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A generative modelis a probabilistic model p that can be used as a simulator of
the data. Its purpose is to generate synthetic but realistic high-dimensional data

x ~ p(x;0),

that is as close as possible from the unknown data distribution p(x).
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"What | cannot create, | do not understand.”

Richard Feynman
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Why generative models

Planning,
Exploration
Intrinsic motivation

Model-based RL

Super-resolution,
Compression,
Text-to-speech

Proteomics,
Drug Discovery,
Astronomy,
High-energy physics

Generative models have a role in many important problems
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Part l: Generative adversarial
networks
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Generative adversarial networks

What D wants

7

In generative adversarial networks (GANs), the task of learning a generative
model is expressed as a two-player zero-sum game between two networks.

Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 6/38


https://fleuret.org/dlc/

Architecture

The first network is a generator g(+; 0) : Z — X, mapping a latent space

equipped with a prior distribution p(z) to the data space, thereby inducing a
distribution

x ~ q(x;0) < z ~ p(z),x = g(z;0).

The second network d(+; ¢) : X — [0, 1] is a classifier trained to distinguish
between true samples x ~ p(x) and generated samples x ~ g(x;6).
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Training

mgin mgx V(¢,0) = Expx) [log d(x; @)] + Egzp(z) [log(1 — d(g(z;0); ¢))]

e Forafixed g, V(gb, 9) is high if d is good at recognizing true from generated
samples.

e If disthe best classifier given g,and if V' is high, then this implies that the
generatoris bad at reproducing the data distribution.

e Conversely, g will be a good generative model if V' is low when d is a perfect
opponent.
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Data distribution
Model distribution
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Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

Credits: Goodfellow et al, Generative Adversarial Networks, 2014.


https://arxiv.org/abs/1406.2661

Examples

lan Goodfellow
e @goodfellow_ian
4.5 years of GAN progress on face
generation. arxiv.org/abs/1406.2661
arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536

arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948
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. A Style-Based Generator Architecture for G... 0 ~»
Later bekijk... Delen

Coarse styles
(42 8)

Middle styles
(16% =327

Fine styles
(64 —10247%)

StyleGAN (v1) (Karras et al, 2018)
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https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/channel/UCRtoHpUxLBJ95IU-p-4T_iA

CtyleGAN2

Y

StyleGAN2

StyleGAN (v2,v3) (Karras et al, 2021)
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Monet £_ Photos Zebras T Horses Summer _ Winter

zebra —> horse

horse — zebra

Photograph ' Monet Van Gogh ) Cezanne Ukiyo-e

Image-to-image translation (Zhu et al,2017)

13/38



@ High-Resolution Image Synthesis and Sem... 0 ~»
Later bekijk... Delen

High-resolution image synthesis (Wang et al, 2017)
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https://www.youtube.com/watch?v=3AIpPlzM_qs
https://www.youtube.com/channel/UCFZyj1cwp7JLEqpMb_eTbOQ

GauGAN: Changing sketches into photorealistic masterpieces (NVIDIA, 2019)
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https://www.youtube.com/watch?v=p5U4NgVGAwg
https://www.youtube.com/channel/UCHuiy8bXnmK5nisYHUd1J5g

a tennis player gets two men dressed in a tennis player hits the a male tennis player in ~ a man in white is about
ready to return a serve costumes and holding ball during a match action on the court to serve a tennis ball
tennis rackets

a laptop and a desktop a person is working on a a cup of coffee sitting next  a laptop computer sitting a picture of a computer on
computer sit on a desk compulter screen to a laptop on top of a desk next to a a desk

Captioning (Shetty et al, 2017)



IFC with reshape I Upsampling Iloining I Residual IConv3x3

Generators in a tree-like structure

4x4 64x64 128x128
X2Ng

Z~N(0,1) G,

S P S}

128x128x3

Unconditional
loss

Fig. 2: The overall framework of our proposed StackGAN-v2 for the conditional image synthesis task. c is the vector of conditioning variables
which can be computed from the class label, the text description, etc.. Ny and Ny are the numbers of channels of a tensor.

Text-to-image synthesis (Zhang et al, 2017)
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A small bird A small yellow  This small bird

The bird is A bird witha This small with varying bird with a has a white
Text This birdisred  short and medium orange  black bird has shades of black crown breast, light
description and brown in stubby with bill white body  a short, slightly  brown with and a short grey head, and
P color, with a yellow on its gray wingsand  curved billand ~ white underthe  black pointed black wings
stubby beak body webbed feet long legs eyes and tail
64x64
GAN-INT-CLS

128x128
GAWWN
256x256

StackGAN-v1

Fig. 3: Example results by our StackGAN-vl, GAWWN [29], and GAN-INT-CLS [?1] conditioned on text descriptions from CUB test set.

(Zhanget al,2017)
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Figure 8.38: Composite conditional CaloGAN discriminator I, with three LAGAN-like streams and additional domain-

specific energy calculations included in the final feature space.

Learning particle physics (Paganiniet al, 2017)
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N-body simulation samples

Figure 1: Samples from N-body simulation and from GAN for the box size of 500 Mpe. Note
that the transformation in Equation 3.1 with o = 20 was applied to the imapges shown above
for better clarity.

Learning cosmological models (Rodriguez et al, 2018)
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Part ll: Variational auto-encoders
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Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL.

Latent space #


https://fleuret.org/dlc/

Variational auto-encoders

A variational auto-encoder is a deep latent variable model where:

e The prior p(z) is prescribed, and usually chosen to be Gaussian.

e The likelihood p(x|z; 6) is parameterized with a generative
network NNy (or decoder) that takes as input z and outputs
parameters ¢ = NNy(z) to the data distribution. E.g,,

t, 0 = NNp(z)
p(x|z;0) = N (x; p, 0°T)

e The approximate posterior q(z|:x:; go) is parameterized with an inference

network NNSO (or encoder) that takes as input x and outputs parameters
v = NN, (x) to the approximate posterior. E.g.,

p, 0 = NN, (x)
q(z|x; ) = N (2; pu, 0°T)
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We can use variational inference to jointly optimize the generative and the
inference networks parameters 6 and .

We want

0, " = arg max ELBO(x; 0, ¢)

7(10
— arg I%acpx IE:q(z|x;c,0) [1Og p(X7 Z, 0) - lOg Q(Z’X; 90)]
= argmax Eyjx) log p(x|z;0)] — KL(q(z|x; ¢)||p(2)).

e Given some generative network 6, we want to put the mass of the latent
variables, by adjusting ¢, such that they explain the observed data, while
remaining close to the prior.

e Given some inference network ¢, we want to put the mass of the observed
variables, by adjusting €, such that they are well explained by the latent
variables.
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Examples

Consider as data d the MNIST digit dataset:
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(b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

(a) 2-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities

of latent space.

(Kingma and Welling, 2013)
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
pe(x|z) with the learned parameters 6.

(Kingma and Welling, 2013)
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Random walks in latent space (Vahdat and Kautz, 2020).
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JPEG
JPEG-2000
RVAE v1

RVAE v2

Hierarchical compression of images and other data, e.g., in video conferencing
systems (Gregor et al, 2016).
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Understanding the factors of variation and invariances (Higgins et al, 2017).
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Bridging the simulation-to-reality gap (Inoue et al, 2017).
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https://www.youtube.com/watch?v=Wd-1WU8emkw
https://www.youtube.com/channel/UCHuAMFn2T8nYEhcbvCXSfjA

Discrete
VQ latents

i l Condition
[ 1]

WaveNet
Decoder : - GCondition

----------------

Voice style transfer [demo] (van den Oord et al, 2017).


https://avdnoord.github.io/homepage/vqvae/
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Design of new molecules with desired chemical properties (Gomez-Bombarelli et
al, 2016).
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Part l11: Normalizing flows



Change of variables theorem

Assume p(z) is a uniformly distributed unit cube in R® and x = f(z) = 2z.

Since the total probability mass must be conserved,

V, 1
p(x = f(z)) —p(Z)VX =p(2)g;
2 0 0\|"
where%: det {0 2 O represents the determinant of the linear
0 0 2

transformation f.
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What if f is non-linear?

e TheJacobian J¢(z) of x = f(z) represents the infinitesimal linear
transformation in the neighborhood of z

e |f the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

p(x = f(2)) = p(z) |det J;(z)| " .

Similarly,for g = f !, we have

p(x) = p(z = g(x)) |det J,(x)] .

34/38



Normalizing flows

A normalizing flow is a change of variable f parameterized by an invertible neural
network that transforms a base distribution p(z) into p(x). Formally,

e fisacomposition f = fx o ... o fi,whereeach fi is aninvertible neural
transformation

« g =f"

e 7, = fr(2p 1),withzg = zandzg = x

« p(zr) = p(zk—1 = gr(2zx)) [det Jy, (21)]

fl(ZO) @ fz’(zil) @fi+1(zi) @
" Ew A = X

/ / \
/ / / \
1 \ 1 \ 1 \
I ! I ! I I
\ 1 \ 1 \ 1
\ / \ / \ 1
\\ // \\ // \\ /l
e // Se ’// So ’//

zo ~ po(zo) z; ~ p;i(2;) zx ~ Pk (ZK)

Image credits: Lilian Weng, 2018.
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models

Examples

Data

p(x; 8)

x ~ p(x; 0)

Normalizing flows shine in applications for density estimation, where access to
the density function is required (Wehenkel and Louppe, 2019).



Normalizing flows are at the core of neural posterior estimation algorithms for
simulation-based inference.
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Figure 3. Learned densities on T using NCP, Mobius and CS
flows. Densities shown on the torus are from NCP.
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Density estimation on manifolds (Rezende et al, 2020).



The end.
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