Bulletin of the AAS • Vol. 53, Issue 7

Physical properties of Hi'iaka from stellar occultation data

Estela Fernández-Valenzuela¹, Jose Luis Ortiz Moreno², Bryan Holler³, Mónica Vara-Lubiano², Nicolas Morales², Bruno Sicardy⁴, Frederic Vachier⁵, Josselin Desmars⁶, Felipe Braga-Ribas⁴, Emmanuel Jehin⁷, Zafar Rustamkulov⁸, Alexander de la Vega⁹, Elizabeth Warner¹⁰, Zouhair Benkhaldoun¹¹, Roxanne Kamin¹², Al Ryan¹², Bernie Earls¹², Dennis Conti¹³, Julien de Wit¹⁴. Artem Burdanov¹⁴, Francini Richard¹⁵, Philip Langill¹⁶, Ruben Morales¹⁶, Wesley Fraser¹⁷, Damya Souami⁴, Jean Lecacheux⁴, Pablo Santos-Sanz², Rene Duffard², Alvaro Alvarez-Candal¹⁸, Mike Kretlow², Gustavo Benedetti-Rossi¹⁸, Bruno Morgado¹⁸, Julio Camargo¹⁸, Flavia L. Rommel¹⁸, Altair Ramos Gomes Junior¹⁸, Marcelo Assafin¹⁹, Djounai Baba Aissa²⁰, Zaki Grigahcene²⁰, Marc Buie²¹, Javier Licandro²², Miguel R. Alarcon²², Miquel Serra-Ricart²², Alberto Castro-Tirado², Emilio Jesus Fernandez-Garcia², Ramón Iglesias-Marzoa²³, Francisco Galindo²³, Luis Pérez²⁴, Hugo González²⁵, Pablo Canedo²⁴, Oscar Blanco²⁴, Rui Gonçalves²⁴, Adam Rengstorf²⁶, Randy Flynn²⁷, Aart Olsen²⁸, Bill Hanna²⁸, Jason Barnes²⁹, Joseph A. A'Hearn²⁹,

Steven M. Kreyche²⁹, William J. Miller²⁹, Lillian E. Mortensen²⁹, Thomas C. Gibson²⁹, Gary Walker³⁰, Georgia Stoel McAllister³⁰, Gregory A. Feiden³¹, Joseph Froetschel³¹, Suzanne Steel³¹, Destin Encardes³¹, R. Scott Fisher³², Alton Luken³², Eric Holcomb³², Daniel Caton³³, Bob Dunford²⁸

¹Florida Space Institute (UCF), ²Instituto de Astrofísica de Andalucía - CSIC,

³Space Telescope Science Institute, ⁴Obs. de Paris,

⁵Institut de mécanique céleste et de calcul des éphémérides, University of Paris, ⁶IMCCE/OBSPM,

⁷University of Liege, ⁸Department of Earth and Planetary Science, Johns Hopkins University,

⁹Department of Physics and Astronomy, Johns Hopkins University,

¹⁰Department of Astronomy, University of Maryland, College Park,

¹¹Oukaimeden Observatory, Cadi Ayyad University, ¹²Ryan Observatory, Muddy Run,

¹³American Association of Variable Star Observers, ¹⁴Massachusetts Institute of Technology,

¹⁵Astronomical League and American Association of Variable Star Observers,

¹⁶University of Calgary, ¹⁷Herzberg Institute of Astrophysics, ¹⁸Observatório Nacional,

¹⁹Universidade federal do Rio de Janeiro, Observatório do Valong,

²⁰Center of Research in Astronomy, Astrophysics and Geophysics, CRAAG,

²¹Southwest Research Institute, ²²Instituto de Astrofísica de Canarias,

²³Observatorio de Javalambre OAJ, ²⁴Plan Occult, ²⁵Observatorio de Forcarei,

²⁶Purdue University Northwest, ²⁷Squirrel Valley Observatory, ²⁸IOTA, ²⁹University of Idaho,

³⁰Maria Mitchell Association Observatory, ³¹University of North Georgia, ³²University of Oregon,

³³Appalachian State University

Published on: Oct 03, 2021

License: Creative Commons Attribution 4.0 International License (CC-BY 4.0)

Two very bright stellar occultations by Hi'iaka, the largest satellite of the dwarf planet Haumea, were predicted to take place during in April 2021. Since the uncertainty on Hi'iaka's shadow path was large due to uncertainty on Hi'iaka's position with respect to Haumea, we performed an observational campaign using medium-sized telescopes to obtain high accuracy astrometric data of Hi'iaka's orbit around Haumea. The astrometric data allowed us to successfully observe the first stellar occultation on April 6th, with final path crossing North Africa. We only obtained one positive chord in this event from the TRAPPIST-North telescope at Oukaïmeden Observatory (Morocco), but thanks to this detection, we were able to obtain a more accurate path for the second event on April 16th. The second shadow path was predicted to cross the continental US from East to West. We carried out a huge observational campaign involving more than 50 professional and amateur observatories across the US and southern Canada. The final path of this second stellar occultation moved slightly to the North of the predicted path and, as a result, we were able to obtain 5 positive chords and negative chords only from the south of the shadow. We also collected photometric data in order to obtain Hi'iaka's rotational light-curve and calculate its three-dimensional shape. The rotational light-curve was obtained by observing the unresolved system of Haumea-Hi'iaka and removing Haumea's rotational light-curve from the data. Using Hi'iaka's rotational light-curve we obtained the rotational phase at which each stellar occultation took place, which allowed us to obtain a three-dimensional model of the satellite. Preliminary results from the stellar occultation show that Hi'iaka, with a triaxial shape as suggested in previous publications, is larger than what has been thought before and with a similar albedo to that of Haumea. In this talk we will present our analysis and preliminary results of some of Hi'iaka's physical properties.