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Supervised learning—Common tasks

(a) Speech recognition. (b) Spam detection.

(c) Sentiment analysis. (d) Medical diagnosis (Mormont et al.,
2016).

Figure 1 Examples of tasks suited for supervised learning.
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Supervised learning—Common tasks

(e) Face detection/recognition.

Figure 1 Examples of tasks suited for supervised learning.
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Supervised learning—Overview
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Figure 2 Schematic of supervised learning.

Classification
A few modalities.

Regression
A continuous scale.

Introduction ▷ Supervised learning 3 / 54



Supervised learning example
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Figure 3 A classification problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 4 A decision tree (maximum depth = 1) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 5 A decision tree (maximum depth = 2) for the toy classification
problem.
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Supervised learning example: decision tree

43
[43, 0]

245
[157, 88]

55
[0, 55]

x0 <= -0.964
288

[200, 88]

x1 <= -0.85
343

[200, 143]
57

[0, 57]

x1 <= 0.761
400

[200, 200]

(a) Decision tree.

2 1 0 1 2
x0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 1
(b) Boundary and decision function.

Figure 6 A decision tree (maximum depth = 3) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 7 A decision tree (maximum depth = 4) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 8 A decision tree (maximum depth = 5) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 9 A decision tree (maximum depth = 6) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 10 A decision tree (maximum depth = 7) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 11 A decision tree (maximum depth = 8) for the toy classification
problem.
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Supervised learning example: decision tree
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(b) Boundary and decision function.

Figure 12 A decision tree (maximum depth = 9) for the toy classification
problem.
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Objective—loss ℓ and risk

Loss function ℓ
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Figure 13

Minimizing the risk

min
ŷ(·)∈H

E(x ,y)∼I{ℓ (y , ŷ(x))} (1)

Introduction ▷ Objective 6 / 54



Objective—Overfitting
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Figure 14 Generalization and re-substitution errors for the two-ellipses
problem and decision tree.
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Supervised learning under constraints
Supervised learning
Given data, find, with reasonable resources, the best model
ŷ(·) ∈ H for a problem according to some learning objective.

Constraints
Anything (extrinsic to the problem) which conditions or limits
learning.

(a) Low latency. (b) Lack of
data.

(c)
Interpretability.

Figure 15
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Contributions

Model
Small n/a

Traditional
learning

Forest pre-pruning
(Chap. 6)

Sample-free
post-processing

Network
compression
(Chap. 8)

Enforcing
robustness
(Chap. 7)

Interpretability (Chap. 9)

Introduction ▷ Constraints and contributions 9 / 54



Small models

(a) Big data/hard problem. (b) Speed.

(c) Energy.
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(d) Reduced overfitting.

Figure 16 The “whys” of small models
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Data unavailability

(a) Privacy. (b) Size.

(c) Cost. (d) Business reasons.

Figure 17 The “whys” behind data unavailability.
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Globally Induced Forests
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Foreword—Decision forest
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Figure 18 Prediction with a decision tree

Forest
Learning introduce randomness to produce different trees.

Prediction propagate to all trees and aggregate prediction.
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Foreword—Decision forest
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Figure 19 Prediction with a decision forest

Forest
Learning introduce randomness to produce different trees.

Prediction propagate to all trees and aggregate prediction.
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Goal and motivation

What? Building accurate yet lightweight decision forests
quickly (i.e. without building the whole model first).

Why? Decision forests are heavy models memory-wise:
∝ Number of nodes in a tree is (at worst) linear

with the size of the data;
∝ number of required trees grows with the problem

complexity.
How? Globally Induced Forests (GIFs):

▶ add one node at a time;
▶ choose globally.

GIF ▷ Goal and motivation 16 / 54



GIF algorithm—Illustration

4

1

5

10 11 12 13

6

2

7

14 15 16 17

8

3

18 19 20 21

Node belonging to the model

Candidate node

Hypothetical un-pruned trees

9

Initial (loop) state

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Illustration
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GIF algorithm—Node selection: the forest space
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Figure 21 A decision forest
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GIF algorithm—Node selection: the forest space
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j 1 2 3 4 5 6 7 8 9 10 11 12
wj 0 0 0.3 −3.1 −0.2 0 0 0 3.1 5.6 −2.6 4.3
zj(x) 1 1 0 0 1 1 0 1 0 0 1 0
wjzj(x) 0 0 0 0 −0.2 0 0 0 0 0 −2.6 0

ŷ(x) =
12∑
j=1

wjzj(x) = −0.2 + −2.6 = −2.8 (2)
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GIF algorithm—Illustration
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GIF ▷ GIF algorithm 19 / 54



GIF algorithm—Node selection: the global program

ŷ[t](x) = w0 +
t∑

τ=1

w
[τ ]

j [τ ]
zj [τ ](x) = ŷ[t−1](x) + w

[t]

j [t]
zj [t](x) (3)

where w0 is the best constant over the learning set

The best node j [t], together with its optimal weight w [t]

j [t]
, are the

ones minimizing some loss ℓ over the training set {(xi , yi )}ni=1:(
j [t],w

[t]

j [t]

)
= argmin

j∈C[t],w∈RK

n∑
i=1

ℓ
(
yi , ŷ[t−1](xi ) + wzj(xi )

)
(4)

where C[t] is the subsample of candidates.
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GIF algorithm—Node selection: the global program

The problem is solved in two steps

1. for a candidate j , compute the best weight w [t]
j (closed form):

w
[t]
j = argmin

w∈RK

n∑
i=1

ℓ
(
yi , ŷ[t−1](xi ) + wzj(xi )

)
(5)

2. select the best candidate (exhaustive search):

j [t] = argmin
j∈C[t]

n∑
i=1

ℓ
(
yi , ŷ[t−1](xi ) + w

[t]
j zj(xi )

)
(6)
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Results — Protocol

1. Grow a forest of a thousand fully-developed Extremely
randomized trees (ET100%) and count the number of nodes M.

2. Compare how different methods fare (in average over ten runs)
under a constraint of 1% and 10% of that budget.

GIFx% grow the forest of a thousand trees until the
node budget is met with the GIF algorithm.

RANDx% grow a forest of a thousand trees randomly.
ETx% grow only 10x fully-developed trees.

Hyper-parameters

λ = 10−1.5

CW = 1
m = 1000

Splits: extremely randomized trees
(ET), default hyper-parameters
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Results — Regression

0.00.51.01.52.0

  Cadata  

Friedman1
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Figure 23 Relative average mean square error to ET100%.
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Conclusion and future works

See thesis for more
▶ Experiments and discussion regarding hyper-parameters;
▶ comparison with more methods (baselines, post-pruning,

boosting);
▶ producing interpretable models.

Take home message
▶ GIF allows for lightweight yet accurate forests;
▶ global optimization of the weight usually helps;
▶ optimizing the choice of node might lead to overfitting.

TODOs
▶ Handle multiclass problems better.
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Out-of-distribution (OOD) detection

Figure 24 Training data (from Mormont et al., 2016).

Figure 25 Anomalies.
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Out-of-distribution (OOD) detection

Figure 24 Training data (from Mormont et al., 2016).

Figure 25 Anomalies.
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Goal and motivation

What? Detecting OOD samples a posteriori, i.e. without
data.

What for? ▶ Robustness;
▶ does the model know what it should receive as

inputs?
▶ useful for other tasks.

Context? Deep networks for image classification.
How? With white-box indicators.
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Deep learning 101

Figure 26 DenseNet (Huang et al., 2017), an example of a deep network.

p̂(·,Θ) = softmax(·) ◦ (W ·+b)︸ ︷︷ ︸
softmax classifier

◦ fL−1(·; θL−1) ◦ . . . ◦ f1(·; θ1)︸ ︷︷ ︸
feature extractor u(·)

(7)

The trainable weights Θ = [θ1, . . . , θL−1, (W , b)] are learned by
gradient descent (over a cross-entropy loss).
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Deep learning—Optimization (feature extractor)
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Figure 27 Feature extractor optimization (toy problem). At initialization.
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Deep learning—Optimization (feature extractor)
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Figure 28 Feature extractor optimization (toy problem). After 10
iterations.
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Deep learning—Optimization (feature extractor)
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Figure 29 Feature extractor optimization (toy problem). After 15
iterations.
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Deep learning—Optimization (feature extractor)
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Figure 30 Feature extractor optimization (toy problem). At convergence.
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OOD white-box indicators

▶ Sample-free;
▶ white-box: details of the model are known (Θ);
▶ indicator:

g(x ; Θ) is

{
low if x is from the training distribution;
high otherwise.

(8)

How?
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OOD white-box indicators—baseline
Example (from Hendrycks and Gimpel, 2017):

MP(x) = 1 − max
1≤j≤K

p̂(j)(x) (9)

Ƹ𝑝(𝑥1) Ƹ𝑝(𝑥2) Ƹ𝑝(𝑥3) Ƹ𝑝(𝑥4)

Probability of belonging to

class 1

class 2

class 3

class 5

class 4

OODTraining distribution

Ƹ𝑝(1)(⋅)

Ƹ𝑝(2)(⋅)

Ƹ𝑝(3)(⋅)

Ƹ𝑝(5)(⋅)

Ƹ𝑝(4)(⋅)

Figure 31
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OOD white-box indicators—ang

Figure 32
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OOD white-box indicators—how

Optimality-based indicators (11)

ODIN* T1000 H Proj Norm Norm+
Act Act+ MP* Ang Ang++

Statistically-based indicators (7)

In-DMS In-DSS DMS-AOS
In-DMS-AOS DSS DMS DSS-Ext

Aggregation (1)

1C-Sum
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Results—datasets

Figure 33 Original task: CIFAR 10.

(a) Gaussian. (b) SVHN. (c) MNIST.

Figure 34 OOD datasets.
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Results—datasets

Figure 33 Original task: CIFAR 10.

(a) Tiny ImageNet. (b) LSUN.

Figure 34 OOD datasets.
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Results—main experiment
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Figure 35 Performance of several indicators for OOD detection. Base
task is CIFAR 10 on a DenseNet 50 network.
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Conclusion

See thesis for more
▶ Redundancy analysis;
▶ discussion regarding the model quality;
▶ study of indicators for misclassifcation, with and without OOD

detection;
▶ discussion on how to use indicators in practice.

Take home message
▶ Sample-free OOD detection works quite well on some

problems;
▶ hard tasks require data.

TODOs
▶ Other indicators?
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Outline

Introduction

Globally Induced Forests

Sample-free Out-of-distribution detection

Distillation from heterogeneous collections
Goal and motivation
Distillation
Collection and adaptations
Conclusion

Conclusion
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Goal and motivation

Big network

Small network

C
o
m
p
r
e
s
s
i
o
n

Figure 36 Compression.

What? Compress a big network into a lightweight one
without data of training task.

Context? Deep networks for image classification.
How? Distillation from heterogeneous collections.
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Distillation

𝑢𝑡(∙)

𝑢𝑠(∙)

𝑊𝑡 ∙ +𝑏𝑡

ℓ ො𝑝𝑡(𝑥), ො𝑝𝑠(𝑥)
𝑥

𝑊𝑠 ∙ +𝑏𝑠

S

S

Figure 37 Teacher-student transfer: the memory requirements are met by
choosing an appropriate student architecture.

Distill ▷ Distillation 41 / 54



Adaptations

No data
▶ heterogeneous collection.

Imperfect data
▶ learn more from teacher;
▶ focus on relevant data.
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Collections

Figure 38 Original task: CIFAR 10.

(a) Relevant. (b) Irrelevant.

Figure 39
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Adaptations

No data
▶ heterogeneous collection.

Imperfect data
▶ learn more from teacher;
▶ focus on relevant data.
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Distillation—Fixed softmax classifier

𝑢𝑡(∙)

𝑢𝑠(∙)

𝑊𝑡 ∙ +𝑏𝑡

P

ℓ 𝑢𝑡(𝑥), 𝑃 𝑢𝑠(𝑥)𝑥

Figure 40 Fixed linear distillation (FL+P): learning the same feature
extractor and keeping the softmax classifier of the teacher.
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Results
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Figure 41 Performance of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from ResNet 50 to MobileNet v2.
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Adaptations

No data
▶ heterogeneous collection.

Imperfect data
▶ learn more from teacher;
▶ focus on relevant data.
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Distillation—biasing towards good data

Training set

Collection

No bias

Mild bias

High bias

Figure 42 Biasing towards good data: select the data proportionally to
how they “resemble” the training data (colors indicate resemblance).

Look for good data with an OOD indicator.
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Figure 43 Performance of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from DenseNet 121 to MobileNet v2.

Distill ▷ Collection and adaptations 49 / 54



Results
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Figure 44 Convergence of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from DenseNet 121 to MobileNet v2.
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Conclusion

See thesis for more
▶ Same collection, different base tasks;
▶ more teacher/student pairs;
▶ effects of the biasing mechanism.

Take home message
▶ Works quite well and (relatively) fast;
▶ relevant data > fixed-linear distillation > biasing

TODOs
▶ Improves the biasing mechanism;
▶ further improve transfer from teacher.
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Conclusion

Supervised machine learning under constraints
▶ Producing small decision forests;
▶ detecting out-of-distribution samples in a sample-free regime;
▶ compressing a deep network without data;

Overall take home message
Even though working with severe constraints is challenging, good
results are achievable.

Meeting more and more constraints efficiently is the logical
evolution.
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Conclusion

With great success come great challenges
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Backup
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OOD—Results—Protocol

▶ Three architectures: DenseNet 121 (Huang et al., 2017),
ResNet 50 (He et al., 2016), WideResNet (Zagoruyko and
Komodakis, 2016);

▶ three base tasks: CIFAR 10, CIFAR 100 (Krizhevsky, Hinton,
et al., 2009), ImageNet (Deng et al., 2009);

▶ several OOD datasets (pure noise, gray images, very different
label space, close input statistics).

▶ metric: area under the ROC curve (auroc); aggregate of
▶ OOD correctly identified (TPR);
▶ ID taken for OOD (FPR).

True positive rate (y-axis): OOD catched rate False positive rate
(x-axis): ID mistakenly taken for OOD
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Distillation—Formally
Teacher

p̂t(·,Ψ) = softmax(·) ◦ (Wt ·+bt) ◦ ft;Lt−1(·;ψLt−1) ◦ . . . ◦ ft;1(·;ψ1)
(10)

= softmax(·) ◦ (Wt ·+bt) ◦ ut(·;ψLt−1:1) (11)

Student

p̂s(·,Θ) = softmax(·) ◦ (Ws ·+bs) ◦ ut(·; θLt−1:1) (12)

Teacher-student transfer

min
Θ

Ex∼I{ℓ (p̂s(x ,Θ), p̂t(x ,Ψ))} (13)

Meet the requirement (memory, latency, etc.) by choosing the
student architecture properly.
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Distillation—biasing towards good data

Ex∼I{ℓ (p̂s(x ,Θ), p̂t(x ,Ψ))} = Ex∼O{β(x) ℓ (p̂s(x ,Θ), p̂t(x ,Ψ))}

(14)

β(x) =
logPI(x)

logPO(x)
(15)

Idea
Biasing the sampling select data randomly but proportionally to

β(x).
Characterizing score β(x) ∝ 1

λe
g(x)

▶ λ controls the biasing;
▶ OOD indicator can be used as proxy for g(x).
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Distillation—Fixed softmax classifier

Idea
Increase the knowledge transfer (more information per sample) by
▶ learning only the feature extractor u(·);
▶ projecting the feature vectors onto the teacher latent space;
▶ keeping the same softmax classifier.


Ws = PWt

bs = bt

minθ,P Ex ||Pus(x ; θ)− ut(x)||22

(16)
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Distillation—Results—Protocol

▶ Two teacher architectures: DenseNet 121 (Huang et al., 2017)
and ResNet 50 (He et al., 2016);

▶ Two student architectures: MobileNet v2 (Sandler et al.,
2018) and ShuffleNet v2 (Ma et al., 2018);

▶ Two base tasks: CIFAR 10 (Krizhevsky, Hinton, et al., 2009)
mainly and KMNIST (Clanuwat et al., 2018);
▶ Rel.: Tiny ImageNet (Le and Yang, 2015) and STL 10

(Coates, Ng, and Lee, 2011);
▶ Irrel.: MNISTx2 (LeCun et al., 1998), Fashion MNIST

(Xiao, Rasul, and Vollgraf, 2017) and SVHN (Netzer et al.,
2011).
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Fig. 2 Hand-written digits taken from MNIST (LeCun et al.,
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