S-adic characterization of dendric languages: ternary case

France Gheeraert Joint work with Marie Lejeune and Julien Leroy

October 11, 2021

Notations

- finite alphabets: \mathcal{A} , \mathcal{B} , \mathcal{A}_N , ...
- uniformly recurrent (= unif. rec.) languages on these alphabets: \mathcal{L} , \mathcal{L}' , \mathcal{L}_N , ...
- morphisms: σ , τ , σ_N , ...
- image of a \mathcal{L} under σ : $\sigma^f(\mathcal{L}) = \mathsf{Fac}(\sigma(\mathcal{L}))$

Definitions and known results

Definitions

•00000000

S-adic representations

Definition

Definitions

00000000

A primitive S-adic representation of a unif. rec. language \mathcal{L} is a primitive sequence of morphisms $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ such that

$$\mathcal{L} = \bigcup_{N} \operatorname{Fac}(\sigma_0 \dots \sigma_N(\mathcal{A}_{N+1})).$$

A sequence $(\sigma_n : \mathcal{A}_{n+1}^* \to \mathcal{A}_n^*)_n$ is *primitive* if, for all N, there exists $m \geq 0$ such that, for all $a \in A_{N+m+1}, \sigma_N \dots \sigma_{N+m}(a)$ contains all the letters of A_N .

Definitions

Question: For a given family \mathcal{F} of languages, can we find a condition C such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

Definitions

00000000

Question: For a given family $\mathcal F$ of languages, can we find a condition $\mathcal C$ such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

 Sturmian languages [Morse-Hedlund]: (non eventually constant) sequences over two given morphisms

Definitions

00000000

Question: For a given family \mathcal{F} of languages, can we find a condition C such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

- Sturmian languages [Morse-Hedlund]: (non eventually constant) sequences over two given morphisms
- Arnoux-Rauzy languages [Arnoux-Rauzy]

Definitions

00000000

Question: For a given family $\mathcal F$ of languages, can we find a condition $\mathcal C$ such that

 $\mathcal{L} \in \mathcal{F}$ iff \mathcal{L} has an S-adic representation satisfying C?

- Sturmian languages [Morse-Hedlund]: (non eventually constant) sequences over two given morphisms
- Arnoux-Rauzy languages [Arnoux-Rauzy]
- Episturmian languages [Justin-Pirillo]
- Linearly recurrent languages [Durand]
- Languages such that $p(n+1) p(n) \le 2$ [Leroy]
- ...

Extension graphs

Definitions

000000000

$$LE_{\mathcal{L}}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad RE_{\mathcal{L}}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \},$$

$$E_{\mathcal{L}}(w) = \{ (a, b) \in LE_{\mathcal{L}}(w) \times RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L} \}$$

Extension graphs

Definitions

000000000

$$LE_{\mathcal{L}}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad RE_{\mathcal{L}}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \},$$

$$E_{\mathcal{L}}(w) = \{ (a, b) \in LE_{\mathcal{L}}(w) \times RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L} \}$$

Definition

The extension graph of $w \in \mathcal{L}$ is the bipartite graph $\mathcal{E}_{\mathcal{L}}(w)$ with vertices $LE_{\mathcal{L}}(w) \sqcup RE_{\mathcal{L}}(w)$ and edges $E_{\mathcal{L}}(w)$.

Extension graphs

Definitions

000000000

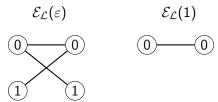
$$LE_{\mathcal{L}}(w) = \{ a \in \mathcal{A} \mid aw \in \mathcal{L} \}, \quad RE_{\mathcal{L}}(w) = \{ b \in \mathcal{A} \mid wb \in \mathcal{L} \},$$

$$E_{\mathcal{L}}(w) = \{ (a, b) \in LE_{\mathcal{L}}(w) \times RE_{\mathcal{L}}(w) \mid awb \in \mathcal{L} \}$$

Definition

The extension graph of $w \in \mathcal{L}$ is the bipartite graph $\mathcal{E}_{\mathcal{L}}(w)$ with vertices $LE_{\mathcal{L}}(w) \sqcup RE_{\mathcal{L}}(w)$ and edges $E_{\mathcal{L}}(w)$.

If \mathcal{L} is the Fibonacci language,



Dendric languages

Definitions

000000000

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word $w \in \mathcal{L}$ is *dendric* if its extension graph $\mathcal{E}_{\mathcal{L}}(w)$ is a tree.

A language \mathcal{L} is *dendric* if all the words $w \in \mathcal{L}$ are.

An infinite word (resp., a shift space) is dendric if its associated language is.

Dendric languages

Definitions

000000000

Definition (Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone)

A word $w \in \mathcal{L}$ is *dendric* if its extension graph $\mathcal{E}_{\mathcal{L}}(w)$ is a tree.

A language \mathcal{L} is *dendric* if all the words $w \in \mathcal{L}$ are.

An infinite word (resp., a shift space) is dendric if its associated language is.

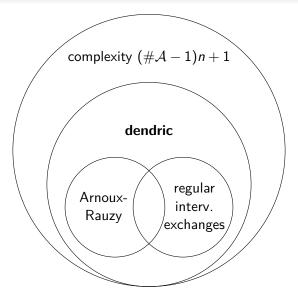
Definition (Dolce, Perrin)

A language \mathcal{L} is eventually dendric if there exists n such that all the words $w \in \mathcal{L}_{\geq n}$ are dendric.

Definitions

000000000

Relation with other families



Return words

Definitions 000000000

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

Return words

Definitions

000000000

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

In the Fibonacci language,

$$\mathcal{R}_{\mathcal{L}}(0) = \{0,01\}, \quad \mathcal{R}_{\mathcal{L}}(1) = \{10,100\}.$$

Return words

Definitions

000000000

Definition

A return word for $w \neq \varepsilon$ in \mathcal{L} is a word u such that

$$uw \in \mathcal{L}, \quad |uw|_w = 2, \quad uw \in w\mathcal{A}^*.$$

The set of return words for w is denoted $\mathcal{R}_{\mathcal{L}}(w)$.

In the Fibonacci language,

$$\mathcal{R}_{\mathcal{L}}(0) = \{0, 01\}, \quad \mathcal{R}_{\mathcal{L}}(1) = \{10, 100\}.$$

Theorem (Balkovà, Pelantovà, Steiner)

Let $\mathcal L$ be a unif. rec. dendric language. For all non empty $w \in \mathcal L$,

$$\#\mathcal{R}_{\mathcal{L}}(w) = \#\mathcal{A}.$$

Derived language of a dendric language

Definition

Definitions

000000000

The *derived language* of \mathcal{L} with respect to $w \neq \varepsilon$ is the language

$$\mathcal{L}' = \{ u \in \mathcal{B}^* \mid \sigma(u)w \in \mathcal{L} \}$$

where $\sigma: \mathcal{B}^* \to \mathcal{A}^*$ is such that $\sigma(\mathcal{B}) = \mathcal{R}_{\mathcal{L}}(w)$. Then

$$\mathcal{L} = \sigma^f(\mathcal{L}').$$

Derived language of a dendric language

Definition

Definitions

000000000

The *derived language* of \mathcal{L} with respect to $w \neq \varepsilon$ is the language

$$\mathcal{L}' = \{ u \in \mathcal{B}^* \mid \sigma(u)w \in \mathcal{L} \}$$

where $\sigma:\mathcal{B}^* \to \mathcal{A}^*$ is such that $\sigma(\mathcal{B}) = \mathcal{R}_{\mathcal{L}}(w)$. Then

$$\mathcal{L} = \sigma^f(\mathcal{L}').$$

Theorem (Berthé et al.)

The derived language of a unif. rec. dendric language with respect to any word is a unif. rec. dendric language.

Definitions

00000000

Construction of S-adic representations

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L}=\mathcal{L}_0\subseteq\mathcal{A}^*$ in the following way:

- **1** pick a non empty word $w \in \mathcal{L}_0$;
- **2** define $\mathcal{L}_1 \subseteq \mathcal{A}^*$ as the derived language of \mathcal{L}_0 with respect to w;
- **3** denote $\sigma_0: \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1)$;
- **9** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

Definitions

00000000

Construction of S-adic representations

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subseteq \mathcal{A}^*$ in the following way:

- **1** pick a non empty word $w \in \mathcal{L}_0$;
- **2** define $\mathcal{L}_1 \subseteq \mathcal{A}^*$ as the derived language of \mathcal{L}_0 with respect to w;
- **3** denote $\sigma_0: \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1)$;
- **4** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

$$\mathcal{L} = \sigma_0^f(\mathcal{L}_1) = \sigma_0^f(\sigma_1^f(\mathcal{L}_2)) = \dots$$

Return morphisms and dendric images

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma: \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma: \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

$$\sigma: egin{cases} 0\mapsto 01 \ 1\mapsto 021 \ 2\mapsto 022221 \end{cases} \qquad au: egin{cases} 0\mapsto 01 \ 1\mapsto 010 \ 2\mapsto 010210 \end{cases}$$

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma: \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \qquad \tau: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 010 \\ 2 \mapsto 010210 \end{cases}$$

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma: \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \qquad \tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

Definition

A return morphism for $w \neq \varepsilon$ is an injective morphism $\sigma: \mathcal{A}^* \to \mathcal{B}^*$ such that, for all $a \in \mathcal{A}$,

$$|\sigma(a)w|_w=2, \quad \sigma(a)w\in w\mathcal{B}^*.$$

$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases} \qquad \tau: \begin{cases} 0 \mapsto 01010 \\ 1 \mapsto 010010 \\ 2 \mapsto 010210010 \end{cases}$$

Dendric images: goal

Given an unif. rec. dendric language \mathcal{L} and a return morphism σ for w, when is $\sigma^f(\mathcal{L})$ (unif. rec.) dendric?

Dendric images: goal

Given an unif. rec. dendric language $\mathcal L$ and a return morphism σ for w, when is $\sigma^f(\mathcal{L})$ (unif. rec.) dendric?

 \rightarrow What can we say about $\mathcal{E}_{\sigma^f(\mathcal{L})}(u)$?

Dendric images: goal

Given an unif. rec. dendric language \mathcal{L} and a return morphism σ for w, when is $\sigma^f(\mathcal{L})$ (unif. rec.) dendric?

ightarrow What can we say about $\mathcal{E}_{\sigma^f(\mathcal{L})}(u)$?

Two cases:

- $|u|_w = 0$: u is an initial factor;
- $|u|_w > 0$: u is an extended image.

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha\in\mathcal{A}$.

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha\in\mathcal{A}$. Thus

$$aub \in \sigma^f(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)w).$$

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha\in\mathcal{A}$.

Thus

$$aub \in \sigma^f(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)w).$$

In other words, if

$$F_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \mathsf{Fac}(\sigma(\alpha)w),$$

then

$$\mathcal{E}_{\sigma^f(\mathcal{L})}(u) = \mathcal{E}_{F_{\sigma}}(u).$$

If u is an initial factor, then each occurrence of u is as an internal factor of some $\sigma(\alpha)w$, $\alpha \in \mathcal{A}$.

Thus

$$aub \in \sigma^f(\mathcal{L}) \Leftrightarrow \exists \alpha \in \mathcal{A} \text{ st. } aub \in \mathsf{Fac}(\sigma(\alpha)w).$$

In other words, if

$$F_{\sigma} = \bigcup_{\alpha \in \mathcal{A}} \mathsf{Fac}(\sigma(\alpha)w),$$

then

$$\mathcal{E}_{\sigma^f(\mathcal{L})}(u) = \mathcal{E}_{F_{\sigma}}(u).$$

Definition

A return morphism σ for w is dendric if, for all $u \in F_{\sigma}$ such that $|u|_w = 0$, u is dendric in F_σ .

Examples

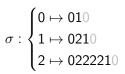
$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases}$$

16 / 41

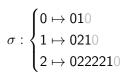
S-adic characterization of ternary dendric languages

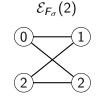
Examples

$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases}$$



 $\Rightarrow \sigma$ is not dendric





 $\Rightarrow \sigma$ is not dendric

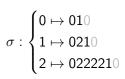
$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

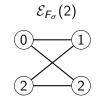
$$\sigma: \begin{cases} 0 \mapsto 010 \\ 1 \mapsto 0210 \\ 2 \mapsto 0222210 \end{cases}$$

$$\Rightarrow \sigma$$
 is not dendric

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

$$\mathcal{E}_{F_{\sigma}}(arepsilon),~\mathcal{E}_{F_{\sigma}}(0)$$
 and $\mathcal{E}_{F_{\sigma}}(10)$ are trees





$$\Rightarrow \sigma$$
 is not dendric

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

$$\mathcal{E}_{F_{\sigma}}(arepsilon),~\mathcal{E}_{F_{\sigma}}(0)$$
 and $\mathcal{E}_{F_{\sigma}}(10)$ are trees

$$\Rightarrow au$$
 is dendric

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^f(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

- $u = s\sigma(v)p$,
- s is a proper suffix of an element of $\sigma(A)$,
- $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.

We will then specify that u is an extended image of v (under σ).

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^t(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

- $u = s\sigma(v)p$,
- s is a proper suffix of an element of $\sigma(A)$,
- $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.
- \Rightarrow Every occurrence of u is as an internal factor of some $\sigma(\alpha v \beta)w$

We will then specify that u is an extended image of v (under σ).

Extended images

Proposition (G., Lejeune, Leroy)

If $u \in \sigma^f(\mathcal{L})$ is an extended image, there exist unique $s, p \in \mathcal{A}^*$, $v \in \mathcal{L}$ such that

- $u = s\sigma(v)p$,
- s is a proper suffix of an element of $\sigma(A)$,
- $p \in w\mathcal{B}^*$ is a proper prefix of an element of $\sigma(\mathcal{A})w$.
- \Rightarrow Every occurrence of u is as an internal factor of some $\sigma(\alpha v \beta)w$ Moreover, $(a,b) \in E_{\sigma^f(\mathcal{L})}(u)$ if and only if

$$\exists (\alpha, \beta) \in E_{\mathcal{L}}(v) \text{ st. } \sigma(\alpha) \in \mathcal{B}^* \text{as and } \sigma(\beta)w \in pb\mathcal{B}^*.$$

We will then specify that u is an extended image of \underline{v} (under σ).

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

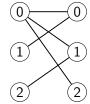
$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

18 / 41

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{as } \wedge \sigma(\beta) w \in \textit{pb} \mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases}$$

$$\mathcal{E}_{\mathcal{L}}(v)$$

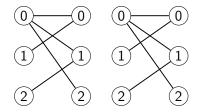


$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$au: egin{cases} 0 \mapsto 0101 \ 1 \mapsto 01001 \ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \end{cases}$$

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

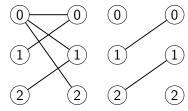
$$au: egin{cases} 0 \mapsto 0101 \ 1 \mapsto 01001 \ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \; p = 010 \end{cases}$$



$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010$$

$$\mathcal{E}_{\mathcal{L}}(v)$$



$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010$$

$$\mathcal{E}_{\mathcal{L}}(v) \qquad \mathcal{E}_{\tau^f(\mathcal{L})}(u)$$

$$0 \qquad 0 \qquad 1$$

$$1 \qquad 0 \qquad 0$$

$$2 \qquad 2 \qquad 2 \qquad 2$$

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$au: egin{cases} 0 \mapsto 0101 & u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \ 2 \mapsto 01021001 & u' = \sigma(v)010 \longrightarrow s = arepsilon, \ p = 010 \ 0 & arepsilon \ \end{array}$$

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010 \end{cases}$$

$$\mathcal{E}_{\mathcal{L}}(v) \qquad \mathcal{E}_{\tau^{f}(\mathcal{L})}(u)$$

$$(a,b) \in \mathcal{E}_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in \mathcal{E}_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010 \end{cases}$$

$$\mathcal{E}_{\mathcal{L}}(v) \qquad \mathcal{E}_{\tau^{f}(\mathcal{L})}(u)$$

$$(a,b) \in E_{\sigma^f(\mathcal{L})}(u) \Leftrightarrow \exists (\alpha,\beta) \in E_{\mathcal{L}}(v) : \sigma(\alpha) \in \mathcal{A}^* \text{ as } \wedge \sigma(\beta) w \in pb\mathcal{A}^*$$

$$\tau: \begin{cases} 0 \mapsto 0101 \\ 1 \mapsto 01001 \\ 2 \mapsto 01021001 \end{cases} \qquad u = 10\sigma(v)010 \longrightarrow s = 10, \ p = 010 \\ u' = \sigma(v)010 \longrightarrow s = \varepsilon, \ p = 010 \end{cases}$$

$$\mathcal{E}_{\mathcal{L}}(v) \qquad \mathcal{E}_{\tau^{f}(\mathcal{L})}(u) \qquad \mathcal{E}_{\tau^{f}(\mathcal{L})}(u')$$

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

$$\{(\alpha,\beta)\in E_{\mathcal{L}}(v):\sigma(\alpha)\in\mathcal{B}^+s \text{ and } \sigma(\beta)w\in p\mathcal{B}^+\}$$

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

$$\{(\alpha,\beta)\in \mathcal{E}_{\mathcal{L}}(v):\sigma(\alpha)\in\mathcal{B}^+s \text{ and } \sigma(\beta)w\in p\mathcal{B}^+\}$$

i.e. we removed the left vertices such that $\sigma(\alpha) \notin \mathcal{B}^+s$ and the right vertices such that $\sigma(\beta)w \notin p\mathcal{B}^+$.

Dendric extended images

 $\mathcal{E}_{\mathcal{L},s,p}(v)$ is the subgraph of $\mathcal{E}_{\mathcal{L}}(v)$ generated by the edges

$$\{(\alpha,\beta)\in \mathcal{E}_{\mathcal{L}}(v):\sigma(\alpha)\in\mathcal{B}^+s \text{ and } \sigma(\beta)w\in p\mathcal{B}^+\}$$

i.e. we removed the left vertices such that $\sigma(\alpha) \notin \mathcal{B}^+s$ and the right vertices such that $\sigma(\beta)w \notin p\mathcal{B}^+$.

Theorem (G., Lejeune, Leroy)

If $v \in \mathcal{L}$ is dendric, then the following are equivalent:

- **1** all the extended images of v are dendric (in $\sigma^f(\mathcal{L})$);
- ② for all $s, p \in \mathcal{B}^*$, the graph $\mathcal{E}_{\mathcal{L}, s, p}(v)$ is connected;
- **3** for all $s, p \in \mathcal{B}^*$, the graphs $\mathcal{E}_{\mathcal{L}, s, \varepsilon}(v)$ and $\mathcal{E}_{\mathcal{L}, \varepsilon, p}(v)$ are connected.

Special cases

If there exist a and b such that

$$E_{\mathcal{L}}(v) = (a \times RE_{\mathcal{L}}(v)) \cup (LE_{\mathcal{L}}(v) \times b),$$

then the extended images of v are always dendric.

Special cases

If there exist a and b such that

$$E_{\mathcal{L}}(v) = (a \times RE_{\mathcal{L}}(v)) \cup (LE_{\mathcal{L}}(v) \times b),$$

then the extended images of v are always dendric.

Corollary

The image of an Arnoux-Rauzy under a return morphism is dendric if and only if the morphism is dendric.

Special cases

If there exist a and b such that

$$E_{\mathcal{L}}(v) = (a \times RE_{\mathcal{L}}(v)) \cup (LE_{\mathcal{L}}(v) \times b),$$

then the extended images of v are always dendric.

Corollary

The image of an Arnoux-Rauzy under a return morphism is dendric if and only if the morphism is dendric.

Corollary

The image of an unif. rec. eventually dendric language under a return morphism is eventually dendric.

Dendric images: result

Corollary

The image of a unif. rec. dendric language \mathcal{L} under a return morphism σ is dendric if and only if σ is dendric and the conditions $\mathcal{C}^L(\sigma,\mathcal{L})$ and $\mathcal{C}^R(\sigma,\mathcal{L})$ are satisfied.

$$\begin{split} \mathcal{C}^L(\sigma,\mathcal{L}) &\equiv \forall \ v \in \mathcal{L}, \forall \ s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \text{ is connected} \\ \mathcal{C}^R(\sigma,\mathcal{L}) &\equiv \forall \ v \in \mathcal{L}, \forall \ p \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},\varepsilon,p}(v) \text{ is connected} \end{split}$$

Deducing a first S-adic characterization

Summary of what we obtained

Each unif. rec. dendric language \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ such that

- **①** for all N, σ_N is a dendric return morphism,
- ② if \mathcal{L}_{N+1} is the language with S-adic representation $(\sigma_n)_{n>N}$, then the conditions $\mathcal{C}^L(\sigma_N,\mathcal{L}_{N+1})$ and $\mathcal{C}^R(\sigma_N,\mathcal{L}_{N+1})$ are satisfied.

Summary of what we obtained

Each unif. rec. dendric language \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ such that

- **1** for all N, σ_N is a dendric return morphism,
- ② if \mathcal{L}_{N+1} is the language with S-adic representation $(\sigma_n)_{n>N}$, then the conditions $\mathcal{C}^L(\sigma_N, \mathcal{L}_{N+1})$ and $\mathcal{C}^R(\sigma_N, \mathcal{L}_{N+1})$ are satisfied.

Proposition

If \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ satisfying conditions 1 and 2 above, then \mathcal{L} is unif. rec. dendric.

Summary of what we obtained

Each unif. rec. dendric language \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ such that

- **1** for all N, σ_N is a dendric return morphism,
- ② if \mathcal{L}_{N+1} is the language with S-adic representation $(\sigma_n)_{n>N}$, then the conditions $\mathcal{C}^L(\sigma_N, \mathcal{L}_{N+1})$ and $\mathcal{C}^R(\sigma_N, \mathcal{L}_{N+1})$ are satisfied.

Proposition

If \mathcal{L} has a primitive S-adic representation $(\sigma_n)_n$ satisfying conditions 1 and 2 above, then \mathcal{L} is unif. rec. dendric.

Idea:

- ullet Each element of ${\cal L}$ has an "oldest ancestor" which is an initial factor in some \mathcal{L}_{N+1} .
- The initial factors of all the \mathcal{L}_{N+1} are dendric.

First (very) naive graph

Proposition

A language $\mathcal{L} \subseteq \mathcal{A}^*$ is unif. rec. dendric if and only if it has a primitive S-adic representation labeling a path in the graph defined as follows

- each vertex corresponds to a (unif. rec.) language on A;
- for each dendric return morphism $\sigma: \mathcal{A}^* \to \mathcal{A}^*$ and each language \mathcal{L} , there is an edge from $\sigma^f(\mathcal{L})$ to \mathcal{L} if and only if conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$ are satisfied.

We work on the alphabet $A_3 = \{1, 2, 3\}$.

We work on the alphabet $A_3 = \{1, 2, 3\}$.

To obtain a simpler description of the characterization, we work on

- the vertices
- 2 the edges

We work on the alphabet $A_3 = \{1, 2, 3\}$.

To obtain a simpler description of the characterization, we work on

- the vertices: understand the conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$;
- 2 the edges

We work on the alphabet $A_3 = \{1, 2, 3\}$.

To obtain a simpler description of the characterization, we work on

- the vertices: understand the conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$;
- 4 the edges: give a simpler (sufficient) set of morphisms.

Ternary case: conditions $\mathcal{C}^L(\sigma,\mathcal{L})$ and $\mathcal{C}^R(\sigma,\mathcal{L})$

Goal

We want to associate an object $o(\mathcal{L})$ to each (unif. rec. dendric) language \mathcal{L} such that

Goal

We want to associate an object $o(\mathcal{L})$ to each (unif. rec. dendric) language \mathcal{L} such that

• conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$ only depend on σ and $o(\mathcal{L})$;

Goal

We want to associate an object $o(\mathcal{L})$ to each (unif. rec. dendric) language \mathcal{L} such that

- conditions $C^L(\sigma, \mathcal{L})$ and $C^R(\sigma, \mathcal{L})$ only depend on σ and $o(\mathcal{L})$;
- if $o(\mathcal{L}) = o(\mathcal{L}')$, then $o(\sigma^f(\mathcal{L})) = o(\sigma^f(\mathcal{L}'))$.

Goal

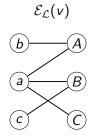
We want to associate an object $o(\mathcal{L}) = (o^L(\mathcal{L}), o^R(\mathcal{L}))$ to each (unif. rec. dendric) language \mathcal{L} such that

- condition $\mathcal{C}^L(\sigma,\mathcal{L})$ (resp. $\mathcal{C}^R(\sigma,\mathcal{L})$) only depends on σ and $o^{L}(\mathcal{L})$ (resp. $o^{R}(\mathcal{L})$):
- if $o(\mathcal{L}) = o(\mathcal{L}')$, then $o(\sigma^f(\mathcal{L})) = o(\sigma^f(\mathcal{L}'))$.

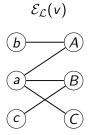
We will only look at the left side for now.

$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v)$$
 is connected

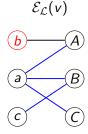
$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v) \text{ is connected}$$



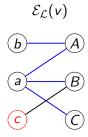
$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v) \text{ is connected}$$



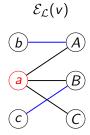
$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v) \text{ is connected}$$



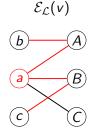
$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v) \text{ is connected}$$



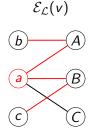
$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \, v \in \mathcal{L}, \forall \, s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,arepsilon}(v) \text{ is connected}$$



$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \ v \in \mathcal{L}, \forall \ s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \ \text{is connected}$$



$$\mathcal{C}^L(\sigma,\mathcal{L}) \equiv \forall \ v \in \mathcal{L}, \forall \ s \in \mathcal{B}^*, \mathcal{E}_{\mathcal{L},s,\varepsilon}(v) \ \text{is connected}$$



A letter is (left-)problematic if removing it on the left will disconnect some extension graph, i.e. if it is the "middle vertex" of a path of length 4 in some extension graph.

Object $o^L(\mathcal{L})$

We define

$$o^{L}(\mathcal{L}) = \{ a \in \mathcal{A}_3 \mid \mathcal{A}_3 = \{ a, b, c \} \land \exists v \in \mathcal{L}, A, B \in \mathcal{A}_3 \text{ st.}$$
$$b^{L}, A^{R}, a^{L}, B^{R}, c^{L} \text{ is a simple path of } \mathcal{E}_{\mathcal{L}}(v) \}.$$

It is such that

- condition $C^L(\sigma, \mathcal{L})$ only depends on σ and $o^L(\mathcal{L})$,
- if $o^L(\mathcal{L}) = o^L(\mathcal{L}')$, then $o^L(\sigma^f(\mathcal{L})) = o^L(\sigma^f(\mathcal{L}'))$.

Object $o^L(\mathcal{L})$

We define

$$o^{L}(\mathcal{L}) = \{ a \in \mathcal{A}_{3} \mid \mathcal{A}_{3} = \{ a, b, c \} \land \exists v \in \mathcal{L}, A, B \in \mathcal{A}_{3} \text{ st.}$$
$$b^{L}, A^{R}, a^{L}, B^{R}, c^{L} \text{ is a simple path of } \mathcal{E}_{\mathcal{L}}(v) \}.$$

It is such that

- condition $\mathcal{C}^L(\sigma,\mathcal{L})$ only depends on σ and $\sigma^L(\mathcal{L})$,
- if $o^L(\mathcal{L}) = o^L(\mathcal{L}')$, then $o^L(\sigma^f(\mathcal{L})) = o^L(\sigma^f(\mathcal{L}'))$.

Proposition

If \mathcal{L} is a unif. rec. ternary dendric language, then the set $o^{L}(\mathcal{L})$ contains at most one element.

New set of vertices

Definition

For $o = (o^L, o^R) \in \{\emptyset, \{1\}, \{2\}, \{3\}\}^2$, if \mathcal{L} is such that $o = o(\mathcal{L})$, we can define

- $\mathcal{C}^L(\sigma, o) \equiv \mathcal{C}^L(\sigma, \mathcal{L})$
- $C^R(\sigma, o) \equiv C^R(\sigma, \mathcal{L})$
- $\sigma(o) = o(\sigma^f(\mathcal{L}))$

New set of vertices

Definition

For $o = (o^L, o^R) \in \{\emptyset, \{1\}, \{2\}, \{3\}\}^2$, if \mathcal{L} is such that $o = o(\mathcal{L})$, we can define

- $\mathcal{C}^L(\sigma, o) \equiv \mathcal{C}^L(\sigma, \mathcal{L})$
- $\mathcal{C}^R(\sigma, o) \equiv \mathcal{C}^R(\sigma, \mathcal{L})$
- $\sigma(o) = o(\sigma^f(\mathcal{L}))$

We obtain a new graph:

- the vertices are the elements of $\{\emptyset, \{1\}, \{2\}, \{3\}\}^2$;
- for each dendric return morphism $\sigma: \mathcal{A}^* \to \mathcal{A}^*$ and each vertex o, there is an edge from $\sigma(o)$ to o if and only if conditions $C^L(\sigma, o)$ and $C^R(\sigma, o)$ are satisfied.

Ternary case: simpler set of morphisms and final result

Construction of S-adic representations: remainder

We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subset \mathcal{A}^*$ in the following way:

- **1** pick a non empty word $w \in \mathcal{L}_0$;
- \bullet define $\mathcal{L}_1 \subset \mathcal{A}^*$ as the derived language of \mathcal{L}_0 with respect to W;
- **3** denote $\sigma_0: \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1)$:
- **4** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

Construction of S-adic representations: remainder

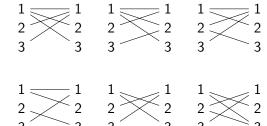
We can build primitive S-adic representations of a unif. rec. dendric language $\mathcal{L} = \mathcal{L}_0 \subset \mathcal{A}^*$ in the following way:

- **1** pick a non empty word $w \in \mathcal{L}_0$;
- \bullet define $\mathcal{L}_1 \subset \mathcal{A}^*$ as the derived language of \mathcal{L}_0 with respect to w:
- **3** denote $\sigma_0: \mathcal{A}^* \to \mathcal{A}^*$ the associated morphism, i.e. such that $\mathcal{L}_0 = \sigma_0^f(\mathcal{L}_1)$:
- **4** go back to step 1 with \mathcal{L}_1 to define \mathcal{L}_2 and σ_1 , and so on.

Thus we pick w in a "clever" way to reduce the set of return morphisms that appear.

Possible extension graphs

The extension graph of ε in a unif. rec. dendric language is, up to a permutation, one of



Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

The return words for 1 are among the paths from 1 to 1 in the Rauzy graph of order 1.

Finding the return words

From $\mathcal{E}_{\mathcal{L}}(\varepsilon)$, we build the Rauzy graph of order 1.

The return words for 1 are among the paths from 1 to 1 in the Rauzy graph of order 1.

$$\beta: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 132 \end{cases}$$

Set of morphisms

$$\alpha: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 13 \end{cases}$$

$$\beta: \begin{cases} 1\mapsto 1 \\ 2\mapsto 12 \\ 3\mapsto 132 \end{cases} \qquad \gamma: \begin{cases} 1\mapsto 1 \\ 2\mapsto 12 \\ 3\mapsto 123 \end{cases}$$

$$\gamma: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$\delta^{(k)}: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 123^k \\ 3 \mapsto 123^{k+1} \end{cases} \qquad \zeta^{(k)}: \begin{cases} 1 \mapsto 13^k \\ 2 \mapsto 12 \\ 3 \mapsto 13^{k+1} \end{cases} \qquad \eta: \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$\zeta^{(k)}: \begin{cases} 1 \mapsto 13^k \\ 2 \mapsto 12 \\ 3 \mapsto 13^{k+1} \end{cases}$$

$$\eta: egin{cases} 1 \mapsto 13 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

Set of morphisms

$$\alpha: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 13 \end{cases}$$

$$\beta: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 132 \end{cases} \gamma: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$\gamma: \begin{cases} 1 \mapsto 1 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$\delta^{(k)}: egin{cases} 1\mapsto 1 \ 2\mapsto 123^k \ 3\mapsto 123^{k+1} \end{cases}$$

$$\zeta^{(k)}: \begin{cases} 1 \mapsto 13^k \\ 2 \mapsto 12 \\ 3 \mapsto 13^{k+1} \end{cases} \eta: \begin{cases} 1 \mapsto 13 \\ 2 \mapsto 12 \\ 3 \mapsto 123 \end{cases}$$

$$g: egin{cases} 1\mapsto 13 \ 2\mapsto 12 \ 3\mapsto 123 \end{cases}$$

$$S_3 = \{\alpha, \beta, \gamma, \eta\} \cup \{\delta^{(k)}, \zeta^{(k)} \mid k \ge 1\}$$

Simpler graph

Theorem (G., Lejeune, Leroy)

A language is unif. rec. ternary dendric if and only if it has a primitive S-adic representation labeling an infinite path in the graph defined as follows

- the vertices are the elements of $\{\emptyset, \{1\}, \{2\}, \{3\}\}^2$;
- for each $\sigma \in \Sigma_3 S_3 \Sigma_3$ and each vertex o, there is an edge from $\sigma(o)$ to o if and only if conditions $C^L(\sigma, o)$ and $C^R(\sigma, o)$ are satisfied.

Even simpler graph

Theorem (G., Lejeune, Leroy)

A language is unif. rec. ternary dendric if and only if it has a primitive S-adic representation labeling an infinite path in the following graph.

 $\pi_{312}\beta\pi_{213}$, $\pi_{321}\beta\pi_{312}$. $\pi_{213}\gamma$, $\pi_{231}\gamma\pi_{132}$, $\pi_{213}\delta^{(k)}, \, \pi_{213}\delta^{(k)}\pi_{132}$ α , $\pi_{213}\alpha\pi_{213}$, $\pi_{321}\alpha\pi_{321}$, $\pi_{321}\beta$, $\pi_{312}\beta\pi_{132}$, α , $\pi_{213}\alpha\pi_{213}$, $\pi_{321}\alpha\pi_{321}$, [3,3] $\zeta^{(k)}\pi_{213}, \pi_{213}\zeta^{(k)}\pi_{213},$ \bigcirc [3, 2] $\pi_{213}\gamma$, $\pi_{231}\gamma\pi_{132}$, $\zeta^{(k)}\pi_{231}, \pi_{213}\zeta^{(k)}\pi_{231}$ $\pi_{213}\delta^{(k)}, \, \pi_{213}\delta^{(k)}\pi_{132}$ $\pi_{132}\eta$, $\pi_{132}\eta\pi_{231}$, $\pi_{132}\eta\pi_{321}$ $\pi_{312}\beta\pi_{213}$, $\pi_{321}\beta\pi_{213}$, $\pi_{312}\beta\pi_{312}$, $\pi_{321}\beta\pi_{312}$, $\pi_{312}\gamma\pi_{231}$, $\pi_{321}\gamma\pi_{231}$, $\pi_{312}\gamma\pi_{321}$, $\pi_{321}\gamma\pi_{321}$, $\zeta^{(k)}\pi_{213}, \pi_{213}\zeta^{(k)}\pi_{213},$ $\zeta^{(k)}\pi_{231}, \pi_{213}\zeta^{(k)}\pi_{231}$

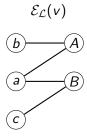
TC: morphisms

Conclusion •000

Conclusion

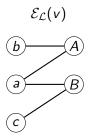
Idea for the object o^L in the general case

If a is problematic, we have



Idea for the object o^L in the general case

If a is problematic, we have

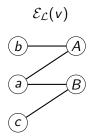


If u is left-special (i.e. at least two left extensions), then either

• u is a prefix of v: $LE_{\mathcal{L}}(u) = \{a, b, c\}$,

Idea for the object o^L in the general case

If a is problematic, we have



If u is left-special (i.e. at least two left extensions), then either

- u is a prefix of v: $LE_{\mathcal{L}}(u) = \{a, b, c\}$,
- vA is a prefix of u: $LE_{\mathcal{L}}(u) = \{a, b\}$,
- vB is a prefix of u: $LE_{\mathcal{L}}(u) = \{a, c\}$.

Related questions

- *S*-adic conjecture : there exists an *S*-adic characterization of the languages of at most linear complexity
- Can we find a similar S-adic characterization for other families of languages?
- Can we use this characterization to study other properties of (eventually) dendric languages/shift spaces?
 - stability of eventually dendric shift spaces under factorization
 - properties of the dimension group
 - ...

Thank you for your attention!