
A quick tour of
deep generative models

ML-IAP 2021

Prof. Gilles Louppe
g.louppe@uliege.be

1 / 38

mailto:g.louppe@uliege.be

A generative model is a probabilistic model that can be used as a simulator of

the data. Its purpose is to generate synthetic but realistic high-dimensional data

that is as close as possible from the unknown data distribution .

p

x ∼ p(x; θ),

p(x)

2 / 38

Richard Feynman

"What I cannot create, I do not understand."

3 / 38

Why generative models

Generative models have a role in many important problems

4 / 38

Part I: Generative adversarial
networks

4 / 38

5 / 38

Generative adversarial networks

In generative adversarial networks (GANs), the task of learning a generative
model is expressed as a two-player zero-sum game between two networks.

―
Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 6 / 38

https://fleuret.org/dlc/

Architecture

The �rst network is a generator , mapping a latent space

equipped with a prior distribution to the data space, thereby inducing a

distribution

The second network is a classi�er trained to distinguish

between true samples and generated samples .

g(⋅; θ) : Z → X
p(z)

x ∼ q(x; θ) ⇔ z ∼ p(z),x = g(z; θ).

d(⋅;ϕ) : X → [0, 1]
x ∼ p(x) x ∼ q(x; θ)

7 / 38

Training

For a �xed , is high if is good at recognizing true from generated

samples.

If is the best classi�er given , and if is high, then this implies that the

generator is bad at reproducing the data distribution.

Conversely, will be a good generative model if is low when is a perfect

opponent.

V (ϕ, θ) = E log d(x;ϕ) + E log(1 − d(g(z; θ);ϕ))
θ
min

ϕ
max x∼p(x) [] z∼p(z) []

g V (ϕ, θ) d

d g V

g V d

8 / 38

―
Credits: Goodfellow et al, Generative Adversarial Networks, 2014. 9 / 38

https://arxiv.org/abs/1406.2661

Examples

10 / 38

A Style-Based Generator Architecture for GA Style-Based Generator Architecture for G……
Later bekijkLater bekijk…… DelenDelen

StyleGAN (v1) (Karras et al, 2018)

11 / 38

https://www.youtube.com/watch?v=kSLJriaOumA
https://www.youtube.com/channel/UCRtoHpUxLBJ95IU-p-4T_iA

StyleGAN (v2, v3) (Karras et al, 2021)

12 / 38

Image-to-image translation (Zhu et al, 2017)

13 / 38

High-Resolution Image Synthesis and SemHigh-Resolution Image Synthesis and Sem……
Later bekijkLater bekijk…… DelenDelen

High-resolution image synthesis (Wang et al, 2017)

14 / 38

https://www.youtube.com/watch?v=3AIpPlzM_qs
https://www.youtube.com/channel/UCFZyj1cwp7JLEqpMb_eTbOQ

GauGAN: Changing Sketches into PhotorealGauGAN: Changing Sketches into Photoreal……
Later bekijkLater bekijk…… DelenDelen

GauGAN: Changing sketches into photorealistic masterpieces (NVIDIA, 2019)

15 / 38

https://www.youtube.com/watch?v=p5U4NgVGAwg
https://www.youtube.com/channel/UCHuiy8bXnmK5nisYHUd1J5g

Captioning (Shetty et al, 2017)

16 / 38

Text-to-image synthesis (Zhang et al, 2017)

17 / 38

(Zhang et al, 2017)

18 / 38

Learning particle physics (Paganini et al, 2017)

19 / 38

Learning cosmological models (Rodriguez et al, 2018)
20 / 38

Part II: Variational auto-encoders

20 / 38

―
Credits: Francois Fleuret, Deep Learning, UNIGE/EPFL. 21 / 38

https://fleuret.org/dlc/

Variational auto-encoders
A variational auto-encoder is a deep latent variable model where:

The prior is prescribed, and usually chosen to be Gaussian.

The likelihood is parameterized with a generative

network (or decoder) that takes as input and outputs

parameters to the data distribution. E.g.,

The approximate posterior is parameterized with an inference

network (or encoder) that takes as input and outputs parameters

 to the approximate posterior. E.g.,

p(z)

p(x∣z; θ)
NNθ z

ϕ = NN (z)θ

μ,σ

p(x∣z; θ)
= NN (z)θ

= N (x;μ,σ I)2

q(z∣x;φ)
NNφ x

ν = NN (x)φ

μ,σ

q(z∣x;φ)

= NN (x)φ

= N (z;μ,σ I)2

22 / 38

We can use variational inference to jointly optimize the generative and the
inference networks parameters and .

We want

Given some generative network , we want to put the mass of the latent

variables, by adjusting , such that they explain the observed data, while

remaining close to the prior.

Given some inference network , we want to put the mass of the observed

variables, by adjusting , such that they are well explained by the latent

variables.

θ φ

θ ,φ∗ ∗ = arg ELBO(x; θ,φ)
θ,φ
max

= arg E log p(x, z; θ) − log q(z∣x;φ)
θ,φ
max q(z∣x;φ) []

= arg E log p(x∣z; θ) − KL(q(z∣x;φ)∣∣p(z)).
θ,φ
max q(z∣x;φ) []

θ

φ

φ

θ

23 / 38

Examples
Consider as data the MNIST digit dataset:d

24 / 38

(Kingma and Welling, 2013)

25 / 38

(Kingma and Welling, 2013) 26 / 38

Random walks in latent space (Vahdat and Kautz, 2020).

27 / 38

Hierarchical compression of images and other data, e.g., in video conferencing
systems (Gregor et al, 2016).

28 / 38

Understanding the factors of variation and invariances (Higgins et al, 2017).

29 / 38

Transfer learning from synthetic to real images uTransfer learning from synthetic to real images u……
Later bekijkLater bekijk…… DelenDelen

Bridging the simulation-to-reality gap (Inoue et al, 2017).

30 / 38

https://www.youtube.com/watch?v=Wd-1WU8emkw
https://www.youtube.com/channel/UCHuAMFn2T8nYEhcbvCXSfjA

Voice style transfer [demo] (van den Oord et al, 2017).

31 / 38

https://avdnoord.github.io/homepage/vqvae/

Design of new molecules with desired chemical properties (Gomez-Bombarelli et
al, 2016).

32 / 38

Part III: Normalizing �ows

32 / 38

Change of variables theorem

Assume is a uniformly distributed unit cube in and .

Since the total probability mass must be conserved,

where represents the determinant of the linear

transformation .

p(z) R3 x = f(z) = 2z

p(x = f(z)) = p(z) = p(z) ,
Vx

Vz

8
1

= det8
1

∣
∣
∣
∣
∣
∣

⎝

⎛2
0
0

0
2
0

0
0
2⎠

⎞

∣
∣
∣
∣
∣
∣−1

f

33 / 38

What if is non-linear?

The Jacobian of represents the in�nitesimal linear

transformation in the neighborhood of

If the function is a bijective map, then the mass must be conserved locally.

Therefore, the local change of density yields

Similarly, for , we have

f

J (z)f x = f(z)
z

p(x = f(z)) = p(z) det J (z) .∣ f ∣−1

g = f−1

p(x) = p(z = g(x)) det J (x) .∣ g ∣

34 / 38

Normalizing �ows
A normalizing �ow is a change of variable parameterized by an invertible neural

network that transforms a base distribution into . Formally,

 is a composition , where each is an invertible neural

transformation

, with and

f

p(z) p(x)

f f = f ∘ ... ∘ fK 1 fk

g = fk k
−1

z = f (z)k k k−1 z = z0 z = xK

p(z) = p(z = g (z)) det J (z)k k−1 k k ∣ gk k ∣

―
Image credits: Lilian Weng, 2018. 35 / 38

https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models

Examples

Normalizing �ows shine in applications for density estimation, where access to
the density function is required (Wehenkel and Louppe, 2019).

36 / 38

Normalizing �ows are at the core of neural posterior estimation algorithms for
simulation-based inference.

37 / 38

Density estimation on manifolds (Rezende et al, 2020).

38 / 38

The end.

38 / 38

