
UNIVERSITY OF LIÈGE

Faculty of Applied Sciences
Department of Electrical Engineering & Computer Science

Doctoral Thesis

Supervised machine learning
under constraints

Author:
Jean-Michel BEGON

Supervisor:
Pr. Pierre GEURTS

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

December 28, 2021

iii

Jury members

PIERRE GEURTS, Professor at the Université de Liège (Advisor)

GILLES LOUPPE, Professor at the Université de Liège (President)

LOUIS WEHENKEL, Professor at the Université de Liège (Advisor)

HENRIK BOSTRÖM, Professor at KTH Royal Institute of Technology (Sweden)

CHRISTOPHE DE VLEESCHOUWER, Professor at the Université catholique de
Louvain (Belgium)

v

Acknowledgments

This thesis would not have seen the day without the help of many people to
whom I extend my thanks.

First of all, I must thank Luck, Fate, or whatever name is suitable for all
the hidden variables which conspired to align well enough for me to see the
end of this journey. From being born here and now to all the favorable winds
that drove the sail, there are countless inconspicuous (hence countless) casts
of dices which ended up benefiting me from the shadow they landed in.

Hopefully, all help did not go unnoticed. First and foremost, I would like
to thank Prof. Pierre Geurts, my adviser and mentor. Working with Pierre has
been a delight since day one. His encouragements have made the darkest
times bearable, his kindness has been life-inspiring, while his fast thinking
keeps leaving me in awe, even though I should long have been accustomed
to it by now. Most impressive was his ability to quickly catch up with a ton
(sometimes less, to be honest) of new information presented in a less-than-
orderly fashion and still follow the reasoning and ask relevant and unlocking
questions. Pierre, I thank you for the freedom you have given me and the
time you took (hopefully away from questionable action movies and come-
dies) to follow and guide me during this thesis. It is not that the thesis would
be different without you, it would simply not be.

I would also like to thank all the jury members for their valuable comments
and feedbacks which have made this manuscript all the better. If you enjoy
the reading ride laid out from here out, it is undoubtedly thanks to their
insightful inputs. I must also thank them for turning the defense into such
an interesting and pleasant discussion. I wish I had the time to test some of
the ideas they brought about.

I could not avoid giving Prof. Louis Wehenkel his dedicated paragraph. Be-
ing my teacher in probability theory, information theory, and machine learn-
ing, he basically paved the way for this thesis. I remember one cigarette
break where the discussion led back to independence. As a naive student,
my take was that independence meant easier computation. Louis’ was differ-
ent: “things only become interesting when there is information to be gleaned
from additional observations”. His remark has stuck with me ever since.

Some more specific praises are also due to the president of the jury, Prof.
Gilles Louppe. Although we did not work together, he has been feeding this
thesis in many ways. From providing quick pointers to qualitative peda-
gogical material, to wroughting an elegant and easy-to-work-with codebase
which served as a basis for my first contribution. He is also an inspiration
in other ways, notably by being aware of so many cutting-edge works in all
areas of such a quickly-evolving field as machine learning is.

vi

My next thank-you is for Prof. Guy Leduc, who has been there from dawn
to dusk. Without him, I would not even be a computer scientist, as he took
the time to tailor my three-year transition program. He also made sure I did
not need to rush through the final stage so that I could deliver this (long, I
am sorry for that) thesis.

What madness would a thesis be without colleagues? They trade away
the despairing gloom for the dining room and make breaks rhyme with “cof-
fee” rather than “down”. Thank you to Arnaud J., Antonio, Marie S., Van
Anh, Renaud, Loic, Julien, Gregoire, Chirstopher, Remy, Raphaël M., Pierre,
Romain, Marie W., Laurine, Laurent, Tom, Cyril, Nicolas, Antoine, Matthia,
Isabelle, Pascal, Arnaud D., Gilles, Joery, Michael, Anais, Marie L, Célia, and
Emeline, Géraldine, Gaspard, Yaen, François and all the others with whom I
could not spend the time they deserved.

A special thank goes out to the uncle-and aunti-gineers Marie, Laurine
and Romain. Working with them has been inspirational and chatting delight-
ful. Truth be told, without them, I would not have managed. Even though I
did not systematically follow your advice after asking your opinions (espe-
cially when code was concerned, Romain), they always were the seeds of my
thoughts.

The thesis is such that we rarely finish with the people who were there at
the start. A special thank you to Arnaud, Antonio, Marie, Van Anh, Rémy,
Loic, Renaud, Julien, Raphaël and Pierre for those early days at the GIGA.
More than available parking lots, you were my motivation to come early and
made me feel at ease from the beginning.

A special thank is due to Raphaël Marée who has always been support-
ive, even though I must have let him down when dropping from Cytomine.
Raphaël, you also helped me broaden my views on many topics (even though
I still believe butter is needed in a cake), a gift that will accompany me long
after this thesis.

I would also like to acknowledge the help of the Montefiore staff, as I am
guessing doing a Ph.D. without a room, furniture, access to the internet or a
printer would make the task so much more challenging. A special thank you
to Sophie Cimino whose enthusiasm might have led me to trouble her more
than necessary if I were not afraid to abuse her already-generous availability.

Moving away from Montefiore, I must thank Prof. Jean-Paul Donnay. Be-
fore him, equations were these funny-brainy things you do in a classroom
because the teacher asks you to. From the theory of map-projection alter-
ations to krigin, passing by the first algorithms I encountered, he gave mean-
ing where there were only symbols. His true gift, however, was not what he
taught but how he teased what he left off. To paraphrase Antoine de Saint-
Exupéry, he did not push me to build a boat, he made me yearn for the sea.
Jean-Paul, I will always be in your debt for kindling the curiosity in me.

While working as a teaching assistant, I had the pleasure to work with
Prof. Pascal Gribomont, Prof. Pascal Fontaine and Prof. Laurent Mathy. This
manuscript would be different without them as they each, in their respective
manners, helped me broaden my perspectives.

vii

As for my former students, I must say it was delightful seeing you learn so
easily, even if it meant I was hardly useful.

Moving away from the University grounds, I must thank many friends;
too many to name exhaustively, but they will recognize themselves (or would
if they read those lines, which, let’s be honest, they won’t). It is funny how
late nights can be invigorating sometimes.

Finally, there is my family to thank. Mom, dad, Marjorie, Robin, Ambre,
Yann, Agnès, Jean-Benoît, Xavier and Corinne. They provided invaluable
support and gave me the confidence I could do anything—a helpful lie. They
also tweaked many of Fate’s dices so that I would not fumble too much along
the way. I am also grateful for the battle they won and the mistakes they
made before me so that I would not be the one making them.

Robin, you are an incredible godson and I hope I will have more time to
see you grow up. For all the boredom the defense must have been to you, you
kept remarkably quiet. Well done. To Yann (who has yet to leave me finish a
story) I thank you for the support. Having an insider was more helpful than
you know.

Behind every short man, there is an incredible woman. She would be He-
lene Blaise. Pregnant, dealing with a strong-willed toddler, she nevertheless
managed to make sure I could pursue this goal and see the end of it in the
best possible manner. We are so different that it is not always easy to un-
derstand each other. But in the great puzzle of love, the goal is to find the
one-in-seven-billions piece which complements yours. On that we did great.
Thank you for taking care of those so many things I am happy to let go. Soon
she will have given birth to two children in half the time it took for me to do
my Ph.D. How incredible is that?

For Elise, my not-so-baby-anymore girl, I have no words. I am not sure
your many sleep-timid nights were a helpful addition but your bright smile,
playfulness and relentless energy surely were—well, I guess the last one is
debatable. Houses are built for shelter and homes for laughter. Thank you
for turning (upside down) our house into a home. I can only wish you will
experience such fulfilling journeys yourself.

While on the matter of Elise, I must also extend my thanks to all the peo-
ple who lent hands. There were many but I would like to single out a few of
them: her godmother, Julie Servais, godfather, Jérôme Rousseau, auntie Coco, as
well as auntie Laurence.

To Lucie, I cannot wait to meet you. I am sure you will be awesome.
And finally, to Albus whose determination to keep me fit while home-

working, accepting neither freezing temperature, nor torrential downpours
as an excuse to avoid a walk, a good woof.

ix

Abstract

As supervised learning occupies a larger and larger place in our everyday
life, it is met with more and more constrained settings. Dealing with those
constraints is a key to fostering new progress in the field, expanding ever fur-
ther the limit of machine learning—a likely necessary step to reach artificial
general intelligence.

Supervised learning is an inductive paradigm in which time and data are
refined into knowledge, in the form of predictive models. Models which can
sometimes be, it must be conceded, opaque, memory demanding and energy
consuming. Given this setting, a constraint can mean any number of things.
Essentially, a constraint is anything that stand in the way of supervised learn-
ing, be it the lack of time, of memory, of data, or of understanding. Addition-
ally, the scope of applicability of supervised learning is so vast it can appear
daunting. Usefulness can be found in areas including medical analysis and
autonomous driving—areas for which strong guarantees are required.

All those constraints (time, memory, data, interpretability, reliability) might
somewhat conflict with the traditional goal of supervised learning. In such
a case, finding a balance between the constraints and the standard objective
is problem-dependent, thus requiring generic solutions. Alternatively, con-
cerns might arise after learning, in which case solutions must be developed
under sub-optimal conditions, resulting in constraints adding up. An exam-
ple of such situations is trying to enforce reliability once the data is no longer
available.

After detailing the background (what is supervised learning and why is
it difficult, what algorithms will be used, where does it land in the broader
scope of knowledge) in which this thesis integrates itself, we will discuss four
different scenarios.

The first one is about trying to learn a good decision forest model of a
limited size, without learning first a large model and then compressing it. For
that, we have developed the Globally Induced Forest (GIF) algorithm, which
mixes local and global optimizations to produce accurate predictions under
memory constraints in reasonable time. More specifically, the global part
allows to sidestep the redundancy inherent in traditional decision forests. It
is shown that the proposed method is more than competitive with standard
tree-based ensembles under corresponding constraints, and can sometimes
even surpass much larger models.

The second scenario corresponds to the example given above: trying to
enforce reliability without data. More specifically, the focus is on out-of-
distribution (OOD) detection: recognizing samples which do not come from
the original distribution the model was learned from. Tackling this problem

x

with utter lack of data is challenging. Our investigation focuses on image
classification with convolutional neural networks. Indicators which can be
computed alongside the prediction with little additional cost are proposed.
These indicators prove useful, stable and complementary for OOD detection.
We also introduce a surprisingly simple, yet effective summary indicator,
shown to perform well across several networks and datasets. It can easily
be tuned further as soon as samples become available. Overall, interesting
results can be reached in all but the most severe settings, for which it was a
priori doubtful to come up with a data-free solution.

The third scenario relates to transferring the knowledge of a large model
in a smaller one in the absence of data. To do so, we propose to leverage a
collection of unlabeled data which are easy to come up with in domains such
as image classification. Two schemes are proposed (and then analyzed) to
provide optimal transfer. Firstly, we proposed a biasing mechanism in the
choice of unlabeled data to use so that the focus is on the more relevant sam-
ples. Secondly, we designed a teaching mechanism, applicable for almost all
pairs of large and small networks, which allows for a much better knowledge
transfer between the networks. Overall, good results are obtainable in decent
time provided the collection of data actually contains relevant samples.

The fourth scenario tackles the problem of interpretability: what knowl-
edge can be gleaned more or less indirectly from data. We discuss two sub-
problems. The first one is to showcase that GIFs (cf. supra) can be used to
derive intrinsically interpretable models. The second consists in a compar-
ative study between methods and types of models (namely decision forests
and neural networks) for the specific purpose of quantifying how much each
variable is important in a given problem. After a preliminary study on bench-
mark datasets, the analysis turns to a concrete biological problem: inferring
gene regulatory network from data. An ambivalent conclusion is reached:
neural networks can be made to perform better than decision forests at pre-
dicting in almost all instances but struggle to identify the relevant variables
in some situations. It would seem that better (motivated) methods need to
be proposed for neural networks, especially in the face of highly non-linear
problems.

xi

Résumé

En occupant une plus grande part dans nos vies chaque jour, l’apprentissage
supervisé est de plus en plus sujet à des contraintes. La gestion de ces con-
traintes est un point de passage nécessaire pour promouvoir de nouveaux
progrès, repoussant dès lors toujours plus les limites du domaine—une étape
vraisenbablement obligatoire en vue de l’émergence d’une intelligence arti-
ficielle générale.

L’apprentissage supervisé est basé sur l’induction et transforme le temps
et des données en connaissance sous la forme de modèles prédictifs. Ces
modèles sont parfois, il faut l’avouer, inintelligibles, volumineux et coûteux
en énergie. Par contrainte, il faut comprendre tout ce qui peut se dresser
en travers d’objectif de l’apprentissage supervisé, que ça soit les impératifs
temporels, les limites mémoires ou l’opacité des modèles. Par ailleurs, le
champ d’application de l’apprentissage supervisé est si vaste qu’il peut en
devenir intimidant. On en retrouve par exemple dans le diagnostic médical
et la conduite autonome—domaine dans lesquels on est en droit d’attendre
de solides garanties.

Toutes ces contraintes (le temps, la mémoire, les données, l’interprétabilité,
la fiabilité) sont autant de conflits potentiels avec le but traditionel de l’appren-
tissage automatique. Il s’agit alors de trouver le juste milieu entre ces con-
traintes et l’objectif de départ. Cet équilibre dépendant des problèmes, il
s’agit de proposer des solutions suffisamment génériques pour être particu-
larisées au cas par cas. Par ailleurs, les contraintes peuvent se faire après la
phase d’apprentissage initiale, ce qui peut déboucher sur des solutions sous-
optimales lorsque les contraintes s’additionnent. Un exemple de ceci est la
prise de conscience de besoins de fiabilité postérieure à la disponibilité des
données.

Après une première partie dédiée au contexte (qu’est-ce que l’apprentissage
supervisé et pourquoi est-ce difficile, quelles algorithmes vont être utilisés,
où se situe l’apprentissage supervisé dans le champ plus général de la con-
naissance) dans lequel s’inscrit cette thèse, quatre scénarios seront examinés.

Le premier concerne l’apprentissage de forets de décisions de taille lim-
itée, le tout sans nécessiter la création de grands modèles devant ensuite être
compressés. A cette fin, nous avons développé l’agorithme dit des Globally
Induced Forests (GIF), qui mixe optimisation locale et globale afin de produire
de bonnes prédictions sous la contrainte mémoire dans un temps raisonnable.
L’optimisation globale a pour but d’éliminer la redondance présente dans les
forets classiques. L’analyse révèle que les GIFs sont plus que compétitives
avec d’autres forêts soumises aux mêmes contraintes, pouvant parfois sur-
passer les modèles plus volumineux.

xii

Le second scénario s’intéresse à la problématique soulevée plus haut, à
savoir, l’ajout de fiabilité sans données. Plus précisément, le but est de dé-
tecter des exemples hors-distribution (out-of-distribution, OOD); des exem-
ples qui ne sont pas tirés de la distribution d’apprentissage. Sans données,
ce problème est difficile. Nous nous sommes concentrés sur la classification
d’images avec des réseaux de neurones convolutifs. Nous avons proposé
des indicateurs peu coûteux à calculer. Ceux-ci se sont avérés utiles, stables
et complémentaires. Nous avons aussi proposé un indicateur synthétic, sim-
ple et efficace. Au final, les résultats obtenus sont plutôt bons, compte tenu
de la sévérité des contraintes. Seul bémol, auquel on pouvait s’attendre, dis-
tinguer des exemples d’une distribution différente mais assez proche offre
des performances mitigées.

Le troisième scénario a trait au transfert de connaissance d’un modèle
volimuneux vers un plus petit en l’absence de données. Pour ce faire, nous
proposons d’utiliser une base de données d’images non étiquetées, facile à
établir dans des domaines comme la classification d’images. Notre méthodolo-
gie repose sur deux éléments. Premièrement, nous proposons de biaiser le
choix des exemples en privilégiant ceux qui semblent les plus proche de la
distribution d’apprentissage. Deuxièmement, nous proposons d’optimiser le
transfert avec un mécanisme suffisamment générique pour être applicable à
la plupart des paires de réseaux. Dans l’ensemble, des résultats décent sont
atteignables dans des temps raisonnables, pourvu que la base de données
soit parsemée de données pertinentes.

La quatrième scénario s’intéresse à la question de l’interprétabilité: que
peut on apprendre, plus ou moins indirectement, des données? Deux sous-
problèmes sont abordés. Le premier illustre comment les GIFs (cf supra) peu-
vent servir pour dériver des modèles intrinsèquement interprétables. Le sec-
ond est une étude comparative (entre les forêts de décisions et les réseaux de
neurones) portant sur la quantification de l’importance des variables dans
un problème donné. Après une étude préliminaire sur des bases de don-
nées tests, les méthodes sont évaluées sur un problème de premier intérêt
en biologie: l’inférence de réseaux de régulation entre gênes. La conclusion
est mitigée: bien qu’il soit possible pour les réseaux de neurones de battre
systématiquement les forêts d’un point de vue prédictif, la quantification
d’importance reste la force des forêts, en particulier sur les problèmes haute-
ment non-linéaires. Il semble que nous ne disposions pas encore de suffisam-
ment bonnes méthodes (et suffisamment bien motivées) pour les réseaux de
neurones.

xiii

Contents

1 Introduction . 1
1.1 Contributions . 3
1.2 Outline . 4
1.3 Publications . 5

I Machine learning . 7

2 Supervised learning . 9
2.1 Illustration . 10
2.2 Formalization . 11

2.2.1 Problem structure . 11
2.2.2 Data . 13
2.2.3 Hypothesis space . 13
2.2.4 Loss function . 14
2.2.5 Goal and Bayes model 16
2.2.6 Learning algorithm . 17
2.2.7 Changing input spaces: feature engineering and learning 18
2.2.8 Changing output spaces: alternative representations (clas-

sification) . 19
2.3 Empirical risk minimization . 20
2.4 Overfitting . 22

2.4.1 Unbiased assessments 23
2.4.2 Consequences of overfitting 25
2.4.3 Overfitting and the hypothesis space expressiveness . . 26

2.5 The bias-variance decomposition 27
2.5.1 Decomposition . 27
2.5.2 Bias-variance tradeoff 30
2.5.3 Approximation-estimation decomposition 31

2.6 Bounds over the generalization gap 32
2.6.1 Finite hypothesis space bound 33
2.6.2 Vapnik–Chervonenkis bound 34

2.7 The expressiveness/overfitting dilemma 37
2.8 Managing expressiveness: regularization 38

2.8.1 Regularization . 38
2.8.2 Model selection . 39

2.9 Beyond supervised learning . 41
2.9.1 Same goal, different means 41

xiv

2.9.2 Different goals . 42
2.10 Conclusion . 43

3 Learning algorithms for supervised machine learning 45
3.1 Linear regression and its extensions 46

3.1.1 Ordinary least square linear regression 46
3.1.1.1 Solving the ordinary least square regression . 47

3.1.2 Regularized least-square linear regression 49
3.1.2.1 Ridge regression 49
3.1.2.2 Lasso . 50

3.2 Logistic regression . 52
3.2.1 Binary logistic regression 52

3.2.1.1 Logistic regression viewed as relaxation 52
3.2.1.2 Logistic regression viewed as modeling prob-

abilities . 53
3.2.1.3 The logistic program 54

3.2.2 Multiclass logistic regression 56
3.2.2.1 From two to several classes 56
3.2.2.2 Interpreting the softmax regression 58

3.3 Decision trees . 61
3.3.1 Inference . 61
3.3.2 Induction . 62

3.3.2.1 Uncertainty in classification 64
3.3.2.2 Uncertainty in regression 66

3.3.3 Expressiveness, stopping criteria and pruning 67
3.4 Ensemble methods: decision forests 67

3.4.1 Bagging . 68
3.4.1.1 Variance reduction 68
3.4.1.2 Bootstrap . 69

3.4.2 Random forests . 70
3.4.3 Extremely randomized trees 70

3.4.3.1 On randomized algorithms 72
3.5 Boosting . 72

3.5.1 Least square boosting . 73
3.5.2 Adaboost . 73

3.6 Deep learning . 77
3.6.1 Structure and inference 77
3.6.2 Learning: the backpropagation algorithm 79

3.6.2.1 First-order interpretation: from softmax regres-
sion to neural networks 81

3.6.2.2 Vanishing gradient 83
3.6.2.3 Covariate shift 84
3.6.2.4 Miscellaneous 85

3.6.3 Image classification . 85
3.6.3.1 Tensors and feature maps 86
3.6.3.2 Convolution . 86
3.6.3.3 Pooling . 89

xv

3.6.3.4 Batch-normalization 89
3.7 Tools and tricks . 90

3.7.1 Risk management . 90
3.7.2 Miscellaneous . 95

3.8 Conclusion . 96

4 On machine learning and philosophy 97
4.1 On knowledge and induction 97

4.1.1 Knowledge . 98
4.1.2 Induction . 100

4.1.2.1 Distribution shift 100
4.1.2.2 No free lunch theorems 101
4.1.2.3 The importance of assumptions 103

4.1.3 The curse of dimensionality 103
4.1.4 Bayesianism . 104

4.2 Occam’s razor . 105
4.3 Causality . 106
4.4 Conclusion . 107

II Supervised learning under constraints 109

5 Machine learning under constraints 111
5.1 On constraints . 111

5.1.1 Definition . 111
5.1.2 Motivation . 112
5.1.3 Typologies of constraints 112

5.1.3.1 Component-based categorization 113
5.1.3.2 Source-based categorization 113
5.1.3.3 Chronology-based categorization 114

5.2 Examples of constraints . 114
5.2.1 Fast training . 115
5.2.2 Small models . 116
5.2.3 Robustness . 116
5.2.4 Data scarcity . 117
5.2.5 Interpretability . 117

5.3 Overview of the following chapters 118

6 Globally Induced Forests . 119
6.1 Ambitions . 120

6.1.1 Goal and contribution 120
6.1.2 Motivation . 120

6.2 Decision forest compression . 121
6.2.1 Feasibility of decision forest compression 121
6.2.2 Problem formulations 122
6.2.3 Related works . 124
6.2.4 GIF versus other techniques 126

6.3 The GIF algorithm . 127

xvi

6.3.1 General algorithm . 127
6.3.2 Regression . 133
6.3.3 Classification . 134

6.3.3.1 Interpreting the GIF algorithm 137
6.3.3.2 From GIFs to probabilities 139

6.3.4 GIF with a single tree . 141
6.3.4.1 Regression . 141
6.3.4.2 Classification 142

6.4 Empirical analysis . 143
6.4.1 Regression and classification 143
6.4.2 Influence of the hyper-parameters 146
6.4.3 Comparison with local baseline algorithms 149
6.4.4 A preliminary comparison with Boosting 151
6.4.5 Comparison with post-pruning 153

6.5 Conclusion and perspectives . 154

7 Sample-free out-of-distribution . 157
7.1 Ambitions . 158

7.1.1 Goal and contribution 158
7.1.2 Motivation . 158

7.2 Out-of-distribution detection in general 160
7.2.1 Problem formulation . 160

7.2.1.1 Interpreting what is meant by out-of-distribution160
7.2.1.2 Relationship between data sources 164
7.2.1.3 Balancing the risks 167

7.2.2 Related problems . 168
7.2.2.1 Open set recognition 168
7.2.2.2 Anomaly detection 169
7.2.2.3 Uncertainty modeling 169
7.2.2.4 Pointwise versus samplewise methods 170
7.2.2.5 Other paradigms 171

7.2.3 Families of methods . 171
7.2.3.1 Classification-based approaches 171
7.2.3.2 Distribution-based approaches 171
7.2.3.3 Information-theoretic approaches 172
7.2.3.4 Proximity-based approaches 172
7.2.3.5 Confidence-based approaches 173
7.2.3.6 Design-altering implementations 173

7.2.4 Literature on OOD detection methods 174
7.2.4.1 Baselines . 174
7.2.4.2 OOD detection by available data 174
7.2.4.3 Conclusion . 181

7.3 The sample-free setting . 182
7.3.1 Feasibility . 182
7.3.2 Indicators . 182

7.4 Sample-free white-box OOD indicators 183
7.4.1 Optimality-based indicators 183

xvii

7.4.2 Batchnorm-based indicators 189
7.4.3 Summary . 191

7.5 Empirical study . 191
7.5.1 Main experiment . 192

7.5.1.1 Protocol . 192
7.5.1.2 Results . 195

7.5.2 Semantic and covariate closeness 197
7.5.3 Additional results . 199

7.5.3.1 Complementarity/redundancy 199
7.5.3.2 Model quality 201
7.5.3.3 Misclassification detection 202

7.6 Summary indicators . 208
7.7 Real-world setting . 209
7.8 Conclusion . 210

8 Distillation from heterogeneous unlabeled collections 213
8.1 Ambitions . 213

8.1.1 Goal and contribution 213
8.1.2 Motivation . 214

8.2 Deep learning compression . 215
8.2.1 Feasibility of neural network compression 215
8.2.2 Problem formulation . 217

8.2.2.1 Model size: a note on measures 218
8.2.3 Method overview . 219

8.2.3.1 Designing small architectures 219
8.2.3.2 Pruning . 222
8.2.3.3 Low-rank approximation 225
8.2.3.4 Quantization 227
8.2.3.5 Teacher-student transfer 227

8.3 Data-constrained compression 231
8.4 Distilling from an unlabeled collection 232

8.4.1 Setting . 232
8.4.2 Biased sampling . 233

8.4.2.1 Computing the sampling probabilities 233
8.4.2.2 Discussion . 235

8.4.3 Capturing the learning signal: fixed-linear distillation
under latent mapping assumption 236

8.5 Empirical analysis . 237
8.5.1 Protocol . 238
8.5.2 Collection analysis . 239
8.5.3 Sampling analysis . 241
8.5.4 Fixed-linear distillation analysis 241
8.5.5 Additional experiments 243

8.5.5.1 Influence of the characterizing score 243
8.5.5.2 One collection to rule them all 244
8.5.5.3 Failing the latent mapping assumption 245

8.6 Conclusion . 245

xviii

9 Interpretable Machine Learning . 249
9.1 Interpretability . 249

9.1.1 Motivation and high-level goals 249
9.1.2 Feasibility and mid-level goals 251

9.1.2.1 Desirable properties 252
9.1.2.2 Feasibility . 253

9.2 GIF as a rule extraction algorithm 254
9.2.1 Rule sets as an interpretable model 255
9.2.2 Empirical results . 256
9.2.3 A further digression about stability 258
9.2.4 Conclusion . 259

9.3 Feature importances . 260
9.3.1 Ambitions . 260

9.3.1.1 Goal and contribution 260
9.3.1.2 Motivation . 261

9.3.2 Problem formulation . 263
9.3.2.1 Relevance . 263
9.3.2.2 Importance . 264
9.3.2.3 Selection and ranking 265

9.3.3 Feature importance with random forests 266
9.3.4 Feature importance with neural networks 266

9.3.4.1 Gradient-based method (GI) 267
9.3.4.2 Layer-wise relevance propagation (LI) 268
9.3.4.3 Selection layers 270
9.3.4.4 Hybrid approaches 271

9.3.5 Empirical analysis on benchmark datasets 272
9.3.5.1 Simulated problems and protocol 272
9.3.5.2 Results and discussion 273

9.3.6 Gene regulatory networks 276
9.3.6.1 Context . 276
9.3.6.2 Empirical analysis 277

9.3.7 Conclusion . 278
9.4 Conclusion . 279

III Conclusion . 281

10 Conclusion . 283
10.1 Summary . 283
10.2 Now what . 285

A Clustertools . 289
A.1 Speeding up scientific computing 289

A.1.1 Embarrassingly parallel code 290
A.1.2 Beyond parallelization 291
A.1.3 Example . 291

A.2 The processing pipeline . 292
A.2.1 Computation . 292

xix

A.2.2 Experiment and parameters 292
A.2.3 Environments: running experiments 295

A.3 The data pipeline . 297
A.3.1 Result . 297
A.3.2 Storage . 298
A.3.3 Datacube . 298
A.3.4 Analytics . 298
A.3.5 Logs . 299

A.4 Command-line manager . 299
A.5 Conclusion . 300

B Out of distribution . 301
B.1 Relationship between logit and T1000 301
B.2 Detailed results . 303

B.2.1 Detailed auroc tables . 303
B.3 Selected indicator distributions 309

Bibliography . 313

xxi

Acronyms

AGI Artificial General Intelligence;

AI Artificial Intelligence;

ANN Artificial Neural Network;

AUC Area Under the Curve;

AUPR Area Under the Precision-Recall curve;

CNN Convolutional Neural Network;

CW Candidate Window (size);

DA Domain Adaptation;

ERM Empirical Risk Minimization;

ET Extra-Tree (short for extremely randomized tree);

FN False Negative;

FP False Positive;

GI Gradient Importance (score);

GIF Globally Induced Forest;

ID In-Distribution;

IQPR Inter-Quartile Probability Ratio;

LC Linear Classification;

LI Layer-wise Importace (score);

LR Layer-wise Relevance/Linear Regression;

LRP Layer-wise Relevance Propagation;

LS Learning Set;

MCR MisCalissification Rate;

MDA Mean Decrease of Accuracy;

xxii

MDI Mean Decrease of Impurity;

ML Machine Learning;

MLP Multi-Layer Perceptron;

MLR Multi-Class Logistic Regression;

MSE Mean Squared Error;

NFL No Free Lunch (theorems);

NLC Non-Linear Classification;

NLR Non-Linear Regression;

OLS Ordinary Least Square;

OOD Out-Of-Distribution;

OOS Out-Of-Scope;

OSR Open Set Recognition;

PCA Principal Component Analysis;

PR Precision-Recall

PTC Post-Training Constraints;

RBF Radial Basis Function;

RF Random Forest(s);

RMSE Root Mean Squared Error;

ROC Receiver-Operator Curve;

SGD Stochastic Gradient Descent;

SL Selection Layer;

SLT Statistical Learning Theory;

SRM Structural Risk Minimization;

TN(R) True Negative (Rate);

TP(R) True Positive (Rate);

VC Vapnik-Chervonenkis (dimension);

xxiii

Notations

Notations are standard and introduced as needed. This quick reference de-
scribes the overall logic behind them.

Probabilistic notations P, E, V, ⊥⊥, 6⊥⊥ stand for probability/density mea-
sure, expectation, variance, conditional independence, conditional de-
pendence; estimators are denoted with a hat;

Sets X, Y, H, K etc. denote sets (or spaces). In particular, X and Y represent
the input and output spaces, respectively. H is the hypothesis space. R

represents the space of real numbers, as usual;

Random variables and distribution X , Y , I ,O,M,R and other calligraphic
letters represent random variables and distributions;

Vectors vectors are denoted as scalars, with lower-case letters: x, z, u. In
particular, x stands for an input sample, z stands for a latent vector. x(j)

is the jth component of vector x;

Matrices matrices are denoted with capital letters. AT denotes the transpose
of A;

Quantities n stand for the number of instances in a set, p stand for the num-
ber of variables for a problem, K stands for the number of outputs (typ-
ically, K = 1 for regression, and K is the number of classes in classifica-
tion);

Hypotheses h, ŷ and p̂ are hypotheses. ŷ outputs a (logit) vector in classifi-
cation, p̂ outputs a probability vector. hB is the Bayes model, while h∗
is the best model from the hypothesis space.

1

1 Chapter

Introduction

Artificial intelligence (AI) is one of those topics on which people tend to have
strong feelings. For some, AI is the El Dorado, solving all the problems of
mankind and bringing a term to millennia of endless struggle. AI will bring
better resource management, fairer justice and overall better policies in ev-
ery domain by leveraging more and more information and computational
foresight.

On the Yang side, some people, encouraged by many science-fiction nov-
els or post-apocalyptic movies, are afraid of where humanity will stand in
the face of “super-human intelligence”. Our limited, hard-wired cognitive
resources and our not-so-long-standing human hardware bodies might soon
stop providing the environmental assets necessary to withstand the inex-
orable, relentless and unforgiving ticking of time.

Yet others are scared of the coming together of humanity and technology
in a merging fashion—oblivious at how far we have already traveled along
that path—blurring further already fuzzy definitions of what we are.

A minimum requirement to bring about such futures would be to reach
what is sometimes referred to as artificial general intelligence (AGI). Recog-
nizing AGI is a notoriously difficult and tricky problem, notably because of
intelligence being (defined as) a human-centric concept. The most famous
detector of AGI was proposed by Turing (1950) and is known as the imi-
tation game (or the Turing test) wherein a human examiner is tasked with
deciding which of its two remote interlocutors is an artificial agent. If an ar-
tificial agent was reliably able to pass the test (i.e. could fool the human 50%
of the time), AGI could be declared reached.

Although impressive chatbots, dedicated to the sole purpose of deceiving
the Turing tester, exist nowadays, they lean more on the artificial side than
on what we would truly consider as intelligent. As things stand at the time
of writing this thesis, both extreme views relating to AI, whether optimistic
or less so, are only shades on a distant horizon, useful to gear and steer, but
otherwise belonging to the realm of utopia or dystopia.

Notwithstanding these remarks, AI has come a long way since its de-
but. A good monitor of AI progress has always been the stage of games. In
1997, IBM’s Deep Blue beat the famous world champion, Garry Kasparov, at
chess. In 2005, five experimental autonomous driving vehicles were able to
complete the DARPA Grand Challenge, an off-road course. In 2007, the com-
petition was set in an urban setting. In 2011, IBM’s Watson program wins the
Jeopardy! quiz show: the program is able to understand questions asked in

2 Chapter 1. Introduction

natural language and answer faster than the then-champions. In 2016, Deep-
Mind’s AlphaGo was able to beat the 9-dan player Lee Sedol at go. The next
year, AlphaGo Zero, a self-taught system, was able to beat AlphaGo. The cur-
rent benchmark for progress in games is Starcraft II where “AlphaStar was
rated at Grandmaster level for all three StarCraft races and above 99.8% of
officially ranked human players” (Vinyals et al., 2019).

Looping on what Alan Turing advocated, recent progress has been achieved
thanks to learning, allowing the artificial agent to construct a model of (part
of) the world for itself, rather than trying to program a solution from first
principles. Machine learning is but one tool (with many flavors) in the AI
toolbox, yet it nowadays stands as the most promising stepping stone (or
giant’s shoulder) toward AGI.

In the meantime, machine learning is chaining successes on smaller scales.
From speeding up the digital transition of older businesses to laying the
groundwork for brand-new companies, from alleviating the workload of tech-
nical experts to opening new venues, machine learning is rapidly nesting it-
self as the spearhead for new progress and prowess.

This success, machine learning owes it to two factors, the first of which
being its generality and versatility. Whether medical diagnosis, quality con-
trol, forecasting, robotics, decision planning, spam filtering, recommenda-
tion systems, fraud detection, translation, natural language processing, text-
to-speech, sentiment analysis, style transfer, biometric authentication, au-
tonomous driving, if it can be learned from data or experiments, machine
learning can help. The second factor relates to how learning happens: via
data, which is now more plentiful than ever before. From done to dawn,
those dormant entries have left the back-row of databases to become anony-
mous forerunners of new development.

As machine learning is willed into the wild, reality strikes back, with new
challenges emerging. This is somewhat reminiscent of prototypes leaving an
R&D department to become final products. Robustness, fairness, computa-
tional power, energy consumption, data quality, availability, privacy, relia-
bility and so on become forefront issues. Although, some of these are not
new, pushing ever further the boundary of how and for what machine learn-
ing can be applied comes at the price of more and more constrained settings.
On the other hand, as flaws and vulnerabilities are discovered, new concerns
arise. For instance, robustness has regained much attention following the
discovery of what is called “adversarial examples” in deep learning, while
fairness and privacy were almost unheard of a decade ago. Therefore, ma-
chine learning must adapt to these new challenges.

Although these constraints arise far from the question of artificial general
intelligence, they are still—some would even say more crucially—relevant
to AGI. These new and rekindled winds have steered the machine learning
community to new directions to ensure machine learning can still operate
under today’s constraints and will later meet the requirements of tomorrow.

The present thesis is one such foray.

1.1. Contributions 3

1.1 Contributions

In this thesis, we have tackled four problems from the field of supervised
learning. Informally, supervised learning is about learning a predictive model
from a collection of data (a more formal definition will be given in the next
chapter). The specific problems we will look at are a mix of five constraints.
Constraints will be formally defined in Chapter 5, once all the relevant con-
cepts are laid out. Informally, a constraint is anything which stands in the
way of supervised learning. The five constraints we will look at are

fast training: how to propose learning algorithm which completes in a rea-
sonable amount of time;

small models: how to end up with predictive models which are lightweight,
fast and energy-efficient;

robust models: how to ensure robustness in the form of out-of-distribution
detection (recognizing data which does not originate from the same
source as the one used to learn);

data-free training: how to learn when no data is available to learn from;

interpretable methods: how to understand what is actually learned.

We will now inspect the four problems examined in this thesis.

Fast training of small decision forest models by design. In Chapter 6, we
introduce the Globally Induced Forests (GIF) algorithm, whose goal is to
produce small yet accurate decision forests by limiting the total number of
nodes in the forest. The algorithm is fast in the sense that it does not require
building a large forest to compress it. GIFs are also shown to be effective to
produce interpretable models (Chapter 9).

Data-free and fast post-training robustness. In Chapter 7, we study ro-
bustness and more precisely the problem of out-of-distribution (OOD) de-
tection. OOD detection aims at identifying samples which do not originate
from the training distribution. Our contribution was to investigate what can
and cannot be done in the absence of data. Our solution is also fast in the
sense that it requires only a small amount of additional computation besides
making the prediction.

Data-free and fast deep model compression. In Chapter 8, we focus on
how to train a small neural network without data. For that, we assume the
availability of a larger network we would like to compress and a collection of
unlabeled data among which relevant ones are present. The method is fast in
the sense that training time is close to what would have been required were
data available (compared to alternative methods).

4 Chapter 1. Introduction

Interpretability: small interpretable models and feature importance scores.
In Chapter 9, we tackle interpretability. Firstly we show how GIFs can be
used to produce small and interpretable models. Secondly, we look at the
problem of quantifying the importance of each variable in a given problem.
More precisely, we conducted an empirical study to see how neural networks
fare compared to decision forests, held as state-of-the-art for this purpose.

1.2 Outline

This manuscript is articulated around three parts.

Part I: supervised learning. The first part covers supervised learning, the
general domain to which we contributed. More precisely

Chapter 2 describes supervised learning, what it aims to do, how it tries to
do it (at a high level), why it is challenging and how these challenges
can be overcome.

Chapter 3 is about learning algorithms: concretely how can a predictive model
be learned from data. We will review all the algorithms which play a
part in this thesis, from simple linear methods to decision forests and
deep learning.

Chapter 4 situates how supervised learning fits into the broader landscape
of knowledge and discusses a few philosophical questions.

Part II: constraints and contributions. The second part covers our contri-
butions regarding supervised learning under constraints, with the following
outline.

Chapter 5 delves into constraints in supervised learning: what they are, why
they matter and how can they be categorized.

Chapter 6 focuses on small decision forests, why they matter, what makes it
possible to obtain small-yet-accurate forests, and how the problem can
be, and has been, tackled. Therein we present our Globally Induced
Forests (GIF) algorithm.

Chapter 7 discusses the problem of out-of-distribution detection, how it can
be formulated, what other problems it resembles, and how it can be
solved. The remainder of the chapter focuses on the sample-free case.

Chapter 8 opens with a discussion of why achieving small and accurate mod-
els is feasible in the context of deep learning, and then proceeds by look-
ing at the various way of how it can actually be done. The remainder of
the chapter describes our sample-free approach to transfer knowledge
from a bulk network into a smaller one.

1.3. Publications 5

Chapter 9 discusses the topic of interpretability, what is meant by that, what
forms it can take, and how it may bias model selection. The first half
of the chapter re-casts GIFs (Chapter 6) as interpretable models or in-
terpretation extractors. The second half manages interpretability as a
post-training goal where the challenge is to detect which variables are
most useful to predict the output. It compares decision forests and deep
learning on toy datasets and on the challenging task of reconstructing
gene regulatory networks from gene expression data, an open problem
in computational biology.

Part III: conclusion. Finally, the last part concludes this thesis in Chapter
10.

Appendices.

Appendix A is dedicated to Clustertools a toolbox developed during this
thesis and whose goal is to facilitate the empirical analysis of (machine
learning) algorithms.

Appendix B contains additional results relating to the problem of out-of-
distribution detection we studied (Chapter 7).

Reading guide. Although we have tried to piece an engaging narrative, the
background part (Chapters 2, 3 and 4) remains quite standard. The knowl-
edgeable reader may safely skip those, with the possible exception of Sec-
tions 3.2.2.2 and 3.6.2.1. Those sections give some geometrical insights useful
for Chapter 7 about out-of-distribution.

The contribution chapters (excluding the introductory Chapter 5) can be
read in any order with two exceptions. Firstly, Chapter 8 builds upon the
summary indicator proposed in Chapter 7. Secondly, the first part of Chapter
9 comes back to the GIFs, the core of Chapter 6.

1.3 Publications

The following publications have been made during this thesis:

• Marée, R., Rollus, L., Stévens, B., Hoyoux, R., Louppe, G., Vandaele, R.,
Begon, Jean-Michel, Kainz, P., Geurts, P., & Wehenkel, L. (2016). Col-
laborative analysis of multi-gigapixel imaging data using Cytomine.
Bioinformatics, 32(9), 1395-1401. (not covered in this thesis)

• Mormont, R., Begon, Jean-Michel, Hoyoux, R., & Marée, R. (2016).
SLDC: an open-source workflow for object detection in multi-gigapixel
images. Proceedings of the 25th Belgian Dutch Conference on Machine
Learning (Benelearn 2016). (not covered in this thesis)

https://github.com/jm-begon/clustertools

6 Chapter 1. Introduction

• Begon, Jean-Michel, Joly, A., & Geurts, P. (2016). Joint learning and
pruning of decision forests. Proceedings of the 25th Belgian Dutch Con-
ference on Machine Learning (Benelearn 2016). (Preliminary work on
Globally induced forest)

• Begon, Jean-Michel, Joly, A., & Geurts, P. (2017, July). Globally in-
duced forest: A pre-pruning compression scheme. In International Con-
ference on Machine Learning (pp. 420-428). PMLR.

https://github.com/jm-begon/globally-induced-forest

• Vecoven, N., Begon, Jean-Michel, Sutera, A., Geurts, P., & Vân Anh
Huynh-Thu (2020, October). Nets versus trees for feature ranking and
gene network inference. In International Conference on Discovery Sci-
ence (pp. 231-245). Springer, Cham.

• Begon, Jean-Michel, & Geurts, P. (2021). Sample-Free White-Box Out-
of-Distribution Detection for Deep Learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 3290-3299), presented at the fair, data efficient and trusted com-
puter vision workshop.

https://github.com/jm-begon/ood_samplefree

• Begon, Jean-Michel, & Geurts, P. (2021) Distillation from heteroge-
neous unlabeled collections. Currently under review.

https://github.com/jm-begon/distill_by_transfer

https://github.com/jm-begon/globally-induced-forest
https://github.com/jm-begon/ood_samplefree
https://github.com/jm-begon/distill_by_transfer

7

Machine learning

Part I

9

2 Chapter

Supervised learning

Chapter overview

This chapter is dedicated to machine learning and especially su-
pervised learning: what it is and why it is an important and difficult
topic.

After formalizing supervised learning (Section 2.2), we will state
a first general strategy: the empirical risk minimization (ERM) in Sec-
tion 2.3. Several sections will then be dedicated to the central problem
of supervised learning: overfitting. Overfitting will first be addressed
informally (Section 2.4) before getting under the microscope of two
theoretical frameworks: the bias-variance decomposition (Section 2.5)
and statistical learning theory via the notion of bounds on the gen-
eralization gap (Section 2.6). This will also offer the opportunity to
define the important concept of expressiveness and state some inter-
esting results. After discussing all these results in Section 2.7, we will
address how to (attempt to) solve overfitting. The first technique we
will mention is called regularization (Section 2.8.1), which can either
be explicit or implicit. The second technique, which is not limited to
solving overfitting, is a post-processing method to select a model (Sec-
tion 2.8.2). This concludes the tour of supervised learning, offering
some room in Section 2.9 for a few words about other paradigms from
the machine learning toolbox.

Machine learning is a vast field, encompassing several widely different
paradigms. Grouping them together under the denomination of “machine
learning” emphasizes two common characteristics of those techniques.

Firstly, it underlines their algorithmic nature: “learning” is not something
which happens magically, but rather it is the careful combination of (billions
of) calculation steps. It also brings forth the whole question of computability:
what is “learnable”? what is efficiently “learnable”? by what is it “learnable”?

Answering these requires defining what “learning” means, a challeng-
ing task in full generality. Informally, there is this idea that new knowledge
will be acquired by the end of the computation. Since this knowledge can-
not sprout from nothingness, it must originate from the computation’s in-
put: the data. Thus machine learning is about extracting knowledge from

10 Chapter 2. Supervised learning

data in an algorithmic way. What is the nature of the input data and what
kind of knowledge are we seeking to delineate the different machine learning
paradigms.

This thesis focuses on supervised learning, of which we give a more for-
mal definition below. We will contrast supervised learning against other
paradigms in Section 2.9.

Same tools, different toolboxes Over the years and trends, the algorithms
we will address in this thesis have moved from one toolbox to another. Disci-
plines such as pattern recognition, data mining, inductive learning, computa-
tional statistics, predictive analytics, or artificial intelligence reflect different
flavors sharing a common trend that knowledge is buried in data, waiting to
be gathered.

2.1 Illustration

Before giving a formal definition of supervised learning, let us consider a
toy example: the iris dataset from none other than R.A. Fisher (Fisher, 1936).
It consists of 50 sepal and petal measurements (length and width) for three
varieties of iris flowers. We will somewhat divert the original problem for
the purpose of illustration.

Consider Figures 2.1a and 2.1b offering the two following problems: (i)
given the sepal length, is it possible to guess at the petal length? and (ii) is it
possible, given the sepal and petal lengths to determine the type of flowers?

Visually both problems seem addressable, although somewhat imperfectly.
Solutions to these problems are given in Figure 2.2. In Figure 2.2a, we see two
“solutions”. The full, red line seems to better represent the relationship we
are trying to capture. This solution is, evidently, imperfect. For instance, an
iris flower with a sepal of 5 cm might have a petal of 3.5 cm or less, whereas
both “solutions” advocate for at least 3.6 cm.

Similarly, the straight line of Figure 2.2b separates the versicolour and
virginica well, except at less than 0.5 cm of petal length from the boundary.

Trying to find how to best separate labeled datapoints (such as versicolour
vs virginica species) or to find the best relationship between variables (such
as sepal and petal lengths) is what supervised learning is all about. Note that,
contrary to these examples, there is no limitation to have continuous input
variables (such as lengths), to restrict to one or two variables, or to focus on
a linear boundary and relationship. For instance, Figure 2.2c illustrates that
we can use the species to improve the sepal-to-petal length relationship. It
thus relies on a new variable, the species, and the model is no longer simply
linear but hierarchical.

To explore the specificity of higher dimensional relationships, we will also
look at a handwritten digit recognition problem (Blake and Merz, 1998). This
dataset consists of 1797 8× 8 grayscale images of digits (roughly 180 images
per digit), and the goal is to recognize which digit appears on each image.
Examples are given in Figure 2.1c.

2.2. Formalization 11

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Pe

ta
l l

en
gt

h
[c

m
]

(A) Iris dataset: sepal vs. petal length
(versicolour and virginica species).

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(B) Iris dataset: versicolour and virginica
species (in a sepal-petal lengths space).

0 1 2 3 4

5 6 7 8 9

(C) Digit dataset: examples of samples.

FIGURE 2.1: Toy dataset for illustration purposes.

We will now formalize supervised learning, refining the notion of “prob-
lem” and “best” (or good) solutions.

2.2 Formalization

2.2.1 Problem structure

Let X and Y be two sets, where X represents the known input space and Y

the output space. For instance, in the sepal-to-petal problem, X ⊆ R refers
to the sepal length and Y ⊆ R refers to the petal length. In the species clas-
sification problem, X ⊆ R2 refers to the pair sepal-petal lengths and Y refers
to the species (i.e. Y = {versicolour, virginica}).

A pair (x, y) ∈ (X×Y) is qualified of labeled. x is a p-dimensional vec-
tor where each component represents a (independent) variable. y represents

12 Chapter 2. Supervised learning

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]
RMSE

0.46
0.51

(A) Possible linear relationships between
sepal and petal lengths. The red line cap-
tures better the relationship between the

lengths.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(B) Possible linear boundary between iris
species. The shades reflect the “confi-
dence” of the model. In this case, it re-
lates to how far from the boundary points

fall.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

RMSE
0.31
0.27

(C) Improving the sepal-to-petal length relationship by using the species. Given the
species, it is possible to use a hierarchical linear model to obtain species-dependent
predictions. The two models portray a lower RMSE than the species-agnostic mod-

els of Figure 2.2a.

FIGURE 2.2: Solutions to the sepal-to-petal and versicolour-or-
virginica problems.

the dependent variable. When the dependent variable is discrete, the prob-
lem is termed as “classification”, with element of Y being called classes, or
labels. When the dependent variable is continuous the problem is termed as
“regression”. When y comes from observations, it is referred to as ground
truth.

In both regression and classification, we are trying to capture some re-
lationship between X and Y. More precisely we are looking for a function
h : X→ Y (what we called a “solution” until now). h is referred to as the hy-
pothesis, the model, the function, the predictor, the regressor/classifier or the
estimator. What comes out of h is referred to as the output or the prediction.

2.2. Formalization 13

2.2.2 Data

We said that machine learning is about gleaning knowledge from data. Those
data points are drawn according to some distribution. Formally, let us con-
sider a probability space (Ω, E , PΩ), where PΩ is a probability measure over
E , the σ-algebra over the events Ω. On this space are defined a random vec-
tor X : Ω → X and a random variable (or sometimes vector) Y : Ω → Y.
We will usually assume that all densities relating to X and Y exist, denot-
ing PX , PY , PY|X and PX ,Y the marginals, conditional and joint densities
respectively.

Supervised learning mostly deals with identically and independently dis-
tributed (iid) samples. We suppose that a collection of samples, the learning
set, is available to learn from.

Definition 2.2.1 (Learning set). A learning set LS = {(xi, yi)|1 ≤ i ≤ n} is
such that LS ∼ Pn

X ,Y . This is the set on which the learning will occur.

Generality of supervised learning. Now that some components of super-
vised learning are well defined, we can appreciate how its modeling assump-
tions make it general.

The inputs can be vectors, images, sounds, texts, videos, graphs, etc. Ad-
mittedly, the algorithms are designed to work with vectors and some pre-
processing might be needed in practice to cast data into an appropriate type.

Regression and classification cover a wide range of applications. Binary
classification actually allows encompassing detection/recognition problems.
Overall, supervised learning might be used to tackle problems such as read-
ing (i.e. recognizing) handwritten writing, understanding a scene (recogniz-
ing and locating objects in a video frame), diagnosing, detecting cancer cells
in medical imaging, and so much more.

2.2.3 Hypothesis space

The function h : X → Y we are trying to uncover cannot be drawn out of
nothing; it must be taken from a set of candidate hypotheses.

Definition 2.2.2 (Hypothesis space (or model class)). The set of candidate hy-
potheses considered by a learning algorithm is called the hypothesis space and de-
noted by H.

(Non-)parametric hypothesis spaces. A simple way to build a hypothesis
space is to consider a family of parametrizable functions. For instance, the
set {x → mx + p|(m, p) ∈ R2} of one-input linear functions is parametrized
by the slope m and intercept p.

Definition 2.2.3 (Parametric hypothesis space). A parametric space is such that
HΘ = {h(·, θ)|θ ∈ Θ} where h : H×Θ→ Y.

Hypothesis spaces are not necessarily parametric.

14 Chapter 2. Supervised learning

Learning a hypothesis from a parametric space can be viewed as an in-
place operation (especially with iterative algorithm starting). Therefore, it is
not uncommon to say that a model of a given shape is trained rather than an
hypothesis is learned from a hypothesis space.

Definition 2.2.4 (Decision boundary). In the case of classification, the set of
points {x ∈ X|∀η∃ε : h(x + ε) 6= h(x − ε), 0 < ||ε|| < η} is referred to as
the boundary of h.

In words, the decision boundary corresponds to points of X where a small
shift changes the predicted class.

2.2.4 Loss function

Whether a function is good at capturing the relationship between X and Y is
captured through the notion of a loss function.

Definition 2.2.5 (Loss function). A loss function ` : (Y×Y) → R+ abides by
the following property:

`(z, y) = 0 ⇐⇒ y = z (2.1)

and quantifies how much its inputs are dissimilar (the higher the value, the more
dissimilar the inputs).

As such, distances and metrics make appropriate loss functions. The sym-
metry and triangle inequality properties are not strictly necessary, however.

Regression. The most widely used loss function in the case of regression is
the squared loss `2

Definition 2.2.6 (Squared loss).

`2(z, y) = L2(y− z) = ||y− z||22 = ∑
j
(y(j) − z(j))2 (2.2)

where L2 is the 2-norm squared and y(j) is the jth component of vector y.

The ε = y− z vector is called the residual. Figure 2.3 illustrates the resid-
uals.

Classification. An obvious choice of loss for classification is the 0− 1 loss.

Definition 2.2.7 (0− 1 loss).

`0−1(z, y) = I(z 6= y) =

{
0, if z = y
1, otherwise

(2.3)

For instance, there are six wrongly classified points (i.e. `0−1(z, y) = 1) in
Figure 2.2b.

2.2. Formalization 15

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Pe

ta
l l

en
gt

h
[c

m
]

residual

FIGURE 2.3: Residuals for the sepal-to-petal regression prob-
lem.

Error/risk. Typically, the loss ` is used to compute how (in)adequate the
prediction of a model h is. Given a sample (x, y) ∈ X × Y, `(h(x), y) is
low (resp. high) if the model makes a good (resp. bad) prediction. The ac-
tual value of the loss quantifies this goodness (actually its badness). Usually,
however, we are not interested in how well the model predicts a single point,
but rather how it behaves on average over the data distribution. We thus
define the following quantities of interest.

Definition 2.2.8 (Expected risk). The expected risk of a given hypothesis h under
loss ` is defined as

RX ,Y (h; `) = EX ,Y{`(h(x), y)} (2.4)

where EX ,Y is the expectation over the joint distribution of X and Y .
Synonyms for the expected risk are actual or theoretical errors, and generalization

error.

Given a realization of the dataset, it is possible to compute a (possibly
biased) estimate of the expected risk.

16 Chapter 2. Supervised learning

Definition 2.2.9 ((Empirical) error). Given a set S = {(xi, yi) ∈ (X×Y)|1 ≤
i ≤ n}, the empirical error is

ES(h; `) =
1
|S| ∑

(x,y)∈S

`(h(x), y) (2.5)

where |S| is the cardinality of S. This is simply the average loss over S.

The name of the empirical error is usually refined by involving the set on
which it is computed. For instance, ELS(h) is the training (set) error. Further-
more, when h is the hypothesis learned on LS, it is called the resubstitution
error. When S is a disjoint set from LS, ES is called the test set error (see also
Section 2.4.1 about unbiased assessment of the expected risk).

The empirical error must not be confused with the empirical risk, which
is a random variable capturing the stochasticity of estimating the empirical
error with a dataset of size n.

Definition 2.2.10 (Empirical risk).

R̂(n)
X ,Y (h; `) =

1
n ∑

(x,y)n∼Pn
X ,Y

`(h(x), y) (2.6)

this random variable corresponds to the empirical error over a set of size n drawn iid
from the joint data distribution.

The dependency on X ,Y and/or ` will be dropped when the context is
clear.

Finally, let us introduce some common error functions.

Definition 2.2.11 ((Root) mean square error). In regression, when using the
squared loss, the error is qualified as mean square error (MSE). It is also common
to use the square root of MSE as an error measure. This is known as the root mean
square error (RMSE).

Definition 2.2.12 (Misclassification rate). In classification, when using `0−1, the
error becomes the misclassification rate (MCR).

Definition 2.2.13 (Accuracy). The accuracy is defined as 1− ES (h; `0−1).

Note that used solely, the word “loss” might refer to either the loss func-
tion or the loss value. In the latter case, it might even refer to the loss over
some set/distribution, that is the error. Hopefully, the context will shed
enough light to overcome this polysemic pitfall.

2.2.5 Goal and Bayes model

Given a learning problem PX ,Y , and a loss function `, we define the following
minimizer as the best possible model.

2.2. Formalization 17

Definition 2.2.14 (Bayes model).

hB = arg min
h∈F

RX ,Y (h, `) = arg min
h∈F

EX ,Y{`(h(x), y)} (2.7)

where F is the set of all X→ Y functions.

Conversely, we can define the best hypothesis with respect to the hypoth-
esis space H.

Definition 2.2.15 (Best hypothesis).

h∗ = arg min
h∈H

RX ,Y (h, `) = arg min
h∈H

EX ,Y{`(h(x), y)} (2.8)

Since H ⊆ F, it might happen that hB /∈ H and therefore h∗ 6= hB. In
such a case, even with infinite data and irrespective of how it is selected, the
hypothesis will never be optimal in the Bayes model sense. The hypothesis
space is said to suffer from representational bias.

Given all these, we can now state the goal of supervised learning.

Definition 2.2.16 (Goal of supervised learning.). Given data drawn from PX ,Y ,
a loss function `, and a hypothesis space H, the goal of supervised learning is to
minimize the expected risk, i.e. find h∗, under reasonable time.

2.2.6 Learning algorithm

Supervised learning is about investigating data to find a hypothesis which
models well (in the sense of some loss) some distributional relationship(s).
Selecting the hypothesis is the role of the learning algorithm.

Definition 2.2.17 (Learning algorithm). Formally, a learning algorithm is a func-
tion

L : (X×Y)l+ →H (2.9)

It takes in a learning sample of size at least l and outputs a hypothesis h ∈H.

The process of selecting the hypothesis according to the data is called
training or learning.

Hyper-parameters. Often, learning algorithms come in the form of a fam-
ily, with each member parametrized by some so-called hyper-parameter(s)
φ ∈ Φ. For instance, hyper-parameters can encode the structure of a neu-
ral network, the maximum depth of a decision tree, the number of neigh-
bors for nearest neighbor classifiers, etc. Note that hyper-parameters relate
to the learning algorithm, while parameters relate to the hypothesis (space).
There is somewhat of a gray area between those two extremes when hyper-
parameters influence parameters.

18 Chapter 2. Supervised learning

Randomization and learning algorithms. Two sources of randomization
come into play in the context of learning algorithms. These are from very
different natures and must not be confused.

On the one hand, a learning algorithm naturally becomes a random vari-
able when randomizing the learning set it gets. We will denote by HLφ,Pn

X ,Y
the distribution over the hypotheses induced by the random sample of n dat-
apoints drawn from P

(n)
X ,Y under the learning algorithm Lφ. We will shorten

the notation to H(n)
φ when there is no ambiguity regarding the learning al-

gorithm and the distribution, and altogether drop φ when there are hyper-
parameters involved.

On the other hand, a randomized algorithm generates a distribution of hy-
potheses for a fixed learning set. This happens when model parameters are
instantiated (pseudo-)randomly, or when some computation steps require
subsampling, for instance. An elegant way to treat this randomness is to
assume it originates from a pseudo-random generator whose seed is a hyper-
parameter (thus included in φ). Assuming some distribution over the seed
φ ∼ F, we will use the previously defined notations substituting φ for F to
denote this randomized version.

A quantity of interest is the expected risk of the learning algorithm.

Definition 2.2.18 (Expected risk of a learning algorithm).

R(n)
F,(X ,Y)(Lφ; `) = EHLF,Pn

X ,Y

{
RX ,Y (h; `)

}
(2.10)

This reflects the average risk incurred by the randomization of both the
learning set and the algorithm.

Since the two sources of stochasticity are independent, they can be factor-
ized. As a consequence, only the contextually-relevant source(s) will appear
in the notations in the remaining. For instance, when the algorithm does not
have hyper-parameters (or those are not discussed) the expected risk will be
shortened as

R(n)
X ,Y (L; `) (2.11)

2.2.7 Changing input spaces: feature engineering and learn-
ing

Most learning algorithms are developed under the assumption that X ⊆ Rp.
However, not all data types fall into that category. For such cases, some steps
must be taken in order to cast the data into an appropriate form in order to
take advantage of the available learning algorithms. Even when datapoints
are vectors, it might be advantageous to adopt another representation. This
does not produce information in any way but makes it more leverageable for
the algorithm.

For instance, in the case of the digit recognition problem, images can be
turned into vectors quite naturally. Images are represented as a 2D, 8 × 8

2.2. Formalization 19

array of values representing the gray level. Flattening the array immedi-
ately yields a 64-dimensional vector. Alternatively, one can switch to a ker-
nel space. Assume there are m reference images {xi}m

i=1, one derive, for
any x a new vector k(x) ∈ Rm such that the jth component is k(x)(j) =
exp

(
−γ||xj − x||2

)
. This is known as the Gaussian kernel, or radial basis

function (RBF) kernel. It is such that, as x moves away from xj, the compo-
nent decreases (exponentially fast) toward zero, with 0 < γ ≤ 1 controlling
the speed of the decrease. More precisely, when γ is high, only local informa-
tion is taken into account, as most components (the ones relating to faraway
basis vectors) will be close to zero. As γ decreases, more and more global
information is taken into account.

This kernel representation is better suited for a linear model (for instance),
where the interpretation is straightforward (the weighted sum measures how
distant x from the m points, possibly favoring some reference points via the
weights). In comparison, using a linear boundary to separate the images in
the original flatten space is far less intuitive.

This process of changing the input space is called feature engineering.
Alternatively, the features can be derived from the base representation auto-
matically (i.e. learned), a process known as feature/representation learning
and the basis of deep learning.

2.2.8 Changing output spaces: alternative representations (clas-
sification)

The discrete nature of the output space in classification is not quite as amenable
to work with as in regression. Therefore, hypotheses work usually in two
steps: h = h1 ◦ h2 : X → Y′ → Y. Learning the hypothesis usually amounts
to learning h2, with h1 being a trivial overlay.

For instance, in binary classification, the intermediate output y′ ∈ Y′

might be a real number and h2 is just a thresholding function which trans-
lates the real-value output y′ to an actual class of Y. Another common alter-
native is to output a probability vector y′ describing how confident the model
is of the input belonging to each class. In that case, h2 usually comes down
to yielding the y of highest probability. The learning algorithms described in
Chapter 3 make use of those representations.

These representations offer more flexibility to build algorithms upon by
shifting the loss to some continuous alternatives. One such loss function is
the cross entropy. Let Y′ be the set of K-dimensional probability vectors, that
is Y′ = { p̂ ∈ RK| p̂(j) ≥ 0 ∧ 1 ≤ j ≤ K, ∑K

j=1 p̂(j) = 1}, and let us encode y in
a vector p such that p(k) = 1 if y is the kth class, and 0 otherwise.

Definition 2.2.19 (Cross entropy loss).

`CE(p̂, p) = −
K

∑
j=1

p(j) log p̂(j) (2.12)

20 Chapter 2. Supervised learning

The cross-entropy loss is a member of a larger information-theoretic fam-
ily of loss functions (including Jensen–Shannon divergence and Kullback–Leibler
divergence).

As is evident with this example, output values must be encoded to match
the structure of Y′ and be compatible with the loss function. Since this is on a
per learning-algorithm-basis, such encoding will be discussed when describ-
ing the algorithm.

Considering the triviality of the second phase (thresholding, selection ac-
cording to the maximum probability), the focus will be on the first phase and
y ∈ Y will be used instead of y′ ∈ Y′ to ease notation. ŷ and p̂ will be used
for h2 to highlight that the output of the “raw” hypothesis is a real value or a
probability vector, respectively.

2.3 Empirical risk minimization

So far, little has been said regarding how to practically choose the hypothesis
given a learning sample. A first, apparently sound solution would be to select
the hypothesis with lowest training set error. This gives rise to the following
principle.

Definition 2.3.1 (Empirical risk minimization (ERM) principle). The ERM
principle states that, given a learning sample LS = {(xi, yi)}n

i=1 and a loss `, the
hypothesis

ĥ(n)∗ = arg min
h∈H

ELS(h; `) (2.13)

should be selected.

For instance, in the sepal-to-petal regression problem, if the hypothesis
space corresponds to the set of linear functions H = {x → mx + p|(m, p) ∈
Θ = R2}, the ERM principle can be implemented as

(m, p) = arg min
(m,p)∈R2

ELS(x → mx + p ; `) (2.14)

The goal of supervised learning is to select a hypothesis which has low
expected risk, however. For the ERM principle to be effective, it must be con-
sistent.

Definition 2.3.2 (Consistency properties). A learning algorithm is consistent if
the random sequence of chosen models with respect to the learning set size n is such
that its expected and empirical risks converge in probability to the expected risk of
the true minimizer of the hypothesis space. That is, ∀ε, α > 0, ∃n0 :

n ≥ n0 =⇒ Ph∼H(n)

(∣∣RX ,Y (h)−RX ,Y (h∗)
∣∣ ≥ ε

)
≤ α

n ≥ n0 =⇒ Ph∼H(n)

(∣∣R̂(n)
X ,Y (h)−RX ,Y (h∗)

∣∣ ≥ ε

)
≤ α

(2.15)

2.3. Empirical risk minimization 21

Therefore, the ERM principle is consistent if the sequence of models ĥ(n)∗
should have its empirical and expected risks converge to the hypothesis min-
imizer expected risk. At the beginning of this chapter, we said that compu-
tational aspects were reflected in the name of the discipline because of their
importance. In the case of the ERM, it translates to having a fast convergence
rate.

Definition 2.3.3 (Fast convergence rate). The rate of convergence of the random
sequence of models selected by the ERM principle is said to be fast if (Vapnik, 1998)

∃c, n0 > 0 : ∀n ≥ n0 : Pn
X ,Y

(∣∣∣∣RX ,Y
(

ĥ(n)∗
)
−RX ,Y (h∗)

∣∣∣∣ ≥ ε

)
≤ e−cε2n

(2.16)

In words, fast convergence appears when, past some point n0, the proba-
bility of the gap between how the selected model and the true minimizer ex-
ceeding some threshold ε decreases exponentially fast with a linear increase
of the number of samples. Thus, any addition of log 2/(cε2) examples halves
that probability.

The definition of fast convergence rate can be restated as tightening the
bound when n increases for a fixed probability α of exceeding the bound.

Definition 2.3.4 (Fast convergence rate (version 2)). The rate of convergence of
the random sequence of models selected by the ERM principle is said to be fast if
∃c, n0 > 0 : ∀n ≥ n0 such that

Pn
X ,Y

(∣∣∣∣RX ,Y
(

ĥ(n)∗
)
−RX ,Y (h∗)

∣∣∣∣ ≥
√

1
cn

log
1
α

)
≤ α (2.17)

This version is derived from the first version by posing α = e−cε2n.

The meaning of the fast convergence rate is illustrated in Figure 2.4a.
Most (as defined by α) learning curves should be bounded (at least from n0

on) by a function of the form
√

c′
cn . Figure 2.4b illustrates the empirical curve

for the digit recognition problem (solved by a linear function in the kernel
space with increasing numbers of basis vectors). The empirical curve seems
to follow nicely the fast convergence rate.

Conditions under which the fast convergence is achieved (and thus the
ERM is consistent) will be discussed in Section 2.6.2. At this point, it might
not be clear, however, why the ERM is not always consistent. The following
sections will delve into this interrogation.

Naive learning algorithm. One straightforward implementation of the ERM
principle would be, for each hypothesis, to assess its empirical error and se-
lect the best one. This poses two problems, however: infinitude and finitude.

Firstly, this is only possible with a finite hypothesis space, which is usu-
ally not the case. Consider the set of straight lines, for instance. There is an

22 Chapter 2. Supervised learning

0 100 200 300 400 500
n

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Error(n) = 1
cn log1

c=1; = 10 1

c=2; = 10 1

c=1; = 10 3

c=3; = 10 2

(A) Theoretical learning curve.

0 200 400 600 800 1000 1200
Size of the learning set

0.0

0.2

0.4

0.6

0.8

Er
ro

r (
m

isc
la

ss
ifi

ca
tio

n
ra

te
)

= 10 3

(B) Empirical learning curve: test set er-
ror for a linear model in a kernel space as
the number of basis vectors n increases.

FIGURE 2.4: Comparison between empirical and theoretical
learning curves (i.e. error as a function of the training set size)

illustrating the fast convergence rate.

uncountable infinite number of slopes and intercepts. Arguably, close pa-
rameters would yield close errors. This might not be so evident for other
hypothesis spaces, however. Besides, even finite hypothesis spaces tend to
be large. For instance, a complete hypothesis space over boolean functions of
p propositions contains 22p

members. Evaluating how each of them performs
on a large-scale problem (large n, large p) remains quite prohibitive. Chapter
3 will present efficient supervised learning algorithms. For now, let us just
assume that they exist.

The second problem relates to the finite number of samples. Since our
naive algorithm uses the samples to select its hypothesis, it may find one
which performs well on its training data but portrays a poor generalization
error. This caveat is not specific to this naive algorithm and will be the topic
of the next section.

2.4 Overfitting

Consider Figures 2.5a and 2.5b. On the former, the dotted blue line portrays a
smaller error (RMSE of 0.44) than the straight-line model (RMSE of 0.46). On
the latter figure, there are no more misclassified samples. Despite their better
apparent performances, these models violate some unspoken assumptions we
might have about the problems. For the regression, it seems hard to justify
this wave-like behavior. For the classification, we might expect a smoother
boundary and certainly no enclave. In these situations, intuition and the
ability to visualize the low-dimensional data allow us to detect something is
amiss. Is it possible to detect such situations in general? What is actually
happening?

The phenomenon at play here is called overfitting and manifests as the
model appearing uncharacteristically good on the set it is being evaluated

2.4. Overfitting 23

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Pe

ta
l l

en
gt

h
[c

m
]

RMSE
0.46
0.44

(A) Possible linear relationships between
sepal and petal lengths. Does the dotted

blue line feel natural?

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(B) Possible boundary between iris
species. Colors depict the prediction of

the model.

FIGURE 2.5: Solutions to the sepal-to-petal and versicolour-or-
virginica problems. Does the boundary feels reasonable?

because it is the one on which the model was chosen; the assessment is bi-
ased. As such, ELS is no longer a reliable estimate of RX ,Y . Overfitting is
sometimes described as “fitting the noise in the data as well as the signal“.
In this latter idiom, “noise” is used loosely to mean (or incorporate) natural
variance in the phenomenon, coupled with finite data.

2.4.1 Unbiased assessments

A simple solution to monitor overfitting is to evaluate the model’s perfor-
mance on samples which have not been used to choose it. Since there is only
one pool of samples, these “unseen-during-training” samples must come
from this single set. Two common strategies to procure such a set are the
train/test split and cross-validation.

Train/test split. One possible strategy is to divide the set in two parts: an
actual training set LS which is fed to the learning algorithm and a held-out
set TS set (the test set), on which the performances will be estimated. An
illustration of this method is given in Figure 2.6a. As mentioned previously,
we usually distinguish between the resubstitution error ELS and the general-
ization error ETS, which is an unbiased estimator ofRX ,Y .

Cross-validation. Another strategy relies on partitioning the dataset S in
k subsets Si (for instance k = 10; let us suppose that n is divisible by k for
simplicity) so that S = S1 ∪ . . . ∪ Sk, i 6= j =⇒ Si ∩ Sj = ∅ and |Si| =
n/k (i = 1, . . . , k). Cross-validation consists in

1. For fold i = 1, . . . , k

(a) use TSi = Sk−i+1 as test set and LSi = S \ Sk−i+1 as learning set;

(b) learn a model on LSi;

24 Chapter 2. Supervised learning

Samples

Learning set Test set

0% 100%

(A) Illustration of the train/test split method: a subset of data is kept for unbiased
estimation.

TSLearning setFold 1

Fold 2

Fold k

...
...

(B) Illustration of the cross-validation method: the dataset is partitioned into folds.
One of the fold is used for unbiased estimation. The process is repeated on each

fold and the estimations are aggregated at the end.

FIGURE 2.6: Methods to construct sets for unbiased estimation
of model performances.

(c) compute the error Ei on TSi;

2. Return the average error 1/k ∑k
i=1 Ei.

When k = n, cross-validation is known as leave-one-out.

Choosing and parametrizing an assessment method. Both train/test split
and cross-validation methods reduce the size of the learning sample to make
room for assessment samples. Unfortunately, many samples are required
both for learning and evaluating. The former is illustrated by Figure 2.4:
removing samples from the learning pool may well result in a suboptimal
model. For instance, using only 200 samples on the digit problem yields a
much worse error than when using the whole set. On the other hand, as-
sessing model performance on a small set may yield an unreliable estimate
because of the high variance due to a small set (law of large number). Thus
parametrizing the size of the held-out set is a delicate decision.

2.4. Overfitting 25

The practical guidelines are to use the train/test split method when the
amount of data is large (compared to the expressiveness1 of the hypothesis
space, as will be discussed in the following sections). For this approach, it is
usually advocated to use between one third to one-fifth of the data as test set,
owing to the fact that optimizing the hypothesis is harder and requires more
samples than simply evaluating the error.

Corollarily, cross-validation is recommended when data is scarce because
one can increase the number of folds and reduce its size to get a less subop-
timal model. Cross-validation is a viable option only provided that the time
required for the loop is available. Indeed, if the time complexity of the learn-
ing algorithm is O(f (n)) the cross-validation propels the time complexity to
O(k f (n/k)). Since f is at least linear in the number of data (we expect the
algorithm to look at all the data), increasing k slows down the whole process.
A value of k = 10 is the standard choice.

Cross-validation comes with a(nother) technical caveat. It might seem
that the average error over the fold is an estimate of the true error (law
of total expectation). However, the model learned at each fold is different.
Consequently, we are not estimating RX ,Y (the expected risk of the model),
but rather R(n(k−1)/k)

X ,Y (the expected risk of the learning algorithm). Ironi-

cally, R(n(k−1)/k)
X ,Y can serve as a proxy for RX ,Y only if its variance is low

(i.e. whatever the selected hypothesis, the performance are roughly equiva-
lent), which, to be true, requires large samples (as can be glimpsed on Figure
2.4 and will be discussed in details in the upcoming sections). Overall, cross-
validation should be avoided to assess the model performance whenever pos-
sible.

Retraining. Since reducing the size of the learning set produces suboptimal
models and the learning curve is monotonically decreasing, there is usually
no reason, so long as time permits, to refrain from re-learning the model on
the whole set and treating the error as a lower bound.

2.4.2 Consequences of overfitting

Figure 2.7 illustrates overfitting on the iris problems, in both regression (Fig-
ure 2.7a) and classification (Figure 2.7b). In both cases, the whole dataset has
been shuffled to obtain different train/test splits on which models from dif-
ferent hypothesis spaces have been learned and assessed. The scatter plots
include how each model fare with respect to the resubtitution error and the
generalization error. Two classes of models are included. For regression,
they are linear and six-degree-polynomial models. For classification linear
boundaries and 2-nearest neighbor (2-NN) are examined. The latter corre-
sponds to attributing the class of the two nearest points. Dispersion ellipses
summarizing the point clouds, as well as their centers, are also displayed.

1Defining “expressiveness” will be the topic of Section 2.6. Informally, expressiveness
conveys the idea of a hypothesis space containing hypotheses suitable for many different
problems.

26 Chapter 2. Supervised learning

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
RMSE (train set)

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75
RM

SE
 (t

es
t s

et
)

x=y
linear models
polynomials (deg. 6)
polynomials (avg.)
linear models (avg.)

(A) Dispersion ellipses of the error over
the training and test sets for the sepal-to-

petal problem.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Misclassification rate (train set)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

M
isc

la
ss

ifi
ca

tio
n

ra
te

 (t
es

t s
et

)

x=y
linear boundaries
2-NN
2-NN (avg.)
linear boundaries (avg.)

(B) Possible linear boundary between iris
species.

FIGURE 2.7: Resubstitution versus generalization errors for
several models and hypothesis spaces. The dispersion ellipses
summarized the point clouds by hypothesis space by depicting
the center of distribution and how the major and minor vari-

ance directions.

As we can see, whatever the problem and the hypothesis space, the (em-
pirical) error is lower on the training set on average (i.e. centers above the
identity line). We also see that the linear models are much closer to the diag-
onal, indicating lesser overfitting. The explanation for this will be the core of
the next section.

In the regression problem, we also observe that (i) the surface of the el-
lipsis corresponding to the linear hypothesis space is much smaller, and (ii)
its major axis is orthogonal to the identity line. Together, these imply that
all models in this class are somewhat equal, trading one type of error for the
other one but offering no model which performs better on both accounts.

Overfitting is relatively mild in the examples we have covered. In the ex-
treme case, the learning algorithm could produce a model which does noth-
ing more than memorizing all the information it is given. In such a case, the
chosen hypothesis would perform perfectly on the learning set and randomly
on any unseen data (or just fail in that case).

2.4.3 Overfitting and the hypothesis space expressiveness

Overfitting is not so much a property of the model as a phenomenon which
relates to the hypothesis space. Admittedly, it might happen that a single-
ton hypothesis space would produce a model (the only one available) which
performs well on the (virtually useless) training set and badly on the test set.
Re-drawing the sets would result in different conclusions, however.

On the other hand, a more varied hypothesis space increases the odds of
having a model which performs a lot better on the training set. This is what
happens in the case of the iris problems. In the regression, the six-degree-
polynomials class encompasses the linear hypothesis space, and is much

2.5. The bias-variance decomposition 27

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
Pe

ta
l l

en
gt

h
[c

m
]

RMSE (train set/test set)
linear: 0.47 ± 0.02 / 0.45 ± 0.04
polynomial (deg. 6): 0.44 ± 0.02 / 0.48 ± 0.08

(A) linear vs. 6-degree polynomial mod-
els.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

RMSE (train set/test set)
linear: 0.47 ± 0.02 / 0.45 ± 0.04
polynomial (deg. 12): 0.43 ± 0.02 / 2.29 ± 3.07

(B) linear vs. 12-degree polynomial mod-
els.

FIGURE 2.8: Variability of the prediction due to overfitting for
the sepal-to-petal problem.

more expressive (one can choose seven points through which the model passes
instead of two). As a result, it is more susceptible to overfitting (ellipsis cen-
ters further away from the identity line). On a pointwise basis, the flexibility
results in more instability for a prediction as well, as Figure 2.8 illustrates. In-
creasing the degree of the polynomials in the hypothesis space allows finding
a model with a slightly lower training error whatever the points given. On
the other hand, the selected models differ much. Since the model class is
flexible enough to focus on artifacts due to sampling and natural variance,
it does so at the detriment of the actual learning signal, resulting in (much)
larger errors on the test set—especially when transitioning from interpola-
tion to extrapolation.

The subsequent sections will formalize the notions which have been intu-
itively illustrated here.

2.5 The bias-variance decomposition

2.5.1 Decomposition

In the case of regression problems under the square loss, the (pointwise) error
decomposes nicely into several insightful terms. Examining this decomposi-
tion is the goal of the present section.

Firstly, note that the expected risk of the learning algorithm R(n)
X ,Y can be

rewritten as

R(n)
X ,Y = EH(n){EX ,Y{`(h(x), y)}} (2.18)

= EH(n){EX {EY|x{`(h(x), y)}} (2.19)

= EX {EH(n){EY|x{`(h(x), y)}} (2.20)

= EX {R
(n)
Y|x} (2.21)

28 Chapter 2. Supervised learning

using the law of total expectation and linearity. We will investigate how the
expected risk of a learning algorithm behaves at a given x. We then have the
following three propositions (proofs can be found in standard textbooks, e.g.
Friedman, Hastie, and Tibshirani, 2001a).

Proposition 2.5.1. The Bayes model can be rewritten in a pointwise fashion as

hB(x) = arg min
y′∈Y

EY|x{`(y′, y)} (2.22)

Proposition 2.5.2. Under the square loss `2, the Bayes model at x is the conditional
expectation of y given x

EY|x{y} (2.23)

Proposition 2.5.3 (bias-variance decomposition). Under the square loss `2

R(n)
Y|x =EH(n){EY|x{(h(x)− y)2} (2.24)

= EY|x{(y− hB(x))2} noise(x)

+ (hB(x)−EH(n){h(x)})2 bias2(x)

+ EH(n){(h(x)−EH(n){h(x)})2} variance(x) (2.25)

In words, the decomposition tells us that, for a regression problem and
the `2 loss, the expected risk of any learning algorithms is the sum of three
factors: the noise, the bias and the variance. An illustration of the error com-
ponents is given in Figure 2.9.

Noise. The noise is an unavoidable residual error caused by the variance
of the phenomenon. Remember that in this case hB(x) = EY|x{y}, meaning
that the noise is the variance of Y given x:

noise(x) = EY|x{(y− hB(x))2} (2.26)

= EY|x{(y−EY|x{y})2} = VY|x{y} (2.27)

Since the predictors is a function while the actual phenomenon is stochas-
tic, there is no overcoming this part of the error. On the other hand, if the
process is devoid of variance (i.e. the phenomenon is totally deterministic),
this term vanishes.

Bias. The squared bias reflects how much, on average, the selected model
is far from the optimal Bayes model. When there is no bias, the average
prediction conforms to the Bayes model prediction. A high bias is the result
of some kind of systematic errors in the predictions: they do not cancel each
other out on average because all the models make the same mistake.

The most common source of bias is having an inadequate hypothesis
space. In the sepal-to-petal problem, a model could constantly predict the
average of petal length in the learning set, independently of the sepal length.

2.5. The bias-variance decomposition 29

a c

b d

e

f

FIGURE 2.9: Bias-variance decomposition—an illustrative per-
spective. The target center represents the ground truth and each
point represents the prediction of a model. (a) represents a low
overall error on a noise-free problem: all predictions are close
to the ground truth. (b) represents a low variance, high bias
situation on a noise-free problem: all predictions are close to-
gether but are not centered on the ground truth. (c) represents
a low bias, high variance situation on a noise-free problem: the
average of the points is well-centered but each point is far away
from the ground truth. (d) represents a high bias, high variance
situation on a noise-free problem: predictions are not close to
each other and are not centered on the ground truth. (e) rep-
resents a low bias, low variance situation with residual noise:
where the exact target center (i.e. the ground-truth) lies is fuzzy.

(f) represents a high bias, high variance with residual noise.

Although this is provably the best constant prediction (under the `2 loss), all
such models will underestimate petal lengths of iris with large sepal.

How does this relate to the representational bias discussed in Section
2.2.5? The squared bias can be further decomposed as(

hB(x)−EH(n){h(x)}
)2

=
(
(hB(x)− h∗(x))−

(
EH(n){h(x)} − h∗(x)

))2 (2.28)

= (hB(x)− h∗(x))2 +
(
EH(n){h(x)} − h∗(x)

)2

− 2 (hB(x)− h∗(x))
(
EH(n){h(x)} − h∗(x)

)
(2.29)

where the first term of Eq. 2.29 is the (squared) representation bias, whereas
the second term is called the squared search bias. The former relates solely to
the hypothesis space, while the latter expresses how suboptimal the learning
algorithm is. Taking the expectation over X of the last term yields a kind of

30 Chapter 2. Supervised learning

covariance between both bias types. Unless there are reasons for them to be
correlated, this last term is null on average.

Variance. The variance reflects how much the prediction varies depending
on the learning set. The major cause of variance is overfitting.

Note that both the noise and this term are variances. The former, VY|x{y},
is solely due to the phenomenon. The latter is VH(n){h(x)} and is due to both
the data generating process and the learning algorithm.

2.5.2 Bias-variance tradeoff

At first glance, designing a regression algorithm seems straightforward: re-
duce the bias and the variance. Unfortunately, these terms are not inde-
pendent; they are inversely affected by the expressiveness of the hypothesis
space.

As we have mentioned, overfitting is more likely to happen when the
model class is expressive, since there is more flexibility to fit well the learning
set. As a consequence, VH(n){h(x)} will increase. On the other hand, if the
hypothesis space is not expressive enough, the likelihood of having a large
bias increases. This is known as the bias-variance tradeoff and is illustrated
in Figure 2.10.

In Figure 2.10a, the training set and test set errors are reported as a func-
tion of the maximum degree the polynomials in the hypothesis space can
take. When predicting a constant (polynomial of degree 0), both test and
train errors are high. This is a case of underfitting caused by having a high
(representational) bias. In the linear regime (degree 1), the test error is at its
lowest. From there (degrees 2 to 5), the learning algorithm is able to find a
marginally better model on training samples but the test error rises slowly.
From there on (degree ≥ 6), the gap between the training and test errors
widens noticeably: the learning algorithm is clearly overfitting the data.

This is not specific to regression and the iris dataset, Figure 2.10b illus-
trates the same phenomenon, where there is a clear compromise to find be-
tween under- and overfitting. Is also illustrated the fact that the variance on
the test set increases with the model complexity.

In general, the behavior of the expected risk with respect to the expres-
siveness of the hypothesis can be schematically described as in Figure 2.10c.

The take-home message is that it is not possible to eliminate both the vari-
ance and the bias—at least the representational component. Consequently, a
better goal should be to aim for the sweet spot balancing both errors.

On expressiveness and complexity. It is common to talk about “model
complexity”, especially when referring to a hypothesis space built upon a
parametric class of models. In such a case, the “complexity” (whose precise
definition depends on the class of models) controls the expressiveness of the
hypothesis space. For instance, in a hypothesis space made of polynomials,
the degree of such functions may serve as complexity. Measures of regularity

2.5. The bias-variance decomposition 31

0 2 4 6 8 10
Expressivity (maximum polynomial degree)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Er
ro

r (
RM

SE
)

Test set
Train set

(A) Sepal-to-petal polynomial regression.

10 6 10 5 10 4 10 3 10 2 10 1

Expressivity ()

0.0

0.2

0.4

0.6

0.8

Er
ro

r (
m

isc
la

ss
ifi

ca
tio

n
ra

te
)

Test set
Train set

(B) Digit classification with a linear
model from the kernel space (m = 900).
The γ parameter relates to the locality co-
efficient of the RBF kernel (see Section

2.2.7).

Expressiveness

Expected risk
Bias
Variance

(C) Schematic behavior of bias-variance
tradeoff

FIGURE 2.10: Bias-variance tradeoff: errors with respect to
model complexity. As the expressiveness increases, the er-
ror first decreases (the representation bias is gradually over-
come) but then starts increasing again suggesting overfitting
(the training set is memorized, resulting in increased variance).

(such as Lipschitz constant) or of memory (such as the raw number of learn-
able parameters in a model and the minimum description length) may also
serve as complexity measures. These are however somewhat indirect mea-
sures of expressiveness. More direct measures will be discussed in Section
2.6.2 (in the case of classification).

2.5.3 Approximation-estimation decomposition

The bias-variance decomposition we have seen is tied to regression problems
under the `2 loss. A general decomposition, known as the approximation-
estimation, also exists.

Definition 2.5.1 (Approximation-estimation decomposition). Let h be some
hypothesis selected by a learning algorithm. The gap between the risk of h and the

32 Chapter 2. Supervised learning

risk of the Bayes model hB can be decomposed as (e.g. Bottou and Bousquet, 2007;
Luxburg and Schölkopf, 2011)

RX ,Y (h)−RX ,Y (hB) = (RX ,Y (h)−RX ,Y (h∗))︸ ︷︷ ︸
estimation error

+ (RX ,Y (h∗)−RX ,Y (hB))︸ ︷︷ ︸
approximation error

(2.30)

Note that the decomposition is valid for all h but referring to the terms as esti-
mation and approximation errors of a learning algorithm only make sense if h is the
selected hypothesis.

The decomposition translates the risk of hypothesis h so that it will be
null if h is the best model there exists (not necessarily from the hypothesis
space). Both terms in the right-hand side are positive (or null). The first one,
by definition of h∗ (best hypothesis) and the second one by definition of the
hB (best function).

In essence, the approximation error captures the same idea as the repre-
sentation bias. It is an indicator of the discrepancy between the best hypoth-
esis h∗ and the Bayes model hB. It is solely a property of the hypothesis space
(in relationship with the problem but independent of the choice of hypothe-
sis).

The estimation error is indicative of the error made by choosing the hy-
pothesis with a finite sample. Remember from the consistency properties
(Section 2.3) that a consistent learning algorithm is such that the estimation
error will converge to 0 as the size of the learning set increases.

Overall, the general ideas expressed by the bias-variance decomposition,
i.e. the fact that the error can be decomposed into a term relating to the hy-
pothesis space (bias) and a term linked to the size of the learning set (vari-
ance), apply to all problems.

2.6 Bounds over the generalization gap

The previous section provided useful decompositions to understand overfit-
ting. So far, the link with the expressiveness of the hypothesis space is still
intuitive. This section will look at classification to establish a more direct con-
nection with expressiveness. We will tackle this through the lens of bounds
on the generalization gap.

Definition 2.6.1 (Generalization gap). The generalization gap is defined as

∆R(n)
X ,Y (h) = RX ,Y (h)− R̂

(n)
X ,Y (h) (2.31)

(2.32)

and is a random variable (over the n datapoints drawn to compute the empirical risk)
representing how much the empirical risk underestimates the true risk.

2.6. Bounds over the generalization gap 33

Definition 2.6.2 (Bound on the generalization gap). A generalization bound is
of the following form.

Pn
X ,Y

(
∃h ∈H : ∆R(n)

X ,Y (h) ≥ ε(n, α, H)
)
≤ α (2.33)

where ε is the tightness of the bounds and typically depends on (i) the number of
samples n, (ii) the probabilistic guarantee of not exceeding the bounds, which is con-
trolled by α, and (iii) the hypothesis space itself.

An important note is that such bounds are established irrespective of how
a hypothesis might be selected. Rather, they are a kind of worst-case scenario,
sweeping agnostically over the whole hypothesis space. The question they
address is not, given a “bad” learning set, what can be expected of the se-
lected hypothesis? The question is: given a set of samples (absent of any
learning quality) what gap can be expected? As a consequence, the bounds
apply to hypothesis space; they are not properties of the learning algorithm.
Intuitively, such results are established by taking into account the fact that,
as more and more realizations (i.e. losses at given points in this case) are
summed, the harder for the finite sum to diverge much from the expectation.

From the generic form of the bounds, it is apparent that enforcing more
guarantees (i.e. reducing α) comes at the price of a looser bound and vice
versa. Increasing the number of samples will tighten the bound at a fixed
α. The hypothesis space appears in the bound because its expressiveness
matters (as we will see, the higher the expressiveness, the looser the bound).

Section 2.6.1 discusses such a bound in the case of a finite hypothesis
space, while Section 2.6.2 introduces another measure of expressiveness, to-
gether with a bound. Those results hold for a loss such that 0 ≤ `(y′, y) ≤ 1,
e.g. `0−1 (note that the actual restriction is that the loss be bounded. From
there, one can always rescale the loss to be in the appropriate range).

2.6.1 Finite hypothesis space bound

Singleton bound. Let us first consider the case of a singleton hypothesis
space.

Proposition 2.6.1 (Singleton generalization gap bound). When H = {h}, the
generalization can be bounded by

Pn
X ,Y

(
∆R(n)

X ,Y (h) ≥
√

1
2n

log
1
α

)
≤ α (2.34)

Proof. The proof is reproduced from Shawe-Taylor (2019). Using Hoeffding’s
inequality on the risk yields

Pn
X ,Y

(
RX ,Y (h)− R̂

(n)
X ,Y (h) ≥ ε

)
≤ e−2nε2

(2.35)

Posing α = e−2nε2
and solving for ε leads to ε =

√
1

2n log 1
α . Substituting the

value of ε in the previous equation yields Eq. 2.34.

34 Chapter 2. Supervised learning

The Hoeffding’s inequality is only valid for losses such that 0 ≤ l(y′, y) ≤
1. Being distribution independent, it is applicable to any problem at the ex-
pense of being conservative.

Finite hypothesis space bound.

Proposition 2.6.2 (Finite hypothesis space (FHS) generalization gap bound).
For any hypothesis h ∈H of a finite hypothesis space

Pn
X ,Y

(
∃h ∈H : ∆R(n)

X ,Y (h) ≥
√

1
n

log
|H|

α

)
≤ α (2.36)

Proof. The proof is reproduced from Shawe-Taylor (2019). Establishing the
FHS bound relies on the sub-additivity of the probability measure and then
bounding each term of the sum with Hoeffding’s inequality:

Pn
X ,Y

(
∃h ∈H : ∆R(n)

X ,Y (h) ≥ ε
)
= Pn

X ,Y

(
∪h∈H ∆R(n)

X ,Y (h) ≥ ε
)

(2.37)

≤ ∑
h∈H

Pn
X ,Y (∆RX ,Y (h; LS) ≥ ε) (2.38)

≤ ∑
h∈H

e−2nε2
= |H|e−2nε2

(2.39)

From there, equating the right-hand side to α and solving for ε yields Eq.
2.36.

Interestingly, the bound is established using sub-additivity, meaning that
it can be quite loose. Imagine an unrepresentative set of samples is drawn. It
will most likely cause many hypotheses to have a large generalization gap.
This co-dependence is not captured by the bound. This also highlights the
inadequacy of the cardinality to serve as expressiveness measure: the fact
that hypotheses might exhibit similar behaviors is not taken into considera-
tion. For instance, if the hypothesis space is made up of |H| times the same
hypothesis, the bound should collapse to the singleton bound, which is not
the case. The next section will propose a new measure of expressiveness to
somewhat solve this issue.

2.6.2 Vapnik–Chervonenkis bound

The bounds of the previous section are only defined for a finite hypothesis
space. However, most practical spaces are (uncountably) infinite (the space
of linear functions, for instance). As a consequence, another measure of ex-
pressiveness must be used. Incidentally, this measure will also be better able
to capture the intuitive idea of expressiveness. Before introducing this new
measure, we need to define several concepts.

Definition 2.6.3 (Error vector). Given S = {(xi, yi)
n
i=1} ⊂ X×Y, a hypothesis

h, and a loss ` the corresponding error vector is

u(h, S; `) = [`(h(x1), y1), . . . , `(h(xn), yn)]
T (2.40)

2.6. Bounds over the generalization gap 35

Definition 2.6.4 (Error span). Given S ∈ (X×Y)n, a hypothesis space H, and a
loss `, the error span of S in H under ` is the set of all error vectors the hypotheses
can produce:

U(H, S; `) = {u(h, S; `) : h ∈H} (2.41)

For the remainder of this section, we will focus on `0−1 (and drop it from
the notation). The binary nature of this loss will simplify the discussion and
is sufficient for the point we are making. The discussion can be extended to
other loss functions, however, so long as they are bounded (intuitively, this
is done by quantizing the error vectors to a finite set, hence the requirement
for a bounded loss).

The cardinality of U(H, S) is an interesting quantity. By definition of the
error span, |U(H, S)| ≤ |H|. Just as clearly |U(H, S)| ≤ 2n, since there are
only 2n binary vectors of size n. If |U(H, S)| � |H|, the hypothesis space
is redundant: many hypotheses share the same error vector. This overcomes
the limitation of using |H| directly as expressiveness measure. However, this
new metric depends on S, and, eventually, on the PX ,Y (provided S is drawn
from it), leading to the following definition.

Definition 2.6.5 (Growth function). The growth function of H (under `) is the
log of the maximum number of error vectors the hypotheses can produce for any set
of n points:

GrH(n; `) = log sup
S∈(X×Y)n

|{U(H, S; `)}| (2.42)

The growth function is a distribution-independent version of |U|. This
offers generality at the expense of specificity: the supremum might only be
realized for an unlikely S. The growth function inherits the upper bounds of
the error span (barring the logarithm), but the fact that it is established on all
S signifies that if GrH(n) = n log 2, whatever the given learning set of size n,
there exists at least one hypothesis which will produce a null error vector. As
such, this hypothesis may lead to a large generalization gap when it actually
does not capture the underlying phenomenon. Therefore we, lastly, define
the following quantity.

Definition 2.6.6 (Vapnik–Chervonenkis (VC) dimension). The VC dimension
of H is the minimum sample size n such that not all error vectors can be produced:

bHe = min
n∈N
{n : GrH(n) < n log 2} (2.43)

when the GrH(n) < n log 2 condition is never met, the VC dimension is unbounded
(or infinite).

The VC dimension allows the derivation of the following bound.

36 Chapter 2. Supervised learning

Proposition 2.6.3 (Vapnik–Chervonenkis (VC) bound). For any hypothesis space
H of finite VC-dimension,

Pn
X ,Y

(
∃h ∈H : ∆R(n)

X ,Y (h) ≥

√
1
n

(
bHe log

(
2n
bHe + 1

)
+ log

4
α

))
≤ α

(2.44)

Proof. See Vapnik (1998).

Examining the bound, we see that if bHe = n, the radicant of the square
root is greater than log 3 ≈ 1.1. Since the loss function is upper bounded by
1, the bound is virtually useless in that case. To be of any use, we need to
be in a situation where bHe � n. In such a scenario, the gap may be tightly
bounded and the empirical risk does reflect the expected risk.

Unbounded VC dimension. The VC dimension is better able to capture the
intuitive notion of expressiveness by accounting for hypotheses producing
the same error responses (or close responses when quantizing the loss) only
once. It is for instance possible to show that the class of linear indicator func-
tions over X = Rp has a VC dimension of d + 1 although it is uncountably
infinite.

Some hypothesis spaces, however, have an unbounded VC dimension
(for instance, the hypothesis space of decision trees, which we will look at
in Chapter 3), meaning they can always produce the full span of error vec-
tors. For those, the VC bound is not applicable and overfitting looms over the
learning algorithm like a sword of Damocles, not even disappearing when
enlarging the training set a thousandfold.

One might wonder at the rationale behind using guarantee-free hypothe-
sis spaces. Firstly, note that the absence of the bounds does not de facto imply
overfitting; rather it becomes (much) more likely. Secondly, unbounded VC
dimension might be the price to pay for universal expressiveness.

Definition 2.6.7 (Universal approximator). The hypothesis space H is a univer-
sal approximator of G if for any g ∈ G and any η ≥ 0

∃h ∈H : sup
x
|h(x)− g(x)| ≤ η (2.45)

Theorem 2.6.1. If H is a universal approximator of G then bHe ≥ bGe.

Therefore, if one wants H to be able to approximate any function, it cannot
have a finite VC dimension.

Fast convergence of the ERM principle. The theory developed in this sec-
tion allows us to finally formulate a criterion which ensures the fast conver-
gence rate of the ERM principle (and, consequently its consistency).

2.7. The expressiveness/overfitting dilemma 37

Theorem 2.6.2 (Fast convergence rate of the ERM principle). A necessary and
sufficient condition for the ERM to exhibit fast convergence is

lim
n→∞

GrH(n)
n

= 0 (2.46)

This condition imposes that the VC dimension of the hypothesis space be
finite (otherwise, the growth function is always linear in n and the limit is
log 2), which makes perfect sense.

2.7 The expressiveness/overfitting dilemma

Both FHS and VC bounds show the same trends. Firstly, as the number of
samples increases, the bounds tighten (at least for finite expressiveness). Sec-
ondly, as the expressiveness increases, the bounds loosen. Thus, the relative
values of the expressiveness and number of samples determine the tightness
of the bound.

When the expressiveness is high but the learning set is small, the bounds
are loose—even useless. Even though the empirical risk is low, the gener-
alization error may be high; this is a typical overfitting scenario. Note that
resorting to a larger training set improves the bounds, at least so long as
the expressiveness is bounded. Indeed, there exist hypothesis spaces with
unbounded VC dimension. In such a case, the model class is so expressive
that overfitting is always a risk. Interestingly, we do not necessarily observe
severe overfitting in practice in such situations and the search for a better
theory is still a vivid topic (see also Section 8.2.1 for further discussions in
the case of deep learning).

Conversely, when the expressiveness is low but the learning set is large,
the bounds are tightest. Note that the bound can be tight, yet the risk high. In
such a case, both the empirical and expected risks will be high. The bounds
are of little help in such a situation and increasing the number of samples
does not help. Rather, a change of hypothesis space is needed to find hy-
potheses with more favorable risks.

Although both the bounds and the bias-variance decomposition shed some
light on overfitting, they have different goals and employ different means.
As noted, the bounds do not highlight how to reduce the generalization er-
ror. On the other hand, the bias-variance decomposition does not explicitly
refer to the expressiveness or the size of the learning sample. Nonetheless,
taken together, they depict a coherent picture: there is a tradeoff to be found
between (i) having an expressive hypothesis space, in which case there is a
low representational bias and low empirical risk can be achieved but the high
variance opens up the door to overfitting, which is reflected by a loose bound,
and (ii) a not so expressive hypothesis space, which might incur a high em-
pirical risk because of representational bias, in which case the resulting tight
bound and low variance are not of much use.

Overall, choosing adequately the expressiveness is a key factor to success-
ful supervised learning. Sometimes, one might have enough intuition on the

38 Chapter 2. Supervised learning

problem to choose a not-so-expressive hypothesis space with low representa-
tional bias. This is why we frowned at the idea of modeling the sepal-to-petal
relationship with a sixth-degree polynomial. When such intuition is missing,
it is still possible to manage the expressiveness, albeit at the expense of re-
casting the problem somewhat. Indeed, the shortcomings we have discussed
do not stem from, but are at least exacerbated by, the ERM principle which
increases the likelihood of overfitting (by selecting the best hypothesis on the
learning sample). Therefore, we switch to a new principle: structural risk
minimization, which is based, as the name suggests, on structuring the hy-
pothesis space.

Definition 2.7.1 (Structure). A structure over a hypothesis space H is a sequence
H1, H2, . . . such that {

H1 ⊂H2 ⊂ . . . ⊂H

bH1e ≤ bH2e ≤ . . . ≤ bHe
(2.47)

For instance, a structure can be placed over the set of one-dimensional
linear functions by forming element of the form Hi = {x → mx + p|m2 +
p2 ≤ ti}, with i < j ⇐⇒ ti < tj.

Definition 2.7.2 (Structural risk minimization (SRM) principle). The SRM
principle state that the hypothesis must be selected by

1. choosing an appropriate element Hi of the structure;

2. learning the hypothesis from Hi.

How the SRM principle is implemented depends, notably, on the nature
of the hypothesis space. The following two sections will cover two such im-
plementations: regularization and model selection.

2.8 Managing expressiveness: regularization

2.8.1 Regularization

Regularization amounts to encouraging the selection of a hypothesis from a
structure member of low expressiveness.

Penalization. Penalization discourages highly-expressive structure mem-
bers. It adopts the following form.

Definition 2.8.1 (Penalization). Given a learning set LS, a penalization-based reg-
ularized algorithm learning solves the program

h∗ = arg min
h∈H

ELS(h) + µR(h) (2.48)

where µ ∈ R+ is a hyper-parameter balancing the goodness of h on LS and the
expressiveness penalty given by the regularizer R.

2.8. Managing expressiveness: regularization 39

Definition 2.8.2 (Regularizer). A regularizer R : H → R+ over H is a function
such that ∀h ∈Hi, h′ ∈Hj, R(h) ≤ R(h′) ⇐⇒ bHie ≤ bHje.

Penalization works well in tandem with parametric hypothesis spaces
where the regularizer is defined directly on the parameters. For instance,
on a hypothesis space H = {x → wTx} composed of linear functions, one
can impose a penalty of the form ||w||22 (known as L2 penalty) to favor mod-
els with lower slopes. This is how the green dotted line of Figure 2.2a was
obtained. We see that the resubstitution error is higher and the slope lower
(in that case, using regularization was not necessary).

Penalization closely follows the SRM principle since it can be seen as a
Lagrangian over the structure. It comes with the caveat of balancing the
hyper-parameter µ. If µ is small, we fall back to a standard ERM. As µ in-
creases, the hypothesis is selected less and less based on the data and more
and more based on the expressiveness of its structure member. Choosing
the appropriate µ is not straightforward. Fortunately, µ can be treated as a
hyper-parameter and is thus tunable by model selection (see Section 2.8.2).

Beyond penalization. Other forms of regularization exist. They are usually
more dependent on the learning algorithm, however. In order to fix the idea,
imagine a learning procedure which optimizes the model sequentially (e.g.
using gradient descent), producing a sequence of models h1, . . . , hm. An im-
plicit regularization might consist in interrupting the optimization before the
mth step.

2.8.2 Model selection

This section covers model selection. Although motivated by the need to con-
trol the expressiveness of a hypothesis space, model selection is broader in its
applications. Model selection is much like the naive learning algorithm we
discussed in Section 2.2, and as such, is subject to the same (computational)
limitations. That is why it is not so much used as a direct learning algorithm,
but rather as an outer loop (or post-processing step) to select a model from a
small, finite collection.

Model selection aims at selecting the best model from a pre-selected few.
This situation arises most notably when hyper-parameters are involved. When
there is no obvious choice for the hyper-parameter values, the practitioner
is facing a family of learning algorithms. Rather than making an arbitrary
choice, a better alternative consists in optimizing the hyper-parameters.

Many hyper-parameters relate, one way or another, to the expressiveness
of the hypothesis space. The penalty weight µ of a penalization, discussed in
the previous section, falls into that category. On the other hand, many hyper-
parameters play the role of implicit regularizers. The stopping criterion of a
sequential process, as mentioned in the previous section is typically a tunable
hyper-parameters. Others will be discussed in the next chapter (learning rate,
level of noise, etc.). Alternatively, there are some hyper-parameters which
directly control the expressiveness, such as the depth of a decision tree, or
the architecture of a neural network.

40 Chapter 2. Supervised learning

To select a hypothesis from a pool of learned models, its generalization
error must be estimated. The learning set cannot be used for this purpose,
since it is likely that a model learned from a more expressive hypothesis
space will be better, thus rendering the whole expressiveness calibration re-
dundant. With the train/test technique, it would seem that the test set could
be used for this purpose. This raises a new (and subtle) problem though:
overfitting the test set. It might feel odd that the test error, an estimate of
the generalization error, would no longer be a reliable estimate of the same
quantity after serving as selection ground. The problem comes from repeat-
ing the assessment, which increases the likelihood of obtaining an unreliable
estimate. To better grasp what is happening, let us imagine the following
thought experiment.

Alice invites m friends over and tasks them to foretell the results of the
n independent and unbiased coin flips she is about to make. Since none of
them are seers, they will guess at the results. Because there are 2n possible
outcomes but only one correct, the probability of any of the friends guessing
the correct tosses is 1/2n. Assuming no collusion, the probability of having
at least one perfect guesser is

1−
(

1− 1
2n

)m
(2.49)

If Alice makes 3 tosses and has 10 friends, there is just below 3/4 chances of
getting at least a correct guesser (which is much more than 1/8 chance they
stood individually). With 10 tosses, the group is still ten times better off than
individuals, although it would take 710 guests to have a 50% chance of at
least guessing once correctly. This is a lot of friends, but the important thing
to note is that, as m grows, so does the probability of finding a lucky guesser
(a guesseer).

In the analogy, the friends embody the hypotheses (for a binary classifi-
cation problem) and the tosses represent the data. Even though the friends
simply guess (i.e. hypotheses are bad), the probability of finding a seemingly
good one on the toss (i.e. the test set) is not null. If we only relied on the
tosses, we would be fooled into thinking one of them is actually good; the
assessment is biased and the test set is overfitted.

In practice, the pool of pre-selected models is supposed to be learned on
the data and should do better than random guessing. They would not be
as independent as the metaphor suggests and the test set estimate should
be more reliable than in the analogy. Moreover, we expect the number of hy-
potheses (m) to be small (for computational reasons) and the number of data-
points (n) large (for representativeness reasons). Nonetheless, the probability
we derived relates to an extreme case where the hypotheses are all wrong. In
practice, a much less extreme situation might prove to be problematic. The
bottom line is that if a truly unbiased and totally reliable estimate of the error
is needed, it should come from a wholly unseen set of samples. Since we are
facing the same problem as in Section 2.4.1, we can use the same solutions:
leaving a subset for this purpose or using a cross-validation loop.

2.9. Beyond supervised learning 41

Samples

Learning set Test set

0% 100%

Validation
set

FIGURE 2.11: Illustration of the train/validation/test split.

Train/validation/test split. This technique consists in splitting the samples
in three groups whose roles are

1. train set: learn the pre-selected models;

2. validation set: select the best model among the pre-selected ones;

3. test set: assess the final error.

This process is illustrated by Figure 2.11. As with the train/test splits, it is ad-
vantageous to retrain the model. It can be done both after selection (once the
optimal hyper-parameters have been found) and after the final assessment.

Cross-validation. As far as model selection is concerned, cross-validation
is implemented as a two-stage k-fold cross-validation. The outer loop sets
apart subsets to estimate the average errors relating to the hyper-parameters
chosen by the inner loop.

2.9 Beyond supervised learning

So far, this chapter has mainly been dedicated to supervised learning, which
is only one (admittedly major) brick of machine learning. We will now briefly
discuss a few other such tools.

2.9.1 Same goal, different means

Supervised learning aims at learning a hypothesis h ∈ H with a learning set
LS = {(xi, yi) ∈ (X×Y)|1 ≤ i ≤ n}. Sometimes additional sources of data
are available to learn from. In the later chapters, we will often tackle settings
in which data is scarce. Therefore, leveraging information from other sources
will be a major component in working out a solution. Below we briefly de-
scribe two settings which will be the basis for our solutions (the relevant
facets will be discussed in more depth when describing our solutions).

Semi-supervised learning. In semi-supervised learning, in addition to a
(small) learning sample, unlabeled data are available to learn from. This

42 Chapter 2. Supervised learning

(large) unlabeled set U is drawn from Pm
X . See the work of Chapelle, Scholkopf,

and Zien (2009) for an in-depth tour of semi-supervised learning.
Unlabeled data will be used in Chapter 7 to aggregate indicators in the

context of out-of-distribution and in Chapter 8 to transfer the knowledge
from a model to another.

Transfer learning. In transfer learning, the goal is to leverage knowledge
learned on a source task to help in a target task. The source task is modeled
by some distribution PXs,Ys over some Xs ×Ys space, and the target task is
modeled by PXt,Yt 6= PXs,Ys over some Xt ×Yt. Depending on how those
differ, transfer learning can be further categorized.

For instance, in covariate shift, the task in unchanged except for the dis-
tributions over the input space: Xs ×Ys = Xt ×Yt and PYs|x = PYt|x but
PXs 6= PXt . Covariate shift happens, for instance, when the lighting condi-
tions change for camera acquisitions (see also Section 7.2.1.2).

Conversely, when only PYs 6= PYt , the problem is denoted as prior prob-
ability shift. Imagine for instance that Y = {healthy, sick} in the context of
some disease. If an outbreak occurs, the prior probabilities will shift: without
knowing anything about a person, it is more likely sick than before.

Those two examples are cases of domain adaptation (DA) because Xs ×
Ys = Xt ×Yt. In DA, one usually wants to build a model of PYt|x but has
access to data from PXs,Ys (and possibly some unlabeled data from the target
task). Transfer learning also encompasses problems where data are more
varied.

Chapter 8 draws ideas from domain adaptation. Zhuang et al. (2021) pro-
pose a recent review of transfer learning.

2.9.2 Different goals

Unsupervised learning. Similar to density estimation, in unsupervised learn-
ing a finite sample xi|x ∈ X

n
i=1 drawn iid from a distribution PX is available.

In unsupervised learning, the goal is to find and exploit structure in the data.
Two examples are

Dimensionality reduction In dimensionality reduction, the goal is to find a
compression function h : X = Rp → Rq with q � p such that “in-
formation is preserved”. Dimensionality reduction is performed by
techniques such as principal component analysis (PCA), independent
component analysis (ICA), t-SNE, etc.

Clustering In clustering the goal is to group datapoints together according
to their closeness (rather than in actual classes). Clustering in the realm
of algorithms such as hierarchical clustering and k-Means.

Density estimation. In density estimation, the goal is to infer a density dis-
tribution function from a finite sample {xi|x ∈ X}n

i=1 drawn iid from a dis-
tribution PX . Contrary to regression or classification, there is no Y space

2.10. Conclusion 43

involved. Aside from this major difference, density estimation resembles re-
gression on many accounts.

Other tools. There are still other tools (reinforcement learning being an im-
portant one, for instance) in the machine learning toolbox. Those are outside
the scope of this thesis however and will not be detailed.

2.10 Conclusion

This chapter has been dedicated to a tour of supervised learning. After for-
malizing it and proposing a first framework with the empirical risk mini-
mization (ERM) principle, we have detailed the main difficulty of supervised
learning: overfitting, that is modeling even the natural, sampling random-
ness embedded in the data.

Starting from an intuitive perspective, we have moved on to two theo-
retical frameworks which shed some light on the phenomenon. The bias-
variance decomposition shows how to decompose the expected risk of a
regression algorithm under the squared loss function. This was our first
glimpse at the dilemma regarding overfitting and expressiveness. It became
apparent that in order to have a low (representational) bias, we needed an ex-
pressive hypothesis space. In turn, a highly expressive hypothesis space was
likely to raise the variance of the learning algorithm. Although not directly
applicable to classification, the phenomenon highlighted by the decomposi-
tion also manifests.

To get an even stronger grip on overfitting, we reviewed some results of
the statistical learning theory, applicable for bounded loss functions (such as
the zero-one loss). These results come in the form of bounds on the gener-
alization gap (the difference between the empirical risk and the actual risk).
These are distribution-free, worst-case results. As such the tightness of the
bound relates somehow to the variance of the learning algorithm. Estab-
lishing the bounds also allows us to (i) define more precisely (or to give one
definition of) the hypothesis space’s expressiveness and (ii) validate the ERM
principle. Although the notion of bias does not appear in the bounds, all the
results complement each other and show that overfitting is inextricable un-
der blind application of the ERM principle.

We, therefore, proposed a new principle—structural risk minimization—
whose goal is to control the expressiveness of the hypothesis space, and saw
how to implement it in practice, either via regularization, or via model se-
lection (as a post-processing step or an outer-loop over a nested learning
algorithm). Finally, we discussed a few other paradigms machine learning
encompasses.

So far, we have supposed that learning algorithms, capable of enforcing
the ERM principle (or its variants), existed. The next chapter will be dedi-
cated to such algorithms and how well they are equipped to deal with this
task.

45

3
Chapter

Learning algorithms for
supervised machine learning

Chapter overview

In this chapter, we take a closer look at a few supervised learning
algorithms related to our contributions.

Specifically, Section 3.1 will detail the linear regression algorithms
which were illustrated in Chapter 2. Section 3.2 will look at a clas-
sification counterpart. We will then delve into the realm of decision
trees (Section 3.3) and forests (Section 3.4). Our tour of learning algo-
rithms will end with deep learning in Section 3.6. The remainder of the
chapter will be dedicated to some tricks and tools relating to learning
algorithms (Section 3.7).

As was introduced in the previous chapter, a learning algorithm is a pro-
cedure which turns a learning samples LS = {(xi, yi) ∈ X×Y|i = 1, . . . , n}
drawn independently and identically (iid) from some unknown data distri-
bution PX ,Y into a model h ∈ H with the goal of minimizing, over that
distribution, the expected risk in the sense of some loss function `.

Many learning algorithms assume that X = Rp, in which case any sam-
ple, and in particular the learning sample, may be represented by a n × p
matrix, denoted by X, containing the x vectors (stacked to form the n rows
of the matrix so that X[i, j] is the jth component of the ith datapoint), and
a column vector y of size n containing the corresponding labels. In such a
representation, X is referred to as the learning matrix.

For instance, in the sepal-to-petal problem, the sepal information forms
a n × 1 matrix. In the species classification, the matrix is n × 2 (sepal and
petal length). In digit classification, the most direct representation consists
in flattening the images into vectors of size 64 and thus forming a n × 64
learning matrix.

Several algorithms we will discuss in this chapter expect this form. Sec-
tion 3.7 will elaborate on how to adapt data which does not fall exactly in
this setting (notably the case of discrete input parameters). Consequently,
this chapter will tacitly expect this form of inputs.

46 Chapter 3. Learning algorithms for supervised machine learning

3.1 Linear regression and its extensions

In linear regression, the hypothesis space is the set of linear (actually affine)
functions.

Definition 3.1.1 (Linear hypothesis space (regression)).

H = h : x → wTx + b with w ∈ Rp, b ∈ R (3.1)

3.1.1 Ordinary least square linear regression

Definition 3.1.2 (Ordinary least square (OLS)). The ordinary least square linear
regression is the following program:

wOLS, bOLS = arg min
(w,b)∈Rp+1

n

∑
i=1

(
wTxi + b− yi

)2
(3.2)

= arg min
(w,b)∈Rp+1

n

∑
i=1

(
p

∑
j=1

w(j)x(j)
i + b− yi

)2

(3.3)

= arg min
(w,b)∈Rp+1

||Xw + 1nb− y||22 (3.4)

where 1n is the vector containing n ones.

OLS amounts to the empirical risk minimization (ERM) under the least
square `2 loss function. The matrix form encourages to consider the relation-
ship between n and p.

The limit case. When n = p, X is a square matrix, wOLS can be found by
solving the linear system of equations

XwOLS + 1nb = y (3.5)

⇐⇒ wOLS = X−1(y− 1nb) (3.6)

which is only feasible if X is full-rank. The solution thus computed would re-
sult in a zero resubstitution error. It should also be clear that, in this case, the
selection of the hyperplane is quite susceptible to the drawing of the learning
set (i.e. the learning algorithm will portray high variance).

The common case. Usually, we expect to have more datapoints to learn
from than input features: n > p. This is also the situation advocated by the
learning theory (since p relates to the VC dimension). From the linear system
perspective, it means there are more constraints than unknowns. Unless the
matrix contains redundancy, not all constraints can be met simultaneously,
and finding a middle ground makes sense. This is the setting we will examine
when solving the linear regression in Section 3.1.1.1.

3.1. Linear regression and its extensions 47

The troublesome case. Also known as the small n, large p problem, the
case where n < p portrays fewer constraints than unknowns. Consequently,
there is more than one solution to match all the constraints and get a null
re-substitution error; the risk of overfitting is high. One way to restore the
uniqueness of the solution is to solve a constrained (i.e. regularized) alterna-
tive. This will be the topic of Section 3.1.2.

Rank and redundancy. Even in situations where n ≥ p, we might end up
in the troublesome case if the matrix contains redundancy (i.e. the rank of X
is lower than p). This is more than a purely theoretical issue as it might well
happen that different features relate to a same physical quantity in a linear
fashion without being obvious. Even if the relationship is not perfectly linear,
for instance, due to some noise, working with such matrices is known to be
numerically unstable. Removing the redundant features, when possible, is
probably the best option. Turning to a regularized variant of the least square
is another alternative.

3.1.1.1 Solving the ordinary least square regression

In this section, we will assume that n ≥ p and X is of rank at least p. Let us
denote by F the objective function:

F = ||Xw + 1nb− y||2 (3.7)

Furthermore, we will say that the learning matrix is centered if ∑n
i=1 xi = 0.

Proposition 3.1.1 (Ordinary least square solution (centered case)). The OLS
solution for a centered X is given by{

bOLS = ȳ
wOLS = Σ̂−1XT(y− 1nȳ)

(3.8)

where

ȳ ,
1
n

n

∑
i=1

yi (3.9)

Σ̂ , XTX (3.10)

Proof. The first-order necessary condition for optimality states{
∂F
∂b = 0 ⇐⇒ b = ȳ− wT x̄
∇wF = 0 ⇐⇒ w =

(
XTX

)−1 XT(y− 1nb)
(3.11)

where x̄ , 1
n ∑n

i=1 xi and ∇wF is the gradient of F with respect to w. The
right-most conditions are obtained by differentiating F and then solving for
the appropriate variable.

Since X is centered, x̄ = 0, forcing b = ȳ. Note that F being convex, this is
also a sufficient condition.

48 Chapter 3. Learning algorithms for supervised machine learning

The quantities involved in the OLS solution are insightful and deserve a
close inspection.

The intercept. The intercept b = ȳ is simply the best (in the sense of `2)
constant which can approximate the output. The role of w is to account for
the deviation from the mean.

The covariance matrix. Σ̂ =
(
XTX

)
corresponds to the (empirical) covari-

ance matrix:

Σ =

σ̂2

x(1)
σ̂x(1),x(2) . . . σ̂x(1),x(p)

σ̂x(1),x(2) σ̂2
x(2)

. . . σ̂x(2),x(p)

...
...

...
...

σ̂x(1),x(p) σ̂x(2),x(p) . . . σ̂2
x(p)

 (3.12)

σ̂2
x(j) is the empirical variance of feature j and σ̂x(j),x(k) is the empirical covari-

ance between feature j and k.
The matrix is positive semi-definite (positive definite if X has rank p). In

the case where n = p and X has full-rank, X is a square, invertible matrix
and we fall back to Eq. 3.6.

If the input variables are independent, Σ̂ is a diagonal matrix and w can
easily be computed dimension-wise

w(j) =
σ̂x(j),y

σ̂2
x(j)

= ρ̂x(j),y σ̂2
y (3.13)

where ρ̂x(j),y is the empirical correlation between the jth feature and the out-
put. Intuitively, the slope in the jth dimension depends on how the jth fea-
ture and the output behaves with respect to one another, as well as how y
naturally varies.

This view offers an alternative way of computing the solution by first or-
thogonalizing X (such as with the Gram-Schmidt algorithm) and then com-
puting w component-wise over this new space.

Non-centered case. The OLS solution derived is valid for the case when
X is centered. When this is not the case, a degree of freedom remains and
the optimal solution is not unique. Nonetheless, one can always center the
inputs as a pre-processing step. Owing to the linearity of the problem, this
does not bear any consequences to the quality of the solution.

Computational considerations. Note that the analytical solution we have
developed might not be the one implemented for computational reasons
(time complexity, numerical stability, etc).

3.1. Linear regression and its extensions 49

3.1.2 Regularized least-square linear regression

Regularized variants of the least square linear regression—also known as
shrinkage methods—offer to restore uniqueness of the solution compared to
ordinary least square. They also implement the structural risk minimization
principle and might therefore prevent overfitting, especially in cases where n
is small and p is large. We will look at three such methods: the ridge regres-
sion (Section 3.1.2.1), the lasso and the elastic net (both the latter in Section
3.1.2.2).

3.1.2.1 Ridge regression

Definition 3.1.3 (Ridge regression). The ridge regression (Hoerl and Kennard,
1970) amounts to solving the least square regression while applying a L2 penalty on
the weights:

wridge, bridge = arg min
(w,b)∈Rp+1

n

∑
i=1

(
wTxi + b− yi

)2
+ µ

p

∑
j=1

(
w(j)

)2
(3.14)

= arg min
(w,b)∈Rp+1

||Xw + 1nb− y||2 + µ||w||2 (3.15)

This definition can be viewed as the Lagragian of a constrained OLS prob-
lem:

Definition 3.1.4 (Ridge regression (constrained version)).

min
(w,b)∈Rp+1

||Xw + 1nb− y||2

subject to ||w||2 ≤ tµ

(3.16)

where the threshold tµ decreases as µ increases.

Using the first-order optimality condition, as in the OLS case, the follow-
ing analytical solution can be derived.

Proposition 3.1.2 (Ridge solution). The solution to the ridge regression (for a
centered learning matrix) is given by{

bridge = ȳ

wridge =
(
Σ̂ + µIp

)−1 XT(y− 1nȳ)
(3.17)

where Ip is the p-dimensional identity matrix. Note that when µ = 0 this amounts
to the OLS solutions.

A geometrical interpretation of the ridge regression is given in Figure
3.1a. In the absence of a single best solution for the OLS, the penalty will
force the selection of the w vector lying at the intersection of the feasible set
and the innermost contour. Figure 3.2a illustrates how the weights vary as µ
changes on a selected problem.

50 Chapter 3. Learning algorithms for supervised machine learning

(A) Ridge regression. Even though multi-
ple solutions may exist for the OLS, the
ridge solution corresponds to the inter-
section of the ellipsis relating to the low-

est contour line and the feasible set.

(B) Lasso. The solution usually involves
a sparse weight vector because the most
likely intersection point between the con-
tour line of lowest value and the feasible

set is at a “corner”.

FIGURE 3.1: Geometrical interpretation of the regularized least
square in a 2D space (adapted from Friedman, Hastie, and Tib-
shirani (2001a)). The light blue surface corresponds to the feasi-
ble set of weight vectors. The red ellipses correspond to contour

lines of the objective function.

3.1.2.2 Lasso

Definition 3.1.5 (Lasso). The lasso regression (Tibshirani, 1996) imposes a L1
penalty of the weights:

wlasso, blasso = arg min
(w,b)∈Rp+1

n

∑
i=1

(
wTxi + b− yi

)2
+ µ

p

∑
j=1

∣∣∣w(j)
∣∣∣ (3.18)

Imposing a L1 penalty leads to an interesting property of the solution
wlasso: sparsity. This is illustrated by Figure 3.2b. Varying the severity of
the penalty changes the values of weights (as with the ridge regression) but
also how many of them are non-zero. Relying on a subspace effectively de-
creases the VC dimension of the hypothesis space, which is a faithful imple-
mentation of the structural risk minimization principle. Sparsity also offers
other advantages: faster computation (although the increase is mild in this
case, unless many input features are dropped), less costly data acquisition
(as some variables need not be monitored), etc.

A geometrical interpretation for how sparsity is encouraged by a L1 penalty

3.1. Linear regression and its extensions 51

(A) Ridge regression. As the penalty de-
creases, the magnitude of the weight vec-
tor increases. Note that this does not
translate to an increase for all the compo-

nents and some even change sign.

(B) Lasso. As the penalty decreases, more
and more variables are added to the final

model.

FIGURE 3.2: Relationship between the selected weight vector
w and the penalty parameter µ. The figures are adapted from
Friedman, Hastie, and Tibshirani (2001a) and the problem re-
lates to diagnosing severe prostate cancer according to some
clinical measures, whose weights are plotted. See Friedman,
Hastie, and Tibshirani (2001a) for more details. The red dot-
ted line corresponds to the optimal penalty as found by cross-

validation.

is given in Figure 3.1b. In general, the contour lines of the objective function
are more likely to hit the feasible set at a point of sparsity (i.e. on one axis).

The lasso regression does not offer an analytical solution but can be solved
numerically by a quadratic program solver.

Elastic net. It is possible to combine a L1 and L2 penalty. This is known as
the elastic net (Zou and Hastie, 2005).

Definition 3.1.6 (Elastic net).

wel.net, bel.net = arg min
(w,b)∈Rp+1

n

∑
i=1

(
wTxi + b− yi

)2
+ µ

p

∑
j=1

(
(1− α)

∣∣∣w(j)
∣∣∣+ α

(
w(j)

)2
)

(3.19)

In the elastic net, α weighs the penalties. A low α implies that the penalty
is mostly L1. This is usually the case recommended to enforce sparsity. Hav-
ing a small L2 penalty is useful for dealing with redundant variables. Indeed,
in the case of duplicate variables, the contour of the objective function will
run parallel to the L1 feasible set and therefore nullify the sparsity effect.

52 Chapter 3. Learning algorithms for supervised machine learning

3.2 Logistic regression

Despite what the name suggests, logistic regression is actually a classification
algorithm. What is meant by linear in the context of classification is that the
decision boundary is a hyperplane. Therefore, the hypothesis space for a
binary problem is composed of functions of the following form.

Definition 3.2.1 (Linear hypothesis space (binary classification)). Encoding
one class as 1 and the other as 0, the hypothesis space for linear binary classification
is

H = {sign(wTx + b)|(w, b) ∈ Rp+1} (3.20)

with

sign(z) =

{
1, if z ≥ 0
0, otherwise

(3.21)

As mentioned in Chapter 2, working directly with a discrete output space
(reflected by the sign function) is not convenient. Linear methods differ on
the intermediate output space representation they adopt and, consequently,
on the actual problem they solve to end up building a hypothesis of the ap-
propriate form. Logistic regression operates by relaxing the discrete nature
of the sign function. Section 3.2.1 discusses the binary case in some length
and Section 3.2.2 extends logistic regression to the multi-class setting.

3.2.1 Binary logistic regression

Label encoding: binary logistic regression
For the binary logistic regression, the labels are assumed to be encoded
so that y ∈ {0, 1}.

3.2.1.1 Logistic regression viewed as relaxation

Binary logistic regression uses the family of logistic functions as a smooth
alternative to the sign function.

Definition 3.2.2 (Logistic functions). The β (≥ 0) logistic function
sβ : R→ [0, 1] is the function

sβ(z) =
1

1 + e−βz (3.22)

where β is a parameter controlling the slope. In particular, the slope at the origin is
1
4 β. When β = 0, the function is constant. As β → ∞, the logistic function tends
to the sign function.

When β = 1, the function is known as the sigmoid function.

3.2. Logistic regression 53

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 = 1
= 0.5
= 2
= 10

FIGURE 3.3: Examples of the logistic family of functions

The logistic family is illustrated in Figure 3.3. Since the slope of the lo-
gistic curve does not influence the final decision, we will default to using the
sigmoid (β = 1).

The logistic functions have some remarkable properties among which are
the following three:

sβ(z) =
1

1 + e−βz =
eβz

1 + eβz (3.23)

sβ(1− z) = 1− sβ(z) (3.24)
sβ(z)

1− sβ(z)
= eβz (3.25)

Going back to the original problem, we can now describe the relevant
hypothesis space.

Definition 3.2.3 (Hypothesis space for logistic regression (binary case)).

H = { p̂(x; w, b) = s(wTx + b)|(w, b) ∈ Rp+1} (3.26)

Using the logistic functions, the final decision is such that{
1, if p̂(x; w, b) ≥ 0.5 ⇐⇒ wTx + b ≥ 0
0, otherwise

(3.27)

3.2.1.2 Logistic regression viewed as modeling probabilities

The choice of logistic functions has been motivated from the perspective of a
relaxation of the sign function. From the forms of the logistic family, it also
appears as a good candidate to model a probability distribution of the form
PY|x. From the law of total probability, the following derivation makes the

54 Chapter 3. Learning algorithms for supervised machine learning

connection apparent.

P(Y = 1|x) = P(Y = 1|x)
P(Y = 1|x) + P(Y = 0|x) (3.28)

=
1

1 + P(Y=0|x)
P(Y=1|x)

(3.29)

=
1

1 + e−β 1
β log

(
P(Y=1|x)
P(Y=0|x)

) (3.30)

=
1

1 + e−βLL(x)
(3.31)

In this view, the linear function models the log-likelihood ratio of the
class given x, also called log-odds or logits. The decision boundary {x ∈
Rp |wTx + b = 0} is the set of points where, according to the model, x is as
likely to be from either class.

This view also motivates the choice of the p̂ notation (suggesting we are
approximating a probability) and the use of the cross-entropy loss function
for choosing the best hypothesis (see next section). The symmetry which
consists in inverting the label 0 and 1 would result in −wlog and −blog being
optimal.

3.2.1.3 The logistic program

Under the cross-entropy loss `CE, implementing the ERM principle over the
logistic hypothesis space amounts to solving the following program.

Definition 3.2.4 (Binary logistic regression). The logistic regression program is

wlog, blog = arg min
(w,b)∈Rp+1

−
n

∑
i=1

(yi log p̂(x; w, b) + (1− yi) log(1− p̂(x; w, b)))

(3.32)

= arg min
(w,b)∈Rp+1

−
n

∑
i=1

(
yi(wTxi + b)− log

(
1 + ewT xi+b

))
(3.33)

= arg min
(w,b)∈Rp+1

Llog(w, b) (3.34)

Using the first order conditions for optimality, we can derive some con-
straints the optimal parameters must fulfill:{

∂L
∂b = ∑n

i=1(yi − p̂(xi; w, b)) = 0
∂L

∂w(j) = ∑n
i=1 x(j)

i (yi − p̂(xi; w, b)) = 0
(3.35)

Contrary to linear regression, it is not possible to deduce an analytical
solution from the first-order conditions. Nonetheless, the problem remains
convex and is easily solved numerically. The most traditional approach is to
use a second-order method since the Hessian is easily computable. We will

3.2. Logistic regression 55

Algorithm 1: Stochastic gradient descent (SGD) algorithm for logis-
tic regression.

Data: learning set LS, initial values (w[0], b[0]), batch size m, learning
rate λ, number of iterations K.

Result: (w[K], b[K])
1 for k← 1 to K do
2 Draw S = {(xi, yi)}m

i=1 randomly from LS
3 w← w− λ∇w LS(w, b)
4 b← b− λ ∂

∂b LS(w, b)

instead look at a simpler (i.e. first-order) iterative method: stochastic gradient
descent (SGD). SGD will be the star of Section 3.6, but let us first illustrate it
on this simpler problem.

Stochastic gradient descent. Stochastic gradient descent is a randomized
variant of the steepest gradient method which, applied to the logistic case,
produces a sequence of solutions (w[0], b[0]), (w[1], b[1]), . . . such that, for k ≥ 1 w[k+1] = w[k] − λ∇w L

(
w[k], b[k]

)
b[k+1] = b[k] − λ ∂

∂b L
(

w[k], b[k]
) (3.36)

where λ ≤ 1 is called the learning rate and controls the rate of the parameter
updates.

In stochastic gradient descent, rather than updating the weights accord-
ing to the derivatives of L, samples are randomly selected, forming a batch,
and the update is performed on that batch, which is viewed as an estimate of
L. Both the batch size and the learning rate are viewed as hyper-parameters
of the method, fixed at the start once and for all (although extensions of SGD
allow for varying λ and even individual learning rate per parameter).

The full SGD algorithm is detailed in Algorithm 1.

Initial values. One degree of freedom with iterative methods, such as SGD,
lies in the initial values w[0] and b[0]. When standardizing the learning matrix
X, the null vector is a good default choice for w[0].

An interesting property of the first order optimality condition with the
linear regression was that the intercept encoded the best constant approxi-
mation. In the case of logistic regression, we can deduce that the best con-
stant approximation is given when b = log π

1−π , where π = 1
n ∑n

i=1 yi is the
proportion of the positive class. Due to the non-linearity, however, there is no
guarantee that blog = log π

1−π is optimal when wlog 6= 0. That said, it should
be the default value for b[0] when w[0] = 0 and X is centered.

Regularized variant. As with linear methods, it is possible to define a reg-
ularized version of the logistic regression.

56 Chapter 3. Learning algorithms for supervised machine learning

3.2.2 Multiclass logistic regression

3.2.2.1 From two to several classes

A general-purpose, method-agnostic way of extending a binary classification
scheme to a multi-class setting is to build a model for any pairs of classes.
This one-versus-one approach has the drawback of requiring K(K− 1)/2 de-
cision boundaries for a K-classes problem.

In the case of logistic regression, it is possible to circumvent the quadratic
burden. Firstly, we need to slightly adapt the encoding of the labels.

Label encoding: multi-class logistic regression
For the K-class logistic regression, the labels are assumed such that dat-
apoint belonging to class k is encoded by a one-hot K-dimensional bi-
nary vector y ∈ {0, 1}K:

y(j) =

{
1, if j = k
0, otherwise

(3.37)

Secondly, we need to replace the sigmoid with a multi-class alternative:
the softmax.

Definition 3.2.5 (Softmax function). For k = 1, . . . , K

softmax(z)(k) =
ez(k)

∑K
l=1 ez(l)

=
1

1 + ∑l 6=k ez(l)−z(k)
(3.38)

where z is a K-dimensional vector.

To obtain a linear boundary in the input space, the K-dimensional z vector
must be computed as

z =

z(1)

z(2)
...

z(K)

 =

wT

1
wT

2
...

wT
K

 x +

b1
b2
...

bK

 = Wx + b (3.39)

From there we can define the multi-class hypothesis space for logistic regres-
sion.

Definition 3.2.6 (Hypothesis space for logistic regression (multi-class)).

H = { p̂(x; W, b) = softmax(Wx + b) |W ∈ RK×p, b ∈ RK} (3.40)

The final class decision for a hard classification is arg maxk softmax(k)(z).

Solving the multi-class logistic regression. Let us first state the multi-class
program.

3.2. Logistic regression 57

Definition 3.2.7 (Multi-class logistic regression). The multi-class logistic regres-
sion (MLR) program is

Wmlr, bmlr = arg min
W∈RK×p,b∈RK

n

∑
i=1

`CE (softmax(Wx + b), y) (3.41)

= arg min
W∈RK×p,b∈RK

−
n

∑
i=1

K

∑
k=1

y(k)i log p̂(k)(xi; W, b) (3.42)

= arg min
W∈RK×p,b∈RK

−
n

∑
i=1

K

∑
k=1

y(k)i log
ewT

k xi+bk

∑K
l=1 ewT

l xi+bl
(3.43)

= arg min
W∈RK×p,b∈RK

Lmlr(W, b) (3.44)

The same techniques as for the binary logistic regression can be used to
solve the multi-class case. Noting that

∂

∂z(l)
`SCE (z, y) =

∂

∂z(l)
`CE (softmax(z), y) (3.45)

=
∂

∂z(l)
K

∑
k=1
−y(k) log

ez(k)

∑K
j=1 ez(j) (3.46)

=

(
ez(l)

∑K
j=1 ez(j) − y(l)

)
=
(

p̂(x)(l) − y(l)
)

(3.47)

∂

∂bl
`SCE(z(x), y) =

K

∑
k=1

∂

∂z(k)(x)
`SCE(z(x), y)

∂z(k)(x)
∂bl

(3.48)

=
∂

∂z(l)(x)
`SCE(z(x), y) (3.49)

∂

∂w(j)
l

`SCE(z(x), y) =
K

∑
k=1

∂

∂z(k)(x)
`SCE(z(x), y)

∂z(k)(x)

∂w(j)
l

(3.50)

=
∂

∂z(l)(x)
`SCE(z(x), y)x(j) (3.51)

the partial derivatives are (by linearity)
∂

∂bl
Lmlr = ∑n

i=1

(
p̂(l)(xi)− y(l)i

)
∂

∂w(j)
l

Lmlr = ∑n
i=1

(
p̂(l)(xi)− y(l)i

)
x(j)

i
(3.52)

Figure 3.4 illustrates the result of the softmax regression for classification
of three isotropic and homoscedastic Gaussians (σ = 1) with means placed
on an equilateral triangle on the unit circle and twice as many dots as dia-
monds or stars. We will refer to this as the “3G” problem. It will be helpful

58 Chapter 3. Learning algorithms for supervised machine learning

at building some insight which will be called in Chapter 7.
Note that, due to the exponential and the normalization, the softmax is

translation invariant. As a result, the linear boundaries in Figure 3.4 can be
translated without changing anything, provided all boundaries are shifted
by the same amount. Along the same lines, multiplying the magnitudes of
the vectors defining the hyper-planes by a given amount would change the
softmax probabilities but not the actual hard classification. As such, softmax
regression might benefit from being regularized, especially for linearly sepa-
rable problems.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

FIGURE 3.4: Result of the softmax regression for the classifi-
cation of three isotropic and homoscedastic Gaussians (σ = 1)
with means placed on an equilateral triangle on the unit circle
and twice as many dots as diamonds or stars (aka. the “3G”

problem).

3.2.2.2 Interpreting the softmax regression

Geometrical interpretation. For a pair (x, y), gradient descent implies the
w′l = wl − λ∇ wl`CE(p̂(x), y) update . Figure 3.5 illustrates the effect of such
an update. The gradient for the pair (x, y) follows the direction of the gradi-
ent linking the origin to x and the origin, implying the gradient will always
point either towards (incorrect classification) or away from the origin (cor-
rection classification). Its magnitude is the one of x weighted by how well
is the prediction there (p̂(l)(x)− y(l)) (times the learning rate). The effect is
twofold. Firstly, this update tends to rotate the hyper-plane so as to align it
with x (orthogonal contribution). Secondly, the norm of the gradient vectors
is magnified for correct classifications and lessened otherwise. Where the
hyper-planes sit with respect to the origin is determined by the intercepts so
that the model predictions reflect the class balance of the learning rate.

3.2. Logistic regression 59

l-𝜆∇w l‖

-𝜆∇w l⊥
l

wl

-𝜆∇w ll

wl

w’lx

O

x

O

-𝜆∇w l
l

FIGURE 3.5: Softmax regression: effect of a gradient descent
update for x for the hyper-plane wl of the corresponding class.
The update can be decomposed into an orthogonal component,
responsible for rotating the boundary, and a parallel compo-
nent, responsible for increasing or decreasing the magnitude of
the hyper-plane in case of correct or incorrect classification re-
spectively (left). Result of the update w′l = wl − λ∇ wl` (right).

An easily-missed subtlety regarding the update is that all samples con-
tribute to settling the boundary: samples belonging to the class, as well as
samples from the other classes. This implies that there are always classes
whose hyper-planes are determined more by samples from the other classes
than by samples from theirs. This is the case of all classes in the common
setting where classes are balanced and is amplified as the number of classes
increases. This is illustrated at Figure 3.6.

The struggle between the classification quality and the norm of a sample,
illustrated at Figure 3.6, is better visualized in Figure 3.7. As is apparent, the
exponential in the softmax rapidly wipes away the effect of the magnitude
of the sample. How these two effects couple is also illustrated in more de-
tail in Figure 3.7. Overall, the softmax regression will focus much more on
misclassification than on samples far from the boundary.

Softmax interpretation of hyper-planes. There is a slight difference be-
tween how the hyper-planes are defined in the softmax variant compared
to the sigmoid. The log-likelihood ratio for a pair k-l of classes is

log
p̂(k)(x)
p̂(l)(x)

= log
ez(k)

ez(k)
= (wT

k − wT
l)x + (bk − bl) (3.53)

= ∆wT
k,lx + ∆bk,l (3.54)

Therefore the one-versus-one hyperplanes separating the classes (∆wk,l) are
not the ones appearing in the softmax (wk and wl) but can be derived from

60 Chapter 3. Learning algorithms for supervised machine learning

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

(A) Random Hyper-planes (e.g. start of
training).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

(B) Well-fitting hyper-planes.

FIGURE 3.6: Gradient update of the training instances with
respect to the hyper-plane corresponding to the dotted class.
Note that the scale of the gradients is different between the
two figures. Is illustrated the centripetal/centrifugal nature of
the gradient updates, the fact that only the magnitudes (taken
loosely enough to include the sense of the vector) change dur-
ing learning, the fact that a large magnitude is associated with
misclassifications, and, finally, that correctly classified points
far away from the boundary contribute little to the optimiza-

tion.

them. This allows to keep track of only O(K) planes instead of O(K2). The
k-versus-l decision boundary still is the set of points x where the likelihood
of belonging to k or l is the same.

Interpreting the meaning of the kth softmax hyper-plane from a stan-
dalone perspective is more tricky. A bit of algebra leads to

wT
k x + bk = log

p̂(k)(x)
1− p̂(k)(x)

+ log ∑
l 6=k

ewT
l x+bl (3.55)

= log
p̂(k)(x)

1− p̂(k)(x)
+ LSE

l 6=k
{wT

l x + bl} (3.56)

= log
p̂(k)(x)

1− p̂(k)(x)
+ max

l 6=k
{wT

l x + bl}+ O(log(K− 1)) (3.57)

where max{u1, . . . , um} < LSE{u1, . . . , um} ≤ max{u1, . . . , um} + log m is
called the logsumexp; a smooth approximation of the maximum. LSE ap-
proaches its lower bound when the maximum is much greater than the other
values, and its upper bound when all the values are almost equals.

After optimization, where the kth hyper-planes sits is controlled by (i)
where the kth class lies in the X space (log-likelihood term), (ii) how close
the closest class is (the maximum term), and (iii) some safety margin when
many classes are close in the X space (last term).

3.3. Decision trees 61

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
x 1

(A) Random Hyper-planes. When the
hyper-planes are random, only the sam-
ples with a small norm have little impact.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

(B) Well-fitting hyper-planes. When the
hyper-planes are well aligned with the
classes, the contribution of correctly clas-
sified, far away points is small compared
to how a misclassification would impact

the boundary.

FIGURE 3.7: Gradient field of how a given point labeled as a dot
would contribute to changing the corresponding hyper-planes.
Note that the scale of the gradients is different between the two

figures.

3.3 Decision trees

Decision trees (Breiman et al., 1984) operate on a very different paradigm
than linear methods. The latter form a single linear boundary (between two
classes) with a combination of weighted features by solving a global opti-
mization problem over a parametric hypothesis space of relatively low ex-
pressiveness. Decision trees recursively partition the input space by thresh-
olding the features in a greedy fashion with a non-parametric hypothesis
space of learning-set-size-dependent expressiveness.

We will assume the same setting as for linear models, that is X = Rp and
Y is either discrete (classification) or continuous (regression). In the former
case, we will assume, without loss of generality, that classes are encoded so
that Y = 1, 2, . . . , K. Decision trees can be used with discrete input features
as well, which will be further discussed in Section 3.7.

In this section, we will first establish what a decision tree is and how
it is used in the context of classification and regression (Section 3.3.1). We
will then describe how a decision tree is learned from a training set (Section
3.3.2). Finally, we will discuss how to control the expressiveness of decision
trees (Section 3.3.3).

3.3.1 Inference

Before discussing how a decision tree is selected according to the data, we
need to be clear on what a decision tree is and how it is used as a hypothesis.
To do so, we will go over a few definitions.

62 Chapter 3. Learning algorithms for supervised machine learning

Definition 3.3.1 (Full binary tree). A full binary tree is either a leaf or an internal
node. An internal node has exactly two children (the left one and the right one),
which are full binary trees. The internal node is said to be the parent of its children.
A full binary tree with no parent is called the root.

Definition 3.3.2 (Decision node). A decision node is an internal node associated
with a predicate over X.

Definition 3.3.3 (Splitting node). A splitting (or thresholding) node τ(·; j, t) (1 ≤
j ≤ p, t ∈ R) is a decision node whose predicate is of the form

τ(x; j, t) = I
(

x(j) ≤ t
)

(3.58)

Definition 3.3.4 (Classification leaf). A classification leaf is a leaf associated with
either a class or a probability vector. The leaf prediction is the class (former case) or
the class with maximum probability (latter case).

Definition 3.3.5 (Regression leaf). A regression leaf is a leaf associated with either
a value y ∈ Y or a Gaussian distributionN (µ̂y, σ̂y). The leaf prediction is the value
y (former case) or µ̂y (latter case).

Definition 3.3.6 (Classification tree). A classification tree is a binary full tree
whose internal nodes (if any) are decision nodes and whose leaves are classification
leaves.

Definition 3.3.7 (Regression tree). A regression tree is a binary full tree whose
internal nodes (if any) are decision nodes and whose leaves are regression leaves.

Definition 3.3.8 (Decision tree). A decision tree is either a classification or a re-
gression tree.

Decision trees are used as hypotheses X → Y by following a branch ac-
cording to the predicates of the internal nodes and offering the prediction
held at the leaf. This implies that the hypotheses are piece-wise constant.
The full inference process is detailed in Algorithm 2. A classification tree
and its corresponding boundary are depicted in Figure 3.8. Only the class or
the value y is of interest so far as inference is concerned. Having access to
the full probability vector or standard deviation is useful in many situations,
however.

3.3.2 Induction

Decision trees, contrary to linear models, are not parametric; learning the tree
is not akin to selecting the best parameters: the structure, as well as the splits
and the leaf decisions, must be optimized. This does not lead to a continu-
ous optimization program. Instead, decision trees are built sequentially in a
greedy fashion.

Intuitively, a tree is developed by expanding its leaves, turning them into
internal nodes. At each leaf, the question of which split (i.e. feature and
threshold) will reduce the uncertainty over the prediction is answered by an

3.3. Decision trees 63

Algorithm 2: Decision tree inference algorithm.
Input: Decision tree T, input vector x
Output: decision (class or output)

1 Function TreeInference(T, x):
2 if T is a leaf then
3 return T.decision

4 else
5 j← T. f eature_index
6 t← T.threshold
7 if xj ≤ t then
8 return TreeInference(T, x.le f t)

9 else
10 return TreeInference(T, x.right)

exhaustive search. The reduction is such that the combined uncertainty in
the newly created leaves should be less than in their parent node. The pro-
cess is repeated until uncertainty cannot be further reduced (i.e. the node is
pure), or some other criteria are met. The prediction associated with a leaf is
established based on the ERM principle to offer the best constant predictor.
In classification (from the `0−1 perspective), this corresponds to the most rep-
resented class of the learning sub-sample reaching that leaf. In regression, it
corresponds to the mean value (from the `2 perspective).

Uncertainty is at the core of the induction process. To be of any use, this
metric must follow some properties. A splitting node τ(·; j, t) is such that it
partitions a sample in two. Let us denote its subsets.

Definition 3.3.9 (Right and left subsets). Let S = {(xi, yi)}n
i=1 be a sample.

Lτ(·;j,t)(S) = {(xi, yi) ⊆ S|x(j)
i ≤ t} (3.59)

Rτ(·;j,t)(S) = S \ Lτ(·;j,t)(S) (3.60)

For readability, we will shorten the notation to Lτ and Rτ.

Definition 3.3.10 (Uncertainty). U is an uncertainty measure over sample sets. It
is such that

U(S) ≥ 0 (3.61)
∆τU(S) ≥ 0 (3.62)

where

∆τU(S) = U(S)−U(S|τ) (3.63)

= U(S)−
(
|Lτ(S)|
|S| U (Lτ(S)) +

|Rτ(S)|
|S| U (Rτ(S))

)
(3.64)

64 Chapter 3. Learning algorithms for supervised machine learning

entropy = 0.0
samples = 1
value = [1, 0]

entropy = 0.0
samples = 1
value = [0, 1]

entropy = 0.672
samples = 17
value = [3, 14]

entropy = 0.811
samples = 4
value = [3, 1]

Petal len. <= 3.9
entropy = 1.0
samples = 2
value = [1, 1]

entropy = 0.0
samples = 43
value = [43, 0]

Sepal len. <= 6.6
entropy = 0.863

samples = 21
value = [6, 15]

entropy = 0.0
samples = 34
value = [0, 34]

Sepal len. <= 4.95
entropy = 0.154

samples = 45
value = [44, 1]

Petal len. <= 5.15
entropy = 0.497

samples = 55
value = [6, 49]

Petal len. <= 4.75
entropy = 1.0
samples = 100
value = [50, 50]

(A) Structure of a classification tree. The
first line in the box corresponds to the
split (absent in leaves). The second line is
the entropy of the sample in terms of class
distribution. The third line is the number
of samples and the following line is the

distribution in terms of classes.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(B) A classification boundary. The
boundary is piece-wise and axis-aligned,
a manifestation of the path along splitting

nodes.

FIGURE 3.8: A decision (classification) tree and its boundary for
the iris species classification.

Moreover, when U(S) is small (resp. big) the uncertainty is low (resp. high) and
we say that S is pure when U(S) = 0.

Note that uncertainty only ever relates to the conditional output distri-
bution at a node. The second condition imposes that the uncertainty of the
parent node be higher than the weighted combination (by the proportion of
samples) of the uncertainties at the children nodes.

The full top-down decision tree induction is covered in Algorithm 3. Note
that this is a high-level view and implementation details may vary, most no-
tably for efficiency reasons. Sections 3.3.2.1 and 3.3.2.2 propose measures of
uncertainty for classification and regression, respectively.

3.3.2.1 Uncertainty in classification

In classification, uncertainty relates to the empirical distribution of classes,
conditional to a node. Let K be the number of classes and

pk(S) =
|{(x, y) ∈ S|y = k}|

|S| (3.65)

be the proportion of objects of class k (k = 1, . . . , K) in sample S, and let
p(S) = [p1(S) . . . pK(S)]T be the corresponding class proportion vector. Un-
certainty measures are defined in terms of p(S), with two common choices
being the Shannon entropy and the Gini index.

Entropy. A common choice of uncertainty score in classification is the em-
pirical Shannon entropy H.

3.3. Decision trees 65

Algorithm 3: Decision tree induction algorithm.
Input: A learning set LS = {(xi, yi)}n

i=1
Output: A decision tree T

1 Function TreeInduction(LS):
2 if U(LS) = 0 (or some other stopping criterion is met) then
3 return MakeLeaf(LS)

/* Internal node: find the best split with an exhaustive search.
*/

4 j∗, t∗, u∗ ← 0, 0,+∞
5 for j← 1 to p do
6 for i← 1 to n do
7 t← x(j)

i

8 L← {(xi, yi) ⊆ S|x(j)
i ≤ t}

9 R← S \ L
10 α← |L|/|S|
11 u← αU(L) + (1− α)U(R)
12 if u < u∗ then
13 j∗, t∗, u∗ ← j, t, u

14 if u∗ = U(LS) then
15 return MakeLeaf(LS)

/* Create internal node with the best split. */
16 T ← MakeEmptyTree()
17 T. f eature_index ← j∗

18 T.threshold← t∗

/* Recursively developed the children. */

19 L← {(xi, yi) ⊆ S|x(j∗)
i ≤ t∗}

20 R← S \ L
21 T.le f t← TreeInduction(L)
22 T.right← TreeInduction(R)
23 return T

/* MakeLeaf(S) creates a leaf and sets the prediction value according
to S to be the best constant prediction. */

Definition 3.3.11 (Empirical Shannon entropy). The empirical Shannon entropy
H(S) is

UH(S) = H(p(S)) = −
K

∑
k=1

pk(S) log2 pk(S) (3.66)

In this context, we say that ∆τUH(S) is the information brought by the
split.

Gini index. Another popular choice for uncertainty is the Gini index:

66 Chapter 3. Learning algorithms for supervised machine learning

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.0

0.2

0.4

0.6

0.8

1.0

Un
ce

rta
in

ty

Entropy
Gini

FIGURE 3.9: Entropy and Gini index as uncertainty measures
for binary classification. The uncertainty is highest when p1 =
0.5 and lowest when p1 = 0 or p1 = 1. Both measures can
be rescaled to have a maximum value of 1 irrespective of the

number of classes.

Definition 3.3.12 (Gini index).

UGi = Gi(p(S)) =
K

∑
k=1

pk(S)(1− pk(S)) (3.67)

A comparison between entropy and the Gini index in the case of binary
classification is given in Figure 3.9. Both measures have their maximum at
pk = 1/K ∀k.

The fact that ∆τU(S) ≥ 0 is a direct consequence of partitioning and the
concavity. Indeed, let |Lτ(S)| = α|S|. It follows that p(S) = αp(Lτ(S)) +
(1− α)p(Rτ(S)). Thus re-stating the uncertainty reduction in term of p rather
than S leads to concavity.

3.3.2.2 Uncertainty in regression

The most common criterion in regression is the variance and the reduction of
the uncertainty is a consequence of the law of total variance. Let

µy(S) =
1
|S| ∑

(x,y)∈S
y (3.68)

σ2
y (S) =

1
|S| − 1 ∑

(x,y)∈S
(y− µy(S))2 (3.69)

3.4. Ensemble methods: decision forests 67

The law of total variance applied to the split τ state that

σ2
y (S) =

(
|Lτ(S)|
|S| σ2

y (Lτ(S)) +
|Rτ(S)|
|S| σ2

y (Rτ(S))
)

+
((

µy(Lτ(S))− µy(S)
)2

+
(
µy(Rτ(S))− µy(S)

)2
) (3.70)

The first term is the weighted variance in the children (often called the “within”
variance) and the second term reflects the distance between the predictions
of the children (often called the “between” variance). Since the second term
is always positive, the variance conforms to the uncertainty reduction, which
measures how much of the variance is due to mixing the partition.

3.3.3 Expressiveness, stopping criteria and pruning

The most natural stopping criterion for the induction is to stop when the un-
certainty can no longer be reduced. Nonetheless, providing other stopping
criteria may be necessary. Although greedy in nature, the induction algo-
rithm fully optimizes its local decisions: the splits. As the tree deepens, fewer
and fewer datapoints are taken into account for this process. When the tree is
fully developed, its leaves are pure, which results in highly confident predic-
tions with a null re-substitution error. In short, overfitting is likely. Contrary
to parametric hypothesis space, this state of affairs does not depend on the
size of the learning set: whatever the size, fully-developed trees are likely, by
design, to overfit.

Formulating a penalization, in this case, is not straightforward. What is,
however, is limiting the growth of the tree by providing another stopping
criterion. Many criteria are possible: limiting the depth, stopping when a
certain threshold of uncertainty is reached, stopping when only a few learn-
ing samples reach a given node (or would reach one of its children), etc.

This process of stopping early the induction is known as pre-pruning. Al-
ternatively, the tree can be fully built and then some branches can be cut off
as a post-processing step. This is known as (post-)pruning. However prun-
ing is carried, it lowers the variance and increases the bias of the learning
algorithm.

Stopping criteria come with hyper-parameters: what maximum depth
should be allowed? What uncertainty level should be reached? How many
points are required? These hyper-parameters can be optimized by cross-
validation to find the adequate expressiveness level for the task.

An altogether different solution to overfitting lies in what is called ensem-
ble methods.

3.4 Ensemble methods: decision forests

Pruning decision trees plays on the bias-variance tradeoff. Shorter trees re-
sult in lower variance but higher bias. The ensemble methods we will inves-
tigate in this section aim at lowering the variance without raising the bias.

68 Chapter 3. Learning algorithms for supervised machine learning

We will look at three such methods: bagging (Section 3.4.1), random forests
(Section 3.4.2), and extremely randomized trees (Section 3.4.3).

3.4.1 Bagging

Bagging (bootstrap aggregating) was introduced by Breiman (1996). It is a
general technique, meaning it is not restricted to decision trees, but will be
our stepping stone for the other methods. Let us first describe what it aims
at achieving.

3.4.1.1 Variance reduction

Definition 3.4.1 (Ensemble model of independent hypotheses). Let LS1,
LS2, . . . , LSm be m learning samples drawn independently from Pn

X ,Y , and let h1 =
Lφ(LS1), . . . , hm = Lφ(LSm) be the hypotheses (aka. base models) selected by the
learning algorithm Lφ for each learning set.

hens(x) =
1
m

m

∑
l=1

hl(x) (3.71)

is the ensemble over h1, . . . , hm. We will denote its distribution byHLφ,P(n×m)
X ,Y

, which

we will shorten asH(n×m)
φ for ease of notation.

In classification, the ensemble operates on the intermediate representa-
tion (such as the probability vectors outputted by the models).

Note that we used φ to denote that all base models are learned with the
same set of hyper-parameters. The learning algorithms are assumed to be
fully deterministic.

To understand how ensembling improves upon the base models, we will
investigate its bias-variance decomposition in the case of regression, under
the `2 loss. The expected risk of the ensemble algorithm is

R(n×m)
φ,Y|x = EH(n×m)

φ

{EY|x{(h(x)− y)2} (3.72)

= EY|x{(y− hB(x))2} noise(x)

+ (hB(x)−EH(n×m)
φ

{hens(x)})2 bias2(x)

+ VH(n×m)
φ

{hens(x)} variance(x) (3.73)

The noise term remains, obviously, unchanged. By linearity the average
of the ensemble is also the average over the base models:

EH(n×m)
φ

{hens(x)} = EH(n)
φ

{h(x)} (3.74)

Therefore, the bias is unaffected by ensembling, as well.

3.4. Ensemble methods: decision forests 69

Bias VarianceOriginal algorithm

BiasEnsemble algorithm

E
ns

em
bl

in
g

(A) Variance reduction due to
ensembling models on different

learning sets.

Bias VarianceOriginal algorithm

BiasEnsemble algorithm

Bias V (LS)Randomized algorithm V (rng)

V (LS)

E
nsem

bling
R

andom
izing

(B) Variance reduction due to ensembling a ran-
domized variant of a base algorithm (adapted
from (Geurts, Ernst, and Wehenkel, 2006)).
V(rng) is the part of the variance due to the ran-
domization while V(LS) is the part of the vari-

ance due to the learning set.

FIGURE 3.10: Schematic illustration of variance reduction in the
asymptotic case (m→ +∞).

The variance, on the other hand, is reduced thanks to the base models
being independent (from Eq. 3.75 to 3.77):

VH(n×m)
φ

{hens(x)} = VH(n×m)
φ

{ 1
m

m

∑
l=1

hl(x)
}

(3.75)

=
1

m2

m

∑
l=1

VH(n)
φ

{h(x)} (3.76)

=
1
m

VH(n)
φ

{h(x)} (3.77)

Variance reduction is illustrated in Figure 3.10a.

3.4.1.2 Bootstrap

As presented so far, the variance reduction method is purely theoretical. In
practice, there is only one learning sample. Splitting it would reduce each
chunk’s size to n/t, which influences negatively both the bias and variance.
Thus we cannot say that the variance is simply divided by t and the bias
unchanged compared to the base models. Bagging tempers this issue by cre-
ating a bootstrap sample instead of dividing the learning sample.

Bootstrap samples are obtained by drawing with replacement from the
learning set so that |LS1| = . . . = |LSt| = |LS|. Bootstrap is illustrated in Fig-
ure 3.11. Drawing with replacement bears a consequence on the distribution
as well. The probability of not selecting a given datapoint in a bootstrap sam-

ple is
(

1− 1
n

)n
. As n → ∞, this probability converges to 1

e ≈ 0.37. Thus, for
a large dataset, about 1/3 of the data will not be seen when learning a base
model, the voids being filled with some objects appearing twice or more. In
effect, the bootstrap learning sets are worth only about 2/3 of n.

On the positive side, the missing datapoints (called the out-of-bag exam-
ples) can be used as test samples to assess the base model error.

70 Chapter 3. Learning algorithms for supervised machine learning

0 1 2 3 4 5 6 7 8 9Samples

9 4 0 8 6 2 0 5 4 1

5 3 2 7 1 5 3 2 2 4

Draw #1

Draw #2

FIGURE 3.11: Bootstrap technique to simulate several learning
sets.

3.4.2 Random forests

Random forests, also introduced by Breiman (2001), capitalize on the bagging
technique and introduce more randomness in the specific case of decision
trees. Increasing stochasticity has several implications. Firstly, the learning
algorithm for the base model is changed and the bias-variance decomposi-
tion is impacted further than a reduced number of samples: the decomposi-
tion can no longer be related to the vanilla base models. This simple change
increases the bias of the modified base learning algorithm compared to the
original. On the other hand, this increases the amount of variance which can
be reduced when averaging, compared to bagging. Overall, the tradeoff is
usually in favor of random forests.

The added randomness in the case of the algorithm proposed in (Breiman,
2001) concerns the splits. Rather than looking exhaustively for the optimal
split, only a subset of 1 ≤ p′ ≤ p features are considered (line 5 in Algorithm
3). Note that the threshold is still fully optimized. p′ controls the randomiza-
tion level: when p = p′, random forest defaults to bagging; when p = 1, the
splitting feature is chosen fully at random.

3.4.3 Extremely randomized trees

Geurts, Ernst, and Wehenkel (2006) introduce another ensembling technique
revolving around decision trees: extremely randomized trees (extra-trees for
short). Compared to random forests, the authors propose to circumvent
the bootstrapping part and further increase the randomness instead. More
specifically, they propose to select also the threshold (line 6 in Algorithm 3)
randomly between the maximum and minimum value of the attribute (at
that node). Therefore, only 1 ≤ p′ ≤ p are considered at any node.

Removing the bootstrapping part in favor of other randomization mech-
anisms gives rise to a different bias-variance decomposition.

Definition 3.4.2 (Ensemble model of randomized hypotheses). Let LS be a
learning sample drawn from Pn

X ,Y , and let hφ1 = Lφ1(LS), . . . , hφt = Lφt(LS) be

3.4. Ensemble methods: decision forests 71

the hypotheses selected independently by the randomized learning algorithm.

hens(x) =
1
m

m

∑
l=1

hφl(x) (3.78)

is the ensemble over hφ1 , . . . , hφt . We will denote its distribution by HLFm ,Pn
X ,Y

and

shorten it asH(n)
Fm .

In regression (under the `2 loss), the bias-variance decomposition of the
ensemble is given by

R(n)
Fm,Y|x =EH(n)

Fm
{EY|x{(h(x)− y)2} (3.79)

= EY|x{(y− hB(x))2} noise(x)

+ (hB(x)−EH(n)
Fm
{hens(x)})2 bias2(x)

+ VFm,Pn
X ,Y
{hens(x)} variance(x) (3.80)

Once more, the noise is unaffected (it does not depend on the algorithm).
The bias is also unchanged compared to the bias of the base (randomized)
algorithm:

bias(x) = hB(x)−EH(n)
F

{hφx)} (3.81)

The variance can be further decomposed (using the law of total variance)
as

VFm,Pn
X ,Y
{hens(x)} = VPn

X ,Y
{EFm|LS{hens(x)}}+ EPn

X ,Y
{VFm|LS{hens(x)}}

(3.82)

= VPn
X ,Y
{EF|LS{hφ(x)}}+ 1

m
EPn

X ,Y
{VF|LS{hφ(x)}}

(3.83)

where LS is the realization of Pn
X ,Y . To understand how it relates to the base

(randomized) algorithm, we can compare the variances. For the base algo-
rithms, the variance is

VF,Pn
X ,Y
{hφ(x)} = VPn

X ,Y
{EF|LS{hφ(x)}}+ EPn

X ,Y
{VF|LS{hφ(x)}} (3.84)

The first terms in Equations 3.83 and 3.84 are the same. It is the variability of
the average model due to the learning set. The second term accounts for the
average variability due to the randomization of the algorithm. The ensemble
is able to divide this amount by a factor of m. This second aspect of the
variance can be made arbitrarily small by increasing the size of the ensemble.
Since this is the only effect of ensembling, a monotonous decrease of the error
is expected when increasing m.

72 Chapter 3. Learning algorithms for supervised machine learning

3.4.3.1 On randomized algorithms

The previous bias-variance decomposition informs us there is always a gain
to ensembling over the base models when they are issued from a randomized
algorithm. Either the algorithm is stochastic by design or some randomiza-
tion is added to a deterministic algorithm. Extra-trees fall into the latter cate-
gory, therefore we can distinguish between the decision tree induction algo-
rithm and the extra-tree induction algorithm. References to the base models
or the base algorithm in the previous bias-variance decomposition pointed to
the extra-tree induction algorithm (or induced models). Consequently, there
is always a gain—compared to a single extra-tree—to form an ensemble. But is
it always advantageous over using a sole, regular decision tree?

Ensembling randomized variants only make sense when the overall vari-
ance reduction is greater than the added bias and variance brought by ran-
domizing the algorithm.

It is expected that the bias of a (model consisting in a single) extra-tree,
which is also the bias of the ensemble, will be higher than the bias of the reg-
ular decision tree induction. This is because randomization blurs somewhat
the effectiveness of the hypothesis selection mechanism.

Therefore, there is a gain only if VPn
X ,Y
{EF|LS{hφ(x)}} is lower (by at

least the same amount as the bias increases) than the variance of the base,
non-randomized algorithm. Intuitively, this happens because randomization
forces the optimization to depart somewhat from the learning set. The over-
all effect is schematically summarized by Figure 3.10b. There is no guarantee
that ensembling a randomized variant of a given algorithm will actually im-
prove over the vanilla algorithm; it might well be that the direct reduction of
variance brought by randomizing does not compensate for the bias increase.

3.5 Boosting

Whereas bagging and random forests aim at reducing variance, boosting is a
method that tackles bias. A highly-biased learning algorithm is called a weak
learner. The idea behind boosting is to combine weak learners in a sequential
fashion under an additive model with an increasing number of terms whose
goals are to fit what is not yet captured by the first terms (usually applying
some learning rate for regularization purposes).

A generic procedure implementing the idea of boosting, called forward
stagewise additive modeling (Friedman, 2001a) is described in Algorithm 4.
In the remaining, we will restrict the discussion to weak learners being shal-
low decision trees. Such trees split the input space into a handful of coarse
regions. As a result, the predictions tend to be highly biased and portraying
low variance. The extreme case is when there is only a single splitting node
and two leaves, which is called a stump.

Section 3.5.1 discusses one way boosting can be implemented for regres-
sion, while Section 3.5.2 discusses the case of classification.

3.5. Boosting 73

Algorithm 4: Forward stagewise additive modeling (boosting).
Input: A learning set LS = {(xi, yi)}n

i=1, a hypothesis space H, the
number of terms t, the learning rate λ

Output: A generalized linear model h∗(x) = w1h1(x) + . . . + wtht(x)
1 Function FSAM(LS, H, t):
2 h[0] ← 0

/* Or the best constant wrt LS */
3 for l ← 1 to m do
4 compute

(wl, hl)← arg min
(w,h)∈R×H

n

∑
i=1

`(yi, h[l−1](xi) + wh(xi))

5 h[l](·)← h[l−1](·) + λwlhl(·)
6 return h[t]

3.5.1 Least square boosting

Specializing Algorithm 4 for regression is relatively straightforward (Fried-
man, 2001a). Using the `2 loss, the stagewise optimization becomes

min
(w,h)∈R×H

n

∑
i=1

(yi − hl−1(xi)− wh(xi))
2 (3.85)

We note that r(l)i , yi− hl−1(xi) is the residual of the previous iteration for
the ith object. By feeding the regression tree induction algorithm a learning
set LSl = {(xi, r(l)i)}n

i=1, the returned tree will solve the optimization for w =
1. Therefore, we obtain a model of the form

h(x) = h0(x) + h1(x) + . . . + ht(x) (3.86)

Since, under the `2 loss, the best constant is the average, we can opt for
h0(x) = 1/t ∑n

i=1 yi. As in the general case, a learning rate can be applied to
the terms to regularize learning.

3.5.2 Adaboost

We will first discuss binary classification with Adaboost (Freund and Schapire,
1995). Adaboost can be seen as an instantiation of the forward stagewise
additive modeling with the exponential loss. The labels follow a different
encoding from the logistic case.

74 Chapter 3. Learning algorithms for supervised machine learning

Label encoding: binary Adaboost
In Adaboost, Y = {−1, 1} so that one class (the “negative” class) re-
ceives the label−1 and the other (the “positive” class) receives the label
1.

Definition 3.5.1 (Exponential loss (binary classification)). With the {−1, 1}-
encoding the exponential loss is

`exp(y, z) = e−y z (3.87)

The −yz product is called the margin.

Friedman, Hastie, Tibshirani, et al. (2000) showed that

hB(x) = arg min
ŷ

EY|x{e−yŷ(x)} = 1
2

log
P(Y = 1|x)

1−P(Y = 1|x) (3.88)

Thus, optimizing under the exponential loss results in the same solution as
with the cross-entropy. Moreover, this allow us to interpret the model in
probabilistic terms:

hB(x) =
1
2

log
P(Y = 1|x)

1−P(Y = 1|x) (3.89)

⇐⇒ P(Y = 1|x) = 1
1 + e−2hB(x)

=
ehB(x)

ehB(x) + e−hB(x)
(3.90)

Note the resemblance; this justify the use of the softmax to output probabili-
ties from the selected hypothesis:

p̂(x; ŷ) = softmax(ŷ(x)) (3.91)

Exponential loss versus cross-entropy. Adaboost is similar in many re-
gards to a logistic regression over the space span by the basis functions h1, . . . ,
ht. It only differs on two points. Firstly, the basis function are learned and
not given a priori, which leads to the stagewise optimization. Secondly, Ad-
aboost relies on the exponential loss rather than the cross-entropy. Interpret-
ing h as logits, the cross-entropy for a pair (x, y) is

`CE(y, p̂(x; ŷ)) = y log p̂(x; ŷ) + (1− y) log (1− p̂(x; ŷ)) (3.92)

= log
(

1 + e−2yŷ(x)
)

(3.93)

The exponential loss e−yŷ(x) and the cross-entropy are represented at Fig-
ure 3.12. They both operate over yŷ(x)—the margin—and encourage the
boundary to be on the appropriate side and as far away from x as possible.
For a point x close to the boundary or on the correct side they appear quite
similar. Misclassified points by a large margin, are much more penalized by

3.5. Boosting 75

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
yy

0

1

2

3

4

5

6

7

Lo
ss

Misclassification rate
Exponential loss
Cross-entropy loss

FIGURE 3.12: A comparison of losses with respect to the mar-
gin. Ground truth is encoded as y = ±1. Model outputs ŷ is
real-valued. Adapted from Friedman, Hastie, and Tibshirani

(2001a)

the exponential loss than by the cross-entropy, which appears almost linear
in that setting.

Having an exponentially growing penalty means that misclassified points
close to the boundary will be completely overlooked so long as there is one
misclassified point far away from it. This might prevent any learning when
the amount of noise is high and such points are natural occurrences.

Despite leading to the same solution yet being less robust than the cross-
entropy, the exponential loss finds its uses because it leads to closed-form
optimization. When solving the optimization program once, the exponen-
tial loss might not be advisable. When solving it repeatedly as part of a, say,
stagewise process, the burden of solving several cross-entropy-based opti-
mizations might not be worth the robustness it brings, hence justifying the
exponential loss.

Adaboost as instance reweighing. Historically, Adaboost was not proposed
as an instance of forward stagewise additive modeling but rather as an algo-
rithm reweighing the learning instances. Most algorithms offer the possibil-
ity to give more or less weight to each (xi, yi) pair. For global optimization
problems, this is done by multiplying the corresponding loss term by αi. In
the case of decision trees, this is done by multiplying by αi the uncertainty
relating to the ith learning point.

76 Chapter 3. Learning algorithms for supervised machine learning

To make the connection with instance reweighing more concrete, consider
the following program corresponding to stage t:

min
(w,ŷ)∈R×H

n

∑
i=1

e−yi(ŷ:t(xi)+wŷ(xi)) (3.94)

= min
(w,ŷ)∈R×H

n

∑
i=1

α
(t)
i e−yiwŷ(xi) (3.95)

where α
(t)
i = e−yi ŷ:t(xi) is the weight of the ith learning instance at stage t and

ŷ:t(x) = ∑m
l=1 wl ŷl(x) is the stagewise model at t. Solving the program is

done in two phases. Firstly, ŷ is chosen to minimize the weighted error

err(t) =
∑n

i=1 α
(t)
i I(yi 6= ŷ(xi))

∑n
i=1 αi

(3.96)

This is done by learning a model according to the α
(t)
i weights. Then wt is

optimized to solve the program, leading to new weights

α
(t+1)
i = α

(t)
i e−yiwŷ(xi) (3.97)

Multi-class Adaboost. An extension to the multi-class setting was proposed
by Zhu et al. (2009) relying on a generalization of the exponential loss to more
than two classes. For multi-class Adaboost, the labels must be encoded in the
following manner.

Label encoding: multi-class Adaboost
A datapoint belonging to class k (k = 1, . . . , K) is encoded as

y(j) =

{
1, if j = k
− 1

K−1 , otherwise
(3.98)

Under this encoding, which generalizes the binary case, the exponential
loss can also be generalized.

Definition 3.5.2 (Exponential loss (multi-class)).

`exp(y, ŷ) = e−
1
K ∑K

k=1 y(k) ŷ(k) (3.99)

where y and ŷ both follow the multi-class encoding.

The authors showed the following result.

3.6. Deep learning 77

Proposition 3.5.1. The program

arg min
ŷ

EY|x exp

(
− 1

K

K

∑
k=1

y(k)ŷ(k)(x)

)

s.t.
K

∑
k=1

h(k)(x) = 0 (3.100)

has for solution

hB(x)(k) = (K− 1)

(
log P(Y = k|x)− 1

K

K

∑
l=1

log P(Y = l|x)
)

(3.101)

Taking advantage of the zero-sum constraint, this implies

P(Y = k|x) = e
1

K−1 h(k)B (x)

∑K
l=1 e

1
K−1 h(l)B (x)

=
(k)

softmax
(

1
K− 1

hB(x)
)

(3.102)

Given a new term satisfying Eq. 3.101, new instance weights can be de-
rived following Eq. 3.96 and the general Adaboost procedure. It is easy to
check that everything falls back to the binary exponential loss when K = 2.

3.6 Deep learning

Deep learning, multi-layer perceptron (MLP), (artificial) neural network (ANN),
feed-forward network, in this section we go over this class of models, what
they are, how they can make predictions and how they can be learned from
data.

3.6.1 Structure and inference

Figure 3.13a depicts a neuron. Mathematically, a neuron is very close to the
logistic regression: inputs travel along axons to reach the core; under cer-
tain conditions, the neuron fires a signal which can be transmitted to other
neurons via the synapses. Typically, this is implemented by combining the
inputs linearly—the weights simulating the strength of neural connectivity—
and running this combination into an activation function, historically a con-
tinuous equivalent of a sign function.

Artificial neurons transcend the logistic regression by being connected to-
gether, forming an artificial neural network. Many graph topologies have
been studied but the most common ones are feed-forward networks. In such
networks, information flows only in one direction (at least at inference time),
owing to the directed acyclic graph nature of the network. Neurons are usu-
ally organized into layers, with connection only (or mostly) between two suc-
cessive layers. When, for all layers, all neurons are connected to all neurons

78 Chapter 3. Learning algorithms for supervised machine learning

I
n
p
u
t
s

output

(A) Schematic representation of a neuron.

input 1

input 2

input 3

input 4

Inputs
Layer 0

Layer 1 Layer 2 Layer 3

(B) Start of a feed-forward, fully-
connected neural network.

FIGURE 3.13: An artificial neuron and a network of such neu-
rons.

of the following layer, the network is termed fully-connected. An example of
a fully-connected, feed-forward network is given in Figure 3.13b.

Historically, the first neural model, containing a single neuron, was pro-
posed by Rosenblatt (1958) under the name perceptron. Therefore, feed-
forward networks are also sometimes referred to as multi-layer perceptrons.

There is no need a priori for the activation functions to be the same in all
neurons, nor is it mandatory to have linear combinations.

Moving away from the biological analogy, a feed-forward neural network
can be formalized in the following fashion.

Definition 3.6.1 (Feed-forward neural network (general case)). A feed-forward
neural network of L layers is a function of the form

ŷ(·, Θ) = fL(·; θL) ◦ . . . ◦ f1(·; θ1) : X→ RK (3.103)

with Θ = [θ1, . . . , θL] the set of all trainable network parameters.
Note that the structure is fixed at learning time, therefore, the hypothesis space

HΘ is the set of all networks of a given structure. The structure can be assimilated
to a hyper-parameter. When repeating patterns of layers occur in a network, it is not
uncommon to see them as indivisible blocks.

Furthermore, let zl(x; Θl) be the feature vector of layer l (1 ≤ l ≤ L) for an
input x:

zl(x; Θl) = (fl(·; θl) ◦ . . . ◦ f1(·; θ1)) (x), (3.104)

with Θl = [θ1, . . . , θl] the parameters of the first l layers. This definition en-
tails zL(x; ΘL) = ŷ(x, Θ). For convenience, let us extend the definition so that
z0(x) = x.

With this view of a neural network, inference is straightforward as a model

3.6. Deep learning 79

is just a composition of parametrized functions. In the simplest case, this cor-
respond to a linear function followed by an non-linear activation s(·):

zl = s (Wzl−1 + b) (3.105)

In regression, we can use the neural network thus defined directly as hy-
pothesis. In classification, an ultimate softmax layer is usually appended to
the network to derive probability vectors:

p̂(x; Θ) = softmax (ŷ(x; Θ)) (3.106)

From there, a hard classification can be made by choosing the most prob-
able class, as usual. Note that these last steps do not contain any learnable
parameters.

Note that, for hard classification, the softmax layer is only really needed
during training. For inference, the network can be cut at the logits. Classifi-
cation proceeds by putting forth the class whose logit is the highest.

Building blocks. Designing architectures and tailoring them to a particular
problem is a challenging task. Fortunately, the community has come to pro-
vide standard building blocks as well as dedicated architectures for several
types of tasks. In this thesis, we will mainly focus on two tasks: unstructured
problems (Chapter 9) and image classification (Chapters 7 and 8). In the for-
mer case, we will use fully-connected networks: trainable parameters will be
the coefficients of the linear maps from one layer to the next. The specificities
of images classification will be discussed in Section 3.6.3.

3.6.2 Learning: the backpropagation algorithm

In regression, formulating the learning program is straightforward.

Definition 3.6.2 (Neural network program (regression)). Under the squared
loss, the neural network optimization is

min
Θ

n

∑
i=1

`2 (ŷ(xi, Θ), yi) + µ
L

∑
l=1
||θl||22 (3.107)

min
Θ

n

∑
i=1

(yi − ŷ(xi, Θ))2 + µ
L

∑
l=1
||θl||22 (3.108)

In classification, neural networks are learned via the cross-entropy loss.
This requires the following label encoding.

80 Chapter 3. Learning algorithms for supervised machine learning

Label encoding: neural networks
For the K-class neural network, the labels are encoded as one-hot vec-
tors such that:

y(j) =

{
1, if j = k
0, otherwise

(3.109)

Definition 3.6.3 (Neural network program (classification)). Under the cross-
entropy loss, the neural network optimization is

min
Θ

n

∑
i=1

`CE (p̂(xi; Θ), yi) + µ
L

∑
l=1
||θl||22 (3.110)

min
Θ

n

∑
i=1

K

∑
j=1

y(j)
i log p̂(xi; Θ) + µ

L

∑
l=1
||θl||22 (3.111)

In both classification and regression, the regularization term—called the
weight decay in this context—is usually accompanied with a small penalty
coefficient µ = 5 × 10−4.

In the following, we focus on the more involved classification case.
Neural networks are most usually trained via a first-order gradient de-

scent with the loss estimated on mini-batches of the training data. The most
simple instance of this scheme is the stochastic gradient (SGD) introduced in
Algorithm 1 (Section 3.2). Contrary to logistic regression, we need to fit the
parameters of every layer. Since the network is a composition of functions,
the necessary gradient can be computed via the chain rule, a process also
known as backpropagation.

In full generality, the component of the gradient of layer l (1 ≤ l ≤ L)
relating to the pair (x, y) is given by

∇θl `CE (p̂(x; Θ), y) =

(
L

∏
k=l

JT
k (x)

)
∇zL `CE (p̂(x; Θ), y) (3.112)

=

(
L

∏
k=l

JT
k (x)

)
(p̂(x; Θ)− y) (3.113)

= JT
k :L(x)∆y p̂(x) (3.114)

where Jk is the Jacobian of the kth layer. Note that in the multi-class setting p̂
and y refer to vectors (with a one-hot encoding for y).

Thus the backpropagation consists of a product of Jacobians multiplied
by the error/learning signal ∆ p̂(x). The following two sections will explore
issues linked to backpropagation which have held back deep learning for
some time, namely the vanishing gradient (Section 3.6.2.2) and the covariate
shift (Section 3.6.2.3) problems.

3.6. Deep learning 81

3.6.2.1 First-order interpretation: from softmax regression to neural net-
works

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Loss: 1.15E+00

Norm
0.57
0.54
0.10

(A) Random initialization. The classes are
not linearly separable.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Loss: 6.24E-01

Norm
0.79
0.54
0.63

(B) After 10 iterations. The classes start
being linearly separable even though the
classification hyper-planes are not yet

perfect.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Loss: 5.39E-02

Norm
1.59
0.95
1.31

(C) After 15 iterations. The problem is
solved: classes are articulated around the
origin of the latent space, are linearly sep-
arable and the hyper-planes are correctly

placed.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

x 1

Loss: 6.33E-03

Norm
1.85
1.41
2.02

(D) At convergence. The further loss
reduction is due to pushing the classes
further away, resulting in a more confi-
dent network. The increase in the hyper-
plane-defining vectors is relatively mild
compared to how much the latent vectors

have been pushed from the origin.

FIGURE 3.14: Evolution of the feature learning process for the
latent space and its classification hyper-planes on a toy problem
at different stages of learning. The problem consists of three 3D
Gaussians, co-linear in the two first dimensions and more easily
separable in the third (to simulate how learning features might
provide a better space for separability). The network is com-
posed of two fully-connected feature extraction layers initial-
ized as the identity over the two first dimensions and ignoring
the third, all with null bias and ReLU activations. The network

is trained with a small weight decay of 5× 10−4.

82 Chapter 3. Learning algorithms for supervised machine learning

Most neural networks in classification do not have an activation function
just before the softmax, where a linear layer transforms the latent vectors into
logits, resulting in the following structure:

p̂(·, Θ) = softmax(·) ◦ fL(·; [W, b])︸ ︷︷ ︸
softmax classifier

◦ fL−1(·; θL−1) ◦ . . . ◦ f1(·; θ1)︸ ︷︷ ︸
feature extractor

(3.115)

The feature extractor is also called a representation learner. This dichotomic
view of the network structure highlights the fact that optimizing the model
amounts to jointly learning a softmax classifier and an ideal feature represen-
tation for this classifier. So what would be ideal from the point of view of the
softmax?

The first step in reducing the loss is to avoid misclassification. With a
softmax classifier, this encourages the representation learning to place the
classes in linearly separable sub-regions, such as in the 3G problem (Section
3.2.2). When the dimensionality of the pre-logit, latent space is larger than
the number of classes (the most common situation in practice), the network
has the flexibility to spread the classes in different sub-spaces. This is further
encouraged when weight decay is applied, since using the whole dimension-
ality is less penalizing than requiring larger coefficients for the hyper-planes
vectors—either of which is needed to lower the loss the most.

Once the classes are linearly separable, or alternatively, once the hyper-
planes are set (i.e. rotated and translated) to provide welcoming regions,
aligning the latent vectors zL(x) with the class-corresponding hyper-planes
is the optimal way to boost the network confidence (thus lowering the error
signal ∆ p̂) for a fixed norm ‖zL(x)‖.

The next step is to further boost confidence. This can either be done by
increasing the norm ‖zL(x)‖ of the latent vector zL(x), driving them further
away from the center, or by directly increasing the norm of W. The former
offers more flexibility, such as pushing away points which align less well
with the hyper-planes. On the other hand, increasing the norm W affects all
points at once.

Adding some weight decay will more directly limit the growth of W and
will limit, to a small extent, the confidence of the network by moving away
from the sole equilibrium over the error signal.

This whole process is illustrated by Figure 3.14.
This geometric interpretation of feature learning may provide some in-

sight into why slow-down regularization is helpful in the case of neural net-
works. If the network quickly goes into separating roughly the classes and
then increases the norm of each hyper-plane it will quickly get a low resub-
stitution error. In the event where the separation is perfect on the training set
but not as adequate in general, the model will have overfitted the training
set. By slowing down learning, the latent space gets more time to optimize
its regions, ending up with a better generalization.

3.6. Deep learning 83

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0 Sigmoid activation s(x)
derivative of s(x)

(A) A sigmoid activation function and its
derivative. Note how the peak of the
derivative is much less than one and how

it decreases towards zero.

4 2 0 2 4

0

1

2

3

4

5 ReLU activation ReLU(x)
derivative of ReLU(x)

(B) A ReLU (Nair and Hinton, 2010) acti-
vation function and its derivative. Note
how the derivative does not decrease for

positive inputs.

FIGURE 3.15: A comparison of the behavior of two activation
functions (sigmoid on the left, ReLU on the right). Note the dif-
ference in scale of the y-axis. The derivative of the sigmoid will
dampen the learning signal, whereas the ReLU will backprop-

agate all the information relating to positive inputs.

3.6.2.2 Vanishing gradient

For brevity, let us denote by ∇θl ` the loss gradient and ∆ p̂ the learning sig-
nal. A frequent problem in learning deep networks (i.e. neural networks
with many layers) is that, as it gets propagated, the error signal decreases in
magnitude to the point of little information reaching the early layers:∥∥∇θl `

∥∥� ‖∆ p̂‖ (3.116)

Considering how the former is computed, this dampening effect is due to
the product of Jacobians. Note that the opposite effect—exploding gradient—
is sometimes observed, although more rarely since the optimization forces
the gradient towards zero, which can happen if the error signal is null (the
goal actually pursued) or because the gradient vanishes along the layers.

Unbounded activation functions. Figure 3.15 depicts two activation func-
tions together with their derivative. Note how the sigmoid derivative peaks
below 0.3 and decreases away from a null input. Applied to all values in
the Jacobian matrices, this will slowly decrease the magnitude of the learn-
ing signal. Using other logistic curves (which peak at 1 or higher) can only
partially solve the problem; the shape of the derivative still encourages the
dampening effect. On the other hand, peaking too high would favor explod-
ing gradient situations.

84 Chapter 3. Learning algorithms for supervised machine learning

The second activation function is called a rectified linear unit (Nair and
Hinton, 2010), or ReLU for short. The basic variant is of the form

ReLU(x) =

{
x if x ≥ 0,
0 otherwise.

(3.117)

Thus negative activations get turned off. In a fully-connected, feed-forward
network the layers are functions of the overall form1

zl = ReLU (Wzl−1 + b) (3.118)

By being unbounded, The ReLU function (and its variants) solves (par-
tially) the dampening effect by avoiding the otherwise necessary slow down
in the activation. Therefore, the decrease of magnitude in the propagated
error signal due to the negative inputs can be compensated by higher-value
positive inputs. In practice, ReLU offers a strong first step in avoiding the
vanishing gradient problem.

Note that the derivative of the ReLU is technically not defined at zero. In
practice, however, since our goal is to optimize the network, any subgradient
can be chosen at this point, would it chance to happen.

Interestingly, ReLU captures the idea of neurons firing at a much coarser
level, moving away from the biological inspiration. However, the non-linearity
they provide and the adaptability of (deep) artificial networks seem to suffice
to learn good models.

Skip connections. Using ReLU allowed to explore networks deeper than a
couple of layers. Training networks with tens of layers remained challenging,
and hundreds virtually impossible, however. Introducing skip connections
solved this issue. Skip connections come in many flavors but all share the
idea of information running in parallel in the network, with one way by-
passing several layers. This skip allows for a pathway where the learning
signal can travel without being amortized. Figure 3.16 illustrates two types
of skip connections.

3.6.2.3 Covariate shift

Another problem when learning networks is that changing the weights of
layers 1 ≤ k ≤ l changes the distribution of inputs for layer l—a phe-
nomenon known as covariate shift. When updating all layers at once, this
means that an update of previous layers can render the update of a latter
layer obsolete or inconsistent.

One workaround is to train the network layer by layer, updating only one
layer at a time. This, however, has been recognized as inefficient and a more
traditional solution nowadays is to use batch-normalization layers (Ioffe and

1Activation functions are usually defined over scalars and tacitly extended to matri-
ces/tensors as element-wise operators.

3.6. Deep learning 85

(A) Residual connection (He et al., 2016):
the value of x is added to the learned F

function.

(B) Densely-connected blocks(Huang et
al., 2017): all the features of the previous
layers within a block are concatenated

and fed to subsequent nodes.

FIGURE 3.16: Two examples of skip connections.

Szegedy, 2015). We will look at how those layers are implemented more
specifically in the case of image classification (in Section 3.6.3.4).

3.6.2.4 Miscellaneous

Initialization. The parameter initialization in iterative algorithms is also an
important question. Most notably, a bad initialization in deep learning might
render the model hard to train with bad conditioning due to symmetry or
bad gradient flow.

Higher order methods. As mentioned, there exists a higher-order method
for solving the logistic regression and exposing the first order, gradient method
was mainly a pedagogical choice. Higher-order methods are not advocated
for deep learning, however (Bottou and Bousquet, 2007).

Instead, the community has proposed other strategies to speed up the
learning, such as improvement on SGD (such as Nesterov momentum, in-
dividualized learning rate, and so on; see (Duchi, Hazan, and Singer, 2011;
Kingma and Ba, 2015, e.g.)) and scheduling: the idea that the learning rate
can be divided by a factor at some points during the learning, ideally when
the training stagnates.

Non-convex optimization. Finally, it is important to note that the objective
functions to optimize in deep learning are usually non-convex. Therefore,
there is a chance to end up in a local minimum (or close to one) which is far
from the actual global minimum.

3.6.3 Image classification

Dedicated layers have been presented over the years which both serve to de-
crease the number of learnable parameters and to better exploit the structure
of the inputs. Indeed, images are known to be highly spatially correlated,

86 Chapter 3. Learning algorithms for supervised machine learning

FIGURE 3.17: The semantic content of an image does not
change with a translation. Left: original image and how it
would be encoded as a one-dimensional vector to be fed in the
network. Right: the same with a slight horizontal translation.
Notice how the encoding is different, losing the spatial infor-

mation. From Bronstein et al. (2017).

contain structures, provide information at several scales and somewhat spa-
tially stationary (Figure 3.17). By designing layers to leverage these, the com-
munity has been able to provide relevant inductive biases to the hypothesis
spaces of neural networks for image classification.

3.6.3.1 Tensors and feature maps

The major specificity when working with images in the context of neural
networks is to keep the spatial structure of the data. To do so, the standard
view of vector spaces will be generalized, at the very least conceptually.

The input space of the network is X = RC×H×W where C is the number
of channels, H is the height and W is the width of the images. Thus x(c,h,w))

is the value of the pixel of the cth channel (1 ≤ c ≤ C), at position (h, w)
(1 ≤ h ≤ H, 1 ≤ w ≤W).

The layer functions zl(·; Θl) take as inputs tensors—called feature maps—
from RCl×Hl×Wl and outputs feature maps in RCl+1×Hl+1×Wl+1 . The functions
are such that the spatial structure is maintained (see Section 3.6.3.2 for an
example).

The feature extraction phase usually flattens the feature maps of the last
latent space in the form of a vector so as to feed a softmax classifier. On rarer
(or older) occasions, the feature maps are flattened upstream and traditional
layers (such as rectified fully-connected) are appended before the classifier.
See Figure 3.20 for a schematic of a modern network for image classification.

3.6.3.2 Convolution

Convolutions are such a fundamental basic block for image-based neural net-
works that these are usually termed Convolutional neural networks (CNN).
Convolution aims at providing some spatial invariance by imposing some
restrictions over the fully-connected layers. They work by convoluting a

3.6. Deep learning 87

FIGURE 3.18: An illustration of convolution in CNN. Left: the
output feature map value at a given position is computed by
applying the kernel on the input feature map. Center: the ker-
nel has moved at the value is computed at another location with
the same kernel but a different part of the input feature map.
Right: another channel of the output feature map is computed

thanks to a different kernel. Adapted from Fleuret (2021).

linear kernel which is moved over the image. Let zl ∈ R(Cl ,Hl ,Wl), zl+1 ∈
R(Cl+1,Hl+1,Wl+1) be the input and output feature maps of a convolution layer
fl. Assuming squared-base kernels K of size Cl × k × k (k being odd) and a
stride of 1 with no padding (see infra) The input-output relationship between
them can be described as

z(co,ho,wo)
l+1 = bl,co +

Cl

∑
c=1

k

∑
i=1

k

∑
j=1

z(c,ho+i−1,wo+j−1)
l × K(c,i,j)

l,co
(3.119)

for 1 ≤ co ≤ Cl+1, 1 ≤ ho ≤ Hl+1 − (k− 1) and 1 ≤ wo ≤Wl+1 − (k− 1).
Kernels are usually visualized as moving across the input feature maps,

centering on a location and computing the local linear function (see Figure
3.18). The above formula shows that the output feature map is smaller by a
constant factor (depending on the kernel size) along each spatial dimension.
Padding can be used to change this constant (at a fixed kernel size). With a
padding of bk/2c, the kernel is (spatially) centered at the same location on the
input and output feature maps. This implies that, while moving, the kernel
might partially overflow the input feature map. Several strategies exist to
cope with this situation (such as considering a constant value outside the
feature map).

Rather than reducing the spatial dimension by a constant factor, strides
can be used to divide the spatial dimension. The most frequent case is to use
a stride of 2: as the kernel moves, it sidesteps every other location, resulting
in an output feature map roughly twice as small. The effect of the stride and
padding are illustrated in Figure 3.19.

88 Chapter 3. Learning algorithms for supervised machine learning

(A) 3 × 3 convolution with a stride of 1
and no padding (location 1).

(B) 3 × 3 convolution with a stride of 1
and no padding (location 2).

(C) 5 × 5 convolution with a stride of 1
and a padding of 2 (location 1).

(D) 5 × 5 convolution with a stride of 1
and a padding of 2 (location 2).

(E) 3 × 3 convolution with a stride of 2
and no padding (location 1).

(F) 3 × 3 convolution with a stride of 2
and no padding (location 2).

FIGURE 3.19: Effects of padding and stride in convolution (il-
lustrated for a single channel). The blue image (at the bottom)
represents the input feature map and the green (top) one the
output feature map. Note how the feature map is reduced by
or not depending on the parameters. From Dumoulin and Visin

(2016).

3.6. Deep learning 89

3.6.3.3 Pooling

Pooling can be seen as a non-linear generalization of convolution, where an
arbitrary function is applied to the moving window. Pooling layers using the
maximum function (max-pooling layers) are often used with a stride greater
than one. The strides serve to reduce the feature map spatial dimensions
and the maximum was motivated by spatial invariance, overall producing a
coarser representation of the input feature map.

Nowadays, max-pooling layers tend to be less used as they force the gra-
dient to flow only through one component of the kernel. Traditional convo-
lution layers with strides greater than one are now used instead. There is
however a pooling operation which has become the norm: global average
pooling (Lin, Chen, and Yan, 2013). This simply consists in outputting the
spatial mean of a feature map. In modern architectures, this is how the net-
work changes from the feature map representation used for feature extraction
to the vector representation which is used for the classification.

Whether pooling is used together with convolutions or not, they both
stem from the idea of producing spatial invariance and, when used in cas-
cade, scale invariance as well.

3.6.3.4 Batch-normalization

As discussed in Section 3.6.2.3 changing the parameters of layer l will render
the changes of layer l + 1 obsolete, as its input distribution changes as well.
Batch normalization layers (Ioffe and Szegedy, 2015) try to circumvent this
phenomenon. This layer operates in two steps. First, it standardizes the
input batch with respect to some estimated statistics (Eq. 3.120). Then it
applies a linear transformation (Eq. 3.121). Let B be the set of layer indices
corresponding to the batchnorm layers. Then for all l ∈ B,

y(c,w,h)
l =

z(c,w,h)
l−1 − µ

(c)
l√([

σ
(c)
l

]2
+ ε

) ∀c, w, h (3.120)

z(c,w,h)
l = y(c,w,h)

l × γ
(c)
l + β

(c)
l ∀c, w, h (3.121)

with Cl (1 ≤ c ≤ Cl), Wl (1 ≤ c ≤ Wl) and Hl (1 ≤ c ≤ Hl), standing
respectively for the number of channels, the width and the height of the input
feature maps at layer l.

The two stages follow somewhat antagonist goals. The standardization
forces the input distribution of the l + 1 layers to resemble the one before
updating the previous 1, . . . , l layers. On the other hand, the linear output
transformation allows to deviate from that goal to ensure updates are actu-
ally accomplishing something.

Batch-normalization layers are not specific to image processing but the
formulation holds some particularities. Note how only two parameters (µ(c)

l

90 Chapter 3. Learning algorithms for supervised machine learning

FIGURE 3.20: A schematic view of a DenseNet. The input im-
age is fed to a first convolution layer. The feature maps then
run through several dense blocks (containing batch normaliza-
tion, convolutions and ReLU activations) followed by further
convolutions and a max-pooling layer which reduces the spa-
tial dimension of the feature maps. The last pooling layer con-
sists in a average pooling to deliver a feature vector for the soft-
max classifier (embodied by the linear layer). From Huang et

al. (2017).

and σ
(c)
l) are estimated per channel for the normalization. The authors jus-

tify this choice by symmetry with the convolution layers: “For convolutional
layers, we additionally want the normalization to obey the convolutional
property – so that different elements of the same feature map, at different
locations, are normalized in the same way” (Ioffe and Szegedy, 2015).

This view of all locations being somehow from the same distribution dic-
tates to estimate the total variance, in contrast, for instance, to averaging over
all locations the variance across each instance (within variance where groups
are the locations). The estimation of all the necessary quantities is done via a
running average and 0 < ε � 1 is added in the standardization for numeri-
cal stability.

Figure 3.20 illustrates a modern architecture.

3.7 Tools and tricks

To conclude this tour of supervised learning algorithms, let us discuss some
important tools and tricks.

3.7.1 Risk management

Class balancing. In many classification problems, some classes may be more
represented than others in the learning set. This might be due to the phe-
nomenon, where some classes naturally appear more frequently than others
(e.g. more healthy people than ill ones), or to the data collection process (bias,
difficulty to record some classes, etc.). Depending on the context, this imbal-
ance might pose some issues. Methods have been proposed to deal with this
(Guo et al., 2017b, see, for instance).

Risk assessment: symmetric losses under asymmetric issues. Sometimes
all misclassifications are equivalently troublesome, and sometimes missing
or confusing some classes are more problematic than others. For instance,
missing some signs of cancer is a far greater problem than diagnosing one

3.7. Tools and tricks 91

TABLE 3.1: Confusion matrix for a binary problem. P stands for
positive, N for negative, TP for true positive, FN for false nega-
tive, FP for false positive, TN for true negative. Confusion ma-
trices are contingency table crossing the number of truly posi-
tive and negative samples against how a given method classes

them.

Prediction
Actual class Positive Negative Total
Positive TP FN P
Negative FP TN N

when there is not (in which case latter examination will expose the false pos-
itive). Likewise, it is better to catch a suspicious bank transaction and ask for
a more secure validation rather than miss a fraud.

Even if both types of errors are equally penalizing, relying on, say, the
accuracy in contexts where the classes themselves are imbalanced might ob-
fuscate more than it reveals. For instance, in a binary classification between
the “positive” and “negative” samples, if the positive class represents x%
(e.g. 1%) of the data a model will be exposed to, constantly predicting the
negative class will result in an accuracy of x%. As is evident, the accuracy
might appear good while the method is actually worthless.

Yet another problem with accuracy arises with some classifiers relying on
recognizing some patterns in data and might miss them sometimes (i.e. pro-
duce a false negative) but rarely detect them when there is not (i.e. produce
a false positive), or the other way around.

So far, all the losses we have encountered in classification have been sym-
metrical: confusing class i for class j bore the same weight for all i, j(i 6= j).
They are, consequently, not well suited to deal with those situations. Other
metrics are needed to better assess the model under those circumstances.

Risk assessment: the confusion matrix. The simplest way to manage asym-
metry is to avoid aggregating the information in a single number and use a
confusion matrix instead. A confusion matrix CM is a matrix such that CMi,j
is the number of examples from class i which have been classified as j. Table
3.1 shows a confusion matrix for a binary problem, with one class labeled
as positive and the other as negative. This case is so important in practice
that each entry in the matrix has a dedicated name: True Positive for posi-
tive samples which have been recognized as such, False Negative for positive
samples which have been missed, False Positive for negative samples which
have mistakenly been predicted as positive and True Negative for correctly
recognized negative samples. The elements off the diagonal are called the
risks.

The accuracy can be computed from the confusion matrix by summing
the diagonal and dividing by the total number of samples. Other interesting
metrics can be computed—especially in the case of binary classification.

92 Chapter 3. Learning algorithms for supervised machine learning

Definition 3.7.1 (Sensitivity). Sensitivity, or recall, or true positive rate (TPR) is
defined as

TP
P

(3.122)

It represents the proportion of positive samples which have been correctly identified
and indicates how much a model is capable of actually finding the positive samples;
a model with high sensitivity is good at detecting positives.

Definition 3.7.2 (Specificity). Specificity, or true negative rate (TNR), is defined
as

TN
N

= 1− FP
N

(3.123)

It represents the proportion of negative samples which have been correctly identified
and indicates how much a model is capable of actually rejecting negative samples; a
model with high specificity is good at not being fooled by negative samples.

Definition 3.7.3 (Precision). Precision is defined as

TP
TP + FP

(3.124)

It represents the proportion of truly positive samples among the samples which have
been predicted as positive. A model with high precision can be trusted when it pre-
dicts the positive class.

Managing the risks is about balancing them, rather than blindly optimiz-
ing a given metric. It is easy to make up situations where a given metric
would fail to expose meaningful information. Predicting always the posi-
tive class would yield a sensitivity of 1. Predicting always the negative class
would result in a perfect specificity. A situation of class imbalance similar to
the one discussed about accuracy would also impact the precision.

Actual risk management. In the presence of asymmetry, be it expressly
aimed for or a consequence of the problem’s nature, aiming for a good accu-
racy might actually not be the best approach. One possibility is to change the
loss function to reflect the asymmetry. Another possibility is to re-calibrate
the model afterward. This is typically done by changing the hard classifica-
tion threshold on the model continuous output. For example, with a classifier
giving a probability of belonging to the positive class p̂, the Bayes classifier
under symmetric risks consists in associating the positive class as soon as
p̂ > 0.5. Instead, the hard classification could be p̂ > 0.75, this would change
some TP to FN and some FP to TN, increasing the specificity of the model
while lowering its sensitivity.

Figure 3.21 illustrates how calibrating the hard classification based on the
probability outputted by a logistic regression can affect the risk balance.

3.7. Tools and tricks 93

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(A) Boundary minimizing the risks sym-
metrically.

Prediction
Truth Pos. Neg. Total
P 47 3 50
N 3 47 50

(B) Confusion table for the sym-
metric risks.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(C) Boundary minimizing the false positive
risk.

Prediction
Truth Pos. Neg. Total
P 39 11 50
N 0 50 50

(D) Confusion table for the false
positive risk.

FIGURE 3.21: Two linear models for the iris classification prob-
lems (left column) and the corresponding confusion matrices
(right column). On top, the model has been trained under sym-
metric risks (reflected by the symmetries in the corresponding
confusion matrix). On the bottom, the decision boundary has

been translated to minimize the false positive rate.

Area under the curves. Post-calibration changes the confusion matrix. In
other words, the confusion matrix depends on the (quality of the) calibration.
Sometimes, it is interesting to evaluate how a model performs independently
of the calibration. This conveys an idea of how good the model is in general,
rather than when tailored for a specific risk balancing, and consequently in-
dicates how the model can be useful under other risk tradeoffs. It might
also reveal that a model is actually good but gifted with a skewed calibra-
tion, or conversely that a model seems good with respect to a given risk but
something is amiss. Additionally, this offers new—and more robust—ways
to summarize all the information contained in a confusion matrix in a single
number.

The receiver operating characteristic (ROC) curve consists in varying the
calibration to generate all the possible confusion matrices and to plot, for

94 Chapter 3. Learning algorithms for supervised machine learning

5 4 3 2 1 0 1 2 3
x0

5

4

3

2

1

0

1

2

3

x 1

Model 1
Model 2

(A) Two linear models on a binary clas-
sification problem with two Gaussians.
The first model is more appropriate than

the second.

0.0 0.2 0.4 0.6 0.8 1.0
1-specificity (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 (T

PR
)

Model 1 (auc = 0.98)
Model 2 (auc = 0.92)

(B) Receiver Operating Characteristic
(ROC) curve for the above problem with
two linear models. The first model has a
higher area under the curve (AUC) than

the second.

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Sensitivity/TPR)

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on

Model 1 (auc = 0.97)
Model 2 (auc = 0.89)

(C) Precision-Recall (PR) curve for the
above problem with two linear models.
The first model has a higher area under

the curve (AUC) than the second.

FIGURE 3.22: ROC and Precision-recall curves for two linear
models on the problem above.

each increasing value of the false positive rate the corresponding true posi-
tive rate (sensitivity). Since the measures involved are normalized with the
number of positive and negative samples, the ROC curves are not affected
by the class (im)balance.

The precision-recall (PR) curve consists in varying the calibration to gen-
erate all the possible confusion matrices and to plot for each value increasing
value of the recall (sensitivity) the corresponding precision. The precision-
recall curve therefore only looks at the samples predicted as positive.

In both cases, the area under the curves (AUC) can be used as a sum-
mary value (0 ≤ auc ≤ 1) for the appropriateness of the model. Figure 3.22
illustrates the ROC and PR plots and their area under the curve.

3.7. Tools and tricks 95

3.7.2 Miscellaneous

Computational considerations. It is important to note that for efficiency,
memory or numerical reasons and tradeoffs, the algorithm implementations
might not follow rigorously the definition given in this chapter. Moreover,
the success of deep learning is due in part to the advent of better hardware,
namely graphical processing units (GPUs), without which the training of
deep neural networks would be unbearably long for most.

Languages and libraries. The success of machine learning as a whole is
due to the availability of many great libraries, such as Scikit-learn (Pedregosa
et al., 2011) for machine learning in general and a others dedicated to deep
learning. These especially require to handle tensor, automatic differentia-
tion, and nowadays GPUs. Automatic differentiation allows to build com-
plex neural networks easily, leaving to the computer to figure out what the
gradients are. Similarly, handling GPUs seamlessly allows the users to focus
on the machine learning rather than on hardware details. One of the first of
such libraries was Theano (Al-Rfou et al., 2016) developed at the University
of Montreal. Theano has become deprecated as alternative have emerged
with more dedicated teams: Keras and TensorFlow from Google (Abadi et
al., 2015), PyTorch from Facebook (Paszke et al., 2017) and more recently JAX
(Bradbury et al., 2018), another product from Google.

These libraries are developed for the Python programming language, one
of the most popular choices for machine learning.

Input features. Most methods discussed in this chapter rely on the input
features being real-valued. A general method to work with categorical vari-
ables is to use a one-hot encoding, introducing k dummy variables for a vari-
able which has k modalities. This might not be necessary for binary variables
whose value should be encoded as −1 and 1 for symmetry.

Although decision trees and forests are able to cope with categorical vari-
ables in principle, the implementation might not cover this case, encouraging
the one-hot encoding as well.

Algorithms which cannot deal with categorical variables usually expect
the training to be standardized, or at least centered, especially when some
kind of algebra operates on the data (and mixes features).

Data augmentation. A simple yet effective strategy consists in artificially
enlarging the learning set. Provided the mechanisms by which this augmen-
tation operates make sense (for instance by adding the horizontal flip of nat-
ural images, taking advantage of natural symmetries), they should improve
the learning due to the sheer fact of leveraging more data. Additionally, they
can help the learning in other ways. For instance, adding small rotations
improves the model by being more robust to those non-semantic changes.

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://github.com/google/jax

96 Chapter 3. Learning algorithms for supervised machine learning

3.8 Conclusion

This chapter introduced some of the supervised learning algorithms. It started
with linear methods in both regression (Section 3.1) and classification (Sec-
tion 3.2). Regularized methods have been introduced in the context of regres-
sion in Section 3.1.2. The methods presented therein, in particular, the lasso
3.1.2.2 and its variant will play a role in Chapters 6 and 9.

Section 3.3 presented the decision tree algorithm which served as a ba-
sis for the ensemble methods (Section 3.4) and boosting (Section 3.5). These
methods will be the focus of Chapters 6 and 9.

The main motivation for our choice of linear classifiers was to offer a step-
ping stone to introduce neural networks in Section 3.6. Some emphasis was
put on image processing, which will serve as context in Chapters 7 and 8.
More traditional networks will be used in Chapter 9 as well.

Finally, Section 3.7 discussed a few miscellaneous topics for better learn-
ing, as well as the important questions of risk management (possibly in class-
imbalanced problems) which will be important for Chapter 7.

97

4
Chapter

On machine learning and
philosophy

Chapter overview

In this chapter, we address a few issues of supervised learning
and discuss its relationship with more philosophical questions.

This chapter is divided in three sections. Section 4.1.1, discusses
where machine learning stands within the study of knowledge. In
particular, Section 4.1.2 discusses quickly the problem of induction
and contributions of machine learning in the matter. Section 4.2 then
quickly shows how machine learning can help better define a philo-
sophical principle known as Occam’s razor. Finally, Section 4.3 serves
as a disclaimer regarding causality and the questions we will address
in this thesis.

As Henry Poincaré famously said

mathematics is the art of giving the same name to different things

(Poincaré, 1914)

Maybe, one definition of philosophy could be “the art of spotting when
different things have the same name”.

4.1 On knowledge and induction
Machine learning is, as the name suggests, about learning—and a particu-

lar case at that: learning happens by generalizing from data, a process known
as induction. But what is learning if not the production of knowledge? And
what is knowledge then? This section investigates these issues. It should
be forewarned that what follows is by no means a detailed account on the
matter.

98 Chapter 4. On machine learning and philosophy

4.1.1 Knowledge

Defining knowledge is a harder task than might seem at first glance. The
most widely accepted definition is the following.

Definition 4.1.1 (Knowledge). Knowledge is a true and justified belief.

This definition falls however a bit short on two accounts. Firstly, the ambi-
guity surrounding the notion of justification leads to some counter-intuitive
paradoxes (see Gettier, 1963). It seems that justification is a necessary com-
ponent of knowledge but is not sufficient or well-enough defined; not all
justifications, even when obeying the laws of logic, manage to qualify truth
as knowledge.

Secondly, truth is not always assessable. For instance, nobody knows the
true laws of the universe. Yet we speak about scientific “knowledge”. Ad-
mittedly this so-called “knowledge” is well “justified”. It surely is made of
rational beliefs. But true?

Truth. Philosophers who have thought on this issue have come up with a
couple of solutions. A useful dichotomy, introduced by Immanuel Kant, is
that of analytical and synthetic propositions1. The former is true by defini-
tion. For instance, all squares are quadrilaterals is always true. On the
other hand, a synthetic statement is only true because (or when) it holds for
the world we live in. For instance, there is a cube on the desk would be
true if a cube was actually on the desk and false otherwise. It does not follow
from the definition of the cube that it must be on the table referred to.

Western philosophy has a long tradition of suspicion towards synthetic
statements. Plato’s theory of forms had little room for the true world. Radical
skepticism, such as Pyrrho’s, completely disregarded reality as untrustable.
Even Descartes, with his demon, illustrates how synthetic propositions have
been regarded with caution.

Analytical statements are true in all realities, but what if we want to know
something about the reality we live in? Epistemic (i.e. relating to knowledge)
caution is surely an option. Another one is to actually examine what is meant
by true. One meaning is the correspondence theory of truth: is true what is in
accordance with reality. For instance, the paradigm shift of switching from
Newton’s theory of gravitation to Einstein’s general relativity is justified by
the fact the latter is in better accordance with reality. For instance, the former
is not able to fully account for the orbit of Mercury.

This conception of truth is not the only one. For instance, Pythagore-
ans justified some of their beliefs by invoking aesthetic arguments. Sophists
cared little for truth-as-correspondence. Their view resembled the consensus
theory of truth: is true what is agreed upon. Actually, the concept which has
probably been the most well-accepted throughout the ages is the coherence
theory of truth, which states that a theory should not contradict itself and be
absent of paradoxes.

1Other dichotomies with or without slight technical changes exist, such as a priori/a poste-
riori knowledge, (intra-)/extra-linguistic knowledge, or the relation between ideas/matters
of facts of David Hume. We will stick to Kant’s for simplicity.

4.1. On knowledge and induction 99

No truce for truth: a digression. The ambivalence of the notion of truth
has profound implications: changing the epistemic frame (i.e. changing what
counts as truth and proper justifications) changes what is deemed as knowl-
edge. Consider the following statements:

1. you should eat fruit;

2. you should eat fruit to be healthy;

3. most people think they should eat fruit;

4. fruits contain a fragment of the Earth’s soul.

Within the correspondence theory of truth, and disregarding the imprecision
regarding “healthy” and “most”, Statement 1, by virtue of being normative,
has no value. It requires another epistemic frame, such as the consensus
theory of truth, for it to (possibly) belong to the realm of knowledge. In
contrast, Statement 2 and 3 can actually be qualified of epistemic within the
correspondence-as-truth frame. Statement 4 is also epistemic, in the sense
that it can correspond to reality. It would usually be qualified as metaphysi-
cal, since, in our acceptance of the word “soul”, no conformable or refutable
statements can be derived from it to provide justifications.

Which notions of truth should prevail? Answering this question amounts
to producing knowledge about knowledge—or motivating a position for which
truth only exists in some epistemic frames. As far as supervised learning is
concerned, it falls right in the correspondence theory of truth: the expected
risk is the embodiment of the correspondence, with data standing for reality.
Is that view ubiquitous?

Empiricism strikes back. Today’s view on truth and justifications is a more
complex patchwork, weaved through many turns of the wheel of time, that
might appear at first glance. Paradox-free theories which model well real-
ity are sought after but those which have some aesthetic properties, such
as simplicity, continuity, symmetry and so on are examined more than oth-
ers. Moreover, in the presence of competing theories (a problem known as
epistemic uncertainty, see also Section 7.2.2) one usually dominates the other
simply by being privileged by many.

Nonetheless, there is an undeniable focus on accordance with reality, a
legacy of the philosophical movement of empiricism (or logical positivism).
It somewhat justifies the use of expressions such as “scientific knowledge”.
Although what is held as knowledge at the moment might not be the actual
laws of the universe, they are in accordance—or at best can be for now—with
reality.

From this conception of truth derives the issue of establishing accordance
with reality. This goes through a series of problems such as deriving obser-
vational facts from theories, moving from direct observations subjected to
perceptual illusion to measurements only interpretable through the lenses
of a theory, working against biases, and so on. One of the main problems,
however, is how to form theories from observations—a problem known as
induction.

100 Chapter 4. On machine learning and philosophy

4.1.2 Induction

David Hume, the Scottish philosopher of the 19th century, is usually invoked
when discussing the problem of induction, although criticisms date at least
back to the Greek philosopher Sextus Empiricus. The heart of the problem
with induction is that it does not seem valid to infer a general law from a
few (consequently not all) instances. Bertrand Russell gives a compelling
example of the problem:

The man who has fed the chicken every day throughout its life at last
wrings its neck instead, showing that more refined views as to the
uniformity of nature would have been useful to the chicken.

(Russell, 2001, Chapter 4)

By inducing from observations that the man will take care of him, the
chicken comes to a wrong conclusion.

Where stands supervised learning—an inductive process—in the face of
all this? The following sections will discuss this issue under the following
assumption. Let PX ,Y be a noise-free binary classification problem. That
is, the problem is fully characterized by the pair (PX , f) where f (x) is a bi-
nary function2. Given this setting, the expected risk of a hypothesis h will be
rewritten as

RX , f (h) = EX{`0−1(h(x), f (x))} (4.1)

4.1.2.1 Distribution shift
One might understand the philosopher’s doubts as questioning how present

regularities will be affected beyond the present horizon. In Russell’s exam-
ple, the chicken is not wrong in trusting the man, up to the point where a
sharp—hence unpredictable—discontinuity occurs.

One way of formalizing all this is through distribution shift3.

Proposition 4.1.1 (Error bound under distribution shift). Let (PX1 , f1) and
(PX2 , f2) be the problem on which learning happened and the shifted problem, re-
spectively. Furthermore, let h be the hypothesis learned on the original problem.
How h fares in the new setting can be bounded by

RX2, f2(h) ≤ RX1, f1(h) +RX1, f1(f2) +
∣∣RX2, f2(h)−RX1, f2(h)

∣∣ (4.2)

= RX1, f1(h) +RX1, f1(f2) + d f2,h
(
PX1 , PX2

)
(4.3)

2The general setting can be recovered by posing PY|x(y|x) = I(y = f (x)).
3It should be noted that distributions can vary in other ways than the one presented here.

See Section 7.2.1.2 for other examples.

4.1. On knowledge and induction 101

Proof. The proof is a variant of the proof given by Ben-David et al. (2010)
where f2 takes the place of h∗ (notation theirs).

RX2, f2(h) ≤ RX1, f2(h) +
∣∣RX2, f2(h)−RX1, f2(h)

∣∣ (4.4)

≤ RX1, f1(h) +RX1, f1(f2) +
∣∣RX2, f2(h)−RX1, f2(h)

∣∣ (4.5)

The second step is due to the triangle inequality and the symmetry of the
loss. As such, the conclusion is valid for any metric-based loss.

The first term in Eq. 4.3 is the risk of h on the original problem. The second
reflects how the two tasks relate, or, more precisely, how the shifted labeling
function would fare on the original problem (this term is null if f1 = f2, i.e.
no concept shift). The third term reflects the distance between the densities
(i.e. null if there is no covariate shift).

In essence, the result is saying that induction might be robust to small
shifts (either in concept or density). Conversely, in the presence of a large
shift, the traditional guarantees of statistical learning collapse.

The discontinuity needs not have any time-bound quality. The key ele-
ment is that a model is used in conditions different than when learned. Ex-
amples include applying a physical law at different scales, facing a biased
data-collection process (see Section 4.2 for an example), trying to influence
the output by intervening on an input variable (see Section 4.3 for a concrete
example) and doing extrapolation in general.

Disqualifying distribution shift amounts to requiring post-training data
to be independently and identically distributed (iid). Relying on such an
assumption range from common and implicit to doubtful or hard to notice.
For instance, physicists usually assume that the laws of nature do not change
every other day. Therefore, a model learned at some point in time would
still be adequate at another. On the other hand, when making extrapolation,
scientists may proceed with caution—assuming of course that they realize it
is an extrapolation.

Arguably, distribution shift is only one interpretation of the philosophers’
doubts. Another way to look at Russell’s chicken is to consider the distribu-
tion has not changed but there was actually no ground to trust the regularity
in the farmer’s patterns. This is formalized by the upcoming section.

4.1.2.2 No free lunch theorems

The no free lunch (NFL) theorems refer to the work of Wolpert (1995; 1996;
2002). It is established in the case of finite (possibly uncountable) X and
regards off-training set (OTS) error: “[the] generalization error for test sets
that contain no overlap with the training set” (Wolpert, 1995). We will denote
by

Ř(n)
X , f (L)

the off-training set expected risk of a learning algorithm L.
The practical implication of NFL is the following statement.

102 Chapter 4. On machine learning and philosophy

Definition 4.1.2 (No Free Lunch). For any two machine learning algorithms L1
and L2, the no free lunch theorems imply that

uniformly over all f , E f {Ř
(n)
X , f (L1)− Ř

(n)
X , f (L2)} = 0 (4.6)

In words, NFL implies that, on average over all problems, no learning algorithm
is better than the other.

What NFL implies, is that for any problem on which a learning algorithm
produces a (the?) good hypothesis, there exists a problem for which it would
produce a bad (i.e. (at least) worse than another algorithm’s) hypothesis.
Consequently, there is no win-them-all learning algorithm.

At first glance, it might appear that NLF only commands caution regard-
ing the generalizability of the results of an algorithm on a few problem in-
stances. In this sense, it is more a result about meta-induction. There is no
reason for the shadow of meta-induction to loom over induction. After all,
once the hypothesis is learned, it is possible to estimate its risk via an unseen
set and thus decide to keep or not.

The problem with this line of reasoning is that model selection is a wrap-
ping learning algorithm, thus subjected to NFL as well. Even without making
any decision based on any post-training risk estimate, the NFL still holds. As
Wolpert (2002) argues, a good way to understand NFL is to see it backward.
Imagine that data (certainly the training set but possibly also the test set)
are first generated according to X , then the hypothesis h is chosen to offer
pseudo-ground-truth. A function f consistent with h on the data (including
the test set) can be chosen afterward. Therefore there is no reason to believe
that h and f will agree on anything beyond the data.

Another incorrect objection concerns the finitude of X. Firstly, it does not
constitute a real restriction, since any data must be quantized and encoded
to be processed. Secondly, we can argue that NFL only applies to the off-
training risk. However, we usually expect the OTS to be much larger than
the training set. Assuming otherwise would mean we are mostly dealing
with memorization (a much easier task) rather than generalization. Has NFL
dealt a deadly blow to induction?

Puzzling is the scenario where a model would be learned on a training set,
perform well on an independent test set, and then fail elsewhere. Making it
to the test set means one of two things: either the learning algorithm has been
able to pick up some regularities, or it is just chance. The probability of the
latter happening can be quantified by statistical learning theory. With a large
test set, it would require a very unlikely draw to be so unlucky for the test set
to be fitted as well by sheer chance. Additionally, this is not really the point
NFL is trying to make, which leaves us with the idea that the regularities
which have been picked up are not representative (enough) of the (whole)
phenomenon.

This point is made by NFL in the uniform averaging. On that matter,
Wolpert (2002) argues that, since the distribution over f is unknown, making
any other assumption amounts to blindly favoring some learning algorithms
(hence some hypothesis spaces). Yet making some assumptions might be

4.1. On knowledge and induction 103

more natural than might seem: e.g. using convolutional neural networks on
natural images, using regularizer when redundancy among variables is sus-
pected, using simpler hypothesis spaces on simpler problems, and so on. By
tailoring the hypothesis space, induction bias is introduced. At a high level,
this amounts to choosing the kind of regularities which must be learned, nar-
rowing down the search for a good hypothesis.

4.1.2.3 The importance of assumptions

The results of the previous two sections contrast—or seem to—with the the-
ory developed in Chapter 2. Yet the results obtained therein (bias-variance
decomposition, statistical learning bounds) were already saying induction
could fail if the learning algorithm was not appropriate. Too expressive a hy-
pothesis space and no guarantee could be given (overfitting). Too restrictive
and there was a high chance that no decent model could be found (underfit-
ting). Even in the appropriate regime, a “likely good” bound is synonymous
with “unlikely bad”; it is still possible to end up with a model which only
performs wells on the training set.

Nonetheless, it seemed that resorting to an estimate of the risk could cast
all doubts aside. Both the distribution shift and NFL brush that hope aside.
In the first instance, the estimate may become hopelessly (and unquantifiably
so) biased. The second says a function which would fit well every data and
disagree with the chosen hypothesis elsewhere exists.

One conclusion is that induction is built on sand. Another, more interest-
ing, is that induction requires additional (not always fully voiced) assump-
tions. In a sense, it is the meta regularities (e.g. the stationarity of data) which
allow for leveraging regularities from the data. Provided these assumptions
hold, induction works (in a probabilistic sense).

As such, induction is no different from any other synthetic knowledge.
For instance, Euclidean geometry is, in itself, analytical knowledge. Apply-
ing it to the world goes through the assumptions that reality conforms to its
axioms, though.

Without assumptions, it would seem that the form of knowledge to which
we can inspire is quite restrictive. It might feel that humanity has not pro-
gressed much on the problem of induction. This might not be true. Pinpoint-
ing the crucial assumptions has paved the way to better direct effort towards
tackling the issue, and machine learning might yet provide a tool to sidestep
it in the form of recognizing when induction would fail—but this will have
to wait for Chapter 7.

4.1.3 The curse of dimensionality

Not all knowledge is equally easy to learn. One important characteristic in
this regard is dimensionality p. We have already mentioned that the cardinal-
ity of a complete finite hypothesis space grows exponentially with the dimen-
sion (Section 2.3) and that the VC dimension of the set of all linear indicator
functions is p + 1 (Section 2.6.2). Given how these quantities are involved in
the bounds over the generalization gaps (Section 2.6), it is clear that picking

104 Chapter 4. On machine learning and philosophy

up a hypothesis from a higher-dimensional space is a harder challenge. The
fact that learning in high-dimensional regimes is more difficult is known as
the curse of dimensionality. It is supported by other considerations.

The first one is the evident computational burden which comes with more
dimensions: a larger matrix to invert for linear regressions, more compo-
nents in the gradient vectors (e.g. logistic regression), more dimensions along
which to compute uncertainty reduction in decision trees, and so on.

The second consideration has to do with sampling. Since the volume
grows exponentially with the dimensionality, getting representative samples
soon becomes infeasible. For instance, sampling the unit (hyper-)cube over a
grid spaced by 0.1 requires 10p points. Large datasets contain less than 1010

sample points whereas they have a dimensionality p � 10. On the bright
side, data is usually believed to lay in a much lower-dimensional manifold—
yet another assumption.

A final consideration has to do with how the points are distributed in
higher dimensions. Imagine an hypercube with side-length l. Suppose we
leave out the outer-most strip of size ∆l/2. The ratio of volume the strip
represents compared to the original cube is

∆l/2

l V∆l
Vl

= 1−
(

1− ∆l
l

)p
(4.7)

As the dimensionality increases, the strip will occupy more and more of
the total volume. For instance, a 10% strip (∆l/l = 0.1) occupies 27% of the
volume in three dimension. In ten dimensions, a 10% strip covers 65% of the
total volume. Consequently, an increasing fraction of data (possibly) popu-
lates the outskirts of the space. Making predictions there is harder because it
means extrapolating, rather than interpolating.

4.1.4 Bayesianism

We would be remiss not to mention Bayesianism in this chapter. As an epis-
temic movement, Bayesianism proposes to use the theory of probability to
model beliefs. This comes with many advantages.

Firstly the quantification of belief is useful in addressing questions such
as how much a belief should be updated in the presence of evidence (done
via Bayes rule). Secondly, this unifies under the same framework knowledge
and believes, the former being a special of the latter (provided the belief is
true).

It also allows modeling the fact that different agents may have different
views on a matter even while having witnessed the same evidence (via the
prior). This feature, which echoes the philosophical debates about internal-
ism versus externalism knowledge, is as much an advantage as a drawback,
and Bayesianism has long been shunned on the ground of its subjectivity—as
if knowledge was not already riddled with it (e.g. choice of epistemic frame
and aesthetic criteria).

4.2. Occam’s razor 105

Finally, requiring to explicit the event space helps in avoiding many pit-
falls of informal reasoning, especially by keeping perspective of all the alter-
natives. On the downside, this non-commitment comes with a heavy com-
putation burden.

Bayesian machine learning. Bayesianism can be implemented in machine
learning by assigning prior to each hypothesis. Learning then consists in up-
dating the believes based on data (the evidence). This is done through Bayes
theorem (illustrated here on a parametric space and assuming iid data):

P (θ|LS) ∝ P (LS|θ)P(θ) (4.8)

∝ P(θ)
n

∏
i=1

P ((xi, yi)|θ) (4.9)

Inference is done by marginalization:

P(Y = y|x, LS) =
∫

θ
P(Y = y|x, θ)P(θ|LS)dθ (4.10)

Following the Bayesian recipe to the letter with a large enough parameter
space is cumbersome, which is why it is usually approximated (e.g. Wilson
and Izmailov, 2020).

4.2 Occam’s razor

Occam’s razor, also known as the parsimony principle (or the law of par-
simony), states that “Entities should not be multiplied beyond necessity.”
(Tornay, 1938). As an epistemic statement, Occam’s razor is quite normative.
Is it supported by anything other than aesthetics?

Within the field of machine learning, Occam’s razor has been the main
topic of several articles (e.g. Blumer et al., 1987; Domingos, 1999; Rasmussen
and Ghahramani, 2001). The emphasis has been to discuss what the mul-
tiplication of “entities” meant so that the principled would turn outright.
This should be reminiscent of Chapter 2 and more precisely of Section 2.6.
Therein, we saw that a particularly fruitful notion of expressiveness was the
VC dimension. It was also apparent that the expressiveness had little to say
on the matter of the right hypothesis: the bounds we discussed establish the
risk of overfitting; with high expressiveness comes high risks.

Discriminating between two hypotheses a posteriori based on the princi-
ple makes little sense. This would entail discarding the hypothesis coming
from the more expressive space, or the most complex one for another (less
well-motivated?) interpretation of “multiplied entities” (such as the number
of parameters, or the minimum description length). Ironically, the no free
lunch theorems imply the exact opposite: for some problems the good choice
would be to favor the more “complex” hypothesis. Imagine, for instance, you
record the temperature outside everyday at noon. We expect a single periodic
function with an annual period would fit well the data. It would not model

106 Chapter 4. On machine learning and philosophy

the true phenomenon well, however, as there is also a night-and-day cycle
and another periodic function is necessary for this higher frequency. From
the data the two models are indistinguishable. Leaving to Occam’s razor to
choose leads to the incorrect solution.

Cutting oneself, the danger of Occam’s razor: a digression. Machine learn-
ing might have given an edge to Occam’s razor that goes beyond justifying
the principle within the field. The VC dimension interpretation of expres-
siveness sheds some light on why explanation length might not be a relevant
factor in informal use of Occam’s razor. To consider only one example, think
of conspiracy theories. Almost anything can fit within a conspiracy theory,
even though the explanation (“it is because of the conspiracy”) is quite short4.
On the other hand, almost anything can be accounted for with this theory. As
a consequence, the informal equivalence of the VC dimension would be very
large, and the risk of over-interpreting high. Once more, that is not to say
that a conspiracy could never happen because there will always be a simpler
explanation (in the sense of the informal VC dimension). It is an interesting
consideration when weighing the hypotheses, however.

Of course, the parallel is fragile since we talk here about an interpretative
subject (by opposition to predictive), in which case establishing the accor-
dance with reality is not straightforward. But this should be taken as further
motivation for caution.

4.3 Causality

In several instances in this thesis we (will) use expressions such as “un-
derstanding the input-output relationship”, “gleaning knowledge from the
data”, “capturing the underlying phenomenon”. These, and the whole of
Chapter 9, should be taken in a correlative/predictive sense, rather than a
causal one. The kind of information which is gathered relates to how a pre-
diction about the output can be made when facing a new datapoint drawn
from the same data source. This does not imply that the techniques devel-
oped in this thesis allow us to say much about how meddling with data
would influence the output in the real world.

To take a concrete example, suppose you collect observations about chil-
dren, in particular how time is spent watching TV and the result to some
standard tests. Let us further imagine that there is a negative correlation be-
tween the two: more TV and less good results go together. Is increasing the

4Arguably, “conspiracy” acts as a shortcut and what is actually meant should be substi-
tuted in the explanation when measuring its length. It is doubtful this would invalidate the
conclusion, however. On the one hand, it should be established this is actually how Occam’s
razor would be interpreted. One argument against this is the difficulty of defining precisely
such highly expressive (in the VC sense) theories. On the other hand, substitution would
add a constant to the length, whereas a conspiracy can account for so many decisions that
a competing theory would soon form a conjunction of simpler hypotheses, each of which
would also require context. Ultimately, the conspiracy theory would still require a shorter
explanation.

4.4. Conclusion 107

scores as simple as decreasing television time? Possibly—if there is a causal
connection between the two. For the sake of the argument, let us imagine that
there is a confounding variable, for instance the socio-economic background,
which influences both the time spent watching TV and the score. Maybe, less
fortunate people have fewer activities to propose to their children, who live
in conditions where preparing for tests is more challenging. Cutting down
television time does not improve the study conditions, resulting in little im-
provement overall.

Gleaning from data the knowledge that there is a correlation between the
two variables, or simply being able to extrapolate by asking a well-calibrated
model what it would predict for a given input does not imply that acting
accordingly to those insights would deliver the expected result in the real
world. Nonetheless, getting some sense of how entities co-vary is a first step
in the direction of causality.

The study of causality is a whole field, in and of itself, and we will not
address such questions in this thesis. The interested reader can refer to Pearl
et al. (2000) for an in-depth look at the matter.

4.4 Conclusion

In this chapter, we discussed some of the issues which lie at the intersec-
tion of philosophy and machine learning. Section 4.1 contextualized machine
learning in the broader scope of epistemology, the study of knowledge. Af-
ter a very quick and timid dip in the more-than-two-millennia discussion on
knowledge (Section 4.1.1), we ended up on the problem of induction. Section
4.1.2 delved into how machine learning looks at the problem. More specifi-
cally, we discussed the problem of distribution shift (4.1.2.1) and the so-called
no free lunch theorems (4.1.2.2). We concluded that induction did work pro-
vided additional assumptions. Since we were on the topic of knowledge, we
briefly commented on learning difficulties in high dimensions (Section 4.1.3)
and introduced Bayesianism and its machine learning variant (Section 4.1.4).

The remainder of the chapter was dedicated to two other questions of
philosophical nature. Section 4.2 discussed Occam’s razor, a principle which
advocates the use of the simplest explanation. The field of machine learning
has contributed to this question by better defining the notions involved so
that it would go beyond being a mere aesthetic statement. Section 4.3 clari-
fied some vocabulary which hinted at causality when, in truth, our endeavor
is much more modest.

This chapter provided an opportunity to finish our tour of machine learn-
ing. Starting from the next chapter, the core of the thesis begins with a dis-
cussion about constraints.

109

Supervised learning under
constraints

Part II

111

5
Chapter

Machine learning under
constraints

Chapter overview

This chapter firstly discusses constraints in supervised learn-
ing: what is meant by constraints (Section 5.1.1), why they matter (Sec-
tion 5.1.2) and how they can be categorized (Section 5.1.3). Then the
constraints on which our contributions are based are broached at a
high level in Section 5.2 (subsequent chapters will delve into each in
more detail).
The second half of this chapter more clearly highlights which contri-
butions of this thesis tackle which constraints (Section 5.3).

5.1 On constraints

5.1.1 Definition

In an ideal situation, enough foresight would be available to tailor a priori
the hypothesis space, with good prior feature engineering, to the tackled
problem, for which—if not unlimited, at least—plentiful of data is readily
available to select the best hypothesis without concern for any memory or
computational costs, at both training and inference time.

Reality is far from ideal, however. Models need to be fast, data is costly
to collect and label, problems are unknown, accuracy is not the sole goal.
All these practical considerations, forcing a departure from the ideal situa-
tion, constitute constraints which must be met on top of traditional machine
learning.

To be more formal, remember how we framed the goal of supervised
learning:

Given data drawn from PX ,Y , a loss function `, and a hypothesis
space H, the goal of supervised learning is to minimize the expected
risk [...] under a reasonable time.

Definition 2.2.16

112 Chapter 5. Machine learning under constraints

Definition 5.1.1 (Constraint). According to how the goal of supervised learning
was stated (Definition 2.2.16), a constraint is anything (i) not intrinsic to the prob-
lem which (ii) conditions the choice of some components or limit the extent to which
the goal is fulfilled.

5.1.2 Motivation
Concerns for constraints are not new. For instance, work on semi-supervised

learning, whose goal is to overcome the shortage of labeled data, is half a cen-
tury old (Scudder, 1965). The idea of compressing/pruning neural networks
dates at least back to the 90’s (e.g. LeCun, Denker, and Solla, 1989; Hassibi,
Stork, and Wolff, 1993).

Lately, working under constraints has gained much interest, to the point
where applied machine learning has almost become a field on its own, par-
allel to more traditional works. This recent increase of interest for practical
considerations has two sources.

Firstly, recent successes of the field have led to much enthusiasm, which,
in turn, has led to supervised learning being used in more and more contexts—
not always close to the ideal situation. For instance, advances in natural lan-
guage processing and computer vision, among others, have teased at won-
drous new technologies which, by design, must operate in constrained envi-
ronments.

The second source for practical considerations is the discovery of vulner-
abilities or properties which are at odds with modern morals. With models
being increasingly deployed and relied upon, they must prove how reliable
they actually are. A company cannot stay idle while its model is indulging
into non-ethical biases and might just be lawsuit away from closing if data-
leakage is readily feasible through an easily exploitable model. Undoubtedly,
this second source is also channeled by the massive enthusiasm for machine
learning.

Irrespective of the source, modern practices fate machine learning to face
constraints—or fade.

5.1.3 Typologies of constraints

This section discusses several categorizations of constraints. Section 5.1.3.1
structures constraints based on which component (i.e. which part of the su-
pervised learning definition) is constrained. Section 5.1.3.2 is about the ori-
gin of the constraint, while Section 5.1.3.3 discusses when the constraints ap-
peared in the process. In other words, the following sections discuss the
what, why and when of constraints, respectively.

5.1. On constraints 113

5.1.3.1 Component-based categorization

Given our definition of constraints, a straightforward categorization would
be based on the components involved (e.g. hypothesis space, data, time, etc.).
Since some share a common nature, they can be grouped together.

Resource constraints. The first type of constraints relate to resources: data
and time. These constraints usually act as a limiting factor in reaching the
optimum: data scarcity can lead to overfitting and training time might force
to stop early the search for the best hypothesis. In regard to the latter, Bottou
and Bousquet (2007) qualify problems whose main limit is training time as
large-scale learning problems.

Another important resource is memory, which may, indirectly (see Section
5.1.3.2), constrain several other components.

Formulation constraints. Other constraints act on how the problem is for-
mulated in terms of loss function, hypothesis space, learning algorithm and
sometimes how the learning problem itself is formulated.

The component most often affected is the hypothesis space (examples will
follow). Large-scale learning in the context of deep learning, by resorting
to stochastic gradient descent rather than more advanced algorithms, offers
an example where the training algorithm is chosen to browse through more
datapoints in a limited time. Overcoming data scarcity is sometimes tack-
led through changing the learning problem as a semi-supervised or transfer
learning problem (see Section 2.9.1).

Objective constraints. Sometimes, the overall formulation is left unchanged
but the actual goal is changed so that the objective is no longer to aim for the
best generalizer, but rather find a compromise with another goal. Using a
lasso penalty to bias the search towards a more interpretable model falls un-
der the objective constraint category.

5.1.3.2 Source-based categorization

Whereas looking at which component is impacted is useful to organize solu-
tions, looking at the source is useful to discuss issues.

Cascading effect: source versus resulting constraints. Consider the two
following scenarios: (i) real-time inference is needed, (ii) training data of
good quality is expensive to collect. Possibly, both of these can be dealt with
by choosing an appropriate hypothesis space. In the former case, restricting
to fast models solve the problem by design. In the latter case, a less expres-
sive hypothesis space reduces the risk of overfitting.

In the real-time inference case, real-time only constitutes a constraint to
the extent that it conditions the choice of hypothesis space. In contrast, in
the data-scarcity case, there is a cascade from the resource constraint (i.e. the
source) to a formulation constraint (the resulting constraint).

114 Chapter 5. Machine learning under constraints

Implicit cascading effects. Cascading effects are sometimes more subtle
than in the previous examples. For instance, the decision tree induction algo-
rithm limits the tree depth based on the number of training instances. Thus
the hypothesis space is actually implicitly constrained by the resources.

Another case relates to the example involving the lasso given above. By
penalizing the objective (formulation constraint) a (soft) constraint is im-
posed once more on the hypothesis space.

5.1.3.3 Chronology-based categorization

A final consideration to get a full(er) picture of constraints relates to when
they are raised and dealt with.

Design versus post-training constraints. When constraints are anticipated
prior to learning, they can be tackled as part of the overall design of the
solution—design constraints. Sometimes, a constraint is dealt with after train-
ing; a post-training constraint (PTC). For instance, one might want to equip a
trained model with some form of robustness, or try to explain the predictions
of a black-box model.

PTCs may be made apparent once the model is already deployed, or be
the results of a choice to delay enforcement. A general solution is to restart
learning with the constraint in mind, tipping over a new design constraint.
This might not always be possible, however.

When it is not possible to simply restart learning, it is particularly inter-
esting to look at how the constraint is dealt with. A first alternative is to alter
the model. An example of this is simplifying a large, trained model (e.g. post-
pruning of decision trees/forests, low-rank approximation, quantization; see
Chapters 6 and 8, respectively). Simplifying blindly is a risky undertaking.
Consequently, model alteration techniques usually benefit from some form
of (re-)learning, leaving them somewhat on the fence between training and
post-training approaches.

On the other hand, the model might be left untouched. In such a case,
it might become embedded in some other component (e.g. a filtering mech-
anism to discard bad inputs; see Chapter 7) or the constraint might be met
with some additional computations (e.g. extracting interpretations; see Chap-
ter 9).

5.2 Examples of constraints

The upcoming sections will look more closely at a few constraints related to
this thesis, namely (organized by source)

• fast training;

• small models;

• robustness;

5.2. Examples of constraints 115

• data scarcity;

• interpretability.

These constraints will be discussed in general terms in the present chap-
ter. Chapter 6 to Chapter 9 will explore them in more depth in their respective
context. Problem-specific references will be given in those upcoming chap-
ters.

5.2.1 Fast training

Even long before artificial intelligence, computer science has always been
critical towards what could be achieved and what could be achieved in a
timely manner. In the context of supervised learning, this has led to the de-
sign of fast algorithms. That is, polynomial (ideally less than quadratic) in
time with respect to the number of samples and the dimensionality of the
problem.

With time, more complex problems have been tackled, which requires
more instances to learn from. To give an order of magnitude, ImageNet
(Deng et al., 2009), an image classification dataset, contains more than 10
millions images spread over 1000 classes. Moreover, today’s datasets are
sometimes split across several sites for a number of reasons (size constraints,
privacy, robustness, and so on). As such, learning must now account for
communication cost as well.

On the other hand, more complex methods—literally requiring more com-
putation steps for a given problem—have also been introduced. We currently
see deep networks with tens or even hundreds of layers (He et al., 2016;
Zagoruyko and Komodakis, 2016; Huang et al., 2017, e.g.). Since the work of
Krizhevsky, Sutskever, and Hinton (2012), it has been recognized that even
shallower models can no longer be trained on traditional hardware. Frame-
works such as Theano (Al-Rfou et al., 2016), TensorFlow (Abadi et al., 2015),
PyTorch (Paszke et al., 2017) and JAX (Bradbury et al., 2018) have allowed to
keep the technical overhead low and thus the development time as well. The
high cost of the equipment (either to buy or rent), however, remains a prob-
lem for many, further freezing the market in an oligopoly, with academic
research lagging behind industrial research.

More complex methods usually come with more hyper-parameters to tune,
which results in heavier cross-validation loops for already long training. Over-
all, we have moved to more data, higher-dimensional problems, more cum-
bersome models and additional communication cost. In this context, offering
decent and fast solutions might be of more practical value than beating state-
of-the-art records by a small margin.

Contributions. This emphasis for fast solutions is scattered throughout our
contributions and usually takes up the form of a design constraint. In Chap-
ter 6, we propose a pre-pruning method for decision forests to avoid building
the whole forest as a pre-processing step. In Chapter 7, although the context
does not allow for much learning to happen, we propose out-of-distribution

https://www.tensorflow.org/
https://pytorch.org/
https://github.com/google/jax

116 Chapter 5. Machine learning under constraints

indicators with little extra computational cost. Finally, in Chapter 8, we pro-
pose to circumvent computation-intensive methods by leveraging additional
data to transfer the knowledge from one network to another.

5.2.2 Small models

As the previous section highlights, we have turned to more complex prob-
lems and methods. Often this implies models with a larger memory foot-
print, either by design (deep networks) or due to the availability of more
data (for non-parametric models such as decision trees and forests).

On the other hand, new practices have led to machine learning being
squeezed into embedded devices to offer ubiquitous intelligent agents. Ma-
chine learning must run on mobile phones and low-memory devices. When
communication with large computing infrastructures can be guaranteed, pre-
dictions can be discretely outsourced (with all the privacy issues that might
come along), but this is not always possible: communication can be disabled
(e.g. no internet connection, flight mode) or not responsive enough.

Sometimes, the bottleneck is not exactly the memory footprint but hav-
ing a small model solves the problem just as well. Smaller model is often
synonymous with less computation steps, a requirement for fast predictions
(such as required for real-time inference) and the lesser energy consumption
required by battery-powered devices. Less energy might in turn expand the
durability of the hardware operating the model.

Interestingly, rooting for small models is also an implicit form of regu-
larization which can help prevent overfitting. In contrast, if the model is
selected from a hypothesis subclass not expressive enough, the model might
also end up being too simple due to representational bias. Therefore, regu-
larization and the quest for small models may not pursue the same goal.

Contribution. Looking for small models or compressing bigger ones will
be the topic of Chapter 6 for decision forests and Chapter 8 for deep net-
works. Each chapter will discuss the specificities of model compression, in
particular why it is feasible in the first place, how it is tackled and how well
it performs.

5.2.3 Robustness

Robustness is the overarching idea that a model should be able to withstand
some unsuitable usage and still be able to function correctly. Unsuitable
usage can come in many flavors: improper use, faulty equipment feeding
abnormal inputs, user mistakes, intentional attack, and so on. Robustness
is a vast topic, ranging from preventing small perturbations of the input to
fool the model (aka. adversarial attacks (Goodfellow, Shlens, and Szegedy,
2015)), to preventing data leakage and privacy breaches (e.g. Fredrikson, Jha,
and Ristenpart, 2015), to avoiding discrimination bias from creeping up in
policy-enabling models.

5.2. Examples of constraints 117

Ideally, robustness should be a design concern, apparent from the start.
In practice, robustness can come as an afterthought, especially with model
shipped “as is”. Admittedly, it might not be easy to know against what a
model should guard before the model is deployed. This is even more so
when the people responsible for building the model are not those using it.
Even if robustness was a design priority, new vulnerabilities are bound to be
discovered, forcing a patch approach of robustness.

Contribution. Chapter 7 will look at the problem of out-of-distribution de-
tection: finding when a given input does not belong to the same distribution
as the one used during training. We will look at how to implement it on an
already deployed model, even when training data is no longer available.

5.2.4 Data scarcity

Data is a prime component of induction: without it selecting a hypothesis is
like flipping millions of coins at once and hoping for them all to turn head.
Sadly, collecting data takes time and money. In certain areas, data is plenti-
ful, but labels scarce. Sometimes, data are incomplete with partially missing
records. Due to the nature of the phenomenon or how it is collected, the train-
ing distribution might be imbalanced or different from what will be used at
inference time.

Even when data is available for training, storing them for long term use
is costly. It might even not be legally feasible for privacy constraints with
medical or personal data. Additionally, when learning and operating the
model are decoupled, teams might be reluctant to make data available to
potential competitors. And—of course—data can mistakenly be lost.

Overall, having trained with quality data offers little guarantee that it will
still be available later, say, to enforce robustness or derive a smaller model.

Contribution. Enforcing a form of robustness without data will be at the
heart of Chapter 7, where our goal will be to do out-of-distribution detection
for an already-deployed model (post-training constraint). Chapter 8 will look
at how it is possible to transfer the knowledge of a big deep learning model
to a smaller one when using the original training data is no longer an option.

5.2.5 Interpretability

Interpretability refers to gleaning some understanding of the underlying re-
lationship between inputs and output of a given phenomenon. Interpretabil-
ity can be instantiated in many ways but somewhat interacts with the tra-
ditional goal of supervised learning. On the one hand, a model needs to be
accurate to provide trustworthy insight. On the other, too complex a model
does little to offer intelligible knowledge from a human perspective. Al-
though this might be reminiscent of the bias-variance tradeoff, the equilib-
rium for accuracy and interpretability might not (and often will not) be the
same, resulting in a conflict between the two objectives.

118 Chapter 5. Machine learning under constraints

In some area, interpretability is at most an appreciated bonus. In other, it
is the prime goal and the learned hypothesis is of little use beyond that. Most
situations fall in some middle ground and learning more on the studied phe-
nomenon usually brings many advantages such as targeting a more suitable
hypothesis space or discovering uninformative (or marginally informative)
variables which can be discarded with little negative impact, to mention a
few.

Contribution. Chapter 9 is dedicated to the topic of interpretability. Section
9.2 will investigate how we can re-use the core algorithm of Chapter 6 to
design the search for intrinsically interpretable models. Section 9.3 will turn
to the problem of measuring which variables are most important.

5.3 Overview of the following chapters

The previous sections have delved into some constraints and, for each, the
relationship with our contributions have been mentioned. In this section and
for the sake of clarity, we do the opposite: for each contribution we explain
under which constraints they operate.

Chapter 6 is dedicated to building small decision forests with a technique
known as Globally Induced Forests (GIFs). GIFs allow to produce a
small model by enforcing a hard constraint on the number of nodes in
the forest (a design constraint). Framing the algorithm as a pre-pruning
method ensures it also economical during training.

Chapter 7 focuses on robustness and in particular of out-of-distribution (OOD)
detection. This is examined as a post-training constraint where data is
also scarce, a context we introduced as data-free OOD detection.

Chapter 8 comes back to the problem of small models, in the context of deep
networks this time. The problem is tackled as a post-training constraint
where data scarcity is overcome thanks to the presence of a collection
of relevant unlabeled data. As with GIFs, size is controlled through a
hard constraint as the final model architecture is a prior choice of the
method.

Chapter 9 discusses the topic of interpretability. The first half employs GIFs
to build rule sets, an interpretable model. The second half poses in-
terpretability as a post-training constraint where the goal is to analyze
which variables are most crucial to predict the output.

119

6 Chapter

Globally Induced Forests

Chapter overview

This chapter tackles the (pre-)pruning of decision forests: how
to produce lightweight-yet-accurate models under a node budget. To
accomplish this delicate balance, we use a mix of global (to reduce
redundancy) and local (to regularize) optimizations.

This chapter is based on our publication “Globally Induced
Forests“ (Begon, Joly, and Geurts, 2017) presented at the 34th Inter-
national Conference of Machine Learning (ICML).

GIF is implemented as a Python package available at https://
github.com/jm-begon/globally-induced-forest. It is implemented
on top of the Scikit-Learn library (Pedregosa et al., 2011).

The chapter is divided into five sections, the first of which (Section
6.1) exposes our ambitions: the goal pursued, our contribution and
the motivation behind our work. Section 6.2 discusses compression of
decision forests in general: why it is feasible (Section 6.2.1), how it can
be formulated (Section 6.2.2), how it has been tackled so far (Section
6.2.3) and how our method differ from other works (Section 6.2.4).
The third section describes the GIF algorithm (Section 6.3.1), and how
it is instantiated for both regression and classification (Sections 6.3.2
and 6.3.3). Finally, Section 6.3.4 justifies why GIF can be seen as a pre-
pruning algorithm.
The fourth section is concerned with the empirical analysis: how GIFs
fare (Section 6.4.1), how their hyper-parameters interact (Section 6.4.2)
and how GIFs compare to other methods (Sections 6.4.3 to 6.4.5).
Section 6.5 concludes and proposes avenues for future improvements.

Compared to the original article, the background has been ex-
panded with the discussions on feasibility and problem formulation.
Related works have also been updated. Section 6.3.3 goes into more
details on the closed-form solution for classification and its interpre-
tation. The comparison with post-pruning method (Section 6.4.5) is
new. Finally, GIFs are also the topic of the first half of Chapter 9, all
new material.

https://github.com/jm-begon/globally-induced-forest
https://github.com/jm-begon/globally-induced-forest
https://scikit-learn.org/stable/

120 Chapter 6. Globally Induced Forests

6.1 Ambitions

6.1.1 Goal and contribution

Our goal is to propose a pre-pruning algorithm for decision forests, which we
named Globally Induced Forest (GIF). By pre-pruning, we mean that it is not
required to build the whole forest and then cut off branches or trees. The
motivation to opt for a pre-pruning algorithm will be discussed in Section
6.2.4.

Contribution. In light of these, our contributions can be summarized as
follows:

• we propose the GIF algorithm for regression and classification, a fast
method to produce lightweight yet accurate models thanks to a combi-
nation of local and global optimizations;

• we conduct an empirical study to (i) validate the method, and (ii) give
insights regarding the hyper-parameters introduced by the algorithm.

6.1.2 Motivation

Decision forests, such as Random Forest (Breiman, 2001) and Extremely Ran-
domized Trees (Geurts, Ernst, and Wehenkel, 2006), are popular methods,
offering overall good accuracy, relative ease-of-use, short learning/predic-
tion time and interpretability. Their non-parametric nature allows them to
adapt to the complexity of the data and consequently portray low (represen-
tational) bias, while high variance is somewhat kept at bay thanks to their
randomized-and-averaged nature (see Section 3.4)

However, as mentioned in Section 5.2.1 datasets have become bigger and
bigger over the past decade and with big data come big constraints. The
number of instances n has increased and the community has turned to very
high-dimensional learning problems. The former has led to bigger trees, as
the number of nodes in a tree is O(n). The latter, on the other hand, tends
to steer towards larger forests. Indeed, the variance of individual trees tends
to increase with the dimensionality p of the problem: more variables, more
possible splits. Therefore, the adequate number of trees t increases with the
dimensionality. Overall, this change of focus might render tree-based ensem-
ble techniques impractical memory-wise, as the total footprint is O(n× tp).

As Section 5.2.2 argues, this increase in size is somewhat in opposition to
modern practice which would like intelligent systems to run on low-memory
devices, such as mobile phones and embedded environments so as to become
ubiquitous.

Besides memory considerations, smaller models offer many additional
advantages: faster inference, lower energy consumption, more durability,
implicit regularization, better interpretability (Section 5.2.2). In the case of
decision trees, the number of computations required for a prediction is O(d)
where d is the depth of the tree. In the case of a forest, all the m trees of the

6.2. Decision forest compression 121

forest must make prediction before being aggregated to the final prediction.
Arguably, the tree predictions can be computed in parallel. It is dubious that
low memory devices would be equipped with such capabilities, however.
Therefore, small models will require less computation for inference (less and
shallower trees), resulting de facto in faster inference and lower energy con-
sumption.

All in all, tree-based models might benefit from a lighter memory foot-
print in many different ways. There remains to design an algorithm which
produces light-yet-accurate forests—provided this is even feasible.

6.2 Decision forest compression

This section reviews several considerations related to the compression of de-
cision forests. Section 6.2.1 delves into why compression is feasible in the
first place. Section 6.2.2 shows how the problem can be formulated at a high
level. Section 6.2.3 discusses related works. The specificity of our work is
highlighted in Section 6.2.4.

6.2.1 Feasibility of decision forest compression

One might wonder to what extent a forest can be compressed while retaining
a sufficiently low error. The first thing to note is that bigger is not always
better when it comes to tree-based aggregating ensembles. It is true that the
more trees, better the model (see Section 3.4). However, adding trees serves
to decrease the variance of the learning algorithm. Once this reduceable vari-
ance is dealt with, more trees do not bring any more advantages but overload
the ensemble substantially.

In addition, deeper trees do not necessarily imply a better forest. Trees are
usually fully grown so that (representational) bias is lowest at the expense of
variance, which can—in part—be reduced. This might not be the optimal
tradeoff as the left-over variance might exceed the gain in bias.

Besides these considerations, decision forests portray a large amount of
redundancy. Within a single tree, it is not unexpected to find very similar
splits along different branches. For separable, axis-aligned problems, this
might even be the norm. Split inversion along two branches, correlated vari-
ables which allow for similar splits and some robustness to the exact thresh-
old values are further reasons encouraging structural redundancy. The prime
source of redundancy is between trees, though. Building trees independently
offers no mechanism to exclude redundancy, besides sheer unlikeliness due
to randomization. When the number of trees is large, similar splits may well
crop up in different trees, especially near the top. Near the leaves, redun-
dancy might be predictive rather than structural. Fully-developed trees will
agree on the training set (or the common instances they received). What set
each tree apart is how it behaves locally to those points. Since they are based
on the same (or boostrapped) samples, they have much incentive to behave
closely as well.

122 Chapter 6. Globally Induced Forests

The number of trees, depth and redundancy are levers for compression
but they interplay, as well as with randomization, in a complex manner,
resulting in tricky problems. For instance, increasing randomization will
reduce redundancy but will increase bias. The added stochasticity can be
counter-balanced with more trees and the bias with deeper trees. On the
other hand, reducing randomization might render the forest only marginally
better than a single tree. Ideally, randomization should be tuned accord-
ing to the problem to offer the best bias-(reduced-)variance trade-off and the
compression technique should be flexible enough to leverage the best way to
reduce memory while keeping the good performance of the forest.

6.2.2 Problem formulations

Forest compression is counter-balanced by the need for a low error. The three
compression levers (redundancy, forest size and tree depth) offer some hope
of substantially reducing the memory footprint of the forest while impacting
moderately the error. How much accuracy can be sacrificed is context- and
problem-dependent. Methods should therefore provide a knob to adjust the
compression-versus-accuracy balance. From a high level perspective, such
adaptability can be formulated in several manners:

• learn the smallest forest which does not exceed a given critical error
level;

• learn the forest with lowest error which does not exceed a given overall
size;

• learn the forest which achieves a given size-accuracy tradeoff.

The first two options have a clear constraint which make practical sense.
A critical error level might be demanded for a task and reducing the forest
footprint may be accompanied by a lesser cost for the material running it. As
Section 6.2.3 will highlight, this is usually not how compression is tackled in
practice. Supervised learning is all about minimizing the error level, rather
than minimizing some other quantity at a given error level.

The second formulation is practical: given some hardware limitations,
find the best forest. Falling back to the first formulation is also straightfor-
ward by increasing the memory limit if the critical error level is not met. If
the goal is to minimize equipment cost (the motivation for the first formu-
lation), this increase-and-retry approach goes well with the discrete nature
of hardware capabilities. Using the first formulation to solve the second re-
quires more effort, though, since the link between the error level and meeting
some hardware requirement is fuzzier.

The third formulation is more remote from practicality but can be used as
proxy for the other two formulations by playing with the tradeoff. This more
direct weighing of the two quantities of interest demands to cast them on
comparable ground, which expectedly will result in one (or both) of the com-
ponent(s) being only indirectly tuneable. For instance, decreasing the spar-
sity constraints which are weighed against the error will result in a larger for-
est with a smaller error. How much larger and how much better is unknown

6.2. Decision forest compression 123

a priori, however, rendering this blind-eye approach quite cumbersome to
use.

Problem formulations are not equivalent from the perspective of compar-
isons. Two methods following the first or second formulations can be com-
pared over their optimized parameter (size and error respectively) for given
constraints. Admittedly, the constraint might not be exactly met (possibly
more frequently for the first formulation) but the third formulation makes
it much harder to enforce some fix points at which performances between
several methods can be evaluated.

Measuring model footprint. However the memory constraint manifests it-
self (hard design constraint, soft objective constraint, etc.) the footprint must
be measured. A straightforward option is to measure the actual memory the
model occupies on the disk (or in the RAM) in, say, megabytes or gigabytes.
For instance, a forest of 1000 fully-developed extra-trees (see Section 3.4.3)
learned on the MNIST dataset (LeCun et al., 1998a) with Scikit-Learn occu-
pies of the order of 2.5Gb on disk1.

This would mean the measure is tied to the actual implementation of the
data structures representing the nodes, the trees, and the forest. Although of
practical interest this is usually not how the footprint is envisioned. Instead,
a more implementation-independent space complexity is used.

An internal node can, in principle, have an O(1) (i.e. constant) space com-
plexity since only the split variable and the threshold must be stored. A leaf
has an O(K) space complexity, where K is the dimensionality of the predic-
tion. K = 1 in (single-output) regression. In classification, K represents the
number of classes, provided a class vector is stored in the leaf (and not just
the majority class). Therefore, the total space complexity for one tree with ni
internal nodes and nl leaves is O(ni + nl K).

For a full (i.e. internal nodes have exactly two children) binary tree, the
numbers of internal nodes and leaves are linked by nl = ni + 1. Therefore,
the complexity is fully characterized (once K is known) by nl, ni or the total
number of nodes (nt = ni + nl). This allows for straightforward comparisons
between trees.

For a non-full tree (as we will deal with in this chapter), resorting to only
one metric (ni, nl or nt) will result in an approximation of the space complex-
ity. Since we expect K to be some order of magnitude smaller (in particular
K = 1 for regression and K = 2 for binary classification) than the number of
nodes, we will use the total number of nodes nt as a metric in this chapter, to
better reflect cases where the tree is far from being full.

A note on inference time. Although the main purpose of this chapter is to
produce lightweight models, one possible goal behind searching for small(er)
models might be to reduce the inference time. In the case of (traditional) de-
cision forests, the inference is usually fast. It is upper bounded by O(n m),

1It should be noted that this implementation is not optimal memory-wise. In particular
for classification, an internal node keeps information about class distribution and has thus a
memory complexity of O(K).

https://scikit-learn.org/stable/

124 Chapter 6. Globally Induced Forests

where n is the size of the learning set and m is the number of trees. The
linearity with respect to n is in the worst-case, where the tree is fully devel-
oped and degenerates into a single branch. Assuming a (more) balanced tree,
the bounds tightens to O(m log n). Additionally, each tree can be evaluated
independently. Provided hardware permits, the total inference time can be
divided with parallelization.

Consequently, decision forests provide fast inference. We will therefore
not focus on speeding up inference in the remainder of this chapter and will
simply make the following observation: for a given accuracy level, design-
ing small models and designing fast ones might require different choices.
One such example is given by De Vleeschouwer et al. (2015), who note that
increasing the depth of a tree by one level will double (in the worst-case) the
number of nodes while having little effect on the inference time.

6.2.3 Related works

Memory constraints of tree-based ensemble methods has a long tradition and
has been tackled from various perspectives, which can be partitioned into
tree-agnostic and tree-aware methods.

Tree-agnostic methods. The former set of techniques are general-purpose
methods which can deal with any ensembles. We can further distinguish be-
tween re-learning algorithms and ensemble pruning methods. Re-learning
methods (e.g. Domingos, 1997; Menke and Martinez, 2009), try to come up
with a smaller, equivalent models by teaching a student model to perform as
well as a teacher model. This is also known as teacher-student transfer, or
distillation (Buciluǎ, Caruana, and Niculescu-Mizil, 2006; Hinton, Vinyals,
and Dean, 2015). When performance is measured in terms of error, the trans-
fer data is the same as the training data used by the teacher and the student
comes for a subset of the teacher’s hypothesis space, it is unclear why not
learning directly the student would work as well as this teaching approach.

Ensemble pruning (e.g. Tsoumakas, Partalas, and Vlahavas, 2008; Rokach,
2016) try to eliminate some of the base models (i.e. trees in this case) consti-
tuting the ensemble. They do not attempt to reduce the complexity of the in-
dividual models. Developing sophisticated techniques under this paradigm
is somewhat at odds with the forest induction mechanism. There is a priori
no reason why a single tree would be more useful in the forest than another
and the redundancy between the trees is expected to be spread uniformly. As
a consequence, one can expect to reach comparable result by dropping trees
at random. Moreover, these techniques only play on one compression lever,
the number of trees, and therefore good results are only expected so long as
the number of trees remains in the variance-reduction spectrum.

Tree-aware methods. Contrary to tree-agnostic methods, tree-aware meth-
ods take into account the structure of the base models. As such they are more
amenable to use all the compression levers. Several families have been pro-
posed.

6.2. Decision forest compression 125

For instance, Breiman (1999) learns the forest with a subsample of the
training data. Since the training set of each tree is smaller, so is the maximum
depth. Some authors have proposed to exploit the redundancy in the forest
to relax it into a directed acyclic graph a posteriori at first (e.g. Peterson and
Martinez, 2009) and more recently a priori (Shotton et al., 2013).

Along the same lines, techniques working on the whole dataset and yield-
ing ensemble of trees (rather than more general graphs) can be partitioned
into pre- and post-pruning methods. As mentioned, pre-pruning methods
aim at stopping the development of uninteresting branches in the top down
induction procedure. On the other hand, the goal of post-pruning methods
is to discard a posteriori subtrees which do not provide significant accuracy
improvements, possibly in comparison to the redundancy they bring.

Originally, pruning methods were introduced to control the model com-
plexity and avoid overfitting. The advent of ensemble methods somewhat
cast aside those techniques as the averaging mechanism became responsible
for reducing the variance and rendered pruning mostly unnecessary from the
point of view of accuracy. Nonetheless, a few ensemble-wise, post-pruning
methods have emerged with a focus on memory minimization. In both Mein-
shausen et al. (2009) and Joly et al. (2012), the compression is formulated as
a slightly different global constrained optimization problem. For instance,
the latter re-optimizes the forest globally while imposing a L1-based penalty
to enforce sparsity in the tree structure. In Ren et al. (2015), compression is
undertaken with a sequential optimization approach by removing iteratively
the least interesting leaves. In De Vleeschouwer et al. (2015), the authors al-
leviate the leaves’ memory requirements by clustering their conditional dis-
tributions. After computing a wavelet coefficient for each node, Elisha and
Dekel (2016) discard all the nodes which are not on the path to a node of
sufficient coefficient. All these methods are able to retain almost the full for-
est accuracy while offering a significant memory improvement, leaving their
requirement for building the whole forest first, and consequently the high
temporary memory and computational costs, as their only major drawbacks.

Lossless compression. Note that all these works focus on lossy compres-
sion. Interestingly, Painsky and Rosset (2019) proposed a lossless compres-
sion scheme exploiting the tree structure and the independence of model
learning. By design, lossless methods offer limited compression guarantees
and important gains can only be observed for largely redundant forests—in
which case reducing the number of trees might result in the same effect. As a
side note, the authors also proposed a lossy scheme by limiting the number
of bits needed for their encoding. Both their lossy and lossless variants suffer
from the same drawback though: the need to decompress the tree on the fly
at inference time. Owing to the branching structure of the tree, this decom-
pression is efficient. Nevertheless, it is dubious that the extra cost per inference
would be worth the compression gain for an inference-intensive task. Finally,
let us note that a lossless compression scheme can always be applied on top
of other compression mechanisms and would only be useless if all the redun-
dancy has already been removed.

126 Chapter 6. Globally Induced Forests

Recent works. Since the publication of our article, a couple of new works
have been published on the topic of decision forest compression (or related).
Nie et al. (2017) proposed a method very similar to Joly et al. (2012)’s. Souad
and Abdelkader (2019) proposed an ensemble pruning method relying on
a diversity measures for the class-conditional predictions. Nakamura and
Sakurada (2019) proposed to find a number of internal nodes whose split
thresholds can be altered without impacting many of training set decision
paths so that more trees would share the same nodes—a first step to facilitate
(a no longer) lossless compression.

Tree Alternating Optimization (TAO) was proposed by Carreira-Perpiñán
and Tavallali (2018) in the context of classification and later extended to re-
gression (Tavallali, Tavallali, and Singhal, 2019; Zharmagambetov and Carreira-
Perpiñán, 2020) and ensembles (Carreira-Perpiñán and Zharmagambetov,
2020; Zharmagambetov and Carreira-Perpiñán, 2020). These works devi-
ate from pruning because the structure of the tree(s) is fixed a priori rather
than obtained in the classical top-down fashion. The structure is then fitted
by solving a classification problem sequentially for each node, usually in the
form of a regularized logistic regression which acts as split for that node.
This process is repeated until convergence, hence the name “alternating”.
Tree(s) can be shorter than initialized as a by-product of the optimization
process, rather than by design. Bagging is used to create ensembles. Over-
all, the method fixes the structure, learns the split of a single tree globally
but trees independently, making it quite different from other techniques. It
is however able to produce short tree-like structures portraying compara-
ble performances to forests, at the cost of solving many logistic regressions.
Oddly, TAOs in an ensemble are not learned globally, meaning that substan-
tial redundancy must creep into such ensembles. Finally note that the use of
linear splits and predictions prevent from comparing the memory footprints
of TAOs and more traditional trees on a per-node basis. Overall, TAOs end
up quite different than what is traditionally meant by decision trees. With so
many differences, it is legitimate to envision changing the hypothesis space
altogether.

6.2.4 GIF versus other techniques

As it stands, GIF is a rare case of pre-pruning method, that is a method which
(i) does not build the whole forest, and (ii) actually operates and delivers on
trees.

The motivation to opt for a pre-pruning algorithm is two fold. Firstly,
since it does not necessitate the building of the whole forest, it is economi-
cal in term of both time and memory. Admittedly, these resources might be
available at training time and one might argue that a method taking more
information into account (i.e. the whole, fully-grown forest) would result in
a better compression. As usual in supervised learning, this may also lead to
higher variance and overall higher error.

The second motivation was that, compared to the existing sophisticated
post-pruning methods, it allows for a more direct control of the forest’s size.

6.3. The GIF algorithm 127

Indeed, prior methods usually relied on the compression-error tradeoff for-
mulation (the third one in Section 6.2.2), while GIF is formulated as a lowest-
error-at-fixed-size optimization (the second formulation in Section 6.2.2). The
fixed size is given in the form of a node budget. Since the full tree constraint
is relaxed, this budget accounts for all nodes (leaves included).

Interestingly, GIF is able to play on the three compression levers (redun-
dancy, forest size and tree depth) thanks to part of its optimization being
global (i.e. forest-wise). The algorithm may decide to add a redundant split
to start deepening a new tree, for instance. How the algorithm weighs the
levers is implicitly controlled by a handful of hyper-parameters. Hopefully,
the empirical study in Section 6.4 sheds some light on how to set those hyper-
parameters.

Due to how GIFs are built, they share many similarities with (gradient)
boosting methods (Friedman, 2001b), which fit additively tree ensembles
based on a global criterion and are also able to build accurate yet small mod-
els. Whereas most boosting methods only explore ensembles of fixed-size
trees, GIF does not put any prior complexity constraint on the individual
trees but instead adapts their shape greedily. It shares this property with
Johnson and Zhang (2014)’s regularized greedy forests (RGF), a method pro-
posed to overcome several limitations of standard gradient boosting. Other
recent close works include those of Dawer, Guo, and Barbu (2020), which
adds a tree from a pool of varying-size trees, and of Zuo and Drummond
(2020), which formulate the boosting objective differently.

6.3 The GIF algorithm

In this section, we present the GIF algorithm. It is first given in a general
form in Section 6.3.1. It is then instantiated for regression and classification
in Sections 6.3.2 and 6.3.3, respectively. Section 6.3.4 defends the point of
view that GIF is a pre-pruning algorithm.

6.3.1 General algorithm

GIFs rely on the view of an m-trees forest as a linear model in the “forest
space”, a binary M-dimensional space, where M is the total number of nodes
in the whole forest (Joly et al., 2012; Vens and Costa, 2011):

ŷ(x) =
M

∑
j=1

wjzj(x), (6.1)

where the indicator function zj(x) is 1 if x reaches node j and 0 otherwise,
and wj is 1

m times the prediction at a node j if j is a leaf and 0 otherwise. In
regression, the leaf prediction would be the average value of the subset of
outputs reaching leaf j. In classification, wj ∈ RK is a vector of dimension

K, where w(k)
j (k = 1, . . . , K) is 1

m times the probability associated to class k,

128 Chapter 6. Globally Induced Forests

1	

3	 2	

4	 5	

6	

7	

9	 10	

8	

11	 12	

-‐1.2	

2.3	

-‐0.7	 1.5	 2.1	 0.4	 -‐4.3	

x	 x	

FIGURE 6.1: Forest space: how to represent a forest as a lin-
ear model. Blue rectangles correspond to split nodes while or-
ange circles correspond to leaves. For instance x propagated in
this small forest, the node indicators are such that zj(x) = 1
for i = {1, 2, 5, 6, 8, 12} and 0 otherwise. Since the weights
associated to internal nodes are null, the overall prediction is

ŷ(x) = 0.4 − 4.3 = −3.9.

typically estimated by the proportion of samples of this class falling into leaf
j. Figure 6.1 illustrates the notion of forest space in the regression case.

The idea behind GIF is to develop the trees gradually by following a stan-
dard forest learning algorithm but pausing after each node addition to op-
timize its associated weight globally. The next added node is then the one
which improves the forest the best. By optimizing which node to add on a
global scale, GIF mitigates the redundancy: it can decide whether to add a
whole new tree or to deepen an existing one, thus playing with the compres-
sion levers.

Algorithm 5 describes the GIF training algorithm in more technical de-
tails. A visual illustration is given in Figure 6.2. Starting from a constant
model (Step 8), GIF builds an additive model in the form of Equation 6.1 by
incrementally adding new node indicator functions in a stagewise fashion
in order to grow the forest. At each step, a subset of candidate nodes C[t]
is drawn uniformly at random from the total candidate list C (Step 11). For
each of those nodes, the weight is optimized globally according to some loss
function `. The node j∗ among those of C[t] which contributes the most to a
decrease of the loss is selected (Step 12) and introduced in the model via its
indicator function zj∗ and its optimal weight w∗j tempered by some learning
rate λ (Steps 13 and 14). This node is then split locally according to the ref-
erence tree growing strategy T (Step 16) and replaced by its two children in
the candidate list (Step 17). The process is stopped when the node budget B
is reached. Note that the root nodes are only accounted for when one of its

6.3. The GIF algorithm 129

Algorithm 5: The GIF learning algorithm.
Input: LS = {(xi, yi)}n

i=1, a learning set; T , the tree learning
algorithm; `, the loss function; B, the node budget; m, the
number of trees; CW, the candidate window size; λ, the
learning rate.

Output: An ensemble S of B tree nodes with their corresponding
weights.

1 Function GIF(LS, T , `, B, m, CW, λ):
2 S← ∅ /* the set of produced nodes */
3

4 C ← ∅ /* the set of candidate nodes */
5

6 t← 1
7 ŷ[0](.)← arg miny ∑n

i=1 `(yi, y) /* best constant model */

8

9 grow m stumps with T on LS and add the left and right
successors of all stumps to C

10 repeat
11 C[t] ← draw a subset of size min{CW, |C|} from C chosen

uniformly at random
12 compute

(j∗, w∗j)← arg min
j∈C[t], w

n

∑
i=1

`
(

yi, ŷ[t−1](xi) + wzj(xi)
)

/* get the best node j∗ among C[t] and its weight w∗j */

13 S← S ∪ {(j∗, w∗j)}
14 ŷ[t](.)← ŷ[t−1](.) + λw∗j zj∗(.)
15 C ← C \ {j∗}
16 split j∗ using T to obtain children jl and jr
17 C ← C ∪ {jl, jr}
18 t← t + 1
19 until budget B is met
20 return S

children is taken into the model (hence the condition on the budget rather
than directly on t).

Contrary to Equation 6.1, each node has a non-zero weight, since it was
optimized. Nonetheless, as soon as both its children are inserted, the parent
node’s weight can be removed from the sum by pushing its weight to its
successors.

Node selection and weight optimization. Step 12 of Algorithm 5 can be
decomposed into two parts. First, the optimal weight for a given candidate

130 Chapter 6. Globally Induced Forests

ŷ x() = y +λw9z9 (x)

4	

1	

5	

10	 11	 12	 13	

6	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	

(A) Current forest at time t

ŷ x() = y +λw9z9 (x)

4	

1	

5	

10	 11	 12	 13	

6	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	

Randomly	 preselected	
candidate	 node	

(B) A subset of candidates Ct is drawn
uniformely at random from the set of can-

didates C (Step 11)

ŷ x() = y +λw9z9 (x)

4	

1	

5	

10	 11	 12	 13	

6	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	

Δerr	 2.6	 1.5	

0.9	

Randomly	 preselected	
candidate	 node	

(C) The error reduction is computed for
all candidates of Ct (Step 12)

ŷ x() = y +λw9z9 (x)

4	

1	

5	

10	 11	 12	 13	

6	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	

Δerr	 2.6	 1.5	

0.9	

Randomly	 preselected	
candidate	 node	

Chosen	 node	

(D) The best node (highest error reduc-
tion) is selected (Step 12)

ŷ x() = y +λw9z9 (x)+λw6z6 (x)

4	

1	

5	

10	 11	 12	 13	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	 6	

(E) The chosen node is introduced in the
model (Steps 13 and 14)

ŷ x() = y +λw9z9 (x)+λw6z6 (x)

4	

1	

5	

10	 11	 12	 13	

2	

7	

14	 15	 16	 17	

8	

3	

18	 19	 20	 21	

Node	 belonging	 to	 the	 model	

Candidate	 node	

Hypothe=cal	 unpruned	 trees	

9	 6	

(F) A split is determined for the chosen
node (Step 16) and its children are added

to the candidate list (Step 17)

FIGURE 6.2: Illustration of the GIF regression building algo-
rithm (m = 3, CW = 3)

node at stage t is computed using:

wj = arg min
w∈RK

N

∑
i=1

`
(

yi, ŷ[t−1](xi) + wzj(xi)
)

(6.2)

6.3. The GIF algorithm 131

Closed-form formulas for optimal weights are derived in Sections 6.3.2 and
6.3.3 for two losses.

Second, the optimal node—the one which reduces the loss the most—is
selected with exhaustive search. Computing the loss gain associated to a
candidate node j can be done efficiently as it requires to go only over the
instances reaching that node j. Indeed, finding the optimal node j∗ at stage t
requires to compute:

j∗ = arg min
j∈C[t]

N

∑
i=1

err[t]j,i = arg max
j∈C[t]

N

∑
i=1

(
err[t−1]

i − err[t]j,i

)
(6.3)

where

err[t]j,i , `(yi, ŷ[t−1](xi) + w∗j zj(xi)) (6.4)

err[t−1]
i , `(yi, ŷ[t−1](xi)) (6.5)

in words, the former is the loss value for the ith instance after the addition of
node j while the latter is the same loss prior to the addition.

Given that zj(xi) 6= 0 only for the instances reaching node j, Equation 6.3
can be simplified into:

j∗ = arg max
j∈C[t]

∑
i∈Zj

(err[t−1]
i − err[t]j,i) (6.6)

where Zj = {1 ≤ i ≤ n|zj(xi) = 1} is the set of instances reaching node
j. Due to the partitioning induced by the tree, at each iteration, computing
the optimal weights for all the nodes of a given tree is at most O(n); each
instance reaches only one candidate node per tree. Assuming a single weight
optimization runs in linear time in the number of instances reaching that
node. Consequently, the asymptotic complexity of the induction algorithm is
the same as the classical forest. That is why having closed-form optimization
allows to keep the GIF overhead over the tree learning algorithm mild.

Note that, since the optimization is global, the candidate node weights
must be recomputed at each iteration as the addition of the chosen node im-
pacts the optimal weights of all the candidates it is sharing learning instances
with, leaving scarce room for memoization.

Arguably, the minimization of a global loss prevent from building the
trees in parallel. The search for the best candidate could, however, be run in
parallel, as could the search for the best split.

Tree learning algorithm. The tree learning algorithm is responsible for split-
ting the data reaching a node. This choice is made locally, meaning that it
disregards the current global predictions of the model. As a consequence,
the tree nodes that are selected by GIF are exactly a subset of the nodes that
would be obtained using algorithm T to build a full ensemble. The motiva-
tion for not optimizing these splits globally is threefold: (i) our algorithm can
be framed as a pre-pruning technique for any forest training algorithm, (ii)

132 Chapter 6. Globally Induced Forests

it introduces some natural regularization, and (iii) it leads to a very efficient
algorithm as the splits in the candidate list do not have to be re-optimized at
each iteration. Although any tree learning method can be used, in our exper-
iments, we will use the Extremely randomized trees’s splitting rule (Geurts,
Ernst, and Wehenkel, 2006): m out of p features are selected uniformly at
random and, for each feature, a cut point is chosen uniformly at random be-
tween the current minimum and maximum value of this feature.

Hyper-parameters. Of all the hyper-parameters of the GIF algorithm, only
a handful are really new. The choice of the tree learning algorithm is prior
to the idea of pruning and the budget is given by the context. Ultimately,
the candidate window CW and the learning rate λ are specific to GIFs. The
former was mostly introduced to limit the computation time taken by step
12 but can also serves as regularizer. The goal of the learning rate is to regu-
larize the model. Since both of those parameters impacts the node selection
(either directly or via how the global model is optimized), they balance the
compression levers and influence the overall forest shape.

Forest shape. Three parameters interact to influence the shape of the forest:
the number of trees m, the candidate window size CW and the learning rate
λ.

On the one hand, CW = 1 means that the forest shape is predetermined
and solely governed by the number of trees. Few trees impose a develop-
ment in depth of the forest, while many trees encourage in-breadth growth.
Since the selection is uniform over the candidates, it also implies that well-
developed trees are more likely to get developed further, as choosing a node
means replacing it in the candidate list by its two children (unless it is a leaf).
This aggregation effect should somewhat be slowed down when increasing
the number of trees (in-breadth development). Note that subsampling the
candidates (i.e. small value of CW) also acts as a regularization mechanism
and reduces the computing time.

On the other hand, CW = +∞ means that the algorithm takes the time to
optimize completely the node it chooses, giving it full rein to adapt the forest
shape to the problem at hand. The relationship between the depth of a node
and the number of instances that reach it interplays with the forest shape. A
node with many instances has the potential to reduce the empirical loss sig-
nificantly since it can reduce it on many examples. Conversely, the further
down the tree, the easier it is to find a weight which suits the remaining in-
stances because of how the tree is built. Therefore, the per-instance reduction
is greater while affecting less examples. How the two factors balance each
other out is hard to foresee. Easier to discuss is which node will be selected
next given the previous choice(s) and the learning rate. If the latter is low, the
previous node will not be fully exploited and the algorithm will look for sim-
ilar nodes at subsequent stages. In contrast, if the learning rate is high, the
node will be fully exploited and the algorithm will turn to different nodes. As
similar nodes tend to be located roughly at the same level in trees, low (resp.

6.3. The GIF algorithm 133

high) learning rate will encourage in breadth (resp. in depth) development.
This is backed up by experimental evidence (Figure 6.3b).

6.3.2 Regression

For regression under the squared loss, the optimization 6.2 at stage t becomes

wj = arg min
w∈R

N

∑
i=1

`2

(
yi, ŷ[t−1](xi) + wzj(xi)

)
(6.7)

= arg min
w∈R

N

∑
i=1

(
ŷ[t−1](xi) + wzj(xi)− yi

)2
(6.8)

Optimizing the weight is readily feasible thanks to a closed-formula solution.

Proposition 6.3.1 (GIF’s weight optimization (squared loss)). Under the squared
loss the optimal weight for node candidate node j at stage t is given by

wj =
1
|Zj| ∑

i∈Zj

r[t]i (6.9)

r[t]i , yi − ŷ[t−1](xi) (6.10)

where Zj = {1 ≤ i ≤ N|zj(xi) = 1} is the subset of instances reaching node j. r[t]i
is the residual for the ith training instance.

Proof. This a direct consequence of the first order optimality condition and
the nature of the indicator function zj. Let us denote

Greg(w) =
N

∑
i=1

(
ŷ(xi) + wzj(xi)− yi

)2 (6.11)

The first order optimality condition states that the optimum is reached at

dGreg

dw
(w) = 0

⇐⇒ 2
N

∑
i=1

(
ŷ(xi) + wzj(xi)− yi

)
zj(xi) = 0

⇐⇒ ∑
i∈Zj

(ŷ(xi) + w− yi) = 0

⇐⇒ w =
1
|Zj| ∑

i∈Zj

(yi − ŷ(xi))

Interestingly, extending to the multi-output case is straightforward: one
only needs to fit a weight independently for each output. The loss becomes
the sum of the individual losses over each output.

134 Chapter 6. Globally Induced Forests

6.3.3 Classification

In classification, GIFs will output a K-dimensional vector, where K is the
number of classes. Along the same lines as logistic regressions, this is a
raw output, not a probability vector. To do so, GIFs will use K-dimensional
weight vectors w as well, which will be learned under the exponential loss.

Classification GIFs differ from multi-class Adaboost (Section 3.5.2) in that
the basis for the former are indicator functions, leaving the multidimension-
ality to the learnable weights. As such, the derivation of the closed-form
solution is slightly more involved.

Label encoding: GIF
GIF relies on the exponential loss and therefore follows the label encod-
ing adopted by the multi-class Adaboost (Section 3.5.2). A datapoint
belonging to class k (k = 1, . . . , K) is encoded as

y(j) =

{
1, if j = k
− 1

K−1 , otherwise
(6.12)

At stage t + 1, optimization 6.2 becomes

min
w∈RK

n

∑
i=1

exp
(
− 1

K
yT

i

(
ŷ[t](xi) + wzj(xi)

))
subject to

K

∑
l=1

ŷ(l)
[t] (xi) + w(l)zj(xi) = 0

(6.13)

The purpose of the condition is twofold. Firstly, it ensures that the predic-
tions sum to zero at each stage of the algorithm. This is consistent with how
the true labels are encoded and it prevents the algorithm from decreasing the
loss by focusing on well classified instances too much. Secondly, it ensures
uniqueness of the solution and ease some computation.

For instance, by linearity

K

∑
l=1

ŷ(l)
[t] (xi) =

K

∑
l=1

ŷ(l)
[t+1](xi) = 0 =

K

∑
l=1

w(l)
j (6.14)

and

− 1
K

yT
i w = − 1

K

(
w(k) − 1

K− 1 ∑
l 6=k

w(l)

)
(6.15)

= − 1
K

(
w(k) +

1
K− 1

w(k)
)

(6.16)

= − 1
K− 1

w(k) (6.17)

where k is the class of instance i. The first step is due to the label encoding
and the second to the constraint. A similar reasoning can be made for ŷ[t].

6.3. The GIF algorithm 135

This latter property gives a shortcut to compute the loss by only looking
at the class the instance belongs to (say k):

`exp

(
yi, ŷ[t](xi)

)
= exp

(
− 1

K

K

∑
l=1

y(l)i ŷ(l)
[t] (xi)

)
= exp

(
− 1

K− 1
ŷ(k)
[t] (xi)

)
(6.18)

Proposition 6.3.2 (GIF’s weight optimization (multi-exponential loss)). For a
candidate node j at stage t, the solution of Eq. 6.13 is given by

w(k)
j =

K− 1
K

K

∑
l=1

log
ε
[t](k)
j

ε
[t](l)
j

(6.19)

where

ε
[t](l)
j , ∑

i∈Zl
j

`exp

(
yi, ŷ[t](xi)

)
(6.20)

Zk
l , {1 ≤ i ≤ n|zj(xi) = 1∧ y(l)i = 1} (6.21)

Zk
j is the set of instances reaching node j and belonging to class l. ε

[t](l)
j re-

lates to the loss values of examples reaching node j and the weight is optimal

Proof. Let us denote Gcls(w) the Lagrangian of problem 6.13 (where ζ is the
Lagrange multiplier):

Gcls(w, ζ) =
n

∑
i=1

exp
(
− 1

K
yT

i

(
ŷ[t](xi) + wzj(xi)

))
− ζ

(
K

∑
l=1

w(k)

)
(6.22)

Note that the constraint is formulated in terms of w and not ŷ for ease.
The first order optimality condition is such that{

∂
∂w(k) Gcls(w, ζ) = 0
∂

∂ζ Gcls(w, ζ) = 0 = ∑K
l=1 w(k) (6.23)

Examining more closely the first partial derivative yields

∂

∂w(k)
Gcls(w, ζ) (6.24)

=
n

∑
i=1

(
exp

(
− 1

K
yT

i ŷ[t](xi)

)
exp

(
− 1

K
yT

i wzj(xi)

)(
− 1

K
y(k)i zj(xi)

))
− ζ

(6.25)

= − 1
K ∑

i∈Zj

(
`exp

(
yi, ŷ[t](xi)

)
exp

(
− 1

K
yT

i w
)

y(k)i

)
− ζ (6.26)

136 Chapter 6. Globally Induced Forests

= − 1
K

(
ε
[t](k)
j e−

1
K−1 w(k) − 1

K− 1

K

∑
l=1,l¬k

ε
[t](l)
j e−

1
K−1 w(l)

)
− ζ (6.27)

= − 1
K

(
K

K− 1
ε
[t](k)
j e−

1
K−1 w(k) − 1

K− 1

K

∑
l=1

ε
[t](l)
j e−

1
K−1 w(l)

)
− ζ (6.28)

The first step is direct application of the partial differentiation coupled with
a factorization of the exponential. The second step uses the definition of zj
to focus only on samples reaching node j. The third decomposes the sum
by classes while using the definition of yi and the zero-sum properties men-
tioned earlier. Finally, the last step consists in re-introducing the class k in the
second term.

For w to be optimal, it must fullfil

∂

∂w(k)
Gcls(w, ζ) = 0 (6.29)

⇐⇒ ε
[t](k)
j e−

1
K−1 w(k)

=
1
K

K

∑
l=1

ε
[t](l)
j e−

1
K−1 w(l) − (K− 1)ζ (6.30)

This is true for all k = 1, . . . , K, meaning that all ε
[t](k)
j e−

1
K−1 w(k)

are equal to
the same quantity, irrespective of k. Therefore, they are all equal to each other
which comes down to

ε
[t](k)
j e−

1
K−1 w(k)

= ε
[t](l)
j e−

1
K−1 w(l)

1 ≤ k, l ≤ K (6.31)

⇐⇒ w(k)
j =

K− 1
K

K

∑
l=1

log
ε
[t](k)
j

ε
[t](l)
j

(6.32)

Trimmed exponential loss. Equation 6.19 glosses over a potential pitfall:
what happens when some classes are not represented, that is Zk

j = ∅ for
some k? Given the nature of the underlying trees, it is quite possible that
an internal node would be able to partition the classes. After all, it is its
encouraged behavior. This is less of a problem in binary classification since,
as soon as all the two classes are separated, the induction is stopped for that
branch. Therefore, GIF could be restricted to operate on the internal nodes.
This would not patch the multi-classification case however.

6.3. The GIF algorithm 137

To circumvent this problem, we propose to approximate the optimal weight
(Equation 6.19) in the following fashion:

w(k)
j =

K− 1
K

K

∑
l=1

τθ

(
ε
[t](k)
j , ε

[t](l)
j

)
(6.33)

τθ(x1, x2) ,

θ, if x2 = 0 or x1

x2
> eθ

−θ, if x1 = 0 or x2
x1

> eθ

log x1
x2

, otherwise
(6.34)

The thresholding function τθ acts as an implicit regularization mechanism: it
prevents some class errors from weighing too much in the final solution by
imposing, through the parameter θ, a maximum order of magnitude between
the class errors. For instance, a saturation θ = 3 means that the class errors
imbalance is not allowed to count for more than e3 ≈ 20.

6.3.3.1 Interpreting the GIF algorithm

In regression, the weights learned by GIFs directly relate to the current resid-
ual. A similar situation arise in classification, although it is not as straight-
forward.

Let us denote by µi =
1
K yT ŷ the (hyper-)margin of instance i. The larger

it is, the lower the error. Equivalently, a high negative margin −µi reflects a
high error.

Log loss. Now let us consider what log ε
(k)
j represents. Owing to the defi-

nition of the multi-exponential loss, this comes down to a log-sum-exp over
−µi of instances reaching node j. Consequently, we have

max
i∈Zk

j

{−µi} < log ε
(k)
j = log ∑

i∈Zk
j

exp−µi ≤ max
i∈Zk

j

{−µi}+ log
∣∣∣Zk

j

∣∣∣ (6.35)

The lower bound is neared when one negative margin (roughly speaking
one “misclassification”) dominates the other. This echoes the tendency of the
exponential loss to discard most samples in the presence of a badly classified
one.

On the other hand, the upper bound is reached when all the margins are
similar. In such a case, the size of the node (as measured by the number of
instances reaching it) may or may not play a role, which is also influenced
by its position. High in the tree (i.e. near the root),

∣∣∣Zk
j

∣∣∣ is supposedly large
and its influence will extend to a larger range of margin values. On a rela-
tively balanced tree (which is encouraged by its induction relying on concave
uncertainty measures), the size of the node will diminish exponentially fast
with the depth, suggesting that the log of the size will quickly vanish when
descending down the tree.

138 Chapter 6. Globally Induced Forests

Overall, log ε
(k)
j is tightly bounded by the maximum margin, except on a

few occasions such as near the root node.

The weight. The weight can be rewritten as

w(k)
j =

K− 1
K

K

∑
l=1

log
ε
[t](k)
j

ε
[t](l)
j

(6.36)

= (K− 1)

(
log ε

(k)
j −

1
K

K

∑
l=1

log ε
(l)
j

)
(6.37)

= (K− 1)

(
1
K

K

∑
l

µ(l) − µ(k)

)
+ O

(∣∣Zj
∣∣) (6.38)

where µ(k) = mini∈Zk
j
{µi}.

Given our previous observations regarding the value of log ε
(k)
j , we can

conclude that, bar a few situations, the weight is determined as a constant
(i.e. K − 1) times the maximum margin along each dimension, centered be-
forehand (i.e. O

(∣∣Zj
∣∣) is negligible).

The margin. Therefore, the margin for instances (say i) of class k reaching
node j, after its addition to the model, is

1
K

yT
i
(
ŷ(xi) + wj

)
= µi +

1
K− 1

w(k)
j (6.39)

= µi +

((
1
K

K

∑
l

µ(l) − µ(k)

)
+ O

(∣∣Zj
∣∣)) (6.40)

≈
(

µi − µ(k)
)
+

1
K

K

∑
l

µ(l) (6.41)

Recall that the margin is negative for a misclassified sample. In the con-
text of this discussion, we therefore expect µ(l) (l = 1, . . . , K) to be negative.
Overall, the margin of instances belonging to classes whose worst margin
are worse than the average worst margin will have their margin widened,
while the other will end up with smaller margins. This is a consequence of
the exponential loss giving more and more weight the more an instance is
misclassified. In conclusion, the loss is reduced by spreading the margin to
suit the exponential loss.

6.3. The GIF algorithm 139

Loss reduction. In the end, the loss is reduced by an amount of

n

∑
i=1

e−
1
K yT

i (ŷ(xi)+wjzj(xi)) −
n

∑
i=1

e−
1
K yT

i ŷ(xi) (6.42)

=
K

∑
k=1

∑
i∈Zl

j

(
e−

1
K−1 w(k)

j − 1
)
`exp (yi, ŷ(xi)) (6.43)

=
K

∑
k=1

∑
i∈Zl

j

(

∏K
l=1 ε

(l)
j

) 1
K

ε
(k)
j

− 1

 `exp (yi, ŷ(xi)) (6.44)

=
K

∑
k=1

∑
i∈Zl

j

`exp (yi, ŷ(xi))

((
∏K

l=1 ε
(l)
j

) 1
K − ε

(k)
j

)
∑i∈Zl

j
`exp (yi, ŷ(xi))

(6.45)

Thus, the reduction (for a class k) is a weighted sum of how ε
(k)
j differs

from the geometrical averages of ε j, and the weights correspond to the cur-
rent loss for each class.

6.3.3.2 From GIFs to probabilities

Probabilities can be derived through a softmax. More precisely, we have the
following proposition.

Proposition 6.3.3. Posterior probabilities of an example x belonging to class k can
be derived as

p̂(k)
[t] (x) =

exp
(

1
K−1 ŷ(k)

[t] (x)
)

∑K
l=1 exp

(
1

K−1 ŷ(l)
[t] (x)

) (6.46)

=
(k)

softmax
(

1
K− 1

ŷ[t](x)
)

(6.47)

Proof. As with Adaboost, this is motivated by looking at the population min-
imizer RX ,Y (ŷ; `exp) = EX ,Y{`exp(y, ŷ(x))}. Firstly, notice that ŷ can mini-
mize the pointwise expected risk RY|x = EY|x{`exp(y, ŷ(x))} at each x. This
comes down to

RY|x =
K

∑
l=1

P(Y (l) = 1|x) exp
(
− 1

K
yT ŷ(x)

)
(6.48)

140 Chapter 6. Globally Induced Forests

∂

∂ŷ(k)
RY|x = 0 (6.49)

=
K

∑
l=1

P(Y (l) = 1|x) exp
(
− 1

K
yT ŷ(x)

)(
− 1

K
y(k)
)

(6.50)

=
K

∑
l=1

P(Y (l) = 1|x) exp
(
− 1

K− 1
ŷ(l)(x)

)(
− 1

K
y(k)
)

(6.51)

= − 1
K

P(Y (k) = 1|x) exp
(
− 1

K− 1
ŷ(k)(x)

)
+

1
K(K− 1)

K

∑
l=1,l 6=k

P(Y (l) = 1|x) exp
(
− 1

K− 1
ŷ(l)(x)

)
(6.52)

= − 1
K− 1

P(Y (k) = 1|x) exp
(
− 1

K− 1
ŷ(k)(x)

)
+

1
K(K− 1)

K

∑
l=1

P(Y (l) = 1|x) exp
(
− 1

K− 1
ŷ(l)(x)

)
(6.53)

⇐⇒ cst =
1

K− 1
P(Y (k) = 1|x) exp

(
− 1

K− 1
ŷ(k)(x)

)
(6.54)

The derivation follows step by step the derivation of the optimal solution.
Since the same reasoning applies for all k, all right-hand-side equivalents of
the last lines are equal to the same constant, leading to

P(Y (k) = 1|x) exp
(
− 1

K− 1
ŷ(k)(x)

)
= P(Y (l) = 1|x) exp

(
− 1

K− 1
ŷ(l)(x)

)
(6.55)

K

∑
l=1

P(Y (k) = 1|x)
exp

(
− 1

K−1 ŷ(k)(x)
)

exp
(
− 1

K−1 ŷ(l)(x)
) =

K

∑
l=1

P(Y (l) = 1|x) (6.56)

P(Y (k) = 1|x)
K

∑
l=1

exp
(

1
K−1 ŷ(l)(x)

)
exp

(
1

K−1 ŷ(k)(x)
) = 1 (6.57)

P(Y (k) = 1|x)
exp

(
1

K−1 ŷ(k)(x)
) K

∑
l=1

exp
(

1
K− 1

ŷ(l)(x)
)
= 1 (6.58)

⇐⇒ P(Y (k) = 1|x) =
exp

(
1

K−1 ŷ(k)(x)
)

∑K
l=1 exp

(
1

K−1 ŷ(l)(x)
) (6.59)

In the case of a unit learning rate (λ = 1) and a single tree (T = 1), the
probabilities thus derived coincide with the ones the underlying tree would

6.3. The GIF algorithm 141

provide (see Section 6.3.4.2).

6.3.4 GIF with a single tree

In the case of a single tree (T = 1) and a unit learning rate (λ = 1), GIF predic-
tions coincide with the ones the underlying tree would provide. This is due
to the fact that, when examining the weight to give to node j at stage t, the
prediction of stage t− 1 relates solely to the parent node πj of j. It is thus in-
dependent of t and is also the same for all instances reaching that node. This
is no longer the case with multiple trees because of the global optimization
which is necessary to take advantage of the inter-tree redundancies.

We will adopt the following slight change in notation:

ŷj = ŷ(πj)
+ wj (6.60)

meaning that the prediction associated to any object reaching node j is the
weight of j plus the prediction associated to its parent πj. For the root, we set
ŷ(π1)

= 0 (null prediction for its non-existent parent).

6.3.4.1 Regression

In regression (under the `2 norm), the tree prediction Trj of any leaf j is the
average of the learning set’s outputs reaching that node: Trj =

1
|Zj| ∑i∈Zj

yi.
With a single tree, a GIF would make the same prediction as the tree. More
formally, we have the following proposition.

Proposition 6.3.4. In regression (under the `2 norm) and with a single tree, the
prediction of a sample x reaching node j in a GIF is

ŷj(x) =
1
|Zj| ∑

i∈Zj

yi (6.61)

Proof. The prediction of any sample reaching node j is

ŷj(x) = ŷ(πj)
(x) + wj (6.62)

= ŷ(πj)
(x) +

1
|Zj| ∑

i∈Zj

(
yi − ŷ(πj)

(x)
)

(6.63)

= ŷ(πj)
(x) +

1
|Zj| ∑

i∈Zj

(yi)− ŷ(πj)
(x) (6.64)

=
1
|Zj| ∑

i∈Zj

yi (6.65)

The first step is how the additive model is built. The second is the optimal
weight value of node j derived in Equation 6.9, the third step is due to the
fact that the prediction at πj is constant since there is only one tree.

142 Chapter 6. Globally Induced Forests

6.3.4.2 Classification

In classification, a decision tree associates to a sample x reaching a node j
the vector of probability representing the relative frequencies of sample from
each class reaching that node. In order to have the same prediction as the
underlying tree, we must demonstrate that the probability of being in class k

associated to node j will be

∣∣∣Z(k)
j

∣∣∣
|Zj| .

Proposition 6.3.5. In classification and with a single tree, the probabilistic predic-
tion of a sample x reaching node j in a GIF is

p̂(k)j (x) =

∣∣∣Z(k)
j

∣∣∣∣∣Zj
∣∣ (6.66)

Proof. Under the zero-sum constraint, we have for node j

exp
(

1
K− 1

w(k)
j

)
=

1
ck

ε
(k))
(πj

(6.67)

=
1
ck

∑
i∈Z(k)

j

exp
(
− 1

K− 1
ŷ(k)
(πj)

)
(6.68)

=
1
cj

∣∣∣Z(k)
j

∣∣∣ exp
(
− 1

K− 1
ŷ(k)
(πj)

)
(6.69)

exp
(

1
K− 1

ŷ(k)j

)
= exp

(
1

K− 1
ŷ(k)
(πj)

)
exp

(
1

K− 1
w(k)

j

)
(6.70)

=
1
cj

∣∣∣Z(k)
j

∣∣∣ (6.71)

p̂(k)j =
exp

(
1

K−1 ŷ(k)j

)
∑K

k=1 exp
(

1
K−1 ŷ(k)j

) =

∣∣∣Z(k)
j

∣∣∣∣∣Zj
∣∣ (6.72)

where ck =
(

∏K
l=1 ε

(l)
j

) 1
K is a constant. The first equality is a consequence

of the value of w(l)
j (Equation 6.19). The second is a due to the definition of

ε(k) (Equation 6.20). The third is a consequence of having a single tree: the
prediction of the parent is the same for all instances. The fourth line uses the
definition of ŷ. The rest follows from Proposition 6.3.3.

Notice that, in both regression and classification, the equivalence also
holds for an internal node: the prediction is the one the tree would have
yielded were that node a leaf.

6.4. Empirical analysis 143

6.4 Empirical analysis

This section is concerned with the empirical validation of GIFs. Section 6.4.1
portrays how GIF fare in regression and classification. How the hyper-parameters
influence the results is the topic of Section 6.4.2. Comparisons then investi-
gated with local methods (6.4.3), boosting (6.4.4) and post-pruning methods
(6.4.5).

6.4.1 Regression and classification

In this section, we explore how GIFs behave empirically. All results pre-
sented in this section were obtained by repeated holdout evaluation and are
averaged over ten different learning sample/testing sample splits.

The experiment are conducted with several regression and (binary and
multi-class) classifications datasets whose main characteristics are summa-
rized in Table 6.1. Abalone, CT slice, California data housing (Cadata), Musk2,
Vowel and Letter come from the UCI Machine Learning Repository (Blake
and Merz, 1998). Ringnorm, Twonorm and Waveform are described in Breiman
et al. (1998). Hwang F5 comes from the DELVE repository 2. The noise pa-
rameter of the Friedman1 dataset (Friedman, 1991) has been set to 1. Hastie
is described in Friedman, Hastie, and Tibshirani (2001b). Out of the 500 fea-
tures of Madelon (Guyon et al., 2004), 20 are informative and 50 are redun-
dant; the others are noise. MNIST8vs9 is the MNIST dataset (LeCun et al.,
1998b) of which only the 8 and 9 digits have been kept. Binary versions of
the MNIST, Letter and Vowel datasets have been created as well by grouping
the first half and second half classes together. All the dataset are accessible
via the GIF repository.

Our first experiment was to test the GIF against the Extremely random-
ized trees (ET). To get an estimate of the average number of nodes per tree,
we first computed ten forests of 1000 fully-developed ET. We then examined
how GIF compared to ET for 1% and 10% of the original budget. For GIF,
these values were directly used as budget constraints. For ET, we built forests
of 10 (ET1%) and 100 (ET10%) trees. The supplementary materials include fur-
ther comparisons with three other local pre-pruning baselines, focusing more
on the top of the trees. As these baselines tend to perform poorly, we focus
our comparison below to the ET1% and ET10% baselines.

The extremely randomized trees were computed with version 0.18 of Scikit-
Learn (Pedregosa et al., 2011) with the default parameters proposed in Geurts,
Ernst, and Wehenkel (2006). In particular, the trees are fully-developed and
the number of features examined at each split is

√
p in classification and p in

regression, where p is the initial number of features. For GIF, we started with
T = 1000 stumps, a learning rate of λ = 10−1.5 and CW = 1. The underlying
tree building algorithm is ET with no restriction regarding the depth and

√
p

features are examined for each split, in both classification and regression. We
will refer to this parameter setting as the default one.

2https://www.cs.toronto.edu/~delve/

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://www.cs.toronto.edu/~delve/

144 Chapter 6. Globally Induced Forests

TABLE 6.1: Characteristics of the datasets. n is the learning
sample size, TS stands for testing set, and p is the number of
features. nodes corresponds to the average number of nodes
of a fully-developed extra-tree; when two numbers are present,

the second corresponds to the binary version of the dataset.

DATASET n |TS| p # CLASSES NODES

FRIEDMAN1 300 2000 10 - 535
ABALONE 2506 1671 10 - 3811
CT SLICE 2000 51500 385 - 3995
HWANG F5 2000 11600 2 - 3996
CADATA 12384 8256 8 - 24038
RINGNORM 300 7100 20 2 167
TWONORM 300 7100 10 2 164
HASTIE 2000 10000 10 2 1606
MUSK2 2000 4598 166 2 449
MADELON 2200 2200 500 2 1082
MNIST8VS9 11800 1983 784 2 1375
WAVEFORM 3500 1500 40 3 2222
VOWEL 495 495 10 11 456/223
MNIST 50000 10000 784 10 20467/13678
LETTER 16000 4000 8 26 8219/5453

TABLE 6.2: Average mean square error at 1% and 10% budgets
(pe =

√
p, λ = 10−1.5, m = 1000, CW = 1).

DATASET ET100% ET10% GIF10% ET1% GIF1%
FRIEDMAN1 4.89 ± 0.23 5.02 ± 0.22 2.37 ± 0.24 5.87 ± 0.27 3.26 ± 0.29
ABALONE 4.83 ± 0.21 4.87 ± 0.21 5.20 ± 0.21 5.29 ± 0.27 4.74 ± 0.23
CT SLICE 19.32 ± 1.69 19.62 ± 1.69 19.31 ± 0.61 23.84 ± 1.85 36.48 ± 1.32
HWANG F5 ×10−2 8.20 ± 0.11 8.25 ± 0.11 8.58 ± 0.10 8.67 ± 0.12 6.91 ± 0.04
CADATA ×10−2 25.45 ± 0.65 25.71 ± 0.62 21.76 ± 0.66 28.39 ± 0.97 24.08 ± 0.65

Regression was handled with the square loss. For classification, we tested
two methods. The first one is a one-vs-rest approach by allocating one output
per class with the square loss. The second method was to use the trimmed
exponential loss with a saturation θ = 3. The results are reported in Tables
6.2 and 6.3.

Regression. As we can see from Table 6.2, this default set of parameters
performs quite well under heavy memory constraint (i.e. a budget of 1%).
GIF1% outperforms significantly ET1% four times out of five. Moreover, on
those four datasets, GIF1% is able to beat the original forest with only 1% of
its node budget. The mild constraint case (i.e. a budget of 10%) is more
contrasted. On Friedman1, California data housing and CT Slice, GIF10%
outperforms ET10%. For both Abalone and Hwang, GIF10% overfits; in both
cases the errors of GIF1% were better than at 10% and, as mentioned, better
than ET100%.

6.4. Empirical analysis 145

TABLE 6.3: Error rate (%) at 1% and 10% budgets (pe =
√

p,
λ = 10−1.5, m = 1000, CW = 1). GIFSQ,· relates to the multi-
output square loss. GIFTE,· relates to the trimmed exponential
loss with θ = 3. The six first datasets are binary classification.
The last three are multiclass. The three in the middle are their

binary versions.

DATASET ET10% GIFSQ,10% GIFTE,10% ET100%
RINGNORM 3.28 ± 0.41 4.05 ± 0.45 3.17 ± 0.34 2.91 ± 0.40
TWONORM 3.54 ± 0.18 3.50 ± 0.24 3.35 ± 0.22 3.13 ± 0.13
HASTIE 11.78 ± 0.56 10.33 ± 0.41 7.38 ± 0.29 10.30 ± 0.46
MUSK2 3.70 ± 0.37 3.41 ± 0.34 3.14 ± 0.34 3.65 ± 0.40
MADELON 12.43 ± 0.77 9.18 ± 0.83 8.03 ± 0.60 9.75 ± 0.75
MNIST8VS9 1.06 ± 0.23 0.86 ± 0.24 0.76 ± 0.16 0.99 ± 0.23
BIN. VOWEL 2.28 ± 1.20 2.81 ± 1.17 2.24 ± 1.19 1.96 ± 1.04
BIN. MNIST 2.04 ± 0.21 1.76 ± 0.15 1.59 ± 0.15 1.92 ± 0.16
BIN. LETTER 2.00 ± 0.17 2.44 ± 0.25 2.28 ± 0.19 1.80 ± 0.20
WAVEFORM 14.47 ± 0.93 14.17 ± 0.62 14.51 ± 0.67 13.95 ± 0.58
VOWEL 6.08 ± 1.13 7.31 ± 1.18 15.90 ± 1.35 5.92 ± 1.29
MNIST 2.87 ± 0.19 2.26 ± 0.17 4.05 ± 0.25 2.63 ± 0.18
LETTER 2.75 ± 0.17 2.82 ± 0.19 9.07 ± 0.53 2.53 ± 0.16

ET1% GIFSQ,1% GIFTE,1%
RINGNORM 7.43 ± 0.55 5.35 ± 0.65 4.30 ± 0.51
TWONORM 8.00 ± 0.57 3.91 ± 0.39 3.92 ± 0.31
HASTIE 20.38 ± 0.56 7.64 ± 0.50 6.76 ± 0.42
MUSK2 4.22 ± 0.37 7.40 ± 0.38 6.65 ± 0.28
MADELON 23.91 ± 1.17 12.55 ± 0.83 12.40 ± 0.76
MNIST8VS9 1.58 ± 0.31 2.10 ± 0.35 1.53 ± 0.31
BIN. VOWEL 4.18 ± 1.70 12.28 ± 2.00 11.92 ± 2.03
BIN. MNIST 3.37 ± 0.17 3.24 ± 0.20 2.76 ± 0.18
BIN. LETTER 3.59 ± 0.35 7.57 ± 0.38 6.65 ± 0.24
WAVEFORM 19.11 ± 0.57 13.26 ± 0.56 14.78 ± 0.81
VOWEL 11.74 ± 1.71 22.91 ± 2.03 36.30 ± 2.62
MNIST 4.94 ± 0.21 3.92 ± 0.25 5.68 ± 0.31
LETTER 5.34 ± 0.27 8.10 ± 0.55 19.87 ± 0.77

Classification. An interesting conclusion can be reached from Table 6.3: the
number of classes should guide the choice of loss. In the binary case, the
trimmed exponential works well. At 1%, it loses on Musk2, and the binarized
version of Vowel and Letter to ET1%. At 10%, it only loses on binary Vowel,
where it closes the gap somewhat.

When it comes to multiclassification, however, the trimmed exponential
seems to suffer. The multi-output square loss version is sometimes able to
outperform the ET version. This is the case of both Waveform and MNIST at
1% and of MNIST at 10%.

The binary versions of Vowel, and MNIST indicate that GIF at 10% strug-
gles much more with the number of classes than with the the dimensionality
of the problem and/or the learning sample size.

Interestingly, GIF’s performance on Madelon with both losses are better
than the base ET version. This suggests that GIF is well capable of handling
irrelevant features.

146 Chapter 6. Globally Induced Forests

Needless to say that this default parameter setting, although performing
well on average, is not optimal for all datasets. For instance, on CT slice at
1%, we can reach 20.54 ± 0.76 by enlarging the candidate window size to
10. For the trimmed exponential loss, with λ = 10−1 at 1%, we can reach
3.74± 0.31 on Twonorm and 3.54± 0.3 on Musk2.

6.4.2 Influence of the hyper-parameters

0 10000 20000 30000 40000 50000
Budget

5

10

15

20

25

E
rr

o
r

Learning rate

¸=10¡3

¸=10¡1: 5

¸=1

(A) Average test set error with respect to
the budget B (CW = 1, pe =

√
10, m =

1000).

0 200 400 600 800 1000
Ranks

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 n

o
d
e
 r

a
ti

o

Learning rate

¸=10¡3

¸=10¡1: 5

¸=1

(B) Cumulative node distribution with
respect to the size-ranks (CW = ∞,

m=
√

10, T = 1000, B = 10%).

FIGURE 6.3: Friedman1: effect of some hyper-parameters

Learning rate. Figure 6.3a depicts a typical evolution of the error with the
budget for different learning rates in the case of Friedman1 (the budget maxes
out at 59900 nodes, corresponding to 10%). A unit learning rate will usually
decrease the test set error rapidly but will then either saturate or overfit. Too
small a learning rate (e.g. 10−3) will prevent the model from reaching its
minimum in the alloted budget. The learning rate also influences the forest
shape, provided the candidate window size is large enough. Figure 6.3b por-
trays the cumulative node distribution with respect to the size-ranks of the
trees for CW = ∞, meaning that f(x) is the ratio of nodes of the x/T smallest
trees. We can see that, for the smallest learning rate, 80% of the smallest trees
account for approximately 43% of the nodes. At the same stage, only 17%
and 13% of the nodes are covered for the average and biggest learning rates,
respectively.

Number of features. Table 6.4 shows how the error varies at 10% for CW =
1 with respect to both the learning rate λ and m, the number of features
examined for a split, in the case of CT slice and Musk2, two datasets with
many features. Interestingly, the error tends to vary continuously over those
two parameters. On both datasets, it appears that the choice of learning rate
(global parameter) is more critical than the number of features (local param-
eter). The optimal number of features remains problem-dependent, though.

6.4. Empirical analysis 147

TABLE 6.4: Average test set error with respect to pe and λ
(CW = 1, m = 1000, B = 10%; θ = 3). In bold is pe =

√
p.

CT slice: mean square error
pe \ λ 10−2.5 10−2 10−1.5 10−1 10−0.5

19 27.28 20.34 19.31 21.97 29.82
38 25.78 19.51 18.63 20.88 27.62
96 25.53 19.74 18.79 20.68 26.64
192 26.55 20.96 19.92 21.62 26.87
288 28.20 22.43 20.91 22.31 27.64
385 31.42 25.04 23.11 24.17 29.56

Musk2: error rate (%)
m \ λ 10−2.5 10−2 10−1.5 10−1 10−0.5

12 5.13 3.74 3.14 2.90 2.86
16 5.00 3.67 3.11 2.91 2.85
41 4.50 3.39 3.00 2.93 2.93
83 4.24 3.26 2.92 2.88 2.90
124 4.11 3.20 2.89 2.79 2.75
166 4.11 3.19 2.94 2.84 2.86

TABLE 6.5: Error rate (%) for the trimmed exponential loss (θ =
3, λ = 10−1.5, pe =

√
10, m = 1000, B = 10%)

DATASET CW=1 CW=10
WAVEFORM 14.51 ± 0.67 14.05 ± 0.82
VOWEL 15.90 ± 1.35 10.87 ± 1.61
MNIST 4.05 ± 0.25 3.66 ± 0.31
LETTER 9.07 ± 0.53 5.88 ± 0.32

Candidate window size. Figure 6.4 illustrates the influence of the candi-
date window size on both the error and the fitting time for several datasets
with λ = 10−1.5, pe =

√
p, m = 1000 and a budget=10%. Firstly, the lin-

ear dependence of the window size on the building time is clearly visible.
More interestingly, the smaller window size (CW = 1) performs best on all
four datasets. All in all, this seems to be a good regularization mechanism,
allowing for a dramatic decrease of computing times while ensuring better
predictions.

Although this is representative of the regression and binary classification
problems, this is not exactly the case of multiclassification, where increasing
CW over 1 might improve performance slightly (see Table 6.5).

Number of trees. The initial number of trees is an intricate parameter, as it
impacts model predictions, the fitting time and the shape of the forest.

Table 6.6 focuses on the errors with m =
√

p and λ = 10−1.5. Unsurpris-
ingly, the models perform badly when it has only 10 trees at its disposal; this
leaves only little room for the learning algorithm to optimize globally. The
more trees is not always better, however. When the candidate window is in-
finitely large, this might be due to overfitting: there are so many candidates

148 Chapter 6. Globally Induced Forests

0 2 4 6 8 10 12 14 16
2.3

2.7

3.1

Friedman1

0 20 40 60 80 100 120 140 160
18.0

21.5

25.0

CT slice

0 1 2 3 4 5 6 7 8
3.32

3.39

3.46

Twonorm

0 50 100 150
Fitting time [s]

3.10

3.25

3.40

Musk2

Candidate window size

1 10 100 1000

E
rr

o
r

FIGURE 6.4: Average test set error (MSE for Friedman1 and CT
slice, error rate (%) for Twonorm and Musk2) and fitting time
with respect to CW (λ = 10−1.5, pe =

√
p, m = 1000, B = 10%;

θ = 3).

TABLE 6.6: Test set error with respect to the initial number of
trees m (pe =

√
p, λ = 10−1.5, same budget B = 10%; θ = 3).

Friedman1: mean square error
Friedman1 Twonorm

Mean square error Misclassification rate (%)
T CW=1 CW=∞ CW=1 CW=∞
10 7.88 ± 0.64 7.62 ± 0.71 7.47 ± 0.73 7.05 ± 0.29

100 3.31 ± 0.41 3.60 ± 0.35 3.44 ± 0.16 3.52 ± 0.13
1000 2.37 ± 0.24 3.05 ± 0.29 3.35 ± 0.22 3.43 ± 0.23

10000 2.26 ± 0.20 3.18 ± 0.28 3.53 ± 0.25 3.87 ± 0.32

to choose from that over-optimization hurts the model. When the window
size is 1, this is more directly linked to the forest shape.

Table 6.7 holds the normalized entropy of the node distribution across
trees for Friedman1. By “normalized”, we mean that the entropy was divided
by its maximal possible value log2 T and then multiplied by 100. Only one
value is reported for the case CW = 1 as the forest has always the same
shape, whatever the learning rate λ. The evolution of the entropy for a fix
number of trees when CW = ∞ has already been commented on (see Figure
6.3b). It is rendered more obvious when the initial number of trees is larger,
however, meaning that GIF is able to exploit the greater freedom offered by
the additional trees. When CW = 1, the distribution is much closer to being
uniform (entropy close to 100) than when the learning algorithm can adapt
the forest shape. If this shape does not agree with the data, the model might
perform less well. Nevertheless, as we saw, CW = 1 yields better result on all
but the multiclass problems, and T = 1000 seems to be adequate in average.

6.4. Empirical analysis 149

TABLE 6.7: Friedman1: average normalized node distribution
entropy with respect to m and λ (pe =

√
p, same budget B =

10%).

CW=1 CW=∞
T \ λ * 10−3 10−1.5 1
100 99.89 99.84 99.24 98.48
1000 98.15 94.49 87.32 83.72

10000 97.20 89.12 76.23 68.99

TABLE 6.8: Friedman1: fitting time (seconds) with respect to m
and λ (pe =

√
p, same budget B = 10%).

CW=1 CW=∞
T \ λ * 10−3 1
100 0.34 ± 0.07 0.35 ± 0.07 0.32 ± 0.07

1000 0.59 ± 0.12 3.84 ± 0.18 2.78 ± 0.54
10000 1.55 ± 0.02 25.95 ± 1.05 20.69 ± 2.92

The number of trees also impacts the learning time, as depicted by Table
6.8. The linear increase in computing time in the case of CW = ∞ is due to the
global optimization of the chosen node that must run through all the candi-
dates. In the case of CW = 1, the computing time is almost not burdened by
the number of trees. The slight increase is actually related to the forest shape:
since the distribution of node tends to be more uniform, the algorithm must
run through more examples while optimizing the weights (higher part of the
trees).

6.4.3 Comparison with local baseline algorithms

We have tested three deepening algorithm for decision forest relying on non-
global metrics, meaning that the choice of the best candidate is not made
according to how well the forest, as a whole, performs. These algorithms
share that the final model is exactly a sub-forest of the un-pruned forest: con-
trary to GIF, no internal weights are fitted and the predictions at the leaves
are the usual tree predictions.

Breadth first deepening. This variant consist in adding the nodes level after
level, from left to right, producing a heaped forest. As a consequence, all trees
have the same (order of) height, implying that the forest can be quite wide
but usually shallow.

Random deepening. This variant consist in first choosing a tree and then
choosing one of its leaves to transform to a decision nodes. Both choices are
made uniformly at random so that the trees are expected to have approxi-
mately the same number of nodes. The depth, however, might vary signifi-
cantly.

150 Chapter 6. Globally Induced Forests

TABLE 6.9: Average mean square error for local baselines at 1%
and 10% budgets (m = 1000, pe = p).

DATASET BREADTH FIRST10% RANDOM10% BEST FIRST10%
FRIEDMAN1 6.02 ± 0.28 6.80 ± 0.34 15.00 ± 0.39
ABALONE 4.72 ± 0.23 4.77 ± 0.23 6.82 ± 0.33
CT SLICE 30.39 ± 1.90 36.19 ± 1.84 310.87 ± 4.79
HWANG F5 ×10−2 6.73 ± 0.07 6.83 ± 0.06 56.57 ± 6.03
CADATA ×10−2 29.24 ± 0.73 31.08 ± 0.74 75.23 ± 0.95

BREADTH FIRST1% RANDOM1% BEST FIRST1%
FRIEDMAN1 11.73 ± 0.46 12.52 ± 0.47 15.29 ± 0.42
ABALONE 5.42 ± 0.27 5.55 ± 0.27 6.82 ± 0.33
CT SLICE 82.19 ± 2.41 97.24 ± 1.90 313.84 ± 4.64
HWANG F5 ×10−2 8.52 ± 0.24 13.17 ± 0.44 56.60 ± 6.07
CADATA ×10−2 43.40 ± 1.18 47.47 ± 1.02 75.48 ± 0.95

Best first deepening. This variant consist in choosing, among all leaves
which could be turned into a internal node, the one which reduces the lo-
cal uncertainty (as defined in 3.3.10) the most.

Since the fraction of learning instances reaching the candidate is accounted
for in the reduction of impurity, this approach will naturally favor higher
nodes in the trees.

Experiment. We conducted the same experiment as for GIF: the three algo-
rithms were tested on ten folds with different learning sample/testing sam-
ple splits and were subjected to the 1% and 10% node constraints. We started
with a pool of T = 1000 roots and no restriction was imposed regarding
the depth. All of the pe = p the features were examined in regression and
pe =

√
p in classification, as suggested in Geurts, Ernst, and Wehenkel, 2006.

Table 6.9 holds the average mean square error for the five regression prob-
lems and Table 6.10 holds the average misclassification rate for the classifica-
tion problems.

Regression. The trend is quite clear: both at 1% and 10%, the breadth first
algorithm is the best and the best first is (largely) the worst. There are two in-
stances where the local baselines are able to beat GIF: on Abalone and Hwang
F5 at 10%. Interestingly, these are the same cases on which GIF was beaten by
a small forest of Extremely randomized trees. The 10% Hwang F5 case aside,
the local baselines always underperform the smaller fully-developed forest.
Overall, such variants do not seem adequate for regression.

Classification. In classification, the breadth first and random baselines tend
to perform similarly, one beating the other on some problems. Once again,
the best first approach seems to be lagging behind on some datasets. At 10%,
the local baselines cannot rival with the other methods. Only on Waveform
are they able to reach the other performances—a setting where all methods
seems to produce close results. At 1%, the breadth first and/or the random
methods surpass the ET10% on Twonorm, Hastie, Madelon and Waveform.

6.4. Empirical analysis 151

TABLE 6.10: Error rate (%) for local baselines at 1% and 10%
budgets (m = 1000, pe =

√
p). The six first datasets are binary

classification. The last three are multiclass. The three in the
middle are their binary versions.

DATASET BREADTH FIRST10% RANDOM10% BEST FIRST10%
RINGNORM 4.25 ± 1.24 4.08 ± 1.12 8.38 ± 6.94
TWONORM 3.51 ± 0.26 3.53 ± 0.30 5.59 ± 1.85
HASTIE 11.30 ± 1.20 11.18 ± 1.16 21.24 ± 7.11
MUSK2 7.01 ± 0.40 7.63 ± 0.43 15.42 ± 0.23
MADELON 11.68 ± 0.67 11.92 ± 0.65 19.12 ± 1.94
MNIST8VS9 2.20 ± 0.38 2.37 ± 0.39 6.17 ± 0.73
BIN. VOWEL 8.99 ± 1.96 8.85 ± 2.03 16.57 ± 3.02
BIN. MNIST 4.46 ± 0.25 4.91 ± 0.27 21.71 ± 0.30
BIN. LETTER 5.91 ± 0.43 5.71 ± 0.40 26.16 ± 0.86
WAVEFORM 14.74 ± 0.63 14.83 ± 0.76 20.25 ± 2.22
VOWEL 14.26 ± 2.41 13.21 ± 2.33 41.49 ± 5.45
MNIST 4.63 ± 0.27 4.96 ± 0.26 28.54 ± 0.59
LETTER 7.06 ± 0.29 6.39 ± 0.20 36.92 ± 1.80

BREADTH FIRST1% RANDOM1% BEST FIRST1%
RINGNORM 8.94 ± 7.45 8.53 ± 7.04 8.94 ± 7.41
TWONORM 5.91 ± 3.03 6.52 ± 4.28 7.28 ± 4.34
HASTIE 13.92 ± 2.93 14.29 ± 3.20 21.24 ± 7.12
MUSK2 15.42 ± 0.23 15.42 ± 0.23 15.42 ± 0.23
MADELON 16.26 ± 0.97 16.70 ± 1.07 20.14 ± 2.41
MNIST8VS9 4.53 ± 0.48 4.84 ± 0.51 6.67 ± 0.69
BIN. VOWEL 18.73 ± 3.08 19.90 ± 3.71 21.80 ± 4.38
BIN. MNIST 10.09 ± 0.25 11.78 ± 0.32 22.50 ± 0.35
BIN. LETTER 17.91 ± 0.77 18.05 ± 0.78 26.19 ± 0.88
WAVEFORM 16.75 ± 1.26 17.13 ± 1.25 20.45 ± 2.21
VOWEL 42.40 ± 4.33 40.28 ± 4.62 50.44 ± 5.81
MNIST 8.60 ± 0.35 9.76 ± 0.31 29.72 ± 0.61
LETTER 22.11 ± 0.59 20.90 ± 0.55 37.27 ± 1.78

Those datasets correspond to cases where ET was under-performing signif-
icantly compared to GIF. All in all, the local baselines are never able to beat
GIF, even in the multiclass setting, which is particularly defavorable for GIF.
Once again, the conclusion is against the purely local baselines.

We believed the poor performances of the baselines are due to the build-
ing mechanism of traditional ensemble methods. Although the trees are built
independently and with randomization, there remains an important redun-
dancy between them, which is especially unfavorable to pruning. A global
approach is better able to avoid redundancy and can thus better exploit the
node budget. This would also explain why the best first variant performs
worst in both regression and classification: it is prone at picking redundant
nodes, which will usually offer the same kind of impurity reduction.

6.4.4 A preliminary comparison with Boosting

In this section, we carry out a first comparison of GIF with Boosting. To sub-
mit Boosting to the budget constraint, we have used stumps as base learners
and have made as many trees as were necessary to meet the constraint. We

152 Chapter 6. Globally Induced Forests

TABLE 6.11: Test set error (MSE/error rate (%)) for stump
least-sqaure Boosting/Adaboost under budget constraints (λ =

10−1.5).

DATASETS B = 10% B = 1%
FRIEDMAN1 4.53 ± 0.23 3.86 ± 0.10
ABALONE 5.17 ± 0.20 4.83 ± 0.20
CT SLICE 82.44 ± 3.80 68.73 ± 1.92
HWANG ×10−2 97.88 ± 2.33 88.62 ± 1.73
RINGNORM 5.48 ± 0.55 6.71 ± 0.99
TWONORM 5.09 ± 0.56 5.98 ± 0.47
HASTIE 5.65 ± 0.34 7.10 ± 0.41
MUSK2 2.70 ± 0.37 4.20 ± 0.28
MADELON 11.30 ± 0.68 11.33 ± 0.69

TABLE 6.12: Musk2: fitting/prediction times (seconds). Stump
Adaboost versus GIF (trimmed loss with θ = 3, m = 1000,

pe =
√

p, CW = 1) for B = 10% and λ = 10−1.5.

ADABOOST GIF
FITTING 399.17 ± 60.91 1.53 ± 0.04
PREDICTION 28.39 ± 5.43 0.31 ± 0.07

have used the same learning rate as for GIF in Table 6.2. Regression has been
tackled with least square Boosting (Friedman, Hastie, and Tibshirani, 2001b)
and classification with Adaboost (Freund and Schapire, 1995), so that the
same losses are used for GIF and Boosting. Scikit-Learn was used as Boost-
ing implementation.

Table 6.11 holds the errors for Boosting at 1% and 10%. In the default set-
ting, GIF beats Boosting on all regression datasets except Abalone where it
performs slightly less well. Interestingly, Boosting also overfits on Abalone
and Hwang. The situation is more contrasted in classification, where Boost-
ing outperforms GIF on Hastie and Musk2 for both budget constraints. No-
tice that stumps are not optimal for Hwang and CT slice, where a depth of
2 would yield lower errors of 11.09± 0.25 and 8.40± 0.19 at 10% and 1% re-
spectively for Hwang and 33.53± 1.65 and 36.67± 1.36 at 10% and 1% respec-
tively for CT slice. However, this does not change the conclusions regarding
the comparison with GIF.

GIF (with CW = 1) is faster in both learning and prediction than Boosting,
as confirmed in Table 6.12. Firstly, Boosting’s base learners are traditional
decision trees, which are slower to fit than ET for a given structure. Secondly,
Boosting’s base learners are shallow and they can thus take less advantage of
the partitioning induced by the trees.

Overall, the performances of Boosting and GIF in terms of errors are
somewhat similar. Sometimes GIF’s extra-layers of regularization, combined
with a greater variety of depths pays off and sometimes not. However, GIF
is faster in both learning and prediction.

https://scikit-learn.org/stable/

6.4. Empirical analysis 153

6.4.5 Comparison with post-pruning

In this section, we compare GIFs to a post-pruning method, namely the L1-
based compression of Joly et al. (2012). Their method consists in learning
the forest with fully-developed trees and then refitting the linear model cor-
responding to the forest space with a L1 penalty to induce sparsity. More
precisely they solve the following program

min
w

n

∑
i=1

(
yi −

M

∑
j=1

wjzj(xi)

)2

+ µ
M

∑
j=1
|wj| (6.73)

where wj are the weights associated to the M nodes of the forest and µ is the
tunable hyper-parameter controlling the sparsity of the model. The retained
nodes are those leading to a node of weight wj > 0. Therefore, the final list
of nodes is a superset of the nodes which actually receive a strictly positive
weight. µ is a high level knob to play on the compression/accuracy tradeoff
which makes it hard to attain the desired compression level without hyper-
parameter tuning. Fortunately, there exist efficient algorithms to compute
the whole regularization path.

Experimental setup. Since the problem is formulated with the squared loss,
we only looked at regression problems. For each dataset, we built a fully-
developed forest of 1000 extra-trees with the default hyper-parameters and
then computed the whole regularization path of the L1-compression. At each
stage, we extracted the number of nodes kept by the algorithm in order to
cover the same spectrum with GIFs.

GIFs were used in the exact same conditions (same hyper-parameters for
the underlying forest, same train/test splits). We used several pairs of candi-
date window sizes and learning rate. Our expectations were that for severely
constrained cases, more optimization would be needed to take full advan-
tage of the somewhat small node budget, that is a large candidate window
size and high learning rate.

Results and discussion. Figure 6.5 displays how GIFs compare to the L1-
based post-pruning baseline. The results are unanimous: highly optimized
GIFs (CW = +∞, λ = 1) excel when the budget is very tight, typically under
a couple hundreds nodes. With more permissive budget, the ability to se-
lect nodes further down the tree via post-pruning seems to provide a crucial
advantage.

In the longer run, a slightly smaller learning rate (λ = 0.1) usually proves
better. On Abalone, this is absolutely mandatory as we can see overfitting
soaring. Interestingly, the lines corresponding to a lesser optimization have
not yet plateaued by the end of the budget. This is consistent with our re-
sults of the previous section and sheds further light on how to choose hyper-
parameters with respect to the node budget.

154 Chapter 6. Globally Induced Forests

0 500 1000 1500 2000 2500 3000
Number of nodes

0

100

200

300

400

500

Er
ro

r

CW/
Base forest
+ /0.01
+ /0.1
+ /1
1/0.01
1/0.1
1/1
Baseline

(A) CT_SLICE

0 200 400 600 800 1000
Number of nodes

0

5

10

15

20

25

Er
ro

r

CW/
Base forest
+ /0.01
+ /0.1
+ /1
1/0.01
1/0.1
1/1
Baseline

(B) FRIEDMAN1

0 500 1000 1500 2000 2500 3000
Number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Er
ro

r

CW/
Base forest
+ /0.01
+ /0.1
+ /1
1/0.01
1/0.1
1/1
Baseline

(C) CADATA

0 500 1000 1500 2000 2500 3000 3500
Number of nodes

4

5

6

7

8

9

10

11

12

Er
ro

r

CW/
Base forest
+ /0.01
+ /0.1
+ /1
1/0.01
1/0.1
1/1
Baseline

(D) ABALONE

FIGURE 6.5: GIFs versus L1-based post-pruning. Base forest
correspond to the error of the fully-developed and unpruned
forest. Baseline refers to L1-based post-pruning. The other lines
correspond to GIFs with different candidate window size (CW)

and learning rates (λ).

6.5 Conclusion and perspectives

This chapter discussed the problem of pruning decision forests. Several takes
on the problem as well as levers to accomplish it have been discussed and
used as lenses to discuss existing work on the matter.

Globally Induced Forest (GIF) were then introduced and discussed at
some length. Their goal is to produce lightweight yet accurate tree-based
ensemble models by sequentially adding nodes to the model. Being a tree-
aware technique, GIFs are able to leverage all levers of compression (redun-
dancy, forest size and tree depth). Contrary to most tree-aware techniques,
our method is framed as a pre-pruning method that does not require the a
priori building of the whole forest.

Several hyper-parameters govern the learning algorithm. We have pro-
posed a set of default parameters which seems to work quite well in average,
beating the baselines, under mild and severe memory constraints. Under
extreme conditions (Section 6.4.5), the default values should be adapted to
allow the learning algorithm to optimize more fully the few nodes it receives.

Needless to say that these parameters can be further fine-tuned if nec-
essary, although this goes against the philosophy of building directly the

6.5. Conclusion and perspectives 155

pruned forest. To counter-balance this, the empirical study was designed
to shed some light as to how the hyper-parameters can be tailored to specific
needs without resorting to cross-validation.

Another interesting finding of this study is the conclusion that it is usu-
ally better not to optimize the choice of nodes by keeping the candidate win-
dow small, except in the most extreme setting. In other words, letting the
algorithm optimize the forest shape is—surprisingly—harmful. Although it
complicates the choice of the initial number of trees, this makes the algo-
rithm extremely fast. Under the most dire budget, increasing the candidate
window size bears little impact on the overall running time since the budget
is so small.

Overall, the real downside of GIFs are there relatively less convincing
results on multi-class problems. Further investigation would need to be con-
ducted to understand exactly what is the cause of the problem. The fact that
the problem arises on multi-class problems hints at the proposed trimmed ex-
ponential loss, which might be refined to better handle class disappearance
down the trees.

A few tweaks to the algorithm could also be investigated. For instance,
one could consider introducing both children at the same time at each itera-
tion, or allow for the refitting of the already chosen nodes by leaving them in
the candidate list. Alternatively, the final model could refitted globally, pos-
sible with the addition of some post-pruning regularization for even smaller
models.

A drawback GIFs have compared to post-pruning method is that GIFs do
not have the foresight to expand a branch to get an interesting node several
level further down. This might be improved upon by adding partially devel-
oped subtree to the candidate list instead of leaves. As we saw, however, this
is not required with fewer than a couple hundreds nodes.

More theoretical works could also investigate how GIFs impact the bias-
variance compared to the underlying forest. Intuitively, optimizing in part
globally should further the bias while increasing the variance. Forests are
also considered interpretable models, either when small (as a low node bud-
get would enforce) or via their ability to detect important features and dis-
card irrelevant ones. How GIFs impact the latter is yet unknown.

Finally, note that GIFs will be re-contextualized as an interpretable method
in Chapter 9.

157

7 Chapter

Sample-free out-of-distribution

Chapter overview

This chapter tackles the problem of out-of-distribution detection
(i.e. recognizing samples not originating from the training distribu-
tion) in a sample-free setting. It is investigated in the context of image
classification with deep neural networks. We proposed a set of indica-
tors (based on optimality conditions, batch-normalization layers and
a mix of both) to find the irrelevant samples. Overall the results are
promising on all but the most challenging tasks.

This chapter is based on our publication “Sample-free white-box
out-of-distribution detection for deep learning” (Begon and Geurts,
2021) presented at the fair, data efficient and trusted computer vision
workshop of the conference of Computer Vision and Pattern Recogni-
tion (CVPR) in 2021.

The code relating to this contribution is available as a Python
package at https://github.com/jm-begon/ood_samplefree. It is im-
plemented on top of PyTorch (Paszke et al., 2017).

This chapter is organized in eight sections, the first of which (Sec-
tion 7.1) exposes our ambitions: the goal pursued, our contribution
and the motivation behind our work.
Section 7.2 analyzes under close scrutiny the problem of out-of-
distribution (OOD) detection in general, while Section 7.3 focuses on
the sample-free setting. Section 7.4 describes our solution based on
OOD indicators, which are then empirically studied in Section 7.5. Sec-
tion 7.6 proposes a scheme to aggregate the indicator in the absence of
data. Section 7.7 considers how the indicators can be used in practice
before reaching the conclusion in Section 7.8.

Departing from the article, a few changes and additions have
made it to this manuscript. The most important one has been a length-
ier discussion of the topic of OOD (Section 7.2). Materials from the
appendix of the original paper have been partially integrated into the
core of this chapter (Section 7.5.3). The conclusion (Section 7.8) has
been expanded upon to reflect these changes.

https://github.com/jm-begon/ood_samplefree
https://pytorch.org/

158 Chapter 7. Sample-free out-of-distribution

7.1 Ambitions

7.1.1 Goal and contribution

Our goal is to provide some robustness, in the form of out-of-distribution
(OOD) resilience, to an already deployed model, a situation where training
data may no longer be available. We looked at the specific case of deep net-
works for which we suppose a white-box access is available. By that, we
mean that the architecture and the trainable weights are known. Our experi-
ments are conducted on image classification problems (although this is not a
strict requirement).

Contribution. In light of these, our contributions can be summarized as
follows:

• we present a detailed introduction to the complex domain of OOD de-
tection (Section 7.2);

• we introduce the sample-free setting for OOD detection (Section 7.3);

• we review which prior works provide indicators falling into our setting
and propose/adapt several new ones (Section 7.4);

• we conduct an extensive empirical analysis of these indicators on clas-
sical benchmark datasets (Section 7.5);

• we introduce a summary indicator to serve as an ultimate criterion for
OOD detection, which is shown to perform well in comparison to the
individual indicators (Section 7.6);

7.1.2 Motivation

Imagine you are running some medical tests to determine whether you have
cancer or not, but erroneous data are fed to the machine learning (ML) model
in charge of establishing the diagnosis. Would you prefer to get a positive or
a negative answer? Or would you rather the model refrained from making
a prediction and instead alerted the operator—something traditional models
cannot do?

Out-of-distribution (OOD) detection (Hendrycks and Gimpel, 2017) pre-
cisely aims at detecting samples which come from a different distribution
than the one used to train the model (Figure 7.1). There are many reasons
why a model would be fed such OOD inputs: faulty equipment, user mis-
take, malicious intent, etc. A more insidious situation arises when inference
is made on samples semantically belonging to the training distribution but
in previously unobserved conditions such as different angles, lighting con-
ditions, colors or shapes; a problem known as non-semantic shift (Hsu et al.,
2020). And then there are all the philosophical issues raised in Section 4.1.2.

7.1. Ambitions 159

FIGURE 7.1: Examples of OOD samples. The original task is
CIFAR 10 (Krizhevsky, Hinton, et al., 2009) whose label space
includes cars, birds, and cats. From left to right: (i) an ID sam-
ple, (ii) an OOD noise sample interpreted as bird, (iii) an OOD
hand-written digit sample interpreted as bird, and (iv) a mis-

classified ID sample.

Whether intentional or not, not being able for an ML model to detect
when it receives an OOD sample to prevent senseless inference raises le-
gitimate concerns about the reliability of systems built upon such models,
especially in critical applications.

The sample-free setting. As more and more ML models are being deployed,
addressing this issue becomes a very pressing matter. Unfortunately, as Sec-
tions 5.2.3 argues, such concerns might not have been anticipated. As a con-
sequence, enforcing trustworthiness must be done at a further stage.

Delaying the implementation of robustness comes with many challenges,
not the least of which is incurring the risk of the original, “in-distribution”
(ID) data not being available, as argued in Section 5.2.4, a setting referred
to as sample-free or data-free. This bears several implications, the first and
most obvious one being that data is not available to learn from. Additionally,
this implies that even if white-box access to the model is granted (which we
assume), altering it (fine-tuning included) is off the charts: there is no way to
control how changes would degrade performances.

On the brighter side, this approach comes along with a few free advan-
tages. Sample-free OOD detection (i) will provide, by construction, data-
efficient solutions, (ii) is relevant for other data-free paradigms, such as zero-
shot distillation (e.g. Cai et al., 2020a; Cai et al., 2020b; Chen et al., 2019;
Nayak et al., 2019, and the topic of Chapter 8), (iii) analyzing its limits will
allow understanding how much information about the “in-distribution” is
buried within a network trained in a standard way, and (iv) contrary to
optimization-impacting approaches, it does not downplay the model accu-
racy. Actually, as Section 7.5.3.3 shows, sample-free methods can be used to
anticipate misclassification, thus improving operational accuracy.

Since this chapter is concerned with two constraints (robustness in the
form of OOD detection and the lack of data), Section 7.2 will first delve into
the complex problem of out-of-distribution in general. We will come back to
the sample-free setting in Section 7.3.

160 Chapter 7. Sample-free out-of-distribution

7.2 Out-of-distribution detection in general

This section discusses the problem of out-of-distribution detection in general
terms. Section 7.2.1 is spent on the formulation. In particular, we highlight
the importance of balancing the risks between missing OOD samples and
falsely rejecting good ones (Section 7.2.1.3). We then look at what can be
meant by out-of-distribution (Section 7.2.1.1). Section 7.2.1.2 concludes the
discussion on formulation by looking at how out-of-distribution can relate to
“good” data.

7.2.1 Problem formulation

The term “out-of-distribution” was recently coined by Hendrycks and Gim-
pel (2017), drawing buzz and fuzz alike. Its generality (and lack of formal
definition) is responsible for some significant overlap with other problems,
or techniques for solving them. Evidently, the concern for robustness and
related topics is not new. In an old review on outlier detection, Beckman and
Cook (1983) suggest that attempting to discard irrelevant data dates at least
back to Bernoulli.

To better understand how different works and areas relate to each other,
we will first formalize the setting. Let X be the input space, PI a density
with support in X, and h(·) be a hypothesis selected on PI . We will refer
to PI as the I-distribution (or the in-distribution, possibly simply the train-
ing distribution). The term “out-of-distribution” suggests there is another
distribution, O (possibly a mixture of several more compact distributions),
with density PO supported in X as well. We will refer to PO as the OO-
distribution. From there, OOD detection aims at deciding whether a sample
x is a valid input for h depending on its relationship to I and O.

Discussing further OOD detection amounts to answering the following
questions:

• when should a sample be declared OOD?

• what is the relationship between I and O?

• how should risk be balanced?

• what information (data or assumption) is available to help OOD detec-
tion?

The first three questions aim at clarifying the goal actually pursued, while
the last one is about the means. The next sections will delve into the form-
ers and the question of the available information is deferred to Section 7.2.4,
where it will help articulate the related works.

7.2.1.1 Interpreting what is meant by out-of-distribution

In this section, we discuss what can be meant by out-of-distribution (OOD)
detection. We describe four interpretations of OODness (i.e. what it means

7.2. Out-of-distribution detection in general 161

to be out-of-distribution), the first three of which are illustrated in Figure 7.2.
The descriptions are followed by a discussion motivating the different views.

In-support interpretation. When looking at the problem only from the per-
spective of I , we naturally arrive to the following interpretation.

Definition 7.2.1 (OODness under the in-support interpretation). A sample x
is “in-distribution” (ID) if and only if PI(x) > 0. A sample not ID is OOD.

This interpretation simply says that if a sample might have come from I
(i.e. it is in its support) it should be regarded as ID.

I-membership-assessment interpretation. The I-membership-assessment
interpretation consists in regarding a sample as ID if and only if it is suf-
ficiently likely that it comes from I . It is a relaxation compared to the in-
support interpretation. Typically, this will be formulated in terms of density.

Definition 7.2.2 (OODness under the I-membership-assessment interpreta-
tion). A sample x is ID if and only if PI(x) > t, where t is a predefined minimum
density threshold. A sample not ID is OOD.

Source-identification interpretation. By explicitly stating the existence of
O, we might naturally come to the following interpretation.

Definition 7.2.3 (OODness under the source-identification interpretation). A
sample x is in-distribution (ID) if it is drawn from I . It is OOD if it is drawn from
O.

This interpretation simply uses the actual source distribution of a sam-
ple to designate it as ID or OOD. Whereas the in-support interpretation asks
“could this x come from I?”, the source-identification interpretation asks
“does this x come from I?”

Membership-ratio-assessment interpretation. The membership-ratio-asse-
ssment interpretation consists in considering a sample as ID if it is (much)
more likely to have come from I rather thanO. Typically, this will be formu-
lated in terms of density ratio.

Definition 7.2.4 (OODness under the membership-ratio-assessment interpre-
tation). A sample x is ID if and only if

PO(x) = 0 and PI(x) > 0 , or
PI(x)
PO(x)

> t (7.1)

where t is a predefined minimum density threshold. A sample not ID is OOD.

Why several interpretations? The need for several interpretations stems
from the fact that there is some discrepancy between what the name suggests
and the goal actually pursued. Indeed, Hendrycks and Gimpel (2017) opened
their article by saying

162 Chapter 7. Sample-free out-of-distribution

When machine learning classifiers are employed in real-world tasks,
they tend to fail when the training and test distributions differ.

Hendrycks and Gimpel (2017)

clearly indicating concerns about robustness and suggesting the goal is to
prevent such situations. Their definition of out-of-distribution does not elab-
orate on that concern, however:

[...] in- and out-of-distribution detection: can we predict whether a
test example is from a different distribution from the training data;
can we predict if it is from within the same distribution?

Hendrycks and Gimpel (2017)

This leaves some gray area as to how samples should be considered when
I andO share some support. On the one hand, the goal (i.e. rejecting invalid
samples) leans towards the in-support interpretation. On the other hand,
the name “out-of-distribution detection” is more aligned with the source-
identification interpretation. As a consequence, paradoxical situations might
arise, which the membership-assessment interpretations try to solve.

Interpretation comparison. When there is an overlap between distributions,
the source-identification interpretation leads to situations where a sample x
issued fromOwould be classified as OOD while still being likely to originate
from I . In such circumstances, a perfect (source-identification) OOD detec-
tor would prevent the model from making a prediction on x. It is, after all,
the whole point of OOD detection. Yet, letting the model make a prediction
for x in this case is totally legitimate. Therefore, we end up hampering the
normal usage of the model. This is not acceptable.

In the in-support interpretation, the situation described above does not
arise but makes way for two new issues. Firstly, everything would be ID
with infinite-support I-distributions. One could argue that it might not make
sense to talk about OOD detection in such cases. This brings us to the sec-
ond issue. Whether the support is infinite or not, we might end up with a
sample x belonging to the support but much more likely (say several orders
of magnitude more likely) to originate from O. In all generality, it is unclear
whether we would indeed like x to be considered as ID.

The I-membership-assessment interpretation patches the previous prob-
lem by requiring that samples belong to areas of sufficient density. Besides
introducing a parameter, this interpretation comes with a caveat, which is
the opposite issue to source identification: samples from the tail of the I-
distribution can be rejected while being OOD is even less likely. In such a
case, it would make sense to accept those samples. Arguably, those samples
should be rare and would bear little influence overall.

7.2. Out-of-distribution detection in general 163

The membership-ratio assessment (theoretically) solves all the previous
problems, leaving its parametric nature as the prevalent issue. At first glance,
being able to set the density ratio threshold on a per-problem basis might ap-
pear like an advantage. It is, however, somewhat redundant with risk man-
agement (but not equivalent, see Section 7.2.1.3). Ultimately, it feels odd not
to have an absolute ground truth. Admittedly, one could formulate the prob-
lem of OOD detection as predicting accurately the density ratio. This still
poses a practical problem (estimating the densities) on which we will come
back in the next paragraph. Before that, let us mention another peculiarity
(shared with the source-identification interpretation): the ground truth is also
parametrized by the OO-distribution. That is, two different OO-distribution
would lead to different ground truths. Envisioned solely as a classification
problem, this seems normal. In the case of OOD detection, it means that a
same sample x ∼ I can be accepted in one context and rejected in another,
depending on the OOD context. Whether a model should perform an infer-
ence on x does not seem like a contextual question, however: either making
the prediction is legitimate, or it is not.

Establishing the ground truth. Both the membership-assessment interpre-
tations are faced with a practical challenge. Unless querying the densities
can be done directly (in which case the problem would mostly be solved
anyway), establishing the ground truth requires estimating those densities
from data. As such, what is held as ground truth could be quite noisy due to
the estimation process. What is more, the noise would not be equally spread.
Low-density areas will suffer the most since there would be less data to esti-
mate precisely the density over those regions.

The in-support interpretation faces a special case of density estimation:
bounding the support. For reasons similar to those mentioned above, we
expect that the boundary can only be established with large imprecision.

Only the source-identification interpretation is not hard-pressed when it
comes to establishing the ground truth.

Which interpretation to choose? As we have argued, there is no perfect so-
lution when it comes to defining what an OOD sample exactly is. The most
promising interpretations are either I-membership assessment or membership-
ratio-assessment, depending on whether the definition of ID should be de-
pendent on the OOD context. Only the network operator can answer defini-
tively this question.

From a practical perspective, however, the source-identification interpre-
tation is the only which offers an easily accessible ground truth. As way of
consequence, it is the dominant interpretation as far as evaluation purpose is
concerned. Of course, all interpretations converge when there is little over-
lap between the I andO distributions (and the thresholds of the membership
assessments are kept low). Whether there is overlap or not depends on how
close I and O are.

164 Chapter 7. Sample-free out-of-distribution

x1

x 2

ID support
OOD support
ID sample
OOD sample

(A) OOD detection as source identifica-
tion: where the data actually comes from
constitutes the ground truth. The over-
lapping area between the distributions
may contain both ID and OOD samples,
resulting in some irreducible noise (the
placement of the decision boundary will

affect the risk-balancing).

x1

x 2

ID support
OOD support
ID sample
OOD sample

(B) OOD detection as an in-support prob-
lem: all samples within the support of the
I-distribution—thus including the over-

lapping area—are ID samples.

x1

x 2

ID support
OOD support
Low density
ID sample
OOD sample

(C) OOD detection as a membership assessment problem: all samples within the
majority of the mass I-distribution are ID samples, all others are OOD. Note that

the low-density region has been exaggerated for visual purposes.

FIGURE 7.2: Different interpretations of OOD detection. The
rectangles reflect the (finite) support of the distribution, while
the markers indicate ground truth. Depending on how the
problem is viewed, the ground truth of ID samples may change.

7.2.1.2 Relationship between data sources

This section attempts to explain how I and O may differ. We will look at
different categories of problems

Gross statistical differences. The easiest case for OOD detection is when
the out-of distribution bears little overlap with the training distribution. Ex-
amples of these are given in Figure 7.1 (images (ii) and (iii)) and include
detecting white noise or images coming from a vastly different colorimet-
ric spectrum. Although this task is easy, it might not necessarily constitute a
case where rejecting such inputs is actually pursued, as with covariate shifts.

Dataset shifts (covariate and semantic). The concept of dataset shifts is
well-defined and can go a long way in better understanding and describing
what OOD detection is seeking to do. LetM be the mixture of I and O the

7.2. Out-of-distribution detection in general 165

FIGURE 7.3: The ID/OOD shift can either be semantic, i.e. the
label spaces are different, or non-semantic, i.e. the same con-
cepts are presented in different modalities. From Hsu et al.

(2020).

hypothesis will be exposed to once deployed and let YI and YM be the label
spaces corresponding to training and mixture distributions respectively.

Definition 7.2.5 (Covariate/non-semantic shift). Covariate shift (Moreno-Torres
et al., 2012), or non-semantic shift (Hsu et al., 2020) is when the problem remains
unchanged but the input distribution changes:

YI = YM
PI(Y|x) = PM(Y|x)
PI(x) 6= PM(x)

(7.2)

Definition 7.2.6 (Semantic shift). Semantic shift (Hsu et al., 2020) occurs when
data presented to the hypothesis does not belong to the label space the hypothesis was
trained on:

YI 6= YM (7.3)

An illustration of semantic and non-semantic shifts are given in Figure
7.3. More common examples of covariate shifts include changes in lighting
conditions, or more generally different modes of acquisition for the same
information. Such changes might lead to gross statistical differences while
keeping the same semantic structure. Inversely, gross statistical differences
can fall under semantic shift (e.g. feeding a model white noise).

Ideally, OOD detection should be able to detect semantic shifts while a
model should be robust to non-semantic shifts (i.e. would still correctly clas-
sify instances). In practice, and as suggested by Figure 7.3, non-semantic shift
might result in a more impactful statistical shift and might thus be easier to
capture. Detecting non-semantic shifts might not be such a bad idea when
not doing so would lead the model, not trained to recognize the classes in
those new forms, would commit many mistakes. As a result, one might hope
that a model would be robust to slight covariate shifts and detecting large
ones would only be required when the statistical disturbance is so large that

166 Chapter 7. Sample-free out-of-distribution

FIGURE 7.4: Semantic shift does not imply detecting OOD is
trivial, as samples from very different label spaces can still
be statistically (and visually) close. From Togootogtokh and

Amartuvshin (2018).

little overlap remains between the I-distribution and the covariately-shifted
distributions, resulting in an easier problem.

Depending on the context, a semantic shift might be enough to guarantee
that I and O do not overlap at a conceptual level, even if capturing the de-
lineation in high-dimension remains challenging (as Figure 7.4 can testify).
In other contexts, there is less assurance of being overlap-free. For instance,
(poorly) handwritten letters can easily be mistaken for handwritten digits,
other letters or letters from a different alphabet.

Note that other forms of dataset shifts (prior probability shift, concept
shift/drift) have been defined but are not relevant to OOD detection (at least
in the form we are addressing here; e.g. we will not assume that the definition
of the I-distribution will change over time).

Adversarial examples. Adversarial examples are samples engineered to fool
a model (Goodfellow, Shlens, and Szegedy, 2015, see also Figure 7.5). Typi-
cally, this consists in, given a model, applying some well-chosen—and per-
ceptually insignificant—noise on top of an ID instance so that the model will
end up making a different prediction to the one it would have settled on
(supposedly the correct one) in the absence of perturbation. In the case of
neural networks, this is done by making one or several loss gradient ascent
steps on the input variables, rather than on the weights (which is naturally
handled by backpropagation).

Adversarial samples constitute a major reliability breach and detecting
them is, by virtue of being such a targeted attack, a hard challenge. Adver-
sarial samples might not qualify as OOD, however. By nature, the added
noise must be kept low and the attack is only successful if the model departs
from the prediction it would make with the original sample. Since the true
class membership of the adversarial sample is regarded as unchanged (hence
the model being fooled), nothing qualifies adversarial samples as either se-
mantic or non-semantic shifts. Since YI = YM, PI(Y|x) = PM(Y|x) and

7.2. Out-of-distribution detection in general 167

FIGURE 7.5: An adversarial sample, fooling a network to
mistake a panda for a gibbon with high confidence, even
though the change is barely noticeable (Goodfellow, Shlens,

and Szegedy, 2015).

PI(x) = PM(x) (whereM represents the mixture over normal and adver-
sarial samples here) we must conclude the problem is actually unchanged.

This is not to say that investigating how methods developed for OOD
detection perform on other problems, such as adversarial sample detection,
is not an interesting endeavor.

Unknown. In many (most?) cases, the relationship between the ID and
OOD source is unknown. A model might receive semantically-shifted sam-
ples, covariately-shifted samples or a mix of both. Additionally, the propor-
tion of OOD samples might be small or large—little is known a priori. This
will steer methods towards ID-centric approaches.

7.2.1.3 Balancing the risks

OOD detection is one of those situations where risk management is impor-
tant. Table 7.1 shows the confusion matrix associated to OOD detection (for-
mulated as such, we assimilate the “positive” class to OOD). The two types of
errors which can be committed in regards to OOD detection are (i) accepting
OOD samples (false negatives) and (ii) rejecting ID samples (false positives).
Normalizing the former by the number of OOD samples yields the OOD-
acceptance rate, while normalizing the latter by the number of ID samples
leads to the ID-rejection rate. Risk balancing is the notion of choosing which
one of those rates to raise in order to lower the other (see Section 3.7.1 for a
general discussion on the matter).

There are two main reasons for balancing the risks, rather than aiming
for the equilibrium. When deciding whether a sample is ID or OOD, it often
happens that all errors are not identical, with some worse than others. For in-
stance, in a medical diagnosis application, it is preferable to reject an ID sam-
ple, in which case the medical examination can be redone, rather than make
a prediction on irrelevant data. Even if both types of errors are equally pe-
nalizing, OOD detection is (hopefully) an imbalanced problem where there
is a prevalence of ID samples. As discussed in Section 3.7.1, treating errors
equally in such a situation might not lead to interesting solutions.

168 Chapter 7. Sample-free out-of-distribution

TABLE 7.1: Confusion matrix for OOD detection (OOD taken
as the positive class). P stands for positive, N for negative, TP
for true positive, FN for false negative, FP for false positive, TN

for true negative.

Prediction
Actual class OOD ID Total

OOD detected OOD (TP) missed OOD (FN) P
ID rejected ID (FP) acknowledged ID (TN) N

Whether risks need to be intrinsically balanced or simply should be be-
cause OOD is a rare event, OOD detectors should provide a way to balance
the risks to tailor to a given application.

Note that, on the conceptual level at least, there is a great difference be-
tween changing the definition of OODness, possibly through some contin-
uously varying parameter (cf Section 7.2.1.1), and doing risk management.
Whereas the former is about the ground truth (i.e. the row marginals of the
confusion matrix), the latter is about the model predictions (i.e. the column
marginals of the confusion matrix).

7.2.2 Related problems

As previously mentioned, the concern for robustness is not new. Now that
we have a better grasp of what out-of-distribution (OOD) detection is like,
we can investigate how it compares to other related problems (see Section
7.2.3).

7.2.2.1 Open set recognition

The closed-world assumption is the idea that everything an agent will need
to know will be presented at training time. Open set recognition works un-
der the idea that there are unknowns at training time and the model will,
sooner or later, face new classes and needs to handle gracefully this situation
(Scheirer et al., 2012).

A variant of open set recognition (OSR) in the domain of dialog sys-
tems (intelligent answering machines) is out-of-scope (OOS) query detection,
where OOS queries are “queries that users may reasonably make, but fall
outside of the scope of the system-supported intents” (Larson et al., 2019).

Conceptually, OOD detection differs from open set recognition in the
sense that the latter does not suggest a second source of data. Rather all
data belong to a unique mixture with only a subset of classes known at train-
ing time. The overarching goals also differ. In OOD detection, the goal is
to uncover problematic samples and reject them. Open set recognition ships
with the idea of recognizing unknown classes so as to later learn from them
and incorporate them into a more encyclopedic model.

Mathematically, however, open set recognition is akin to a semantic shift
for which we may expect the distributions to be statistically close and more
balanced. As such, much of the same techniques can be used to tackle both,

7.2. Out-of-distribution detection in general 169

barring one detail: open-world assumption is a design-driving principle rather
than a posterior robustness overlay. As a consequence, open set recognition
techniques are not squeamish about designing custom architectures (see Sec-
tion 7.2.3.6). This contrasts to OOD detection, where the hypothesis space is
dictated first by the base task. Also, this somewhat restricts OSR to training-
time methods, in which case samples for the known class (i.e. ID data) are
available.

The interested reader can refer to the work of Scheirer et al. (2012) for a
review on open set recognition.

7.2.2.2 Anomaly detection

Anomaly detection (Chandola, Banerjee, and Kumar, 2009) aims at identify-
ing samples which portray unexpected behaviors. Some amount of fuzziness
surrounds the notion of anomaly. In some contexts, it might be taken in a
statistical sense, in which case anomaly is synonymous of outlier, although
belonging rightly to the I-distribution (and thus often present in the learning
sample). In others, anomalies are referred to as novelties, which lean conspic-
uously close to open set recognition. For some authors, OOD samples are a
kind of anomaly. For others, there is the notion of a model trained on the
original task which can be leveraged to help detect samples.

Overall, the demarcation between OOD and anomaly detection is shrouded
in some epistemic blur. Even in the case of outlier detection—where there is
implicitly no notion of an OOD source—developed methods might be recy-
cled for OOD detection.

The interested reader can learn more in the relevant surveys (e.g. Chan-
dola, Banerjee, and Kumar, 2009; Thudumu et al., 2020; Aldweesh, Derhab,
and Emam, 2020).

7.2.2.3 Uncertainty modeling

The (estimation of the) expected risk reflects how a model is performing in
general. In many applications, we would like to know how the model fares
on a given input (not in average); we would like to know the local or pointwise
uncertainty. Uncertainty is usually decomposed into data uncertainty (or ir-
reducible/aleatoric uncertainty, also sometimes called ontic vagueness Wor-
boys and Duckham (2004)), which is just another name for noise (as in the
bias-variance decomposition, cf. Section 2.5), and model (or reducible/epis-
temic) uncertainty, which is the idea that several models can have the same
consistency level over a finite dataset (Figure 7.6). In the absence of other dis-
criminating criteria (e.g. weight decay, margin minimization), this situation
leads to arbitrary choices of hypotheses. Although not strictly equivalent
with variance (which relates to the models obtained with different datasets),
a high model uncertainty at some location x will also usually involve a high
variance at x.

Data uncertainty might be ill-suited for helping in some OOD detection
tasks, such as with gross statistical differences. Informally, we might ex-
pect the uncertainty to be high for those OOD samples. The definition of

170 Chapter 7. Sample-free out-of-distribution

FIGURE 7.6: Aleatoric versus epistemic uncertainty. Left: even
with the Bayes’ decision boundary the class label (red cross or
black circle) at the question mark is uncertain; an instance of
aleatoric uncertainty due to a noisy problem. Right: several
hypotheses are equally good for the problem; an instance of
epistemic uncertainty. From Hüllermeier and Waegeman (2021)

the Bayes’ model (on which the noise is based) actually says little as to how
the model should behave outside of the scope of the problem. For instance,
in an almost-linearly-separable problem, an OOD sample far from the Bayes
boundary would actually have a close-to-zero noise level (see Figure 7.9 for
such an example).

Model uncertainty might be more grounded for helping in OOD detec-
tion: this kind of uncertainty is expected to be high in regions where few
instances have been observed, since consistency has not been encouraged
there. This provides an interesting surrogate measure of low density for
detecting OOD samples. For similar reasons, variance due to training sets
might also be reflective of low-density areas: fewer samples would come
from there, resulting in higher variance over those regions.

Conversely, OOD detection is an important question for uncertainty mod-
eling as it might allow discerning when the model is extrapolating. In such
instances, we expect the model to portray low confidence, since samples over
those regions were absent during training. OOD detection may provide a
shortcut for exhibiting reserve over those areas.

For more information on model uncertainty, see e.g. Hüllermeier and
Waegeman (2021) and Abdar et al. (2021).

7.2.2.4 Pointwise versus samplewise methods

So far, the discussion has been on “pointwise” decisions: deciding whether a
given datapoint was in- or out-of-distribution. In some context, it is pos-
sible to identify a bunch of data coming from the same source, in which
case the question applies to many samples at once, providing richer infor-
mation for the decision. This can happen, for instance, when a dataset shift
occurs (Rabanser, Günnemann, and Lipton, 2019), in which case the data is
an unstructured collection of points. Another instance is when data forms
a structure, such as with time series. In this case, temporal components of

7.2. Out-of-distribution detection in general 171

the signal might appear individually normal, whereas the signal as a whole
is not. Chandola, Banerjee, and Kumar (2009) encompass such cases in their
survey.

In the remainder, we will focus on pointwise approaches.

7.2.2.5 Other paradigms

The aforementioned problems come in contact with other learning paradigms
whose goal is to adapt to the new data encountered. For instance, in contin-
ual learning (e.g. Parisi et al., 2019), the goal is to keep learning even when
the model is deployed. In zero-shot learning (e.g. Xian et al., 2019) the goal is
to correctly label samples from unseen classes by leveraging available infor-
mation of another nature (compared to the usual training samples) for these
new classes. Domain adaptation (e.g. Jiang, 2008) aims at using data from
one domain to learn a model applicable on another. This covers cases such
as covariate shifts. More generally, transfer learning (e.g. Pan and Yang, 2009,
see also Section 2.9.1) aims at providing knowledge learned in one situation
for another.

7.2.3 Families of methods

If the previous section(s) discussed the “what”, this section discusses the
“how”. Indeed, there is no one-to-one correspondence between the exact
problem which is tackled (i.e. whether it is out-of-distribution detection,
open set recognition, anomaly detection, and so on) and the method used to
solve it. In other words, a method designed for uncertainty modeling might
well be useful in the context of OOD detection, and vice versa. Fortunately,
methods can be grouped into a few general families. This section inspects
those while Section 7.2.4 will specifically target works which portray them-
selves explicitly as OOD detection.

7.2.3.1 Classification-based approaches

The most straightforward scheme, so long as the positive samples (i.e. OOD,
anomaly) are well identified (and some labeled instances are available) is
to frame the problem as a classification problem. The interesting question
becomes the choice of input features. The first possibility is to work in the
original input space, but working within some feature-engineered, or some
latent space—whether it is learned for the task or inherited from the original
task—might prove more adequate.

This scheme is common in fault detection systems, where the goal is to
detect defects or predict when some system is about to fail (or is failing). See
the review of Lei et al. (2020) for more.

7.2.3.2 Distribution-based approaches

Density-based approaches. Aside from classification methods, the other
straightforward approach consists in learning the density of the I-distribution

172 Chapter 7. Sample-free out-of-distribution

and filtering out the tail of the distribution. There is a plethora of methods
for density estimation, ranging from simple, fixed-bin width histograms to
kernel density estimation (Parzen, 1962), to much more elaborate techniques
such as normalizing flow (Kobyzev, Prince, and Brubaker, 2020).

Mass-based approaches. Density-based approaches come with a caveat: it
is unclear at which value the density should be thresholded. Depending on
the shape of the distribution, regions with a density lower than t might con-
stitute only the tail of the distribution, or most of it. To circumvent this prob-
lem, it might be easier to work directly on the distribution mass.

The coverage problem (Geifman and El-Yaniv, 2019) consists in finding a
subset of the input space which encompasses a given percentage of the input
distribution mass. Samples originating from this subspace are then deemed
normal and samples coming from outside can be rejected.

Admittedly, several subspaces might enclose the given mass. The prob-
lem of learning the minimum volume set (e.g. Polonik, 1997; Scott and Nowak,
2005) aims at finding the smallest coverage possible. A well-known repre-
sentative method is the one-class support vector machine (Schölkopf et al.,
1999).

7.2.3.3 Information-theoretic approaches

Both density- and mass-based approaches focus on the I-distribution and
work toward rejecting the tail of the distribution. Another take on the prob-
lem is to develop a representation of the samples wherein most of them can
be compactly described by exploiting regularities in the data. As a conse-
quence, samples having a lengthy description do not portray those regulari-
ties and are deemed suspicious.

An example of such a method is isolation forest (Liu, Ting, and Zhou,
2008), which consists in growing a variant of decision forest where anomalies
are assimilated to samples found at abnormal depths.

Compression-based approaches. A variant of the information-theoretic ap-
proach is to truncate the representation and see how well the samples are
reconstructed from the limited information.

For instance, Collin and Vleeschouwer (2020) proposed to use an auto-
encoder to detect anomalies in images. The decoder part is trained to re-
construct anomaly-free images. Among the metrics studied, the distance be-
tween the original and reconstructed images performs best.

7.2.3.4 Proximity-based approaches

An altogether different approach than working on the distribution is to con-
sider the input (or a latent) space and assume that samples close to the train-
ing data are normal. When the distance is established with respect to some
modes of the distribution, this can be interpreted as an extreme case of com-
pression, where the bases are the modes and the overall distance represents
the reconstruction error.

7.2. Out-of-distribution detection in general 173

For instance, Bolton and Hand (2001) proposed to use the distance be-
tween a sample and its k nearest neighbors from the training set to judge
whether a sample is abnormal or not.

7.2.3.5 Confidence-based approaches

Many methods look into how confident a model is (or should be) of its pre-
diction for an input sample and use that metric as a surrogate for detecting
abnormal samples. This is either grounded in uncertainty modeling, or more
simply in the fact that the model is encouraged to be (over)confident on the
training distribution (see Section 3.6.2.1 for a more in-depth discussion).

The first approach when assessing the confidence of a neural network is to
look at the probability vector it outputs. As shown by Figure 7.5 this might be
misleading, though. Admittedly, adversarial samples constitute an extreme
case. Nonetheless, Guo et al. (2017a) argues this is a general phenomenon.
Even when looking at rightful samples, modern architectures tend to be over-
confident: misclassifying some samples with utmost certainty. The authors
propose to use the validation set to re-calibrate the network’s confidence so
that the network would be correct x% of the time for samples predicted with
x% of confidence.

Methods inspired by uncertainty modeling include conformal prediction
(Shafer and Vovk, 2008), which aims at giving confidence interval together
with the prediction, bayesian learning (e.g. Gal and Ghahramani, 2016, and
Section 4.1.4), where learning yields a distribution over models (rather than
a single model) which can then be used to assess how uncertain a prediction
is, or ensembling (e.g. Lakshminarayanan, Pritzel, and Blundell, 2017), where
the same idea can be used, although with a very different justification.

7.2.3.6 Design-altering implementations

Parallel to those runs the question of how it should be implemented. Most
methods employ disconnected apparatus, such as learning a new model for
the task. In a few instances (most notably in open set recognition), though,
the task has been forethought and dedicated models (or hypothesis spaces)
are designed with the goal of implementing one of the above schemes in
some embedded fashion.

For instance, Bendale and Boult (2016) propose to replace the softmax
layer with an openmax layer which computes an elaborately-normalized dis-
tance to class centers in the logit space, highlighting samples which do not
seem to belong to any classes. This is an instance of a proximity-based method
implemented by adapting the architecture. Shu, Xu, and Liu (2017) instead
advocate using sigmoid on a K-headed network, coming back to a 1-vs-rest
approach on the ground that avoiding the normalization due to the softmax
offers a better criterion to detect samples belonging to no class in particular.
Yet another approach is to dedicate a head to detecting anomalous samples.
For instance, Geifman and El-Yaniv (2019) propose to learn the head to reject
a small percentage of the training distribution (coverage problem).

174 Chapter 7. Sample-free out-of-distribution

7.2.4 Literature on OOD detection methods

In the few years since the term was coined, undoubtedly aided by pre-existing
related problems, out-of-distribution (OOD) has become a popular research
topic. Since most works assume the availability of some data, they are not
directly relevant to the sample-free setting we will target from Section 7.3
onwards. Consequently, this section will focus (i) on proposed methods
(rather than comparison papers, (such as Shafaei, Schmidt, and Little, 2018;
Rabanser, Günnemann, and Lipton, 2019; Roady et al., 2019)), (ii) which in-
volve a model learned on I to perform the original task (rather than models
learned solely for rejecting OOD samples (such as Vyas et al., 2018; Golan
and El-Yaniv, 2018; Che et al., 2021; Kumar et al., 2021; Sehwag, Chiang, and
Mittal, 2021).

To navigate through those works, we will first describe two baselines
methods (Section 7.2.4.1) and then group methods by the assumptions they
make regarding the available data (Section 7.2.4.2).

7.2.4.1 Baselines

Hendrycks and Gimpel (2017) pioneered out-of-distribution by proposing to
use the maximum softmax probability to detect OOD samples; a confidence-
based method. As discussed in Section 7.2.3.5, it has since been recognized
that network confidence tends to be unreasonably high and might not reflect
well uncertainty in a sense relevant to OOD detection (Ovadia et al., 2019).

ODIN (Liang, Li, and Srikant, 2018) improves upon this baseline by re-
lying on two mechanisms. Firstly, instances are adversarially perturbed to
increase the loss. According to the authors, this impacts ID and OOD sam-
ples in different ways, allowing for easier detection of the latters. The second
idea introduced is to use a modified softmax (see Section 7.4.1 for more de-
tails).

7.2.4.2 OOD detection by available data

In this section, we look at methods depending on the type of data they need.
Although publications usually showcase a method in a particular setting, the
method is not necessarily confined in it. Figure 7.7 describes the generality
structure over settings. The most general setting is the one requiring the least
information. As such, we will proceed from the least to the most general
setting, adding constraints as we go.

Both ID and OOD, labeled. The ideal situation, referred to as supervised,
is when both ID and OOD data are available, with clear labels. Under the
source identification view of OOD detection, it becomes a straightforward
classification problem whose only remaining question is what input features
should be used.

Aigrain and Detyniecki (2019) proposed to train a classifier on the logit
vectors, while Quintanilha et al. (2018) derived some features based on the
batch-normalization layers (Ioffe and Szegedy, 2015) of a trained network.

7.2. Out-of-distribution detection in general 175

Supervised

Semi-supervised

Positive-unlabeled

One-class

Sample-free

Unsupervised

FIGURE 7.7: Generality structure over the available informa-
tion. Supervised correspond to the setting where both ID and
OOD data are available and labeled. When only some of those
data are labeled, the setting is called semi-supervised. When
labels are only available for ID samples, the setting is called
positive-unlabeled. When no labels are available, the setting is
called unsupervised. When only one type of data is available,
the setting is called one-class. When no data are available, the

setting is sample-free.

Using the network as a feature extractor, a dataset of ID and OOD samples
can thus be created, then fed to any classification algorithm. The authors also
investigate the case of having only ID data.

Lee and AlRegib (2020) proposed to use the gradients of the loss as a mea-
sure of uncertainty which can then be fed to a classifier. As a pseudo ground
truth for the loss, they consider that samples may belong to all classes. This
is motivated by the idea that large loss components will only incur, on ID
samples, for the parameters towards the end of the network, whereas all the
relevant feature extractors (beginning of the network) are already learned. In
contrast, the loss components will be uniformly high for OOD samples.

Some authors have voiced their skepticism regarding the availability of
OOD data, especially when labeled (e.g. Shafaei, Schmidt, and Little, 2018;
Kardan, Sharma, and Stanley, 2021). Although such an amount of informa-
tion is not necessarily unrealistic, the lack of justification has led the com-
munity to propose evaluation protocols where the OOD data available at
training are considered as proxies rather than the embodiment of the actual
OO-distribution the model will face. This is further discussed below (see
“Only ID and proxy OOD” below).

176 Chapter 7. Sample-free out-of-distribution

Both ID and OOD, unlabeled except for some ID samples. In a variant
of the previous setting, a large pool of unlabeled samples is available to-
gether with some identified as ID. This positive-unlabeled1 setting differs
from semi-supervised in that labels are only available for ID samples. This
setting presents itself when the model is deployed but the learning set is still
available, for instance. The ID/OOD balance of the unlabeled set usually
weighs heavily on the expected performance.

Yu and Aizawa (2019) proposed to use neural networks with two classi-
fication heads—typically a modern architecture serving a feature extractor
and a fully-connected layer per head. In a first phase, the neural network
is trained in a classical fashion on the base task, the only difference between
the heads being the initialization. In a second, fine-tuning stage, unlabeled
samples are used to force a discrepancy (measure as the difference in softmax
entropy) between the heads, while label, ID samples are used to avoid forget-
ting the base task. The underlying idea is that the discrepancy between the
heads should be more pronounced on OOD samples, rather than on ID data
for which the network is encouraged to yield the correct class with reason-
able confidence. The discrepancy can thus be used as a measure of OODness.

Mohseni et al. (2020) also proposed two-headed networks for the positive-
unlabeled setting. In this case, one head is classically dedicated to the base
classification task while the other is a multi-class rejection head, allowing
for more flexibility than a binary rejection head. The second head is trained
solely with unlabeled samples using a cross-entropy loss with self-predicted
labels from the previous epoch. The sum of the softmax prediction of the
rejection head is used as detection signal.

Only ID and proxy OOD. Since many authors have shown their skepticism
of the supervised setting, judging the availability of labeled OOD samples
too strong an assumption, many works have looked at using easily-available
proxy data to serve as positive samples. Whether this is a good idea or not de-
pends on the relationship between the proxy and true OOD data—see Figure
7.8—which cannot be asserted due to the lack of data. Therefore, such meth-
ods must be used with much caution when strong priors regarding the OO-
distribution are lacking. Aside from those considerations, this setting can be
implemented so long as ID data are available and could, in principle, be cou-
pled with other settings such as the positive-unlabeled or semi-supervised,
propelling back the methods into the supervised realm.

Together with the maximum softmax probability, Hendrycks and Gimpel
(2017) propose to append an “abnormality module” to a network. This con-
sists of (i) a decoder mapping from the latent space back to the input space,
which is trained jointly as the regular network during training, and (ii) a sig-
moidal head, fitted after regular training on normal and noisy versions of the
original data. Overall, this falls into the compression-based approach with a
design-alternating implementation and the proxy data is noise over ID sam-
ples.

1negative-unlabeled would be more consistent since we consider OOD as the positive
class but we will stick to the denomination in use.

7.2. Out-of-distribution detection in general 177

Lee et al. (2018a) propose to train a network to jointly perform well on
the ID task and detect OOD samples. To achieve this, they propose to jointly
train a GAN (Goodfellow et al., 2014) and the network. Traditional GANs are
made of a generator, whose goal is to produce samples as close as possible to
the training data, and a discriminator, whose goal is to distinguish between
training data and generated samples. In this case, the generator is also en-
couraged to deliver samples close to the boundary. The antagonist nature of
the two goals the generator pursues is supposed to encourage sampling from
the tail of the I-distribution.

Hendrycks, Mazeika, and Dietterich (2019) follow the same general ap-
proach of training jointly a network on the original task and for OOD de-
tection. To circumvent the need for a fully-fledge GAN scheme, includ-
ing the choice of architecture, the choice of optimization-balancing hyper-
parameters, and the lengthy training time, they advocate using OOD train-
ing cases coming from other datasets. Without the generator and discrim-
inator, the loss simplifies considerably, leaving only one network and two
loss components: a traditional cross-entropy and a term whose purpose is to
lower the network confidence on OOD data (in the form of a cross-entropy
between the softmax probabilities and a uniform distribution in the case of
classification). The tradeoff between performance on the base task and OOD
detection is managed through a single hyper-parameter.

Working on genomics sequences, Ren et al. (2019) hypothesize that OOD
examples are hard to detect because they have the same background noise as
ID samples, the difference between the two being the presence of interesting
structure in ID data. They propose to generate OOD samples by breaking the
structure of ID samples. Rather than learn a discriminative model between
the two, they work with two generative models: one for assessing the likeli-
hood of being ID in general, and one for assessing the likelihood of having
the same background noise. By taking the ratio between the two, the authors
estimate they capture the likelihood with respect to the structure of interest.

When faced with a large collection of auxiliary data, Li and Vasconcelos
(2020) proposed to sample mini-batches to form an OOD dataset. Rather than
sample uniformly, they proposed to weigh the auxiliary samples according
to how non-uniformly they would be predicted, a scheme they termed as
adversarial resampling. The network is then trained to jointly perform well
on the base task and produce low confidence on OOD data thanks to a mix-
objective similar to the one proposed by Hendrycks, Mazeika, and Dietterich
(2019).

178 Chapter 7. Sample-free out-of-distribution

De
ns

ity

pr
ed

. a
s I

D pred. as OOD

Proxy
True OOD
ID
Boundary

(A) Ideal situation: the proxy data is a rel-
evant surrogate.

De
ns

ity

pr
ed

. a
s I

D pred. as OOD

Proxy
True OOD
ID
Boundary

(B) Worst case: the proxy data is so irrel-
evant that the OOD detector will be use-

less.

De
ns

ity

pr
ed

. a
s I

D pred. as OOD

Proxy
True OOD
ID
Boundary

(C) The proxy data is relevant but bal-
ancing the risks is difficult. If the goal
is to be cautious of possible OOD sam-
ples, most of the I-distribution might be
rejected even though accepting it would
be safe with respect to the actual OO-

distribution.

De
ns

ity

pr
ed

. a
s I

D pred. as OOD

Proxy
True OOD
ID
Boundary

(D) Second worst case: the proxy data is
irrelevant. It promises an almost perfect
accuracy which is not reflective of what
would happen with true OOD samples
(especially in the source-identification

view).

FIGURE 7.8: Difficulty in placing the decision boundary for
risk management depending on the relationship between proxy
OOD data and true OO-distribution. The density does not re-
late to a specific input variable and proper engineering of the
features, as well as working in higher-dimension spaces might
help favor the best case. The lack of true OOD data makes it
hard to assess, though. Note that using proxy data such a noise
tends to fall into the gross statistical differences embodied by

the bottom right plot.

7.2. Out-of-distribution detection in general 179

Only ID. The most common case might be to have only ID data available;
leftovers from training. If we disregard the possibility of using proxy data
for OOD (discussed in the previous paragraph), this restricts the methods to
low-density filtering and related.

DeVries and Taylor (2018) proposed an uncertainty modeling approach
which consists in appending a confidence head at the end of the network.
The two network heads are jointly trained so that the network can decide not
to be punished for a prediction on which it is not confident but must be as
confident as possible. After optimization, the confidence score can be used
to decide whether an input should be discarded as OOD or not.

Lee et al. (2018b) proposed a proximity-based approach operating in the
latent space(s) of a network: they use the Mahalanobis distance between a
prediction and its closest class center as a criterion to accept or reject sam-
ples. The estimation of class centers and Mahalanobis parameters (means
and covariance matrices) require ID samples. The authors advocate to either
use the logit space or train a classifier of distance vectors from several latent
spaces, in which case OOD or proxy samples, might be required.

Sastry and Oore (2019) followed along the same lines and proposed to
use statistics based on the whole feature maps extracted at each layer. To
use them in a one-class fashion, they use the sum of the deviations from the
means for each statistic as ultimate criterion. By working with normalized
scores, they alleviate the need for OOD data to tune how to weigh the per-
layer features when aggregating them.

Ahmed and Courville (2020) proposed to leverage auxiliary tasks (such
as predicting the orientation of objects) while learning to build models which
are more resilient to semantic anomalies. Interestingly, learning along several
related tasks also improves the model accuracy-wise.

Lee, Yu, and Yu (2020) proposed multi-class data description (MCDD), a
multi one-class approach where spherical decision boundaries are learned to
encompass most of the learning instances without overlapping. They then
relax their formulation to model the hyperspheres as isotropic Gaussian dis-
tributions, allowing for the density to the closest Gaussian as OOD metric.

Hsu et al. (2020) noticed that when trained only on ID samples, the proba-
bilities the model outputs are always implicitly conditioned to the sample be-
ing ID. This probability can be factorized into two components, one of which
being the probability of a sample being ID. Based on this observation, they
proposed to train two functions of the logits to model these two components,
although why this precise decomposition should end up being the one en-
forced remains fuzzy. Since this method modifies the architecture, it needs
ID samples to be learned. Input pre-processing also requires the availability
of ID data.

Antonello and Garner (2020) noticed that the linear boundary associated
with fully-connected-and-softmax layers is not suited for OOD samples end-
ing up far away from the boundaries since the model will be extremely con-
fident of itself. To mitigate this issue, they proposed to replace the softmax
layer with a so-called t-softmax layer. This layer integrates a quadratic term

180 Chapter 7. Sample-free out-of-distribution

with respect to the latent space, better able to capture OOD samples far away
from the decision boundaries.

Cheng and Vasconcelos (2021) proposed another framework for novelty
detection using the Mahalanobis distance. Their contribution is to note that
Mahalanobis distance really makes sense when the latent, class-conditional
vectors follow a multi-dimensional Gaussian distribution, which is at best a
rough approximation in practice. Consequently, they introduce a new term
in the loss to enforce gaussianity during training so that thresholding the
distance ends up making sense.

Note that some of these methods employ hyper-parameters which benefit
greatly from tuning with OOD data, especially once they are used with data
not related to the benchmarks on which they are showcased.

No data (sample-free setting). Another setting is the utter lack of data of
any kind, which is the setting adopted in the chapter and will be examined
in more detail in Section 7.3. As far as related works are concerned, the maxi-
mum softmax probability of Hendrycks and Gimpel (2017) and ODIN (Liang,
Li, and Srikant, 2018) (provided we use the default hyper-parameters), match
our setting, where (i) the model cannot be altered (since controlling the al-
teration without ID samples is challenging), and (ii) no ID data is available.
Another recent work which falls into this category was proposed by Liu et al.
(2020). Motivated by the energy-based model, the authors proposed to use
the log-sum-exp of the logits (in other words, the denominator appearing in
the softmax).

The emergence of zero-shot sampler methods (e.g. Chen et al., 2019; Nayak
et al., 2019; Haroush et al., 2020; Micaelli and Storkey, 2019; Choi et al., 2020),
whose goal is to (try to) sample from I-distribution by solely looking at a
model learned from it, is a promising research venue, offering to craft ID
samples (or relevant-enough ones) to then apply an only-ID method. Actu-
ally, most of those works can be seen as doing the opposite: using a sample-
free OOD detection method to guide how training samples could be crafted.
Chapter 8 proposes a method in that vein.

Other settings. Other settings, as depicted by Figure 7.7, exist but do not
seem to have been tackled yet (in the sense that existing works fall better in
another category).

In semi-supervised OOD detection, are available samples which are clearly
identified as ID or OOD, as well as a collection of unlabeled samples, being
either ID or OOD. In this setting, labeled and unlabeled OOD samples might
come from the same distribution, a different distribution, or a mix of both.
When there is only one OO-distribution, this resembles the supervised ap-
proach, whereas having completely different distributions leans in the direc-
tion of proxy data.

Another setting is where only unlabeled data, containing both ID and
OOD samples, is available. This unsupervised setting resembles the sample-
free setting quite closely. Note that Yu and Aizawa (2019) actually proposed a
method for the unsupervised setting but built a completely separate detector

7.2. Out-of-distribution detection in general 181

from scratch. This setting will also be invoked in Section 7.7. An interesting
question with this setting when a model is available is whether it was trained
on pure data or the training set already contained OOD samples of some form
(such as might be the case in outlier detection).

Finally, a last—and amusing—setting is the one where only OOD sam-
ples are available. Supposing these are from the OO-distribution of interest,
for instance samples collected while running the model for being recognized
as abnormal, one-class methods might be as useful as if the data was ID.
This would have the advantage to offer more direct means of controlling the
(usually) worst risk: the OOD-rejection rate.

7.2.4.3 Conclusion

This rather long introduction has shed some light on the domain of out-of-
distribution (OOD) detection. We have seen that it is both important and
tricky to formulate, with several different interpretations of what is meant
by OOD, an intrinsically contextual definition of what the OO-distribution is
compared to the I-distribution and the need to balance both types of risks
(accepting OOD/rejecting ID samples). As concerns for robustness are not
new, OOD detection closely resembles or interconnects with other problems,
such as open set recognition, anomaly detection, and uncertainty modeling.
Even in situations where problems can be distinguished, methods developed
in one context tend to be applicable in another. As such, OOD detection
(under some assumptions, e.g. the source-identification interpretation) offers
a simple testbed for other paradigms as well.

Many approaches have been proposed over the years and can be parti-
tioned either based on how they operate or on what kinds of data they re-
quired. For works grounded in the OOD literature, the two most common
settings are relying either only on ID samples or on ID samples and some
proxy data. In the latter case, an important issue is how the proxy data relates
to both the in- and out-of-distributions. Overall, the most successful venue—
or, at least, the one which has convinced the most—is the proximity-based
approach (e.g. Hendrycks and Gimpel, 2017; Liang, Li, and Srikant, 2018;
Lee et al., 2018b; Sastry and Oore, 2019; Liu et al., 2020; Lee and AlRegib,
2020), possibly with some learning-time tweaking (e.g. Hendrycks and Gim-
pel, 2017; Hendrycks, Mazeika, and Dietterich, 2019; Lee, Yu, and Yu, 2020;
Antonello and Garner, 2020; Cheng and Vasconcelos, 2021). Note that some
of these approaches might not have initially been motivated as proximity-
based. For instance, the maximum softmax probability was motivated as
a confidence-based approach and only falls into the proximity-based realm
due to how the softmax operates.

Some of these works can be seen as inspirations (or natural convergences)
of our proposed method, where assumptions and knowledge on how train-
ing networks works replace what is usually gathered by the available data.
For instance, some of the indicators discussed in Section 7.4.1 aims at achiev-
ing the same goal as the Mahalanobis-distance technique of Lee et al. (2018b),
where knowledge of how a trained network should behave is used as a surro-
gate for the actual location of the class centers. As Sastry and Oore (2019), we

182 Chapter 7. Sample-free out-of-distribution

also use normalized indicators to form an aggregated OOD signal, although
in our case we use a proxy distribution instead of ID data for the normaliza-
tion. Many authors share the idea of using proxy data, although in our case
it is more a surrogate for ID than OOD data.

7.3 The sample-free setting

Hereon we focus on out-of-distribution (OOD) detection in a sample-free set-
ting, as motivated in Section 7.1.2. In this short section, we first ask the ques-
tion of whether OOD detection is feasible in such a constrained setting (Sec-
tion 7.3.1) before explaining how we envision pursuing our goal in general
terms (Section 7.3.2). Section 7.4 will then delve into the details.

7.3.1 Feasibility

Can anything actually be done in the total absence of data? In comparison,
the availability of ID and OOD data hints at learning an OOD classifier. Even
when only ID data is at hand, it is possible to estimate the density of I .

To be a viable option, the sample-free setting must leverage what knowl-
edge is already buried within the trained model. Intuitively, it feels that a
learned hypothesis would have been selected so that the decision bound-
aries are meaningful with respect to the (conditional) densities. To see how
relevant this is, remember that the hypothesis p̂ is selected so that

p̂(k)(x) ≈ PI(Y = k|x) = PI(x|Y = k)PI(Y = k)

∑K
j PI(x|Y = j)PI(Y = j)

(7.4)

In a sense, learning the classifier amounts to estimating the class-conditional
densities and the class marginals, the latter of which is trivial. Marginalizing
on the class, we get (law of total probability)

PI(x) =
K

∑
j

PI(x|Y = j)PI(Y = j) (7.5)

Therefore, the selected hypothesis, if any good, must somehow contains traces
of information about the density PI(x).

The next section describes in more detail what kind of information we
are seeking. Section 7.4 will examine several ways to leverage traces of such
information.

7.3.2 Indicators

We propose to construct functions g : X → R, called indicators, that allow
discriminating as well as possible ID from OOD samples, with respect to the
given neural network.

We will design indicators that take low values for ID samples and large
values for OOD samples. In practice, a test example x can thus be rejected

7.4. Sample-free white-box OOD indicators 183

as soon as g(x) > t, where t is a risk-balancing threshold that can be set to
minimize a given error type, taking into account the needs of the application.

Depending on how out-of-distribution is to be interpreted, the ideal in-
dicator is PO

PI
(membership-ratio assessment; source identification) or 1

PI
(in-

support interpretation; I-membership assessment).
No sample from I or O are available but we assume a white-box access

to the neural network, which allows us to investigate candidate indicator
functions of the following general form:

g(x) = G (x, Θ, z1(x; θ1), . . . , zL(x; θL)) . (7.6)

where zl(x; θl) represents the latent feature vector of the lth layer correspond-
ing to x (see Section 3.6 for more details).

Indicators can thus be defined from features computed anywhere in the
network, as well as from network parameters. Given thatO is unknown, our
main way of making sure that g(x) is low for x ∼ I is to take into account
the way the neural network was trained.

7.4 Sample-free white-box OOD indicators

In this section, we introduce a number of indicators for OOD detection. An
indicator assesses how unlikely it is for a sample to be ID (Section 7.3). We
describe two categories of such indicators: (i) optimality-based indicators
(Section 7.4.1), and (ii) batch-normalization-based indicators (Section 7.4.2).

7.4.1 Optimality-based indicators

Hopefully, a deployed network should be well trained on the original task,
resulting in an (near-)optimal network over the I-distribution. Sections 3.2.2.2
and 3.6.2.1 discussed how the network proceeds to reach optimality, which
can be summarized as

• avoiding misclassification by learning a latent space where classes are
linearly separable;

• boosting the network confidence by

– pushing points in the latent space far away from the boundaries,
ideally perpendicular to the hyper-plane for maximum efficiency;

– increasing the norm of the hyper-plane vectors.

All these effects result in p̂j(x) converging to yj (1 ≤ j ≤ K).
The indicators developed in this section are based on the assumption that

those conditions are met for ID samples but might not be met for OOD ones.
As noted in Section 7.2.4.3, this is also the motivation behind several, non-
necessarily sample-free methods.

In the event where the network has reached convergence but still per-
forms poorly, we expect the optimality-based indicators to fail. This would

184 Chapter 7. Sample-free out-of-distribution

be the case if the network is substantially overfitting or if it performs poorly
in general (the loss gradient is low but the error is still high, for instance with
a network of limited capacity). In both cases, the consequences of optimality
would not be observed on the I-distribution, invalidating the proposed indi-
cators. It can reasonably be expected, however, that a deployed model would
be any good at generalizing. Consequently, the developed indicators are rea-
sonable in practice. We discuss this further in Appendix B.2 when comparing
CIFAR 10 and CIFAR 100. We additionally shed some more light on the mat-
ter in Section 7.5.3.2, where we discuss the impact of the model quality, and
in Section 7.5.3.3, where we discuss the related problem of misclassification
detection.

Baselines. Two common baseline indicators which derive directly from the
optimality condition are

MP(x) = 1− max
1≤j≤K

pj(x) (7.7)

H(x) = −
K

∑
j=1

pj(x) log pj(x) (7.8)

Using the maximum probability was proposed by Hendrycks and Gimpel
(2017) when introducing the topic of OOD detection. When the probabilities
given by the network for the minority classes are uniform and close to zero,
the entropy H should behave like MP. The entropy might convey a little more
information than the maximum probability when the uniformity constraint
is not satisfied.

ODIN. ODIN was introduced by Liang, Li, and Srikant (2018) and is pop-
ular in the OOD context. It relies on two ideas. First, some adversarial noise
(Goodfellow, Shlens, and Szegedy, 2015) is added to the input x. Then, the
softmax probability vector given by the network is computed using a tem-
perature T of 1000 in the softmax:

x′ = x + ε sign (∇x`CE(p̂(x), dk)) (7.9)

p̂(j)
T (x) =

ez(j)
L (x)/T

∑K
k=1 ez(k)L (x)/T

(7.10)

T1000(x) = 1− max
1≤j≤K

p̂(j)
1000(x) (7.11)

ODIN(x) = T1000(x′) (7.12)

where dk is the one-hot vector whose sole non-zero element is a one in the
kth component, and where k is the class of x predicted by the network. The
rationale is that the adversarial perturbation will have different effects on

7.4. Sample-free white-box OOD indicators 185

ID/OOD samples. Additionally, it can be shown (Appendix B.1), that

p̂(j)
T ≈

c
K
+

1
T K

z(k)L (7.13)

so long as zk � T. As such, using T1000 is a way of normalizing the logit of
the predicted class in the range 0� T1000(x) ≤ 1− 1/K.

When ε = 0, ODIN reduces to T1000 and the expensive cost of com-
puting the adversarial perturbation is avoided. Tuning ε in a sample-free
setting is not trivial. Arguably though, the magnitude of the perturbation
might not vary much due to the sign function. How much the direction in-
fluences the results of ODIN in the general case is not clear. In any case, we
will use the default value of the noise magnitude proposed in the original
paper (ε = 8× 10−4). Considering it was established on CIFAR 10(0) as well,
it should constitute a strong baseline anyway.

Latent space indicators. Let u = zL−1 be the latent pre-linear vector and
zL = Wu + b be the logit vector, with θL−1 = [W, b].

Since wT
k u + bk = ||wk|| ||u|| cos αu,k + bk, the optimality conditions imply

that:

1. ||u|| is high (i.e. the point is far away from the center in the pre-linear
latent space);

2. cos αu,k is close to 1 (the point is well aligned with the hyper-plane).

From them, we can derive the following indicators:

NORM(x) = −||u|| (7.14)

ANG(x) = 1− cos αu,k = 1−
wT

k u
||wk|| ||u||

(7.15)

PROJ(x) = −||u|| cos αu,k = −
wT

k u
||wk||

(7.16)

ACT(x) = −wT
k u (7.17)

The NORM indicator should not be sufficient by itself, as a high norm
possibly benefits all the logits. ANG stands for angularity and is the cosine
distance between u and wk. Compared to the logit (close to ACT), it will favor
more samples which align well with the hyperplanes and will favor fewer
samples which just have a high latent norm. The PROJ indicator combines
the information from both ANG and NORM. When ||wj|| and bj are relatively
constant with respect to j (a situation which can be expected in the absence
of asymmetry, such as class imbalance; see also Table 7.2), PROJ is expected to
be closely related to the logit. ACT is the logit without the bj part and should
also be close to the logit.

Positivity. ReLU-based architectures, which include most modern ones in
image classification, end the feature extraction phase with a ReLU activation,

186 Chapter 7. Sample-free out-of-distribution

TABLE 7.2: Statistics of the latent space parameters. The pa-
rameters have been extracted from trained network on CIFAR
10/100. See Section 7.5.1.1 for more information about the net-

works, the datasets and the learning protocol.

ORDER OF STD(W) / STD(b) % OF POSITIVE COMPONENTS OF W
CIFAR 10 CIFAR 100 CIFAR 10 CIFAR 100

RESNET 50 10−2 / 10−1 10−2 / 10−2 37.5 35.8
WIDERESNET 10−1 / 10−1 10−1 / 10−2 41.1 40.1
DENSENET 121 10−1 / 10−1 10−2 / 10−2 42.1 43.1

possibly followed by max or average pooling. As a result, the latent vectors
are non-negative, whereas most components of the hyper-plane weights are
negative (see the discussion in Section 3.2.2.2 and Table 7.2) and are used to
bid against the other classes, rather than for the predicted one. This suggests
that it might be worth looking at the positive and negative parts of the pre-
vious indicators separately.

We define three new indicators NORM+, ANG++ and ACT+ that are ob-
tained by reducing the vectors wk and u to the components with positive
weights in wk in the definitions of NORM (Eq. 7.14), ANG (Eq. 7.15), and
ACT (Eq. 7.17) respectively. In other words, we only consider the positive
subspace of wk.

More precisely, let P(w) = {1 ≤ i ≤ pL−1|w(i) ≥ 0} (where pL−1 is
the dimensionality of the pre-linear latent space) be the set of indices of the
non-negative components of w. Suppose the predicted class for x is k and let

|| · ||+j =

√
∑

i∈P(wj)

(
·(i)
)2 (7.18)

NORM+ = −||u||+k (7.19)

ACT+(x) = − ∑
i∈P(k)

w(i)
k u(i) (7.20)

ANG++(x) = 1 +
ACT+(x)
||wk||+k ||u||

+
k

(7.21)

The rationale for using the positive indicators, instead of their counter-
part, is to reject OOD samples whose high probability would be due to being
unlikely to come from any other classes than the predicted one, rather than
appearing to belong to the predicted class. Note that positivity also implies
ANG cannot be zero.

7.4. Sample-free white-box OOD indicators 187

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.000

0.075

0.150

0.225

0.300

0.375

0.450

0.525

0.600

0.675

(A) MP

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

(B) H

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.6623

0.6628

0.6633

0.6638

0.6643

0.6648

0.6653

0.6658

0.6663

(C) T1000

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6
12.25

11.00

9.75

8.50

7.25

6.00

4.75

3.50

2.25

1.00

(D) LSE (Liu et al., 2020)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6
2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

(E) NORM

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

0.0

(F) PROJ

FIGURE 7.9: Visual comparison of several indicators in the case
of a softmax classifier for the 3G problem (Section 3.2.2)—first
part. Notice that the color scales depend on the indicators and
are not directly comparable; what matters is how OOD samples
would be ranked in comparison with the displayed ID classes.

188 Chapter 7. Sample-free out-of-distribution

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.00

0.24

0.48

0.72

0.96

1.20

1.44

1.68

1.92

(A) ANG

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.000

0.125

0.250

0.375

0.500

0.625

0.750

0.875

1.000

1.125

(B) Loss gradient magnitude inspired by
(Lee and AlRegib, 2020)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

x 1

1

2

3

4

5

6 0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

(C) Distance to class centers somewhat
similar to (Lee et al., 2018b)

FIGURE 7.10: Visual comparison of several indicators in the
case of a softmax classifier for the 3G problem (Section 3.2.2)—

second part.

7.4. Sample-free white-box OOD indicators 189

Comparison of the optimality-based indicators. Figures 7.9 and 7.10 illus-
trate some of the optimality-based indicators. As is apparent, MP and H
are similar. T1000, PROJ and LSE (Liu et al. 2020; see Paragraph “No data
(sample-free setting)”) also look alike. The closeness between T1000 and
PROJ is due to the hyper-planes having similar norms. The resemblance with
LSE is due to the log-sum-exp being a smooth approximation of the max-
imum, which is the logit in this case: the contour lines are parallel to the
hyper-planes except where there is an ambivalence regarding the class to
predict. Overall, LSE is similar to the other two and will not be included for
comparison. From this, PROJ is not expected to be significantly different from
T1000 for symmetric problems.

Six sites have been marked on the plots: near the center (site 1), in the
midst of a class (site 2), in the direction of a class but further away (site 3),
in a class-less region near a boundary (site 4), remote from all classes but at
a distance comparable (slightly greater) to the class center (site 5), and on
the boundary but further away than the class centers (site 6). The optimality
conditions suggest that ID samples cannot appear at sites 1 and 5 (otherwise
the model would not be good) and are unlikely at sites 3 and 6 (the gradient
would die out before the samples are pushed that far; cf. Eq. 3.52 and 3.113).
It is hard to say where OOD samples may appear in practice, however. Most
works implicitly assume they would be found on the 1-5-sites diagonal (or
any high-dimension equivalent), usually more closely to site 1. Whether sites
3 and 6 are realistic OOD cases is unclear. Capturing OOD samples which fall
near an ID mode (such as site 2) seems impossible.

Interestingly, different methods capture different sites. Site 1 is the most
often captured site, although ANG and the loss gradient magnitude (LGM;
see Lee and AlRegib 2020 and Paragraph “Both ID and OOD, labeled”) might
fail. Site 3 and 6 are the hardest to capture; only a method based on the
distance to the class centers seems to be working. The isotropic nature of
NORM seems off for this problem. Site 5 is easily flagged out by MP, H, ANG
and somewhat LGM the distance-to-center indicators but is easily missed by
T1000 and its group.

Some caution must be exerted regarding this discussion, however. For
once, the intuition gathered with the 2D case might fail to translate to high
dimension problems (which most practical ones are). Secondly, this is il-
lustrated on a well-behaved toy problem. As Section 3.6.2.1 showed classes
might not be so well distributed in the latent space—although that case must
also be subjected to the high-dimension reservations.

7.4.2 Batchnorm-based indicators

Beyond optimality conditions, the presence of batch normalization layers
(Ioffe and Szegedy, 2015) offers the opportunity to define additional indi-
cators. Indeed, those layers are based on statistical parameters directly esti-
mated on the training data, promising a direct route to ID statistical informa-
tion.

190 Chapter 7. Sample-free out-of-distribution

Using batch-normalization-derived features for OOD detection has been
proposed by (Quintanilha et al., 2018), however in the context of one-class
and supervised OOD detection. Here we propose indicators based on them.
Such features also tend to be used more and more in the context of data-free
compression (Cai et al., 2020b; Yin et al., 2020), which basically relies on the
definition of OOD losses.

Batch-normalization has been discussed in Section 3.6.3.4. For the pur-
pose of OOD detection, the interesting part is that it estimates the µ

(c)
l and

σ
(c)
l parameters for each channel 1 ≤ c ≤ Cl of each batch-normalization

layer l ∈ B (B ⊂ {1, . . . , L} being the set of batch-normalization layers).
Since those parameters are specific to ID samples, we can hope to use them
for OOD rejection. More precisely, defining,

M(c)
l =

1
Hl ×Wl

Hl

∑
h=1

Wl

∑
w=1

y(c,w,h)
l (7.22)

S(c)
l =

√√√√ 1
(Hl ×Wl)− 1

Hl

∑
h=1

Wl

∑
w=1

[
y(c,w,h)

l −M(c)
l

]2
(7.23)

V(c)
l = (Hl ×Wl − 1)

[
y(c)l

]2
(7.24)

where y(c,w,h)
l is z(c,w,h)

l−1 standardized with µ
(c)
l and σ

(c)
l , we can expect that

EI{y
(c)
l } = 0 (7.25)

EI{M(c)
l } = 0 (7.26)

EI{S
(c)
l } = 1 (7.27)

EI{V
(c)
l } ∼ χ2

(Hl×Wl−1) (7.28)

Given these conditions, we propose to derive the following indicators
(where Bs ⊆ B is a subset of batchnorm layers):

DMSBs =
1

CBs
∑

l∈Bs

Cl

∑
c=1

(
M(c)

l

)2
(7.29)

DMS-AOSBs =
1

CBs
∑

l∈Bs

Cl

∑
c=1

1
Hl ×Wl

Hl

∑
h=1

Wl

∑
w=1

(
y(c)l

)2
(7.30)

DSSBs =
1

CBs
∑

l∈Bs

Cl

∑
c=1

(
y(c)l − 1

)2
(7.31)

DSS-EXTBs =
1

CBs
∑

l∈Bs

Cl

∑
c=1

I

[
ext(α)

χ2
(Hl×Wl−1)

(
V(c)

l

)]
(7.32)

where CBs = ∑l∈Bs Cl is the total number of channels in the considered set,

7.5. Empirical study 191

TABLE 7.3: Summary of sample-free indicators and their
bounds, when available.

0 ≤ MP ≤ 1− 1/K 0 ≤ ANG++ ≤ 1
0 ≤ H ≤ log K 0 ≤ IN-DMS

0� T1000 ≤ 1− 1/K 0 ≤ IN-DMS-AOS

0� ODIN ≤ 1− 1/K 0 ≤ IN-DSS

NORM 0 ≤ IN-DSS-EXT ≤ 1
0 ≤ ANG ≤ 1 0 ≤ DMS

PROJ 0 ≤ DMS-AOS

ACT 0 ≤ DSS

ACT+ 0 ≤ DSS-EXT ≤ 1

and ext(α)A is true only when its argument has a (bilateral) p-value according
to law A below the significance level α.

DMS/DSS stands for departure from the mean/standard deviation standar-
dization, and AOS stands for average of sum. In the remainder we will as-
sume α = 0.1 for DSS-EXT.

The intuition behind DMS, DMS-AOS and DSS is that they should produce
small values on I . Note however that if Bs contains many layers, the value
might rise quickly since inter-channel correlations are expected. The intuition
behind DSS-EXT is that the variance of y(c,w,h)

l should not produce extreme
values too often on I .

Relevant subsets. Since the input vectors of the network must also be stan-
dardized, we treat the preprocessing as a pseudo-batchnorm layer. Some
subsets of batchnorm layers might work better than others. However, in the
absence of data, we cannot hope to learn which one is the best. In conse-
quence, we propose to focus on two sets: (i) the input pseudo-batchnorm
layer, and (ii) all the layers. We denote by the prefix IN- all indicators relating
solely on the input normalization so that IN-DMS = DMS{1}. We will refer to
those as the IN- indicators. We also drop Bs from the notation when Bs = B.

7.4.3 Summary

Table 7.3 summarizes the sample-free indicators and their bounds, when
available. All indicators are such that ID samples should portray small val-
ues. Although interpretable, probability-based indicators (MP, H, T1000,
ODIN) are not necessarily easier to bound (See Table 7.4 for some statistics
about the indicator distributions). Unbounded indicators are de facto harder
to use in a sample-free setting.

7.5 Empirical study

In this section, we evaluate how the proposed indicators perform individu-
ally. After detailing our methodology (Section 7.5.1.1), our main results are

192 Chapter 7. Sample-free out-of-distribution

TABLE 7.4: Percentiles of the indicator distributions. The indi-
cators were extracted from a DenseNet 121 learned on CIFAR
10. See Section 7.5.1.1 for more information about the network

and the dataset.

CIFAR 10 (TEST SET) TINY IMAGENET
P25 P50 P75 P25 P50 P75

MP 0.000 0.000 0.003 0.014 0.112 0.339
H 0.000 0.004 0.036 0.123 0.628 1.233
T1000 0.898 0.898 0.899 0.899 0.899 0.899
ODIN 0.898 0.898 0.898 0.899 0.899 0.899
NORM −6.97 −6.34 −5.78 −6.63 −6.02 −5.46
ANG 0.267 0.314 0.391 0.479 0.577 0.657
PROJ −4.87 −4.28 −3.61 −3.28 −2.55 −1.96
ACT+ −12.9 −11.5 −10.1 −10.2 −8.78 −7.54
ANG+ 0.231 0.266 0.319 0.361 0.424 0.477
IN-DMS 0.405 0.677 1.065 0.430 0.735 1.154
DMS 9.377 10.36 11.49 8.722 9.634 10.78
IN-DSS 0.236 0.423 0.669 0.267 0.450 0.670
DSS 7.690 8.116 8.661 7.850 8.385 9.112
1C-SUM -153.4 -138.5 -123.0 -120.6 -96.9 -79.2

discussed in Section 7.5.1.2. A more thorough examination of the problem of
semantic and covariate shifs is conducted in Section 7.5.2.

Section 7.5.3 goes over additional findings. Namely, Section 7.5.3.1 dis-
cusses the redundancy and complementarity between indicators. Since some
indicators are based on the optimality assumption, Section 7.5.3.2 examines
how the indicators fare when this assumption is not fully met. Finally, Sec-
tion 7.5.3.3 is concerned with how the indicators can be used to detect mis-
classified samples and tackled both this task and OOD detection.

7.5.1 Main experiment

7.5.1.1 Protocol

ID tasks. In order to evaluate the indicator performances, we have trained
three networks on three image classification tasks to serve as ID datasets,
namely, we used CIFAR 10, CIFAR 100 (Krizhevsky, Hinton, et al., 2009) and
ImageNet (Deng et al., 2009). Experiments were all carried out with PyTorch
(Paszke et al., 2017).

CIFAR datasets consist in 60000 32 × 32 RGB images. There is a stan-
dard train/test split of respectively 50000 and 10000 images. CIFAR 10 has
10 classes, while CIFAR 100 has 100. The datasets are balanced class-wise
(across both train and test sets). In the case of ImageNet, we followed the
standard procedure to rescale the RGB images and extract centered 224× 224
crops on the 100000 test images spread among 1000 classes.

The networks are a ResNet 50 (He et al., 2016), a WideResNet-40 (Zagoruyko
and Komodakis, 2016) and a DenseNet 121 (Huang et al., 2017). All three ar-
chitectures are ReLU-based and output non-negative latent vectors. They
also include batch-normalization layers.

https://pytorch.org/

7.5. Empirical study 193

TABLE 7.5: Model Performance (in %) on the ID task.

ACCURACY IMAGENET

CIFAR 10 CIFAR 100 TOP-1 ERROR TOP-5 ERROR

RESNET 50 94.11 ± 0.25 77.48 ± 0.23 23.85 7.13
WIDERESNET 94.18 ± 0.31 74.17 ± 0.72 21.49 5.91

DENSENET 121 94.30 ± 0.31 77.89 ± 0.04 25.35 7.83

TABLE 7.6: OOD dataset characteristics.

GAUSSIAN 32× 32× 3 µ = 0.5, σ = 0.25
CLIPPED ON [0, 1]

SVHN 32× 32× 3 NETZER ET AL. (2011)

MNIST 28× 28 LECUN ET AL. (1998A)

FASHION MNIST 28× 28 XIAO, RASUL, AND VOLLGRAF (2017)

TINY IMAGENET 64× 64× 3 DENG ET AL. (2009)

LSUN 256× 256× 3 YU ET AL. (2015)2

CIFAR 10/100 32× 32× 3 KRIZHEVSKY, HINTON, ET AL. (2009)

On CIFARs, they expect input of size 32 × 32 and were trained for 450
epochs by stochastic gradient descent (batches of size 128, weight decay of
5× 10−4 and momentum of 0.9). The learning rate was initialized at 0.1. It
was decreased by a factor 10 after 150 epochs and again at epoch 300. Each
decrease was accompanied by a restart from the best model according to the
validation accuracy. Horizontal flip and random cropping (with a padding
of 4) were used as data augmentation.

On ImageNet, we used the pre-trained networks available in PyTorch
which expect 244× 244 RGB images as input.

Table 7.5 gathers the accuracy of each model.

OOD datasets. For each ID dataset, we will consider multiple OOD datasets
(see Table 7.6 for the details) whose proximity with the ID data will vary, of-
fering a broad spectrum of cases to assess on which tasks each indicator is
effective.

To be more precise, Gaussian is a dataset of generated images. Although
there exists a chance to produce any images with this distribution, the proba-
bility to produce one (or enough to skew the results) images which could be
confounded with ID samples is as good as nonexistent. MNIST and fashion
MNIST are gray-level images and fall into the “gross statistical differences”
category, as well as having different label spaces. Compared to the synthetic
Gaussian dataset, structures are still present in the images. SVHN (Street
View House Numbers) is a clear semantic shift and is expected to have an in-
put distribution somewhat different from the natural images contained in the
other dataset. Although the label space of LSUN is technically disjoint of the
ID dataset, objects in the scene might fall into one of their classes. The over-
lap is more pronounced for the CIFAR 10(0) and (Tiny)Imagenet datasets.

In all cases, the ground truth was established under the source identifi-
cation formulation. All images were resized and cast to RGB when needed,

https://pytorch.org/

194 Chapter 7. Sample-free out-of-distribution

then rescaled in the range [0, 1] and normalized channel-wise according to
the ID dataset input statistics, as is expected when operating the network.

ID/OOD balance. Except in the case of the supervised approach (see main
text), the whole ID test set and the whole OOD dataset are used to assess
the indicator performances. As a consequence, the classification task is quite
unbalanced (as might be the case in a real setting, although we might expect a
much higher proportion of ID samples). For artificial datasets, we generated
50000 samples.

Metric. We tackle the problem from the OOD rejection perspective. This
means we consider OOD samples as positive and use the dataset origin as
ground truth (source identification). We use the test sets of CIFAR 10, CIFAR
100 or ImageNet as negative (ID) samples. Those have never been seen during
training.

We report the area under the ROC curve (auroc) for each indicator used
to discriminate between positive (OOD) and negative (ID) samples. Most
papers in the domain also report the OOD rejection rate for a fixed ID ac-
ceptance rate. In our setting, ID samples are not available, and setting the
threshold at a given acceptance rate is a challenge in itself. Besides, risk-
balancing is application-dependent, therefore privileging a risk-independent
metric should be more helpful in general. Contrary to precision-recall curves,
ROC curves are fully independent of the—typically unknown—proportion
of ID/OOD samples. We therefore feel auroc is the most relevant metric.

Pre-processing. Prior to running through the network, all images (ID and
OOD) are resized to fit the network expected size, transformed to RGB if
necessary, rescaled in the range [0, 1] and then normalized channel-wise ac-
cording to the ID dataset input statistics (see next paragraph). Artifacts due
to resizing may help detect OOD samples. In the case of artificial datasets,
images are generated with the appropriate size.

Input normalization. For CIFARs, we estimated the channel mean/stan-
dard deviation on the training set. Regarding the standard deviation, we
computed the square root of the total variance, in accordance with PyTorch’s
batchnorm implementation. For some reasons, available statistics usually
used the average intra-image variance, disregarding the inter-image variance.
Admittedly, the difference is slight.

For ImageNet, we re-used the pre-trained network and thus conformed
to using the same statistics as were used for training (based on intra-image
variance).

Variability. On CIFARs, results are established on three random initializa-
tions of the network’s parameters and is, with batch sampling, the only sources
of randomness; artificially-generated datasets are the same throughout the
experiments. Since we re-used pre-trained models for ImageNet, there is

https://pytorch.org/

7.5. Empirical study 195

only one experiment per network (there is only one set of weights avail-
able per architecture). Note that the IN- indicators are independent of the
network; they only depend on the input, channel-wise statistics of the ID
datasets. As such, they are not subject to randomness.

Supervised results. We also include supervised results. In that case, half
of the ID testing set and half of the OOD data are used to build a linear
SVM (Cortes and Vapnik, 1995). The remaining half is used to evaluate the
indicators. This means that the training and testing OOD samples are from
the same distribution—the most favorable case, totally outside of our setting.
These results are only reported for comparison purposes. It is worth noting
that the supervised approach performs almost perfectly on the easy tasks and
is almost always best on the hard ones.

7.5.1.2 Results

Table 7.7 shows areas under the ROC curves (auroc) for OOD detection with
CIFAR 10 as the ID set on ResNet 50. Detailed tables for the other ID sets and
networks are present in Appendix B.2. Table 7.8 summarizes the average
rank (over all the OOD datasets) of each indicator for all settings. Note that
the ranking is sensitive to the choice of OOD datasets, although major trends
seem stable. For the purpose of this section, the last line can be ignored.

Baseline indicators. ODIN performs well in the case of ImageNet. On CI-
FARs, it is less clear whether the cost of the backward pass is worth it com-
pared to simply using T1000. As envisioned in the previous section, H is
slightly better than MP, although ODIN and T1000 are better suited as sin-
gle indicators.

Batchnorm indicators. They do not work consistently. For these indicators,
the OOD dataset has a high impact on the ranking and results are better un-
derstood by looking individually at the datasets (e.g. Table 7.7). They are
intuitive, however. Indicators based on the input normalization work only
on grey-level datasets. When input statistics are close to the ID’s (Tiny Ima-
geNet, LSUN), those indicators do not work better than random. They also
fail on the noisy Gaussian dataset, which has individual pixel statistics that
are close to ID’s. It would be easy to reject such samples if inter-channel in-
formation were available, as demonstrates the indicators based on all batch-
norm layers for which such information is made available thanks to the con-
volutions. Overall, it is clear that, in our setting, batchnorm indicators can
only discriminate specific OOD sets.

It is interesting to note that these performances are roughly equivalent on
CIFAR 10 and CIFAR 100, implying these features do not rely on the assump-
tion the model performs well at its original task.

196
C

hapter
7.

Sam
ple-free

out-of-distribution

TABLE 7.7: Area under the ROC curve for OOD detection with CIFAR 10 as ID on ResNet 50. Shading highlights the 50%
best scores per column (darker is better). The scores are averaged over three runs (i.e. network initializations). Note that

IN- indicators are independent of the network, hence the single value.

GAUSSIAN SVHN MNIST FASHION MNIST TINY IMAGENET LSUN (TEST SET)
ODIN 91.36 ± 5.42 90.22 ± 4.03 96.88 ± 0.70 95.89 ± 0.75 87.22 ± 2.12 92.38 ± 1.56
T1000 83.17 ± 9.00 93.14 ± 3.05 94.81 ± 0.78 95.43 ± 0.62 88.70 ± 1.23 92.66 ± 1.04
MP 89.27 ± 4.90 91.89 ± 1.30 90.76 ± 0.65 91.97 ± 0.47 87.05 ± 0.61 90.08 ± 0.60
H 89.05 ± 5.03 92.51 ± 1.46 91.40 ± 0.62 92.71 ± 0.58 87.52 ± 0.67 90.62 ± 0.59
NORM 53.96 ± 33.02 85.46 ± 10.89 92.28 ± 4.92 89.52 ± 4.00 80.19 ± 4.27 82.50 ± 4.93
NORM+ 54.99 ± 28.60 87.17 ± 9.12 94.61 ± 2.09 92.92 ± 1.85 85.00 ± 2.61 88.87 ± 2.82
ACT 83.34 ± 9.02 93.32 ± 2.95 94.90 ± 0.70 95.47 ± 0.59 88.77 ± 1.18 92.50 ± 1.08
ACT+ 87.68 ± 9.18 94.23 ± 3.50 96.03 ± 1.44 95.93 ± 0.72 88.05 ± 1.53 91.68 ± 1.38
PROJ 85.53 ± 8.09 94.01 ± 2.42 95.61 ± 0.40 95.47 ± 0.58 88.61 ± 1.26 92.05 ± 1.21
ANG 91.78 ± 2.79 93.41 ± 0.09 94.15 ± 0.60 94.76 ± 1.02 88.35 ± 0.51 91.98 ± 0.58
ANG++ 99.89 ± 0.12 97.26 ± 0.17 94.25 ± 1.22 93.41 ± 1.70 86.05 ± 0.88 88.43 ± 0.75
IN-DMS 7.85 60.46 98.59 71.94 52.89 49.26
IN-DMS-AOS 52.79 30.41 99.68 96.02 52.55 54.91
IN-DSS 5.13 85.99 36.16 58.53 52.03 42.94
DMS 100.00 ± 0.00 80.29 ± 8.30 93.97 ± 2.47 69.39 ± 6.49 34.21 ± 5.54 22.67 ± 5.33
DMS-AOS 99.25 ± 0.48 4.72 ± 2.26 81.12 ± 9.04 59.42 ± 9.53 25.25 ± 2.65 23.78 ± 2.66
DSS 99.86 ± 0.14 96.51 ± 0.60 70.33 ± 15.30 62.22 ± 3.53 55.01 ± 1.90 47.40 ± 4.40
DSS-EXT 98.24 ± 0.61 97.70 ± 0.34 66.93 ± 1.88 67.64 ± 1.67 66.84 ± 0.88 62.94 ± 1.38
SUPERVISED 100.00 ± 0.00 99.75 ± 0.05 100.00 ± 0.00 99.70 ± 0.03 90.82 ± 0.45 96.14 ± 0.19
1C-SUM 97.84 ± 2.70 97.83 ± 0.95 96.47 ± 1.58 95.86 ± 0.63 88.86 ± 0.79 91.61 ± 0.90

7.5. Empirical study 197

Latent space indicators. As expected, NORM and NORM+ do not convey the
appropriate information. The remaining indicators rank well, however. On
ImageNet, positive-only indicators seem to work better, while this is not as
clear for the other ID tasks. In particular, ANG++ performs better than ANG
on ImageNet but ANG works better in the other settings (except for ResNet
50 on CIFAR 100).

Once again, the OOD dataset has an impact on the ranking: ACT/ACT+
tend to struggle with (fashion) MNIST on CIFAR 100 and ImageNet (Ap-
pendix C.1), while, with ImageNet as ID task, ANG++ comes way ahead of
the other indicators against CIFARs as OOD but underperforms on LSUN.
On the hardest cases with CIFARs as ID tasks (i.e. rejecting Tiny ImageNet/L-
SUN samples) ODIN does not perform better than T1000.

Discussion. Batchnorm indicators can capture gross statistical differences
but fail on more challenging tasks. For those, optimality-based indicators
are more appropriate. In a few instances, ANG/ANG++ perform extremely
well. ODIN is also a strong baseline if the cost of the backward pass can
be paid. Note however that the gap between ODIN and ANG++ is usually
wider when the former underperforms (e.g. Gaussian and SVHN on Table
7.7), suggesting that ANG++ is more robust besides being faster to compute.

Since PROJ and ACT/ACT+ are harder to bound, they are also harder to
use in a sample-free context. On that matter, Table 7.4 displays some statistics
about a few indicators. As can be seen, pinpointing where the threshold
should be placed is not easy on challenging tasks, at least without data. This
will be discussed further in Section 7.7.

7.5.2 Semantic and covariate closeness

In this section, we take a closer look at how the indicators perform with re-
spect to semantic and covariate shifts. We derive two sets of partition from
CIFAR 10 illustrated in Table 7.9 (top part). The first partition correspond to
the first five classes (h1) and the remaining ones (h2). The second partition
splits the animals (h3) from the vehicles (h4). Note that the all of the base task
are balanced (roughly 4500 images per class in all cases).

Following the protocol of the previous section, ResNet 50 models have
been trained on each sub-dataset. As can be gleaned from Table 7.9, the ac-
curacies are roughly in the same range, except on h3 where it is significantly
smaller, possibly an effect on having more classes. The effect of the model
quality is discussed in Section 7.5.3.2.

The h1/h2 partition is both semantically close (having both animals and
vehicles) and statistically close, at least at the level of the input statistics (Ta-
ble 7.9 bottom three rows). On the other hand, the h3/h4 partition is more
varied both semantically and (consequently) statistically. We would like to
insist on the fact that the OOD images have been normalized according to
the input statistics of the ID task.

Table 7.10 gathers the results for the two partitions using one of the sub-
sets as ID base task and the other as OOD. The first thing to note is that the

198 Chapter 7. Sample-free out-of-distribution

TABLE 7.8: Average indicator rank (lower is better). These are
the average across datasets of the indicator rank per dataset.
R50, W and D121 stand for ResNet 50, WideResNet and
DenseNet 121, respectively. Shading highlights the 50% best

(i.e. topmost) scores per column (darker is better).

CIFAR 10 CIFAR 100 IMAGENET
R50 W D121 R50 W D121 R50 W D121

ODIN 7.30 8.20 10.70 7.20 7.30 6.30 3.40 4.60 4.90
T1000 7.80 7.30 9.30 7.50 8.00 6.70 9.30 9.90 10.30
MP 11.80 11.80 8.80 9.80 13.80 10.00 12.60 11.60 13.40
H 11.00 10.20 7.30 12.50 10.30 11.20 8.90 8.60 9.60
NORM 14.50 13.20 18.00 14.70 15.70 14.70 13.70 18.30 14.90
NORM+ 12.30 10.30 15.20 12.80 14.20 13.30 12.30 17.00 13.10
ACT 7.00 6.30 8.50 7.20 8.00 6.70 9.40 10.00 10.10
ACT+ 7.00 7.70 12.80 8.00 8.00 8.20 6.70 9.60 9.00
PROJ 7.20 6.00 7.70 9.30 7.30 8.80 9.70 9.90 9.10
ANG 8.20 9.00 4.50 7.80 8.30 7.00 11.30 8.40 10.90
ANG++ 8.50 13.70 7.30 4.30 10.70 8.80 4.70 3.10 5.10
IN-DMS 14.50 14.80 14.50 14.80 15.00 14.80 17.00 15.60 16.40
IN-DMS-AOS 12.30 12.20 11.70 11.00 12.70 11.30 14.70 14.00 14.10
IN-DSS 18.50 18.50 17.70 18.00 15.50 17.80 17.60 17.00 17.40
DMS 14.50 12.00 11.00 16.30 9.50 16.20 8.30 10.40 12.60
DMS-AOS 16.70 16.80 17.20 13.30 16.70 13.80 18.30 16.00 17.70
DSS 12.80 12.00 11.30 19.50 7.80 19.30 11.40 9.30 6.70
DSS-EXT 12.20 14.30 10.80 9.20 13.30 9.20 14.30 11.40 9.30
SUPERVISED 1.00 1.00 1.00 1.30 1.80 1.70 1.00 1.00 1.00
1C-SUM 4.80 4.70 4.70 5.30 6.00 4.20 5.40 4.40 4.30

results are not symmetric, at least in the case of the h1/h2 partition. Training
a network on h1, it is much more difficult to detect h2 samples than the other
way around. This is not true for the h3/h4 partition. Interestingly, this does
not seem to originate from the quality of the model as the worst models are
those of h3. Where does the asymmetry stem from remains an open question.

Without surprise, the batchnorm indicators are struggling with the sta-
tistical closeness. Only DSS and DSS-EXT seem helpful in the h3/h4 case, as-
suredly due the wider gap in input statistics.

Overall, the results are better on the h3/h4 partition than on h1/h2. This
is unsurprising since the latter pair is much closer semantically and closer
statistically as well.

As far as individual indicators are concerned, the situation is quite differ-
ent between partitions. On h1/h2, T1000, MP and H perform best, with ACT
and PROJ tagging along, whereas ANG is lagging behind. This is an interest-
ing piece of geometrical trivia since looking at the norm of the latent vector
(cf. NORM) or its orientation (cf. ANG) is not as good as looking at both at the
same time (e.g. PROJ). On h3/h4, the situation is more standard.

Once again, the supervised models work best and bring a significant in-
crease in auroc scores, suggesting the sample-free indicators convey mean-
ingful information.

7.5. Empirical study 199

TABLE 7.9: Partitions over CIFAR 10. The accuracy (expressed
in percent) is established on a ResNet 50 network. Stat. repre-
sents the channel-wise averages and standard deviations in the

input space.

h1 h2 h3 h4
C

L
A

SS
E

S

AIRPLANE DOG BIRD AIRPLANE
AUTOMOBILE FROG CAT AUTOMOBILE

BIRD HORSE DEER SHIP
CAT SHIP DOG TRUCK

DEER TRUCK FROG -
- - HORSE -

ACCURACY 96.05± 0.30 97.10± 0.25 93.17± 0.56 96.36± 0.16

ST
A

T. R 0.49± 0.25 0.49± 0.25 0.49± 0.24 0.50± 0.26
G 0.49± 0.24 0.48± 0.25 0.47± 0.23 0.51± 0.26
B 0.45± 0.26 0.44± 0.26 0.40± 0.24 0.52± 0.27

Conclusion. It is clear that the closer the OOD set (both semantically and
statistically) the harder to tell it apart it is. On h3/h4 the overall detection
performances are convincing. On the much closer partition, however, de-
tection suffers severely. It should come as no surprise that tackling such a
difficult OOD task with no data is so challenging—even the over-optimistic
supervised method suffers.

Interestingly, it has also been shown that OOD detection is not always
symmetric.

7.5.3 Additional results

This section investigates several related topics. In Section 7.5.3.1 the redun-
dancy between indicators is analyzed. Section 7.5.3.2 investigates how the
quality of the model impacts the performance of the indicators. Finally, Sec-
tion 7.5.3.3 takes a look at the task of detecting misclassification in the net-
work prediction, as well as the joint task of misclassification and OOD detec-
tions.

Unless otherwise specified, the protocol follows the one of Section 7.5.1.1.

7.5.3.1 Complementarity/redundancy

We used principal component analysis (PCA) to assess the (linear) redun-
dancy or complementarity of the proposed indicators. For each dataset in-
dependently, we created one unsupervised n× p matrix Md. Md[i, j] is value
of the jth indicator for the ith sample from dataset d, standardized according
to the mean/standard deviation of indicator j on d. We then computed the
PCA of each matrix (Figure 7.11).

Figure 7.11a shows how the ratio of explained variance evolves with re-
spect to the number of principal components. The first component accounts
for 50% of the variance and roughly half of the components are needed to
account for the majority (i.e. > 95%) of the variance.

200 Chapter 7. Sample-free out-of-distribution

TABLE 7.10: Area under the ROC curve for OOD detection with
the h1/h2 and h3/h4 partitions on ResNet 50. The first subset
corresponds to the ID base task and the second to the OOD dataset.
Shading highlights the 50% best scores per column (darker is
better). The scores are averaged over three runs (i.e. network
initializations). Note that IN- indicators are independent of the
network, hence the single value. 1C-Sum* refers to the sum-

mary indicator that includes no batchnorm indicators.

INDICATOR h1 (ID) / h2 (OOD) h2 / h1 h3 / h4 h4 / h3
T1000 78.02 ± 0.69 85.48 ± 0.11 90.89 ± 0.60 90.12 ± 1.33
MP 78.37 ± 0.45 85.25 ± 0.31 88.16 ± 0.18 88.08 ± 0.91
H 78.43 ± 0.45 85.38 ± 0.27 88.53 ± 0.19 88.33 ± 1.00
NORM 71.55 ± 2.48 81.92 ± 1.34 87.76 ± 1.50 89.54 ± 1.74
NORM+ 74.40 ± 1.79 83.46 ± 0.86 89.75 ± 1.14 89.66 ± 1.51
ACT 77.94 ± 0.72 85.25 ± 0.15 91.03 ± 0.61 91.10 ± 1.26
ACT+ 75.95 ± 1.42 84.52 ± 0.19 91.38 ± 0.74 91.75 ± 1.36
PROJ 77.20 ± 0.75 85.04 ± 0.16 91.01 ± 0.63 91.30 ± 1.19
ANG 75.79 ± 0.97 83.42 ± 0.16 89.20 ± 0.64 90.05 ± 1.22
ANG++ 76.06 ± 0.86 78.75 ± 0.36 84.69 ± 2.54 83.22 ± 3.02
IN-NOTA 45.12 55.28 54.17 52.69
IN-DMS 43.87 56.43 58.77 56.95
IN-DMS-AOS 53.58 46.71 66.88 41.47
IN-DSS 41.47 59.04 37.64 65.19
NOTA 53.14 ± 4.43 49.67 ± 2.39 47.79 ± 2.73 52.71 ± 8.25
DMS 24.92 ± 1.64 25.42 ± 0.50 32.60 ± 1.85 31.60 ± 3.32
DMS-AOS 33.61 ± 1.99 27.36 ± 0.87 29.85 ± 4.53 15.63 ± 1.72
DSS 51.49 ± 1.75 58.34 ± 2.09 62.28 ± 4.29 75.58 ± 4.76
DSS-EXT 57.63 ± 1.55 62.69 ± 1.62 72.98 ± 1.71 80.04 ± 1.55
1C-SUM 73.52 ± 2.10 83.82 ± 0.49 92.04 ± 0.58 91.97 ± 0.54
1C-SUM* 77.33 ± 0.77 85.06 ± 0.18 91.00 ± 0.68 90.99 ± 1.27
SUPERVISED 83.04 ± 0.43 87.60 ± 0.80 95.06 ± 0.52 94.90 ± 0.52

Figures 7.11b-7.11d show how the components relate to the original indi-
cators. As can be seen, the first component mainly focuses on the optimality-
based indicators. The large quantity of variance it explains is somewhat
misleading since more than half of the indicators are so highly correlated
themselves. Interestingly, ANG++, H, MP, NORM and NORM+ correlations are
spread among two components, mainly, suggesting those might be comple-
mentary to the other optimality-based indicators.

To a lesser extent, the second component focuses on the batchnorm in-
dicators. However, several components are needed to fully capture all the
batchnorm information. In particular, IN-DMS(-AOS) stand apart from the
other indicators. As for IN-DSS, it tends to share its variance with two com-
ponents. Of the remaining indicators, DSS and DSS-EXT are well correlated
and are the main focus of one component. On natural images, DMS and DMS-
AOS correlate with several components. On Gaussian noise, though—where
they perform well—they stand apart as the second component.

Overall, we observe three main clusters of indicators: (i) the optimality-
based ones, (ii) IN- indicators, and (iii) the remaining batchnorm ones. Nev-
ertheless, more than three components are needed to summarize (most of)

7.5. Empirical study 201

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Number of principal components

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f e

xp
la

in
ed

 v
ar

ia
nc

e

ID test
Mnist
Gaussian
Tiny ImageNet

(A) Variance distribution across principal
components

1 3 5 7 9 11 13 15 17
Component space

dss-ext
dss

dms-aos
dms

in-dss
in-dms-aos

in-dms
ang++

ang
proj

act+
act

norm+
norm

h
mp

T1000

Fe
at

ur
e

sp
ac

e

0.0

0.2

0.4

0.6

0.8

1.0

(B) Loading analysis on CIFAR 10 (ID
set).

1 3 5 7 9 11 13 15 17
Component space

dss-ext
dss

dms-aos
dms

in-dss
in-dms-aos

in-dms
ang++

ang
proj

act+
act

norm+
norm

h
mp

T1000

Fe
at

ur
e

sp
ac

e

0.0

0.2

0.4

0.6

0.8

1.0

(C) Loading analysis on Gaussian noise

1 3 5 7 9 11 13 15 17
Component space

dss-ext
dss

dms-aos
dms

in-dss
in-dms-aos

in-dms
ang++

ang
proj

act+
act

norm+
norm

h
mp

T1000
Fe

at
ur

e
sp

ac
e

0.0

0.2

0.4

0.6

0.8

1.0

(D) Loading analysis on Tiny ImageNet.

FIGURE 7.11: PCA analysis of redundancy on CIFAR 10 with
ResNet 50. In the loading analyses, pixel on row i and column j
expresses the absolute value of the correlation between the ith

indicator and the jth component.

the variance, since some indicators spread their variance across several com-
ponents. Although partially redundant, the indicators remain complemen-
tary and might help catch different OOD samples.

This analysis suggests that the first few principal components could be
used as new indicators that summarize the information contained in the
proposed ones. Nevertheless, using the principal components in practice is
not trivial, owing to the by-dataset standardization. One could use a proxy
dataset on which to perform the PCA reduction. We are concerned, however,
that this would further bias the detector to perform well mostly on closer
OOD datasets to the one used as reference, and degrade the performances in
the other cases.

7.5.3.2 Model quality

In this section, we would like to investigate how much the quality of the
model impacts the quality of OOD detection. To do so, we trained a ResNet
50 on CIFAR 10 and paused the learning at several stages to compute the

202 Chapter 7. Sample-free out-of-distribution

proposed indicators. We used the accuracy on the training set as criterion to
snapshot the performances. Table 7.11 holds the results with a selection of
indicators for several datasets, as well as the test set accuracies.

We can distinguish between three phases. At first, the model is training
but not yet overfitting. Around 95% of training accuracy, we see the first
evidence of overfitting occurring. At 99%, overfitting is no longer mild. At
this point, the gain of accuracy is small and the network decreases its train-
ing loss mainly by becoming more confident. A few observations are worth
mentioning.

Optimality-based indicators. Without surprise, optimality-based indica-
tors suffer from a sub-optimal network. At the first stage, the proportion
of misclassified test samples is relatively high. Since these indicators all rely
in some way or another on the predicted class, poor performances are to be
expected. Once reaching 95% of training accuracy, the proportion of misclas-
sified test samples remains stable, and the performances vary less, up to the
point where the model becomes overconfident. It does indeed seem easy for
the network to push all samples far away from the decision planes in the last
latent space, with a regrettable side effect for OOD detection. In this regime,
the variance of the results increases as well.

Batchnorm indicators. Firstly, note we did not include the IN- indicators
because they do not depend on the model. On datasets where they are useful
(Gaussian, SVHN), the other batchnorm indicators reach noticeable perfor-
mances early in the training but keep being refined up till the end. Over-
confidence is not a problem for those indicators. They are quite unstable on
MNIST and overall worthless against Tiny ImageNet.

Supervised method. When supervision is applicable, the model quality
plays a much less important role. Except on Tiny ImageNet, the indicator
performances with the model trained at 75% of accuracy are already close to
their best. Even at the first stage, the linear SVM model is able to discard
useless indicators (as against Gaussian, where individual optimality-based
indicators perform randomly). As showcases MNIST, the supervised models
also go beyond picking up the best individual indicator. This approach is
also more robust with respect to overconfidence.

Discussion. As expected, optimality-based indicators suffer from a sub-
optimal model. They also suffer from an over-confident network. Batchnorm
indicators are less predictable but seem to be also impacted by the model
quality when they are useful. Some supervision can compensate for the lack
of training.

7.5.3.3 Misclassification detection

In this section, we investigate whether wrongly rejected ID samples corre-
spond to misclassified ones. We performed two experiments.

7.5. Empirical study 203

Error detection. The first experiment consists in using the proposed indica-
tors to detect misclassifications: we only look at the training set of the base
task and label as positive the samples for which the network makes a classi-
fication error; samples for which the model is correct are labeled as negative.
Table 7.12 shows the area under the ROC curve for detecting these positive
samples. As can be seen, not all indicators are equal in this respect. Indicator
appropriateness is stable across architectures and datasets.

Optimality-based indicators are clearly best suited: a well-optimized net-
work should lower its confidence when making a mistake. Among those, MP
and H stand out, then comes ANG, followed by ACT, PROJ and T1000. For
this task, the positive variant are less adequate. T1000 always outperforms
ODIN; the adversarial perturbation will lower the network confidence blur-
ring the separation between positive and negative samples.

Batchnorm indicators are not suited for the task, suggesting that the net-
work mistakes are not due to statistical outliers.

Even though the networks make more mistakes on CIFAR 100, detecting
them is a harder challenge. Whether this is caused by a less well-performing
model, or by other factors (such as the number of classes which might spread
the predictions more across classes) is not clear.

Joint OOD and misclassification detection. In the second experiment, we
are considering both OOD samples and misclassification as the positive class.
In other words, are considered negative samples only those of the base task
for which the network predicts the correct class. Although misclassifications
cannot count as OOD samples per se, it might be more interesting in practice
to reject those as well.

Table 7.13 shows the average (over the OOD datasets—the same as for the
other experiments) improvement in auroc when tackling the joint task rather
than OOD detection only. It is confirmed that wrongly rejected ID samples
are partly due to misclassified ones, in the case of optimality-based indica-
tors. Indeed, they benefit from a raise of auroc, which is more pronounced
with CIFAR 100, where there are much more classification errors.

We also see that this is not true of batchnorm indicators, albeit IN-DMS and
IN-DSS see a small improvement. This suggests that misclassified samples are
not necessarily statistically off compared to other ID samples.

The previous analyses highlighted that indicators good at detecting mis-
classifications might differ from those best at OOD detection. However, when
the network performs well, misclassified samples should be negligible. This
is confirmed by table 7.14, which displays the average (across OOD datasets—
the same as for the other experiments) top rank for each indicator at this joint
task. On CIFAR 10, the relative order of indicators is mostly unchanged. On
CIFAR 100, MP and H are better positioned in the ranking, although the num-
ber of mistakes might be too low for them to outperform the best indicators.

Overall, it does seem there is an overlap between some of the wrongly
rejected ID samples and the misclassified ones. On the other hand, the fact
that indicators best at each task are not the same suggests misclassified and
OOD samples might follow different patterns.

204 Chapter 7. Sample-free out-of-distribution

TABLE 7.11: Model quality and its impact on OOD detection.
A ResNet 50 was trained on CIFAR 10 and paused when reach-
ing some training set accuracy threshold (first row) to exam-
ine how the features perform. The metric is the area under the
ROC curve. Coloring reflects the 50% of overall best results per

dataset.

TRAIN ACC. (%) 85 95 99 FULL

TEST ACC. (%) 84.99 ± 0.36 92.41 ± 0.49 93.58 ± 0.06 94.11 ± 0.25

G
A

U
SS

IA
N

T1000 89.71 ± 2.95 96.95 ± 3.31 95.41 ± 4.59 83.17 ± 9.00
MP 84.84 ± 5.74 95.06 ± 5.27 93.31 ± 5.37 89.27 ± 4.90
H 87.59 ± 4.08 95.65 ± 4.80 94.09 ± 5.33 89.05 ± 5.03
NORM 83.74 ± 1.46 96.57 ± 3.76 94.61 ± 5.47 53.96 ± 33.02
ACT 89.51 ± 3.40 96.87 ± 3.43 95.48 ± 4.50 83.34 ± 9.02
PROJ 89.69 ± 4.11 96.57 ± 3.97 95.63 ± 4.02 85.53 ± 8.09
ANG 89.41 ± 5.93 95.85 ± 4.38 94.73 ± 3.90 91.78 ± 2.79
DMS-AOS 85.95 ± 4.30 86.66 ± 4.07 95.01 ± 2.37 99.25 ± 0.48
DSS-EXT 96.60 ± 0.61 98.64 ± 0.55 98.17 ± 0.79 98.24 ± 0.61
SUPERVISED 100.00 ± 0.00 100.00 ± 0.01 99.99 ± 0.01 100.00 ± 0.00
1C-SUM 99.54 ± 0.13 99.88 ± 0.16 99.81 ± 0.21 97.84 ± 2.70

SV
H

N

T1000 94.68 ± 1.68 97.17 ± 1.05 96.49 ± 0.32 93.14 ± 3.05
MP 92.60 ± 1.17 94.89 ± 1.59 94.32 ± 1.27 91.89 ± 1.30
H 94.36 ± 1.35 96.36 ± 1.33 95.19 ± 1.14 92.51 ± 1.46
NORM 95.52 ± 2.72 97.27 ± 1.90 94.55 ± 1.83 85.46 ± 10.89
ACT 94.94 ± 1.61 97.24 ± 1.05 96.58 ± 0.30 93.32 ± 2.95
PROJ 94.84 ± 1.35 97.34 ± 0.96 96.68 ± 0.29 94.01 ± 2.42
ANG 90.84 ± 0.33 95.32 ± 0.29 94.36 ± 1.19 93.41 ± 0.09
DMS-AOS 11.38 ± 10.15 2.72 ± 1.27 3.92 ± 1.70 4.72 ± 2.26
DSS-EXT 97.80 ± 0.45 98.40 ± 0.22 97.88 ± 0.18 97.70 ± 0.34
SUPERVISED 99.50 ± 0.23 99.72 ± 0.01 99.65 ± 0.04 99.75 ± 0.05
1C-SUM 98.49 ± 0.59 99.00 ± 0.22 98.71 ± 0.17 97.83 ± 0.95

M
N

IS
T

T1000 89.35 ± 1.44 94.70 ± 0.18 94.88 ± 2.18 94.81 ± 0.78
MP 82.44 ± 1.47 90.03 ± 0.77 89.47 ± 2.48 90.76 ± 0.65
H 85.59 ± 1.33 91.76 ± 0.64 90.41 ± 2.67 91.40 ± 0.62
NORM 88.82 ± 5.56 94.92 ± 1.60 97.36 ± 0.93 92.28 ± 4.92
ACT 89.44 ± 1.53 94.73 ± 0.19 94.93 ± 2.19 94.90 ± 0.70
PROJ 90.42 ± 1.73 95.30 ± 0.22 95.59 ± 1.75 95.61 ± 0.40
ANG 88.18 ± 0.57 93.65 ± 1.14 91.93 ± 2.90 94.15 ± 0.60
DMS-AOS 64.11 ± 10.43 57.98 ± 2.28 65.48 ± 5.40 81.12 ± 9.04
DSS-EXT 68.02 ± 3.52 73.17 ± 1.54 68.64 ± 3.40 66.93 ± 1.88
SUPERVISED 99.99 ± 0.01 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
1C-SUM 93.76 ± 1.89 96.37 ± 0.40 96.53 ± 1.73 96.47 ± 1.58

T
IN

Y
IM

A
G

E
N

E
T

T1000 83.33 ± 1.67 89.57 ± 0.05 89.46 ± 0.36 88.70 ± 1.23
MP 80.37 ± 1.76 87.05 ± 0.17 87.20 ± 0.26 87.05 ± 0.61
H 82.07 ± 1.73 88.23 ± 0.12 87.81 ± 0.28 87.52 ± 0.67
NORM 80.70 ± 2.21 87.55 ± 0.17 83.57 ± 1.55 80.19 ± 4.27
ACT 83.09 ± 1.79 89.47 ± 0.09 89.47 ± 0.38 88.77 ± 1.18
PROJ 82.91 ± 1.80 89.34 ± 0.10 89.30 ± 0.38 88.61 ± 1.26
ANG 81.02 ± 1.16 87.99 ± 0.15 88.47 ± 0.23 88.35 ± 0.51
DMS-AOS 29.05 ± 2.07 22.83 ± 1.20 25.31 ± 1.19 25.25 ± 2.65
DSS-EXT 65.97 ± 1.83 68.01 ± 0.55 67.92 ± 0.39 66.84 ± 0.88
SUPERVISED 85.22 ± 1.50 90.71 ± 0.27 90.56 ± 0.17 90.82 ± 0.45
1C-SUM 82.84 ± 2.39 89.33 ± 0.27 88.92 ± 0.78 88.86 ± 0.79

7.5. Empirical study 205

TABLE 7.12: Error detection. Indicator performance (area un-
der the ROC curve) for misclassification prediction.

CIFAR 10
ResNet 50 WideResNet DenseNet 121

ODIN 85.63 ± 2.92 83.38 ± 3.84 75.17 ± 1.77
T1000 88.99 ± 1.39 88.60 ± 0.35 85.70 ± 1.85
MP 93.13 ± 0.59 92.96 ± 0.39 92.58 ± 0.28
H 93.12 ± 0.59 92.88 ± 0.38 92.47 ± 0.27
NORM 74.79 ± 5.41 70.38 ± 7.18 50.37 ± 3.27
NORM+ 81.55 ± 3.41 80.04 ± 3.75 66.54 ± 3.13
ACT 89.11 ± 1.33 88.63 ± 0.40 85.86 ± 1.80
ACT+ 87.35 ± 1.99 84.90 ± 2.30 78.52 ± 2.92
PROJ 88.97 ± 1.37 88.74 ± 0.12 86.09 ± 1.80
ANG 90.73 ± 0.52 91.79 ± 0.25 92.03 ± 0.58
ANG++ 90.48 ± 0.77 86.99 ± 0.73 86.96 ± 2.15
DMS 29.77 ± 4.79 37.70 ± 1.88 34.21 ± 1.89
DMS-AOS 31.05 ± 1.91 38.47 ± 1.51 33.11 ± 0.97
DSS 40.39 ± 0.34 41.14 ± 2.19 45.40 ± 1.12
DSS-EXT 53.46 ± 0.63 49.95 ± 1.84 56.76 ± 0.91
1C-SUM 89.42 ± 2.64 86.24 ± 2.97 85.02 ± 1.87

CIFAR 100
ResNet 50 WideResNet DenseNet 121

ODIN 76.86 ± 0.14 78.66 ± 1.13 78.55 ± 1.08
T1000 79.13 ± 0.32 79.78 ± 0.67 79.96 ± 0.27
MP 86.54 ± 0.47 86.47 ± 0.19 87.32 ± 0.35
H 86.19 ± 0.52 86.29 ± 0.17 86.87 ± 0.27
NORM 52.18 ± 0.72 62.44 ± 2.72 59.72 ± 3.18
NORM+ 65.77 ± 0.37 70.33 ± 1.86 69.47 ± 1.64
ACT 79.18 ± 0.32 79.80 ± 0.65 80.02 ± 0.28
ACT+ 74.06 ± 0.43 76.83 ± 1.17 76.94 ± 1.15
PROJ 80.56 ± 0.28 79.74 ± 0.56 80.80 ± 0.13
ANG 84.06 ± 0.35 81.45 ± 0.20 82.14 ± 1.21
ANG++ 82.24 ± 0.29 76.84 ± 0.62 77.35 ± 0.60
DMS 38.76 ± 0.53 39.46 ± 0.64 39.69 ± 0.97
DMS-AOS 39.47 ± 0.61 41.90 ± 0.29 41.12 ± 0.75
DSS 43.63 ± 1.06 44.46 ± 0.34 41.59 ± 1.29
DSS-EXT 49.13 ± 0.27 49.57 ± 0.38 47.81 ± 0.39
1C-SUM 78.95 ± 1.03 79.51 ± 0.89 81.82 ± 0.62

206 Chapter 7. Sample-free out-of-distribution

TABLE 7.13: Average auroc score improvement when tackling
the joint task of OOD and misclassification detection.

CIFAR 10
ResNet 50 WideResNet DenseNet 121

ODIN 1.30 ± 0.68 0.87 ± 0.51 0.60 ± 0.79
T1000 1.71 ± 0.93 1.22 ± 0.60 1.29 ± 0.51
MP 2.64 ± 0.60 2.22 ± 0.59 2.15 ± 0.43
H 2.47 ± 0.65 1.96 ± 0.66 1.99 ± 0.47
NORM 1.05 ± 1.20 0.21 ± 0.80 0.02 ± 0.79
NORM+ 1.40 ± 1.16 0.65 ± 0.70 0.75 ± 0.71
ACT 1.71 ± 0.94 1.20 ± 0.61 1.29 ± 0.52
ACT+ 1.33 ± 0.87 0.82 ± 0.69 0.99 ± 0.67
PROJ 1.64 ± 0.89 1.21 ± 0.62 1.29 ± 0.55
ANG 1.81 ± 0.47 1.83 ± 0.51 1.40 ± 0.56
ANG++ 1.25 ± 0.92 1.63 ± 0.80 1.19 ± 0.92
DMS -1.48 ± 1.16 -1.12 ± 1.05 -1.18 ± 1.03
DMS-AOS -1.38 ± 1.22 -1.10 ± 1.09 -1.40 ± 1.00
DSS -1.08 ± 1.02 -0.96 ± 1.02 -0.71 ± 0.96
DSS-EXT -0.41 ± 0.91 -0.52 ± 0.83 -0.19 ± 0.88
1C-SUM 1.20 ± 0.93 0.73 ± 0.81 0.85 ± 0.87

CIFAR 100
ResNet 50 WideResNet DenseNet 121

ODIN 4.39 ± 2.00 4.63 ± 2.53 4.49 ± 2.22
T1000 5.06 ± 2.74 4.99 ± 2.97 4.88 ± 2.59
MP 8.01 ± 2.35 8.10 ± 3.16 8.42 ± 2.91
H 9.01 ± 2.29 6.73 ± 3.05 9.25 ± 2.62
NORM -0.07 ± 2.62 2.19 ± 3.60 1.62 ± 2.94
NORM+ 2.78 ± 2.84 3.47 ± 3.26 3.40 ± 3.23
ACT 5.06 ± 2.71 4.99 ± 2.95 4.90 ± 2.58
ACT+ 3.21 ± 2.74 3.63 ± 3.37 3.85 ± 2.70
PROJ 5.67 ± 2.76 4.99 ± 2.99 5.31 ± 2.62
ANG 6.48 ± 2.87 5.75 ± 3.29 5.61 ± 2.86
ANG++ 4.61 ± 3.53 4.26 ± 3.36 4.10 ± 3.08
DMS -1.27 ± 4.83 -5.49 ± 4.35 -1.77 ± 4.21
DMS-AOS -3.82 ± 3.53 -3.74 ± 3.87 -3.39 ± 3.44
DSS 2.56 ± 2.98 -4.27 ± 4.50 1.69 ± 2.48
DSS-EXT -1.81 ± 3.18 -1.20 ± 2.80 -1.77 ± 3.37
1C-SUM 3.25 ± 3.56 3.37 ± 4.09 4.01 ± 3.45

7.5. Empirical study 207

TABLE 7.14: Average top ranking for the joint task of misclassi-
fication and OOD detection.

CIFAR 10
ResNet 50 WideResNet DenseNet 121

ODIN 6.83 7.00 9.67
T1000 6.83 5.33 8.33
MP 10.17 8.83 5.67
H 9.00 7.33 4.67
NORM 13.67 12.83 16.83
NORM+ 12.17 10.17 14.17
ACT 5.83 4.00 7.33
ACT+ 6.67 6.83 11.67
PROJ 6.00 4.00 6.33
ANG 6.17 6.83 2.17
ANG++ 7.00 11.83 5.83
DMS 14.33 13.83 12.33
DMS-AOS 16.17 17.67 17.50
DSS 11.83 13.00 11.67
DSS-EXT 11.33 13.17 10.83
1C-SUM 2.67 3.83 3.83

CIFAR 100
ResNet 50 WideResNet DenseNet 121

ODIN 5.83 5.50 5.83
T1000 6.33 6.33 6.00
MP 6.67 8.17 7.00
H 9.17 6.17 9.33
NORM 13.67 14.83 13.67
NORM+ 12.50 12.83 12.50
ACT 6.00 6.33 5.17
ACT+ 7.83 7.00 8.33
PROJ 6.67 5.83 6.67
ANG 5.33 5.67 3.33
ANG++ 3.00 8.83 8.00
DMS 17.00 13.83 16.83
DMS-AOS 14.67 17.33 14.33
DSS 18.67 11.33 18.50
DSS-EXT 10.33 13.33 9.50
1C-SUM 3.83 3.67 3.00

208 Chapter 7. Sample-free out-of-distribution

7.6 Summary indicators

The previous section concluded that there is no one-fits-all indicator. In this
section, we attempt to remedy this by proposing a summary indicator and
evaluating its performance against the other individual indicators.

Whereas combining indicators when ID and OOD data are available is as
straightforward as learning a model, it is not an easy task in a sample-free
setting. Accordingly, we propose a simple aggregation scheme that consists
in summing (a subset of) the previously-introduced indicators. The simple
intuition behind this sum is that it will allow benefiting both from the re-
dundancy and complementarity of the individual indicators. We called this
aggregation scheme the 1-class sum (1C-Sum).

Since all indicators are such that their values are low (resp. high) for ID
(resp. OOD) samples, this is also the case of their sum. However, since in-
dicators have very different distributions (see Table 7.4), directly summing
them would give them largely uneven weights in the aggregated indicator.
We thus propose to first rescale their distributions to comparable ranges by
standardizing them. In principle, this requires estimating the mean and vari-
ance of these indicators on ID samples, which are unavailable. We propose
instead to estimate statistics of the indicators on randomly generated data.
Arguably, random data could lead to poor estimates of ID means and vari-
ances but will, hopefully, nevertheless allow rescaling the indicators to more
comparable ranges.

As normalizing data, we chose uniform noise U (0, 1), matching the net-
work input size. Samples drawn from this distribution are then standardized
according to the ID statistics, as usual. Let hi, i = 1, . . . , N be the collection
of indicators, µi = Ex∼U{hi(x)} be the expectation of the ith indicator under
the uniform distribution, and σ2

i = Vx∼U{hi(x)} its variance. The summary
indicator H is the following sum:

H(x) =
N

∑
i=1

hi(x)− µi

σi
. (7.33)

We introduced in this sum all indicators, except the IN- indicators and ODIN.
The former performed poorly on the Gaussian dataset and are thus expected
to result in unsuitable standardization under uniform noise. ODIN was ex-
cluded to avoid its costly backward pass and keep the complexity of the 1C-
sum as low as possible.

Empirical analysis: OOD detection. To validate 1C-Sum, we tested it in the
same experimental conditions as for the other indicators (see Section 7.5 for
more details). From Table 7.8, one can see that 1C-Sum performs extremely
well, being almost always the second-best in terms of average ranking (after
the supervised approach which is not realistic in our setting). On the few
instances where it does not come second, it has a rank close to its challengers
(ANG++, ODIN). The contrary cannot be said: ANG++ and ODIN can have

7.7. Real-world setting 209

far worse rank than 1C-Sum. This is because when 1C-Sum is beaten by an
indicator, it is never by far. Overall, 1C-Sum is quite stable.

Empirical analysis: semantic and covariate closeness. On the statistically
and semantically closest task (h1/h2) 1C-Sum suffers from including any
batchnorm indicators at all (i.e. even the non-IN- ones). By removing them,
the summary is able to reach performances much closer to the best indicator.

Interestingly, on the other partition 1C-Sum works best when including
some of the batchnorm indicators (as usual). In that case, it is the best per-
forming indicator (disregarding the supervised one).

Overall, 1C-Sum is a good candidate but care about its components should
be taken when the OO-distribution is assumed to be very close.

Empirical analysis: model quality. Going back to Table 7.11, we see that
by combining indicators, it is possible to achieve good performances with
a less well-trained model (85% of training accuracy, a stage more on Tiny
ImageNet). At that stage, 1C-Sum is already performing better than most
other (sample-free) indicators at their peak. Unlike the supervised method,
this approach suffers somewhat from overconfidence.

Empirical analysis: misclassification detection. It appears that 1C-Sum
performs adequately for detecting misclassification (Table 7.12) , although
simpler indicators work better. This is unsurprising since some of the incor-
porated indicators perform less well on that task.

Interestingly, 1C-Sum benefits slightly from the joint task of detecting
OOD samples and misclassified ones, even though it incorporates batchnorm
indicators (Table 7.13.

Overall 1C-Sum remains the best bet to tackle OOD detection in a sample-
free setting (Table 7.8, possibly jointly with misclassification rejection (Table
7.14).

7.7 Real-world setting

The empirical analysis highlighted several indicators as adequate, in the sense
that they provide a thresholdable quantity capable of separating well ID and
OOD samples. The analysis was conducted through the lens of the area un-
der the ROC curve (auroc), a threshold-agnostic metric. In practice, however,
a cut point for the indicator must be chosen in order to automatically reject
samples. Although some indicators are more interpretable than others, it re-
mains challenging to set a threshold in a sample-free, and also architecture-
independent, fashion (See Table 7.4 and box-plots in Appendix B.3).

The approach we advocate is to collect a few samples while the model
is deployed in real conditions to adapt the threshold (and possibly fine-tune
the weights of 1C-Sum). We sketch below a few of such solutions.

210 Chapter 7. Sample-free out-of-distribution

Test samples can be labeled. If some (human) effort can be dedicated to
labeling observed samples as ID or OOD, setting a threshold is straightfor-
ward. Because of the univariate nature of our indicators, we expect that only
a few samples would be needed to converge to a stable threshold, although
it depends on the expected proportion of OOD samples. Obviously, if many
labeled samples become available, the problem will stop being sample-free
and one could consider supervised approaches. Our experiments show that
excellent results can be reached by fitting a simple linear model on all our
indicators.

No labeling is possible. Addressing the problem of setting a threshold
fully automatically and without any labeling is only possible in our opin-
ion if some assumptions can be made on the OOD data. Let us consider a
few examples.

First, if a good guess could be made regarding the expected proportion of
observed OOD samples, one could simply set the threshold so as to isolate
that proportion of samples in the stream of data.

Second, if the OO-distribution is stable and far away from the I-distribution
in the indicator space, it is possible to isolate both parts of the mix distribu-
tion by minimizing the intra-variance along the indicator in an unsupervised
way. More generally, if the number of statistical modes is known for the in-
dicator space, any clustering algorithm could isolate the ID samples.

Third, if we assume knowledge of what the OO-distribution should be
but cannot access it, we can turn to proxy data. Provided the data is well
chosen to lie between the in- and true out-of-distributions, isolating the proxy
data would also isolate the OOD samples.

Fourth, zero-shot samplers (see the discussion about the sample-free set-
ting in Section 7.2.4) allow sampling data, hopefully close enough to ID sam-
ples, to set the threshold(s).

Remember that identifying the ID cluster is made easy in all these sce-
narios because the indicators have been designed to take low values for ID
samples. It is especially straightforward with 1C-Sum, where a single thresh-
old must be set.

7.8 Conclusion

In this chapter we discussed the problem of out-of-distribution (OOD) detec-
tion (by opposition to “in-distribution” (ID) samples; samples drawn from
the training I-distribution): what careful considerations went into its formu-
lation (risk balancing, defining OODness and how OOD data could relate to
the I-distribution), how it relates to other well studied problems and how it
can, and has been tackled, depending on the data available (Section 7.2). We
then proposed the sample-free setting resulting in the question of how could
OOD samples be detected if we only have the network available (Section
7.3)?

7.8. Conclusion 211

Several indicators were proposed, either based on the optimality condi-
tions (Section 7.4.1) or on the batch-normalization layers (Section 7.4.2). A
last one, 1C-Sum, was proposed as a summary indicator by aggregating the
other indicators (Section 7.6). Aggregating is a simple matter when data is
available but a challenge in our setting. Indicators are crafted to display low
value for ID samples and hopefully high value for OOD samples, offering
simple thresholdable quantities to distinguish between ID and OOD data.

The indicators were then evaluated (Section 7.5) on a variety of OOD
tasks, ranging from easy ones (due to the large statistical differences) to much
harder ones (very close statistically). The indicators perform well. In par-
ticular, they cover three cases. Some batchnorm indicators are efficient at
detecting gross channel-wise statistical differences, while others are good at
filtering out noise. On harder tasks, optimality-based indicators were found
to be more appropriate. The summary indicator is a good default choice and
can be further fine-tuned if data become available. When there is more su-
pervision, the indicators can be combined to offer near-perfect results.

Further investigation yielded insightful results. Firstly, dimensionality
reduction allowed recovering the three groups of indicators discussed in the
previous paragraph (Section 7.5.3.1). Secondly, Section 7.5.3.2 highlighted
that the optimality-based indicators both suffer from a low accuracy model—
unsurprisingly—as well as overconfidence. Contrary to expectations, the
batch-normalization indicators are also impacted by the model quality, al-
though the pattern is erratic. 1C-Sum is more robust to the model quality and
supervision can compensate for the lack of quality. Finally, we briefly looked
at the problem of detecting classification errors with the indicators (Section
7.5.3.3). Interestingly, the best-performing indicators for this task are not nec-
essarily the same as for OOD detection, suggesting different patterns in the
latent space for OOD and misclassified samples. Without surprise, batch-
normalization indicators are useless for this. As a consequence of all these,
when tackling the joint task of misclassification and OOD detection (the most
practical setting?), some indicators come out better than others compared to
tackling the sole task of OOD detection. On a well-performing network, mis-
classification should play a relatively negligible role, however. Once more,
the best sample-free option is to turn to 1C-Sum.

Finally, we proposed several ways to use these indicators in practical set-
tings, depending on the information that can be gathered when the model is
deployed and the assumptions that can be made about the nature of the OOD
data (Section 7.7). Hopefully, the simplicity of the indicators should render
that phase efficient data-wise.

This contribution raises new questions. First of all, there is the question
of whether it is possible to craft sample-free indicators relying on yet another
paradigm besides optimality conditions and batch-normalization layers.

Secondly, Figures 7.9 and 7.10 portraying the behavior of several indica-
tors in the pre-logit space spark a few questions. Is it possible, in a sample-
free setting, to take a good guess at where the modes lie? This would offer
more and better ways to detect OOD samples. Alternatively, is it possible to
design a simpler summary indicator? It feels that combining ANG and NORM

212 Chapter 7. Sample-free out-of-distribution

should yield interesting results as it both tells whether the samples align well
with a hyper-plane and whether it is close to the center or not. Arguably this
is what PROJ and T1000 are doing but how both are integrated does not lead
to astounding results.

Thirdly, 1C-Sum being computed thanks to generated noise, we had to
drop the IN- indicators. Would another proxy set, for instance one which
could be assumed to be closer to the I-distribution, enable the use of those
features as well?

Finally, all the experiments were conducted with a class-balanced base
task. It would be interesting to see how OOD detection performs in imbal-
anced settings. An imbalanced base task might (i) challenge our assumption
about the optimality conditions and (ii) result in some classes being badly
predicted. How this asymmetry would impact detection is yet another open
question.

213

8
Chapter

Distillation from
heterogeneous unlabeled

collections

Chapter overview

This chapter tackles the compression of deep networks towards a
smaller, given architecture without training data in the context of im-
age classification. To overcome this limitation, we rely on a large col-
lection of unlabeled data, assumed to contain some samples relevant
for the transfer. Our solution consists in biasing sampling towards
seemingly relevant samples while maximizing the transfer with some
attention mechanism.

This chapter is based on our paper “Distillation from heteroge-
neous unlabeled collections” currently under review.

The code relating to this contribution is available as a Python
package at https://github.com/jm-begon/distill_by_transfer. It
is implemented on top of PyTorch (Paszke et al., 2017).

This chapter is organized in six sections, the first of which (Section
8.1) exposes our ambitions: the goal pursued, our contribution and
the motivation behind our work. Section 8.2 discusses the problem of
coming up with small networks in general, while Section 8.3 focuses
on the data-free compression. Our solution is detailed in Section 8.4
and evaluated in Section 8.5. Section 8.6 concludes.

The present chapter is faithful to the original article. Sections 8.1.2
to 8.2.3 have been added to provide more context and notations have
been uniformized.

8.1 Ambitions

8.1.1 Goal and contribution

This work consists in tackling the task of compressing a large neural network
into a smaller one without the original dataset. More precisely, we suppose

https://github.com/jm-begon/distill_by_transfer
https://pytorch.org/

214 Chapter 8. Distillation from heterogeneous unlabeled collections

the availability of (i) a teacher network which has been learned and performs
well on a target task, and (ii) an unlabeled collection containing “relevant”
data, which is not expected to be or to contain the original data used to train
the teacher.

Solutions which fit our setting have been proposed (see Section 8.3) but
come with a large additional computation cost compared to what would be
required to learn the small network directly, were the data available. We
would like to leverage the unlabeled collection of data to propose a (much)
faster alternative.

We restrain our investigation to image classification where the availability
of unlabeled samples might not consist a hindrance.

Contribution. In light of these, our contributions can be summarized as
follows:

• we propose a method to focus on relevant samples from a collection of
unlabeled data;

• we propose a fast solution to tackle distillation (transferring the knowl-
edge from a trained model to a new one) when original data is missing
but such a collection is available;

• we conduct an extensive empirical study of the proposed solution and
show how and when it is called for.

8.1.2 Motivation

If one thing can be said regarding the last decade in the world of machine
learning, it is that we have witnessed a massive enthusiasm for what has
come to be known as deep learning. After struggling for decades, neural net-
works have achieved a quick succession of astounding progress. The cause
behind this revolution is many-fold but the success has attracted more re-
searchers which has led to more developments that have drawn more atten-
tion and so on, up to the point where dedicated hardware and libraries to
use them seamlessly have been developed. As hinted in Section 5.2.2, these
have sparked the hope of leveraging the astounding performances of ma-
chine learning in constrained settings, thus democratizing the use of such
models and offering a world of endless possibilities on end-devices, far from
huge computing servers and free of communication costs (and the associated
privacy issues). This is even more true of deep learning which has estab-
lished itself as a landmark in areas such as computer vision, speech recogni-
tion, translation and so on—areas which are deemed important for artificial
general intelligence and can benefit from being used at a much wider scale.

Similarly to decision forests (Chapter 6), smaller models come with a
handful of advantages: fast inference, low energy consumption, more dura-
bility, and implicit regularization—all beneficial for embedded situations. In-
terpretability is less clear in this case compared to decision forests. Fast infer-
ence, on the other hand, is more crucial than ever. If training network models

8.2. Deep learning compression 215

without GPU is hard to imagine nowadays, inference might get away with-
out, provided the network is fast enough. Therefore fast inference is accom-
panied by lower costs due to more standard, cheaper equipment.

Note that compression is employed here in the broad sense of ending up
with “small” models, however it is achieved, thus encompassing a myriad of
methods spanning many paradigms (further discussed in Section 8.2.3).

The sample-free setting. As Section 5.2.4 elaborates, the learning set might
not make it past the training stage. Therefore, no data might be leverageable
when developing small models is a post-training concern. There are a num-
ber of reasons why compression could be an afterthought: developing a new
product, moving on to cheaper equipment, massively deploying a solution,
targeting a new share of customers, and so on.

Since this chapter is concerned with two constraints (model size and the
lack of data), Section 8.2 will first delve into the general problem of compress-
ing deep networks. We will come back to the sample-free setting in Section
8.3.

8.2 Deep learning compression

This section discusses the problem of coming up with small neural network
models in general terms. Section 8.2.1 discusses why the problem is feasible
in the first place. Section 8.2.2 illustrates how the problem can be formu-
lated with some attention to the metrics used when discussing the size (or
speed) of neural network models. Section 8.2.3 then proceeds onto catego-
rizing the methods of compression: designing small architectures (Section
8.2.3.1), pruning (Section 8.2.3.2), low-rank approximation (Section 8.2.3.3),
quantization (Section 8.2.3.4), and distillation (Section 8.2.3.5).

8.2.1 Feasibility of neural network compression

Is compression even feasible for neural networks?
Neural networks (with at least one hidden layer) are reputed to be univer-

sal approximators (e.g. Hornik, Stinchcombe, and White, 1989; Zhou, 2018;
Heinecke, Ho, and Hwang, 2020). This is not to say that any architecture can
approximate any function with an arbitrary level of precision. The results
are established for networks with unbounded capacity, such as being able to
increase the “width” of the feature extraction layer(s) to match the wanted
precision. Therefore, it cannot be expected that a network can be compressed
without impacting the accuracy, as the size of the network is an important
parameter: too small and the Bayes model might not figure in the hypothesis
space (representation bias), too big and the risk of overfitting is high. The
necessity to adapt the architecture to both the problem and the available data
has long been an inherent hindrance with neural networks—until recently.

The width-depth dilemma. Half a decade ago the neural network commu-
nity was divided on the question of whether neural networks should go wide

216 Chapter 8. Distillation from heterogeneous unlabeled collections

or deep. The fact that the domain has been re-baptized “deep learning” gives
away the outcome but widists had solid argument: arbitrary large networks
could be universal approximators and deep models were hard to train.

Two papers from that era best exemplified the dilemma. With a tell-
tale article entitled “Do Deep Nets Really Need to be Deep?”, Ba and Caru-
ana (2014) looked at how wide-and-shallow networks could approximate
deeper1 ones. In response, Romero et al. (2015) published a paper doing the
exact opposite: learn to approximate a network with a thin-and-deep one.
Interestingly, they had to introduce several mechanisms to help the learn-
ing, the most prominent being the hints, a form of attention mechanism (see
Section 8.4.3 for more on attention mechanism), thus illustrating the harder
training faced by those networks.

In the end, the match was won by the depthists thanks to neural network
portraying a form of combinatorics with depth (Poole et al., 2016; Raghu et
al., 2017). As Raghu et al. (2017) summed it up “the complexity of the com-
puted function grows exponentially with depth”, where complexity relates
to the number of piece-wise linear regions in the output space correspond-
ing to the input manifold. With depth come easier—and more economical—
combinations of patterns. In the case of convolutional neural networks (CNN),
depth also allows enforcing spatial invariance (patterns detected anywhere
in an image will end up being processed at a later stage) and multi-resolution
analysis (thanks to there being more pooling along the way).

The advent of deep learning. When rooting for deeper rather than wider,
the community has faced the challenge of training these architectures. As
discussed in Section 3.6.2.2, one of the major problems to overcome was to
enable the learning signal to back-propagate in the network. A challenge
successfully tackled by the community using a combination of techniques
(unbounded activation functions, skip connections, etc.)

With networks of high capacity, now trainable, the remaining issue was
to avoid overfitting. Several factors have contributed to reducing this risk:
better initialization (e.g. Glorot and Bengio, 2010), better regularization, such
as dropout (Srivastava et al., 2014), possibly better optimizers (e.g. Duchi,
Hazan, and Singer, 2011; Kingma and Ba, 2015) and more appropriate induc-
tive bias. Another major contributor has been the availability of very large
datasets and the interesting fact that a significant part of learning is trans-
ferable. For instance, it is possible to learn the feature extractor in a domain
where data is plentiful and use it (possibly with some fine-tuning) in oth-
ers (Yosinski et al., 2014; Donahue et al., 2014; Mormont, Geurts, and Marée,
2018). A fact rendered even more useful by the availability of standard net-
works trained on nowadays’s large datasets.

Armed with the capability of learning very high-capacity networks with
moderate risks of overfitting, the current practice is to rely on over-sized hy-
pothesis spaces rather than incur the risk of missing the Bayes model by a
large margin.

1“Deep” must be understood in the context of the epoch; as of today’s standard, the
studied networks would be termed deep very timidly.

8.2. Deep learning compression 217

The era of over-parametrization. Having over-parametrized architectures
to train while overfitting can be kept at bay has several advantages. Firstly,
those architectures portray better learning capabilities (Du et al., 2019; Allen-
Zhu, Li, and Song, 2019; Sankararaman et al., 2020). According to Allen-
Zhu, Li, and Song (2019) “with the help of over-parameterization, near the
GD/SGD training trajectory, there is no local minima and the objective is
semi-smooth”. In essence, over-parametrization ensures that there is always
a direction to lower the error barring at the global minimum.

The amount of over-parametrization is such that Denil et al. (2013) showed
it was possible to recover up to 95% of the network weights without loss of
accuracy.

On the other hand, Frankle and Carbin (2019) argue that well-performing
models are in part due to the presence of fortunately-initialized sub-networks.
In some sense, the more parameters, the more likely it is to find sub-parts
which perform well on their own.

According to Arora et al. (2018) the layers in a trained network are quite
resilient to noise compared to a randomly initialized one. More precisely,
they observe the noise is quickly amortized while being forwarded in the
network. They suggest this might be an explanation as to why the networks,
even though potentially capable of memorizing the training set due to be-
ing over-parametrized, generalize well nonetheless. The network ends up
being much smoother than it might have been, never falling near the worst-
case scenario the theoretical bounds address. This smoothness is a regularity
which can be exploited to compress a neural network.

Designing over-parametrized architectures apparently come with many
benefits in addition to the insurance that the network has sufficient capacity
to learn the problem. It also means there is a margin for lossless compression
in (current) deep learning. Reaching it might be difficult or computation-
ally costly, however, as it would mean doing without the training benefits
of over-parametrization. Once past this lossless compression threshold, a
realm of lossy compression awaits, with the challenging question of how to
best compress a model to limit the accuracy loss the most.

8.2.2 Problem formulation

As with decision forests (Section 6.2.2), how much accuracy can be sacrificed
is problem-dependent and methods should provide a way to select the ap-
propriate accuracy/compression tradeoff. At a high level, this can be formu-
lated in three ways:

• select the smallest network meeting a minimal accuracy level;

• select the best network not exceeding a given overall size;

• select the network which achieves the best size-accuracy tradeoff.

Note that “select the network” can mean (i) choose the architecture, (ii)
train the model, or (iii) both, in this context. For instance, when designing
small networks (Section 8.2.3.1), the architecture is fixed prior to training and

218 Chapter 8. Distillation from heterogeneous unlabeled collections

TABLE 8.1: Model “size” measures. A reference value is pro-
vided for a ResNet 50 (He et al., 2016) network from PyTorch
(Paszke et al., 2017) expecting 224× 224 RGB images as input
and 1000 outputs. No measure is provided for latency as it does

not depend solely on the implementation of the model.

MEMORY TIME

ON-DISK FOOTPRINT (≈ 90Mb) LATENCY (i.e. INFERENCE TIME)
NUMBER OF PARAMETERS (≈ 24 MILLIONS) NUMBER OF FLOPS (≈ 4× 109)

only the parameters are learned. On the other hand, pruning methods (Sec-
tion 8.2.3.2) start with a larger architecture than they end with; the architec-
ture is thus partially learned. Providing time permits, the architecture can
nonetheless be optimized by a traditional model selection method.

Whatever the formulation, models must be comparable in terms of accu-
racy (which is straightforward) and in terms of size, which is the topic of the
upcoming section.

8.2.2.1 Model size: a note on measures

Depending on the motivation behind the compression, several metrics can
be used to measure how small a model is.

Memory measures. If compression is done for the sake of memory, the most
straightforward measure is the on-disk memory. Table 8.1 (row 1, left col-
umn) indicates how much memory a given network is worth. As with deci-
sion forests (see Section 6.2.2), this metric is dependent on how the model is
stored, although admittedly to a lesser extent since the most part of this foot-
print is due to the learnable parameters for which there are relatively few
choices in terms of representation.

Nonetheless, it is usually beneficial to abstract away the representation.
The space complexity of a model is linearly dependent on the number of pa-
rameters, as well as the number of layers of each type. Since the former usu-
ally makes up most of the footprint, it is common to only report the number
of parameters (Table 8.1 row 2, left column). Focusing solely on the number
of parameters has the advantage to facilitate the comparison between archi-
tectures.

Runtime and downtime memory. All the measures in Table 8.1 (left part)
relate to the memory footprint of the network. However, as the model makes
an inference, the memory for the intermediate tensors (or the largest one)
must be accounted for. For instance, the first convolutional layer of a ResNet
50 expecting 224× 224 RGB images will produce a tensor of size 64× 112×
112 ≈ 803k; much less than the number of parameters but still not insignifi-
cant.

Good memory management is necessary to keep the additional memory
for inference as low as possible.

https://pytorch.org/

8.2. Deep learning compression 219

Time measures. The most straightforward measure for inference cost is in-
ference duration, also known as latency. The inference duration being much
more dependent on the hardware than memory (e.g. can everything fit in
the RAM or will there be many memory loading operations? Is there a GPU?
How are convolutions implemented?), one might prefer a hardware-agnostic
measure—or not. It actually depends on the part the hardware plays. If the
hardware is pre-selected and the goal is to compress a network to go below
a certain inference time, it makes little sense to turn to metrics independent
of the device. Think of real-time inference, for instance. On the other hand,
such a focus ties any analysis to a given hardware which limits the generality
of the related discussions.

The time complexity can be measured in a hardware-agnostic way by
counting the number of floating-point operations (FLOPs2). Table 8.1 (row
2, right part) illustrates the number of FLOPs for a ResNet 50.

Conventional wisdom dictates that the actual running time should corre-
late well with the number of FLOPs. This is certainly true of older architec-
tures in unconstrained conditions (Canziani, Paszke, and Culurciello, 2016).
When looking at more modern and varied architectures of comparable num-
bers of FLOPs, it is not rare to observe a significant gap in running times. Ma
et al. (2018) explain this by two factors: the memory access cost (some layers
put more stress on the memory than others) and the amount of parallelism.

Whatever the measure, how it is used depends on the compression method.

8.2.3 Method overview

The goal of the present section is to briefly brush the available methods for
compressing (in a broad sense) neural networks to get a feeling of how it can
be achieved. This is by no means a complete tour of the literature on the topic
and more specific reviews will be pointed out when available. Works more
related to our setting will be addressed in Section 8.3.

8.2.3.1 Designing small architectures

A first alternative to end up with a small network is to just start with a
small architecture and call it a day. Over the years, many strategies have
been investigated to design layers with fewer parameters and overall ar-
chitectures whose number of parameters does not explode with depth. Ex-
ploiting assumptions about the data being processed has allowed compen-
sating the diminution of representational power (or the lessening of over-
parametrization) by providing better inductive biases; no need to search a
giant haystack when the needle can be found in a small one. Corollarily,
progress on small-yet-good architecture is limited to the type of data. We
will investigate those relating to images.

2In FLOPs the “s” indicates the plural; it must not be confused with FLOPS which stands
for floating-point operation per second, a measure of hardware speed.

220 Chapter 8. Distillation from heterogeneous unlabeled collections

Convolution. Convolution layers can only compute a fraction of what fully-
connected layers can. The kernel size, stride and padding sparsify the extent
of the connectivity between adjacent layers, whereas the kernel imposes a
form of weight sharing. These two factors combine to offer a great reduc-
tion on what a fully-connected layer would have in terms of parameters to
represent the exact same operation.

To be more quantitative, assuming a padding of (k − 1)/2 and a stride
of 1, a convolution layer with kernels of k × k transforming input of size
Ci×H×W into Co features maps (consequently of spatial dimension H×W)
requires Co × (Ci × k × k) parameters. Since the output if of total size Co ×
H×W, a fully-connected layer would require (Ci× H×W)× (Co × H×W)
parameters the compression ratio is

(Ci × H ×W)× (Co × H ×W)

Co × (Ci × k× k)
=

H2 ×W2

k× k
(8.1)

There is no gain with respect to the size of the intermediate tensor, how-
ever. In terms of operation count, the convolution amount to O(Co × (H ×
W)× (Ci × k× k)) FLOPs (for each output channel and at each location, the
sum-product of the kernel must be computed).

Spatial reduction. Spatial reduction, whether with strided convolution or
pooling, ensures the spatial dimensions of the tensors propagating down the
network are smaller (typically divided by two along each spatial dimension).
The effect varies with the type of subsequent layers. For instance, this does
not affect the number of parameters needed for a convolution all things be-
ing equal (although the kernel might be chosen according to the spatial di-
mension of the feature maps, in which case it would impact the number of
parameters). It will however reduce the size of the intermediate tensors and
consequently the computing time.

Less fully-connected layers. Pre-modern architectures for image process-
ing rely on several fully-connected layers after the convolutional/pooling
part. For instance, the VGG16 network (Simonyan and Zisserman, 2015) used
three fully-connected layers: two feature extractors outputting vectors of size
4096 and the softmax classifier. In such architectures, most of the parameters
are located in those layers. For instance, roughly 90% of VGG parameters are
linked to the fully-connected layers.

Even though fully-connected layers are costly memory-wise, it should be
noted that most part of the computation time is spent in convolutional layers
(Yang et al., 2015). What to reduce is thus dependent on what is sought after
with compression.

Blocks and architectures. Besides the previous considerations, modern de-
sign practices focus on proposing groups of layers, aka. blocks, which fac-
torizes what more traditional layers do. Architectures are then designed by

8.2. Deep learning compression 221

composing such blocks. The following paragraphs review some of these
blocks.

Depthwise separable convolution. Depthwise separable convolutions have
been introduced by Sifre and Mallat (2014). The idea is to factorize a tradi-
tional 2D convolution as a sequence of two convolutions. The first convolu-
tion uses Cm kernels of dimension 1× k × k. This so-called depthwise con-
volution aims at processing the spatial information channel by channel. The
second convolution uses Co kernels of total size Cm × 1× 1. It is referred to
as a pointwise convolution and processes the channel information at each
location.

Assuming input tensors of size Ci × H ×W, a stride of 1 and paddings
so that the output tensor has the same spatial size, the compression ratio
compared to a full convolution is

Co × (Ci × k× k)
(Cm × (1× k× k)) + (Co(Cm × 1× 1)

=
Ci

Cm

Co × (k× k)
Co + (k× k)

(8.2)

Since the goal of the depthwise convolution is to process only the spatial in-
formation, Cm = Ci is a natural choice: each input channel is only processed
once.

The depthwise separable convolution is also less costly than traditional
convolution in terms of operations: O(Co× (H×W) +Cm× (H×W)× (k×
k)) FLOPs.

Depthwise separable convolution is a block implemented with two lay-
ers to achieve the same goal as a single 2D convolution layer. With the pres-
ence of such blocks, comparing the number of layers in modern architectures
might make little sense.

Group convolution. Group convolution (Krizhevsky, Sutskever, and Hin-
ton, 2012; Xie et al., 2017; Zhang et al., 2017) factorizes a 2D convolution in
a different way. Rather than separating the spatial and channel-wise convo-
lution, the channels are divided into G groups of Ci/G channels and tradi-
tional 2D convolutions operate at the level of groups (with G = 1 implying
the vanilla 2D convolution). Since the convolutions process fewer channels,
the kernels are smaller in the channel dimension. The overall gain is

Co × (Ci × k× k)

G×
(

Co
G ×

(
Ci
G × (k× k)

)) = G (8.3)

where the denominator expresses that there are G groups, producing each
Co/G channels (so that the sum is Co) by convolving kernels of size Ci/G×
k× k.

The number of operations is also reduced: O(Co × (H ×W) × (Ci/G ×
k× k)) FLOPs.

Zhang et al. (2017) note that grouping the channels limits drastically the
representation power of the group convolution layer; concatenating such

222 Chapter 8. Distillation from heterogeneous unlabeled collections

blocks is akin to having parallel pathways within the network operating on
less information. To overcome this limitation, they propose the simple fix
of shuffling the layers between group-convolution blocks in their ShuffleNet
architecture.

Separable convolution with linear bottleneck. Sandler et al. (2018) pro-
posed to use a pointwise convolution (followed by a non-linear activation
function) which is fed into a depthwise convolution (also followed by a non-
linear activation function) which in turn is fed into a pointwise convolution,
without non-linear activation. The ordering of the layers and the linear end-
ing allow accumulating the final tensor without explicitly computing the
whole intermediate tensors. This is used to generate a large number of in-
termediate channels without increasing the runtime memory.

Architecture design versus architecture search. The blocks we have dis-
cussed in the previous paragraphs can be used as building material, along
with others, to design lightweight and fast architecture, hopefully without
decreasing the representation power too much. For instance, depthwise sep-
arable convolution are used in MobileNet (Howard et al., 2017). Deeper
ResNet networks also need such convolution to prevent the number of pa-
rameters from exploding. As mentioned ShuffleNet (Zhang et al., 2017) and
ShuffleNet V2 (Ma et al., 2018) use group convolutions. MobileNet V2 (San-
dler et al., 2018) uses separable convolutions with linear bottlenecks.

It should be noted that a (computationally expensive) alternative to de-
signing architectures from scratch is to learn them. For instance, NasNets
(Zoph et al., 2018) are architectures which have been found by formulating
the architecture search as a reinforcement learning problem.

8.2.3.2 Pruning

Whereas the previous section exposed solutions which require to design-
and-learn a network, this section will focus on what can be done once the
architecture is given as part of the problem. Two considerations are impor-
tant to organize the works on pruning.

As with decision forests (Chapter 6), pruning can either be done on an
already-trained network (post-pruning) or can be embedded into the learn-
ing procedure (pre-pruning). A fine-tuning step is usually required even
with post-pruning methods.

The second consideration relates to what is actually pruned in the net-
work. Mao et al. (2017) propose four levels of granularity in CNNs. The fine-
grained level corresponds to removing any parameters of the convolution
kernels. The vector level corresponds to removing parameters along the spa-
tial dimensions of the kernel. The kernel level corresponds to removing in-
put channels, while the filter level corresponds to removing output channels.
Note that what is meant by removing an input channel is that the channel
will not be taken into account when computing one of the output channels.

8.2. Deep learning compression 223

In comparison, when removing an output channel, it is not available for any
computation of the subsequent layer.

Most of the works focus on either the fine-grained or the filter levels and
will be referred to as unstructured and structured pruning, respectively. This
dichotomy also translates to fully-connected networks where unstructured
refers to pruning the connections while structured pruning targets the neu-
rons (and consequently all the incoming and outgoing connections). Nothing
prevents a method from working at both levels, though.

The distinction between structured and unstructured is important on two
accounts. On the one hand, the more unstructured the pruning, the more
flexible the methods, a fact well reported by Mao et al. (2017) (See Figure
8.1). On the other hand, this kind of sparsity might not be quite amenable
to actually leveraging memory/speed gains on standard hardware. Indeed,
removing all but one connection to a hidden neuron prevents removing that
neuron altogether and masks (i.e. forcing connection to have a null weight)
can only serve to showcase a theoretical memory gain. In comparison, struc-
ture pruning forces the removal of a whole channel (in CNN) or neuron (in
traditional networks) and by-pass the problem of having a very sparse yet
not truly actionable architecture.

Note that contrary to unstructured pruning, the choice of which com-
ponent to remove (i.e. a whole convolution filter, a whole neuron) is not
time/memory-independent: removing a 3× 7× 7 convolution kernel is dif-
ferent from removing a 512× 3× 3 kernel. These methods have thus the flex-
ibility of choosing how to balance the accuracy drop with the memory/time
gain. When the purpose of compression is to reduce the memory footprint,
weighting by the number of parameters offers a straightforward and com-
pelling solution. When the aim relates to inference time, the metrics to use
is less clear (as discussed in Section 8.2.2.1). Ideally, real-time measurements
should be used but this is costly to assess due to the combinatory nature of
the problem. A possible workaround, proposed by Yang et al. (2018), consists
in using lookup tables of real-time measurement per blocks and assume that
the total inference time is simply the sum of the time for all blocks. Moreover,
the measurement for similar blocks can be assessed once, thus reducing the
overall complexity of the problem.

Since the pre- and post-pruning dichotomy influences the problem for-
mulation the most, this criterion will be used to articulate a selection of pro-
posed methods.

Pre-pruning methods. Pre-pruning methods usually start with a given ar-
chitecture. Training is then formulated as both learning the weights of the
architecture and sparsifying it at the same time.

Han et al. (2015) proposed to apply regularization on the connections and
remove all below a certain threshold; an example of unstructured pruning.
Their approach consists of two learning phases: one with regularization to
prune the structure and a re-training without regularization phase to learn

224 Chapter 8. Distillation from heterogeneous unlabeled collections

FIGURE 8.1: Accuracy/compression tradeoffs: the case of
AlexNet (Krizhevsky, Sutskever, and Hinton, 2012) on the Ima-
geNet (Deng et al., 2009). The more flexible the method (i.e. the
more fine-grained the pruning) the better it is at retaining ac-
curacy for a given compression level—at least with magnitude

group-weight pruning. From Mao et al. (2017).

the final parameters of the network. They found that although a L1 regular-
ization worked best to induce the sparsity without re-training, L2 regulariza-
tion coupled better with the re-training phase.

Wen et al. (2016) proposed to apply group lasso to the parameters of
CNNs. Group lasso consists in applying a sparsity-inducing regularization
to groups of parameters. They review several grouping strategies: channel-
wise (to reduce the number of input channels) filter-wise (to reduce the num-
ber of output channels), as well as groups resulting in unstructured pruning.

Alvarez and Salzmann (2016) and Scardapane et al. (2017) both proposed
to apply sparse group lasso, which consists in enforcing sparsity both at a
group level (e.g. all the weights for a given neuron) as well as on individual
parameters, resulting in a mix of structured and unstructured pruning.

Liu et al. (2017) proposed to enforce an L1 penalty on the scaling factor
of the linear output map of batch-normalization layers (the γ parameters in
Equation 3.121). Since each parameter relates to a channel, this constitutes a
form of structured pruning.

Yang et al. (2019) proposed to associate masks with all layers of the net-
works, working as elementwise gates for each parameter. The masks are
initialized to work as if they were absent but a L1 regularization is applied
to them during training. Neurons or filters whose mask averages are below
a given threshold are removed. The remaining masks are merged into the
network, resulting in a mix of structured and unstructured pruning.

Post-pruning methods. Post-pruning methods are based on the premise
that an already-trained network is available. They usually rely on a saliency
measure which indicates how much a (group of) parameter(s) is important.
Parameters with low saliency are sacrificeable. To attain good accuracy with

8.2. Deep learning compression 225

high compression rate, post-pruning methods usually operate on a greedily-
iterative scheme: some parameters are removed, then the network is re-
trained to update the saliencies before removing more parameters, and so
on.

LeCun, Denker, and Solla (1989) proposed to mark for removal the weights
which influence the objective function the least. To do so, they applied the
Taylor decomposition of the loss function, using some approximating as-
sumptions to reduce the computation burden. They suggest updating the
measure every so often and fine-tuning the obtained networks.

Hassibi, Stork, and Wolff (1993) proposed to avoid the simplifying as-
sumptions of the previous method so that the saliency measure better reflects
the effect of removing a node. Rather than retraining the network to update
the saliencies, they proposed to use the Hessian matrix (needed anyway) to
directly update the objective. They still advocated for a final fine-tuning. It
should be noted that there is a fast algorithm to compute the Hessian matrix
when it is involved in a Hessian-vector product, as is often the case (Pearl-
mutter, 1994).

Molchanov et al. (2017) revisited the idea behind using the Taylor expan-
sion as saliency measure for (more) modern architectures with slightly dif-
ferent approximations. Theis et al. (2018) formulated a similar criterion for
structured pruning.

Zhu and Gupta (2018) proposed to use the weight magnitudes as saliency
and introduced gradual pruning, where the sparsity is only fully enforced
after several steps to let the network adapt to it during training. This work
somewhat sits on the pre-/post-pruning fence.

Yu et al. (2018) proposed a saliency measure which captures how each
neuron impacts the pre-linear latent space. For internal neurons, the score is
computed by aggregating over the paths from that neuron to the last layer.

Ironically, Mittal et al. (2018) showed that good performances can be ob-
tained by pruning the filters randomly and retraining the network. The
saliency measures seem less important than might have been anticipated.

Frankle and Carbin (2019) achieved up to a compression factor of 10 with
a simple scheme: iteratively (re-)training the network and filtering out a
small percentage of the parameters. They use the weight magnitude as saliency
measure. The core contribution of their work was to notice that re-training
should start with the original weights of the network, thus ensuring to iso-
late a good sub-network; one which happens to be well initialized for the
problem—the so-called lottery ticket.

The interested reader can consult the work of Blalock et al. (2020) for a
more complete review on pruning.

8.2.3.3 Low-rank approximation

Most neural networks include linear maps (fully-connected layers, convolu-
tions). The presence of linear components begs the question of whether it
is possible to approximate them as a product of low-rank matrices. For in-
stance, if a pl × pl+1 Wl matrix can be decomposed UlVl ≈ Wl, where Ul is

226 Chapter 8. Distillation from heterogeneous unlabeled collections

pl × k and Vl is k× pl+1 the compression gain is

pl × pl+1

pl × k + k× pl+1
(8.4)

Low-rank approximation is a hybrid case. When the decomposition hap-
pens during the design, they fall into the design-small-and-learn approach.
Indeed, there is no need a priori to learn the map and then factor it when the
factorization can directly be learned. In essence that is how convolutions,
separable convolutions, group convolutions, and so on operate.

On the other hand, when the low-rank approximation is actually com-
puted from a trained network, the whole process is more akin to structured
pruning. Jaderberg, Vedaldi, and Zisserman (2014) addressed both cases
without declaring a clear winner.

Low-rank as design. Sainath et al. (2013) proposed to factorize the largest
fully-connected layers of an architecture as a UlVl ≈ Wl product and dis-
cussed the rank/accuracy compromise.

Osawa et al. (2017) proposed to flatten convolution layers into 2D matri-
ces, decomposed along an SVD scheme and optimize the order of the multi-
plications.

Liu et al. (2015) proposed to factorize convolutions as convolutions of
smaller kernels and imposed a sparsity-inducing regularization on the kernel
parameters, the equivalent of a mix of structured and unstructured pruning.

Learning low-rank approximation. Denton et al. (2014) reviewed several
factorizations based on SVD and applicable for CNNs. They advise fine-
tuning the network if the factorization results in a very low rank.

Swaminathan et al. (2020) proposed to couple a truncated SVD decompo-
sition with pruning to further sparsify the factorization. They explore weight
and activation magnitudes as saliency measures, as well as the impact on the
objective function. Overall, they end up with a structured-unstructured hy-
brid method.

Zhang et al. (2016) proposed to learn a factorization to reconstruct the
feature maps rather than the weight matrices, admittedly a better-motivated
goal. Along the same lines, Yu et al. (2017) proposed to reconstruct both the
weight matrices and the feature maps, but decomposed the weight matrices
as W ≈ L + S where L is low rank and S is sparse.

Lebedev et al. (2015) proposed to look directly at the equivalent of SVD
for the 4D tensors involved in convolution, the canonical polyadic decom-
position (CP-decomposition). Interestingly the kernel decomposition comes
down to a succession of a pointwise convolution, two convolutions along one
spatial dimension and another pointwise convolution. Once the 4D tensor
corresponding to the kernel is factorized, they further fine-tune the network.

It should be noted that when the weight matrices present special struc-
tures, dedicated decompositions might work better than standard SVD. For
instance, Chen et al. (2018) proposed a special decomposition for the word
embedding layers in natural language processing networks.

8.2. Deep learning compression 227

8.2.3.4 Quantization

Quantization is the idea of encoding parameters with fewer bits. Having
fewer bits results in faster computation provided the appropriate hardware
is available. There is also a direct gain in memory. As with low-rank approx-
imation, quantized architectures can be trained from scratch or quantization
can be applied at a later stage (often accompanied with fine-tuning). The in-
terested reader can consult the work of Gholami et al. (2021) for a review of
quantization.

8.2.3.5 Teacher-student transfer

Teacher-student transfer is the idea of transferring what a model—the teacher—
knows to another model—the student. For the purpose of this chapter, the
teacher-student transfer we are interested in is when the teacher is a big (or
slow) network and the student is a small (or fast) network. We will focus
on works for image classification with deep learning, although the idea is
generic and goes beyond neural networks.

When data (possibly unlabeled) is available, teacher-student transfer is
straightforward: run the training data through the teacher and train the stu-
dent to mimic the output. To be more precise, let ŷt(·, Ψ) : X → RK be
the teacher network (outputting logit vectors). The goal of fully supervised
transfer is to train a student network ŷs(·, Θ) : X→ RK so that

Θ ≈ min
Θ′

Ex,y

{
`tr f
(
ŷs(x; Θ′), ŷt(x; Ψ)

)
+ κ`sup

(
ŷs(x; Θ′), y

)}
(8.5)

where κ balances the transfer loss `tr f and the supervised loss `sup.
Buciluǎ, Caruana, and Niculescu-Mizil (2006) proposed to use the dis-

tance to the teacher in the logit space as loss for training (`tr f = `2) and no
supervision loss (κ = 0). In their case, the teacher is a cumbersome ensemble
of neural networks.

Hinton, Vinyals, and Dean (2015) proposed to use the cross-entropy be-
tween the (softened) softmax probabilities of both networks as transfer loss,
a scheme called knowledge distillation. Since then, teacher-student transfer
is commonly referred to as distillation.

Romero et al. (2015) proposed an attention mechanism (called hints) be-
tween the middle layers of the teacher and the student. An attention mech-
anism is an additional loss component whose goal is to force the student to
output feature maps similar to those of the teacher; the student is not only
mimicking the teacher’s output but also other parts of the network.

Zagoruyko and Komodakis (2017) proposed to place systematic attention
mechanisms between the teacher and student. In their case, a parallel be-
tween teacher and student architectures can always be drawn so that trying
to mimic the teacher in each latent space makes sense.

Yim et al. (2017) also proposed the use of more systematic attention mech-
anisms. Once more, this relies on having similar (but different) structures for
the teacher and student. The attention mechanisms they proposed encourage
the student to have similar cross-channel correlations as the teacher.

228 Chapter 8. Distillation from heterogeneous unlabeled collections

Along the same lines, Wang et al. (2018a) proposed to train a student net-
work of a comparable structure as the teacher’s by distilling sequentially the
building blocks.

Srinivas and Fleuret (2018) proposed to also match the Jacobian matrices
of the teacher and student. Since those are costly to compute they proposed
to only compute a subset of the matrices.

Zhou et al. (2018) proposed to train the teacher and student networks at
the same time. The two networks share the start (i.e. the early layers) of the
model and diverge at some points with a bigger end for the teacher network.
The two networks are then jointly trained to perform correct classification
and output similar logit vectors. This is somewhat akin to what happens
in the Inception network (Szegedy et al., 2015), although the goal here is to
extract the small network, rather than help train the bigger part.

Xu, Hsu, and Huang (2018) proposed to learn the transfer loss function
via a GAN-like architecture. This seems interesting when the student net-
work is very small and does not have the sufficient capacity to mimic the
teacher. See the discussion about failing the latent mapping assumption in
Section 8.5.5 for a similar phenomenon.

Lee, Kim, and Song (2018) proposed an attention mechanism between
corresponding blocks of the teacher and student which forces similarity in a
low-rank basis obtained via SVD.

Kim, Park, and Kwak (2018) proposed an attention mechanism working
in two steps. Firstly, a so-called paraphraser autoencoder is trained in an un-
supervised way to be able to reconstruct the feature maps of the teacher. Then
the student is joined to the paraphraser through another network: the trans-
lator. The student is then trained with a usual, supervised cross-entropy loss
as well as with attention so that the translator would mimic the paraphraser.

Heo et al. (2019b) argued that the actual values of the feature maps are less
important than whether or not the neurons are activated. Accordingly, they
proposed to re-use the hints of Romero et al. (2015) to build a loss function
which treats differently the teacher’s hints according to whether or not the
neurons are activated.

Park et al. (2019) proposed to use a loss function based on the L2 norm,
normalized over batches, as well as an angular loss based on triplets of points
to encourage the student to learn the same structure as the teacher.

Mirzadeh et al. (2020) proposed to use one or more intermediate assis-
tant networks of decreasing complexity to improve the performances of the
transfer.

A quick overview of fully-supervised distillation. Table 8.2 contains the
results of the discussed papers on several common benchmarks. When more
than one result was available (such as for methods with hyper-parameters),
only the best one is reported. This might provide an optimistic view of the
methods, which should not be closely compared based on these results (this
is not the point being made).

Besides the obvious fact that benchmarks have evolved over time and
networks have improved, Table 8.2 highlights an important fact regarding

8.2. Deep learning compression 229

teacher-student transfer: only on rare occasions does the transfer substan-
tially improve over learning directly the student. In many cases the student
network trained by supervision is already quite close to the teacher, prevent-
ing spectacular improvements by distillation. When the gap is more pro-
nounced, the gain from teacher-student is usually quite mild. Actually, Yuan
et al. (2020) argued that this kind of gain is not really due to leveraging much
from the teacher but rather to the regularization afforded by learning from
soft labels, which can be obtained without having a teacher. The fact that on
rare occasions the student is able to surpass the teacher is further evidence
of this. In the end, there are only a few instances in which the improvement
seems truly substantial, one of which is (due to Wang et al. (2018a) on CIFAR
10; [8] in the table) portrays an uncharacteristically low accuracy of 72.41%
for a mere simplification of the teacher model.

This is not to say that the gain should be discarded, but rather that the
question of whether the accuracy boost is worth the trouble when data is
available should be carefully examined. Moreover, the more spectacular
gains are due to attention mechanisms, which require the student to have
a comparable architecture to the teacher, another obstacle. Distillation, how-
ever, shines when there is no/few/more data, which is the topic of the next
section.

Besides compression, teacher-student transfer has been used widely, as it
is such a flexible scheme. For instance, Domingos (1997) proposed to transfer
from a large ensemble to a much simpler model for the sake of interpretabil-
ity. Vongkulbhisal, Vinayavekhin, and Scarzanella (2019) proposed to merge
several classifiers trained on overlapping label spaces into a single model by
using left-over data for the transfer. Shi et al. (2017) and Cioppa et al. (2019)
proposed the opposite: transferring only a subset of the teacher’s classifica-
tion capacity to the student. Bachman, Alsharif, and Precup (2014) proposed
to generate an ensemble based on a single method by perturbating it and
then transferring back the robustness to the original architecture as a form of
regularization.

The interested reader can consult the work of Wang and Yoon (2020) and
Gou et al. (2021) for more complete reviews.

230 Chapter 8. Distillation from heterogeneous unlabeled collections

TABLE 8.2: Accuracy comparison of different teacher-student
transfer methods. The teacher, student and transferred columns
correspond to the accuracy of the teacher, the student when
learning directly from the training set, and the student taught
by transfer from the teacher with the training set, respectively.
Only the most favorable cases per dataset are reported. Stan-
dard deviations are present when available. Tag is either ?
to indicate a true gain from transfer (i.e. student much closer
to teacher with transfer), or † to indicate closeness between
teacher and student. [1] is Hinton, Vinyals, and Dean (2015), [2]
is Romero et al. (2015), [3] is Sau and Balasubramanian (2016),
[4] is Zagoruyko and Komodakis (2017), [5] is Yim et al. (2017),
[6] is Srinivas and Fleuret (2018), [7] is Kim, Park, and Kwak
(2018), [8] is Wang et al. (2018a), [9] is Zhou et al. (2018), [10] is
Xu, Hsu, and Huang (2018), [11] is Lee, Kim, and Song (2018),
[12] is Park et al. (2019). [13] is Heo et al. (2019b), [14] is Heo

et al. (2019a), [15] is Mirzadeh et al. (2020).

SOURCE (YEAR) TEACHER STUDENT TRANSFERRED TAG

MNIST
[1] (2015) 99.33 98.54 99.26 ? ?
[2] (2015) 99.45 - 99.49
[3] (2016) 99.32 99.03 99.13 †

SVHN
[2] (2015) 99.76 - 99.76
[3] (2016) 96.18 95.40 95.55 †
[3] (2016) 96.18 95.40 95.55 †
[9] (2018) - 96.42 97.80

CIFAR 10
[2] (2015) 90.18 - 91.61
[3] (2016) 91.60 78.06 81.04
[4] (2017) 94.77 93.69 94.29 †
[5] (2017) 91.91 87.91 88.70
[6] (2018) 90.94 84.56 87.29 ?
[7] (2018) 95.56 94.01 95.35 †
[8] (2018) 86.61 72.41 83.56 ?
[9] (2018) 92.73 91.31 92.15 †

[10] (2018) 95.81 92.54 93.91
[13] (2019) 95.49 93.53 94.42 †
[14] (2019) 92.55 86.02 87.32
[14] (2019) 92.55 90.16 91.23 † ?
[15] (2020) - 88.52 88.98

CIFAR 100
[2] (2015) 63.54 - 64.96
[5] (2017) 64.06 58.65 63.33 ?
[6] (2018) 64.78 54.28 54.57
[7] (2018) 73.09 71.96 74.38
[9] (2018) - 56.30 67.00

[10] (2018) 79.38 71.48 74.25 ? ?
[11] (2018) 64.44 61.37 65.05
[11] (2018) 66.58 64.00 65.43 †
[12] (2019) 77.76 71.26 72.97
[15] (2020) - 61.37 61.82

TINY IMAGENET

[12] (2019) 61.55 54.45 56.36
[14] (2019) 56.10 50.68 52.99

8.3. Data-constrained compression 231

8.3 Data-constrained compression

The methods discussed in the previous section have in common that they as-
sume training data is available. Even low-rank approximations of the learned
weight matrices, theoretically possible without data, are often accompanied
with fine-tuning to recover the loss of accuracy due to the factorization. Yet
there remain scenarios for which compression must be handled once data is
no longer available (as discussed in Section 8.1.2).

Before looking at how data scarcity has been tackled so far, let us mention
an altogether different approach to somehow combat data scarcity when it is
foreseeable data will be useful in the future yet storage is limited: compress
the data itself. Dataset distillation (e.g. Wang et al., 2018b; Sucholutsky and
Schonlau, 2019; Sucholutsky and Schonlau, 2019; Nguyen et al., 2021) aims
at deriving datapoints (possibly in the form of generated samples and labels)
from a training set and a learned network so that learning with the distilled
set would have resulted in the best possible accuracy. At present, the results
are not yet satisfactory, especially when facing architecture changes.

In semi-supervised distillation (e.g. Li et al., 2014; Gong et al., 2018; Tang
et al., 2019), data scarcity is tackled by relying, in addition to some small
learning sample, on some unlabeled collection. These methods leverage the
capacity of the teacher to produce “ground truth” for the unlabeled samples,
which are assumed to be drawn from the original distribution.

As early as 2006, Buciluǎ, Caruana, and Niculescu-Mizil (2006) addressed
data scarcity by using some form of data-augmentation when training the
student network, taking once more advantage of the teacher capacity to pro-
vide labels. Since then, more modern data-augmentation techniques have
been proposed (e.g. Kimura et al., 2018; Wang et al., 2018c). Another way
to compensate for the lack of data is to extract more information from the
teacher than only the output activations (see Section 8.2.3.5). All those meth-
ods can be bootstrapped from a very small learning set.

Recently, there has been a body of work trying to tackle the challenging
task of zero-short distillation: transferring the teacher knowledge without
any data (from the original distribution). These methods share a common
principle which is to derive from the teacher some out-of-distribution (OOD)
(see Chapter 7) loss useful to craft informative samples. They differ on the
actual loss which is used, as well as on how they craft these samples. For the
latter, the two main techniques which have been investigated are to adversar-
ially perturb pure noise samples to minimize the OOD loss (Heo et al., 2019a;
Nayak et al., 2019; Cai et al., 2020a; Haroush et al., 2020), and to include a
generative adversarial network (Goodfellow et al., 2014) in the loop (Chen et
al., 2019; Micaelli and Storkey, 2019; Choi et al., 2020). In the case of teacher-
student transfer, these zero-shot sampling methods do not need to provide
faithful samples (i.e. samples actually coming from the original distribution),
only informative ones for transfer. Although offering good performance and
needing neither a labeled nor unlabeled learning set, these methods are very
heavy computation-wise, requiring thousands of adversarial perturbations
or learning a whole generator network. Both approaches also introduce new

232 Chapter 8. Distillation from heterogeneous unlabeled collections

hyper-parameters, including the whole generator architecture in the case of
GAN, which are very difficult to tune in a setting where no data is avail-
able. Current practices turn to generative architectures which have been
shown to work well precisely on the distributions being transferred which
might provide over-optimistic results, especially when moving away from
such distributions—or worse, when changing the domain altogether.

Rather than manufacturing the inputs at great cost, our goal is to take ad-
vantage of the availability of a collection of unlabeled images. The closest to
this setting is the work of Xu et al. (2019), where the authors similarly train
the student network on unlabeled images drawn from a distribution which
differs from the base-task distribution. They however assume the availabil-
ity of a small set of samples from the original distribution, from which the
most relevant samples of the collection are determined through a lengthy
and sophisticated procedure. Our method does not require these label points
besides being much faster.

8.4 Distilling from an unlabeled collection

After introducing the setting (Section 8.4.1), this section develops the two
key components of our solution to tackle fast distillation from an unlabeled
collection. Section 8.4.2 presents how we propose to bias the sampling to rely
mostly on informative samples, while Section 8.4.3 describes how to take full
advantage of the learning signal.

8.4.1 Setting

Let I be the distribution of interest (also called the target or original distri-
bution) on which a neural network ŷt(·, Ψ) : X→ RK was learned.

Our goal is to learn a student network parametrized by Θ (rather than Ψ),
denoted ŷs(·, Θ) : X→ RK, so that

Θ ≈ min
Θ′

Ex∼I
{
`DSCE(T=1)

(
ŷs(x; Θ′), ŷt(x; Ψ)

)}
(8.6)

≈ min
Θ′

Ex∼I
{
`CE
(

p̂s(x; Θ′), p̂t(x; Ψ)
)}

(8.7)

where p̂t and p̂s are the softmax probabilities of the teacher and student re-
spectively. DSCE(T) stands for double softmax cross-entropy with a temper-
ature of T.

We do not have access to a dataset of samples from I but we assume access
to an unlabeled collection of samples K = {xi ∈ X}n

i=1, where xi ∼ O (6= I).

Choice of the student network. Our method implements the “select the
best network not exceeding a given overall size” (Section 8.2.2), where the
size threshold is hard-coded in the student architecture and select must be
understood to mean “train”. As such the method is fairly general and can be

8.4. Distilling from an unlabeled collection 233

used under any constraint, be it the on-disk footprint, the number of learn-
able parameters, the overall memory during inference, the actual inference
time or the number of FLOPs (Section 8.2.2.1). The constraint is simply en-
forced by choosing an appropriate architecture.

It should also be noted that our method works whether the student is a
pruned or quantized version of the teacher, or whether it is an altogether
new architecture. We will focus on the latter as it is more general (quantized
and pruned network can be considered as a different architecture), and can
readily be deployed on standard hardware.

8.4.2 Biased sampling

8.4.2.1 Computing the sampling probabilities

In order to learn the student network, the loss in Eq. 8.7 must be estimated.
It can be rewritten as

Ex∼I
{
`
(
ŷs(x), ŷt(x)

)}
= Ex∼O

{
β(x)`

(
ŷs(x), ŷt(x)

)}
, (8.8)

where

β(x) =
PI(x)

PO(x)
(8.9)

is the density ratio with PI(x) (resp. PO(x)) the density of x for distribution
I (resp. O). Reweighing the samples in the estimate is legitimate since they
are supposed to be in the support of O. If β was known, one could train the
network by uniformly sampling examples from the collection K and using
Eq. 8.8 as the training loss. We propose instead to bias the sampling of the
datapoints from K proportionally to the β(x) weights for efficiency reasons.
This nevertheless requires estimating the density ratio.

Estimating the density ratio. Let us introduce a random binary variable s,
with s = i if x is drawn from I and s = o if x is drawn from O. We can
rewrite the density ratio as (using Bayes’ rule):

β(x) =
PI(x)
PO(x)

=
P(x|s = i)
P(x|s = o)

=
P(s = o)
P(s = i)

P(s = i|x)
P(s = o|x)

=
1− π

π

P(s = i|x)
1−P(s = i|x) =

1− π

π
eλg(x) (8.10)

with

g(x) =
1
λ

log
P(s = i|x)

1−P(s = i|x) (8.11)

is proportional to the log-odds ratio. Assuming we have access to g(x) (see
“Characterizing score” below), let us discuss how all this can be turned this
into sampling probabilities.

234 Chapter 8. Distillation from heterogeneous unlabeled collections

From density ratio to sampling. Since our goal is to sample from K with
probabilities proportional to β, we can simply normalize them:

qi =
β(xi)

∑x∈K β(x)
=

1−π
π eλg(xi)

1−π
π ∑x∈K eλg(x)

(8.12)

= softmax(λg(xi)) (8.13)

We will denote by Q(K, g, λ) the distribution over K reflecting those prob-
abilities (dropping the arguments when the context is clear). Note that π
needs not be estimated as far as the sampling probabilities are concerned.

Controlling the diversity. To train our student, we will sample the exam-
ples constituting each training batch from K using distribution Q. To ensure
some diversity in the selected samples, we can adjust the λ parameter, which
controls an exploitation-exploration tradeoff.

If λ = 0, the distribution is uniform, while as λ → ∞ only the sample(s)
appearing the most to come from I will be selected.

Optimizing the hyper-parameter λ cannot be done in the usual fashions
(e.g. cross-validation) in our setting but choosing a value can be done in a
number of ways. Here we propose an intuitive non-parametric solution. Let
l (resp. h) be the index of the lth (resp. hth) sample of K is ascending order
of value of ĝ, by choosing a value for qh/ql we can isolate λ from

log
qh
ql

= λ(ĝ(xh)− ĝ(xl)). (8.14)

We propose to select l (resp. h) to correspond to the first (resp. third) quartile
and dub qh/ql the inter-quartile sampling probability ratio (IQPR). If IQPR =
5, for instance, the sample corresponding to the third quartile is five times
more likely to be selected than the sample at the first one. Note that when
IQPR = 1, the distribution Q is uniform.

Characterizing score. One question remains: how is the log-odds ratio g
computed? Ideally, we would have a sample

S = {(x1, i), . . . , (xNi , i), (xNi+1, o), . . . (xNi+No , o)}

where the Ni first samples are i.i.d. from I and the remaining from O. g
could then be learned by training a probabilistic classifier to discriminate i
and o samples. As we have seen in Section 3.2, the logistic regression can be
interpreted as modeling the log-odds with a linear boundary.

Unfortunately, no such sample is available in our setting. Therefore, we
propose to use a proxy ĝ, henceforth called characterizing score, in the form
of some OOD loss. In that regard, it seems that all indicators developed in
Chapter 7 could serve as characterizing scores. We will focus on two such
scores: T1000 and 1C-Sum (see Sections 7.4.1 and 7.6).

8.4. Distilling from an unlabeled collection 235

8.4.2.2 Discussion

In this section, we motivate the design choices which have led to the formal-
ization of the biasing mechanism described in the previous section.

Robustness. The most questionable choice regarding the biasing mecha-
nism is surely the proxy for the log-odds. Resorting to OOD indicators sug-
gests we are at best modeling something related to PI . The indicators are
agnostic ofO and talking about odds in these circumstances might not make
much sense.

Our solution is somewhat resilient to a bad choice of characterizing score.
On the one hand, ĝ needs only be a linear transformation of a good approx-
imation of g: the softmax is translation invariant and λ can accommodate a
scaling factor.

On the other hand, even an inadequate choice of score might prove to
be useful. Since we are sampling from the collection—not selecting samples
once and for all—we can choose λ so that the distribution is not too skewed.

Computational cost. Biasing the sampling incurs an additional cost of one
forward pass of the teacher per sample in the collection. This is admittedly
much less than what is required to learn a good generator or adversarially
transform pure noise into useful samples, as proposed in the context of zero-
shot distillation (see Section 8.3). Note that we could have instead sampled
mini-batches uniformly from K and then reweighed them in the loss as in
Eq. 8.16 (like Kimura et al., 2018; Tang et al., 2019). We believe there is no
need to spend too much time on uninformative samples, however.

The importance of biasing. Prior to running any experiments, what are
our expectations regarding the proposed biasing mechanism? The first thing
to consider is that enforcing the same decision boundary as the teacher’s in
low β areas is not an issue in itself. Rather, the problem would be if that
prevented imitating the teacher in more relevant areas. The effect of biasing
is thus subjected to the capacity of the student and the collection size. For
a high-capacity student, biasing might have very little effect. Indeed, if the
student is able to mimic the teacher for all samples of the collection, biasing is
useless. Actually, biasing might even hurt learning as doing without it might
constitute a regularization mechanism.

On the other hand, the lower the capacity, the more a student might ben-
efit from biasing. However, if the capacity is too low the student might end
up being poor in terms of performance.

Finally, if the biasing is too severe, it will mostly act as if only a subset of
the collection was available, in which case the performances should be hurt
whatever the student capacity.

236 Chapter 8. Distillation from heterogeneous unlabeled collections

8.4.3 Capturing the learning signal: fixed-linear distillation
under latent mapping assumption

Traditional teacher-student transfer encourages the student to replicate the
teacher outputs, either by imposing a L2 norm on the logit (Buciluǎ, Caruana,
and Niculescu-Mizil, 2006) or, more frequently, a (softened) cross entropy
loss on the output probabilities (Hinton, Vinyals, and Dean, 2015). The latter
will be referred to as classical (or vanilla) distillation. See Section 8.2.3.5 for
more details.

However, many problems (including most practical ones) have a small
number of outputs. As a consequence, trying to replicate only those is waste-
ful sample-wise; a better approach would be to extract more constraints per
input from the teacher’s inner functioning. Attention mechanisms, whose
goal is to force other parts of the student to behave as the teacher, have been
proposed to guide and accelerate student training (e.g. Romero et al., 2015;
Yim et al., 2017; Zagoruyko and Komodakis, 2017; Chung et al., 2020; Li et al.,
2020). Although well motivated when inner parts of the student and teacher
networks can be matched, they can not be applied in our more general setting
where the two architectures are not (necessarily) related.

We propose to take advantage of the only part where a mapping can be
expected even for unrelated architectures, i.e., at the end of the feature extrac-
tion phase. Recall from Section 3.6.2.1 that a network can be viewed as

ŷ(x; Θ) = WzL−1(x; θL−1) + b (8.15)

where zL−1(·; θ) : X → RpL−1 is a feature extractor. Our idea is to enforce
the student to match the teacher’s feature representation. Since pL−1 � K
(the dimensionality of the latent space is much greater than the number of
classes), this will put more constraints during training. By doing that, we
hope to be more efficient when learning from samples which are not from
the target distribution.

To formalize this idea, let us denote by us ∈ Rps (resp. ut ∈ Rpt) the
student (resp. teacher) latent vector corresponding to some x, and use the
corresponding subscript for W, b. Given ps might be different from pt, the
learning problem is then defined as follows:

Ws = PWt

bs = bt

minθ,P Ex∼Q ||Pus(x; θ)− ut(x; ψ)||22

(8.16)

that is, we fix the linear part of the student and learn the same feature extrac-
tion as the teacher’s. We will refer to Eq. 8.16 as fixed-linear distillation.

P serves to project the student latent vector onto the teacher space when
pS 6= pt so that Wtut = Wsus = WtPus. When ps = pt, one should take
P as the identity matrix and drop it from the objective. In contrast to how
traditional attention mechanisms are incorporated in the learning, the loss
has only one component and therefore no weighing hyper-parameter needs
to be tuned (which would be hard to do in our setting).

8.5. Empirical analysis 237

TABLE 8.3: Details of the collections used as proxy.

COLLECTION INCLUDED TRANSFER SIZE

Ori CIFAR 10 55000

Rel
TINY IMAGENET 100000
STL 10 102500

Irrel
MNIST (X2) 128000
FASHION MNIST 64000
SVHN 91963

RELATIVE SIZE (IN %)
COLLECTION Ori Rel Irrel
Ori + rel 21.36 78.64 -
Ori + irrel 16.23 - 83.77
Rel + irrel - 41.63 58.37

Although it is possible to fine-tune the linear part of the student by clas-
sical distillation, we expect the gain to be small (that part has already been
optimized on the teacher) compared to the risk of disrupting the model (us-
ing a poorly chosen fine-tuning learning rate, for instance).

Latent mapping assumption. Forcing the student to match the feature ex-
traction of the teacher poses the implicit assumption that the student is actu-
ally capable of doing so. We will refer to this as the latent mapping assump-
tion.

Whether this assumption is valid depends on whether the teacher’s fea-
ture extractor lies in the student’s hypothesis space (or if it contains a good
enough approximation). Since the student is expected to be smaller, the main
reason for violating the assumption would be for the student to lack capacity.

It is dubious that a student architecture failing this assumption would
turn out to be amenable for teaching by transfer whatever the loss. That
being said, vanilla distillation might be more appropriate in such a case, as
it would leave more flexibility for the student to learn a good approximation
of the teacher’s boundary. Anyway, the question of whether it makes sense
to use such a student should be raised.

We will investigate the violation of the latent mapping assumption in Sec-
tion 8.5.5.3.

8.5 Empirical analysis

In this section, we analyze the role played by the collection (Section 8.5.2),
followed by a discussion of the influence of biasing the sampling (Section
8.5.3) and a study of fixed-linear distillation (Section 8.5.4). We then cover a
few additional questions naturally raised by our methods (Section 8.5.5). We
start by describing our protocol.

238 Chapter 8. Distillation from heterogeneous unlabeled collections

TABLE 8.4: Test set accuracy (in %) of the teacher networks.

CIFAR 10 KMNIST
RESNET 50 94.11 ± 0.25 98.85 ± 0.01

DENSENET 121 94.30 ± 0.31 -

8.5.1 Protocol

Tasks. We evaluate our methodology extensively on CIFAR 10 (Krizhevsky,
Hinton, et al., 2009) and more briefly on KMNIST (Clanuwat et al., 2018),
using their standard test sets to assess model performance.

To constitute the collection of unlabeled images, we used MNIST (LeCun
et al., 1998a), Fashion MNIST (Xiao, Rasul, and Vollgraf, 2017), SVHN (Net-
zer et al., 2011), STL 10 (Coates, Ng, and Lee, 2011) (with all the unlabeled
images) and tiny ImageNet (Le and Yang, 2015). We used both train and test
sets for the collection, only keeping 10% of the train set as validation set to
monitor the loss. When the collection is made up of several datasets, we con-
catenated those validation sets. When images from the original task appear
in the collection, images from the test set are not included obviously. All
images were resized and cast to RGB to fit the network expectations.

We grouped some datasets to form meaningful collections as shown in
Table 8.3. Ori is simply the original task and is included for the sake of the
discussion. Rel stands for relevant, i.e. datasets whose label-space intersects
with the original task’s. Irrel contains only irrelevant datasets. We will also
consider three combinations of those collections. The second part of Table
8.3 holds the relative size of each sub-collection. Note that the most realistic
collection is rel + irrel.

Teachers. ResNet 50 (He et al., 2016) and DenseNet 121 (Huang et al., 2017)
were used as teachers. All networks expect RGB images. The networks were
optimized during 450 epochs by stochastic gradient descent (batches of size
64, weight decay of 5× 10−4 and momentum of 0.9). The learning rate was
initialized at 0.1. It was decreased by a factor of 10 after 150 epochs and
again at epoch 300. Each decrease was accompanied by a restart from the
best model according to the validation accuracy. Horizontal flip and random
cropping (with a padding of 4) were used as data augmentation. Teacher
accuracies are shown in Table 8.4.

Students and distillation. We used MobileNet v2 (Sandler et al., 2018) and
ShuffleNet v2 (Ma et al., 2018) as students, which expect RGB images as well.
The students were optimized with vanilla distillation or according to Eq. 8.16
with different values of IQPR. They were trained for the equivalent of 150
epochs of the target task’s training set so as to reach convergence. To reach
fast convergence, we considered pseudo-epochs of 5000 samples (accounting
for 1350 of such pseudo-epochs) drawn with replacement from the collection,
and divided the learning rate (initialized at 0.01) by approximately 0.4 after
no improvement was seen on the held-out validation set from the collection
for 20 pseudo-epochs. We used the same data augmentation scheme as for

8.5. Empirical analysis 239

the teachers (data augmentation is performed after bias sampling). The re-
sults are averaged over three random initialization of the teacher and student
networks. Unless mentioned otherwise, experiment results are based on 1C-
Sum with CIFAR 10 as target task. All experiments were carried out with
PyTorch (Paszke et al., 2017).

To give an idea of the relative sizes, ResNet 50 has approximately 24 mil-
lions parameters, DenseNet approximately 7 millions, MobileNet v2 approx-
imately 2 millions and ShuffleNet v2 approximately 1.3 millions parameters.

8.5.2 Collection analysis

Table 8.5 shows CIFAR 10 test set accuracy after full fixed-linear distillation
when using different collections as transfer set and for several from/to archi-
tecture pairs and three values of IQRP. We defer the comparison with vanilla
distillation to Section 8.5.4.

As a sanity check, let us note that the best performance (up to 94% of accu-
racy) is obtained by using the original dataset without biasing the sampling
(last column), a setting which is supposed to be impossible in our context.
Two more prominent observations can be made: highly biasing the sampling
can be harmful (as we envisioned near the end of Section 8.4.2) and only us-
ing irrelevant data results in very poor accuracies (although one might be
surprised at how high an accuracy is achievable with such unrelated data).

Excellent performances can usually be obtained when the original data
is part of the transfer collection. Interestingly, we see that even in the worst-
case situation (ori + irrel, where good data represents less than one-fifth of
the collection) very decent accuracy can be reached with uniform sampling,
although biasing the sampling is most useful in this situation. This suggests
that student training is robust to such irrelevant data, probably because the
network is not saturated.

When only relevant samples are available (rel), biasing makes little sense
(IQPR=1 offers the best accuracy). However, in the most realistic setting,
where relevant and irrelevant samples form the collection (rel + irrel), a
small bias (IQPR=5) usually offers a slight edge.

https://pytorch.org/

240
C

hapter
8.

D
istillation

from
heterogeneous

unlabeled
collections

TABLE 8.5: CIFAR 10 test set accuracy (in %) after distillation with respect to the collection used as transfer set. Coloring is
by teacher-student pairs and is linear with accuracy.

IQPR Rel + irrel Rel Irrel Ori + rel Ori + irrel Ori

RESNET 50 TO MOBILENET

1 91.46 ± 0.27 92.17 ± 0.08 72.24 ± 4.69 93.90 ± 0.21 93.06 ± 0.29 94.15 ± 0.34
5 91.04 ± 0.15 90.99 ± 0.35 68.67 ± 2.22 93.83 ± 0.55 93.99 ± 0.46 93.73 ± 0.23

25 89.25 ± 0.46 74.10 ± 9.15 58.17 ± 2.12 93.38 ± 0.28 93.60 ± 0.26 89.44 ± 0.27
RESNET 50 TO SHUFFLENET

1 90.34 ± 0.17 91.47 ± 0.05 66.14 ± 2.25 93.36 ± 0.31 91.93 ± 0.20 93.69 ± 0.25
5 90.63 ± 0.01 90.59 ± 0.00 64.78 ± 1.85 93.47 ± 0.40 92.37 ± 0.65 92.77 ± 0.08

25 87.90 ± 0.36 80.93 ± 0.71 55.06 ± 1.54 89.48 ± 3.10 92.69 ± 0.20 88.34 ± 0.09
DENSENET 121 TO MOBILENET

1 91.27 ± 0.40 91.60 ± 0.35 76.43 ± 0.80 93.92 ± 0.26 93.06 ± 0.17 94.36 ± 0.25
5 91.89 ± 0.04 91.41 ± 0.61 75.89 ± 0.96 94.05 ± 0.13 93.93 ± 0.25 93.81 ± 0.14

25 91.62 ± 0.49 88.85 ± 0.33 73.01 ± 0.02 87.68 ± 6.78 93.68 ± 0.78 90.29 ± 0.12
DENSENET 121 TO SHUFFLENET

1 90.37 ± 0.01 91.50 ± 0.53 70.35 ± 0.59 93.33 ± 0.17 91.79 ± 0.20 93.71 ± 0.01
5 91.14 ± 0.16 91.24 ± 0.35 70.31 ± 1.09 93.83 ± 0.28 93.24 ± 0.15 92.51 ± 0.08

25 90.63 ± 0.11 83.46 ± 2.59 67.90 ± 1.89 93.70 ± 0.11 93.41 ± 0.02 87.67 ± 0.78

8.5. Empirical analysis 241

8.5.3 Sampling analysis

In this section, we investigate the effect of the biased sampling. Although the
previous section suggested that biasing had little impact, we can see from
Figure 8.2 that it tends to accelerate the convergence to the final accuracy. On
rel + irrel, using an IQPR of 5 instead of 1 results in an average accuracy of
77.5% instead of 69.1% at 10% of the learning. The gap remains wide during
the whole training on ori + irrel. When using the original data (ori), bias-
ing downgrades the performance, by masking examples. We expect biasing
to provide an advantage in this setting only if the dataset contains outliers.

Table 8.6 offers more insight into the sampling mechanism. Skip ratio
represents the percentage of samples from the collection which never get se-
lected. Uniformity is the entropy of the empirical selection distribution. It is
rescaled in the range [0, 1] (close to 1 means uniform, close to 0 means highly
biased) and ignores samples which are never selected. Finally, irrel. prop. is
the percentage of the samples that are used at least once during the training
that comes from irrel.

When there is a slight bias (IQPR=5), only a small fraction of the data
is ignored. This percentage is the smallest on ori where the scores used to
compute the actual sampling probabilities are supposed to be more uniform.
The proportion of irrelevant samples is drastically reduced in the case of ori
+ irrel. This suggests that we are able to select samples from the original
data quite well and explains the good results in Table 8.5.2 and Figure 8.2.

When the bias is more severe (IQPR=25), we see that a great proportion
(20 to 40 %) of the data are totally discarded. Even for the remaining samples,
the selection departs largely from a uniform distribution. As a consequence,
many datapoints are mostly ignored. It is clear that this strategy can only
pay off when the collection is polluted with many easily-identified irrelevant
samples. Since this is close to pre-selecting the samples, this scheme also rids
us of the benefits of compensating a bad choice of characterizing score. In
any case, this accounts for the bad performances on rel and ori (Table 8.5).

8.5.4 Fixed-linear distillation analysis

To assess the impact of fixed-linear distillation, we compare it to classical
distillation. Since a projection is involved for our variant, we carried out
two tests: the first one with the default version of the student architecture
and the second one with a modified student network where the pre-linear
latent space is updated to match the dimensionality of the teacher’s (2048
for ResNet 50). To do so, we simply modify the number of feature maps
produced by the last convolution layer of our MobileNet student. The last
convolution is indeed followed by global average pooling, resulting in one
latent feature per feature map. In this case, the size of the latent space is in-
creased (from 1280 to 2048), resulting in more parameters for this variant of
the student. The results are collected in Table 8.7. Fixed-lin. + proj. corre-
sponds to Eq. 8.7. Fixed-lin. 2048 is our method on the modified student.

242 Chapter 8. Distillation from heterogeneous unlabeled collections

0.5
0.6
0.7
0.8
0.9

Rel + irrel

0.5
0.6
0.7
0.8
0.9

Ori + irrel

IQPR
1
5
25

0 200 400 600 800 1000 1200 1400
0.5
0.6
0.7
0.8
0.9

Ori

Pseudo-epochs

Te
st

 a
cc

ur
ac

y

FIGURE 8.2: Convergence rate: CIFAR 10 test set accuracy
with respect to the learning time and for several collections and

IQPR values (based on DenseNet 121 to MobileNet).

Distill 2048 is vanilla distillation on the modified student, while Distill corre-
sponds to vanilla distillation on the original student. We used a temperature
of 2 for all vanilla distillations.

On the rel + irrel collection, there is a clear incentive to use the fixed-
linear distillation throughout the whole learning procedure and irrespective
of the IQPR. The projection, on the other hand, plays an insignificant role.

On the original data (ori), the usefulness of taking advantage of the latent
space information clearly disappears, offering only a slight edge at the start.
Interestingly, the projection is better able to keep up with the distillation than
when the student’s latent space is made to match the teacher’s.

Overall, it appears more critical to exploit well the learning signal when
using proxy data. The conclusion drawn regarding biased sampling seems
to hold with classical distillation as well (i.e. useful on proxy data contain-
ing relevant samples to speed up convergence). By the end of learning, the
modified student never significantly outperforms the original student and
even tends to underperform (or at least is less stable) on the original data.
As a consequence, there is no incentive to add more parameters to match the
teacher.

8.5. Empirical analysis 243

TABLE 8.6: Biased sampling related metrics: skip ratio is the
percentage of samples which are never selected; uniformity is
the empirical entropy of the selected sample distribution; irrele-
vant proportion is the percentage of samples from irrel which
are used at least once during training (based on transferring CI-
FAR 10 from DenseNet 121 to MobileNet). Cells marked with ?
have non-negligible standard deviation (see Supplementary for

more details).

SKIP RATIO

IQPR Rel + irrel Ori + irrel Ori
1 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
5 3.53 ± 0.01 1.91 ± 0.01 0.37 ± 0.01

25 24.99 ± 0.15 40.09 ± 15.83 21.48 ± 7.36
UNIFORMITY

IQRP Rel + irrel Ori + irrel Ori
1 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
5 0.97 ± 0.00 0.96 ± 0.00 0.94 ± 0.00

25 0.95 ± 0.00 0.86 ± 0.07 0.60 ± 0.18
IRRELEVANT PROPORTION

IQPR Rel + irrel Ori + irrel Ori
1 58.36 ± 0.02 86.32 ± 0.00 -
5 42.12 ± 0.01 56.65 ± 0.01 -

25 38.84 ± 9.46 17.32 ± 12.81 -

8.5.5 Additional experiments

8.5.5.1 Influence of the characterizing score

All the previous experiments relied on the 1C-Sum score to bias the sampling.
Table 8.8 revisits the transfer of CIFAR 10 from ResNet 50 to MobileNet with
our method using the rel + irrel collection to highlight the effect of the
characterizing score.

The T1000 score results in slightly worse accuracy than 1C-Sum on mod-
erate bias (IQPR=5). The accuracy drops significantly when the bias increases,
however. Interestingly, the score seems appropriate to detect the relevant
samples. At IQPR=5, both scores skip about 7% of the data and T1000 slightly
better rejects irrelevant samples. When IQPR=25, T1000 focuses on only a
quarter of the samples but those are mostly relevant ones. In both cases, how-
ever, the results is a much less uniform distribution of samples compared to
1C-Sum.

This paradoxical situation is due to the fact that the characterizing score
has two impacts on the learning (when IQPR > 1).

On the one hand, there is a direct effect: a bad choice of characterizing
score would put forward irrelevant samples. In such a case, any IQPR value
greater than one would result in a worse outcome than uniform sampling,
since the student would be presented more often with “bad” samples.

On the other hand, the score distribution is important. Imagine the score
is perfect with respect to a given collection, task and teacher (informally, all

244 Chapter 8. Distillation from heterogeneous unlabeled collections

TABLE 8.7: CIFAR 10 test set accuracy (in %) at 10% and 100%
of learning with different distillation methods and collections.
FL+P (Fixed-linear + projection) is our method; DS refers to
the classical distillation; 2048 refers to modifying the student
to match the latent space dimensionality of the teacher (based

on ResNet 50 to MobileNet).

IQPR = 1 IQPR = 5
METHOD @ 10 % @ 100 % @ 10 % @ 100 %

Re
l+

ir
re

l FL+P 70.33 ± 2.37 91.46 ± 0.27 75.77 ± 0.07 91.04 ± 0.15
FL 2048 71.59 ± 2.65 91.34 ± 0.07 75.42 ± 0.74 91.18 ± 0.00
DS 2048 63.52 ± 0.38 89.59 ± 0.46 68.45 ± 0.60 89.11 ± 0.38

DS 64.02 ± 2.02 89.26 ± 0.97 69.03 ± 3.22 89.04 ± 0.75

Or
i

FL+P 87.00 ± 0.37 94.15 ± 0.34 85.69 ± 1.03 93.73 ± 0.23
FL 2048 87.96 ± 0.28 93.10 ± 1.37 85.92 ± 1.15 91.99 ± 1.18
DS 2048 86.85 ± 0.13 95.01 ± 0.07 84.73 ± 0.59 94.03 ± 0.10

DS 86.52 ± 0.05 94.97 ± 0.20 84.91 ± 0.19 94.12 ± 0.20

TABLE 8.8: Comparison of characterizing score (based on trans-
ferring CIFAR 10 from ResNet 50 to MobileNet). IP stands for

irrevelant proportion.

IQPR SCORE ACCURACY (%) SKIP RATIO UNIFORMITY IP

5 1C-SUM 91.04 ± 0.15 7.04 0.96 51.57
T1000 89.57 ± 0.58 6.85 0.91 48.39

25 1C-SUM 89.25 ± 0.46 35.69 0.85 32.63
T1000 74.69 ± 1.08 75.76 0.55 7.00

relevant samples of the collection for task score higher than irrelevant ones)
and there is exactly one-quarter of irrelevant samples. The second quarter
(containing only relevant samples) will almost never be selected if its com-
ponents are much closer to the irrelevant samples than to the third quarter,
for instance.

T1000 distribution is not suited for our problem, even though it might ul-
timately be a good characterizing score. A different scheme for transforming
the score into a sampling probability might be more appropriate for T1000.

8.5.5.2 One collection to rule them all

An advantage of having a large collection of data from many sources is that
the same collection can be used for different tasks. Using the same proto-
col as for the other experiments, we transferred by fixed-linear distillation a
ResNet 50 teacher learned on KMNIST into a MobileNet student using the
rel + irrel collection (IQPR=25). We reached an accuracy of 97.45%± 0.80.
We thus see that re-using a collection which performs well on CIFAR 10 leads
also to close-to-teacher (98.85% ± 0.01, see Table 8.4) accuracy on an unre-
lated problem. This time, the proportion of what was considered as “irrele-
vant” samples for CIFAR 10 (MNIST, Fashion MNIST, SVHN) increases up to
reaching 75.09%± 4.04. Such samples are much more relevant with respect

8.6. Conclusion 245

TABLE 8.9: TwoConvNet: architecture details. DC stands for
depthwise convolution, PC for pointwise convolution, BN for
batch-normalization, GAP for global average pooling, FC for

fully connected.

LAYER TYPE OUTPUT SIZE DETAILS

DC 109× 109× 63 KERNEL 7× 7, STRIDE 2
PC 109× 109× 512 KERNEL 1× 1
BN 109× 109× 512

RELU 109× 109× 512
DC 53× 53× 1024 KERNEL 5× 5, STRIDE 2
PC 53× 53× 2048 KERNEL 1× 1
BN 53× 53× 2048

RELU 53× 53× 2048
GAP 2048
FC 10

to KMNIST, illustrating that the characterizing score is indeed able to focus
on the most relevant datapoints.

8.5.5.3 Failing the latent mapping assumption

When proposing the fixed-linear distillation, we assumed that some corre-
spondence between the teacher’s and student’s latent space existed. This
seems to be the case when transferring from ResNet 50/DenseNet 121 to
MobileNet/ShuffleNet. When the architectures are widely different, the as-
sumption might not hold, however.

To test this, we used as student a network composed of two depthwise-
separable convolutions followed by a traditional linear part. This network
will be referred to as TwoConvNet and is detailed in Table 8.9 (we do not ex-
pect the architectural details to bear much weight on the conclusions, how-
ever). Although the number of parameters of this network is of the same
order as MobileNet’s (i.e. roughly two millions parameters), TwoConvNet
is far from being as deep. We learned a TwoConvNet by fixed-linear distil-
lation and classical distillation, following the same protocol as for the other
experiments. We set the IQPR to 1 as we only wanted to test the mapping as-
sumption. We obtained an accuracy of 56.06 by fixed-linear distillation and
of 58.46 by classical distillation. This suggests that fixed-linear distillation is
inappropriate when the latent spaces from the student cannot emulate the
teacher’s. Admittedly, classical distillation does not work well either, since
the network is too shallow for CIFAR 10.

8.6 Conclusion

In this chapter, we discussed the problem of neural network compression, an
important problem as motivated in Section 8.1.2. There is notably room for
compression due to the fact that neural networks are over-parametrized (see

246 Chapter 8. Distillation from heterogeneous unlabeled collections

Section 8.2.1) making them cumbersome, slow, and energy-inefficient. Sec-
tion 8.2.2 and Section 8.2.3 discuss how the problem can be tackled at high-
and lower-level, respectively. Section 8.3 then turns to how compression can
be done in a data-constrained environment.

In Section 8.4 we tackle the challenging task of distilling a large teacher
network into a smaller one—the student—in the absence of the original data.
To do so, we proposed to leverage a collection of unlabeled samples which is
supposed to contain “relevant” samples. We focused on image classification
for which such data bank is likely to exist.

To fully take advantage of the available collection, we proposed to (i) bias
the sampling to present more often data which appear relevant in the sense
of some characterizing score (Section 8.4.2), and (ii) better exploit the learn-
ing signal via fixed-linear distillation (Section 8.4.3). To control the former,
we introduced a simple hyper-parameter (IQPR). Contrary to related works,
we are able to focus on relevant samples without requiring (a small part of)
the original data and the whole learning runs in a time comparable to what
would be required to directly learn the student, were the target dataset avail-
able.

We illustrated that good performances could indeed be reached when ei-
ther the collection contained relevant samples or, unrealistically, the original
data itself (Section 8.5.2). We observed that biasing the sampling could speed
up, or even help, the learning when irrelevant data is part of the collection
(Section 8.5.3). Biasing to the point where many datapoints are ignored might
result in suboptimal performances, however. As for the fixed-linear distilla-
tion, we showed it was called for in our setting where the original data is
missing (or we are on a tight training budget); using more information from
the latent space significantly helps the learning (Section 8.5.4).

We then delved into some additional topics (Section 8.5.5). Firstly, we
illustrated that a good characterizing score (in this context) must not only
be able to highlight relevant samples but should also conform to some con-
straints on the distribution it produces. Then, we showed that a same collec-
tion can be useful for several tasks (possibly with different subsets account-
ing for the relevant samples) and that our fixed-linear distillation is subject
to some latent mapping assumptions.

This work opens some avenues for future works. Firstly, the way the bias-
ing mechanism is controlled could be improved. The simple scheme we pro-
posed works well in tandem with 1C-Sum but is less successful with T1000
(Section 8.5.5). A first step might be to lower the biasing as learning pro-
gresses, so as to focus more on relevant samples at the start and reduce the
instability when close to convergence. Scheduling the biasing would, how-
ever, introduce new hyper-parameters.

Further ideas relating to the sampling bias would be to ensure each class
of the learning problem receives the same amount of samples (for a balanced
problem) or to incorporate in the sampling probabilities the relative loss of
each sample, so as to skip samples which will not affect the loss much any-
way. How to weigh the latter so that it would not encourage uniformity by

8.6. Conclusion 247

highlighting less-seen datapoints during the whole learning (thus neutraliz-
ing the intend of the bias) is unclear, however.

Besides the sampling mechanism, being able to transfer more from the
teacher to the student might provide the final edge to close the gap between
the two. Re-using proposed attention mechanisms (see Section 8.2.3.5) when
possible, for instance with quantized or pruned students, is straightforward.
In the more general case, the works of Park et al. (2019), which proposed a
metric learning kind of loss, or the one of Xu, Hsu, and Huang (2018), which
proposed to learn how to distill via a GAN-like architecture, might provide
inspirations.

The sample-free setting is so constrained that it prevents controlling the
accuracy of the final model, or even simply tuning hyper-parameters. An
interesting question is whether the unlabeled collection could act as proxy
for those as well. For instance, is there a high enough correlation between
the true accuracy and the loss on the unlabeled collection to make informed-
yet-imperfect decisions? Would it suffice to, say, choose between two roughly
equivalent in terms of numbers of parameters (or FLOPs) but otherwise quite
different student architectures? If yes to some extent, would it be better to
create a validation set randomly from the unlabeled collection, or should be
made by using the characterization score? Such questions required further
analysis?

To conclude, let us note that the most critical aspect is to have access to
relevant data. Building a larger collection might well prevail over building a
better one or improving the distillation algorithm.

249

9 Chapter

Interpretable Machine Learning

Chapter overview

This chapter is about interpretability, the idea that a model can
be dissected to get a better idea of its inner workings—or of the phe-
nomenon it is modeling.

This chapter is divided into three main parts. Section 9.1 discusses
interpretability in general. Then two cases of interpretability are scru-
tinized. Section 9.2 revisit the idea of GIFs (see Chapter 6) as a way to
extract sufficiently small models to turn them into a list of interpretable
rules. Section 9.3 discusses the problem of feature importance and ex-
amines how neural networks fare in this area compared to other tree-
based state-of-the-art methods. Since the two parts are quite distinct,
a more detailed overview of them is given therein. Finally, Section 9.4
concludes this chapter.

9.1 Interpretability

In this section, we investigate general notions relating to interpretability.

9.1.1 Motivation and high-level goals

Can you trust your model? Is your model making decisions reflecting the
discrimination within the data it was trained on? Can machine learning help
us broaden our understanding of the wider world? Is there something to ac-
tually learn from the data beyond just memorizing it? Is your model learning
the “right” thing? These questions dip into the broad field of interpretability,
whose general goal is to provide insight into the input-output relationship
the model is trying to capture.

From this somewhat vague definition stem many methods which can be
dichotomized in local and global techniques.

Global interpretability. The goal of a global interpretability method is to
shed some light on the input-output relationship in general, that is irrespec-
tive of any given samples. This can take many forms. For instance, one

250 Chapter 9. Interpretable Machine Learning

entropy = 0.0
samples = 1
value = [1, 0]

entropy = 0.0
samples = 1
value = [0, 1]

entropy = 0.672
samples = 17
value = [3, 14]

entropy = 0.811
samples = 4
value = [3, 1]

Petal len. <= 3.9
entropy = 1.0
samples = 2
value = [1, 1]

entropy = 0.0
samples = 43
value = [43, 0]

Sepal len. <= 6.6
entropy = 0.863

samples = 21
value = [6, 15]

entropy = 0.0
samples = 34
value = [0, 34]

Sepal len. <= 4.95
entropy = 0.154

samples = 45
value = [44, 1]

Petal len. <= 5.15
entropy = 0.497

samples = 55
value = [6, 49]

Petal len. <= 4.75
entropy = 1.0
samples = 100
value = [50, 50]

(A) Structure of a classification tree. The
first line in the box corresponds to the
split (absent in leaves). The second line is
the entropy of the sample in terms of class
distribution. The third line is the number
of samples and the following line is the

distribution in terms of classes.

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Sepal length [cm]

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Pe
ta

l l
en

gt
h

[c
m

]

Versicolour
Virginica

(B) A classification boundary. The
boundary is piece-wise and axis-aligned,
a manifestation of the paths along split-

ting nodes.

FIGURE 9.1: A decision (classification) tree and its boundary for
the iris species classification (see Chapter 2 for more details).

might try to understand under which situation a natural phenomenon oc-
curs. Someone else might be interested in seeing which of the input vari-
ables bear the most weight on the output. Conversely, one might want to
detect irrelevant variables, or redundant ones.

An example of a model providing global interpretability was given in
Chapter 3 with decision trees and is re-introduced here in Figure 9.1a. The
simplicity of the tree ensures it is possible to get insight into the input-output
relationship. A close look at the tree reveals the Virginia species entails longer
petals, with long Versicolor iris being rather the exception than the rule. In
this case, it is easy to check visually that this high-level interpretation makes
sense (Figure 9.1).

Other examples of global methods include (sparse) linear models where
the linear coefficients (associated with the standardized variables) inform on
the input-output relationship. Further instances will be discussed in Section
9.2 in the case of rules sets and and in Section 9.3 when discussing input
variable importances.

Local interpretability. Contrary to global methods, local techniques aim at
deciphering why a given sample receives its output. How comes a patient
received such a diagnosis? Can a medical doctor double-check it by looking
at what part of a scan triggered the model? These kinds of questions are local;
what happens outside of the investigated case is of no moment.

Once more, Figure 9.1a can serve for illustration purposes. Consider the
local query of why an iris with a petal length of 4.9 and a sepal length of 6.5
is classified as Versicolor? Following the path the example takes, we end up
on the right-most leaf of depth 3 and we see that a few training instances fell
into that area.

9.1. Interpretability 251

As is evident from the example of the decision tree, local and global meth-
ods usually interact. Global knowledge is oftentimes relevant locally and can
serve as a first analysis step. Conversely, local techniques can usually form
the basis of a global one by aggregating information over a whole set of sam-
ples (see Section 9.3).

Intrinsic or extrinsic interpretability. In general, having access to the model
(and possibly data) is not enough to glean much understanding of the input-
output relationship, and neither is looking at how it responds to a given
sample enough to fully grasp what are the key factors influencing its deci-
sion. Models not so easily interpretable, such as neural networks (and large
and deep decision forests) are qualified of black-boxes1. In contrast, a model
which is not a black-box is intrinsically interpretable.

Black-boxes might still be subjected to interpretability via additional com-
putation steps, making them extrinsically interpretable. Such cases are often
referred to as post-hoc interpretations (Molnar, 2020). Some methods might
try to crack open the box while others are totally agnostic to the model.

The boundary between black-box and intrinsically interpretable models
is rather vague. In reality, there is a spectrum of how much work is needed
to get answers to interpretability queries. This overhead might also change—
implying the intrinsic/extrinsic nature of the model as well—-with the type
of queries.

Types of queries. The scale at which interpretability is investigated is not
the sole factor influencing the nature of the queries one might ask a trained
model, as the start of this chapter suggests. We will focus on two types of
queries. Section 9.2 will look at getting insight into the input-output relation-
ship (in a statistical sense rather than in a causal one; see Section 4.3). Section
9.3 will examine the question of which input variable influences the output
the most (at a global scale).

Note that by considering different sub-problems (via the queries which
can be formulated) as part of “interpretable machine learning”, we conve-
niently sidestep the need for a clear definition of what interpretability (or
more generally explainable artificial intelligence, XAI) stands for exactly; a
known difficult issue. Rather, the next section will discuss a few desirable
properties common to the sub-problems which typically fall under the no-
tion of interpretability.

9.1.2 Feasibility and mid-level goals

Even though interpretability is a broad topic and might mean several things,
there are general properties that could be expected. Here are a few of them.

1“Black-box” alludes to the idea of opacity, which comes in different flavors. In Chapter
7, we mentioned white-box access to a neural network. In this chapter, black-box is to be
understood as meaning opaque in the sense that even when looking at its parameter (i.e.
with white-box access) it is not easy to understand what the network is doing.

252 Chapter 9. Interpretable Machine Learning

9.1.2.1 Desirable properties

Accuracy. The first thing we ought to expect from an interpretation is accu-
racy, which is the combination of two sub-questions. Firstly, do those inter-
pretations actually reflect how the input-output relationship works (faithful-
ness)? Secondly, are all the important factors captured by the interpretations
(completeness)?

The accuracy discussed in this paragraph relates to interpretability and is
sometimes called descriptive accuracy (Murdoch et al., 2019). It must not be
confused with predictive accuracy, which corresponds to how well the model
is able to make predictions.

Simplicity. To be of use, interpretation must be concise (or simple) in order
to fit the cognitive bandwidth of the interpreter. In this regard, Erasmus,
Brunet, and Fisher (2020) felt the need to define interpretation as “[...] some-
thing that one does to an explanation to make it more understandable”. For
intrinsically interpretable models, this usually takes the form of a size con-
straint.

The requirement for getting an intelligible picture is counterbalanced by
the ever-present need for an accurate one (in the predictive sense). Those two
do not go hand in hand. Forcing the hypothesis space toward simple models
is likely to increase the bias of the learning algorithm. Thus, too complex is
hard to grasp but too simple and the full picture becomes the fool’s: if the
model is not accurate enough, how can the insights it brings be trusted?

This balance is of epistemic consequence as some problems might not of-
fer the fragile compromise between simplicity and accuracy within the realm
of intrinsically interpretable models.

Extrinsic methods might somewhat provide a go-between accurate mod-
els and simple interpretations but this raises an important question: how
can one trust a simple interpretation derived from an accurate-yet-complex
model when a simple model is not itself accurate enough? Of course, the
question falls short if the extrinsic interpretations are proven to be accurate—
not an easy feat in the context of extrinsic methods as we will argue in a
couple of paragraphs.

Stability. Some authors (e.g. Murdoch et al., 2019; Yu and Kumbier, 2019;
Bénard et al., 2021) also suggest that interpretations be stable. That is, in-
terpretations derived from models (belonging to the same hypothesis space)
inferred on different learning sets should roughly come up with the same in-
terpretations. Although predictive stability should be expected (a sign that
the model is not overfitting), descriptive stability might not follow.

For instance, a problem with redundant variables may swap those vari-
ables around without changing anything as far as predictions are concerned.
Without going as far as redundant variables, dependency between the in-
put features may well lead to several decision paths, equivalent so long as
predictions are concerned.

9.1. Interpretability 253

Ideally, querying the model would uncover all those phenomena, in which
case interpretation could be stable. In practice, these are difficult questions
and partial answers might end up being significantly unstable. It should also
be mentioned that uncovering natural redundancy of the phenomenon con-
flicts with the simplicity of interpretation.

Relevancy. Murdoch et al. (2019) also advocate for the notion of relevancy,
i.e. the fact that interpretability is contextual and different operators might
formulate different queries. For instance, a model might provide a good mea-
sure of which features bring information for the prediction but might not
quite answer why a specific prediction is made. The same model might thus
be interpretable in one context and not in another.

An fundamental dichotomy of queries is whether they relate to the model
(e.g. “why is the model predicting y for input x?”) or whether they relate
to the underlying phenomenon (e.g. “why is y the ground truth for input
x?”). The former is usually necessary to convince experts that a task can
be automated by a model. This in turns implies some means of assessing
(qualitatively at least) the model. In the latter case, the answer is unknown
by design and thus interpretations are harder to assess.

As Watson and Floridi (2020) note, relevancy and stability interact: not
all equally accurate (in the descriptive sense) explanations hold the same
relevancy—the context determines what is relevant and what is not.

The interested reader can consult the works of Murdoch et al. (2019), Wat-
son and Floridi (2020) and Zednik (2021) for a more in-depth discussion of
the desirable properties.

9.1.2.2 Feasibility

Is reaping knowledge from data possible? The first thing to note in order
to reply to this question is that the answer is contextual: relevancy and sim-
plicity depend on the actual question being asked. The biggest obstacle to
answering, however, might be relative to descriptive accuracy.

Whereas supervised learning benefits from a clear assessment methodol-
ogy, interpretability, as a whole, does not. This is especially true of queries
relating to the phenomenon for which, were the ground-truth known, the
question would not arise. At best, the techniques can be evaluated on specific
cases where the answer is known, either by other means (such as prior knowl-
edge; see the ozone dataset in Section 9.2.1) or by design (see the benchmark
datasets in Section 9.3.5). Applying such methods to other problems is an
inductive leap which may demand strong theoretical guarantees to compen-
sate for the lack of empirical control.

A possible counter-argument for the lack of assessment is that predictive
accuracy can act as a surrogate for descriptive accuracy. As we have high-
lighted in Section 5.2.5, predictive accuracy seems indeed to be a necessary

254 Chapter 9. Interpretable Machine Learning

requirement2. The conclusion that it can serve as a surrogate measure does
not follow from this premise, however. In the case of extrinsic interpretation,
it is clear that a model could be good yet provide bad explanations, espe-
cially if the interpretation extraction mechanisms are not well-motivated by
theory. Section 9.3 will provide an example of this. Whether having a model
with high predictive accuracy is sufficient to trust intrinsic interpretability is
unclear but the fact the same mechanisms are used for interpretability and
prediction leans in the direction of the sufficient condition.

Despite these reservations, we believe interpretability is worth tackling
and achievable to some extent. Easy problems offer accurate hypotheses,
simple enough to be closely examined. Hard problems might not be fully
dissectable, but the accuracy of the interpretations can be maintained by fa-
voring faithfulness and foregoing completeness: the truth, nothing but the
truth but maybe not the whole truth. Whether it be intrinsic or not, the
method should, once more, come with a knob to adjust this faithfulness-
completeness-conciseness tradeoff to the problem at hand.

Alternatively, one can turn to easier problems: going from global to focal
(e.g. only look at one class or part of the prediction spectrum) to local, abstract
more what interpretations are sought out, and so on.

Caution and epistemic modesty are called for, however, especially as we
move from simple phenomena subjected to local and intrinsic queries to com-
plex phenomena under global and extrinsic scrutiny. And this is even more
true when interpretability is to be understood as causality—an endeavor far
surpassing the modest goal of this chapter.

9.2 GIF as a rule extraction algorithm

Section overview

In this section, we come back to GIFs (Chapter 6). So far they have
mainly been (and originally were) motivated by memory constraints,
which are enforced by their node budgets. They are not etched in this
sole context, however. Here they are re-contextualized for the sake of
interpretability in the form of rule sets.

Section 9.2.1 presents the interpretable model of rule sets and
shows how GIFs can be used to extract rules. Section 9.2.2 showcases
that GIFs can actually serve the purpose of rule extraction. Finally,
Section 9.2.3 quickly comes back to the topic of stability in the context
of rule sets.

2To some extent, at the least. It could be that a model captures some of the underlying
structure of the input-output relationship without capturing enough to reach high predic-
tive accuracy. This limited understanding might still provide insightful knowledge but the
model is clearly incapable of giving a full account of the underlying phenomenon.

9.2. GIF as a rule extraction algorithm 255

9.2.1 Rule sets as an interpretable model

Rule set example. An example of rule set for the ozone LA dataset (Fried-
man, Hastie, and Tibshirani, 2001a) is given at Table 9.1. The dataset consists
of 330 samples and the goal is to predict the maximum ozone concentration
level (ozone) thanks to nine (meteorological) variables: the height the 500 mb
constant pressure surface (vh), the wind speed (wind), the relative humidity
(humidity), the temperature (temp), the inversion base height (ibh), the pres-
sure gradient (dpg), the inversion base temperature (ibt), the visibility (vis)
and the day of the year (doy).

Rules are of the form if-condition-then-prediction. From them, the out-
put value for a given sample can be made by adding the intercept and all
the predictions associated with the rules the sample falls into. When several
rules with a common prefix match, only the more refined rule is followed.
For instance, a sample with a temp=65 would match the second and seventh
rules but not the first.

So far as interpretability is concerned, understanding how the ozone con-
centration relates to the other variables (a global interpretability query) is
mainly done by looking at how a rule affects the output value (in relative
terms). For instance, we see that the ozone concentration increases signifi-
cantly when the temperature is more than 71.1 °F (≈ 21.7 °C). The “prop.”
mention in the first column corresponds to the proportion of training in-
stances meeting each rule. From them, we can deduce that, although the
concentration level increases significantly when the temperature is high, the
base height of the temperature inversion might play a more important role
as it influences the prediction a bit less but plays a more frequent role. The
proportion allows to filter out actual rules from important exceptions.

Fortunately, the rule set seems to conform to our understanding of tro-
pospheric ozone. Sunlight plays a role in both the formation of ozone and
temperature, while a closer-to-ground temperature inversion suggests stable
weather which prevents the dispersion of ozone.

From GIFs to rule sets. Notice that the conditions are of the same nature
as the splitting nodes in decision trees, or a conjunction of such splits. This
should suggest a way of building rule sets: learn a decision tree and write
down all paths. Since rule sets offer a mechanism for inference and fall into
the category of intrinsic methods, the descriptive accuracy of the rules can be
assimilated to the predictive accuracy of the model for the base, supervised
task. Simplicity relates to the tree’s size. Note however that a simple rule set
must (i) contain few rules, and (ii) must have intelligible rules, which comes
down to having shallow rules (i.e. with a small number of “ands”).

With a single tree, there is a direct relationship between the number of
leaves and the number of rules, leading to a rigid tradeoff between accuracy
and simplicity. Rule sets can instead be built around decision forests, making
sure the prediction of the rules reflects those of the forest.

GIFs come as a perfect fit for this problem. They naturally turn toward
smaller forests. The complexity of the rule set can be specified via the node
budget while the ideal shape is left for the algorithm to determine, possibly

256 Chapter 9. Interpretable Machine Learning

TABLE 9.1: Example of a rule set for the ozone dataset isomor-
phic to a GIF (m = 1000, CW = +∞, λ = 1).

Intercept: 11.8
prop. = 0.58 If temp > 58.88 then ozone = 1.11
prop. = 0.33 If temp > 58.88 and temp ≤ 72.85 then ozone = 2.21
prop. = 0.28 If vh ≤ 5706.12 then ozone = −1.07
prop. = 0.48 If ibh > 2244.43 then ozone = −5.80
prop. = 0.27 If temp > 71.10 then ozone = 9.74
prop. = 0.10 If temp > 71.10 and ibt ≤ 227.83 then ozone = 5.76
prop. = 0.40 If temp > 65.20 then ozone = 2.25
prop. = 0.41 If ibh ≤ 1476.56 then ozone = −1.23
prop. = 0.05 If ibt > 285.86 then ozone = 3.58
prop. = 0.01 If ibt > 285.86 and humidity ≤ 49.59 then ozone = −6.62
prop. = 0.27 If doy > 266.85 then ozone = −0.82
prop. = 0.19 If humidity ≤ 39.84 then ozone = −3.10
prop. = 0.47 If ibh > 2386.16 then ozone = 0.78

with hyper-parameters encouraging deeper or broader models. Moreover,
the pre-pruning nature of the algorithm ensures that a very long branch will
not get picked up early—an advantage for once.

Since we are aiming for a very low budget in order to ensure a simple rule
set, GIFs will need to optimize their nodes as best as possible. Therefore, we
expect a high learning rate and a large candidate window will be needed.

9.2.2 Empirical results

We closely follow the recent work of Bénard et al. (2021), introducing the
SIRUS-R method, to evaluate how GIFs perform as rule extractors. The pa-
per compares three methods and several baselines. RuleFit (Friedman and
Popescu, 2008) is a boosting method topped with a lasso regularization to ex-
tract small rule sets. The number of rules and their depth are implicitly con-
trolled by the penalty of the lasso constraint. Node Harvest (Meinshausen,
2010) is a random-forest-based method where a small forest is first learned
in a traditional way before being globally refitted. The number of rules and
their depth are decided by the parameters controlling the size of the forest.
Finally, SIRUS-R learns a random forest restricting splits to q-quantile values
(usually q = 10) and then keeps only the most frequent rules of the forest.
The number of rules is governed by the minimum occurrence frequency. The
depth of the rules is indirectly controlled in the same way since deeper rules
are (exponentially) less likely to appear. The datasets used for the experi-
ments are described in Table 9.2, with 10% of the samples dedicated to the
test set.

GIFs hyper-parameters. Considering the goal of producing a small list of
rules, GIF hyper-parameters have been chosen so that λ = 1, CW = +∞ and
m = 1000. Indeed, with a handful of rules, nodes need to be optimized as

9.2. GIF as a rule extraction algorithm 257

TABLE 9.2: Dataset description.

DATASET SIZE DIM. SOURCE

OZONE 330 9 FRIEDMAN, HASTIE, AND TIBSHIRANI (2001A)
MPG 398 7 BLAKE AND MERZ (1998)
HOUSING 506 13 HARRISON JR AND RUBINFELD (1978)
DIABETES 442 10 EFRON ET AL. (2004)
MACHINE 209 6 BLAKE AND MERZ (1998)
ABALONE 4177 8 BLAKE AND MERZ (1998)

TABLE 9.3: Number of rules extracted by method. Expanded
from Bénard et al. (2021).

DATASET DEC. TREE RULEFIT NODE HARVEST SIRUS-R GIF
OZONE 15 21 46 11 13.6 ± 0.9
MPG 15 40 43 9 10.9 ± 0.5
HOUSING 15 54 40 6 7.3 ± 0.5
DIABETES 12 25 42 12 12.9 ± 0.7
MACHINE 8 44 42 9 10.4 ± 0.5
ABALONE 20 58 35 6 8.3 ± 0.6

much as possible and the risk of overfitting is slight. The node budget, on the
other hand, was chosen so as to be close to the number of rules of SIRUS-R
(Table 9.3). Note that the number of rules extracted by GIF is slightly greater
than for SIRUS-R. However, the rules of the latter contain a “else” clause
which allows for a more accurate prediction on a per-rule basis.

Analysis. Our main result is Table 9.4 where the proportion of unexplained
variance (i.e. the mean squared error divided by the variance of the output) is
reported for several methods. Random forest and decision tree are included
as a baseline. The results for RuleFit, Node Harvest, SIRUS-R and SIRUS-R
(50) are directly taken from Bénard et al. (2021). In the case of GIFs, perfor-
mances are reported over 10 random shuffling of the datasets. Extra-trees
(see Section 3.4.3) are 1000 fully-developed trees with otherwise default pa-
rameters.

As can be seen, GIF holds its own in this context. On ozone and machine,
it performs best on average. On the other datasets, it is on par with Node
Harvest and SIRUS-R, with a slight edge on housing and abalone compared
to SIRUS-R.

Node budget vs. number of rules. GIFs, as implemented, do not allow
to specify the number of rules they should extract. As a rule of thumb, for
a small list of rules, the number of rules is approximately two-thirds of the
node budget (see Table 9.5). Indeed, a depth-1 rule accounts for two nodes:
the root, which provides the condition and a leaf, which provides the predic-
tion. Similarly, a depth-2 node with no sibling accounts for three nodes.

258 Chapter 9. Interpretable Machine Learning

TABLE 9.4: Proportion of unexplained variance for several rule
extractors. Expanded from Bénard et al. (2021). The uncolored

rows are baselines. Coloring is linear by dataset.

METHOD OZONE MPG HOUSING

EXTRA-TREES 0.25 ± 0.04 0.10 ± 0.02 0.14 ± 0.10
RANDOM FOREST 0.25 0.13 0.13
DECISION TREE 0.36 0.20 0.28
RULEFIT 0.36 0.15 0.16
NODE HARVEST 0.31 0.20 0.24
SIRUS-R 0.32 0.21 0.31
GIF 0.26 ± 0.06 0.21 ± 0.10 0.22 ± 0.10

DIABETES MACHINE ABALONE

EXTRA-TREES 0.60 ± 0.12 0.21 ± 0.13 0.46 ± 0.03
RANDOM FOREST 0.55 0.13 0.44
DECISION TREE 0.67 0.39 0.56
RULEFIT 0.55 0.26 0.46
NODE HARVEST 0.58 0.29 0.61
SIRUS-R 0.56 0.29 0.66
GIF 0.58 ± 0.06 0.23 ± 0.17 0.60 ± 0.03

TABLE 9.5: Relationship between the node budget and the
number of extracted rules.

DATASET BUDGET NUM. OF RULES

OZONE 22 13.6 ± 0.9
MPG 18 10.9 ± 0.5
HOUSING 12 7.3 ± 0.5
DIABETES 24 12.9 ± 0.7
HARDWARE 18 10.4 ± 0.5
ABALONE 12 8.3 ± 0.6

Intrinsic or extrinsic? So far the discussion has mainly been focused on
GIFs as an intrinsically interpretable method (disregarding the straightfor-
ward extraction step). Being a pruning method, GIF can also be seen as an
extrinsic method by pruning a larger forest before extracting the rules. The
extra-trees line of Table 9.4 shows the unexplained variance of the unpruned
forest corresponding to GIF: the extracted rules are the same.

9.2.3 A further digression about stability

SIRUS-R was motivated by the idea of rule stability: learning the model on
different samples should yield similar rules. The authors measure rule sta-
bility by counting (and then normalizing) the number of exactly equivalent
conditions which are obtained by cross-validation. To ensure that some splits
actually appear several times, they restrict the random forest to split on the
q = 10 quantiles of the splitting variable. This is also an important compo-
nent of the method.

9.2. GIF as a rule extraction algorithm 259

Owing to the authors’ definition of descriptive stability, GIFs would fare
badly in that regard. Indeed, extra-trees-based GIFs choose the splitting
value at random, resulting in finding exactly the same condition twice unlikely.
However, it is not expected that small shifts in splitting values would have
an overall tremendous impact. At least not more than quantizing the input
values. A more flexible definition of stability would be needed—provided it
is a good endeavor in the first place.

For one thing, interpreting phenomena with small rule sets might not be
consistent with descriptive stability. In the face of redundant variables, the
size constraint will prevent giving a full account of the underlying interac-
tions between variables. Different runs would then result in highlighting
different variables. Consequently, the problem might be unstable by nature
and decreasing accuracy in favor of stability might be altogether harmful.

The other problem with stability relates to how it can be achieved. If it
goes through increasing the bias (as the q-quantile splits do), it might further
restrict the class of problems on which rule sets may be applied. Indeed, the
bias of rule sets is already high (on complex problems) since the model is
severely constrained in size.

9.2.4 Conclusion

Re-contextualizing GIFs within the question of interpretability has shed some
interesting results: GIFs also perform reasonably well in this setting. The
small experimental study also gave insights as to how the GIF hyper-parameters
should be set to obtain accurate-yet-intelligible rule sets.

A more thorough and systematic study would be needed to back these
first results. The first step would be to see how GIF-based rule sets fare on
classification tasks, especially in multi-class settings where GIFs have been
shown to underperform. A fairer comparison with existing methods is also
called for. Bénard et al. (2021) did not discuss in detail the hyper-parameters
of the baselines, which might influence the conclusion.

A final question is how GIFs would handle irrelevant variables—a prob-
lem central to the next section.

260 Chapter 9. Interpretable Machine Learning

9.3 Feature importances

Section overview

This section reviews and compares techniques for feature impor-
tances for decision trees and neural networks, which were the main
models examined in this thesis.

This section is based on the publication “Nets versus trees for fea-
ture ranking and gene network inference” (Vecoven et al., 2020). My
contribution to this work was to supervise N. Vecoven’s master thesis
on which the paper is based, discuss the deep learning methods, the
methodology and the experimental protocol, as well as help write the
paper.

The code relating to this contribution is available at https://
github.com/nvecoven/ann_fsl. It is implemented by Nicolas Vecoven
on top of TensorFlow 2.0 (Abadi et al., 2015) and Scikit-Learn (Pe-
dregosa et al., 2011).

Section 9.3.1.1 briefly sum up the contributions. Section 9.3.1.2
discusses the motivation behind the specific kind of interpretability
measures this whole section investigates, while Section 9.3.2 discusses
several closely related problems. Section 9.3.3 and Section 9.3.4 de-
tail the importance measures which will be investigated for decision
forests and neural networks, respectively. An empirical analysis on
benchmark problems is conducted in Section 9.3.5, while Section 9.3.6
turns to the problem of Gene Regulatory Networks wherein feature
importance measures are used to infer which genes regulate which.

The present section is mainly faithful to the original article. Sec-
tions 9.3.1.2 and 9.3.2 provide a bit more context, and notations have
been uniformized.

9.3.1 Ambitions

9.3.1.1 Goal and contribution

The goal of this contribution was to analyze how embedded feature impor-
tance measures for artificial neural networks (ANN) compared to decision
forest-based approaches, usually held as (among the) state-of-the-art meth-
ods. Our driving problem was the hard biological case of gene regulatory
networks (detailed in Section 9.3.6).

Contribution. Our contribution was to

• propose a framework to analyze local feature importance measures in
a quantitative way through the problem of feature selection;

https://github.com/nvecoven/ann_fsl
https://github.com/nvecoven/ann_fsl
https://www.tensorflow.org/
https://scikit-learn.org/stable/

9.3. Feature importances 261

• empirically compare the performances of feature importance measures
for ANN and random forest (RF) on benchmark problems, which de-
livered a complex conclusion;

• combine the so-called selection layers (see Section 9.3.4.3) with other
feature importance measures, which turn out to (i) yield a great im-
provement for feature importance, and (ii) be a good regularizer in the
context of irrelevant/redundant variables;

• assess the neural network feature importance measures in the context
of a challenging task in computational biology, namely the inference of
gene regulatory networks (where RF are currently amongst the state-
of-the-art approaches).

9.3.1.2 Motivation

What would happen if we included irrelevant input variables in a learning
set? For instance, suppose the ozone dataset of the previous section had an-
other variable which consists in independently generated Gaussian noise.
Would this improve the prediction? Hardly. Actually, it might well hurt
learning by providing a lever for overfitting. If there are relatively few in-
stances compared with the expressiveness of the hypothesis space, the learn-
ing algorithm could easily pick up on what appear as structures in the irrel-
evant variables due to the finiteness of the data (see Figure 9.2).

Arguably, adding independently generated features to a dataset makes
little sense but there are many reasons why the data might contain features
which have no actual predictive power. For instance, it is not always easy a
priori when engineering the features to decide which ones to include. Some
features might seem useful but really are not.

The converse is true as well. Imagine the ozone dataset included a feature
about the average mood of the citizen. At first glance, it might seem irrele-
vant to the ozone concentration but people’s moods tend to be influenced by
the weather conditions and smog will definitely turn a day gloomy. It might
not be as informative as other features but it might still help in the prediction
process. Is it worth the cost of monitoring such a variable?

Even when the features are a priori assumed to be relevant, some might
eventually turn out to be irrelevant. Still on the ozone case, imagine one piece
of equipment was faulty, resulting in random measurements. This would
constitute a situation where an irrelevant variable is present in the dataset,
even though there were good reasons not to suspect it.

Alternatively, the whole purpose of learning a model might be to discover
which variables really are important. See Section 9.3.6 for such an example.
As disclaimed in Section 4.3, this must be understood in a predictive, rather
than causal, sense. Coming back to the example of the ozone level and gen-
eral mood, it is clear that, although the latter might help predict the former,
the mood is not a cause of the ozone level. When the acquisition is costly,
focusing on relevant variables might go a long way toward creating a large
learning sample at an affordable cost.

262 Chapter 9. Interpretable Machine Learning

0 100 200 300 400 500
Number of irrelevant variables

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Te
st

 M
SE

1e 24

FIGURE 9.2: Degradation of the found hypothesis with respect
to the number of irrelevant variables. The problem contains
25 relevant variables and is linear (see LC in Section 9.3.5.1 for
the details). The learning algorithm is the logistic regression
trained with 20000 datapoints. Even though the hypothesis
space contains the true function, the performance of the model
degrades substantially when the number of irrelevant variables

increases.

Conversely, it is reassuring to see that a learning process is able to recover
known characteristics, such as which features are truly important. This might
be the missing ingredient for trusting an artificial agent.

Whatever the reason, machine learning benefits from being able to reflect
back on which input variables are truly important in making predictions.

Optimality-relevancy agreement assumption. A word of caution. Even
though it is intuitively compelling to believe there is a strong connection be-
tween optimality and the “relevance” of features, the relationship between
those two is not trivial; the suitability of the hypothesis space must also
be taken into account. Even in the (data-)asymptotic case and assuming no
search bias, it is not true for all hypotheses space that adding an informative
variable will result in a better model (see the “Optimal subset” paragraph
below).

This should not be confused with the general comment on the tradeoff
between accuracy and interpretability with respect to the expressiveness of
the hypothesis space (Section 5.2.5). This is more related to the question of
whether predictive accuracy can serve as a surrogate measure for descriptive
accuracy (embodied here by the feature relevancy).

9.3. Feature importances 263

The conclusion is that “relevancy” (not just interpretability) and accuracy
sometimes conflict with each other. In other words, enforcing the former
might constitute a constraint for the latter.

Nonetheless, this does not mean that optimality and “relevancy” do not
go along to some extent. A model would not be able to make an accurate
prediction if it relied only on irrelevant variables. Therefore it is not un-
grounded to use optimality as a proxy for “relevancy” (as for interpretability
in general). The assumption that accuracy can be used instead of “relevancy”
when making decisions will be referred to as the optimality-relevancy agree-
ment assumption.

But what is “relevancy” exactly?

9.3.2 Problem formulation

9.3.2.1 Relevance

Let us first introduce the concept of relevant variables. Here we reproduce
the definitions of Kohavi, John, et al. (1997) (in the form given by Sutera
(2021)). As usual, let X = (X1, . . . ,Xp) and Y be the input and output vari-
ables respectively. Let V = {Xj|1 ≤ j ≤ p} be the set of input variables3.
Furthermore, let V¬j = V \ {Xj}.

Definition 9.3.1 (Relevant variable). A variable Xj is relevant if and only if

∃B ⊆ V¬j such that Xj 6⊥⊥Y|B (9.1)

whereXj 6⊥⊥Y|B means that variableXj is not conditionally independent of Y given
B.

If a variable is not relevant, it is irrelevant.

Even if the conditional independence of two variables given some others
could be easily evaluated, the existential condition on B might soon consti-
tute a computational burden (there are O(2p) subsets to consider). One way
out of this issue is to consider a stronger condition:

Definition 9.3.2 (Strongly relevant variable). A variable Xj is strongly relevant
if and only if

Xj 6⊥⊥Y|V¬j (9.2)

In words, Xj brings information to Y even in the presence of all the other vari-
ables.

Strong relevance might be too strong an assumption, however. Imagine
that Y = f (X1) and X1 = aX2 + b, where f is a deterministic function and
p = 2. SinceX1 andX2 are isomorphic, they bring the same information to Y .
Yet, neither are strongly relevant even though the input-output relationship
is deterministic. Such a case might seem academic but redundant variables

3Gathered in vectorial form elsewhere in this thesis.

264 Chapter 9. Interpretable Machine Learning

are frequent in practice, especially in high-dimensional settings (think of the
spatial redundancy in images). For this purpose, it makes sense to define the
concept of marginal relevance.

Definition 9.3.3 (Marginally relevant variable). A variable Xj is marginally
relevant if and only if

Xj 6⊥⊥Y (9.3)

In words, Xj is marginally relevant to Y if they are not independent.

It should be noted that a relevant variable is not necessarily marginally
relevant: Xj could be independent of Y but provide information in the pres-
ence of a collider variable Xl. Imagine that two coins are tossed, that Xj
stands for whether the coin landed on tail, and that Y stands for the result of
the second coin. Knowing the result of the first coin brings no information re-
garding the second on its own. If Xl indicates whether the two coins landed
on the same side, knowledge of Xj and Xl fully determines the outcome of
Y .

Optimal subset. Finally, let us mention that Kohavi, John, et al. (1997) also
discussed the notion of the optimal subset (the subset which allows mini-
mizing the expected loss) and show with a couple of counter-examples that
optimal subsets may not contain all relevant features—even not all strongly
so. In particular, using a larger set of relevant variables to learn a hypothesis
from might not amount to a better accuracy if no hypotheses can leverage
the information of the additional feature. Additionally, irrelevant features,
such as constants, might truly (i.e. without overfitting) help in predicting by
improving the expressiveness of the hypothesis space.

9.3.2.2 Importance

Relevance is a rather coarse-grained measure. In some context, it might be
preferable to have an idea of the degree of relevancy. For instance, it is rea-
sonable to suspect that measuring the ozone level is a better predictor of the
ozone level than whether or not the citizens are moody.

The most straightforward measure of the relevancy degree is surely the
conditional mutual information. Since conditional independence is equiv-
alent to having no conditional mutual information, an easy parallel can be
drawn with the notions of relevance.

Assessing the mutual information might not be easy, however, as it would
require getting a good estimate and possibly some combinatoric evaluation
(i.e. Eq. 9.1). As such, it might be more convenient to work with surrogate
measures which more or less relate to one of the concepts of relevancy de-
scribed in the previous section. Such measures, henceforth called importance
measures, are the topic of Sections 9.3.3 and 9.3.4.

9.3. Feature importances 265

9.3.2.3 Selection and ranking

A different, yet related, problem is feature selection: find a subset of variables
which together bring some amount of information for the output.

A literal transcript of this, when we are looking for the most information,
goes through the notions of Markov blankets and boundaries (Pearl, 1989).

Definition 9.3.4 (Markov blanket). A Markov blanket is a subset B ⊆ V

Y ⊥⊥V \B|B (9.4)

In words, a Markov blanket is a set of random variables which contains all the
information about the output.

Definition 9.3.5 (Markov boundary). A Markov boundary is a Markov blanket
of smallest cardinality.

Markov boundaries (there might be more than one) relate to relevancy.
Two interesting properties are that a Markov boundary must include all the
strongly relevant variables and that no irrelevant variables can be included
in the boundary (Tsamardinos and Aliferis, 2003).

From importance to ranking to selection. Even though the Markov bound-
ary is the smallest blanket, it might still be a large set. Actually, it might well
include all the variables. The remark we made about relevancy still holds,
however: not all variables contribute in the same way. Actually, a Markov
boundary might include many features which barely bring information.

To go past this issue, a general solution is to tackle feature selection via
a ranking of the variables, most usually established via an importance mea-
sure. It goes like this: each variable receives a score, thanks to which a rank-
ing is established. In the end, only the top k variables are kept. Provided the
importance measure fulfills some additive property, k can be chosen to reflect
some minimum total information threshold.

Although this places a bottom-up view on a pedestal, it should be noted
that many methods actually compute the importance score in a top-down
fashion by attributing to each variable some part of the total importance
available.

From local to global methods. Although feature selection is a global prob-
lem (the selection is made irrespective of a given input), measuring the im-
portance of a feature or ranking them might either be done at a global scale
or at a more local one: which feature is important for predicting the output
to input x?

The local information can be aggregated over a set of examples to lead to
a global measure. The simplest scheme, the one which we will use, is simply
to average the scores. This aggregation step renders the link between the
final importance/ranking and the notions of relevancy and Markov blanket
more difficult to establish.

266 Chapter 9. Interpretable Machine Learning

9.3.3 Feature importance with random forests

A classical importance measure for random forests is the mean decrease of
impurity (MDI) (Breiman, 2002). Recall from Section 3.3 that a decision tree
propagates an example x down the tree towards a leaf by following a succes-
sion of splits τ(x; j, t) where j is a feature index and t is the threshold value on
which the decision (passing through the left or right child) is made. While
building the tree, the splits τ are chosen so that the uncertainty reduction
∆τU(S) will be largest.

Definition 9.3.6 (Mean Decrease of Impurity (MDI)). The MDI score for vari-
able j computed from a m-trees forest is

MDI(j; S) =
1
m

m

∑
l=1

∑
(k,τ(·;j′,t))∈Tl |j′=j

|Sl,k|
|S| ∆τU(Sl,k) (9.5)

where Tl is the set of pairs (node index, splits) the lth tree and Sl,k ⊆ S is the subset
of training instances reaching node k in the lth tree. Typically S is the learning set.

In words, the MDI score is the total weighted reduction of uncertainty (aka.
impurity) brought by a feature j, averaged over all the trees constituting the forest.

Note that MDI can be used with any uncertainty measure U. In the case
where U is the Shannon entropy, Louppe et al. (2013) proved that this score
relates, in the asymptotic setting and with totally randomized trees, to the
mutual information between variable j and the output, averaged over all
conditionings. This is a compelling argument in favor of the MDI score.

9.3.4 Feature importance with neural networks

With great popularity comes great responsibilities. The advent of deep learn-
ing has nudged practitioners in embracing such models in many areas but
one thing cannot be said about deep networks: that they are intrinsically
interpretable. Consequently, the past few years have witnessed the proposi-
tion of many embedded methods to compute importance measures for input
features.

These approaches usually provide local importance scores, measuring the
relevance of each input feature for a given individual prediction. They can be
broadly divided into two families: gradient-based methods (e.g. Simonyan,
Vedaldi, and Zisserman, 2014; Baehrens et al., 2010), which compute the
gradient of the output with respect to the input, and decomposition-based
methods (e.g. Bach et al., 2015; Sundararajan, Taly, and Yan, 2017; Shrikumar,
Greenside, and Kundaje, 2017), which decompose the output prediction (or
the difference with respect to a baseline) into a sum of contributions from
the different input features. Both gradient-based and decomposition-based
methods are backpropagation approaches that propagate the importance sig-
nal from an output neuron to the input neurons through each layer of the
network.

Since our goal is to study how ANN-based importance measures compare
to those derived from decision forests (rather than comparing the existing

9.3. Feature importances 267

ANN-based measures among them) only one representative method from
each family will be examined. For a detailed discussion and comparison of
the different existing approaches for ANN, the reader can refer to Montavon,
Samek, and Müller (2018), Ancona et al. (2018), and Kindermans et al. (2019).

As representative of the gradient-based methods, we chose to backpropa-
gate the partial derivative of the absolute value of the derivative of the output
with respect to each input feature (called GI in the following) (Leray and Gal-
linari, 1999; Simonyan, Vedaldi, and Zisserman, 2014). This will be discussed
at more length in Section 9.3.4.1.

As representative of decomposition-based approaches, we chose the layer-
wise relevance propagation (LI) technique (Bach et al., 2015). This will be
discussed at more length in Section 9.3.4.2.

Both GI and LI can be used with any pre-trained network with an arbi-
trary feed-forward structure. As such they might provide useful insight with
more structured inputs than those which we will investigate.

Another approach—the so-called selection layer method—which cannot
be used directly with a trained model is the topic of Section 9.3.4.3 which is
followed by a short discussion about hybrid approaches (Section 9.3.4.4).

On architecture and scope. For fair comparison, we wanted to focus on
problems on which no learning algorithm was expected to perform better.
Therefore, we focused on standard machine learning (rather than images)
and turned to fully-connected feed-forward neural networks. The selected
methods (GI and LI) are not restricted to those architectures, however. For
instance, (some of the variants of) these methods have been previously dis-
cussed in the context of image classification, where they were shown to be
able to identify the pixels that are useful for classifying a given image (Si-
monyan, Vedaldi, and Zisserman, 2014; Bach et al., 2015). It should also be
noted that a third category of methods exists for image processing (e.g. Zeiler
and Fergus, 2014; Springenberg et al., 2014; Kindermans et al., 2017). They
work by identifying the input pattern which activates the neurons in the dif-
ferent layers for visualization purposes.

Since ReLU-based networks are ubiquitous nowadays, we will focus on
them.

The architectures we will look at are thus of the form

ŷ(·, Θ) = fL(·; θL) ◦ . . . ◦ f1(·; θ1) : X→ RK (9.6)

where

fl(x; θl) = ReLU (Wlx + bl) (9.7)

with θl = (Wl, bl). We conform to the notations of Section 3.6.1.

9.3.4.1 Gradient-based method (GI)

A standard importance measure for variable j for an input x is given by the
absolute (or squared) value of the partial derivative for variable j at x (Leray

268 Chapter 9. Interpretable Machine Learning

and Gallinari, 1999; Simonyan, Vedaldi, and Zisserman, 2014). This impor-
tance score measures how much the network output for the sample x changes
regarding an infinitesimal change in x(j), and can be efficiently computed us-
ing backpropagation. To obtain a global importance score, we extend this
approach by simply taking the sum of the derivatives over all the instances
U = {xi ∼ X}n

i=1 and denote it by GI, which stands for Gradient Impor-
tance.

Definition 9.3.7 (Sensitivity (gradient importance) GI).

GI (j; U) = ∑
x∈U

K

∑
k=1

∣∣∣∣∣∂ŷ(k)(x)
∂x(j)

∣∣∣∣∣ , (9.8)

GI(j) is simply the sum over all instances of the L1 norm of the jth row vectors of
the end-to-end Jacobian matrix.

With linear-and-rectified architectures, the partial derivatives come down
to

∂ŷ(k)(x)
∂x(j)

= ∑
P∈Gj(x)

∏
(l,i,o)∈P

W(o,i)
l (9.9)

where Gj(x) is the set of all non-blocked paths from the jth input neuron to
the kth output for the example x and P = ((1, i1, o1), . . . (L − 1, iL−1, oL−1))
is a path (a (L − 1)-tuple of triplets: the layer index, the index of the input
neuron and the index of the output neuron). A path is said to be blocked if
it passes through an inactive neuron (i.e. a ReLU neuron that has a null or
negative input). In this view, the role of x is merely to indicate which paths
to block.

9.3.4.2 Layer-wise relevance propagation (LI)

Although commonly used, the gradient method has the drawback that it
does not explain the output of the network but rather how the output varies
when the input is changed (Montavon, Samek, and Müller, 2018). Clearly, an
input could be relevant even if Eq. 9.8 is (close to) zero at a given point. More-
over, linear-and-rectified architectures form piece-wise linear regions. There-
fore, a gradient-related measure might not be quite so useful as knowing
which variables entail more discontinuities. Finally, a model suffering from
vanishing gradient would provide little information with such a method.

Several alternatives have been proposed to circumvent these limitations.
As a representative of these methods, we use below a particular instance
of the generic layer-wise relevance propagation (LRP) method proposed by
Bach et al. (2015).

Recall that zl+1(x) = ReLU(Wl+1zl(x) + bl+1). For simplicity, let us de-
fine the product of the element at position (j, k) of Wl+1 and of z(k)l by u(l+1)

jk

so that z(j)
l+1 = ReLU

(
∑

pl+1
k u(l+1)

jk + b(j+1)
l

)
.

9.3. Feature importances 269

Definition 9.3.8 (Layer-wise Relevance). The layer-wise relevance LR(j)
l (x) of

the jth neuron of the lth layer of network at x is

LR(j)
l (x) =

∣∣∣z(j)

L

∣∣∣ if l = L

∑
pl+1
k=1

ReLU
(

u(l+1)
kj

)
∑

pl+1
m=1 ReLU

(
u(l+1)

km

)LR(k)
l+1 otherwise

(9.10)

This propagation rule corresponds to the αβ-LRP rule with α = 1 and β = 0 (Bach
et al., 2015).

In words, the layer-wise relevance propagation consists in distributing
the relevance of the l + 1th layer to the lth layer proportionally to the activa-
tions (numerator). The denominator serves to rescale the relevance so all the
relevance signal is backpropagated to the input (conservation):

p1

∑
j=1

LR(j)
l =

pL

∑
j=1

LR(j)
k ∀j, k (9.11)

In the case of ReLU activations, it can be shown that applying this rule at
a given layer can be viewed as a Taylor decomposition of the importance at
that layer onto the lower layer (Montavon, Samek, and Müller, 2018).

Definition 9.3.9 (Layer-wise Importance LI). The importance LI(j) of variable j
computed over U is

LI(j; U) = ∑
x∈U

LR(j)
0 (x) (9.12)

Sensitivity versus LRP. The gradient importance and the layer-wise impor-
tance follow a similar scheme of backpropagating through the network some
importance score. They differ on several accounts. The sensitivity requires
to compute the gradient

∇ xŷ(x) =

(
L

∏
l=1

JT
l (x)

)
1K (9.13)

where Jl is the Jacobian matrix of the lth layer and 1K is the K-dimensional
vector containing all ones.

In the case of a succession of fully-connected layers and ReLU, the Jaco-
bians of two consecutive layers come down to

WT
l Bl+1(x) (9.14)

where Wl is the weight matrix of the lth layer and Bl+1(x) is a binary matrix
(due to the ReLU) reflecting which of the neurons were active (in the forward

270 Chapter 9. Interpretable Machine Learning

pass). Rewriting the full backpropagation, we end up with

∇ xŷ(x) =

(
L

∏
l=1;l=l+2

WT
l Bl+1(x)

)
1K (9.15)

On the other hand, LRP can be rewritten in matrix form as

LRP0(x) =

(
L

∏
l=1;l=l+2

Nl(x)
(

UT
l (x)� B′l+1(x)

))
|ŷ(x)| (9.16)

where � represents the Kronecker product, Nl(x) accounts for the normal-
ization (the denominator in Eq. 9.10) and B′l+1(x) is a binary mask. Note that
B 6= B′ due the oddly missing bias term in LRP.

The first disagreement between LRP and the sensitivity is what is back-
propagated. In LRP, the goal is to re-attribute the importance measure to the
input variable, hence the absolute value at the end of the network. In the
gradient-based approach, a dummy signal is backpropagated, and the abso-
lute value (embodying the notion of measure) is only taken over the imputed
scores on the input variables. Conceptually, there is thus a wide gap between
the two methods.

The second disagreement is about how the backpropagations operate.
Firstly, the ReLUs are not used in the same way. Secondly, LRP includes a
normalization factor to implement relevance conservation. Thirdly, the U
matrices (which contain the ukj entries) depend on the network weights but
also on the latent vectors. In essence, while GI uses the samples to identify
the (in)active paths, LI looks at the activations.

9.3.4.3 Selection layers

This method is inspired by sparse linear regression (see Section 3.1.2.2) and
was proposed by Li, Chen, and Wasserman (2015). As illustrated in Fig-
ure 9.3, a one-to-one connected layer with linear activations and no bias,
called here selection layer (SL), is introduced between the inputs and the first
hidden layer of the network. Like all the other weights of the network, the
weights of SL are initialized with random values drawn from a truncated
normal distribution with 0 mean and 0.1 standard deviation, and the net-
work is trained while penalizing them to ensure that only useful information
goes through the network.

This penalization can be achieved through an elastic net program (Section
3.1.2.2), where the overall loss function is of the following form.

Definition 9.3.10 (Selection Layer optimization).

min
Θ,wsl

n

∑
i=1

` (ŷ(xi; Θ, wsl), yi) +
α1

p

p

∑
j=1
|w(j)

sl |+
α2

p

p

∑
j=1

(
w(j)

sl

)2
(9.17)

where ` is a traditional loss, α1 ≥ 0 and α2 ≥ 0 are hyper-parameters balancing the
penalty terms.

9.3. Feature importances 271

Input
layer

Selection
layer

First
hidden
layer ...

... Final
hidden
layer

Output
layer

x(1)

x(2)

x(3)

w(1)
sl

w(2)
sl

w(3)
sl

y(1)

y(2)

FIGURE 9.3: Example of selection layer architecture. The se-
lection layer consists of a one-to-one connected layer between
the input variables xi and the first hidden layer of the network.
Dashed (resp. plain) circles represent neurons with linear (resp.

non-linear) activations.

This objective can be optimized as usual (i.e. with SGD). Unless otherwise
mentioned, in our experiments we focus on a L1 penalty only, i.e. we set
α2 = 0. Given this optimization program, a global importance score relating
to the selection layer can be derived.

Definition 9.3.11 (Selection Layer Importance). The selection layer importance
SL of feature j is

SL(j) =
∣∣∣w(j)

sl

∣∣∣ (9.18)

9.3.4.4 Hybrid approaches

Below, we also experiment with mixed strategies, called SL+GI and SL+LI,
which train the network using the selection layer but compute the variable
importances using the GI and LI techniques respectively. Since the selection
layer is a one-to-one linear layer, this amounts to multiplying the importance
score computed without the selection layer by the selection weight of the
input feature. As we will see in Section 9.3.5, using a selection layer allows
to strongly increase the performance on benchmark datasets.

When applied alone, GI and LI can be used with all trained architectures
as extrinsic methods. Since they do not interact with the base objective, in-
terpretation comes as a post-training constraint. The selection layer, on the
other hand, changes the model which is learned. When used alone, the selec-
tion layer is intrinsically interpretable, since all it takes to get the information
is a look at the selection weights.

Although MDI, GI, and LI all share the need for a set of instances, there
is a large difference between them. In the case of MDI, the set must include

272 Chapter 9. Interpretable Machine Learning

labels. Moreover, MDI being a global measure, the sets are used quite differ-
ently. A consequence of this is that all the necessary information for comput-
ing MDI is traditionally kept within the tree structure. Keeping the informa-
tion relative to GI or LI with the network seems somewhat less general since
they are local methods.

9.3.5 Empirical analysis on benchmark datasets

We use datasets with a known ground-truth (i.e.. known relevant features)
in order to assess and compare the five ANN-based approaches (GI, LI, SL,
SL+GI, SL+LI) introduced in the previous sections. Since the relevant fea-
tures are known, the variable rankings are assessed using the area under the
precision-recall curve (AUPR). Given a threshold on the importance measure,
the precision indicates the proportion of relevant variables captured by the
method among all the variables declared as important, while the recall in-
dicates the proportion of relevant variables captured by the method among
all relevant variables. The AUPR aggregate the precision and recall over all
possible thresholds. It will be equal to 1 if the ranking is perfect, i.e., if all the
relevant variables receive higher importance than the irrelevant ones, while
the AUPR will be close to the proportion of relevant variables for a random
ranking (see Section 3.7.1 for more details).

The baseline is the mean decrease impurity (MDI) score obtained from
standard random forests (RF). RF models are composed of 1000 unpruned
trees. They use the Gini index as uncertainty measure in classification and
the variance in regression. The number pe of examined features at each node
of a decision tree is tuned from the set of values {√p, log(p), p/3, p/2, p}
(where p is the number of inputs).

In all the experiments, unless otherwise stated, each ANN is composed of
3 hidden layers of respectively 300, 150, and 75 ReLU neurons, and is trained
for 30000 steps on batches of size 50 using dropout (Srivastava et al., 2014)
and AdamOptimiser (Kingma and Ba, 2015) with a learning rate of 10−3.
Values of the selection layer parameter α1 are optimized in {10, 100, 1000} on
the validation set.

9.3.5.1 Simulated problems and protocol

We consider four different simulated problems.

Linear regression (LR). A linear regression problem generated using the
make_regression function from the Scikit-Learn library (Pedregosa et al., 2011).
Output y is computed as ∑25

i=j wjx(j), where weights wi are randomly and

uniformly selected in [0, 100], and inputs x(j) are N (0, 1) distributed.

Linear classification (LC). A linear, binary classification problem generated
by thresholding the LR problem output so that the two classes are perfectly
balanced.

https://scikit-learn.org/stable/

9.3. Feature importances 273

TABLE 9.6: AUPR (in %) and Misclassification (MCR)/MSE for
the four simulated problems, with 5000 variables in total in each
problem. Values indicate means and standard deviations com-
puted over 10 datasets. The best predictive results are indicated

in bold. Coloring is linear.

LC NLC
MCR AUPR MCR AUPR

SL+GI
0.057±0.011

90.20 ± 4.40
0.049±0.007

94.50 ± 2.60
SL+LI 88.10 ± 4.00 94.10 ± 2.50
SL 85.50 ± 4.80 89.60 ± 3.90
GI 0.364±0.006 73.00 ± 3.70 0.390±0.025 59.90 ± 7.40
LI 72.90 ± 3.80 60.40 ± 7.40
MDI 0.239±0.014 72.40 ± 3.80 0.186±0.021 99.60 ± 0.80

LR NLR
MSE AUPR MSE AUPR

SL+GI
0.007±0.003

97.60 ± 2.60
0.152±0.044

86.00 ± 9.10
SL+LI 96.90 ± 2.80 86.00 ± 9.10
SL 96.70 ± 2.90 86.00 ± 9.10
GI 0.740±0.018 86.40 ± 6.40 0.862±0.010 80.00 ± 0.00
LI 86.00 ± 7.50 80.00 ± 0.00
MDI 0.618±0.018 81.50 ± 7.90 0.237±0.008 100.00 ± 0.00

Non-linear regression (NLR). A non-linear regression problem generated
using the make_friedman1 function from the Scikit-Learn library, which gen-
erates the following problem:

y(x) = 10sin(πx(1)x(2)) + 20(x(3) − 0.5)2 + 10x(4) + 5x(5) + 0.1ε (9.19)

where ε is aN (0, 1) noise and the inputs Xi are uniformly distributed in [0, 1].

Non-linear classification (NLC). A non-linear, binary classification prob-
lem generated using the make_classification function from the Scikit-Learn li-
brary with 25 relevant features. Briefly, one of the two classes is associated
randomly to each vertex of a hypercube of dimension 25, and training ex-
amples of the corresponding class are generated in the neighborhood of each
vertex by using a normal distribution centered on the vertex (with Σ = I).

Sizes and irrelevant variables. For each problem, we generate 10 datasets
with 2000 training samples, 1000 validation samples, and 8000 test samples,
and we add in each dataset a varying number of irrelevant features. These
irrelevant features are generated using the same type of distribution as for
the relevant features (i.e. N (0, 1) for LR, LC, and NLC and U (0, 1) for NLR).

9.3.5.2 Results and discussion

Table 9.6 reports the AUPR for all the methods on the four benchmark datasets
with 4975 irrelevant variables for LC, LR, and NLC and 4995 for NLR (for a

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/

274 Chapter 9. Interpretable Machine Learning

TABLE 9.7: Misclassification rate (MCR) and AUPR (in %) re-
sults on the NLC problem with an increasing number of irrele-
vant features (from 25 to 9975 irrelevant features, in addition to
the 25 relevant ones). Coloring is linear and global among all

AUPR.

50 FEATURES 2500 FEATURES
MCR AUPR MCR AUPR

SL+GI
0.039 ± 0.011

99.80 ± 0.30
0.051 ± 0.010

96.00 ± 2.50
SL+LI 99.50 ± 0.50 95.50 ± 4.30
SL 98.60 ± 1.10 89.50 ± 0.00
GI 0.040 ± 0.005 99.90 ± 0.10 0.352 ± 0.025 59.50 ± 5.10
LI 100.00 ± 0.00 60.60 ± 5.20
MDI 0.094 ± 0.014 100.00 ± 0.00 0.171 ± 0.017 99.70 ± 0.50

5000 FEATURES 10000 FEATURES
MCR AUPR MCR AUPR

SL+GI
0.049±0.007

94.50 ± 2.60
0.065 ± 0.016

90.50 ± 5.20
SL+LI 94.10 ± 2.50 91.60 ± 5.20
SL 89.60 ± 3.90 89.70 ± 6.40
GI 0.390±0.025 59.90 ± 7.40 0.418 ± 0.027 60.30 ± 8.60
LI 60.40 ± 7.40 60.70 ± 8.50
MDI 0.186±0.021 99.60 ± 0.80 0.193 ± 0.037 98.80 ± 1.50

total of 5000 variables in each dataset). We also report the predictive perfor-
mance of each model, i.e., the misclassification rate (MCR) in classification
and the mean squared error (MSE) in regression, computed on the indepen-
dent test set.

The results clearly show the lack of robustness of standard neural net-
works (i.e., without any selection layer) in the presence of a large number
of irrelevant features. Without SL, ANNs are usually worse than RF along
both MCR/MSE and AUPR, while adding SL allows to strongly increase the
performance along both criteria in high-dimensional datasets. Compared to
RF, ANN with SL yield higher performance in terms of MCR/MSE on all
the problems, as well as higher performance in terms of AUPR on the linear
problems (LC and LR). RF are better at highlighting the relevant variables on
the non-linear problems, despite worse predictive performance. Among the
three SL methods, SL+GI and SL+LI yield equivalent AUPR while SL returns
inferior results, showing that the weights of SL are not enough to measure
feature importances (see also Figure 9.4).

Table 9.7 shows the impact of the number of irrelevant variables on the
NLC problem. It is clear that the MDI score of decision forests is much more
stable with respect to the presence of irrelevant variables. Although the neu-
ral networks are more prone to being fooled, it should be noted they are able
to withstand a few irrelevant variables. As far as the misclassification rate
is concerned, we can see once more that the selection layer does a good job
at preventing a radical drop in performance. In particular, with 25 irrelevant
features, the networks with and without selection layer are comparable while
there is one factor of magnitude with 10000 features. Interestingly, the mis-
classification rate of the networks with selection layers with 10000 features

9.3. Feature importances 275

1:1E1
2:0E0

1:1E2
2:0E0

1:1E3
2:0E0

1:0E0
2:1E4

1:0E0
2:1E5

1:0E0
2:1E6

1:1E1
2:1E4

1:1E2
2:1E4

1:1E3
2:1E4

1:1E1
2:1E5

1:1E2
2:1E5

1:1E3
2:1E5

1:1E1
2:1E6

1:1E2
2:1E6

1:1E3
2:1E6

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
U
P
R

L1 L2 L1+L2 SL

SL+LI

SL+GI

FIGURE 9.4: Impact of α1 and α2 for NLC with 4975 irrelevant
variables. The figure plots the means and standard deviations

of the AUPR over the ten different NLC datasets.

are better than the one of RF in the best scenario.
Overall, it is clear that the selection layer is a great benefit in the pres-

ence of irrelevant variables even though it might not constitute an optimal
importance measure by itself. It is hard to provide a definitive answer as to
which is better between GI and LI. The average edge GI has is not significant
enough to conclude.

The results in Tables 9.6 and 9.7 were obtained using an L1 regularization
(i.e., with α2 in Equation 9.17 set to 0) on the weights of SL. Other regular-
ization schemes could be used instead, such as an L2 regularization (with a
corresponding regularization coefficient α2 > 0) or a combination of both.
However, as shown in Figure 9.4, these other regularization schemes do not
yield better results than L1 for SL+GI and SL+LI and return lower AUPR for
SL.

The network architecture has also a great impact on the AUPR and MCR/MSE.
For example, we observe in Figure 9.5 that networks with three or four hid-
den layers tend to yield the best results on the NLC problem (depending on
the method). The figure also shows that although the MCR/MSE and the
AUPR are not perfectly correlated, for a single dataset a lower MCR/MSE
generally corresponds to a higher AUPR. This justifies the optimality-relevancy
agreement assumption to some extent, which in turn justifies the use of MCR/MSE
(on a validation set or by cross-validation) to tune the hyper-parameter val-
ues.

276 Chapter 9. Interpretable Machine Learning

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Error rate

0.00

0.05

0.10

0.15

0.20

0.25

(1
-A

U
P
R

)

SL+GI

1 hidden layers

2 hidden layers

3 hidden layers

4 hidden layers

5 hidden layers

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Error rate

0.00

0.05

0.10

0.15

0.20

(1
-A

U
P
R

)

SL+LI

1 hidden layers

2 hidden layers

3 hidden layers

4 hidden layers

5 hidden layers

0.050 0.075 0.100 0.125 0.150 0.175 0.200
Error rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(1
-A

U
P
R

)

SL

1 hidden layers

2 hidden layers

3 hidden layers

4 hidden layers

5 hidden layers

1 2 3 4 5 6
Number of hidden layers

0.00

0.05

0.10

0.15

0.20

0.25

0.30
SL (1-AUPR)

SL+LI (1-AUPR)

SL+GI (1-AUPR)

Error rate

FIGURE 9.5: Impact of the number of hidden layers (150 neu-
rons each) for the NLC dataset with 4975 irrelevant variables.
Each scatter plot shows the performance metrics of one feature
ranking method for five datasets (lower left is better). The bot-
tom right figure shows the means and standard deviations over

the five datasets.

9.3.6 Gene regulatory networks

9.3.6.1 Context

An open problem in computational biology is the reconstruction of gene reg-
ulatory networks (GRNs) from gene expression data. A GRN aims at explain-
ing the joint variability in the expression levels of a group of genes through
a directed graph. Each node of the graph represents a gene and an edge eij
going from gene i to gene j indicates that i regulates the expression of j. We
consider both ways of regulation: gene i can either increase the expression of
gene j (activator) or decrease it (repressor). Often, the aim is to reconstruct
a weighted network, where each edge is associated with the degree of confi-
dence of the regulation. We focus on the latter. See the work of Mercatelli
et al. (2020) for a review on GRN inference methods.

Gene expression level acquisition. Gene expression levels can be obtained
in several ways. Here we consider multifactorial perturbation: “Multifacto-
rial expression data are static steady-state measurements obtained by (slightly)
perturbing all genes simultaneously. Multifactorial data might correspond

9.3. Feature importances 277

for example to expression profiles obtained from different patients or biolog-
ical replicates. ” (Huynh-Thu et al., 2010). Such data are easier and cheaper
to come by and hence more ubiquitous.

The data presents itself as a matrix E where the element at position (i, j)
is the expression of gene j for the ith perturbation combination. From there,
the goal is to infer to the regulatory network.

Inferring the gene regulatory network. One approach to infer weighted
GRNs consists in solving one regression problem for each gene j in turn,
with the expression of j as output variable and the expressions of the other
genes as input variables. The variable importance score of gene i in the model
predicting the expression of gene j is then used as weight for the edge eij.
Using this framework, random forests are currently one of the state-of-the-
art approaches for GRN inference (Huynh-Thu et al., 2010).

9.3.6.2 Empirical analysis

We use the ANN-based variable importance scores to reconstruct the five
artificial networks of the DREAM4 multifactorial challenge and the real Es-
cherichia coli network (Marbach et al., 2009) used in the DREAM5 challenge
(Marbach et al., 2012).

Each DREAM4 network is composed of 100 genes, for which the simu-
lated expressions in 100 samples are available. The E. coli dataset contains
the expression levels of 4511 genes in 805 experimental conditions. For this
dataset, we focus on 334 genes which are known to be transcription factors.

A gold standard network is available for each dataset, allowing the evalu-
ation of a predicted ranking of edges in the form of an AUPR. Note that while
the DREAM4 gold standard networks are the true (artificial) networks, the E.
coli gold standard was built from experimentally confirmed interactions and
is thus not perfect.

Protocol. Since one model must be learned per gene, fully tuning all the
hyper-parameters per traditional cross-validation is computationally demand-
ing. For the DREAM4 networks, we used the following cross-validation
scheme. The genes were divided into five groups G1, . . . , G5 and each group
was associated with a fold of data S1, . . . , S5. For each gene in subset Gi, the
ANN was trained on the learning set composed of the four subsets Sj 6=i and
its MSE was evaluated using subset Si. The MSE was used to choose the
best hyper-parameters (optimality-relevancy agreement assumption) and a
model was re-trained on all the data according to the selected hyper-parameters,
which was then used to derive the feature importance score.

The number of hidden layers was optimized in {2,3}, the number of neu-
rons per layer was optimized in {50,150} and the value of α1 was optimized
in {0,5,60,300,800,1500}. Each network was trained for 10000 steps on batches
of size 35, with a learning rate of 10−4.

The parameter pe of RF was optimized in {√p, log(p), p/3, p/2}, where
p is the number of inputs (99 for DREAM4).

278 Chapter 9. Interpretable Machine Learning

TABLE 9.8: AUPR (in %) for the five DREAM4 networks. The
first row corresponds to the AUPR of a random ranking (not
taken into account in the coloring). The three following rows
indicate the results obtained when using a fixed ANN archi-
tecture (three layers of 75, 50 and 25 neurons respectively) and
setting the regularization parameter α1 = 10. rows 5-8 indi-
cate the results when α1 and the architectures were optimized

by cross-validation.

HP NET 1 NET 2 NET 3 NET 4 NET 5
RANDOM 1.8 2.5 2.0 2.1 2.0

FI
X

E
D SL+GI 12.70 7.90 14.70 14.10 11.60

SL+LI 14.80 9.50 16.90 15.50 14.20
SL 13.70 8.70 14.50 13.40 11.40

T
U

N
E

D SL+GI 14.80 10.90 17.80 18.40 18.70
SL+LI 14.30 10.10 19.30 17.20 18.00
SL 12.60 12.10 19.10 19.20 16.60
MDI 17.10 15.60 26.20 24.00 23.10

For the E. coli network, even this scheme was too computationally expen-
sive. Therefore only one architecture is investigated.

Since the selection layer was crucial in providing good performance in
terms of error and feature importance, we only investigate the SL, SL+GI,
SL+FI methods.

Results. Table 9.8 shows the AUPR for the five DREAM4 networks. Re-
sults for ANN are shown for a fixed architecture and parameter α1 (rows 2-4
of Table 9.8) and when both of them are tuned (rows 5-7). As can be seen,
the cross-validation procedure allows improving the AUPR. The random
forests appear nonetheless better on this problem, even though the ANN-
based measures are far from random.

Figure 9.6 shows the result with a fixed architecture for the E. coli net-
work. For this architecture and problem, we can see that SL+GI and SL+LI
are competitive with the MDI. Once more SL is not good on its own.

9.3.7 Conclusion

In this section, we evaluated several feature ranking techniques based on ar-
tificial neural networks (ANN) and compared them on several problems to
random forests (RF), chosen as a state-of-the-art reference. While the ANN
importance measures can yield performances similar to the RF measures,
they remain outperformed by RF on most problems we studied, despite hav-
ing significantly better predictive performances.

Importantly, for datasets with a large number of irrelevant features, reach-
ing good performance, both in terms of feature ranking and generalization
error, comes at the cost of introducing a so-called selection layer within the

9.4. Conclusion 279

FIGURE 9.6: Precision-recall curves obtained for the E. coli net-
work, when using an ANN architecture with 4 layers of 100
neurons each and α1 = 10. The RF performance is shown for
two values of the parameter K (pe =

√
nTF and pe = nTF, where

nTF = 334 is the number of transcription factors).

neural network architecture. This implies that interpretability must be antic-
ipated and entails a great computational addition since the performance of
the network is sensitive to the hyper-parameter relating to the selection layer.

Regarding the problem of gene network inference, ANN are competitive
with RF on the real E. coli network, but are inferior on the artificial DREAM4
networks, even after an extensive tuning of the ANN architecture and regu-
larization parameter.

The fact that the ANN approaches yield better predictive models than RF
but not as good feature rankings suggests room for improvement in the latter
area.

Another problem with ANN-based measures is the design question of the
architecture. With unstructured data, deciding which architectures to inves-
tigate is a much more open question than in, say, image classification. This
is even more true in the context of interpretability which imposes a further
constraint on the choice of the architectures.

Since the selection layer is so important, it would be worth investigating
whether it can be applied on an already-trained network with only a few
fine-tuning steps. This would open the whole methodology for post-training
use, possibly offering significant prediction boosts—provided some data is
available.

Talking about data, it is hard to pass the question of what could be done
regarding feature importance in a sample-free setting.

9.4 Conclusion

In this chapter, we looked at the problem of interpretability and how it interacts—
mostly interferes—with traditional supervised learning. After discussing in-
terpretability in some abstract and general way in Section 9.1, we delved into

280 Chapter 9. Interpretable Machine Learning

two ways of gleaning understanding from machine learning models.
Section 9.2 discussed the case of using GIFs (see Chapter 6) to build a

list of rules, a global and intrinsic method of interpretability. A preliminary
analysis showed that GIFs worked actually well for this purpose. A more
in-depth study would be needed to draw definitive conclusions, however.

Section 9.3 discussed the problem of feature importance: how to score the
input variables according to the information they bring to the output. Our
goal was to assess how methods developed in the context of neural networks
fared compared to state-of-the-art methods based on decision forests. In par-
ticular, we looked at the important biological application of gene regulatory
networks (Section 9.3.6). The problem of feature importance also served to
propose a quantitative way to assess local methods.

Overall, it was shown that regularization was a key aspect for neural net-
works to work well in the presence of irrelevant variables. The methods we
investigated (with appropriate regularization) work reasonably well but are
still outperformed by decision forest on most datasets, despite being much
more capable of performing accurate predictions.

281

Conclusion

Part III

283

10 Chapter

Conclusion

This thesis has been about machine learning (Part I) and how its future goes
through working with constraints (Part II).

10.1 Summary

After a short introduction (Chapter 1), we delved into supervised machine
learning (ML) in Chapter 2. Supervised ML is a paradigm in Artificial In-
telligence (AI) which consists in learning a hypothesis which best models a
phenomenon from observations about it. Doing so naively usually results
in a hypothesis which is only good on the observations used to select the
hypothesis; a problem known as overfitting, and discussed at length.

Chapter 3 turned to supervised learning algorithms—how is learning a
hypothesis done in practice? We reviewed the algorithms on which the latter
chapters are based, notably decision forests and neural networks.

Part I ended with Chapter 4 which places supervised machine learning in
the broader landscape of knowledge and how supervised machine learning
(more precisely statistical learning theory) contributed back.

Part II opened on Chapter 5 which discusses the notion of constraints—
the core of this thesis. A constraint is anything that stands in the way of
supervised learning. We went through several examples of such constraints:
training time, model size, robustness, data scarcity, and interpretability. Over-
coming those constraints, or mix thereof, were the topic of the following
chapters.

In Chapter 6, we turned to decision forests with the goal of exploiting all
levers of compression (number of base models, depth of the base models, re-
dundancy) to produce lightweight models, which we called GIFs. We devel-
oped an algorithm which could be flavored for either regression or classifica-
tion and showed it worked well, especially in the former case. A subsequent
study shed some light on how to set the hyper-parameters depending on the
size of the model. Several improvements and research directions have been
mentioned, the most prominent being the need to better handle multi-class
prediction.

In Chapter 7, we looked at the problem of out-of-distribution (OOD) de-
tection, a robustness issue where the goal is to detect when a model—typically
a deep neural network—is fed inputs which do not come from the distribu-
tion on which it was trained. Robustness not being a new concern and OOD

284 Chapter 10. Conclusion

detection being quite broad, we spent some time refining our understand-
ing of OOD detection and the related problems. Our contribution to this
field was to investigate the challenging data-free setting, where assumptions
about the learning process must replace knowledge otherwise harvested from
data. In this regard, we developed a series of indicators based either on
the optimality conditions or the so-called batch-normalization layers. We
showed that different indicators were good at detecting different kinds of
OOD objects. Since the indicators serve different purposes, we proposed a
scheme to aggregate them which proved to be empirically stable. Overall,
we were able to achieve impressive results given the severity of the setting—
at least so long as the OOD samples do not come from a distribution too close
to the base distribution. By the end of the chapter, several questions had nat-
urally arisen, among which is the interrogation of whether it is possible to
design an indicator relying on new principles (besides optimality and batch
normalization layers).

In Chapter 8, we investigated the problem of compressing large neural
networks. After discussing the various way in which this could be achieved,
we proposed to leverage a collection of unlabeled samples, in which “rele-
vant” samples are present, so as to achieve a fast knowledge transfer from a
large network to a small one. It was shown to work well provided the col-
lection did hold relevant samples. An important aspect of the method was to
slightly bias the choice of samples from the collection in favor of those ap-
pearing most to come from the true distribution. We put to use the indicators
proposed in Chapter 7 for this part. The second key aspect was to take as
much as possible advantage of the learning signal. For that, we proposed an
attention mechanism usable with any pair of trainer/trainee networks meet-
ing some latent mapping assumption. This proved to be a crucial part in the
absence of real training data. The most important part, however, is disposing
of relevant data. Several research directions were proposed, mostly towards
improving the two key aspects of our method: the biasing and the attention
mechanisms.

In Chapter 9, we tackled interpretability: how can human-understandable
knowledge be learned from complex high-dimensional mapping functions?
After discussing the topic in some general fashion, we turned to two concrete
problems.

Section 9.2 was dedicated to the problem of creating rule sets: short and
directly interpretable models. For this, we re-used the GIFs of Chapter 6. A
short experimental study showcased GIFs could actually serve that purpose
quite well, although a more thorough and complete study is called for.

Section 9.3 was concerned with the problem of feature selection via fea-
ture importance measures. After some background exposition, we studied
how neural networks fare in this regard compared to decision forests, held
as state-of-the-art. It was shown neural networks had trouble dealing with
irrelevant variables, although this could easily be remedied via some specific
regularization mechanisms. With those, neural networks are able to equal
decision forests on some problems but not all, despite being generally bet-
ter at making accurate predictions. This contrasted situation carried to the

10.2. Now what 285

important biological task of gene regulatory network inference. Needless to
say, there is still room for improvement on this topic for neural networks.

10.2 Now what

This thesis tackled several tasks relating to constrained supervised learning
and serves to illustrate, if it ever were necessary, that, even under those con-
straints, learning is doable.

The problems we tackled can hardly be deemed solved, however. In ad-
dition to the research directions we raised at the end of each chapter, there
is definitely room to roam for improvement; the already good performances
obtained are somewhat shadowed by the undismissable feeling that we are
only at the tip of the iceberg.

This is especially true for data-free settings and interpretability. The for-
mer requires other sources of knowledge to browse from, which might ul-
timately lean towards the border of inductive learning. On the other hand,
interpretability is a sweet promise of sleeping knowledge, waiting to be buck-
eted out. The convergence here is no coincidence, of course. Working with
constraints requires using knowledge efficiently whether it is in infusing a
model of small capacity with as much information as possible, or dissecting
a trained model for traces of knowledge.

Beyond the few cases we studied, many more constrained settings need
closer examination. Here are a few other problems which came up during
this thesis and for which we are not aware of a definitive solution.

Sample-free post-pruning of decision forests. The observations made in
the context of neural network compression carry over to decision forests,
where the need for compression might also arise once the training set is no
longer available. The relatively simpler nature of decision forests and the
availability of a sound theoretical framework (the bias-variance decompo-
sition) might allow reaching good compression rates with minimal loss of
accuracy even without additional data. Painsky and Rosset (2019) proposed
a lossless compression scheme which does not require data. It would be in-
teresting to see how this baseline can be beaten, especially when other forms
of information are available.

Other convergences. A natural question is whether more links can be cre-
ated between the different topics we have broached; especially where help
can be leveraged to overcome the constraints. For instance, it seems reason-
able to expect that interpretability can help for out-of-distribution (OOD) de-
tection: OOD examples can be expected to lead to odd (local) explanations.
Likewise, it is not unreasonable to expect that pruning networks would help
in detecting OOD samples: a smaller network would have to focus more
on the distribution and OOD samples might portray more abnormal behav-
iors. Variable importance score metrices could also be exploited to identify

286 Chapter 10. Conclusion

less relevant model parts, be it for trees or neural networks, and lead to new
pruning ideas.

Besides these ideas, other convergences might be worth exploring to bet-
ter arm the community against constraints.

Covariate shift robustness. In Chapter 7 we have said that a model should
ideally be robust to covariate shifts and OOD detection should focus on se-
mantic shifts (Section 7.2.1). Ensuring robustness to covariate shifts might
possibly be done seamlessly with the appropriate data. As we have advo-
cated throughout this thesis, however, reliability concerns and data might not
coincide. Moreover, collecting the appropriate data might be time-consuming
or otherwise costly.

Raw ideas to boost covariate resilience without exhaustive data include
more sophisticated data augmentation techniques (this already exists to some
extent), being able to transfer this kind of robustness between models, or
enforce it a priori or a posteriori with out-of-distribution data.

Mixing global and local interpretability. As we have said in Section 9.1,
global and local interpretability interplay: global interpretations form a base-
line for local ones and local ones sometimes can be aggregated at a global
scale. Another approach would be to merge global and local interpretations
more seamlessly.

GIFs are well suited for this purpose: the top part of the forest can be used
to give a general idea of the phenomenon being analyzed while the bottom
part can serve to give more fine-grained and local information. As we have
seen, hyper-parameters for extremely shallow forests and larger ones must
be set differently (higher learning rate and larger candidate window for the
former). By changing hyper-parameters mid-course, GIFs might be able to
cover the whole spectrum of interpretation scales.

The no free lunch of interpretability. As mentioned at the end of Section
9.1.2, interpretability is plagued with a few issues which oddly lean in the
direction of the no free lunch (NFL; cf. Section 4.1.2.2).

Firstly, there is a meta-induction problem regarding the assessment of in-
terpretability extraction methods, especially in the case of global ones. The
fact that a method works well on a few problems is no guarantee it will work
on others when no regularity between problems can be assumed.

Secondly, interpretability goes better with simplicity. NFL on the other
hand argues that there is no assumption-free reason to be biased toward sim-
plicity. There are problems for which interpretability will be harder—or so it
feels.

In either case, it would be interesting to see whether a more formal argu-
ment could be pieced together to better define the limits of interpretability.

Bridging the gap between decision forests and deep learning. Overall,
this thesis has focused its attention on two main learning algorithms: deci-
sion forests and deep learning. Decision forests are fast(er) to learn, portray

10.2. Now what 287

low(er) latency for inference, come with built-in and convincing post-hoc in-
terpretability. Neural networks, provided appropriate inductive bias is avail-
able, keep excelling prediction-wise and produce rich latent spaces, useful for
transfer or other tasks.

Would not it be nice to be able to take the best of both worlds—or at least
choose, on a per-problem basis, what to take from each? A few works (e.g.
Biau, Scornet, and Welbl, 2016; Wang, Aggarwal, and Liu, 2017; Tanno et al.,
2019) have investigated this question under different angles. The ideas in-
clude transforming a forest into a network, distilling a network into a forest,
or designing hierarchical architectures for neural networks. So far, however,
no definitive answer has been reached.

It may well be that endowing trees with feature learning capabilities would
slow down training and inference, increase the memory footprint and ham-
per interpretability, but who knows what hidden gems will be found when
looking for a new gold standard.

Despite conflicting with the traditional goal of supervised learning, it might
so happen that the growing pressure of constrained settings will shed the
light needed to dissipate the lingering shadows.

289

A Appendix

Clustertools

Chapter overview

In this chapter, we review Clustertools, a tool which has been
developed alongside this thesis to run all the necessary experiments,
automating many of the involved sub-tasks and taking advantage of
the parallelizable nature of the work.
The goal is to provide some motivations and quickly discuss how
Clustertools works internally. A more detailed documentation and a
rich set of examples covering how to use it in practice are provided in
the repository.

Clustertools is available as a Python package at https://
github.com/jm-begon/clustertools. The additional tools for analy-
sis are available as Python package at https://github.com/jm-begon/
clustertools-analytics.

Section A.1 exposes the general problem Clustertools is trying
to solve. Section A.1.2 then discusses other benefits of Clustertools
and Section A.1.3 showcase the package. Sections A.2 and A.3 present
the concepts involved in Clustertools, for the processing and data
sides respectively. Section A.5 promptly concludes this chapter.

A.1 Speeding up scientific computing

Scientific computing usually involves intensive number-crunching tasks. More-
over, the computations must usually be run several times: several parameters
must be tested and variance must be estimated. In the case of machine learn-
ing, one usually wants to analyze how hyper-parameters affect the algorithm
and how stable learning is with respect to the sampling of the learning set.
Since there are several (hyper-)parameters to assess and one usually wants
to investigate most of all the combinations, the number of computations is
usually combinatorially large.

On the whole, scientists are faced with huge computation loads. Fortu-
nately, they have access to computing resources, in the form of clusters of
computing nodes, as well. The availability of such nodes allows to paral-
lelize the work, rather than run everything sequentially.

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools-analytics
https://github.com/jm-begon/clustertools-analytics
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools

290 Appendix A. Clustertools

100 101 102 103 104 105

Number of computing units (s)

0

20

40

60

80

100

Ef
fe

ct
iv

e
sp

ee
du

p
(S

)

Parallelization (p)
75%
90%
95%
99%

FIGURE A.1: Amdahl’s law: the effective speedup S depends
on the parallelization capacity s as well as the proportion of

actually parallelized code p. Note the logarithmic abscissa.

If there are M processing units, the speedup is M right? Well, it depends.

A.1.1 Embarrassingly parallel code

There are many ways in which code can be parallelized: data paralleliza-
tion (the same computation runs on different parts of data and the results
are aggregated), task parallelization (different “subprocesses” run in paral-
lel, doing different things), parallelization can also occur at lower (i.e. hard-
ware parallelization) and higher (i.e. between unrelated computations) lev-
els. Depending on the type of parallelization, the gain may vary. One way of
formalizing this is through Amdahl’s law (Rodgers, 1985).

Proposition A.1.1 (Amdahl’s law). For a task whose latency (i.e. duration) is T
and whose proportion of running time which is parallelizable is p, assuming constant
workload, the speed up in latency is

S(s) =
T

T(s)
=

(1− p)T + pT
(1− p)T + p

s T
=

1
1− p + p

s
(A.1)

where s is the speed up due to parallelization. Note that

lim
s→+∞

S(s) =
1

1− p
(A.2)

Figure A.1 shows the pessimistic truth behind Amdahl’s law: the actual
speedup is usually much less than could be expected at first. Moreover, the
asymptotic nature of the law imposes a limit on the possible gain.

A.1. Speeding up scientific computing 291

Amdahl’s law might even happen to be more optimistic than reality. Par-
allelizing code usually entails costs absent in sequential computing, such as
communication costs due to moving data around and synchronization la-
tency, where some parts of the processing are stopped, waiting for another to
complete.

A setting which escapes the pessimism of Amdahl’s law is the so-called
embarrassingly parallel code. In this setting, not only is the code easily to
parallelize, but the whole running time can be parallelized (i.e. p = 1). For-
tunately, this corresponds to the setting described above if parallelization is
done at the level of (hyper-)parameters. That is how Clustertools proceeds.

A.1.2 Beyond parallelization

Motivated by the necessity to speed up computing, Clustertools brings
many other advantages:

environment Clustertools allows to write code which runs seamlessly (i.e.
without change) on personal computer or decentralized supercomput-
ers (with slurm back-end, but easily extensible to other framework). No
need for other scripts: everything can be done in pure Python and pos-
sibly in a single file. The environment is selected from the command
line. A debug environment also exists to see what would be executed.

parameters Clustertools manages the combinatorial nature of the param-
eters to test. There are mechanisms to avoid some combinations and
prioritize which ones to run first. Computation for each parameter tu-
ples can be massively launched.

states A state system allows to monitor which tasks are done, running, pend-
ing or launchable. Clustertools will only launch computations which
are launchable and information regarding computation time is saved.

analysis Clustertools has a mechanism to store results of the computa-
tions and then analyze them through an OLAP structure. A second
package (Clustertools-analytics) offers additional functionality to
create graphs and tables with coloring (such as the ones used in this
manuscript; see e.g. Table 7.7).

command line utility Clustertools comes with a command-line utility which
allows to easily monitor the state of computations, transfer experiments
from one computer to another, see logs, and so on.

logging Clustertools comes with logging facilities (enabled with a simple
command) which stores most of what is done. This is handy as a quick
history.

A.1.3 Example

Code A.1 shows a simple one-file script using Clustertools. The computa-
tion part of the code goes into the runmethod, overloaded from the Computation

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools-analytics
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools

292 Appendix A. Clustertools

class. In the main part, a command-line parser is instantiated and the list
of parameters is used to create an Experiment instance. When running the
script, the Cartesian product of all parameters will be used as parameters for
the run method.

More detailed examples are given in the repository.
The following sections will delve into some more details about Clustertools.

More precisely, Section A.2 will discuss the processing pipeline and the con-
cepts involved, while Section A.3 will go over the data pipeline. Section A.4
will discuss the command line utility which ships with Clustertools.

A.2 The processing pipeline

In this section, the concepts involved in creating and running an experiment
are introduced.

A.2.1 Computation

The Computation is the most fundamental concept in Clustertools. This
class represents what needs to be computed. Once instantiated, it receives
the parameter on which to run. Once done, it saves the results. Its stateful
life-cycle is represented by Figure A.2.

The State instances which accompany the Computation object track the
progress. From the run method, it is possible to update the stage at which
the computation is. This allows deriving information such as the estimated
time of arrival.

A.2.2 Experiment and parameters

In Clustertools terms, the Experiment represents all the computations which
must be carried out. It is based on two concepts (Figure A.3). Firstly, a
concrete instance of a AbstractParameterSet is responsible for generating
the list of parameters that need to be supplied to a Computation. There
are two base types of AbstractParameterSet: ExplicitParameterSet and
ParameterSet. The former works like a container: it supplies back what is
given. The latter generates the Cartesian product of all parameters. For the
example of Code A.1, it would generate the tuples of parameters

(w=5, x=1, z=4) (w=5, x=2, z=4) (w=5, x=3, z=4)
(w=6, x=1, z=4) (w=6, x=2, z=4) (w=6, x=3, z=4).

The AbstractParameterSet is also responsible for making sure the code
is reproducible by forcing a deterministic ordering of parameter tuples. In
the case of an ExplicitParameterSet a simple FIFO policy is used to ensure
this constraint. Consequently, parameter tuples can be added at a later stage
without impact on the ordering.

ParameterSet uses a sorting mechanism to ensure consistency, similar to
the ParameterGrid of the Scikit-learn library (Pedregosa et al., 2011), which
served as a based implementation. As it so happens, it is usually necessary

https://github.com/jm-begon/clustertools/tree/master/examples
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools

A.2. The processing pipeline 293

CODE A.1: example of Clustertools code

1 from clustertools import Computation , CTParser, ParameterSet , \

2 Experiment , set_stdout_logging

3

4 class MyComputation(Computation):

5 def run(self, result, x, z, w, y=2, **parameters):
6 result["multiply"] = x * y
7 result["sum"] = z + w

8

9

10 if __name__ == "__main__":

11 # Configure logging to debug on stdout

12 # (the verbosity level can be adapted)

13 set_stdout_logging()

14

15 # Create the command line parser. It allows you to specify the backend,

16 # as well as parameters related to the backend

17 parser = CTParser()

18

19 # Read from the command line and create an ‘Environment ‘ to run the

20 # code into

21 environment , _ = parser.parse()

22

23 # Define the parameter set: the domain each variable can take

24 param_set = ParameterSet()

25 param_set.add_parameters(x=[1, 2, 3], z=4, w=[5, 6])

26

27 # Wrap it together as an experiment

28 experiment = Experiment("BasicUsage", param_set , MyComputation)

29

30 # Finally run the experiment

31 environment.run(experiment)

https://github.com/jm-begon/clustertools

294 Appendix A. Clustertools

Pending Launchable

Running

Critical

Partial

Completed

Aborted

Incomplete

Waiting Working Stopped

FIGURE A.2: State diagram for computations. Starting from
launchable, a computation becomes pending, then running. It
then enters the critical state when saving on disk. If it is the fi-
nal or only writing, it goes to completed. Otherwise, it goes to
the partial state and switches back and forth with critical until
completion. If something goes wrong (i.e. exception) it goes to
the aborted state. If it runs out of resources it goes to launch-
able, unless it was partial in which case it goes to incomplete.

to run a computation of more (values of the) parameters than originally envi-
sioned. To avoid re-doing the previous computations yet maintain ordering
consistency, a add_separator method is supplied to ensure a fixed ordering
before the separator.

Given a concrete instance of a AbstractParameterSet, an Experiment ob-
ject creates Computations thanks to a factory.

Constraints and prioritization. Not all computations are equally impor-
tant. Sometimes, some values of parameters are examined for the sake of
completeness, or a fine-grained idea of the variance is not mandatory at an
earlier, more exploratory stage. On the other hand, not all combinations
of parameters are worth investigating. For these, Clustertools offers the
concepts of PrioritizedParameterSet and ConstrainedParameterSet (Fig-
ure A.4). They are implemented via the decorator pattern so that they can
simply encapsulate another concrete instance of AbstractParameterSet and
used directly instead. Code A.2 more specifically shows an example of how
to use the ConstrainedParameterSet. More detailed examples can be found
on the repository.

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools/tree/master/examples

A.2. The processing pipeline 295

Experiment

AbstractParameterSet

ExplicitParameterSet ParameterSet

ComputationFactory

FIGURE A.3: An Experiment object uses a concrete in-
stance of an AbstractParameterSet together with a

ComputationFactory to instantiate Computations.

AbstractParameterSet

ConstrainedParameterSet PrioritizedParameterSet

AbstractParameterSet

FIGURE A.4: Constrained and priorities are handled as decora-
tors.

A.2.3 Environments: running experiments

In practice, the Experiment does not do much beyond naming the computa-
tions and articulating the aforementioned components. The object truly re-
sponsible for launching the computation is the Environment. Depending on
the concrete class of the Environment, the computations can run sequentially
in the current process, be submitted to bash (i.e. run concurrently as indepen-
dent processes), or be submitted to a job scheduler (see Figure A.5). So far,
only slurm is supported as scheduler but adding other schedulers amount to
deriving other Environments. Along the same lines, an environment for in
situ multi-processing using Python native capabilities can be implemented.
Finally, there is a DebugEnvironment to see what would be run without actu-
ally launching any computations.

The parser. Clustertools provides a CTParser class whose job is to (i)
select the Environment from the command line, (ii) supply environment-
specific parameters (such as the duration or the memory requirement of the
computations), and (iii) supply user-defined parameters (optional).

As such, the environment/back-end in which the computation is run is
given from the command line. This allows to run the same code locally in

https://github.com/jm-begon/clustertools

296 Appendix A. Clustertools

CODE A.2: example of using constraints over parameters in
Clustertools

1 from clustertools import ConstrainedParameterSet

2 ...

3 # Define the parameter set: the domain each variable can take

4 param_set = ParameterSet()

5 param_set.add_parameters(x=[1, 2, 3], z=4, w=[5, 6])

6

7 def not_x_eq_3_and_w_eq_6(x, w, **kwargs):
8 # The predicate recieves the full parameter tuples and must

9 # return False for all tuples which must not be run

10 return not (x == 3 and w == 6)

11

12 param_set = ConstrainedParameterSet(param_set)

13 # We add the constrain

14 param_set.add_constraints(not_x3_and_w6=not_x_eq_3_and_w_eq_6)

15

16 experiment = Experiment(’BasicUsage’, param_set , MyComputation)

17 ...

the current process for debugging purposes, or send the code running on
computing clusters.

How is the code run. If the code is not run sequentially, the Environment
instance uses the Experiment object to generate some of the computations
(with the associated parameters). They are serialized and other processes are
spawned (how depends on the actual implementation of the Environment) to
deserialize and run the computations.

A slight drawback of the method is that it somewhat restricts the scope of
the Computations. Concretely, package imports used in the run method must
be made within the method, and using relative modules is impractical.

Code organization. In Clustertools, one of the most important design
premises was to allow for one-file experiments (as shown with Code A.1).
This conditioned the choice of the serialize/deserialize approach and the
drawback we just mentioned. We felt, however, that it was a small price to
pay for keeping all the code (computation and parameters) in a same place—
an assuredly easier situation to manage, which only goes a small way in
keeping a file system under control.

In some situations, keeping the parameters and computing code apart is
sensible. When using other Python code, this is a simple matter of using
the run method as a small stump for calling other code. Going through the
command-line interface (because the called code is not Python or for mod-
ularity reasons) is, at the time of writing, a bit hackish. Better supports are
provided (though not extensively tested) on the dev branch.

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools/tree/dev

A.3. The data pipeline 297

Environment

DebugEnvironment InSituEnvironment BashEnvironment SlurmEnvironment

FIGURE A.5: Environment offered by Clustertools.
DebugEnvironment only serves to show what would actu-
ally be run with another class instance. InSituEnvironment
runs all the computation sequentially in the current process.
BashEnvironment and SlurmEnvironment only create and seri-
alize the computations. The former actually spawn a process
per computation. The latter submits jobs to the scheduler.
Other methods (parallelism with a pool of workers, or other

schedulers) can be added by deriving other classes.

A.3 The data pipeline

The previous section gave an overview of the concepts involved in the pro-
cessing pipeline and how they were articulated to produce and carry out the
computations. In this section, we discuss how the results of all these compu-
tations are managed.

A.3.1 Result

The first argument of the run method in a Computation is a dictionary-like
structure (see Code A.1) which is collected once the method completes. Each
key of the dictionary is called in Clustertools jargon a metric. Any serializ-
able object can be a metric but scalars, lists, and NumPy arrays are the most
common types.

A Storage instance is responsible for saving the result object (see infra).
During the saving period, the Computation instance enters the critical state.
On normal completion, the state switches to completed.

It is possible to save the result manually during processing from the user
code, in which case the critical state will be followed by the partial state. As
of now, the support to continue an interrupted partial computation is limited
but Computation instances in the partial state will not be overwritten when
re-launching the Experiment.

dev branch
As of writing, the object transmitted to the run method in the dev
branch is an instance of Collector, which has a few more responsi-
bilities than the traditional result. It is the object managing the state,
dealing with interrupts and it allows to monitor the duration of user-
defined sub-tasks.

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools/tree/dev
https://github.com/jm-begon/clustertools/tree/dev

298 Appendix A. Clustertools

A.3.2 Storage

The Storage is responsible for committing everything to disk: results, states
and logs. So far, only one concrete implementation exists in Clustertools:
the PickleStorage. In principle, other classes could be derived as the rele-
vant components receive a Storage factory in their constructor.

A PickleStorage object stores everything in the file system. General logs
are saved in a folder that can be changed using the CT_FOLDER environment
variable. By default, it points to a folder in the home directory. Along with
the general logs, a folder is dedicated per Experiment. Within it, the logs,
results, and states each have a dedicated folder with a file per Computation.

To render the writing to disk as atomic as possible, results are not over-
written. Instead, a rotation is organized so that files are committed to disk
and then moved to the proper place.

A.3.3 Datacube

An OLAP structure, in the form of a hypercube, the Datacube, is provided
by Clustertools to analyze the results. The Datacube is built from what is
found in the disk. It is totally independent of how those were generated, and
consequently from the other components.

A Datacube object provides a mapping from the parameter tuples to the
space of metrics. Internally, all data are saved in a 1D array as is frequent with
such structures. Sliced and diced views can be generated at low cost. Since
the underlying buffer is not to be tempered with directly, all views share the
same; there is no need for lengthy copies. There are also built-in facilities to
iterate over the cubes.

Since constraints can prevent from running the Computation with the
whole Cartesian space of parameters, the cube might contain holes. A couple
of methods expose such holes.

Code A.3 shows a few manipulations of a Datacube. Note how the string
representation is used for values to avoid issues with floating-point repre-
sentation. See the examples for more.

A.3.4 Analytics

Clustertools-analytics, a separate but related package, offers means to
facilitate and speed up the analysis of results. It is mainly composed of three
elements.

Accessor. Formally, the accessing mechanisms offered by the Datacube class
are sufficient. They might be quite cumbersome, however. To overcome this,
the Accessor classes provide common shortcuts, such as for scalar metrics,
series metrics, or for treating some parameters as special (e.g. aggregating
easily over random seed to measure the variability).

Plots. Built on top of Matplotlib, a few classes are provided to quickly build
common plots. They work with Accessor and allow to define Conventions

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools/tree/master/examples
https://github.com/jm-begon/clustertools-analytics
https://matplotlib.org/stable/

A.4. Command-line manager 299

CODE A.3: example of using a Datacube (relative to Code A.1)

1 from clustertools import build_datacube

2

3 # Creating the cube is easy: just give the name of the Experiment

4 cube = build_datacube("BasicUsage")

5 repr(cube)

6 # Output: Datacube(name=’BasicUsage’, metadata={’z’: ’4’}, \

7 # parameters=[’w’, ’x’], domain={’w’: [’5’, ’6’], \

8 # ’x’: [’1’, ’2’, ’3’]}, metrics=[’multiply’, ’sum’], data=’n/a’)

9

10 # Dicing and slicing (x becomes a metadata)

11 cube(x=[’1’, ’2’])

12 cube(x=’1’)

13

14 # Accessing a piece of result (sum is a metric)

15 cube("sum", x=’1’, w=’5’)

16

17 # Iterating over a parameter (iter_dimensions can take several)

18 # t_x is a singleton tuple taking all the values of x

19 # cube_i is the corresponding slice

20 for t_x, cube_i in cube.iter_dimensions("x"):

21 pass

whose purpose is to decouple the data and its representation (which color,
linestyle, etc.).

Tables. The last part of Clustertools-analytics concerns the rendering of
tables. The two main goals are (i) to provide independence with the viewing
back-end (i.e. same but one detail to generate tables as TSV, CSV or for LATEX),
and (ii) automatically color the tables, as was used throughout this thesis.

A.3.5 Logs

Logs have already been discussed. They are of two forms: Clustertools gen-
eral logs (i.e. which Experiment is ran when) and Computation logs, which
capture all that is printed to the standard and error output. The formers
are saved at the root of the Clustertools folder, while the latters are saved
within the Experiment folders.

A.4 Command-line manager

Clustertools ships with a command-line utility to manage some frequent
tasks. The first argument is the name of the subprogram. It includes

sync transfers Experiments. It uses rsync to transfer the folder around.

https://github.com/jm-begon/clustertools-analytics
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools

300 Appendix A. Clustertools

count shows which Computations of a given Experiment are in which state.
For the running jobs, the elapsed time, estimated time of completion,
and estimated total duration are portrayed.

launchable sets a Computation (typically in aborted state) to launchable.

reset sets all the Computations as launchable.

abr2lch sets all the aborted Computations as launchable.

display state shows the state of a Computation;

log shows the logs of a Computation;

info shows information (parameters, duration, etc.) of a Computation.

diagnose shows the holes in the Datacube relating to an Experiment.

list lists Computations of an Experiment in a given state.

A.5 Conclusion

This chapter presented Clustertools, a Python package to automate scien-
tific computation, taking advantage of the nature of the task to best paral-
lelize lengthy computations, and in passing, automating many of the tasks
involved.

When time permits, systematic coverage will be extended to the dev branch
which will eventually be merged to the master branch.

https://github.com/jm-begon/clustertools
https://github.com/jm-begon/clustertools/tree/dev

301

B Appendix

Out of distribution

B.1 Relationship between logit and T1000

The main result covered by this section is

pk|T=1000(x) ≈ c
K
+

1
TK

zk(x) (B.1)

where k is the predicted class by the network, K is the number of class, z(x)
is the logit vector corresponding to input x and T = 1000 is the temperature.
It holds so long as ||z|| � T and the network is trained long enough.

For shorthand, let p̂k stands for softmaxk. From Taylor decomposition, it
follows that

pk|T=1000 = p̂k

(
1
T

z
)

(B.2)

= p̂k(0) +
1
T
(∇z p̂k (0))

T z + o
(

1
T2 ||z||

)
(B.3)

≈ 1
K
+

1
T

K

∑
j=1

(
p̂k(0)

(
δj,k − p̂j(0)

)
zj
)

(B.4)

=
1
K
+

1
T

K

∑
j=1

(
1
K

(
δj,k −

1
K

)
zj

)
(B.5)

=
1
K
+

1
T K

(
zk −

1
K

K

∑
j=1

zj

)
(B.6)

=
1
K
+

zk − z̄
T K

(B.7)

where δj,k is the Kronecker symbol.

302 Appendix B. Out of distribution

By linearity, we have

z̄(x) =
1
K ∑

j
zj(x) (B.8)

=
1
K ∑

j

(
wT

j x + bj

)
(B.9)

= wTx + b̄ (B.10)
∆z(x) = zk(x)− z̄(x) (B.11)

=
(

wT
k x + bk

)
−
(

wTx + b̄
)

(B.12)

= ∆wT
k x + ∆bk (B.13)

So we end up with a linear relationship between pk|T=1000 and the ∆-logit
∆z.

In addition, the average weight vector and bias tend to be close to null.
Owing to the softmax translation invariance

ezk−(wT x+b̂)

∑j ezj−(wT x+b̂)
=

ezk

∑j ezj
(B.14)

the only incentive acting on the average weight vector and bias is the slight
penalization which goes in the direction of w = 0 and b̄ = 0. Indeed,

w =
1
K

(
wk + ∑

j 6=k
wj

)
=

1
K
(wk + w¬k) (B.15)

Since w¬k represents a hyperplane for rejecting class k, it would be wasteful
for the network not enforcing
wk = −w¬k. As for b̄, it does not depend on x and can be hidden away
in the independent term.

Overall—provided the network was trained enough—we arrive at the
conclusion

wTx � wT
k x (B.16)

=⇒ pk|T=1000 ≈
c
K
+

zk
T K

(B.17)

For the purpose of ranking samples, we can further remove the constant
term Z = z̄− ε(z), where Z is the expected average of logits over the input
space and ε(z) is the deviation of the logit mean from its expectation. This

B.2. Detailed results 303

TABLE B.1: Mean values for the average weight vector and bias,
as well as the logit of the predicted class (on the ID task). The
first two tends to be very small, while the last one is several
orders of magnitude higher. Although the logit is expected to
be lower on an OOD task, orders of magnitude are equivalent.
C. 10 and C. 100 stand for CIFAR 10 and CIFAR 100 respectively.

||w|| b̄ zk

C
.1

0 RESNET 50 5 10−6 ± 4 10−7 1 10−7 ± 3 10−7 11.3± 2.5
WIDERESNET 4 10−6 ± 1 10−6 −3 10−7 ± 3 10−7 12.0± 3.4
DENSENET 121 3 10−6 ± 1 10−7 −2 10−7 ± 2 10−7 10.2± 2.2

C
.1

00 RESNET 50 2 10−6 ± 6 10−8 1 10−8 ± 5 10−9 13.3± 3.8
WIDERESNET 4 10−6 ± 4 10−6 3 10−7 ± 2 10−7 13.5± 4.4
DENSENET 121 7 10−7 ± 2 10−7 5 10−8 ± 4 10−8 13.2± 4.1

leads to

=
1
K
+

zk −
(
ε(z) +Z

)
T K

(B.18)

=
1
K

(
1− Z

T

)
+

zk − ε(z)
T K

(B.19)

=
c′

K
+

zk
T K
− ε(z)

T K
(B.20)

In this last relationship, ε(z) is of the order of magnitude of the standard
deviation of w and b̄, typically 8 order smaller than zk (see Table B.1) and can
be safely ignored.

B.2 Detailed results

B.2.1 Detailed auroc tables

Tables B.2-B.4 holds detailed results for CIFAR 10, CIFAR 100 and Imagenet
as ID datasets, respectively.

Supervised approach Although not the focus of this work, we see that a
supervised linear SVM (Cortes and Vapnik, 1995) established on the true
ID/OOD mix distribution performs almost perfectly. ON CIFARs, it only
struggles with Tiny ImageNet (TIN) and LSUN, where it still performs best,
except on TIN with CIFAR 100. In that setting, the mean results of ACT, ANG
and sometimes T1000 is slightly higher.

On ImageNet, it is perfect but for LSUN, where it comes first with a large
margin.

Baselines ODIN and T1000 are strong baselines. For ImageNet, it would
seem the additional perturbation provided by ODIN pays off, especially

304 Appendix B. Out of distribution

on grey images (fashion MNIST, MNIST). On CIFARs, the gap is much less
present, except on MNIST for CIFAR 100 where 5 to 10 percent of auroc are
lost. On harder tasks, T1000 may have a slight edge.

MP and H rarely yield remarkable results.

Batchnorm indicators The IN- family of indicators may work well at detect-
ing grey images, although IN-DSS never really works. When input statistics
are close to the ID’s (Tiny ImageNet, LSUN), those indicators do not work
better than random. They also fail on the noisy Gaussian dataset, which has
individual pixel statistics that are close to ID’s. It would be easy to reject such
samples if inter-channel information were available.

On the other hand, indicators based on all batchnorm layers work ex-
tremely well on Gaussian since intermediate tensors contain inter-channel
information, thanks to convolutions. Interestingly, DSS and/or DSS-EXT per-
form well on SVHN in all settings. Those indicators are much less robust
to the network and its initialization, however. For instance, DMS achieves
82.73 ± 0.56% on DenseNet 121 for discriminating fashion MNIST against
CIFAR 10, but it only achieves 69.39± 6.49% on ResNet 50 for the same task
(note the high variance).

Quite often, batchnorm indicators have auroc much lower than 50%, in-
dicating lower values for OOD samples. In our sample-free setting, we can
only discard such indicators and conclude they can only discriminate specific
OOD sets. However, in a supervised setting, such indicators might prove
useful as the ordering condition we impose on indicators could be altogether
ignored.

Latent space indicators As expected, NORM and NORM+ do not convey the
appropriate information. The remaining indicators rank well, however. On
ImageNet, positive-only indicators seem to work better, while this is not as
clear for the other ID tasks. In particular, ANG++ performs better than ANG
on ImageNet but ANG works better in the other settings (except for ResNet
50 on CIFAR 100). Once again, the OOD dataset has an impact on the rank-
ing: ACT/ACT+ tend to struggle with (fashion) MNIST on CIFAR 100 and
ImageNet, while, with ImageNet as ID task, ANG++ comes way ahead of
the other indicators against CIFARs as OOD but underperforms on LSUN
(except on WideResNet).

1C-Sum Overall, 1C-Sum results are good. Compared to individual indica-
tors, it mainly lags behind on MNIST with CIFARs as ID sets and on LSUN.
Hopefully, as soon as data become available, 1C-Sum can be turned into the
supervised indicator to compensate for its initial weaknesses. More precisely,
incorporating the IN- feature to better detect grey images and drop other
batchnorm indicators for LSUN. Assumptions regarding the expected OOD
distribution may also help tune the model weights.

B.2. Detailed results 305

CIFAR 10 vs. CIFAR 100 CIFAR 100 is a harder base task than CIFAR 10
and even well-optimized networks achieve more modest performances (Ta-
ble 7.5). As we can see, the gap in accuracy is reflected in OOD detection
as well, at least on optimality-based indicators, thus confirming that we also
need the loss to be small for OOD detection.

306 Appendix B. Out of distribution

TABLE B.2: Area under the ROC curve for OOD detection with
CIFAR 10 as ID. TIN stands for Tiny ImageNet.

GAUSSIAN SVHN MNIST FASH. MNIST TIN LSUN

R
E

SN
E

T
50

ODIN 91.36 ± 5.42 90.22 ± 4.03 96.88 ± 0.70 95.89 ± 0.75 87.22 ± 2.12 92.38 ± 1.56
T1000 83.17 ± 9.00 93.14 ± 3.05 94.81 ± 0.78 95.43 ± 0.62 88.70 ± 1.23 92.66 ± 1.04
MP 89.27 ± 4.90 91.89 ± 1.30 90.76 ± 0.65 91.97 ± 0.47 87.05 ± 0.61 90.08 ± 0.60
H 89.05 ± 5.03 92.51 ± 1.46 91.40 ± 0.62 92.71 ± 0.58 87.52 ± 0.67 90.62 ± 0.59
NORM 53.96 ± 33.02 85.46 ± 10.89 92.28 ± 4.92 89.52 ± 4.00 80.19 ± 4.27 82.50 ± 4.93
NORM+ 54.99 ± 28.60 87.17 ± 9.12 94.61 ± 2.09 92.92 ± 1.85 85.00 ± 2.61 88.87 ± 2.82
ACT 83.34 ± 9.02 93.32 ± 2.95 94.90 ± 0.70 95.47 ± 0.59 88.77 ± 1.18 92.50 ± 1.08
ACT+ 87.68 ± 9.18 94.23 ± 3.50 96.03 ± 1.44 95.93 ± 0.72 88.05 ± 1.53 91.68 ± 1.38
PROJ 85.53 ± 8.09 94.01 ± 2.42 95.61 ± 0.40 95.47 ± 0.58 88.61 ± 1.26 92.05 ± 1.21
ANG 91.78 ± 2.79 93.41 ± 0.09 94.15 ± 0.60 94.76 ± 1.02 88.35 ± 0.51 91.98 ± 0.58
ANG++ 99.89 ± 0.12 97.26 ± 0.17 94.25 ± 1.22 93.41 ± 1.70 86.05 ± 0.88 88.43 ± 0.75
IN-DMS 7.85 60.46 98.59 71.94 52.89 49.26
IN-DMS-AOS 52.79 30.41 99.68 96.02 52.55 54.91
IN-DSS 5.13 85.99 36.16 58.53 52.03 42.94
DMS 100.00 ± 0.00 80.29 ± 8.30 93.97 ± 2.47 69.39 ± 6.49 34.21 ± 5.54 22.67 ± 5.33
DMS-AOS 99.25 ± 0.48 4.72 ± 2.26 81.12 ± 9.04 59.42 ± 9.53 25.25 ± 2.65 23.78 ± 2.66
DSS 99.86 ± 0.14 96.51 ± 0.60 70.33 ± 15.30 62.22 ± 3.53 55.01 ± 1.90 47.40 ± 4.40
DSS-EXT 98.24 ± 0.61 97.70 ± 0.34 66.93 ± 1.88 67.64 ± 1.67 66.84 ± 0.88 62.94 ± 1.38
SUPERVISED 100.00 ± 0.00 99.75 ± 0.05 100.00 ± 0.00 99.70 ± 0.03 90.82 ± 0.45 96.14 ± 0.19
1C-SUM 97.84 ± 2.70 97.83 ± 0.95 96.47 ± 1.58 95.86 ± 0.63 88.86 ± 0.79 91.61 ± 0.90

W
ID

E
R

E
SN

E
T

ODIN 99.73 ± 0.20 90.85 ± 5.11 94.11 ± 4.14 95.22 ± 1.16 84.31 ± 4.70 90.22 ± 2.87
T1000 98.13 ± 1.37 95.20 ± 1.76 91.59 ± 4.71 94.88 ± 0.79 87.65 ± 2.06 91.49 ± 1.49
MP 96.69 ± 1.60 93.34 ± 1.01 88.42 ± 3.64 92.01 ± 0.33 86.62 ± 1.04 89.69 ± 0.75
H 97.41 ± 1.65 94.10 ± 1.25 89.08 ± 3.89 92.76 ± 0.38 87.09 ± 1.16 90.22 ± 0.85
NORM 98.11 ± 2.24 92.21 ± 4.95 89.09 ± 10.60 87.96 ± 5.56 76.42 ± 7.85 79.48 ± 6.15
NORM+ 98.97 ± 0.90 93.73 ± 3.41 90.84 ± 7.45 92.89 ± 2.58 83.54 ± 4.64 87.58 ± 2.34
ACT 98.32 ± 1.24 95.35 ± 1.71 91.96 ± 4.39 94.96 ± 0.77 87.73 ± 2.03 91.36 ± 1.50
ACT+ 99.17 ± 0.75 95.54 ± 2.36 92.45 ± 5.73 94.87 ± 1.46 85.57 ± 3.49 89.70 ± 2.72
PROJ 98.29 ± 1.38 95.67 ± 1.46 92.88 ± 3.68 94.94 ± 0.69 87.74 ± 1.92 90.97 ± 1.64
ANG 96.24 ± 1.90 92.63 ± 0.75 90.78 ± 1.20 93.49 ± 0.78 88.68 ± 0.50 91.61 ± 1.07
ANG++ 97.41 ± 2.15 92.46 ± 1.83 87.46 ± 3.74 86.36 ± 3.87 80.42 ± 0.15 81.92 ± 4.51
IN-DMS 7.85 60.46 98.59 71.94 52.89 49.26
IN-DMS-AOS 52.79 30.41 99.68 96.02 52.55 54.91
IN-DSS 5.13 85.99 36.16 58.53 52.03 42.94
DMS 100.00 ± 0.00 94.13 ± 0.87 98.26 ± 1.11 80.14 ± 3.04 48.94 ± 0.77 38.39 ± 0.75
DMS-AOS 100.00 ± 0.00 4.10 ± 0.62 78.41 ± 2.76 53.01 ± 2.33 35.58 ± 1.63 40.37 ± 2.01
DSS 100.00 ± 0.00 96.83 ± 0.27 83.13 ± 2.05 80.13 ± 2.09 54.11 ± 3.19 40.92 ± 4.76
DSS-EXT 94.81 ± 1.16 97.77 ± 0.24 68.79 ± 2.13 71.78 ± 1.34 63.17 ± 2.63 53.89 ± 3.84
SUPERVISED 100.00 ± 0.00 99.74 ± 0.04 100.00 ± 0.00 99.69 ± 0.02 90.64 ± 0.38 95.13 ± 0.64
1C-SUM 100.00 ± 0.00 98.87 ± 0.19 94.98 ± 2.17 95.50 ± 0.73 87.49 ± 2.51 89.28 ± 2.89

D
E

N
SE

N
E

T
12

1

ODIN 99.49 ± 0.37 82.99 ± 3.14 85.32 ± 8.29 88.69 ± 3.87 75.92 ± 1.61 82.35 ± 3.57
T1000 96.93 ± 1.89 93.66 ± 1.47 84.19 ± 6.56 91.87 ± 1.89 83.51 ± 0.49 87.53 ± 2.03
MP 96.49 ± 0.91 93.07 ± 1.30 85.76 ± 3.96 91.67 ± 0.71 85.48 ± 0.30 88.45 ± 1.00
H 96.79 ± 1.22 93.62 ± 1.37 86.04 ± 4.10 92.14 ± 0.78 85.72 ± 0.35 88.75 ± 1.10
NORM 51.24 ± 34.67 65.16 ± 6.79 44.44 ± 22.17 51.29 ± 15.42 46.78 ± 2.38 49.02 ± 4.55
NORM+ 65.46 ± 29.49 78.63 ± 4.36 59.79 ± 17.81 73.50 ± 11.20 66.09 ± 1.53 70.25 ± 3.43
ACT 97.13 ± 1.78 93.86 ± 1.43 84.58 ± 6.46 91.94 ± 1.83 83.59 ± 0.49 87.32 ± 2.04
ACT+ 96.30 ± 3.39 90.53 ± 2.00 76.80 ± 11.96 85.04 ± 6.23 76.24 ± 0.83 80.38 ± 2.96
PROJ 97.45 ± 1.61 94.39 ± 1.44 86.86 ± 5.04 92.07 ± 1.67 83.55 ± 0.42 86.22 ± 2.07
ANG 98.75 ± 0.39 96.46 ± 0.79 94.65 ± 0.44 95.44 ± 0.88 89.68 ± 0.39 91.86 ± 0.71
ANG++ 99.85 ± 0.15 94.74 ± 1.24 95.67 ± 0.63 90.89 ± 1.15 83.01 ± 2.71 84.29 ± 2.09
IN-DMS 7.85 60.46 98.59 71.94 52.89 49.26
IN-DMS-AOS 52.79 30.41 99.68 96.02 52.55 54.91
IN-DSS 5.13 85.99 36.16 58.53 52.03 42.94
DMS 99.99 ± 0.00 94.61 ± 0.61 98.29 ± 0.36 82.73 ± 0.56 42.67 ± 1.58 34.95 ± 1.30
DMS-AOS 98.79 ± 0.39 12.33 ± 1.91 74.75 ± 0.64 55.15 ± 1.00 27.51 ± 0.77 35.15 ± 0.31
DSS 99.87 ± 0.10 97.09 ± 0.45 84.08 ± 1.36 78.19 ± 3.74 60.25 ± 2.33 42.50 ± 2.02
DSS-EXT 99.06 ± 0.32 97.61 ± 0.29 79.54 ± 1.82 76.86 ± 1.93 70.61 ± 1.88 56.10 ± 2.18
SUPERVISED 100.00 ± 0.00 99.78 ± 0.05 99.98 ± 0.00 99.74 ± 0.04 92.02 ± 0.34 95.64 ± 0.09
1C-SUM 100.00 ± 0.00 97.89 ± 0.54 92.68 ± 3.43 93.69 ± 2.02 83.47 ± 1.09 83.76 ± 2.81

B.2. Detailed results 307

TABLE B.3: Area under the ROC curve for OOD detection with
CIFAR 100 as ID. TIN stands for Tiny ImageNet.

GAUSSIAN SVHN MNIST FASH. MNIST TIN LSUN

R
E

SN
E

T
50

ODIN 95.76 ± 5.19 79.33 ± 3.38 81.32 ± 2.85 90.12 ± 0.41 76.40 ± 0.19 72.32 ± 0.91
T1000 89.86 ± 10.20 84.64 ± 3.11 74.49 ± 2.97 88.95 ± 0.30 77.99 ± 0.10 72.58 ± 0.61
MP 85.59 ± 9.02 76.65 ± 4.14 69.09 ± 2.66 83.93 ± 0.78 77.34 ± 0.07 73.46 ± 0.17
H 83.18 ± 9.83 73.58 ± 4.21 64.83 ± 2.69 80.49 ± 0.59 72.86 ± 0.11 72.21 ± 2.45
NORM 54.94 ± 33.83 71.68 ± 7.59 66.84 ± 4.26 64.45 ± 3.31 51.99 ± 1.12 53.81 ± 1.58
NORM+ 65.88 ± 35.79 78.49 ± 6.22 67.89 ± 2.16 79.23 ± 2.00 65.95 ± 0.60 62.63 ± 1.35
ACT 89.98 ± 9.92 84.80 ± 3.08 74.66 ± 2.93 88.93 ± 0.30 78.00 ± 0.10 72.51 ± 0.63
ACT+ 90.95 ± 11.23 88.55 ± 2.64 79.42 ± 3.69 88.46 ± 0.29 74.54 ± 0.09 71.80 ± 0.86
PROJ 89.53 ± 9.93 81.13 ± 4.19 74.02 ± 3.17 88.40 ± 0.28 78.04 ± 0.14 71.18 ± 0.56
ANG 94.04 ± 2.86 75.70 ± 2.60 70.15 ± 2.99 88.44 ± 0.43 80.53 ± 0.16 72.73 ± 0.12
ANG++ 99.66 ± 0.14 81.42 ± 1.28 82.02 ± 4.09 89.17 ± 0.58 79.26 ± 0.18 75.66 ± 0.62
IN-DMS 0.01 22.19 88.75 42.44 16.50 32.71
IN-DMS-AOS 46.01 26.70 98.78 92.11 46.88 48.78
IN-DSS 0.00 30.31 2.55 11.62 6.87 26.80
DMS 99.94 ± 0.03 0.25 ± 0.12 13.40 ± 9.11 0.75 ± 0.55 0.46 ± 0.08 21.96 ± 15.56
DMS-AOS 99.10 ± 0.82 7.03 ± 1.27 77.65 ± 5.84 54.39 ± 4.72 37.60 ± 0.79 40.94 ± 0.32
DSS 0.00 ± 0.00 4.60 ± 1.34 0.00 ± 0.00 0.00 ± 0.00 0.31 ± 0.22 22.55 ± 15.79
DSS-EXT 96.67 ± 1.36 95.98 ± 0.36 83.69 ± 2.62 74.09 ± 1.33 52.02 ± 0.68 43.52 ± 0.15
SUPERVISED 100.00 ± 0.00 99.04 ± 0.14 99.98 ± 0.02 99.36 ± 0.24 79.18 ± 0.30 84.88 ± 1.16
1C-SUM 99.85 ± 0.17 92.97 ± 0.84 84.14 ± 3.56 90.52 ± 0.45 76.93 ± 1.01 70.25 ± 1.43

W
ID

E
R

E
SN

E
T

ODIN 98.48 ± 1.06 81.28 ± 3.49 84.98 ± 2.82 91.10 ± 1.04 77.58 ± 0.42 73.20 ± 2.69
T1000 94.49 ± 3.78 86.47 ± 2.43 78.51 ± 3.23 89.63 ± 0.92 78.99 ± 0.25 73.05 ± 2.43
MP 92.03 ± 6.00 77.21 ± 2.06 70.71 ± 2.92 81.93 ± 0.97 76.17 ± 0.17 72.18 ± 1.08
H 94.37 ± 4.14 80.54 ± 2.23 72.63 ± 3.04 85.29 ± 1.10 78.04 ± 0.11 78.03 ± 3.05
NORM 67.44 ± 29.49 74.28 ± 5.66 75.02 ± 6.14 79.18 ± 2.71 63.00 ± 2.52 59.63 ± 2.45
NORM+ 80.19 ± 22.36 79.68 ± 4.77 74.43 ± 4.11 85.21 ± 1.60 71.13 ± 1.57 66.82 ± 2.56
ACT 94.41 ± 3.84 86.74 ± 2.37 78.80 ± 3.17 89.58 ± 0.96 79.00 ± 0.24 72.94 ± 2.42
ACT+ 97.40 ± 2.04 89.09 ± 2.27 82.62 ± 3.83 89.68 ± 0.81 76.47 ± 0.72 70.52 ± 2.77
PROJ 94.80 ± 3.59 85.51 ± 2.26 79.05 ± 3.61 89.69 ± 0.90 78.90 ± 0.23 73.06 ± 2.13
ANG 96.22 ± 2.52 82.42 ± 1.30 75.17 ± 2.02 87.68 ± 1.09 79.93 ± 0.33 74.65 ± 1.28
ANG++ 97.02 ± 2.08 84.14 ± 1.29 83.48 ± 3.30 84.41 ± 0.77 75.10 ± 0.21 69.17 ± 1.05
IN-DMS 0.01 22.19 88.75 42.44 16.50 32.71
IN-DMS-AOS 46.01 26.70 98.78 92.11 46.88 48.78
IN-DSS 0.00 30.31 2.55 11.92 6.87 26.80
DMS 100.00 ± 0.00 84.65 ± 1.38 91.79 ± 1.54 62.49 ± 1.26 39.19 ± 0.54 75.94 ± 30.23
DMS-AOS 100.00 ± 0.00 6.61 ± 0.81 62.58 ± 5.99 43.24 ± 4.88 40.56 ± 0.81 48.03 ± 0.36
DSS 99.99 ± 0.00 94.85 ± 0.04 86.68 ± 1.64 82.52 ± 1.22 44.58 ± 0.61 77.31 ± 31.68
DSS-EXT 85.25 ± 1.53 95.52 ± 0.14 78.13 ± 2.66 75.51 ± 1.68 51.30 ± 0.75 37.70 ± 0.94
SUPERVISED 100.00 ± 0.00 99.22 ± 0.06 99.98 ± 0.02 99.20 ± 0.10 78.40 ± 0.05 81.15 ± 1.64
1C-SUM 100.00 ± 0.00 95.44 ± 0.99 84.95 ± 4.30 91.06 ± 1.29 77.30 ± 0.32 68.55 ± 2.62

D
E

N
SE

N
E

T
12

1

ODIN 97.79 ± 2.03 80.72 ± 1.10 75.12 ± 7.12 90.68 ± 1.28 79.22 ± 1.11 74.42 ± 1.55
T1000 92.50 ± 5.48 87.45 ± 1.47 67.66 ± 6.00 89.77 ± 1.27 80.36 ± 0.78 73.99 ± 1.43
MP 78.51 ± 13.57 82.17 ± 1.57 67.17 ± 1.57 83.52 ± 0.03 78.33 ± 0.04 74.09 ± 0.88
H 76.84 ± 13.03 77.78 ± 1.55 61.64 ± 2.34 79.65 ± 0.32 75.32 ± 3.00 74.88 ± 0.96
NORM 69.60 ± 27.50 58.29 ± 1.80 37.50 ± 14.69 64.73 ± 5.77 60.14 ± 3.49 60.96 ± 2.14
NORM+ 79.09 ± 26.05 69.80 ± 2.88 44.41 ± 14.49 78.80 ± 3.44 70.54 ± 2.26 66.05 ± 2.77
ACT 92.38 ± 5.56 87.50 ± 1.48 67.77 ± 6.02 89.77 ± 1.25 80.39 ± 0.78 73.97 ± 1.43
ACT+ 93.93 ± 5.11 87.97 ± 0.99 66.48 ± 8.88 88.31 ± 2.40 77.85 ± 1.42 73.97 ± 1.70
PROJ 92.36 ± 5.32 85.34 ± 2.32 67.46 ± 5.92 89.12 ± 1.12 80.23 ± 0.66 72.53 ± 1.31
ANG 92.01 ± 7.24 86.73 ± 2.62 77.82 ± 0.67 89.85 ± 0.36 81.26 ± 0.10 72.25 ± 0.35
ANG++ 89.91 ± 13.68 87.72 ± 2.17 84.04 ± 3.14 85.70 ± 0.96 76.23 ± 0.09 71.79 ± 0.25
IN-DMS 0.01 22.19 88.75 42.44 16.50 42.68
IN-DMS-AOS 46.01 26.70 98.78 92.11 46.88 48.78
IN-DSS 0.00 30.31 2.55 11.62 6.87 38.55
DMS 100.00 ± 0.00 3.41 ± 1.67 6.56 ± 2.87 0.45 ± 0.19 13.92 ± 18.52 35.32 ± 0.33
DMS-AOS 99.99 ± 0.01 8.99 ± 1.44 51.12 ± 4.77 33.48 ± 2.93 38.62 ± 0.81 50.00 ± 0.67
DSS 1.84 ± 2.42 6.24 ± 1.04 0.00 ± 0.01 0.00 ± 0.00 14.04 ± 19.82 31.02 ± 1.71
DSS-EXT 96.60 ± 0.74 95.39 ± 0.67 90.90 ± 0.63 84.26 ± 0.63 50.79 ± 0.32 33.29 ± 1.01
SUPERVISED 100.00 ± 0.00 99.26 ± 0.08 99.98 ± 0.01 99.43 ± 0.09 80.30 ± 0.48 84.84 ± 0.30
1C-SUM 99.40 ± 0.85 93.23 ± 1.61 79.50 ± 3.08 92.06 ± 1.39 80.10 ± 0.36 72.54 ± 1.78

308 Appendix B. Out of distribution

TABLE B.4: Area under the ROC curve for OOD detection with
ImageNet as ID.

GAUSSIAN SVHN MNIST FASH. MNIST LSUN CIFAR 10 CIFAR 100

R
E

SN
E

T
50

ODIN 99.96 99.82 99.73 94.16 80.38 87.66 89.98
T1000 98.77 98.37 98.03 87.28 78.17 84.23 86.48
MP 93.87 97.25 91.65 86.99 75.70 81.57 84.75
H 97.55 98.36 96.16 89.32 77.47 84.36 87.25
NORM 99.62 95.89 99.53 57.95 62.92 48.98 58.23
NORM+ 99.80 96.35 99.58 63.67 70.37 55.09 63.66
ACT 98.74 98.37 98.05 87.29 78.15 84.18 86.46
ACT+ 99.94 99.58 99.77 87.29 77.36 83.00 86.89
PROJ 98.77 98.21 98.43 88.37 77.04 83.59 86.31
ANG 90.53 93.83 88.94 89.26 74.70 86.40 87.21
ANG++ 99.87 99.56 99.51 98.23 75.03 94.46 96.14
IN-DMS 26.50 61.58 97.00 68.76 50.00 50.79 56.51
IN-DMS-AOS 42.46 22.50 98.87 92.60 56.66 38.43 43.72
IN-DSS 7.52 86.70 55.74 71.10 43.38 54.91 59.55
DMS 99.92 97.10 99.18 95.69 38.20 86.99 89.04
DMS-AOS 8.10 16.26 85.79 73.03 52.50 34.10 33.59
DSS 100.00 98.15 98.19 88.37 31.08 80.06 84.03
DSS-EXT 100.00 93.17 87.10 72.58 36.36 73.95 77.98
SUPERVISED 100.00 99.98 100.00 99.79 85.18 99.13 99.09
1C-SUM 100.00 99.43 99.62 93.28 61.76 87.51 91.55

W
ID

E
R

E
SN

E
T

ODIN 100.00 99.91 99.36 96.13 78.42 87.79 89.44
T1000 99.77 96.59 96.26 88.87 77.00 83.20 85.16
MP 99.70 95.25 92.17 87.41 77.51 82.89 85.41
H 99.69 96.96 95.49 89.78 78.90 84.96 87.42
NORM 80.56 53.96 74.21 40.52 44.73 27.21 31.31
NORM+ 92.88 59.47 80.81 45.66 53.56 32.13 36.98
ACT 99.77 96.58 96.27 88.88 76.98 83.17 85.14
ACT+ 99.92 97.96 98.25 89.36 70.56 81.72 84.04
PROJ 99.85 96.67 96.93 90.17 76.64 81.69 84.60
ANG 98.93 96.16 93.74 92.55 79.65 89.14 90.46
ANG++ 99.98 99.70 99.51 99.15 79.40 96.50 97.12
IN-DMS 26.50 61.58 97.00 68.76 50.00 50.79 56.51
IN-DMS-AOS 42.46 22.50 98.87 92.60 56.66 38.43 43.72
IN-DSS 7.52 86.70 55.74 71.10 43.38 54.91 59.55
DMS 99.74 95.03 99.92 96.69 48.86 81.34 84.74
DMS-AOS 4.70 12.07 99.67 83.86 58.68 23.12 26.21
DSS 99.06 96.37 99.51 96.17 27.21 85.18 87.43
DSS-EXT 99.99 96.36 92.57 87.23 32.86 84.58 86.41
SUPERVISED 100.00 99.98 100.00 99.98 88.23 99.65 99.54
1C-SUM 99.94 99.27 99.94 97.56 71.73 88.27 91.35

D
E

N
SE

N
E

T
12

1

ODIN 100.00 99.54 98.08 92.86 81.90 86.44 88.10
T1000 99.84 99.02 92.79 88.70 79.93 85.72 87.78
MP 97.27 97.61 80.44 87.31 76.95 83.16 85.56
H 99.87 98.79 86.31 90.04 79.01 86.01 88.13
NORM 99.94 94.53 94.32 49.85 58.91 45.45 57.07
NORM+ 99.97 94.64 95.82 57.67 67.43 51.74 63.24
ACT 99.85 99.03 92.88 88.71 79.90 85.68 87.76
ACT+ 99.98 99.59 97.33 88.40 77.65 81.84 86.33
PROJ 99.93 98.94 95.15 88.97 77.85 85.73 87.97
ANG 95.93 95.93 85.38 90.89 75.49 88.79 88.77
ANG++ 99.96 99.33 97.79 97.94 73.80 93.29 94.81
IN-DMS 26.50 61.58 97.00 68.76 50.00 50.79 56.51
IN-DMS-AOS 42.46 22.50 98.87 92.60 56.66 38.43 43.72
IN-DSS 7.52 86.70 55.74 71.10 43.38 54.91 59.55
DMS 99.17 90.45 97.55 91.63 52.45 79.22 82.03
DMS-AOS 0.09 4.23 93.40 76.40 56.95 16.62 18.08
DSS 100.00 98.92 99.86 97.76 30.66 90.02 92.35
DSS-EXT 100.00 97.93 94.25 89.08 34.29 88.85 90.68
SUPERVISED 100.00 99.95 99.99 99.87 87.13 98.84 98.69
1C-SUM 99.99 99.74 99.78 97.63 63.98 92.15 95.00

B.3. Selected indicator distributions 309

B.3 Selected indicator distributions

In this section, we would like to share some distributions of the indicators.
Figure B.1 displays the distribution for some of bounded indicators. In the-
ory, those are the easiest to threshold without data. In practice, setting the
cut points without data is challenging. Interestingly, in an application where
rejecting ID samples is less of a problem, MP and H seem good candidates to
minimize the OOD acceptance rate. This also explains why they benefit so
much from rejecting misclassified samples: ID samples is their main source
of mistakes—reducing the number of such samples improves the auroc score.

Figure B.2 displays some distributions for unbounded indicators. It does
seem that pinpointing where to place the threshold is quite hard.

Figures B.3 and B.4 focuses on batchnorm indicators. As one can see,
these indicators are of limited use in most cases.

Finally, Figure B.5 displays the distribution of 1C-Sum in various settings.
Without any prior knowledge, placing the optimal threshold is, once more,
challenging. The dependency on the network might be more important than
the one on the ID task (ResNet 50 for ImageNet is slightly different than for
CIFAR 10/100). We leave the evaluation of transferability/meta-learning of
the threshold as future work.

310 Appendix B. Out of distribution

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.89800

0.89825

0.89850

0.89875

0.89900

0.89925

0.89950

0.89975

0.90000

T1
00

0

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

an
g

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.0

0.5

1.0

1.5

2.0

h

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.0

0.2

0.4

0.6

0.8

m
p

FIGURE B.1: Bounded indicator distributions established with
CIFAR 10 as ID task on ResNet 50.

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

ac
t

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

8

7

6

5

4

3

2

1

0

pr
oj

FIGURE B.2: Unbounded indicator distributions established
with CIFAR 10 as ID task on ResNet 50.

B.3. Selected indicator distributions 311

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0

1

2

3

4

in
-d

m
s

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0

1

2

3

4

in
-d

m
s-

ao
s

FIGURE B.3: IN- indicator distributions established with CIFAR
10 as ID task on ResNet 50.

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.0

0.2

0.4

0.6

0.8

1.0

1.2

dm
s

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

dm
s-

ao
s

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

ds
s

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

Training set

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

0.5

0.6

0.7

0.8

0.9

1.0

ds
s-

ex
t

FIGURE B.4: Batchnorm indicator distributions established
with CIFAR 10 as ID task on ResNet 50.

312 Appendix B. Out of distribution

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

200

150

100

50

0

50

1C
-S

um

(A) CIFAR 10 as ID task on ResNet 50

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

250

200

150

100

50

0

50

1C
-S

um

(B) CIFAR 10 as ID task on WideResNet

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

Tiny Im
ageNet

LSUN

350

300

250

200

150

100

50

0

50

1C
-S

um

(C) CIFAR 100 as ID task on ResNet 50

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

LSUN

cifar10

cifar100

uniform

Test set

Gaussian

SVHN

M
NIST

fashion M
NIST

LSUN

cifar10

cifar100

1200

1000

800

600

400

200

0

1C
-S

um

(D) ImageNet as ID task on ResNet 50

FIGURE B.5: 1C-Sum indicator distributions.

313

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Cor-
rado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow,
I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kud-
lur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. Software available from ten-
sorflow.org. URL: https://www.tensorflow.org/.

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh,
M., Fieguth, P., Cao, X., Khosravi, A., Acharya, U. R., et al. (2021). “A re-
view of uncertainty quantification in deep learning: Techniques, applica-
tions and challenges”. In: Information Fusion.

Ahmed, F. and Courville, A. C. (2020). “Detecting Semantic Anomalies”. In:
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press,
pp. 3154–3162. URL: https://aaai.org/ojs/index.php/AAAI/article/
view/5712.

Aigrain, J. and Detyniecki, M. (2019). “Detecting adversarial examples and
other misclassifications in neural networks by introspection”. In: arXiv
preprint arXiv:1905.09186.

Al-Rfou, R. et al. (2016). “Theano: A Python framework for fast computa-
tion of mathematical expressions”. In: CoRR abs/1605.02688. arXiv: 1605.
02688. URL: http://arxiv.org/abs/1605.02688.

Aldweesh, A., Derhab, A., and Emam, A. Z. (2020). “Deep learning approaches
for anomaly-based intrusion detection systems: A survey, taxonomy, and
open issues”. In: Knowl. Based Syst. 189. DOI: 10.1016/j.knosys.2019.
105124. URL: https://doi.org/10.1016/j.knosys.2019.105124.

Allen-Zhu, Z., Li, Y., and Song, Z. (2019). “A Convergence Theory for Deep
Learning via Over-Parameterization”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97.
Proceedings of Machine Learning Research. PMLR, pp. 242–252. URL: http:
//proceedings.mlr.press/v97/allen-zhu19a.html.

Alvarez, J. M. and Salzmann, M. (2016). “Learning the Number of Neurons
in Deep Networks”. In: Advances in Neural Information Processing Systems

https://www.tensorflow.org/
https://aaai.org/ojs/index.php/AAAI/article/view/5712
https://aaai.org/ojs/index.php/AAAI/article/view/5712
https://arxiv.org/abs/1605.02688
https://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688
https://doi.org/10.1016/j.knosys.2019.105124
https://doi.org/10.1016/j.knosys.2019.105124
https://doi.org/10.1016/j.knosys.2019.105124
http://proceedings.mlr.press/v97/allen-zhu19a.html
http://proceedings.mlr.press/v97/allen-zhu19a.html

314 Bibliography

29: Annual Conference on Neural Information Processing Systems 2016, De-
cember 5-10, 2016, Barcelona, Spain. Ed. by D. D. Lee, M. Sugiyama, U.
von Luxburg, I. Guyon, and R. Garnett, pp. 2262–2270. URL: https://
proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-
Abstract.html.

Ancona, M., Ceolini, E., Öztireli, C., and Gross, M. (2018). “Towards bet-
ter understanding of gradient-based attribution methods for Deep Neu-
ral Networks”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net. URL: https://openreview.net/forum?id=
Sy21R9JAW.

Antonello, N. and Garner, P. N. (2020). “A t-Distribution Based Operator
for Enhancing Out of Distribution Robustness of Neural Network Clas-
sifiers”. In: IEEE Signal Processing Letters 27, pp. 1070–1074.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. (2018). “Stronger General-
ization Bounds for Deep Nets via a Compression Approach”. In: Proceed-
ings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by J. G. Dy and
A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
pp. 254–263. URL: http://proceedings.mlr.press/v80/arora18b.html.

Ba, J. and Caruana, R. (2014). “Do Deep Nets Really Need to be Deep?”
In: Advances in Neural Information Processing Systems 27: Annual Confer-
ence on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada. Ed. by Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, pp. 2654–2662. URL: https://
proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-
Abstract.html.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek,
W. (2015). “On pixel-wise explanations for non-linear classifier decisions
by layer-wise relevance propagation”. In: PLoS ONE 10.7, e0130140.

Bachman, P., Alsharif, O., and Precup, D. (2014). “Learning with Pseudo-
Ensembles”. In: Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. Ed. by Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence, and K. Q. Weinberger, pp. 3365–3373. URL: https:
//proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-
Abstract.html.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., and
Müller, K. (2010). “How to Explain Individual Classification Decisions”.
In: The Journal of Machine Learning Research 11, pp. 1803–1831. URL: http:
//portal.acm.org/citation.cfm?id=1859912.

Beckman, R. J. and Cook, R. D. (1983). “Outlier. s”. In: Technometrics
25.2, pp. 119–149.

Begon, J.-M. and Geurts, P. (2021). “Sample-Free White-Box Out-of-Distribution
Detection for Deep Learning”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3290–3299.

https://proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/6e7d2da6d3953058db75714ac400b584-Abstract.html
https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
http://proceedings.mlr.press/v80/arora18b.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/ea8fcd92d59581717e06eb187f10666d-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/66be31e4c40d676991f2405aaecc6934-Abstract.html
http://portal.acm.org/citation.cfm?id=1859912
http://portal.acm.org/citation.cfm?id=1859912

Bibliography 315

Begon, J., Joly, A., and Geurts, P. (2017). “Globally Induced Forest: A Preprun-
ing Compression Scheme”. In: Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017. Ed. by D. Precup and Y. W. Teh. Vol. 70. Proceedings of Machine
Learning Research. PMLR, pp. 420–428. URL: http://proceedings.mlr.
press/v70/begon17a.html.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan,
J. W. (2010). “A theory of learning from different domains”. In: Machine
learning 79.1, pp. 151–175.

Bénard, C., Biau, G., Veiga, S. D., and Scornet, E. (2021). “Interpretable Ran-
dom Forests via Rule Extraction”. In: The 24th International Conference on
Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event. Ed. by A. Banerjee and K. Fukumizu. Vol. 130. Proceedings of Ma-
chine Learning Research. PMLR, pp. 937–945. URL: http://proceedings.
mlr.press/v130/benard21a.html.

Bendale, A. and Boult, T. E. (2016). “Towards open set deep networks”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1563–1572.

Biau, G., Scornet, E., and Welbl, J. (2016). “Neural Random Forests”. In: CoRR
abs/1604.07143. arXiv: 1604.07143. URL: http://arxiv.org/abs/1604.
07143.

Blake, C. and Merz, C. J. (1998). {UCI} Repository of machine learning databases.
URL: https://archive.ics.uci.edu/ml/index.php.

Blalock, D. W., Ortiz, J. J. G., Frankle, J., and Guttag, J. V. (2020). “What is
the State of Neural Network Pruning?” In: Proceedings of Machine Learning
and Systems 2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. Ed. by
I. S. Dhillon, D. S. Papailiopoulos, and V. Sze. mlsys.org. URL: https :
//proceedings.mlsys.org/book/296.pdf.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. (1987). “Oc-
cam’s razor”. In: Information processing letters 24.6, pp. 377–380.

Bolton, R. J. and Hand, D. J. (2001). “Peer group analysis–local anomaly de-
tection in longitudinal data”. In: Technical Report.

Bottou, L. and Bousquet, O. (2007). “The Tradeoffs of Large Scale Learning”.
In: Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007. Ed. by J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis. Curran Associates, Inc., pp. 161–168.
URL: https://proceedings.neurips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-
Abstract.html.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang,
Q. (2018). JAX: composable transformations of Python+NumPy programs. Ver-
sion 0.2.5. URL: http://github.com/google/jax.

Breiman, L. (1996). “Bagging Predictors”. In: Mach. Learn. 24.2, pp. 123–140.
DOI: 10.1007/BF00058655. URL: https://doi.org/10.1007/BF00058655.

— (1999). “Pasting small votes for classification in large databases and on-
line”. In: Machine Learning 36.1-2, pp. 85–103.

http://proceedings.mlr.press/v70/begon17a.html
http://proceedings.mlr.press/v70/begon17a.html
http://proceedings.mlr.press/v130/benard21a.html
http://proceedings.mlr.press/v130/benard21a.html
https://arxiv.org/abs/1604.07143
http://arxiv.org/abs/1604.07143
http://arxiv.org/abs/1604.07143
https://archive.ics.uci.edu/ml/index.php
https://proceedings.mlsys.org/book/296.pdf
https://proceedings.mlsys.org/book/296.pdf
https://proceedings.neurips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/0d3180d672e08b4c5312dcdafdf6ef36-Abstract.html
http://github.com/google/jax
https://doi.org/10.1007/BF00058655
https://doi.org/10.1007/BF00058655

316 Bibliography

Breiman, L. (2001). “Random Forests”. In: Mach. Learn. 45.1, pp. 5–32. DOI:
10 . 1023 / A : 1010933404324. URL: https : / / doi . org / 10 . 1023 / A :
1010933404324.

— (2002). “Manual on setting up, using, and understanding random forests
v3. 1”. In: Statistics Department University of California Berkeley, CA, USA
1.58.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classifica-
tion and Regression Trees. Wadsworth. ISBN: 0-534-98053-8.

Breiman, L. et al. (1998). “Arcing classifier (with discussion and a rejoinder
by the author)”. In: The annals of statistics 26.3, pp. 801–849.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Vandergheynst, P. (2017).
“Geometric deep learning: going beyond euclidean data”. In: IEEE Signal
Processing Magazine 34.4, pp. 18–42.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). “Model compres-
sion”. In: Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 535–541.

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M. W., and Keutzer, K.
(2020a). “ZeroQ: A Novel Zero Shot Quantization Framework”. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR
2020, Seattle, WA, USA, June 13-19, 2020. IEEE, pp. 13166–13175. DOI: 10.
1109/CVPR42600.2020.01318. URL: https://doi.org/10.1109/CVPR42600.
2020.01318.

Cai, Y., Yao, Z., Dong, Z., Gholami, A., Mahoney, M. W., and Keutzer, K.
(2020b). “Zeroq: A novel zero shot quantization framework”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 13169–13178.

Canziani, A., Paszke, A., and Culurciello, E. (2016). “An Analysis of Deep
Neural Network Models for Practical Applications”. In: CoRR abs/1605.07678.
arXiv: 1605.07678. URL: http://arxiv.org/abs/1605.07678.

Carreira-Perpiñán, M. Á. and Tavallali, P. (2018). “Alternating optimization
of decision trees, with application to learning sparse oblique trees”. In:
Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, pp. 1219–1229. URL: https://
proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-
Abstract.html.

Carreira-Perpiñán, M. Á. and Zharmagambetov, A. (2020). “Ensembles of
Bagged TAO Trees Consistently Improve over Random Forests, AdaBoost
and Gradient Boosting”. In: FODS ’20: ACM-IMS Foundations of Data Sci-
ence Conference, Virtual Event, USA, October 19-20, 2020. Ed. by J. M. Wing
and D. Madigan. ACM, pp. 35–46. DOI: 10.1145/3412815.3416882. URL:
https://doi.org/10.1145/3412815.3416882.

Chandola, V., Banerjee, A., and Kumar, V. (2009). “Anomaly detection: A sur-
vey”. In: ACM Comput. Surv. 41.3, 15:1–15:58. DOI: 10.1145/1541880.
1541882. URL: https://doi.org/10.1145/1541880.1541882.

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/CVPR42600.2020.01318
https://doi.org/10.1109/CVPR42600.2020.01318
https://doi.org/10.1109/CVPR42600.2020.01318
https://doi.org/10.1109/CVPR42600.2020.01318
https://arxiv.org/abs/1605.07678
http://arxiv.org/abs/1605.07678
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/185c29dc24325934ee377cfda20e414c-Abstract.html
https://doi.org/10.1145/3412815.3416882
https://doi.org/10.1145/3412815.3416882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882

Bibliography 317

Chapelle, O., Scholkopf, B., and Zien, A. (2009). “Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]”. In: IEEE Transactions on Neu-
ral Networks 20.3, pp. 542–542.

Che, T., Liu, X., Li, S., Ge, Y., Zhang, R., Xiong, C., and Bengio, Y. (2021).
“Deep Verifier Networks: Verification of Deep Discriminative Models with
Deep Generative Models”. In: Thirty-Fifth AAAI Conference on Artificial In-
telligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of
Artificial Intelligence, IAAI 2021, The Eleventh Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021.
AAAI Press, pp. 7002–7010. URL: https://ojs.aaai.org/index.php/
AAAI/article/view/16862.

Chen, H., Wang, Y., Xu, C., Yang, Z., Liu, C., Shi, B., Xu, C., Xu, C., and Tian,
Q. (2019). “Data-free learning of student networks”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 3514–3522.

Chen, P. H., Si, S., Li, Y., Chelba, C., and Hsieh, C. (2018). “GroupReduce:
Block-Wise Low-Rank Approximation for Neural Language Model Shrink-
ing”. In: Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, De-
cember 3-8, 2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach, H.
Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, pp. 11011–11021.
URL: https://proceedings.neurips.cc/paper/2018/hash/a2b8a85a29b2d64ad6f47275bf1360c6-
Abstract.html.

Cheng, J. and Vasconcelos, N. (2021). “Learning Deep Classifiers Consistent
With Fine-Grained Novelty Detection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1664–1673.

Choi, Y., Choi, J. P., El-Khamy, M., and Lee, J. (2020). “Data-Free Network
Quantization With Adversarial Knowledge Distillation”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR Workshops
2020, Seattle, WA, USA, June 14-19, 2020. IEEE, pp. 3047–3057. DOI: 10.
1109 / CVPRW50498 . 2020 . 00363. URL: https : / / doi . org / 10 . 1109 /
CVPRW50498.2020.00363.

Chung, I., Park, S., Kim, J., and Kwak, N. (2020). “Feature-map-level On-
line Adversarial Knowledge Distillation”. In: Proceedings of the 37th In-
ternational Conference on Machine Learning. Ed. by H. D. III and A. Singh.
Vol. 119. Proceedings of Machine Learning Research. PMLR, pp. 2006–
2015. URL: http://proceedings.mlr.press/v119/chung20a.html.

Cioppa, A., Deliege, A., Istasse, M., De Vleeschouwer, C., and Van Droogen-
broeck, M. (2019). “Arthus: Adaptive real-time human segmentation in
sports through online distillation”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition Workshops, pp. 0–0.

Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., and
Ha, D. (2018). “Deep Learning for Classical Japanese Literature”. In: CoRR
abs/1812.01718. arXiv: 1812.01718. URL: http://arxiv.org/abs/1812.
01718.

Coates, A., Ng, A., and Lee, H. (2011). “An analysis of single-layer networks
in unsupervised feature learning”. In: Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pp. 215–223.

https://ojs.aaai.org/index.php/AAAI/article/view/16862
https://ojs.aaai.org/index.php/AAAI/article/view/16862
https://proceedings.neurips.cc/paper/2018/hash/a2b8a85a29b2d64ad6f47275bf1360c6-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a2b8a85a29b2d64ad6f47275bf1360c6-Abstract.html
https://doi.org/10.1109/CVPRW50498.2020.00363
https://doi.org/10.1109/CVPRW50498.2020.00363
https://doi.org/10.1109/CVPRW50498.2020.00363
https://doi.org/10.1109/CVPRW50498.2020.00363
http://proceedings.mlr.press/v119/chung20a.html
https://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1812.01718
http://arxiv.org/abs/1812.01718

318 Bibliography

Collin, A. and Vleeschouwer, C. D. (2020). “Improved anomaly detection
by training an autoencoder with skip connections on images corrupted
with Stain-shaped noise”. In: 25th International Conference on Pattern Recog-
nition, ICPR 2020, Virtual Event / Milan, Italy, January 10-15, 2021. IEEE,
pp. 7915–7922. DOI: 10.1109/ICPR48806.2021.9412842. URL: https:
//doi.org/10.1109/ICPR48806.2021.9412842.

Cortes, C. and Vapnik, V. (1995). “Support-vector networks”. In: Machine
learning 20.3, pp. 273–297.

Dawer, G., Guo, Y., and Barbu, A. (2020). “Generating Compact Tree Ensem-
bles via Annealing”. In: 2020 International Joint Conference on Neural Net-
works, IJCNN 2020, Glasgow, United Kingdom, July 19-24, 2020. IEEE, pp. 1–
8. DOI: 10.1109/IJCNN48605.2020.9206593. URL: https://doi.org/10.
1109/IJCNN48605.2020.9206593.

De Vleeschouwer, C., Legrand, A., Jacques, L., and Hebert, M. (2015). “Mit-
igating memory requirements for random trees/ferns”. In: Image Process-
ing (ICIP), 2015 IEEE International Conference on. IEEE, pp. 227–231.

Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Fei-Fei, L. (2009). “ImageNet:
A large-scale hierarchical image database”. In: 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25
June 2009, Miami, Florida, USA. IEEE Computer Society, pp. 248–255. DOI:
10.1109/CVPR.2009.5206848. URL: https://doi.org/10.1109/CVPR.
2009.5206848.

Denil, M., Shakibi, B., Dinh, L., Ranzato, M., and Freitas, N. de (2013). “Pre-
dicting Parameters in Deep Learning”. In: Advances in Neural Information
Processing Systems 26: 27th Annual Conference on Neural Information Pro-
cessing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States. Ed. by C. J. C. Burges, L. Bottou, Z. Ghahra-
mani, and K. Q. Weinberger, pp. 2148–2156. URL: https://proceedings.
neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-
Abstract.html.

Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y., and Fergus, R. (2014). “Ex-
ploiting Linear Structure Within Convolutional Networks for Efficient Eval-
uation”. In: Advances in Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Systems 2014, December 8-13
2014, Montreal, Quebec, Canada. Ed. by Z. Ghahramani, M. Welling, C.
Cortes, N. D. Lawrence, and K. Q. Weinberger, pp. 1269–1277. URL: https:
//proceedings.neurips.cc/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-
Abstract.html.

DeVries, T. and Taylor, G. W. (2018). “Learning confidence for out-of-distribution
detection in neural networks”. In: arXiv preprint arXiv:1802.04865.

Domingos, P. (1997). “Knowledge acquisition from examples via multiple
models”. In: Machine learning-international workshop then conference. Mor-
gan Kaufmann publishers, INC., pp. 98–106.

— (1999). “The role of Occam’s razor in knowledge discovery”. In: Data min-
ing and knowledge discovery 3.4, pp. 409–425.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell,
T. (2014). “DeCAF: A Deep Convolutional Activation Feature for Generic

https://doi.org/10.1109/ICPR48806.2021.9412842
https://doi.org/10.1109/ICPR48806.2021.9412842
https://doi.org/10.1109/ICPR48806.2021.9412842
https://doi.org/10.1109/IJCNN48605.2020.9206593
https://doi.org/10.1109/IJCNN48605.2020.9206593
https://doi.org/10.1109/IJCNN48605.2020.9206593
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/7fec306d1e665bc9c748b5d2b99a6e97-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/2afe4567e1bf64d32a5527244d104cea-Abstract.html

Bibliography 319

Visual Recognition”. In: Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. Vol. 32. JMLR
Workshop and Conference Proceedings. JMLR.org, pp. 647–655. URL: http:
//proceedings.mlr.press/v32/donahue14.html.

Du, S. S., Lee, J. D., Li, H., Wang, L., and Zhai, X. (2019). “Gradient Descent
Finds Global Minima of Deep Neural Networks”. In: Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA. Ed. by K. Chaudhuri and R. Salakhutdi-
nov. Vol. 97. Proceedings of Machine Learning Research. PMLR, pp. 1675–
1685. URL: http://proceedings.mlr.press/v97/du19c.html.

Duchi, J., Hazan, E., and Singer, Y. (2011). “Adaptive subgradient methods for
online learning and stochastic optimization.” In: Journal of machine learn-
ing research 12.7.

Dumoulin, V. and Visin, F. (2016). “A guide to convolution arithmetic for
deep learning”. In: ArXiv e-prints. eprint: 1603.07285.

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. (2004). “Least angle
regression”. In: Annals of statistics 32.2, pp. 407–499.

Elisha, O. and Dekel, S. (2016). “Wavelet decompositions of Random Forests-
smoothness analysis, sparse approximation and applications”. In: Journal
of Machine Learning Research 17.198, pp. 1–38.

Erasmus, A., Brunet, T. D., and Fisher, E. (2020). “What is Interpretability?”
In: Philosophy & Technology, pp. 1–30.

Fisher, R. A. (1936). “The use of multiple measurements in taxonomic prob-
lems”. In: Annals of eugenics 7.2, pp. 179–188.

Fleuret, F. (2021). EE559 Deep Learning, EPFL. https://fleuret.org/dlc/.
Accessed: 2021-08-06.

Frankle, J. and Carbin, M. (2019). “The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks”. In: 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net. URL: https://openreview.net/forum?id=rJl-b3RcF7.

Fredrikson, M., Jha, S., and Ristenpart, T. (2015). “Model Inversion Attacks
that Exploit Confidence Information and Basic Countermeasures”. In: Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, Denver, CO, USA, October 12-16, 2015. Ed. by I. Ray, N. Li,
and C. Kruegel. ACM, pp. 1322–1333. DOI: 10.1145/2810103.2813677.
URL: https://doi.org/10.1145/2810103.2813677.

Freund, Y. and Schapire, R. E. (1995). “A desicion-theoretic generalization of
on-line learning and an application to boosting”. In: European conference
on computational learning theory. Springer, pp. 23–37.

Friedman, J., Hastie, T., and Tibshirani, R. (2001a). The elements of statistical
learning. Vol. 1. 10. Springer series in statistics New York.

— (2001b). The elements of statistical learning. Vol. 1. Springer series in statis-
tics Springer, Berlin.

Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). “Additive logistic regres-
sion: a statistical view of boosting (with discussion and a rejoinder by the
authors)”. In: Annals of statistics 28.2, pp. 337–407.

http://proceedings.mlr.press/v32/donahue14.html
http://proceedings.mlr.press/v32/donahue14.html
http://proceedings.mlr.press/v97/du19c.html
1603.07285
https://fleuret.org/dlc/
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1145/2810103.2813677
https://doi.org/10.1145/2810103.2813677

320 Bibliography

Friedman, J. H. (1991). “Multivariate adaptive regression splines”. In: The an-
nals of statistics, pp. 1–67.

— (2001a). “Greedy function approximation: a gradient boosting machine”.
In: Annals of statistics, pp. 1189–1232.

— (2001b). “Greedy function approximation: a gradient boosting machine”.
In: Annals of statistics, pp. 1189–1232.

Friedman, J. H. and Popescu, B. E. (2008). “Predictive learning via rule en-
sembles”. In: The Annals of Applied Statistics 2.3, pp. 916–954.

Gal, Y. and Ghahramani, Z. (2016). “Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning”. In: Proceedings of the
33nd International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016. Ed. by M. Balcan and K. Q. Weinberger.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org, pp. 1050–
1059. URL: http://proceedings.mlr.press/v48/gal16.html.

Geifman, Y. and El-Yaniv, R. (2019). “SelectiveNet: A Deep Neural Network
with an Integrated Reject Option”. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cal-
ifornia, USA. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. PMLR, pp. 2151–2159. URL: http:
//proceedings.mlr.press/v97/geifman19a.html.

Gettier, E. L. (1963). “Is Justified True Belief Knowledge”. In: Analysis 23(6),
pp. 121–123. DOI: https://doi.org/10.2307/3326922.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). “Extremely randomized trees”.
In: Machine learning 63.1, pp. 3–42.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., and Keutzer, K.
(2021). “A Survey of Quantization Methods for Efficient Neural Network
Inference”. In: CoRR abs/2103.13630. arXiv: 2103.13630. URL: https://
arxiv.org/abs/2103.13630.

Glorot, X. and Bengio, Y. (2010). “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the Thirteenth In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS 2010,
Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010. Ed. by Y. W. Teh and
D. M. Titterington. Vol. 9. JMLR Proceedings. JMLR.org, pp. 249–256. URL:
http://proceedings.mlr.press/v9/glorot10a.html.

Golan, I. and El-Yaniv, R. (2018). “Deep anomaly detection using geomet-
ric transformations”. In: Advances in Neural Information Processing Systems,
pp. 9758–9769.

Gong, C., Chang, X., Fang, M., and Yang, J. (2018). “Teaching Semi-Supervised
Classifier via Generalized Distillation”. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden. Ed. by J. Lang. ijcai.org, pp. 2156–2162. DOI:
10.24963/ijcai.2018/298. URL: https://doi.org/10.24963/ijcai.
2018/298.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., and Bengio, Y. (2014). “Generative Adversarial Nets”. In:
Advances in Neural Information Processing Systems. Ed. by Z. Ghahramani,
M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger. Vol. 27. Curran

http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v97/geifman19a.html
http://proceedings.mlr.press/v97/geifman19a.html
https://doi.org/https://doi.org/10.2307/3326922
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
https://arxiv.org/abs/2103.13630
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.24963/ijcai.2018/298
https://doi.org/10.24963/ijcai.2018/298
https://doi.org/10.24963/ijcai.2018/298

Bibliography 321

Associates, Inc., pp. 2672–2680. URL: https://proceedings.neurips.cc/
paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). “Explaining and Har-
nessing Adversarial Examples”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Y. Bengio and Y. LeCun. URL: http://arxiv.
org/abs/1412.6572.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). “Knowledge Distillation:
A Survey”. In: Int. J. Comput. Vis. 129.6, pp. 1789–1819. DOI: 10.1007/
s11263-021-01453-z. URL: https://doi.org/10.1007/s11263-021-
01453-z.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017a). “On calibration of
modern neural networks”. In: International Conference on Machine Learning.
PMLR, pp. 1321–1330.

Guo, H., Li, Y., Shang, J., Mingyun, G., Yuanyue, H., and Bing, G. (2017b).
“Learning from class-imbalanced data: Review of methods and applica-
tions”. In: Expert Syst. Appl. 73, pp. 220–239. DOI: 10.1016/j.eswa.2016.
12.035. URL: https://doi.org/10.1016/j.eswa.2016.12.035.

Guyon, I., Gunn, S. R., Ben-Hur, A., and Dror, G. (2004). “Result Analysis of
the NIPS 2003 Feature Selection Challenge.” In: NIPS. Vol. 4, pp. 545–552.

Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). “Learning both Weights and
Connections for Efficient Neural Networks”. In: CoRR abs/1506.02626.
arXiv: 1506.02626. URL: http://arxiv.org/abs/1506.02626.

Haroush, M., Hubara, I., Hoffer, E., and Soudry, D. (2020). “The Knowledge
Within: Methods for Data-Free Model Compression”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020. IEEE, pp. 8491–8499. DOI: 10.1109/CVPR42600.
2020.00852. URL: https://doi.org/10.1109/CVPR42600.2020.00852.

Harrison Jr, D. and Rubinfeld, D. L. (1978). “Hedonic housing prices and the
demand for clean air”. In: Journal of environmental economics and manage-
ment 5.1, pp. 81–102.

Hassibi, B., Stork, D. G., and Wolff, G. J. (1993). “Optimal brain surgeon and
general network pruning”. In: IEEE international conference on neural net-
works. IEEE, pp. 293–299.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778.

Heinecke, A., Ho, J., and Hwang, W. (2020). “Refinement and Universal Ap-
proximation via Sparsely Connected ReLU Convolution Nets”. In: IEEE
Signal Process. Lett. 27, pp. 1175–1179. DOI: 10.1109/LSP.2020.3005051.
URL: https://doi.org/10.1109/LSP.2020.3005051.

Hendrycks, D. and Gimpel, K. (2017). “A Baseline for Detecting Misclassi-
fied and Out-of-Distribution Examples in Neural Networks”. In: 5th Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. URL: https:
//openreview.net/forum?id=Hkg4TI9xl.

https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.eswa.2016.12.035
https://doi.org/10.1016/j.eswa.2016.12.035
https://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
https://doi.org/10.1109/CVPR42600.2020.00852
https://doi.org/10.1109/CVPR42600.2020.00852
https://doi.org/10.1109/CVPR42600.2020.00852
https://doi.org/10.1109/LSP.2020.3005051
https://doi.org/10.1109/LSP.2020.3005051
https://openreview.net/forum?id=Hkg4TI9xl
https://openreview.net/forum?id=Hkg4TI9xl

322 Bibliography

Hendrycks, D., Mazeika, M., and Dietterich, T. G. (2019). “Deep Anomaly De-
tection with Outlier Exposure”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net. URL: https://openreview.net/forum?id=HyxCxhRcY7.

Heo, B., Lee, M., Yun, S., and Choi, J. Y. (2019a). “Knowledge Distillation
with Adversarial Samples Supporting Decision Boundary”. In: The Thirty-
Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019. AAAI
Press, pp. 3771–3778. DOI: 10.1609/aaai.v33i01.33013771. URL: https:
//doi.org/10.1609/aaai.v33i01.33013771.

— (2019b). “Knowledge Transfer via Distillation of Activation Boundaries
Formed by Hidden Neurons”. In: The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of
Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019. AAAI Press, pp. 3779–3787. DOI: 10.
1609/aaai.v33i01.33013779. URL: https://doi.org/10.1609/aaai.
v33i01.33013779.

Hinton, G., Vinyals, O., and Dean, J. (2015). “Distilling the knowledge in a
neural network”. In: arXiv preprint arXiv:1503.02531.

Hoerl, A. E. and Kennard, R. W. (1970). “Ridge regression: Biased estimation
for nonorthogonal problems”. In: Technometrics 12.1, pp. 55–67.

Hornik, K., Stinchcombe, M. B., and White, H. (1989). “Multilayer feedfor-
ward networks are universal approximators”. In: Neural Networks 2.5, pp. 359–
366. DOI: 10.1016/0893-6080(89)90020-8. URL: https://doi.org/10.
1016/0893-6080(89)90020-8.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., and Adam, H. (2017). “MobileNets: Efficient Convolu-
tional Neural Networks for Mobile Vision Applications”. In: CoRR abs/1704.04861.
arXiv: 1704.04861. URL: http://arxiv.org/abs/1704.04861.

Hsu, Y.-C., Shen, Y., Jin, H., and Kira, Z. (2020). “Generalized odin: Detect-
ing out-of-distribution image without learning from out-of-distribution
data”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10951–10960.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4700–4708.

Hüllermeier, E. and Waegeman, W. (2021). “Aleatoric and epistemic uncer-
tainty in machine learning: An introduction to concepts and methods”.
In: Machine Learning 110.3, pp. 457–506.

Huynh-Thu, V. A., Irrthum, A., Wehenkel, L., and Geurts, P. (2010). “Inferring
Regulatory Networks from Expression Data Using Tree-Based Methods”.
In: PLoS ONE 5.9, e12776.

Ioffe, S. and Szegedy, C. (2015). “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift”. In: Proceedings

https://openreview.net/forum?id=HyxCxhRcY7
https://doi.org/10.1609/aaai.v33i01.33013771
https://doi.org/10.1609/aaai.v33i01.33013771
https://doi.org/10.1609/aaai.v33i01.33013771
https://doi.org/10.1609/aaai.v33i01.33013779
https://doi.org/10.1609/aaai.v33i01.33013779
https://doi.org/10.1609/aaai.v33i01.33013779
https://doi.org/10.1609/aaai.v33i01.33013779
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861

Bibliography 323

of the 32nd International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015. Ed. by F. R. Bach and D. M. Blei. Vol. 37. JMLR
Workshop and Conference Proceedings. JMLR.org, pp. 448–456. URL: http:
//proceedings.mlr.press/v37/ioffe15.html.

Jaderberg, M., Vedaldi, A., and Zisserman, A. (2014). “Speeding up Convolu-
tional Neural Networks with Low Rank Expansions”. In: British Machine
Vision Conference, BMVC 2014, Nottingham, UK, September 1-5, 2014. Ed. by
M. F. Valstar, A. P. French, and T. P. Pridmore. BMVA Press. URL: http:
//www.bmva.org/bmvc/2014/papers/paper073/index.html.

Jiang, J. (2008). “A literature survey on domain adaptation of statistical clas-
sifiers”. In: 3.1-12, p. 3.

Johnson, R. and Zhang, T. (2014). “Learning nonlinear functions using regu-
larized greedy forest”. In: IEEE transactions on pattern analysis and machine
intelligence 36.5, pp. 942–954.

Joly, A., Schnitzler, F., Geurts, P., and Wehenkel, L. (2012). “L1-based com-
pression of random forest models”. In: 20th European Symposium on Artifi-
cial Neural Networks.

Kardan, N., Sharma, A., and Stanley, K. O. (2021). “Towards Consistent Pre-
dictive Confidence through Fitted Ensembles”. In: CoRR abs/2106.12070.
arXiv: 2106.12070. URL: https://arxiv.org/abs/2106.12070.

Kim, J., Park, S., and Kwak, N. (2018). “Paraphrasing Complex Network: Net-
work Compression via Factor Transfer”. In: Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada. Ed. by
S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, pp. 2765–2774. URL: https://proceedings.neurips.cc/
paper/2018/hash/6d9cb7de5e8ac30bd5e8734bc96a35c1-Abstract.html.

Kimura, A., Ghahramani, Z., Takeuchi, K., Iwata, T., and Ueda, N. (2018).
“Few-shot learning of neural networks from scratch by pseudo exam-
ple optimization”. In: British Machine Vision Conference 2018, BMVC 2018,
Newcastle, UK, September 3-6, 2018. BMVA Press, p. 105. URL: http: //
bmvc2018.org/contents/papers/0366.pdf.

Kindermans, P.-J., Hooker, S., Adebayo, J., Alber, M., Schütt, K. T., Dähne, S.,
Erhan, D., and Kim, B. (2019). “The (Un)reliability of Saliency Methods”.
In: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Ed.
by W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller.
Springer International Publishing. Chap. 14, pp. 267–280.

Kindermans, P.-J., Schütt, K. T., Alber, M., Müller, K.-R., Erhan, D., Kim, B.,
and Dähne, S. (2017). “Learning how to explain neural networks: Pattern-
Net and PatternAttribution”. In: ArXiv e-prints. eprint: 1705.05598.

Kingma, D. P. and Ba, J. (2015). “Adam: A Method for Stochastic Optimiza-
tion”. In: 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Y.
Bengio and Y. LeCun. URL: http://arxiv.org/abs/1412.6980.

Kobyzev, I., Prince, S., and Brubaker, M. (2020). “Normalizing flows: An in-
troduction and review of current methods”. In: IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://www.bmva.org/bmvc/2014/papers/paper073/index.html
http://www.bmva.org/bmvc/2014/papers/paper073/index.html
https://arxiv.org/abs/2106.12070
https://arxiv.org/abs/2106.12070
https://proceedings.neurips.cc/paper/2018/hash/6d9cb7de5e8ac30bd5e8734bc96a35c1-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/6d9cb7de5e8ac30bd5e8734bc96a35c1-Abstract.html
http://bmvc2018.org/contents/papers/0366.pdf
http://bmvc2018.org/contents/papers/0366.pdf
1705.05598
http://arxiv.org/abs/1412.6980

324 Bibliography

Kohavi, R., John, G. H., et al. (1997). “Wrappers for feature subset selection”.
In: Artificial intelligence 97.1-2, pp. 273–324.

Krizhevsky, A., Hinton, G., et al. (2009). “Learning multiple layers of features
from tiny images”. In:

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classifi-
cation with deep convolutional neural networks”. In: Advances in neural
information processing systems 25, pp. 1097–1105.

Kumar, N., Hanfeld, P., Hecht, M., Bussmann, M., Gumhold, S., and Hoff-
mann, N. (2021). “InFlow: Robust outlier detection utilizing Normaliz-
ing Flows”. In: CoRR abs/2106.12894. arXiv: 2106.12894. URL: https:
//arxiv.org/abs/2106.12894.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017). “Simple and Scal-
able Predictive Uncertainty Estimation using Deep Ensembles”. In: Ad-
vances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA. Ed. by I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach,
R. Fergus, S. V. N. Vishwanathan, and R. Garnett, pp. 6402–6413. URL:
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-
Abstract.html.

Larson, S., Mahendran, A., Peper, J. J., Clarke, C., Lee, A., Hill, P., Kummer-
feld, J. K., Leach, K., Laurenzano, M. A., Tang, L., and Mars, J. (2019). “An
Evaluation Dataset for Intent Classification and Out-of-Scope Prediction”.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Lan-
guage Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7,
2019. Ed. by K. Inui, J. Jiang, V. Ng, and X. Wan. Association for Compu-
tational Linguistics, pp. 1311–1316. DOI: 10.18653/v1/D19-1131. URL:
https://doi.org/10.18653/v1/D19-1131.

Le, Y. and Yang, X. (2015). “Tiny imagenet visual recognition challenge”. In:
CS 231N 7.7, p. 3.

Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I. V., and Lempitsky, V. S.
(2015). “Speeding-up Convolutional Neural Networks Using Fine-tuned
CP-Decomposition”. In: 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings. Ed. by Y. Bengio and Y. LeCun. URL: http://arxiv.org/abs/
1412.6553.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). “Gradient-based
learning applied to document recognition”. In: Proceedings of the IEEE
86.11, pp. 2278–2324.

— (1998b). “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11, pp. 2278–2324.

LeCun, Y., Denker, J. S., and Solla, S. A. (1989). “Optimal Brain Damage”.
In: Advances in Neural Information Processing Systems 2, [NIPS Conference,
Denver, Colorado, USA, November 27-30, 1989]. Ed. by D. S. Touretzky. Mor-
gan Kaufmann, pp. 598–605. URL: http://papers.nips.cc/paper/250-
optimal-brain-damage.

https://arxiv.org/abs/2106.12894
https://arxiv.org/abs/2106.12894
https://arxiv.org/abs/2106.12894
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/9ef2ed4b7fd2c810847ffa5fa85bce38-Abstract.html
https://doi.org/10.18653/v1/D19-1131
https://doi.org/10.18653/v1/D19-1131
http://arxiv.org/abs/1412.6553
http://arxiv.org/abs/1412.6553
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage

Bibliography 325

Lee, D., Yu, S., and Yu, H. (2020). “Multi-Class Data Description for Out-of-
distribution Detection”. In: KDD ’20: The 26th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August
23-27, 2020. Ed. by R. Gupta, Y. Liu, J. Tang, and B. A. Prakash. ACM,
pp. 1362–1370. DOI: 10.1145/3394486.3403189. URL: https://doi.org/
10.1145/3394486.3403189.

Lee, J. and AlRegib, G. (2020). “Gradients as a Measure of Uncertainty in
Neural Networks”. In: IEEE International Conference on Image Processing,
ICIP 2020, Abu Dhabi, United Arab Emirates, October 25-28, 2020. IEEE,
pp. 2416–2420. DOI: 10.1109/ICIP40778.2020.9190679. URL: https:
//doi.org/10.1109/ICIP40778.2020.9190679.

Lee, K., Lee, H., Lee, K., and Shin, J. (2018a). “Training Confidence-calibrated
Classifiers for Detecting Out-of-Distribution Samples”. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. URL:
https://openreview.net/forum?id=ryiAv2xAZ.

Lee, K., Lee, K., Lee, H., and Shin, J. (2018b). “A Simple Unified Framework
for Detecting Out-of-Distribution Samples and Adversarial Attacks”. In:
Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8,
2018, Montréal, Canada. Ed. by S. Bengio, H. M. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett, pp. 7167–7177. URL: https://
proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-
Abstract.html.

Lee, S. H., Kim, D. H., and Song, B. C. (2018). “Self-supervised knowledge
distillation using singular value decomposition”. In: Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pp. 335–350.

Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., and Nandi, A. K. (2020). “Applications
of machine learning to machine fault diagnosis: A review and roadmap”.
In: Mechanical Systems and Signal Processing 138, p. 106587.

Leray, P. and Gallinari, P. (1999). “Feature selection with neural networks”.
In: Behaviormetrika 26.1, pp. 145–166.

Li, J., Zhao, R., Huang, J., and Gong, Y. (2014). “Learning small-size DNN
with output-distribution-based criteria”. In: INTERSPEECH 2014, 15th An-
nual Conference of the International Speech Communication Association, Singa-
pore, September 14-18, 2014. Ed. by H. Li, H. M. Meng, B. Ma, E. Chng,
and L. Xie. ISCA, pp. 1910–1914. URL: http://www.isca-speech.org/
archive/interspeech_2014/i14_1910.html.

Li, T., Li, J., Liu, Z., and Zhang, C. (2020). “Few Sample Knowledge Distilla-
tion for Efficient Network Compression”. In: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020. IEEE, pp. 14627–14635. DOI: 10.1109/CVPR42600.2020.01465.
URL: https://doi.org/10.1109/CVPR42600.2020.01465.

Li, Y., Chen, C.-Y., and Wasserman, W. W. (2015). “Deep Feature Selection:
Theory and Application to Identify Enhancers and Promoters”. In: Pro-
ceedings of RECOMB2015, pp. 205–217.

https://doi.org/10.1145/3394486.3403189
https://doi.org/10.1145/3394486.3403189
https://doi.org/10.1145/3394486.3403189
https://doi.org/10.1109/ICIP40778.2020.9190679
https://doi.org/10.1109/ICIP40778.2020.9190679
https://doi.org/10.1109/ICIP40778.2020.9190679
https://openreview.net/forum?id=ryiAv2xAZ
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/abdeb6f575ac5c6676b747bca8d09cc2-Abstract.html
http://www.isca-speech.org/archive/interspeech_2014/i14_1910.html
http://www.isca-speech.org/archive/interspeech_2014/i14_1910.html
https://doi.org/10.1109/CVPR42600.2020.01465
https://doi.org/10.1109/CVPR42600.2020.01465

326 Bibliography

Li, Y. and Vasconcelos, N. (2020). “Background Data Resampling for Outlier-
Aware Classification”. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020.
IEEE, pp. 13215–13224. DOI: 10.1109/CVPR42600.2020.01323. URL: https:
//doi.org/10.1109/CVPR42600.2020.01323.

Liang, S., Li, Y., and Srikant, R. (2018). “Enhancing The Reliability of Out-
of-distribution Image Detection in Neural Networks”. In: 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net. URL:
https://openreview.net/forum?id=H1VGkIxRZ.

Lin, M., Chen, Q., and Yan, S. (2013). “Network in network”. In: arXiv preprint
arXiv:1312.4400.

Liu, B., Wang, M., Foroosh, H., Tappen, M. F., and Pensky, M. (2015). “Sparse
Convolutional Neural Networks”. In: IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015.
IEEE Computer Society, pp. 806–814. DOI: 10.1109/CVPR.2015.7298681.
URL: https://doi.org/10.1109/CVPR.2015.7298681.

Liu, F. T., Ting, K. M., and Zhou, Z. (2008). “Isolation Forest”. In: Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM 2008), De-
cember 15-19, 2008, Pisa, Italy. IEEE Computer Society, pp. 413–422. DOI:
10.1109/ICDM.2008.17. URL: https://doi.org/10.1109/ICDM.2008.17.

Liu, W., Wang, X., Owens, J. D., and Li, Y. (2020). “Energy-based Out-of-
distribution Detection”. In: Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual. Ed. by H. Larochelle, M. Ran-
zato, R. Hadsell, M. Balcan, and H. Lin. URL: https://proceedings.
neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-
Abstract.html.

Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., and Zhang, C. (2017). “Learning
Efficient Convolutional Networks through Network Slimming”. In: IEEE
International Conference on Computer Vision, ICCV 2017, Venice, Italy, Oc-
tober 22-29, 2017. IEEE Computer Society, pp. 2755–2763. DOI: 10.1109/
ICCV.2017.298. URL: https://doi.org/10.1109/ICCV.2017.298.

Louppe, G., Wehenkel, L., Sutera, A., and Geurts, P. (2013). “Understanding
variable importances in forests of randomized trees”. In: Advances in Neu-
ral Information Processing Systems 26, pp. 431–439.

Luxburg, U. von and Schölkopf, B. (2011). “Statistical Learning Theory: Mod-
els, Concepts, and Results”. In: Inductive Logic. Ed. by D. M. Gabbay, S.
Hartmann, and J. Woods. Vol. 10. Handbook of the History of Logic. El-
sevier, pp. 651–706. DOI: 10.1016/B978-0-444-52936-7.50016-1. URL:
https://doi.org/10.1016/B978-0-444-52936-7.50016-1.

Ma, N., Zhang, X., Zheng, H., and Sun, J. (2018). “ShuffleNet V2: Practical
Guidelines for Efficient CNN Architecture Design”. In: Computer Vision -
ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14,
2018, Proceedings, Part XIV. Ed. by V. Ferrari, M. Hebert, C. Sminchisescu,
and Y. Weiss. Vol. 11218. Lecture Notes in Computer Science. Springer,

https://doi.org/10.1109/CVPR42600.2020.01323
https://doi.org/10.1109/CVPR42600.2020.01323
https://doi.org/10.1109/CVPR42600.2020.01323
https://openreview.net/forum?id=H1VGkIxRZ
https://doi.org/10.1109/CVPR.2015.7298681
https://doi.org/10.1109/CVPR.2015.7298681
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1109/ICDM.2008.17
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1109/ICCV.2017.298
https://doi.org/10.1016/B978-0-444-52936-7.50016-1
https://doi.org/10.1016/B978-0-444-52936-7.50016-1

Bibliography 327

pp. 122–138. DOI: 10.1007/978-3-030-01264-9_8. URL: https://doi.
org/10.1007/978-3-030-01264-9_8.

Mao, H., Han, S., Pool, J., Li, W., Liu, X., Wang, Y., and Dally, W. J. (2017). “Ex-
ploring the Granularity of Sparsity in Convolutional Neural Networks”.
In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Work-
shops, CVPR Workshops 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE
Computer Society, pp. 1927–1934. DOI: 10.1109/CVPRW.2017.241. URL:
https://doi.org/10.1109/CVPRW.2017.241.

Marbach, D., Costello, J. C., Küffner, R., Vega, N., Prill, R. J., Camacho, D. M.,
Allison, K. R., the DREAM5 Consortium, Kellis, M., Collins, J. J., and
Stolovitzky, G. (2012). “Wisdom of crowds for robust gene network in-
ference”. In: Nature Methods 9.8, pp. 796–804.

Marbach, D., Schaffter, T., Mattiussi, C., and Floreano, D. (2009). “Generating
Realistic In Silico Gene Networks for Performance Assessment of Reverse
Engineering Methods.” In: Journal of Computational Biology 16(2), pp. 229–
239.

Meinshausen, N. (2010). “Node harvest”. In: The Annals of Applied Statistics,
pp. 2049–2072.

Meinshausen, N. et al. (2009). “Forest garrote”. In: Electronic Journal of Statis-
tics 3, pp. 1288–1304.

Menke, J. E. and Martinez, T. R. (2009). “Artificial neural network reduction
through oracle learning”. In: Intelligent Data Analysis 13.1, pp. 135–149.

Mercatelli, D., Scalambra, L., Triboli, L., Ray, F., and Giorgi, F. M. (2020).
“Gene regulatory network inference resources: A practical overview”. In:
Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1863.6, p. 194430.

Micaelli, P. and Storkey, A. J. (2019). “Zero-shot Knowledge Transfer via Ad-
versarial Belief Matching”. In: Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R.
Garnett, pp. 9547–9557. URL: https://proceedings.neurips.cc/paper/
2019/hash/fe663a72b27bdc613873fbbb512f6f67-Abstract.html.

Mirzadeh, S., Farajtabar, M., Li, A., Levine, N., Matsukawa, A., and Ghasemzadeh,
H. (2020). “Improved Knowledge Distillation via Teacher Assistant”. In:
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press,
pp. 5191–5198. URL: https://aaai.org/ojs/index.php/AAAI/article/
view/5963.

Mittal, D., Bhardwaj, S., Khapra, M. M., and Ravindran, B. (2018). “Recover-
ing from Random Pruning: On the Plasticity of Deep Convolutional Neu-
ral Networks”. In: 2018 IEEE Winter Conference on Applications of Computer
Vision, WACV 2018, Lake Tahoe, NV, USA, March 12-15, 2018. IEEE Com-
puter Society, pp. 848–857. DOI: 10.1109/WACV.2018.00098. URL: https:
//doi.org/10.1109/WACV.2018.00098.

https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1109/CVPRW.2017.241
https://doi.org/10.1109/CVPRW.2017.241
https://proceedings.neurips.cc/paper/2019/hash/fe663a72b27bdc613873fbbb512f6f67-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fe663a72b27bdc613873fbbb512f6f67-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/5963
https://aaai.org/ojs/index.php/AAAI/article/view/5963
https://doi.org/10.1109/WACV.2018.00098
https://doi.org/10.1109/WACV.2018.00098
https://doi.org/10.1109/WACV.2018.00098

328 Bibliography

Mohseni, S., Pitale, M., Yadawa, J. B. S., and Wang, Z. (2020). “Self-Supervised
Learning for Generalizable Out-of-Distribution Detection”. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, pp. 5216–
5223. URL: https://aaai.org/ojs/index.php/AAAI/article/view/5966.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2017). “Pruning
Convolutional Neural Networks for Resource Efficient Inference”. In: 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. URL: https:
//openreview.net/forum?id=SJGCiw5gl.

Molnar, C. (2020). Interpretable machine learning.
Montavon, G., Samek, W., and Müller, K.-R. (2018). “Methods for interpreting

and understanding deep neural networks”. In: Digital Signal Processing
73.Supplement C, pp. 1 –15.

Moreno-Torres, J. G., Raeder, T., Alaíz-Rodríguez, R., Chawla, N. V., and Her-
rera, F. (2012). “A unifying view on dataset shift in classification”. In: Pat-
tern Recognit. 45.1, pp. 521–530. DOI: 10.1016/j.patcog.2011.06.019.
URL: https://doi.org/10.1016/j.patcog.2011.06.019.

Mormont, R., Geurts, P., and Marée, R. (2018). “Comparison of Deep Trans-
fer Learning Strategies for Digital Pathology”. In: 2018 IEEE Conference
on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE Computer Society,
pp. 2262–2271. DOI: 10.1109/CVPRW.2018.00303. URL: http://openaccess.
thecvf.com/content_cvpr_2018_workshops/w44/html/Mormont\
_Comparison_of_Deep_CVPR_2018_paper.html.

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019).
“Definitions, methods, and applications in interpretable machine learn-
ing”. In: Proceedings of the National Academy of Sciences 116.44, pp. 22071–
22080.

Nair, V. and Hinton, G. E. (2010). “Rectified Linear Units Improve Restricted
Boltzmann Machines”. In: Proceedings of the 27th International Conference
on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel. Ed. by J.
Fürnkranz and T. Joachims. Omnipress, pp. 807–814. URL: https://icml.
cc/Conferences/2010/papers/432.pdf.

Nakamura, A. and Sakurada, K. (2019). “An Algorithm for Reducing the
Number of Distinct Branching Conditions in a Decision Forest”. In: Ma-
chine Learning and Knowledge Discovery in Databases - European Conference,
ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019, Proceed-
ings, Part I. Ed. by U. Brefeld, É. Fromont, A. Hotho, A. J. Knobbe, M. H.
Maathuis, and C. Robardet. Vol. 11906. Lecture Notes in Computer Sci-
ence. Springer, pp. 578–589. DOI: 10.1007/978-3-030-46150-8_34. URL:
https://doi.org/10.1007/978-3-030-46150-8_34.

Nayak, G. K., Mopuri, K. R., Shaj, V., Radhakrishnan, V. B., and Chakraborty,
A. (2019). “Zero-Shot Knowledge Distillation in Deep Networks”. In: Pro-
ceedings of the 36th International Conference on Machine Learning, ICML 2019,

https://aaai.org/ojs/index.php/AAAI/article/view/5966
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1109/CVPRW.2018.00303
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w44/html/Mormont_Comparison_of_Deep_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w44/html/Mormont_Comparison_of_Deep_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018_workshops/w44/html/Mormont_Comparison_of_Deep_CVPR_2018_paper.html
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1007/978-3-030-46150-8_34
https://doi.org/10.1007/978-3-030-46150-8_34

Bibliography 329

9-15 June 2019, Long Beach, California, USA. Ed. by K. Chaudhuri and R.
Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR,
pp. 4743–4751. URL: http://proceedings.mlr.press/v97/nayak19a.
html.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. (2011).
“Reading digits in natural images with unsupervised feature learning”.
In:

Nguyen, T., Novak, R., Xiao, L., and Lee, J. (2021). “Dataset Distillation with
Infinitely Wide Convolutional Networks”. In: CoRR abs/2107.13034. arXiv:
2107.13034. URL: https://arxiv.org/abs/2107.13034.

Nie, Z., Lin, B., Huang, S., Ramakrishnan, N., Fan, W., and Ye, J. (2017).
“Pruning Decision Trees via Max-Heap Projection”. In: Proceedings of the
2017 SIAM International Conference on Data Mining, Houston, Texas, USA,
April 27-29, 2017. Ed. by N. V. Chawla and W. Wang. SIAM, pp. 10–18.
DOI: 10.1137/1.9781611974973.2. URL: https://doi.org/10.1137/1.
9781611974973.2.

Osawa, K., Sekiya, A., Naganuma, H., and Yokota, R. (2017). “Accelerating
Matrix Multiplication in Deep Learning by Using Low-Rank Approxima-
tion”. In: 2017 International Conference on High Performance Computing &
Simulation, HPCS 2017, Genoa, Italy, July 17-21, 2017. IEEE, pp. 186–192.
DOI: 10.1109/HPCS.2017.37. URL: https://doi.org/10.1109/HPCS.
2017.37.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J.,
Lakshminarayanan, B., and Snoek, J. (2019). “Can you trust your model’s
uncertainty? Evaluating predictive uncertainty under dataset shift”. In:
Advances in Neural Information Processing Systems, pp. 13991–14002.

Painsky, A. and Rosset, S. (2019). “Lossless Compression of Random Forests”.
In: J. Comput. Sci. Technol. 34.2, pp. 494–506. DOI: 10.1007/s11390-019-
1921-0. URL: https://doi.org/10.1007/s11390-019-1921-0.

Pan, S. J. and Yang, Q. (2009). “A survey on transfer learning”. In: IEEE Trans-
actions on knowledge and data engineering 22.10, pp. 1345–1359.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter, S. (2019). “Contin-
ual lifelong learning with neural networks: A review”. In: Neural Networks
113, pp. 54–71.

Park, W., Kim, D., Lu, Y., and Cho, M. (2019). “Relational Knowledge Distilla-
tion”. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2019, Long Beach, CA, USA, June 16-20, 2019. Computer Vision Foundation
/ IEEE, pp. 3967–3976. DOI: 10.1109/CVPR.2019.00409. URL: http://
openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational\
_Knowledge_Distillation_CVPR_2019_paper.html.

Parzen, E. (1962). “On estimation of a probability density function and mode”.
In: The annals of mathematical statistics 33.3, pp. 1065–1076.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., and Lerer, A. (2017). “Automatic differentia-
tion in PyTorch”. In:

http://proceedings.mlr.press/v97/nayak19a.html
http://proceedings.mlr.press/v97/nayak19a.html
https://arxiv.org/abs/2107.13034
https://arxiv.org/abs/2107.13034
https://doi.org/10.1137/1.9781611974973.2
https://doi.org/10.1137/1.9781611974973.2
https://doi.org/10.1137/1.9781611974973.2
https://doi.org/10.1109/HPCS.2017.37
https://doi.org/10.1109/HPCS.2017.37
https://doi.org/10.1109/HPCS.2017.37
https://doi.org/10.1007/s11390-019-1921-0
https://doi.org/10.1007/s11390-019-1921-0
https://doi.org/10.1007/s11390-019-1921-0
https://doi.org/10.1109/CVPR.2019.00409
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Relational_Knowledge_Distillation_CVPR_2019_paper.html

330 Bibliography

Pearl, J. (1989). Probabilistic reasoning in intelligent systems - networks of plau-
sible inference. Morgan Kaufmann series in representation and reasoning.
Morgan Kaufmann.

Pearl, J. et al. (2000). “Models, reasoning and inference”. In: Cambridge, UK:
CambridgeUniversityPress 19.

Pearlmutter, B. A. (1994). “Fast Exact Multiplication by the Hessian”. In: Neu-
ral Comput. 6.1, pp. 147–160. DOI: 10.1162/neco.1994.6.1.147. URL:
https://doi.org/10.1162/neco.1994.6.1.147.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). “Scikit-
learn: Machine learning in Python”. In: Journal of Machine Learning Re-
search 12.Oct, pp. 2825–2830.

Pedregosa et al., F. (2011). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Peterson, A. H. and Martinez, T. R. (2009). “Reducing Decision Tree Ensemble
Size Using Parallel Decision DAGS”. In: International Journal on Artificial
Intelligence Tools 18.04, pp. 613–620.

Poincaré, H. (1914). “Science et méthode (1908)”. In: Book II 2.
Polonik, W. (1997). “Minimum volume sets and generalized quantile pro-

cesses”. In: Stochastic processes and their applications 69.1, pp. 1–24.
Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). “Ex-

ponential expressivity in deep neural networks through transient chaos”.
In: Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain. Ed. by D. D. Lee, M. Sugiyama, U. von Luxburg, I. Guyon,
and R. Garnett, pp. 3360–3368. URL: https://proceedings.neurips.cc/
paper/2016/hash/148510031349642de5ca0c544f31b2ef-Abstract.html.

Quintanilha, I. M., ME Filho, R. de, Lezama, J., Delbracio, M., and Nunes,
L. O. (2018). “Detecting Out-Of-Distribution Samples Using Low-Order
Deep Features Statistics”. In:

Rabanser, S., Günnemann, S., and Lipton, Z. C. (2019). “Failing Loudly: An
Empirical Study of Methods for Detecting Dataset Shift”. In: Advances in
Neural Information Processing Systems 32: Annual Conference on Neural In-
formation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Van-
couver, BC, Canada. Ed. by H. M. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. B. Fox, and R. Garnett, pp. 1394–1406. URL: https://
proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-
Abstract.html.

Raghu, M., Poole, B., Kleinberg, J. M., Ganguli, S., and Sohl-Dickstein, J.
(2017). “On the Expressive Power of Deep Neural Networks”. In: Proceed-
ings of the 34th International Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017. Ed. by D. Precup and Y. W.
Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, pp. 2847–
2854. URL: http://proceedings.mlr.press/v70/raghu17a.html.

Rasmussen, C. E. and Ghahramani, Z. (2001). “Occam’s razor”. In: Advances
in neural information processing systems, pp. 294–300.

https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://proceedings.neurips.cc/paper/2016/hash/148510031349642de5ca0c544f31b2ef-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/148510031349642de5ca0c544f31b2ef-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
http://proceedings.mlr.press/v70/raghu17a.html

Bibliography 331

Ren, J., Liu, P. J., Fertig, E., Snoek, J., Poplin, R., DePristo, M. A., Dillon,
J. V., and Lakshminarayanan, B. (2019). “Likelihood Ratios for Out-of-
Distribution Detection”. In: Advances in Neural Information Processing Sys-
tems 32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by H. M.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and
R. Garnett, pp. 14680–14691. URL: https://proceedings.neurips.cc/
paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html.

Ren, S., Cao, X., Wei, Y., and Sun, J. (2015). “Global refinement of random
forest”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 723–730.

Roady, R., Hayes, T. L., Kemker, R., Gonzales, A., and Kanan, C. (2019). “Are
Out-of-Distribution Detection Methods Effective on Large-Scale Datasets?”
In: CoRR abs/1910.14034. arXiv: 1910.14034. URL: http://arxiv.org/
abs/1910.14034.

Rodgers, D. P. (1985). “Improvements in multiprocessor system design”. In:
ACM SIGARCH Computer Architecture News 13.3, pp. 225–231.

Rokach, L. (2016). “Decision forest: Twenty years of research”. In: Information
Fusion 27, pp. 111–125.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y.
(2015). “FitNets: Hints for Thin Deep Nets”. In: 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. URL: http:
//arxiv.org/abs/1412.6550.

Rosenblatt, F. (1958). “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6, p. 386.

Russell, B. (2001). The problems of philosophy. OUP Oxford.
Sainath, T. N., Kingsbury, B., Sindhwani, V., Arisoy, E., and Ramabhadran, B.

(2013). “Low-rank matrix factorization for Deep Neural Network train-
ing with high-dimensional output targets”. In: IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC,
Canada, May 26-31, 2013. IEEE, pp. 6655–6659. DOI: 10 . 1109 / ICASSP .
2013.6638949. URL: https://doi.org/10.1109/ICASSP.2013.6638949.

Sandler, M., Howard, A. G., Zhu, M., Zhmoginov, A., and Chen, L. (2018).
“MobileNetV2: Inverted Residuals and Linear Bottlenecks”. In: 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. IEEE Computer Society, pp. 4510–4520.
DOI: 10.1109/CVPR.2018.00474. URL: http://openaccess.thecvf.
com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted\
_Residuals_CVPR_2018_paper.html.

Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and Goldstein, T. (2020).
“The Impact of Neural Network Overparameterization on Gradient Con-
fusion and Stochastic Gradient Descent”. In: Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 8469–8479. URL: http://proceedings.mlr.press/v119/sankararaman20a.
html.

https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e79596878b2320cac26dd792a6c51c9-Abstract.html
https://arxiv.org/abs/1910.14034
http://arxiv.org/abs/1910.14034
http://arxiv.org/abs/1910.14034
http://arxiv.org/abs/1412.6550
http://arxiv.org/abs/1412.6550
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1109/ICASSP.2013.6638949
https://doi.org/10.1109/CVPR.2018.00474
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://proceedings.mlr.press/v119/sankararaman20a.html
http://proceedings.mlr.press/v119/sankararaman20a.html

332 Bibliography

Sastry, C. S. and Oore, S. (2019). “Detecting Out-of-Distribution Examples
with In-distribution Examples and Gram Matrices”. In: CoRR abs/1912.12510.
arXiv: 1912.12510. URL: http://arxiv.org/abs/1912.12510.

Sau, B. B. and Balasubramanian, V. N. (2016). “Deep model compression: Dis-
tilling knowledge from noisy teachers”. In: arXiv preprint arXiv:1610.09650.

Scardapane, S., Comminiello, D., Hussain, A., and Uncini, A. (2017). “Group
sparse regularization for deep neural networks”. In: Neurocomputing 241,
pp. 81–89. DOI: 10.1016/j.neucom.2017.02.029. URL: https://doi.org/
10.1016/j.neucom.2017.02.029.

Scheirer, W. J., Rezende Rocha, A. de, Sapkota, A., and Boult, T. E. (2012).
“Toward open set recognition”. In: IEEE transactions on pattern analysis
and machine intelligence 35.7, pp. 1757–1772.

Schölkopf, B., Williamson, R. C., Smola, A. J., Shawe-Taylor, J., and Platt,
J. C. (1999). “Support Vector Method for Novelty Detection”. In: Advances
in Neural Information Processing Systems 12, [NIPS Conference, Denver, Col-
orado, USA, November 29 - December 4, 1999]. Ed. by S. A. Solla, T. K. Leen,
and K. Müller. The MIT Press, pp. 582–588. URL: http://papers.nips.
cc/paper/1723-support-vector-method-for-novelty-detection.

Scott, C. D. and Nowak, R. D. (2005). “Learning Minimum Volume Sets”.
In: Advances in Neural Information Processing Systems 18 [Neural Informa-
tion Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British
Columbia, Canada], pp. 1209–1216. URL: https://proceedings.neurips.
cc/paper/2005/hash/d3d80b656929a5bc0fa34381bf42fbdd-Abstract.
html.

Scudder, H. (1965). “Probability of error of some adaptive pattern-recognition
machines”. In: IEEE Transactions on Information Theory 11.3, pp. 363–371.
DOI: 10.1109/TIT.1965.1053799.

Sehwag, V., Chiang, M., and Mittal, P. (2021). “SSD: A Unified Framework
for Self-Supervised Outlier Detection”. In: 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net. URL: https://openreview.net/forum?id=v5gjXpmR8J.

Shafaei, A., Schmidt, M., and Little, J. J. (2018). “Does your model know the
digit 6 is not a cat? A less biased evaluation of” outlier” detectors”. In:
arXiv preprint arXiv:1809.04729.

Shafer, G. and Vovk, V. (2008). “A Tutorial on Conformal Prediction.” In: Jour-
nal of Machine Learning Research 9.3.

Shawe-Taylor, B. G. J. (2019). “A Primer on PAC-Bayesian Learning”. In:
Shi, M., Qin, F., Ye, Q., Han, Z., and Jiao, J. (2017). “A scalable convolu-

tional neural network for task-specified scenarios via knowledge distil-
lation”. In: 2017 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017. IEEE,
pp. 2467–2471. DOI: 10.1109/ICASSP.2017.7952600. URL: https://doi.
org/10.1109/ICASSP.2017.7952600.

Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., and Criminisi, A. (2013).
“Decision jungles: Compact and rich models for classification”. In: Ad-
vances in Neural Information Processing Systems, pp. 234–242.

https://arxiv.org/abs/1912.12510
http://arxiv.org/abs/1912.12510
https://doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1016/j.neucom.2017.02.029
https://doi.org/10.1016/j.neucom.2017.02.029
http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection
http://papers.nips.cc/paper/1723-support-vector-method-for-novelty-detection
https://proceedings.neurips.cc/paper/2005/hash/d3d80b656929a5bc0fa34381bf42fbdd-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/d3d80b656929a5bc0fa34381bf42fbdd-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/d3d80b656929a5bc0fa34381bf42fbdd-Abstract.html
https://doi.org/10.1109/TIT.1965.1053799
https://openreview.net/forum?id=v5gjXpmR8J
https://doi.org/10.1109/ICASSP.2017.7952600
https://doi.org/10.1109/ICASSP.2017.7952600
https://doi.org/10.1109/ICASSP.2017.7952600

Bibliography 333

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning Important
Features through Propagating Activation Differences”. In: Proceedings of
the 34th International Conference on Machine Learning, pp. 3145–3153.

Shu, L., Xu, H., and Liu, B. (2017). “DOC: Deep Open Classification of Text
Documents”. In: Proceedings of the 2017 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017. Ed. by M. Palmer, R. Hwa, and S. Riedel. Association for
Computational Linguistics, pp. 2911–2916. DOI: 10.18653/v1/d17-1314.
URL: https://doi.org/10.18653/v1/d17-1314.

Sifre, L. and Mallat, P. S. (2014). “Rigid-Motion Scattering For Image Classifi-
cation Author”. In: English. Supervisor: Prof. Stéphane Mallat. Ph. D. Thesis.
Ecole Polytechnique.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). “Deep Inside Convo-
lutional Networks: Visualising Image Classification Models and Saliency
Maps”. In: ArXiv e-prints. arXiv: 1312.6034 [cs.CV].

Simonyan, K. and Zisserman, A. (2015). “Very Deep Convolutional Networks
for Large-Scale Image Recognition”. In: 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings. Ed. by Y. Bengio and Y. LeCun. URL: http://arxiv.
org/abs/1409.1556.

Souad, T. Z. and Abdelkader, A. (2019). “Pruning of Random Forests: a diversity-
based heuristic measure to simplify a random forest ensemble”. In: INFO-
COMP: Journal of Computer Science 18.1.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2014). “Striv-
ing for Simplicity: The All Convolutional Net”. In: ArXiv e-prints. eprint:
1412.6806.

Srinivas, S. and Fleuret, F. (2018). “Knowledge Transfer with Jacobian Match-
ing”. In: Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018. Ed. by
J. G. Dy and A. Krause. Vol. 80. Proceedings of Machine Learning Re-
search. PMLR, pp. 4730–4738. URL: http://proceedings.mlr.press/
v80/srinivas18a.html.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. (2014). “Dropout: a simple way to prevent neural networks from
overfitting”. In: J. Mach. Learn. Res. 15.1, pp. 1929–1958. URL: http://dl.
acm.org/citation.cfm?id=2670313.

Sucholutsky, I. and Schonlau, M. (2019). “Soft-label dataset distillation and
text dataset distillation”. In: arXiv preprint arXiv:1910.02551.

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic Attribution for
Deep Networks”. In: Proceedings of the 34th International Conference on Ma-
chine Learning, pp. 3319–3328.

Sutera, A. (2021). “Importance measures derived from random forests: char-
acterisation and extension”. In: arXiv preprint arXiv:2106.09473.

Swaminathan, S., Garg, D., Kannan, R., and Andrès, F. (2020). “Sparse low
rank factorization for deep neural network compression”. In: Neurocom-
puting 398, pp. 185–196. DOI: 10.1016/j.neucom.2020.02.035. URL:
https://doi.org/10.1016/j.neucom.2020.02.035.

https://doi.org/10.18653/v1/d17-1314
https://doi.org/10.18653/v1/d17-1314
https://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
1412.6806
http://proceedings.mlr.press/v80/srinivas18a.html
http://proceedings.mlr.press/v80/srinivas18a.html
http://dl.acm.org/citation.cfm?id=2670313
http://dl.acm.org/citation.cfm?id=2670313
https://doi.org/10.1016/j.neucom.2020.02.035
https://doi.org/10.1016/j.neucom.2020.02.035

334 Bibliography

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan,
D., Vanhoucke, V., and Rabinovich, A. (2015). “Going deeper with con-
volutions”. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society,
pp. 1–9. DOI: 10.1109/CVPR.2015.7298594. URL: https://doi.org/10.
1109/CVPR.2015.7298594.

Tang, S., Feng, L., Shao, W., Kuang, Z., Zhang, W., and Lu, Z. (2019). “Learn-
ing Efficient Detector with Semi-supervised Adaptive Distillation”. In:
30th British Machine Vision Conference 2019, BMVC 2019, Cardiff, UK, Septem-
ber 9-12, 2019. BMVA Press, p. 215. URL: https://bmvc2019.org/wp-
content/uploads/papers/0145-paper.pdf.

Tanno, R., Arulkumaran, K., Alexander, D. C., Criminisi, A., and Nori, A. V.
(2019). “Adaptive Neural Trees”. In: Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, Cal-
ifornia, USA. Ed. by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Proceed-
ings of Machine Learning Research. PMLR, pp. 6166–6175. URL: http:
//proceedings.mlr.press/v97/tanno19a.html.

Tavallali, P., Tavallali, P., and Singhal, M. (2019). “Optimization of Hierar-
chical Regression Model with Application to Optimizing Multi-Response
Regression K-ary Trees”. In: The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019. AAAI Press, pp. 5133–5142. DOI: 10.1609/
aaai.v33i01.33015133. URL: https://doi.org/10.1609/aaai.v33i01.
33015133.

Theis, L., Korshunova, I., Tejani, A., and Huszár, F. (2018). “Faster gaze pre-
diction with dense networks and Fisher pruning”. In: CoRR abs/1801.05787.
arXiv: 1801.05787. URL: http://arxiv.org/abs/1801.05787.

Thudumu, S., Branch, P., Jin, J., and Singh, J. J. (2020). “A comprehensive
survey of anomaly detection techniques for high dimensional big data”.
In: Journal of Big Data 7.1, pp. 1–30.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso”. In:
Journal of the Royal Statistical Society: Series B (Methodological) 58.1, pp. 267–
288.

Togootogtokh, E. and Amartuvshin, A. (2018). “Deep learning approach for
very similar objects recognition application on chihuahua and muffin prob-
lem”. In: arXiv preprint arXiv:1801.09573.

Tornay, S. C. (1938). “Ockham: Studies and selections”. In:
Tsamardinos, I. and Aliferis, C. F. (2003). “Towards Principled Feature Selec-

tion: Relevancy, Filters and Wrappers”. In: Proceedings of the Ninth Inter-
national Workshop on Artificial Intelligence and Statistics, AISTATS 2003, Key
West, Florida, USA, January 3-6, 2003. Ed. by C. M. Bishop and B. J. Frey.
Society for Artificial Intelligence and Statistics. URL: http://research.
microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/
133.pdf.

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://bmvc2019.org/wp-content/uploads/papers/0145-paper.pdf
https://bmvc2019.org/wp-content/uploads/papers/0145-paper.pdf
http://proceedings.mlr.press/v97/tanno19a.html
http://proceedings.mlr.press/v97/tanno19a.html
https://doi.org/10.1609/aaai.v33i01.33015133
https://doi.org/10.1609/aaai.v33i01.33015133
https://doi.org/10.1609/aaai.v33i01.33015133
https://doi.org/10.1609/aaai.v33i01.33015133
https://arxiv.org/abs/1801.05787
http://arxiv.org/abs/1801.05787
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/133.pdf
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/133.pdf
http://research.microsoft.com/en-us/um/cambridge/events/aistats2003/proceedings/133.pdf

Bibliography 335

Tsoumakas, G., Partalas, I., and Vlahavas, I. (2008). “A taxonomy and short
review of ensemble selection”. In: ECAI 2008, workshop on supervised and
unsupervised ensemble methods and their applications, pp. 41–46.

Turing, A. (1950). “Computing Machinery and Intelligence”. In: Mind 59.236,
pp. 433–460.

Vapnik, V. (1998). Statistical learning theory. Wiley. ISBN: 978-0-471-03003-4.
Vecoven, N., Begon, J.-M., Sutera, A., Geurts, P., et al. (2020). “Nets versus

trees for feature ranking and gene network inference”. In: International
Conference on Discovery Science. Springer, pp. 231–245.

Vens, C. and Costa, F. (2011). “Random forest based feature induction”. In:
Data Mining (ICDM), 2011 IEEE 11th International Conference on. IEEE, pp. 744–
753.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D.,
Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jader-
berg, M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden,
D., Sulsky, Y., Molloy, J., Paine, T. L., Gülçehre, Ç., Wang, Z., Pfaff, T., Wu,
Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul,
T., Lillicrap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver,
D. (2019). “Grandmaster level in StarCraft II using multi-agent reinforce-
ment learning”. In: Nat. 575.7782, pp. 350–354. DOI: 10.1038/s41586-
019-1724-z. URL: https://doi.org/10.1038/s41586-019-1724-z.

Vongkulbhisal, J., Vinayavekhin, P., and Scarzanella, M. V. (2019). “Unifying
Heterogeneous Classifiers With Distillation”. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019. Computer Vision Foundation / IEEE, pp. 3175–3184. DOI: 10.
1109/CVPR.2019.00329. URL: http://openaccess.thecvf.com/content\
_CVPR_2019/html/Vongkulbhisal_Unifying_Heterogeneous_Classifiers\
_With_Distillation_CVPR_2019_paper.html.

Vyas, A., Jammalamadaka, N., Zhu, X., Das, D., Kaul, B., and Willke, T. L.
(2018). “Out-of-distribution detection using an ensemble of self super-
vised leave-out classifiers”. In: Proceedings of the European Conference on
Computer Vision (ECCV), pp. 550–564.

Wang, H., Zhao, H., Li, X., and Tan, X. (2018a). “Progressive Blockwise Knowl-
edge Distillation for Neural Network Acceleration”. In: Proceedings of the
Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden. Ed. by J. Lang. ijcai.org, pp. 2769–
2775. DOI: 10.24963/ijcai.2018/384. URL: https://doi.org/10.24963/
ijcai.2018/384.

Wang, L. and Yoon, K. (2020). “Knowledge Distillation and Student-Teacher
Learning for Visual Intelligence: A Review and New Outlooks”. In: CoRR
abs/2004.05937. arXiv: 2004.05937. URL: https://arxiv.org/abs/2004.
05937.

Wang, S., Aggarwal, C. C., and Liu, H. (2017). “Using a Random Forest to
Inspire a Neural Network and Improving on It”. In: Proceedings of the
2017 SIAM International Conference on Data Mining, Houston, Texas, USA,
April 27-29, 2017. Ed. by N. V. Chawla and W. Wang. SIAM, pp. 1–9. DOI:

https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1109/CVPR.2019.00329
https://doi.org/10.1109/CVPR.2019.00329
http://openaccess.thecvf.com/content_CVPR_2019/html/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Vongkulbhisal_Unifying_Heterogeneous_Classifiers_With_Distillation_CVPR_2019_paper.html
https://doi.org/10.24963/ijcai.2018/384
https://doi.org/10.24963/ijcai.2018/384
https://doi.org/10.24963/ijcai.2018/384
https://arxiv.org/abs/2004.05937
https://arxiv.org/abs/2004.05937
https://arxiv.org/abs/2004.05937

336 Bibliography

10.1137/1.9781611974973.1. URL: https://doi.org/10.1137/1.
9781611974973.1.

Wang, T., Zhu, J., Torralba, A., and Efros, A. A. (2018b). “Dataset Distillation”.
In: CoRR abs/1811.10959. arXiv: 1811.10959. URL: http://arxiv.org/
abs/1811.10959.

Wang, X., Zhang, R., Sun, Y., and Qi, J. (2018c). “KDGAN: Knowledge Distil-
lation with Generative Adversarial Networks.” In: NeurIPS, pp. 783–794.

Watson, D. S. and Floridi, L. (2020). “The explanation game: a formal frame-
work for interpretable machine learning”. In: Synthese, pp. 1–32.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). “Learning Struc-
tured Sparsity in Deep Neural Networks”. In: Advances in Neural Infor-
mation Processing Systems 29: Annual Conference on Neural Information Pro-
cessing Systems 2016, December 5-10, 2016, Barcelona, Spain. Ed. by D. D.
Lee, M. Sugiyama, U. von Luxburg, I. Guyon, and R. Garnett, pp. 2074–
2082. URL: https : / / proceedings . neurips . cc / paper / 2016 / hash /
41bfd20a38bb1b0bec75acf0845530a7-Abstract.html.

Wilson, A. G. and Izmailov, P. (2020). “Bayesian Deep Learning and a Prob-
abilistic Perspective of Generalization”. In: Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin. URL: https://
proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-
Abstract.html.

Wolpert, D. H. (1995). “Off-training set error and a priori distinctions be-
tween learning algorithms”. In: Sante Fe Institute, Santa Fe, NM, USA, Tech.
Rep. SFI-TR, pp. 95–01.

Wolpert, D. H. (1996). “The Lack of A Priori Distinctions Between Learning
Algorithms”. In: Neural Comput. 8.7, pp. 1341–1390. DOI: 10.1162/neco.
1996.8.7.1341. URL: https://doi.org/10.1162/neco.1996.8.7.1341.

Wolpert, D. H. (2002). “The supervised learning no-free-lunch theorems”. In:
Soft computing and industry, pp. 25–42.

Worboys, M. F. and Duckham, M. (2004). GIS: a computing perspective. CRC
press.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. (2019). “Zero-Shot Learn-
ing - A Comprehensive Evaluation of the Good, the Bad and the Ugly”. In:
IEEE Trans. Pattern Anal. Mach. Intell. 41.9, pp. 2251–2265. DOI: 10.1109/
TPAMI.2018.2857768. URL: https://doi.org/10.1109/TPAMI.2018.
2857768.

Xiao, H., Rasul, K., and Vollgraf, R. (Aug. 28, 2017). Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. arXiv: cs.LG/
1708.07747 [cs.LG].

Xie, S., Girshick, R. B., Dollár, P., Tu, Z., and He, K. (2017). “Aggregated Resid-
ual Transformations for Deep Neural Networks”. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, pp. 5987–5995. DOI: 10.1109/
CVPR.2017.634. URL: https://doi.org/10.1109/CVPR.2017.634.

https://doi.org/10.1137/1.9781611974973.1
https://doi.org/10.1137/1.9781611974973.1
https://doi.org/10.1137/1.9781611974973.1
https://arxiv.org/abs/1811.10959
http://arxiv.org/abs/1811.10959
http://arxiv.org/abs/1811.10959
https://proceedings.neurips.cc/paper/2016/hash/41bfd20a38bb1b0bec75acf0845530a7-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/41bfd20a38bb1b0bec75acf0845530a7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/322f62469c5e3c7dc3e58f5a4d1ea399-Abstract.html
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1162/neco.1996.8.7.1341
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://arxiv.org/abs/cs.LG/1708.07747
https://arxiv.org/abs/cs.LG/1708.07747
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2017.634

Bibliography 337

Xu, Y., Wang, Y., Chen, H., Han, K., XU, C., Tao, D., and Xu, C. (2019). “Positive-
Unlabeled Compression on the Cloud”. In: Advances in Neural Informa-
tion Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc.,
pp. 2565–2574. URL: https://proceedings.neurips.cc/paper/2019/
file/ac796a52db3f16bbdb6557d3d89d1c5a-Paper.pdf.

Xu, Z., Hsu, Y., and Huang, J. (2018). “Training Shallow and Thin Networks
for Acceleration via Knowledge Distillation with Conditional Adversar-
ial Networks”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track
Proceedings. OpenReview.net. URL: https://openreview.net/forum?id=
BJbtuRRLM.

Yang, C., Yang, Z., Khattak, A. M., Yang, L., Zhang, W., Gao, W., and Wang,
M. (2019). “Structured Pruning of Convolutional Neural Networks via
L1 Regularization”. In: IEEE Access 7, pp. 106385–106394. DOI: 10.1109/
ACCESS.2019.2933032. URL: https://doi.org/10.1109/ACCESS.2019.
2933032.

Yang, T., Howard, A. G., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., and
Adam, H. (2018). “NetAdapt: Platform-Aware Neural Network Adapta-
tion for Mobile Applications”. In: Computer Vision - ECCV 2018 - 15th Eu-
ropean Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part
X. Ed. by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss. Vol. 11214.
Lecture Notes in Computer Science. Springer, pp. 289–304. DOI: 10.1007/
978-3-030-01249-6_18. URL: https://doi.org/10.1007/978-3-030-
01249-6_18.

Yang, Z., Moczulski, M., Denil, M., De Freitas, N., Smola, A., Song, L., and
Wang, Z. (2015). “Deep fried convnets”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1476–1483.

Yim, J., Joo, D., Bae, J., and Kim, J. (2017). “A Gift from Knowledge Dis-
tillation: Fast Optimization, Network Minimization and Transfer Learn-
ing”. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE Computer Society,
pp. 7130–7138. DOI: 10.1109/CVPR.2017.754. URL: https://doi.org/10.
1109/CVPR.2017.754.

Yin, H., Molchanov, P., Alvarez, J. M., Li, Z., Mallya, A., Hoiem, D., Jha, N. K.,
and Kautz, J. (2020). “Dreaming to distill: Data-free knowledge transfer
via DeepInversion”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8715–8724.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). “How transferable
are features in deep neural networks?” In: Advances in Neural Informa-
tion Processing Systems 27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada. Ed. by
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Wein-
berger, pp. 3320–3328. URL: https://proceedings.neurips.cc/paper/
2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html.

https://proceedings.neurips.cc/paper/2019/file/ac796a52db3f16bbdb6557d3d89d1c5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ac796a52db3f16bbdb6557d3d89d1c5a-Paper.pdf
https://openreview.net/forum?id=BJbtuRRLM
https://openreview.net/forum?id=BJbtuRRLM
https://doi.org/10.1109/ACCESS.2019.2933032
https://doi.org/10.1109/ACCESS.2019.2933032
https://doi.org/10.1109/ACCESS.2019.2933032
https://doi.org/10.1109/ACCESS.2019.2933032
https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1007/978-3-030-01249-6_18
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
https://doi.org/10.1109/CVPR.2017.754
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/375c71349b295fbe2dcdca9206f20a06-Abstract.html

338 Bibliography

Yu, B. and Kumbier, K. (2019). “Three principles of data science: predictabil-
ity, computability, and stability (PCS)”. In: CoRR abs/1901.08152. arXiv:
1901.08152. URL: http://arxiv.org/abs/1901.08152.

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. (2015). “LSUN: Construction
of a Large-scale Image Dataset using Deep Learning with Humans in the
Loop”. In: arXiv preprint arXiv:1506.03365.

Yu, Q. and Aizawa, K. (2019). “Unsupervised Out-of-Distribution Detection
by Maximum Classifier Discrepancy”. In: 2019 IEEE/CVF International Con-
ference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019. IEEE, pp. 9517–9525. DOI: 10.1109/ICCV.2019.00961.
URL: https://doi.org/10.1109/ICCV.2019.00961.

Yu, R., Li, A., Chen, C., Lai, J., Morariu, V. I., Han, X., Gao, M., Lin, C., and
Davis, L. S. (2018). “NISP: Pruning Networks Using Neuron Importance
Score Propagation”. In: 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018. IEEE
Computer Society, pp. 9194–9203. DOI: 10.1109/CVPR.2018.00958. URL:
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu\
_NISP_Pruning_Networks_CVPR_2018_paper.html.

Yu, X., Liu, T., Wang, X., and Tao, D. (2017). “On Compressing Deep Models
by Low Rank and Sparse Decomposition”. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017. IEEE Computer Society, pp. 67–76. DOI: 10.1109/CVPR.
2017.15. URL: https://doi.org/10.1109/CVPR.2017.15.

Yuan, L., Tay, F. E. H., Li, G., Wang, T., and Feng, J. (2020). “Revisiting Knowl-
edge Distillation via Label Smoothing Regularization”. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle,
WA, USA, June 13-19, 2020. IEEE, pp. 3902–3910. DOI: 10.1109/CVPR42600.
2020.00396. URL: https://doi.org/10.1109/CVPR42600.2020.00396.

Zagoruyko, S. and Komodakis, N. (2016). “Wide Residual Networks”. In: Pro-
ceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK,
September 19-22, 2016. Ed. by R. C. Wilson, E. R. Hancock, and W. A. P.
Smith. BMVA Press. URL: http://www.bmva.org/bmvc/2016/papers/
paper087/index.html.

— (2017). “Paying More Attention to Attention: Improving the Performance
of Convolutional Neural Networks via Attention Transfer”. In: 5th Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net. URL: https:
//openreview.net/forum?id=Sks9_ajex.

Zednik, C. (2021). “Solving the black box problem: a normative framework
for explainable artificial intelligence”. In: Philosophy & Technology 34.2,
pp. 265–288.

Zeiler, M. D. and Fergus, R. (2014). “Visualizing and Understanding Con-
volutional Networks”. In: Computer Vision – ECCV 2014. Ed. by D. Fleet,
T. Pajdla, B. Schiele, and T. Tuytelaars. Springer International Publishing,
pp. 818–833.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2017). “ShuffleNet: An Extremely
Efficient Convolutional Neural Network for Mobile Devices”. In: CoRR

https://arxiv.org/abs/1901.08152
http://arxiv.org/abs/1901.08152
https://doi.org/10.1109/ICCV.2019.00961
https://doi.org/10.1109/ICCV.2019.00961
https://doi.org/10.1109/CVPR.2018.00958
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1109/CVPR.2017.15
https://doi.org/10.1109/CVPR42600.2020.00396
https://doi.org/10.1109/CVPR42600.2020.00396
https://doi.org/10.1109/CVPR42600.2020.00396
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
http://www.bmva.org/bmvc/2016/papers/paper087/index.html
https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex

Bibliography 339

abs/1707.01083. arXiv: 1707.01083. URL: http://arxiv.org/abs/1707.
01083.

Zhang, X., Zou, J., He, K., and Sun, J. (2016). “Accelerating Very Deep Convo-
lutional Networks for Classification and Detection”. In: IEEE Trans. Pat-
tern Anal. Mach. Intell. 38.10, pp. 1943–1955. DOI: 10.1109/TPAMI.2015.
2502579. URL: https://doi.org/10.1109/TPAMI.2015.2502579.

Zharmagambetov, A. and Carreira-Perpiñán, M. Á. (2020). “Smaller, more ac-
curate regression forests using tree alternating optimization”. In: Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020,
13-18 July 2020, Virtual Event. Vol. 119. Proceedings of Machine Learn-
ing Research. PMLR, pp. 11398–11408. URL: http://proceedings.mlr.
press/v119/zharmagambetov20a.html.

Zhou, D. (2018). “Universality of Deep Convolutional Neural Networks”. In:
CoRR abs/1805.10769. arXiv: 1805.10769. URL: http://arxiv.org/abs/
1805.10769.

Zhou, G., Fan, Y., Cui, R., Bian, W., Zhu, X., and Gai, K. (2018). “Rocket
Launching: A Universal and Efficient Framework for Training Well-Performing
Light Net”. In: Proceedings of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7,
2018. Ed. by S. A. McIlraith and K. Q. Weinberger. AAAI Press, pp. 4580–
4587. URL: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/
view/16090.

Zhu, J., Zou, H., Rosset, S., and Hastie, T. (2009). “Multi-class adaboost”. In:
Statistics and its Interface 2.3, pp. 349–360.

Zhu, M. and Gupta, S. (2018). “To Prune, or Not to Prune: Exploring the Ef-
ficacy of Pruning for Model Compression”. In: 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 -
May 3, 2018, Workshop Track Proceedings. OpenReview.net. URL: https :
//openreview.net/forum?id=Sy1iIDkPM.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., and He, Q.
(2021). “A Comprehensive Survey on Transfer Learning”. In: Proc. IEEE
109.1, pp. 43–76. DOI: 10.1109/JPROC.2020.3004555. URL: https://doi.
org/10.1109/JPROC.2020.3004555.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning Transfer-
able Architectures for Scalable Image Recognition”. In: 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018. IEEE Computer Society, pp. 8697–8710.
DOI: 10.1109/CVPR.2018.00907. URL: http://openaccess.thecvf.
com / content \ _cvpr \ _2018 / html / Zoph \ _Learning \ _Transferable \
_Architectures_CVPR_2018_paper.html.

Zou, H. and Hastie, T. (2005). “Regularization and variable selection via the
elastic net”. In: Journal of the royal statistical society: series B (statistical method-
ology) 67.2, pp. 301–320.

https://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
https://doi.org/10.1109/TPAMI.2015.2502579
http://proceedings.mlr.press/v119/zharmagambetov20a.html
http://proceedings.mlr.press/v119/zharmagambetov20a.html
https://arxiv.org/abs/1805.10769
http://arxiv.org/abs/1805.10769
http://arxiv.org/abs/1805.10769
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16090
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16090
https://openreview.net/forum?id=Sy1iIDkPM
https://openreview.net/forum?id=Sy1iIDkPM
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1109/CVPR.2018.00907
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zoph_Learning_Transferable_Architectures_CVPR_2018_paper.html

340 Bibliography

Zuo, Y. and Drummond, T. (2020). “Residual Likelihood Forests”. In: 31st
British Machine Vision Conference 2020, BMVC 2020, Virtual Event, UK, Septem-
ber 7-10, 2020. BMVA Press. URL: https://www.bmvc2020-conference.
com/assets/papers/0191.pdf.

https://www.bmvc2020-conference.com/assets/papers/0191.pdf
https://www.bmvc2020-conference.com/assets/papers/0191.pdf

	Introduction
	Contributions
	Outline
	Publications

	I Machine learning
	Supervised learning
	Illustration
	Formalization
	Problem structure
	Data
	Hypothesis space
	Loss function
	Goal and Bayes model
	Learning algorithm
	Changing input spaces: feature engineering and learning
	Changing output spaces: alternative representations (classification)

	Empirical risk minimization
	Overfitting
	Unbiased assessments
	Consequences of overfitting
	Overfitting and the hypothesis space expressiveness

	The bias-variance decomposition
	Decomposition
	Bias-variance tradeoff
	Approximation-estimation decomposition

	Bounds over the generalization gap
	Finite hypothesis space bound
	Vapnik–Chervonenkis bound

	The expressiveness/overfitting dilemma
	Managing expressiveness: regularization
	Regularization
	Model selection

	Beyond supervised learning
	Same goal, different means
	Different goals

	Conclusion

	Learning algorithms for supervised machine learning
	Linear regression and its extensions
	Ordinary least square linear regression
	Solving the ordinary least square regression

	Regularized least-square linear regression
	Ridge regression
	Lasso

	Logistic regression
	Binary logistic regression
	Logistic regression viewed as relaxation
	Logistic regression viewed as modeling probabilities
	The logistic program

	Multiclass logistic regression
	From two to several classes
	Interpreting the softmax regression

	Decision trees
	Inference
	Induction
	Uncertainty in classification
	Uncertainty in regression

	Expressiveness, stopping criteria and pruning

	Ensemble methods: decision forests
	Bagging
	Variance reduction
	Bootstrap

	Random forests
	Extremely randomized trees
	On randomized algorithms

	Boosting
	Least square boosting
	Adaboost

	Deep learning
	Structure and inference
	Learning: the backpropagation algorithm
	First-order interpretation: from softmax regression to neural networks
	Vanishing gradient
	Covariate shift
	Miscellaneous

	Image classification
	Tensors and feature maps
	Convolution
	Pooling
	Batch-normalization

	Tools and tricks
	Risk management
	Miscellaneous

	Conclusion

	On machine learning and philosophy
	On knowledge and induction
	Knowledge
	Induction
	Distribution shift
	No free lunch theorems
	The importance of assumptions

	The curse of dimensionality
	Bayesianism

	Occam's razor
	Causality
	Conclusion

	II Supervised learning under constraints
	Machine learning under constraints
	On constraints
	Definition
	Motivation
	Typologies of constraints
	Component-based categorization
	Source-based categorization
	Chronology-based categorization

	Examples of constraints
	Fast training
	Small models
	Robustness
	Data scarcity
	Interpretability

	Overview of the following chapters

	Globally Induced Forests
	Ambitions
	Goal and contribution
	Motivation

	Decision forest compression
	Feasibility of decision forest compression
	Problem formulations
	Related works
	GIF versus other techniques

	The GIF algorithm
	General algorithm
	Regression
	Classification
	Interpreting the GIF algorithm
	From GIFs to probabilities

	GIF with a single tree
	Regression
	Classification

	Empirical analysis
	Regression and classification
	Influence of the hyper-parameters
	Comparison with local baseline algorithms
	A preliminary comparison with Boosting
	Comparison with post-pruning

	Conclusion and perspectives

	Sample-free out-of-distribution
	Ambitions
	Goal and contribution
	Motivation

	Out-of-distribution detection in general
	Problem formulation
	Interpreting what is meant by out-of-distribution
	Relationship between data sources
	Balancing the risks

	Related problems
	Open set recognition
	Anomaly detection
	Uncertainty modeling
	Pointwise versus samplewise methods
	Other paradigms

	Families of methods
	Classification-based approaches
	Distribution-based approaches
	Information-theoretic approaches
	Proximity-based approaches
	Confidence-based approaches
	Design-altering implementations

	Literature on OOD detection methods
	Baselines
	OOD detection by available data
	Conclusion

	The sample-free setting
	Feasibility
	Indicators

	Sample-free white-box OOD indicators
	Optimality-based indicators
	Batchnorm-based indicators
	Summary

	Empirical study
	Main experiment
	Protocol
	Results

	Semantic and covariate closeness
	Additional results
	Complementarity/redundancy
	Model quality
	Misclassification detection

	Summary indicators
	Real-world setting
	Conclusion

	Distillation from heterogeneous unlabeled collections
	Ambitions
	Goal and contribution
	Motivation

	Deep learning compression
	Feasibility of neural network compression
	Problem formulation
	Model size: a note on measures

	Method overview
	Designing small architectures
	Pruning
	Low-rank approximation
	Quantization
	Teacher-student transfer

	Data-constrained compression
	Distilling from an unlabeled collection
	Setting
	Biased sampling
	Computing the sampling probabilities
	Discussion

	Capturing the learning signal: fixed-linear distillation under latent mapping assumption

	Empirical analysis
	Protocol
	Collection analysis
	Sampling analysis
	Fixed-linear distillation analysis
	Additional experiments
	Influence of the characterizing score
	One collection to rule them all
	Failing the latent mapping assumption

	Conclusion

	Interpretable Machine Learning
	Interpretability
	Motivation and high-level goals
	Feasibility and mid-level goals
	Desirable properties
	Feasibility

	GIF as a rule extraction algorithm
	Rule sets as an interpretable model
	Empirical results
	A further digression about stability
	Conclusion

	Feature importances
	Ambitions
	Goal and contribution
	Motivation

	Problem formulation
	Relevance
	Importance
	Selection and ranking

	Feature importance with random forests
	Feature importance with neural networks
	Gradient-based method (GI)
	Layer-wise relevance propagation (LI)
	Selection layers
	Hybrid approaches

	Empirical analysis on benchmark datasets
	Simulated problems and protocol
	Results and discussion

	Gene regulatory networks
	Context
	Empirical analysis

	Conclusion

	Conclusion

	III Conclusion
	Conclusion
	Summary
	Now what

	Clustertools
	Speeding up scientific computing
	Embarrassingly parallel code
	Beyond parallelization
	Example

	The processing pipeline
	Computation
	Experiment and parameters
	Environments: running experiments

	The data pipeline
	Result
	Storage
	Datacube
	Analytics
	Logs

	Command-line manager
	Conclusion

	Out of distribution
	Relationship between logit and T1000
	Detailed results
	Detailed auroc tables

	Selected indicator distributions

	Bibliography

