algorithms, numerical solutions still require a significant amount of computation time.

All the above referred papers that solve the problem of a cable with a small bending stiffness by
perturbation are based on matched asymptotic expansion. The originality of this paper is the con-
struction of a solution for this problem using the multiple scales method. The technique is presented

along a fundamental problem, encountered in many engineering applications (Fig.1-a). In particular,



this problem is part of the solution proposed by Deno€l (2008), to analyze the insertion of a beam into
a conduit. A beam inserted into a curved conduit adopts its deformed configuration through contacts
with the walls. The proposed fundamental problem could thus be seen as the study of the segments
of the beam between the contacts. For a small bending stiffness, the semi-analytical method proposed
by Denoél (2008) fails to converge, and an analytical solution such as one resulting from an applica-
tion of the multiple scales method can redress the situation. Published contributions using the same
beam model consider a slightly different problem (Fig. 1-b), as the location of the beam ends are
not imposed. It will be seen that this problem can be obtained as a particular case of our fundamen-
tal problem. Hence the generalization to a wider class of application, studied with one differential

equation only, may therefore be seen as a second novelty of this paper.

Fundamental Beam Problem

The considered fundamental problem involves a beam of length ¢, weight per unit length w and con-
stant bending stiffness E1, see Fig. 1-a. Given the relative positions A, and A, and the inclinations
0,, 6, of the beam ends, we seek to determine the deformed configuration of the beam, as well as the
axial and transverse force and moment distribution, under conditions of “small” bending stiffness.
Under the Euler-Bernoulli assumptions, the equation governing the deflection of a beam is (Tim-
oshenko and Goodier, 1987)
do

El— =M 1
s o))

where M (s) is the bending moment and® (s) is the beam inclination with respect to the vertical. In
the following developments, the exact expression of the curvature is used, namely the derivative of
the beam inclination with respect to the curvilinear coordinate s. This provides the most general
geometrically non-linear beam model, as it accounts for large displacements and large rotations. In
the fundamental problem, the end reactions are a priori unknown.

The local equilibrium of the beam in terms of the curvilinear coordinate s (Fig. 2-a) is expressed

as

F10'+F —wsin = 0 (2)



B0 —F/ —wcos® = 0 3)

M+F = 0 “)

where Fj (s) and F (s) are the axial and transverse components of the internal force F (). This general
beam model indeed contains both previously mentioned limit cases, as can be seen by degenerating
the above equilibrium equations. On the one hand, if both the shear force F, and the bending moment

M are set equal to zero, a cable model is obtained

Fi0/ —wsin6 = 0

F/+wcosf = 0 (5)

which implies conservation of the horizontal component of the internal force: Fj sin & = Constant. On
the other hand, if the curvature is assumed to be small, the classical linear beam model with uncoupled

shear and axial forces is obtained

Fy—wsin@ = 0
—F/ —wcosf = 0
M+F = 0. (6)

Elimination of F; from (2) and (3) provides an expression for F;, which, substituted into (4) and then

(1), yields the beam equation
EI(0"6'—0"0" +676") =w(—26"cos 0+ 60"sinb). (7)

In the fundamental problem, this fourth order differential equation has to be solved on s € [0;¢] with

the following four boundary and constraining conditions

0(0)=0, ; 0(()=6, ®)

/ ¥4
/ cos Ods = A, ; / sinOds = A,. 9
0 0



Because of the heavy analytical developments inherent to the application of the multiple scales method,
the consideration of (7) is not convenient. Instead, a twice integrated version of this fourth order equa-

tion is used in further developments. Integration of adequate combinations of (2) and (3) yields

Fi = Hsin0+ (V—ws)cos0 (10)

F, = Hcos0—(V—ws)sin6 (11)

where H and V are two integration constants, corresponding to the vertical and horizontal components
of the internal force at s = 0. Alternatively, these results could have been obtained from the consider-
ation of the global equilibrium of the beam, with a Ritter-cut (2-b). The introduction of (11) into (4)

and the consideration of (1) provide the classical second order non-linear beam equation

EI0" = (V —ws)sin@ — Hcos 6. (12)

In the fundamental problem, this equation has to be solved with (8) as boundary conditions, and
H and V have to be determined in order to satisfy (9). The scope of the fundamental problem goes

therefore beyond the one of the simpler problem with given values of H and V.

Dimensionless Formulation

The dimensionless formulation of (12) is written as

29" = (v—&)sin® — hcos ¥ (13)

where & = 5// is the dimensionless curvilinear abscissa and

El
e = —
v(&) = 6(80). (14)

Equation (13) indicates the existence of boundary layers, as the highest derivative of ¥ is multi-



plied by a small parameter (Hinch, 1991; Kevorkian and Cole, 1996). The singularity of this class of
problems is evident as the order of the differential equation (13) is decreased by 2 for € = 0.
All the force quantities are naturally scaled by the weight of the beam, the only intrinsic parameter

with the dimension of a force in the considered problem

\%4 H
vo= g hzw (15)
A =0 g - BED

FE) =+ f3=\R+-&)> (16)

Study of the fundamental problem consists in solving (13) for & € [0; 1], with the following boundary
conditions

5(0)=6, ; v(1)=86, (17)

and finding the values of v and 4 such that

1 .
/Ocosﬁd§:5x ; /Osmﬁdé‘zéy (18)

with 0y = A./¢, and 8, = A,/¢. The solution of this problem is not unique (Schmeiser and Weiss,
1986), as solutions with curling of the beam could satisfy the same set of equations. We restrict
consideration, however, to the solution without curl, which is the only one of interest in the context of

the problem under investigation. Thus the axial force is restricted to be positive
fi=hsind+(v—&)cos® > 0. (19)

Also, for the sake of simplicity in the following developments, but without any loss of generality, it is
assumed that

9 (&) €[0;7]. (20)



Multiple Scales Solution

Matching asymptotics methods consist in matching the inner solution inside the boundary layer and
the outer solution corresponding to the unperturbed problem. Then, a composite solution, valid
throughout the whole domain & € [0, 1], can eventually be constructed (Hinch, 1991). On the con-
trary, multiple scales methods treat both scales simultaneously and provide at once a solution valid
throughout the whole domain. Although it is in principle not necessary to appeal to the concept of
inner and outer solutions, it simplifies the exposition of the method. Therefore, we first present the

outer solution, then the multiple scales solution.

Outer Solution

The outer solution is obtained by constructing an asymptotic expansion for ¥ (&) of the form

(&) =ho(E)+ehy (§)+€"m (&) +... 1)

and substituting it into (13). Balancing the coefficients of the lowest power of € gives the leading

order term of the outer solution

ho = arccot™ <v—h§> (22)
where arccot™ is defined as
arccot'x  =arccotx  forx>0
=+ arccotx forx <0 23)

in order to satisfy (20) and to work with a continuous function. As expected, (22) corresponds to the
catenary solution of a cable without bending stiffness (Irvine, 1975). However, we prefer to write the
outer solution as

ho = arccot™ ((1 —&)cot@, + & cotg,) (24)



where the integration constants 4 and v have been replaced by the temporary variables ¢, and ¢,
representing the end inclinations of the cable in the catenary solution. In a non-trivial solution, ¢, and
¢, are necessarily different and are expressed as a function of 4 and v as

cotg, 1

= ; h=—1"—"—. 25
Y cot@, —cot g, cot @, —cot g, 25)

As ¢, and ¢, are not necessarily equal to 8, and 6,, (24) does not satisfy the boundary conditions. It
is valid in the outer domain only, far from the beam ends. We expect, as confirmed later, that there

exist two boundary layers, located in the vicinity of the beam ends, and that their extent is related to

’¢p_9p| and ‘d’q_efl"

Multiple Scales Approach

Because there are two boundary layers, the multiple scales method should therefore consider three
different scales: the physical scale £ and two stretched coordinates to represent each boundary layer.
To consider these three scales simultaneously would result in a solution for which the interaction
between both boundary layers is accounted for. It is desired to develop here a formulation giving a
better accuracy for moderate values of €, but not so large as to simultaneously involve both boundary
layers. Such developments would anyway be rather tedious. We will therefore focus on each boundary
layer separately, starting with the boundary layer close to & = 0, and thus consider two scales: the

slow varying coordinate & and the fast varying coordinate

£=¢/e. (26)

We seek a two-scale expansion for ¥ (&) of the form

B (E,8) =280(E,8)+€81(E,.0)+€°82(E,8) + ... 27)

where § € [0;8“]. As it is commonly assumed in the application of multiple scales methods
(Kevorkian and Cole, 1996; Hinch, 1991), this series is supposed to be asymptotic for { = o(1).

The total differentiation in the governing equation (13) is replaced by partial differentiations, obtained



by means of the chain rule

d? 2 2 9?2 1 92

& = g T eagac Tear

Substitution into the governing equation and comparison of likewise powers of € yield partial differ-

ential equations for go, g1, ...:

920 .

ol (v—&)singo—hcosgo (28)
9°gi 9go .
Eld +278§8C = g1 (v—§)cosgo+gihsingp. (29)

These equations can be solved recursively, starting from the lowest order in €.
The following developments aim at the establishment of the leading order solution g¢ (&, ). In-

tegration of (28), previously multiplied by %—%} gives

<?9gCO> +(v—&)cosgo+hsingg =A (&) (30)

where A (&) is an integration function. Because of the restriction (19) on the sign of the axial force,
A (&) has to be positive on [0; 1]. It is not easy to solve (30) for any function A (§). Nevertheless, its
analytical expression can be derived from knowledge about the outer solution. Indeed there exists a
value of € under which a fixed coordinate £ # 0 lies in the outer domain. Thus, as € tends towards 0,

the inner solution has to degenerate into the outer one

lim g0 (£,8) = ho (). (1)

This justification is not valid in all applications of the multiple scales method, but it can be invoked
here because it is applied in the context of a boundary layer problem. Differentiation of (31) with

respect to § gives
dho

ac 9

The inversion of both mathematical operators is legitimate since the limits exist in both cases, giving

i 6.0 - (32)
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therefore

. dgo _
;lg(l)f(é,é)—(). (33)

The limit for € tending towards 0, applied to both sides of (30), simplifies to

A(E) = (v—E&)coshg+hsinhg =/ (v—E)*+h2 = f (&) (34)

which shows that A (£) actually corresponds to the resultant of the internal forces. After some simpli-

fications (30) can be written as

1(9g0\° .. 2(ho—go
(52) =2 (57). >

which can then be integrated to yield

In (tan ho;“) —In(tanB) = {\/f (36)

where B (&) is an integration function. The negative sign has to be chosen in the + symbol, in order

to provide a bounded solution for { — 0. The expression of the leading order solution is therefore

20(&,8) =ho (&) +4arctan {tanB (&)exp <—C\/%)} . (37)

The boundary condition at & = 0, i.e. { =0, yields

_ % —9¢

B(0) =

(38)

One particularity of the multiple scales method is that the consideration of the problem at a given
order (here the leading order) is not sufficient to fully determine the solution. In this example the
function B (&) is just known by its value at the origin, and only consideration of the next order enables

its determination.

11



Determination of B (§)

The solution g; at the next order, which requires solving (29), depends on g and therefore on B (&).
The optimal determination of B (&) relies on Lindstedt’s method (Lindstedt, 1883; Poincaré, 1957),
that consists in setting secular terms in higher orders equal to zero, in order to keep the asymptoticness

of (27) for { = o (1). These terms should be obtained by substituting the general expression of g¢ into

(29)

3¢ (tan4B —6tan? Be2SVT + €4C‘/f) f 32g0

- = 22— 39

J9¢? (tan? B+ ¢2V7)? ¢ 9gd¢ o

where
2
_2385370@ - 4;}; [(2 fB'secB— {tanB\/f f’) ri +tanB f’rz} (40)

with

r(E,8) =V —tan’B, 1y (€,)=e*V7 +tan’B.

Because (40) cannot be written as a sum of functions of {, secular terms cannot be identified and
Lindstedt’s method has to be adapted. Here, the construction of B(£) hinges on viewing (39) as the
equation of a (non-linear) spring-mass system with a negative initial tangent stiffness, and a forcing
term. To impose the asymptoticness of (27) for { = o(1), and hence to ensure that the function g
is bounded, the forcing term should be set to zero. However, the vanishing of (40) cannot be strictly
fulfilled for any set ({,&), as B is a function of & only. Instead, we satisfy this condition close to
the beam end (small values of ), as further away in the boundary layer any error on B (&) would
anyway be wiped out by the exponentially decreasing function in (37). For this reason, a Taylor series

expansion of (40) is considered around { =0
—2@ _ 2 [4cos (2B) fB'+sin(2B) f'] +0({) 41)
dgdl  Vf

and B (§) is chosen in such a way to cancel the first term of the expansion. These considerations lead

12



to the formulation of a first-order differential equation for B

S’ tan(2B)
B =—-% : 42
74 (42)
which can be solved with the boundary condition (38) to finally yield
L fO0) . 6=
B = —arcsin sin . 43)
=3 ( FE 2

Solution with Both Boundary Layers

Because the three length scales are not considered simultaneously, the above solution is not a formal
application of the multiple scales method. Indeed, the solution (37) obtained so far, should be valid
throughout the whole domain in a formal multiple scales approach; however it does not embrace the
second boundary layer. To this purpose, a similar reasonning for the second boundary layer is adopted

and a composite solution (in the sense of a matched asymptotics method) is written as

B (E)=ho(E) +4arctan [tan [% arcsin( % sin @)} exp (—% f(é))}

~+4 arctan [tan B arcsin < % sin 6‘1;%)} exp (—1% f (5))} (44)

where o (&) and f (&) are the inclination in the catenary solution and the resultant internal force
given by (22) and (16), respectively. As expected, the boundary layer disappears when the inclination
obtained in the catenary solution, ¢, or ¢,, is equal to the corresponding boundary condition, 6, or

0,

13



Comparison with the Matched Asymptotics Method

The developments leading to the matching asymptotics solution of the problem follow a very similar

approach. They are summarized in Appendix. The composite solution is

O (E) =ho(E) + 4arctan [tan"f’;‘i’f’exp(—i f(O))}
+ 4arctan [tane";‘p‘fexp (1_85\/%” (45)

The difference between this solution and that obtained with the multiple scales method lies essentially
in the way the internal forces are accounted for within the boundary layer. The discrepancy between
both methods is expected to be the largest for a fast varying function f (&) in the vicinity of the beam
ends. As the derivatives of f at both ends correspond to the inclinations of the end reactions on the

horizontal

f’(o)=ﬁ and f’(l)z\/%, (46)

the discrepancy should be the largest for end reactions having a vertical tendency.

Validation

The accuracy of the multiple scales solution is assessed with the problem of Fig. 3, which depicts half
of a cable that is clamped at both ends. By symmetry, it is here represented by a cable with imposed
inclinations at both ends (6, = 6, = ), and being free to move horizontally and vertically at each
support, respectively. Because of these boundary conditions, the left reaction itself has to carry the
whole weight of the cable (V = wl or v = 1). Furthermore, it is assumed that the horizontal force at
the left anchor is known (H = wl or h = 1). This problem is not formulated within the framework of
the considered fundamental problem, since the relative locations of the beam ends are not imposed.

The catenary solution and the corresponding end inclinations are obtained from (22) and (25)

ho (&) =arccot™ (1-&) ; ¢,= ; ¢q:§ 47)

INES
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which indicates that there is no boundary layer at the right end, as ¢, = 6,. The multiple scales and
matched asymptotic solutions obtained from (44) and (45) are represented in Fig. 4 for € =0.15.

They are compared to a reference solution, numerically obtained with a shooting method. In this
method, the two-point boundary value problem is transformed into an initial one, by giving a guess
for ¥/ (0). An efficient ordinary differential equation solver (RK4) with adaptive step, is used to
compute the solution of this well-posed initial value problem, and to assess the boundary condition at
the other end of the beam. This shooting method requires thus to find the value(s) of ¥’ (0) for which
¥ (1) — 6, = 0. This function is represented in Fig. 5. In view of its shape, high-order non-linear
solvers such as as Newton-Raphson are not guaranteed to converge; hence, a bisection method was
used to obtain the numerical solution of Fig. 4. In this example, the solution is unique, but more
generally the function could cross several times the horizontal axis, indicating therefore the existence
of multiple solutions.

As expected, the deflection of the cable, shown in Fig. 4, exhibits similar shapes, with a slight
difference between the matched asymptotics solution and the multiple scales solution. The latter one
shows a very good agreement with the numerical solution and the catenary solution fitted on the

numerical solution in the outer domain.

Solution of the Fundamental Problem

The solution of the fundamental problem requires the consideration of the restraining equations (18),
which have been ignored so far. These equations have to be solved for / and v, or equivalently for ¢,
and ¢,.

First, in the absence of boundary layers, the restraining conditions would simply be

sin¢, —sin@,

6x (¢p7¢q) - Sin(¢q_¢P)

B 1 tan ¢, /2
& (6p:90) = cot g, —cot @, In <tan¢j,/2> (48)

which is obtained by setting ¥ = &g in (18). This set of transcendental equations representing the

catenary solution cannot be solved analytically. The level curves of & (¢,,¢,) and 6, (¢,,¢,) are
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represented in Fig. 6-a for ¢, and ¢, in [0, 7], and ¢, < ¢, in order to satisfy (19). In these plots, the
points lying close to the diagonal edge correspond to ¢, ~ ¢,, i.e. to highly taut cables or to a trivial
straight catenary in the limit case.

The solution of (48) is geometrically represented as the intersection of the level curves corre-
sponding to given values of &, and J,. As any two level curves selected in each graph present a unique
intersection, the solution of (48) is therefore unique.

It is naturally hopeless to solve the restraining conditions for ¢, and ¢,, when the bending stiffness
of the cable is considered. Contrary to the catenary case, substitution of the multiple scales solution
(44) into (18) does not lead to an explicit solution. However, the resulting expressions of & (¢,,¢,)
and 0, (¢,,¢,) can be obtained numerically. Figures 6-b and 6-c represent some examples with 6, =
0, = 7. Evidently, the patterns converge to those of 6-a, as € tends towards zero. Although plots
of contour levels of &, and 5y computed for others values of 6, and 6, would not exhibit the same
symmetry as those shown in Figs. 6-b and 6-c, they would nonetheless also converge to those of
6-a, as € tends towards zero. The greyed zones in these figures, close to the axes ¢, =0 and ¢, = 7
correspond to loose cables for which the internal forces decrease so fast in the boundary layers that
the argument of one of the arcsin functions is larger than unity for some &, leading therefore to
complex solutions. In these zones, the real part of &, (¢, ¢,) and 6, (¢9,,9,) is represented but should
be considered with care. This illustrates the limitations of the model. Physically, for a loose cable
corresponding to values of ¢, and ¢, in the problematic ranges, the boundary layers occupy a wide
part of the domain and may even interact, which is clearly in contradiction with the assumptions of
the considered two-scale model.

In a practical application, the system of restraining conditions has to be solved numerically. The
regularity of O, (¢,,¢,) and 0, (¢9,,¢,) indicates that many numerical methods will converge to the
solution within a couple of iterations. The similarity of the level curves with the analytical case
(¢ = 0) suggests that the solution of the catenary problem may actually be used as a good starting
point for the numerical approach.

Figure 7 represents the solution of the cable with horizontal supports, obtained for € = 0.10,
0 =0, 6, =0.97. A Newton-Raphson solver converges (tolerance of 10~° on the function estimate) to

¢, =0.810, ¢, = 2.331 after two iterations and 0.07s CPU running on an AMD Turion(tm) processor,
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Tech.ML-34, 1.79GHz, RAM 1.00Gb. The same procedure is applied with the matched asymptotics
solution and yields ¢, = 0.881, ¢, = 2.261, with similar computation time.

The internal forces and displacements obtained with these semi-analytical methods are compared
to results obtained by a full numerical analysis. Because we now have to cope with a non-linearity
similar to that presented in Fig. 5, a high order numerical method does not systematically converge
for this problem. Instead, the reference solution is obtained with a dedicated algorithm combining
bisection and Newton-Raphson methods. It results in ¢, = 0.797, ¢, = 2.345 with 2.47s CPU on the
same processor; the internal forces and displacements resulting from this numerical computation are
also plotted in Fig. 7.

The matched asymptotics and multiple scales methods give very close results for displacement
based quantities, which is expected since the problem is kinematically controlled. However, when
considering the internal forces, the matched asymptotics method leads to less precise estimates (up to
15% off, for the axial force). It is not surprising to observe a larger discrepancy on the axial force,
since, unlike the shear force or bending moment, it is not proportional to a certain derivative of ¥ (&),

but rather to ratios 9" (£) /9 (&) and sin®9 (§) /¥ (§).

Conclusions

We have applied the multiple scales method to the analysis of a beam with a small bending stiffness,
and compared the results to those obtained with the matched asymptotics method, which is the com-
monly used perturbation technique to solve that problem. Because of the necessity to identify secular
terms, or to develop any equivalent formulation as proposed in this paper, the multiple scales method
requires the consideration of the second order solution, and consequently somewhat more involved
analytical developments. However, the approximate solution exhibits a similar analytical form for
both perturbation methods, and they require therefore a similar computation time. The multiple scales
solution is shown to be a refined generalization of the matched asymptotic one, allowing a better
representation of the internal forces within the boundary layer.

The proposed multiple scales solution might be seen as an inexpensive way to improve the quality

of the solution of the considered problem, in particular for moderate values of the reduced beam
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stiffness (€ ~ 0.10) and when axial forces are concerned.
The analysis of this problem suggests that other classes of problems involving boundary layers,
which have been only treated in the framework of the matched asymptotics method, might benefit

from the application of a multiple scales approach.
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Appendix

The outer solution A (&) presented in section is also valid for the matched asymptotic expansion. The
inner solution results from the definition (26) of the same stretched coordinate as in the multiple scales
approach. The major difference is that now, the differential equation is written with this stretched
coordinate only

¥ (Le) = (v—Ce)sin® (L&) —hcos ¥ (Le). (49)

We seek an asymptotic matching of the form

9(8€) = Go () +£G1 (§)+ .. (50)

The comparison of the coefficients of the lowest powers of € yields

Gy (§) =vsinGy (§) —heos Gy (§). (51)
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Similarly to (30), a first integral is written

%G()Z(C)+vcosGo(C)+hsinGo(§) =a (52)

where a is now a simple constant. Again, the solution of this differential equation does not take a
simple form for any value of a. For this reason, a matching between the inner and outer solutions is

performed. According to Van Dyke’s rule, the matching is imposed by setting

lim Go () = limho (C&) = limarcoot™ - —2& — 1y (0)

£—0 e—0 e—0 h
lim G, (§) = lim ih (§e) = lim arccot+8—h =0 (53)
gm0 0N T 04l =0 m+(v—Ce)?

The application of these limits to (52) yields a = vcoshg (0) +hsinhg (0) = f(0), and (52) can be
solved similarly to what was done previously. A constant of integration b, similar to B (), has to be
introduced. Its value is determined uniquely from the boundary conditions, and is evidently found to
be equal to B(0). An analogous development for the second boundary layer, and the assembly of the

outer and both inner solutions give finally the composite solution (45).
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