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Supervised learning—Common tasks

=©
(a) Speech recognition. (b) Spam detection.
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a) Pseudo-inclusion
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(b) Inclusion

(c) Sentiment analysis. (d) Medical diagnosis (Mormont et al.,
2016).

Figure 1 Examples of tasks suited for supervised learning.
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Supervised learning—Common tasks

Warit o tag Clark Kent?
Yes - Mo

(e) Face detection /recognition.

Figure 1 Examples of tasks suited for supervised learning.
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Supervised learning—OQOverview

B F(x)
Figure 2 Schematic of supervised learning.
Classification Regression
A few modalities. A continuous scale.
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Supervised learning example
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Figure 3 A classification problem.
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Supervised learning example: decision tree

x1 <= 0.761
400
[200, 200]

VAR
343
[200, 143] -

(a) Decision tree. (b) Boundary and decision function.

-2 -1 0 1 2
Xo

Figure 4 A decision tree (maximum depth = 1) for the toy classification
problem.
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Supervised learning example: decision tree

x; <=0.761
400
[200, 200]

Z
x1 <=-0.85 \'
i
[200, 143]
/ N
288
[200, 88]

-2 -1 0 1 2
Xo

(a) Decision tree. (b) Boundary and decision function.

Figure 5 A decision tree (maximum depth = 2) for the toy classification
problem.
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Supervised learning example: decision tree

x1 <= 0.761

400
[200, 200]

N

z
x1 <=-0.85

343
[200, 143]

N
P Xo <= -0.964
m
[200, 88]
245
[157, 88]

(a) Decision tree. (b) Boundary and decision function.

Figure 6 A decision tree (maximum depth = 3) for the toy classification
problem.
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Supervised learning example: decision tree

Xx; <= 0.761
400
(200, 200]
X1 <= -0.85
343
[200, 143]

! xo <_ o 556
[157 83]

(a) Decision tree. (b) Boundary and decision function.

Figure 7 A decision tree (maximum depth = 4) for the toy classification
problem.
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Supervised learning example: decision tree

X1 <= 0761
400
1200, 200]
X <= 085
S
(200, 143]
Xo <= -0.964
m [E
[200, 88]
Xo <= -0.556
I
(157, 88)

(a) Decision tree. (b) Boundary and decision function.

Figure 8 A decision tree (maximum depth = 5) for the toy classification
problem.
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Supervised learning example: decision tree

(a) Decision tree. (b) Boundary and decision function.

Figure 9 A decision tree (maximum depth = 6) for the toy classification
problem.
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Supervised learning example: decision tree

(a) Decision tree. (b) Boundary and decision function.

Figure 10 A decision tree (maximum depth = 7) for the toy classification
problem.
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Supervised learning example: decision tree

(a) Decision tree. (b) Boundary and decision function.

Figure 11 A decision tree (maximum depth = 8) for the toy classification
problem.
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Supervised learning example: decision tree

(a) Decision tree. (b) Boundary and decision function.

Figure 12 A decision tree (maximum depth = 9) for the toy classification
problem.
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Objective—loss ¢ and risk
Loss function /¢

Prediction

Truth
o

(a) Zero-one loss £o_1. (b) Squared loss £>.

Figure 13

Minimizing the risk
min. Eey)~z iy, 9(x))} (1)
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Objective—Overfitting

—+= Training set

0.4 —}— Test test

0.3 A

0.2 A

HHHHHH

Error (misclassification rate)

0.1 A \\i\‘
by,

LA S N

0.0 A

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Complexity (maximum depth)

Figure 14 Generalization and re-substitution errors for the two-ellipses

problem and decision tree.
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Supervised learning under constraints

Supervised learning

Given data, find, with reasonable resources, the best model
y(-) € H for a problem according to some learning objective.

Constraints
Anything (extrinsic to the problem) which conditions or limits

learning.
(a) Low latency. (b) Lack of (c)
data. Interpretability.
Figure 15
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Contributions

Model
Small n/a
Traditional Forest pre-pruning
learning (Chap. 6)
Samplefree Network e Enforcing
. compression robustness
post-processing (Chap. 8) (Chap. 7)
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Small models

()
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a) Big data/hard problem.

b .
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(c) Energy. (d) Reduced overfitting.

Figure 16 The "whys" of small models
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Data unavailability

(c) Cost. (d) Business reasons.

Figure 17 The “whys" behind data unavailability.
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Outline

Introduction
Supervised learning
Example
Objective
Constraints and contributions

Globally Induced Forests
Sample-free Out-of-distribution detection
Distillation from heterogeneous collections

Conclusion
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GIF >

Globally Induced Forests
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Outline

Globally Induced Forests
Decision forest
Goal and motivation
GIF algorithm
Results
Conclusion
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Foreword—Decision forest

Figure 18 Prediction with a decision tree
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Foreword—Decision forest

Figure 19 Prediction with a decision forest

Forest
Learning introduce randomness to produce different trees.

Prediction propagate to all trees and aggregate prediction.
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Goal and motivation

What? Building accurate yet lightweight decision forests
quickly (i.e. without building the whole model first).
Why? Decision forests are heavy models memory-wise:
o< Number of nodes in a tree is (at worst) linear
with the size of the data;
o number of required trees grows with the problem
complexity.
How? (GIFs):
» add one node at a time;
» choose globally.

° GIF Goal and motivation °



GIF algorithm—Illustration

10 11 12 13 14 15 16 17

. Node belonging to the model Initial (loop) state
Hypothetical un-pruned trees

. Candidate node

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Illustration

10 11 12 13 14 15 16 17 18

. Node belonging to the model 1. Select some candidates
Hypothetical un-pruned trees

Candidate node

‘ Randomly preselected
candidate node

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Illustration

Chosen node

10 11 12 13 14 15 16 17 18

. Node belonging to the model 1. Select some candidates
2. Choose one of them
Hypothetical un-pruned trees

Candidate node

‘ Randomly preselected
candidate node

Figure 20 GIF algorithm: an illustration

GIF > GIF algorithm ©@0000
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GIF algorithm—Illustration

10 11 12 13 14 15 16 17

. Node belonging to the model 1. Select some candidates
2. Choose one of them
Hypothetical un-pruned trees 3. Add it to the model

. Candidate node

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Illustration

. Select some candidates

. Choose one of them

. Add it to the model

. Add its children (if any) to the
candidate list

. Node belonging to the model
Hypothetical un-pruned trees

. Candidate node

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Illustration

. Node belonging to the model . Select some candidates
m
Hypothetical un-pruned trees

. Candidate node

Figure 20 GIF algorithm: an illustration
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GIF algorithm—Node selection: the forest space

Figure 21 A decision forest

J 1 2 3 4 5 6 7 8 9 10 11 12
w; 0 0 03 31 -02 0O O O 31 56 —-26 43
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GIF algorithm—Node selection: the forest space

X

w -3.1 -0.2 3.1 5.6 -2.6 4.3
j 1 2 3 4 5 6 7 8 9 10 11 12
w; 0O 0 03 -31 —-02 O O O 31 56 -—-26 43
zi(x) 1 1 o0 0 1 1 01 0 0 1 0
wizi(x) |0 0 0 0 -02 0 0 0 0 0 -26 O
12
Jx) =D wizi(x) =02 + —2.6 = —2.8 (2)
Jj=1
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GIF algorithm—Illustration

Chosen node

10 11 12 13 14 15 16 17 18

. Node belonging to the model 1. Select some candidates
2. Choose one of them
Hypothetical un-pruned trees

Candidate node

‘ Randomly preselected
candidate node

Figure 22 GIF algorithm: an illustration
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GIF algorithm—Node selection: the global program

t
Ja()=wo+ > WJ-[[TT]]ZJ-H (x) = Fre—1y(x) + V'/J'[[ﬂzj[t] (x)

=1

where wy is the best constant over the learning set

° GIF > GIF algorithm [eXeXoX Yol

(3)
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GIF algorithm—Node selection: the global program

t
Ja(x) = wo + Zl Wiz (x) = Fe-y () + whlzia(x) - (3)

where wy is the best constant over the learning set

The best node jIt], together with its optimal weight Wj[[ﬂ are the

ones minimizing some loss ¢ over the training set {(x;, yi)}7_;:

(j[f]’ Wj[lg) = argmin Zf (vir Je-1y () + wzi(xi)) - (4)

JEQy,weRK 1

where (4 is the subsample of candidates.

° GIF GIF algorithm [eXeXoX Yol



GIF algorithm—Node selection: the global program

The problem is solved in two steps

1. for a candidate j, compute the best weight Wj[t] (closed form):

K
weR™ =1

2. select the best candidate (exhaustive search):

j[t] = argmin Zé (Yh),}[t—l](x") + Wj[t]zj(xi)> (6)
jec[t] i=1

° GIF > GIF algorithm ooooe 21 / 54



Results — Protocol

1. Grow a forest of a thousand fully-developed Extremely
randomized trees (ET1qqe,) and count the number of nodes M.
2. Compare how different methods fare (in average over ten runs)
under a constraint of 1% and 10% of that budget.
GIF 0, grow the forest of a thousand trees until the
node budget is met with the GIF algorithm.
RAND,., grow a forest of a thousand trees randomly.
ET .o, grow only 10x fully-developed trees.

Hyper-parameters

A=10""° Splits: extremely randomized trees
CW = (ET), default hyper-parameters
m = 1000

° GIF Results [ X



Results — Regression

1% budget 10% budget

CT Slice

Abalone

Cadata

I L
2.0 15 1.0 0.5 0.0 0.0 0.5 1.0 15

|- ET,, == GIF,, s RAND,;

Figure 23 Relative average mean square error to ETqgge.

° GIF > Results oe

2.0

23 / 54



Conclusion and future works

See thesis for more
> Experiments and discussion regarding hyper-parameters;

» comparison with more methods (baselines, post-pruning,
boosting);

» producing interpretable models.

v

GIF allows for lightweight yet accurate forests;

v

global optimization of the weight usually helps;
» optimizing the choice of node might lead to overfitting.

TODOs
» Handle multiclass problems better.

° GIF Conclusion °
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Sample-free Out-of-distribution detection
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Outline

Sample-free Out-of-distribution detection
Goal and motivation
Deep learning
White-box indicators
Results
Conclusion
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Out-of-distribution (OOD) detection

LY g

(a) Pseudo-inclusion

(b) Inclusion

Figure 24 Training data (from Mormont et al., 2016).
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Out-of-distribution (OOD) detection

LY g

(a) Pseudo-inclusion

(b) Inclusion

Figure 24 Training data (from Mormont et al., 2016).

Figure 25 Anomalies.
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Goal and motivation

What? Detecting OOD samples a posteriori, i.e. without
data.

What for?  » Robustness;
» does the model know what it should receive as
inputs?
» useful for other tasks.
Context? Deep networks for image classification.

How? With white-box indicators.

° ooD Goal and motivation oo e 28 / 54



Deep learning 101

Input
Dense Block 1 Dense Block 2

Prediction
Dense Block 3 -

Figure 26 DenseNet (Huang et al., 2017), an example of a deep network.

Y

Ld
Y
Y
Y
Y
\d

ﬁ(', @) = softmax(-) o (W . +b) o f[__l('; 9L—1) 0...0 f]_(, 01) (7)

/

TV . Vv
softmax classifier feature extractor u(-)

The trainable weights © = [01,...,60,_1,(W, b)] are learned by
gradient descent (over a cross-entropy loss).
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Deep learning—Optimization (feature extractor)

10.0

7.5 1

5.0 1

2.5 1

0.0 1

X1

—2.51

—5.0 1

—7.5
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Figure 27 Feature extractor optimization (toy problem). At initialization.
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Deep learning—Optimization (feature extractor)

10.0
7.5 /
5.0 1

251 /

0.0

. /
|

-10.0 T T T T T T
-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Xo

X1

Figure 28 Feature extractor optimization (toy problem). After 10
iterations.
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Deep learning—Optimization (feature extractor)

10.0

7.5 1

5.0 1

2.5 1

0.0 1

X1

—2.51

—5.0 1

-10.0 T T T T T T T
-10.0 =75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Xo

Figure 29 Feature extractor optimization (toy problem). After 15
iterations.
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Deep learning—Optimization (feature extractor)

10.0

7.5 1

X1

—5.0 1

-10.0 T T T T T T T
-10.0 -75 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
Xo

Figure 30 Feature extractor optimization (toy problem). At convergence.
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OOD white-box indicators

» Sample-free;
> white-box: details of the model are known (©);

» indicator:

low if x is from the training distribution;

g(x;0) is { (8)

high otherwise.

How?

° ooD White-box indicators @000



OOD white-box indicators—baseline
Example (from Hendrycks and Gimpel, 2017):

L 50)
MP(x) =1 lgangp (x) (9)

D) . ------------------ class 1 -----m--ooso-oeeeo
PAG | | - class 2 ---e--emomeeeeoes
PAO [ | e class 3 --meo-eeomeoeeoes
ﬁ(4)(_) __________________ class 4 ...

. ICI0 Y class 5 = -wroemoemooeooees

p(x1) p(x2) p(xs) P(x4)
Training distribution Figure 31 00D
° OOD > White-box indicators ocoeo0o0
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OOD white-box indicators—ang

10.0

7.5 4

5.0

2.54

0.0 {55

X1

-2.5

N

—5.0 4

—7.59

-10.0

=10.0 =7.5

° OOD > White-box indicators

=5.0

-2.5

0.0 2.5

Xo

Figure 32
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OOD white-box indicators—how

Optimality-based indicators (11)

ODIN* T1000 H Proj Norm Norm+
Act Act+ MP*  Ang Ang++

Statistically-based indicators (7)

In-DMS In-DSS DMS-AQS
In-DMS-AOS DSS DMS DSS-Ext

Aggregation (1)

1C-Sum

° OOD > White-box indicators ocooe 34 / 54



Results—datasets

(a) Gaussian. (b) SVHN.
Figure 34 OOD datasets.

° OOD > Results [ Xe} 35/ 54



Results—datasets

° ooD

Figure 33 Original task: CIFAR 10.

._,__%___

(a) Tiny ImageNet. (b) LSUN.
Figure 34 OOD datasets.
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Results—main experiment

LSun

00D
MNIST  Tiny ImgNet

SVHN

Gaussian

0 20 40 60 80 100
Area under the ROC curve (in %)

Figure 35 Performance of several indicators for OOD detection. Base
task is CIFAR 10 on a DenseNet 50 network.
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Results—main experiment

LSun

00D
MNIST  Tiny ImgNet

SVHN

Gaussian

0 20 40 60 80 100
Area under the ROC curve (in %)

Figure 35 Performance of several indicators for OOD detection. Base
task is CIFAR 10 on a DenseNet 50 network.
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Conclusion

See thesis for more
» Redundancy analysis;
> discussion regarding the model quality;

» study of indicators for misclassifcation, with and without OOD
detection;

> discussion on how to use indicators in practice.

» Sample-free OOD detection works quite well on some
problems;

» hard tasks require data.

TODOs
» Other indicators?

° ooD Conclusion °
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Outline

Distillation from heterogeneous collections
Goal and motivation
Distillation
Collection and adaptations
Conclusion
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Goal and motivation

Big network

HHH

Figure 36 Compression.

What? Compress a big network into a lightweight one
without data of training task.

Context? Deep networks for image classification.

How? Distillation from heterogeneous collections.

° Distill > Goal and motivation o e 40 / 54



Distillation

ut (') Wt * +bt

x 2(pe(x), Ps(x))

J
ug(*) Ws - +bs

Figure 37 Teacher-student transfer: the memory requirements are met by
choosing an appropriate student architecture.

° Distill > Distillation °
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Adaptations

No data

> heterogeneous collection.
Imperfect data

» |learn more from teacher;

» focus on relevant data.

° Distill > Collection and adaptations ©@00000000
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Collections

L

Figure 38 Original task: CIFAR 10.

(a) Relevant. (b) Irrelevant.

Figure 39

° Distill > Collection and adaptations 0O®@0000000 43 / 54



Adaptations

No data
>

Imperfect data
> learn more from teacher;
>

° Distill > Collection and adaptations 0O0O®@000000
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Distillation—Fixed softmax classifier

Ijt () Wt . +bt

e(ut(x),Px
J

ug()

Figure 40 Fixed linear distillation (FL4-P): learning the same feature
extractor and keeping the softmax classifier of the teacher.

° Distill > Collection and adaptations 000O®@00000

45 / 54



Results

I FL+P [ Distillation

Ori.

Transfer collection

Rel. + irrel

70 75 80 85 90 95 100
Accuracy [%]

Figure 41 Performance of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from ResNet 50 to MobileNet v2.
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Adaptations

No data
>

Imperfect data
>

» focus on relevant data.

° Distill > Collection and adaptations 00000@000
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Distillation—Dbiasing towards good data

E ﬁ ‘ o

- i |E| e e
e tl |i |i e e

Figure 42 Biasing towards good data: select the data proportionally to
how they “resemble” the training data (colors indicate resemblance).

Training set

Look for good data with an OOD indicator.

° Distill > Collection and adaptations 000000@00 48 / 54



Results

Biasing
I None [EE High

P /3 Mild

£ :
c i
o
= @
§ 3 <
5 £
= g
3
o
=

o]

a

70 75 80 85 90 95 100

Accuracy [%]

Figure 43 Performance of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from DenseNet 121 to MobileNet v2.
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Results

Test accuracy

Figure 44 Convergence of transfer from unlabeled collection. The task
being transferred is CIFAR 10 from DenseNet 121 to MobileNet v2.

° Distill

Rel. + irrel.

0.90 A

0.85 A

0.80

0.75

0.70

0.65

0.60

0.55 A

Biasing
—— None
Mild
—— High

> Collection and adaptations

Training time

[e)eleNoNoN o o oX )
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Conclusion

See thesis for more
» Same collection, different base tasks;
» more teacher/student pairs;

> effects of the biasing mechanism.

» Works quite well and (relatively) fast;
> relevant data > fixed-linear distillation > biasing

TODOs
» Improves the biasing mechanism;
» further improve transfer from teacher.

° Distill Conclusion °
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Conclusion

Supervised machine learning under constraints
» Producing small decision forests;
> detecting out-of-distribution samples in a sample-free regime;

> compressing a deep network without data;

Overall take home message

Even though working with severe constraints is challenging, good
results are achievable.

Meeting more and more constraints efficiently is the logical
evolution.

e Conclusion Wrap up @0 53 / 54



Conclusion

With great success come great challenges

) Conclusion Wrap up 0 @
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OOD—Results—Protocol

» Three architectures: (Huang et al., 2017),
ResNet 50 (He et al., 2016), WideResNet (Zagoruyko and
Komodakis, 2016);

» three base tasks: , CIFAR 100 (Krizhevsky, Hinton,
et al., 2009), ImageNet (Deng et al., 2009);

> several OOD datasets (pure noise, gray images, very different
label space, close input statistics).

» metric: area under the ROC curve (auroc); aggregate of

» OOD correctly identified (TPR);
» ID taken for OOD (FPR).

True positive rate (y-axis): OOD catched rate False positive rate
(x-axis): 1D mistakenly taken for OOD

Backup OO0D e



Distillation—Formally

Teacher
p:(-, W) = softmax(-) o (W; - +b¢) o frop,—1( ¥, —1) 0 ... o fr1 (v 1h1)
(10)
= softmax(-) o (W; - +b¢) o ue(+;¥1,-1.1) (11)
Student

ps(-, ©) = softmax(-) o (Ws - +bs) o ue(+; 01,-1:1) (12)

Teacher-student transfer

min Ex~z{¢(Ps(x, ©), pe(x, V))} (13)

Meet the requirement (memory, latency, etc.) by choosing the
student architecture properly.

Backup > Distill c@eooo 57 / 54



Distillation—biasing towards good data

Bz {£ (Bs(x, ©), Be(x, W)} = B { /() £ (B(x, ©), pe(x, W)}
(14)

(x) = log Pz(x)

- logPo(x) (1%)

ldea
Biasing the sampling select data randomly but proportionally to
B(x).
Characterizing score B(x) oc 3 e8>
> )\ controls the biasing;
» OOD indicator can be used as proxy for g(x).

Backup © Distill coeoo
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Distillation—Fixed softmax classifier

Idea
Increase the knowledge transfer (more information per sample) by

» learning only the feature extractor u(-);
> projecting the feature vectors onto the teacher latent space;

> keeping the same softmax classifier.

Ws = PW;
b = b, (16)
ming p Ex ||Pus(x; 0) — ue(x)|[3

Backup Distill cooeo



Distillation—Results—Protocol

» Two teacher architectures: (Huang et al., 2017)
and ResNet 50 (He et al., 2016);
» Two student architectures: (Sandler et al.,
2018) and ShuffleNet v2 (Ma et al., 2018);
» Two base tasks: (Krizhevsky, Hinton, et al., 2009)
mainly and KMNIST (Clanuwat et al., 2018);
> : Tiny ImageNet (Le and Yang, 2015) and STL 10
(Coates, Ng, and Lee, 2011);
> : MNISTx2 (LeCun et al., 1998), Fashion MNIST
(Xiao, Rasul, and Vollgraf, 2017) and SVHN (Netzer et al.,
2011).

Backup Distill coooe
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Fig. 2 Hand-written digits taken from MNIST (LeCun et al.,
1998)
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