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Abstract
In this paper, we investigate a two-level supply chain consisting of a company which manufac-
tures a set of products and distributes them via its central warehouse to a set of customers.
The problem is modelled as a dynamic and stochastic inventory routing problem (DSIRP)
that considers two flexible instruments of transshipment and substitution to mitigate short-
ages at the customer level. A new resolution approach, based on the hybridisation of math-
ematical modelling, Genetic Algorithm and Deep Reinforcement Learning is proposed to
handle the combinatorial complexity of the problem at hand. Tested on the 150 most com-
monly used benchmark instances for single-vehicle-product DSIRP, results show that the
proposed algorithm outperforms the current best results in the literature for medium and
large instances. Moreover, 450 additional instances for multi-products DSIRP are generated.
Different demand distributions are examined in these experiments, namely Normal distribu-
tion, Poisson distribution for demand occurrence, combined with demands of constant size;
Stuttering Poisson distribution and Negative Binomial distribution. In terms of managerial
insights, results show the advantages of promoting inventory sharing and substitutions on
the overall supply chain performance.

KEYWORDS
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1. Introduction

Highly competitive markets drive companies to efficiently and accurately satisfy their cus-
tomers’ demands across their supply chain. The lead times in most industries must be relatively
short, and companies must be flexible enough to meet highly variable demands. Companies
also should efficiently manage their capital assets to guarantee profitability. This highly de-
pends on their capacity to maintain their manufacturing and logistical capacities to meet
their customers’ service requirements. In practice, to mitigate this issue, firms may promote
inventory sharing among multiple locations within the same distribution network which leads
to significant reductions in costs. This type of inventory sharing is commonly referred to as
lateral transshipment (LT) (Paterson et al., 2011; Grahovac and Chakravarty, 2001).
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In such competitive markets, customers choose from a variety of products according to their
needs. They may choose to buy their preferred products, or in case of unavailability, replace
them with different ones. Substitutes can lead to a healthy market competition between prod-
ucts, which is in the customers’ best interest and this prevents a market monopoly. This can
be the case of food products; perishable products (e.g., artificial blood that can be used as a
substitute to mitigate the risks of blood transfusions and shortage of supply or two different
milk brands that can be substituted if their "milk" products have similar characteristics);
and spare parts (e.g., original equipment manufacturer parts that can be substituted by af-
termarket parts called replacement or pattern parts). Substitution could, therefore, serve as
a new alternative to better meet customers’ demands, particularly if decision makers are not
fully aware of future events. This paper aims at highlighting the benefits of promoting both
inventory sharing among customers and use of substitutes to remedy the shortage of prod-
ucts in a such stochastic environment. Products are therefore considered virtually pooled in
the network and sent to a requesting location via LT from a location possessing a surplus of
on-hand inventory; or they are substituted, if compatible, by each other.

This paper has four main contributions. First, we study a two-level supply chain in which
a manufacturer supplies a central warehouse with a set of products. The central warehouse,
distantly located from the manufacturer, distributes, under dynamic and stochastic demands,
products to a given number of customers. Along with LT, substitutions of products, which is
new to literature, are used to sidestep shortage at the customer level. We also assume that
direct shipment, if necessary, can take place from the central warehouse to any customer.
Secondly, we model the problem as a multi-product dynamic and stochastic inventory routing
problem. The objective is to minimise the total cost, including the costs of holding inventory,
transportation, transshipment, substitution and lost sales. Thirdly, a new resolution approach
based on the hybridisation of mathematical modelling, Genetic Algorithm and Deep Reinforce-
ment Learning is proposed to handle the combinatorial complexity of the problem at hand.
And finally, tested on the 150 most commonly used benchmark instances for single-vehicle-
product DSIRP, our algorithm outperforms the state-of-the-art algorithm. The experimental
results show that the proposed algorithm outperforms the current best results in the litera-
ture for medium and large instances in terms of the quality of the solutions and run times. In
addition, 450 additional instances for multi-product DSIRP are generated. Different demands
distributions are examined in these experiments, namely Normal distribution, Poisson distri-
bution for demand occurrence, combined with demands of constant size; Stuttering Poisson
distribution and Negative Binomial distribution. Results confirm the efficiency of the proposed
algorithm and highlight the benefits of both LT and substitutions on the supply chains overall.

The remainder of the paper is structured as follows. Section 2 presents related works.
After describing the problem in Section 3, a mathematical formulation is provided in Section
4. In Section 5, a matheurstic based on hybridisation of mathematical modeling, a Genetic
Algorithm and Deep Reinforcement learning is described. Section 6 provides computational
experiments. We present conclusions and perspectives in Section 7.

2. Related work

First, we describe the Inventory Routing Problem (IRP) and its classifications, then papers on
IRP with uncertainty are categorised, and finally, papers addressing IRP with transshipment
are discussed.
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2.1. Inventory Routing Problem

IRP includes inventory management, vehicle routing problem (VRP), and delivery scheduling
decision making problems (Coelho et al., 2014b). Suppliers can reduce the overall costs of their
activities in order to achieve a competitive advantage by integrating their routing, inventory
and distribution decisions instead of independently optimising them. Such decisions can be
streamlined by introducing a vendor managed inventory (VMI) approach, which incorporates
replenishment and distribution processes, resulting in overall logistics cost reduction. In Coelho
et al. (2012a), IRP is classified according to:

(1) the number of customers and suppliers:
(a) one-to-one if only one supplier serves one customer (Dror and Levy, 1986).
(b) one-to-many, in the most common cases of one supplier and several customers (Bell

et al., 1983; Burns et al., 1985; Abdelmaguid, 2004).
(c) many-to-many, which occurs less often, with multiple suppliers and multiple cus-

tomers (Christiansen, 1999; Ronen, 2002).
(2) routing can be direct if there is only one client per route, multiple if there are multiple

clients on the same route (Zhao et al., 2008), or continuous, as in several maritime
applications, where there is no central depot (Savelsbergh and Song, 2008; Hewitt et al.,
2013).

(3) pre-established inventory strategies to satisfy customers. The two most popular are the
policy of the Maximum Level (ML) and the policy of Order-Up to level (OU). The
replenishment level is flexible under an ML inventory strategy, but is restricted by the
resources available to each customer (Savelsbergh and Song, 2008; Coelho and Laporte,
2013). Under an OU policy, the quantity delivered is required to fill its inventory capacity
whenever a customer is visited (Archetti et al., 2007a). If the inventory is allowed to
become negative, back-ordering will take place and the corresponding demand will be
served at a later period (Abdelmaguid et al., 2009). If there is no back-order, the extra
demand will be considered as a loss of sales (Mirzaei and Seifi, 2015). In both cases, a
penalty for the shortage can be applied.

(4) composition and size of the fleet. The fleet can be homogeneous or heterogeneous, and
the number of available vehicles can be set at one, set at many or unconstrained (Zhao
et al., 2008; Coelho et al., 2012a).

In all of these papers, only one product is considered, whereas many VMI applications are con-
cerned with multiple product distributions. Few papers address the multi-product inventory
routing problem (MPIRP) (Coelho and Laporte, 2013). Most of the applications emerge in
maritime logistics: Bertazzi and Speranza (2002); Grønhaug et al. (2010); Christiansen et al.
(2011); Stålhane et al. (2012). Non-maritime cases include for example the delivery of perish-
able goods (Dehghani et al., 2021; Hssini et al., 2016), the transportation of gas by tanker
trucks (Bell et al., 1983), the production and the distribution planning in gas filling industry
(Strack et al., 2011), and the vehicle parts industry (Alegre et al., 2007).

2.2. IRP with uncertainty

IRP can be classified into four categories depending on the nature of the input data: (1)
static and deterministic; (2) dynamic and deterministic; (3) static and stochastic and (4)
dynamic and stochastic. Dynamic IRP (DIRP) differs from the static IRP (SIRP) in that the
demands are known before planning in SIRP, while in DIRP demands are gradually revealed
over time (Bertazzi et al., 2013). Stochastic and static IRP (SSIRP), is similar to the static
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IRP except that the customer demand is known in a probabilistic sense (Bertazzi et al., 2013).
In a dynamic and stochastic IRP (DSIRP), the objective is not to deliver a static result but a
solution policy using the information revealed, outlining which measures need to be performed
as time passes (Coelho et al., 2014a).

According to Coelho et al. (2014b), solving stochastic DSIRP relies on finding a solution
policy which consists of one of the following:

(1) optimising a static instance whenever new information becomes available.
(2) applying a static algorithm only once and then re-optimising the problem through a

heuristic whenever new information is made available.
(3) taking advantage of the probabilistic knowledge of future information and making use

of forecasts.

Yu et al. (2013) solve a SSIRP with split delivery using a hybrid approach based on La-
grangian relaxation and local search improvement. Solyalı et al. (2012) solve a single product
SSIRP with backorders. Authors apply a branch-and-cut algorithm for the robust proposed
formulation. Bertazzi et al. (2013) address the same problem under an OU policy and consider
shortage to be allowed. Authors present a dynamic programming formulation and a hybrid
algorithm based on roll-out algorithm and a heuristic method. Huang and Lin (2010) solve
a multi-item SSIRP using the conventional ant colony optimisation algorithm. Coelho et al.
(2014a) propose an adaptive large neighborhood search with reactive and proactive policies
to solve a single vehicle single product DSIRP with transshipment. Finally, Roldán et al.
(2016) extend the work of Coelho et al. (2014a) by addressing the robustness of inventory
replenishment and customer selection policies.

2.3. IRP with transshipment

Coelho et al. (2012b) are, to the best of our knowledge, the first authors to propose the
concept of transshipment within inventory-routing (IRPT). Authors propose a mixed-integer
linear program to model a single-vehicle and single-product IRPT. Transshipment is allowed
either from the manufacturer to customers or between customers. Lefever et al. (2018) model
the same problem as in Coelho et al. (2012b) and strengthen their formulation by proposing a
set of valid inequalities for IRPT based on the existing valid inequalities for the IRP, bounds,
reformulation and variable eliminations on the linear relaxation of the problem of concern.
Peres et al. (2017) model a multi-period, multi-product IRPT and use a Randomized Variable
Neighbourhood Descent to solve the problem. Hssini et al. (2016) address MPIRP under a
static and deterministic demand in a blood supply chain. The authors consider transshipment
of blood products between hospitals and substitution between blood groups. On stochastic
demand, Dehghani et al. (2021) develop a mathematical model that decides on transshipment
under static and stochastic demand to reduce total costs, as well as shortages in a blood
supply chain. Achamrah et al. (2021) model a two-level spare parts supply chain under static
and stochastic demands. The authors consider transshipment of spare parts between depots
and substitutions between original equipment manufacturer and pattern parts. Chrysochoou
et al. (2015) propose a two–stage programming model in which transshipment is considered
as a recourse action to address a single product and vehicle DSIRP. Coelho et al. (2014a)
address the dynamic and stochastic version of the problem studied by Coelho et al. (2012b).
Under OU and ML policies, the problem is solved using either a proactive or reactive policy all
implemented in a rolling horizon fashion. In the proactive policy, once forecasts on demands
are obtained, routes are constructed and LT takes place after the demand is realised to re-
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duce shortages. The reactive policy (or wait and see policy) observes the state of the system
and makes decisions accordingly. It is defined as an (r, S) replenishment system under which
whenever the inventory reaches the reorder point r, it triggers a replenishment order to bring
the inventory position up to S. Routing are constructed based on the threshold r, and as in
proactive policy, LT takes place when demands are revealed. Authors also use an adaptive
large neighborhood search to determine routing and exact method to determine the quantities
to be transshipped. The setting of our problem description follows that of this paper.

2.4. Paper main contributions

Based on this literature review, apart from promoting transshipment between customers to
avoid shortages of products, none of the existing papers incorporate products substitution
within a dynamic and stochastic setting. The present paper extends the work of Coelho et al.
(2014a) on a single product and single-vehicle DSIRP by addressing a more realistic configu-
ration of the problem at hand. In the following, we study a one-to-many multi-product DSIRP
under an ML policy and in which customers’ demand follows a probability distribution which
values of parameters are revealed over time. Moreover, we propose a model that integrates
substitutions along with transshipment as alternatives to sidestep shortages at the customer
level. As for resolution approach, the present study also contributes to existing literature by
combining Genetic Algorithm and Deep Reinforcement Learning technique. The latter is used
to analyse data related to the decision and the objective spaces that have been visited during
the search process, moves and recombination. With the help of Deep Q-learning, useful knowl-
edge is extracted and used to enhance the search performance and speed of the metaheuristic.
Applied on a benchmark of 150 instances with up to a maximum 200 customers and 20 as
number of periods for a single-product DSIRP and on a set of 450 generated instances for
multi-products, the resolution approach obtains results that are advantageous compared to
results stemming from the state-of-the-art algorithm, thus, proving its efficiency.

3. Problem description

The following problem description follows that of the paper of Coelho et al. (2014a) developed
for a single-vehicle-product DSIRP. Our multi-vehicle-product DSIRP with Transshipment
and Substitution (DSIRPTS) is defined on a graph G = (N ,A), where N is the vertex set
indexed by i ∈ {0, ..., n} and A = {(i, j) : i, j ∈ N , i 6= j} is the edge set. Vertex 0 represents
the manufacturer’s central warehouse (CW), and the set N0 = N\{0} denotes the customers.
The planning horizon length is T with discrete time periods t ∈ H = {1, ..., T}. The demand
dpit each customer i ∈ N0 has to satisfy for product p ∈ P = {1, ...,m} per period t ∈ H is a
random variable Dpit per stock keeping unit (SKU). Moreover, each customer and the central
warehouse, i ∈ N , incur unit inventory holding costs, hpi per product p ∈ P, with inventory
capacities Ki. Inventories are not allowed to exceed the holding capacity and must be positive.
We further assume the CW has enough inventory to meet all demand during the planning
horizon. At the beginning of each period, at each location i ∈ N , the current inventory levels
Ipi0 of the product p are known.

A set of homogeneous vehicles v ∈ V = {1, ..., k} is available, each with a capacityQ in terms
of SKU with routing cost cij associated to all (i, j) ∈ A. Direct deliveries along with multiple
routing are permitted to guarantee that all planned deliveries are met (before demands are
revealed). LT can occur when it is profitable to ship products between customers. LT between
customers and direct shipment from CW to any customer are assumed to be outsourced and
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the relative unit cost can be expressed as αcij , where α > 0. α is used to express the fact that
outsourced operations are volume-dependent rather than distance-dependent (as this is how
often carriers define the terms of contracts).

The unit cost of substituting a product p by s ∈ P is aps. All possible combinations
according to the products’ compatibility are represented by ops, which is equal to 1 if a product
p is compatible, according to the customer, with a product s, and 0 otherwise. Compatible
products can be used as substitutes to satisfy customer demand when preferred products
are not available. We assume that the substitution of products is not bi-directional. That
is, a product p is substituting product s but the inverse is not necessary implied. We also
assume that the CW distributes multiple products including substitutes, and deliveries and
transshipment can be performed during the same time period. The lost sales cost which is
associated with the shortage of a product p at the customer i is fpi. Finally, we assume that
the manufacturer has enough inventory of products to service its CW and that the quantity
of product p shipped from the manufacturer to the CW in period t is expressed by gpt. As in
Coelho et al. (2014a) and Archetti et al. (2012), we assume that gpt is used only to account
for inventory costs at the CW.

Regarding the sequence of the operations, we assume that first, the decisions related to
routing, including direct shipments, are determined. Second, after demands are realised, LT
and possible substitutions are performed to sidestep, as much as possible, shortages at the
level of each customer. Decisions variables are as follows:

• Ipit the inventory level of product p at node i ∈ N at the end of a period t.
• qpitv the quantity of product p delivered by vehicle v from the CW to the node i ∈ N

in a period t.
• wpijt the quantities of product p carried by the outsourced carrier from the the node
i ∈ N to j ∈ N , in a period t.
• lpit the lost sales quantity of product p at customer i ∈ N0 in a period t.
• zspi are defined for all osp = 1 as the quantity of a product s substitute for product p

used at the customer i in a period t to satisfy a part of the unsatisfied demand.

The inventory level at the end of each period at customer i is then:

Ipit = Ipit−1 + lpit +
∑

j 6=i∈N0

(wpjit − wpijt) +
∑

s 6=p∈P
(zspit − zpsit) ∀p ∈ P, i ∈ N0, t ∈ H

(1)

The objective function is to minimize the total cost which includes inventory holding, lost
sales, substitutions, transshipment and routing costs:

min
∑
t∈H

∑
i∈N

∑
p∈P

hpiIpit +
∑
t∈H

∑
i∈N0

∑
p∈P

fpilpit+∑
t∈H

∑
i∈N0

∑
p,s∈P

aspzspit + α
∑
t∈H

∑
i,j∈N0,i 6=j

cij
∑
p∈P

wpijt + Ct
(2)

where Ct is the cost of the routes performed in a period t. In the following, we present how
the DSIRPT is solved using a reactive policy as in (Coelho et al., 2014a).
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[A numerical example]A numerical example with the CW and 6 customers.

Figure 1. A numerical example.

4. Solution policy

Reactive policy, also known as the "wait and see" policy, consists of observing the state of
the system in order to make decisions regarding routing, transshipment and substitution. As
in (Coelho et al., 2014a) we adopt an (rpit, Spit) replenishment system in which anytime the
inventory level of a product p reaches a reorder point rpit, a replenishment order to visit a cus-
tomer i is triggered so that the inventory level is brought up to a value Spit. Routing, including
direct shipment, are constructed accordingly (Routing Model RM) in each period t. The objec-
tive is to deliver the quantities of products that have been determined using RM. Then, when
visiting customers, the product p’s demand is revealed in a period t and LT and substitution
take place if the available inventory is insufficient to meet this demand (Transshipment and
Substitution Model TSM). This is implemented in a rolling horizon framework.

Figure 1 provides a numerical example. Notations of the model are summarized in Table 1.
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Table 1. Notation summary
Sets

H Planning horizon indexed by t
V Set of CW’s vehicles indexed by v
P Set of products indexed by p

Routing model
Parameters

cij Transportation unit cost associated to regular shipment using CW’s vehicles for all (i, j) ∈ A
α Discount factor 0 < α < 1 used to represent the cost associated to the outsourced operations
Q CW’s vehicles capacity
Ip00 Inventory level at beginning of the planning horizon of a product p at CW (node 0)
gpt Quantity of a product p supplied to CW in period t
rpit Reorder point for product p, at customer i and period t
upit Expected demand of product p in period t
σpit Standard deviation of the demand of product p in period t
β Shortage probability
Υβpt β-order quantile of the demand distribution for product p
Ipit−1 Inventory level of product p at customer i at the beginning of period t (before the demand is revealed)
d′pit Quantity of product p that should be delivered to customer i in period t (using both regular and

direct shipment/ before the demand is revealed)
Decision variables

qpitv Quantity of product p delivered by vehicle v of CW to node i ∈ N in period t
wp0it Quantity of product p carried by the outsourced carrier from CW to node i ∈ N0, in period t
Ip0t Inventory level of a product p at CW (node {0}) at the end of period t
xijv Equal to 1 if the arc (i, j) ∈ A is visited by vehicle v in period t; 0 otherwise
yitv Equal to 1 if a customer i is visited by vehicle v in period t; 0 otherwise

Transshipment and substitution model
Parameters

hpi Unit inventory holding cost of product p at customer i ∈ N0 in period t
fpi Unit cost associated to the lost demand of product p at customer i ∈ N0 in period t
asp Unit cost associated with the substitution of a primary preferred product p by a substitute s
Dpit Random variable associated to revealed demand of product p in period t at node i ∈ N0

Ki Maximum inventory capacity at customer i ∈ N0

Ipi0 Inventory level of product p at customer i ∈ N0 at beginning of the planning horizon
osp Equal to 1 if a substitute product s is compatible with a primary preferred product p, and 0 otherwise

Decision variables
Ipit Inventory level of a product p at a customer i after the demand is revealed and the performance of

transshipment and substitutions at the end of period t
wpijt Transshipment quantity of product p carried by the outsourced carrier from customer i ∈ N0 to the

customer j ∈ N0, in period t after the demand is revealed
zspit Quantity of product s substitute for product p used at the customer i in period t to satisfy a part of

the unsatisfied demand (defined for all osp = 1)
lpit Lost sales quantity of product p at customer i ∈ N0 in period t when the demand is revealed and

performance of transshipment and substitutions

Note that the part of the satisfied demand of product p is represented by the quantity zppi
of the product p used as a substitute of itself.

4.1. Routing model

Under ML policy, CW can freely decide on the quantity to supply the customer with, restricted
only by the customer’s inventory capacity and by the threshold rpit. This quantity defines the
parameter d′pit that is proportional to max[0, rpit−Ipit−1], where Ipit−1 is the inventory level
at the beginning of a period t. rpit is defined as the expected demand during a lead time L
(which is equal to 1 as deliveries taking place in a period t can be used to satisfy demand
at period t), plus a safety stock which depends on demand variability, L and target service
level. As in Coelho et al. (2014a), we assume a normally distributed demand. rpit can be then
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computed as follows:

rpit = upit + Υβptσpit (3)

where upit in a given period t is an estimate of the expected demand of product p at the
customer i and σpit the related standard deviation. β is the shortage probability and Υβpt is
the β-order quantile of the demand distribution for the product p. These values as well as rpit
are updated in each period t.

To construct vehicle routing in each period t, a mixed-integer linear program (MILP) is
proposed. The objective is to decide which customer is allocated to which vehicle, the quantities
delivered at each node, and direct shipments, if any.

For each period t, the RM is formulated as follows :
Objective function OF of routes X:

min

∑
v∈V

∑
i,j∈N ,i 6=j

cijxijvt + α
∑
i∈N0

c0i

∑
p∈P

wp0it

 (4)

Subject to:

∑
v∈V

qpitv + wp0it = d′pit ∀p ∈ P, i ∈ N0 (5)∑
i∈N0

∑
p∈P

qpitv ≤ Q ∀v ∈ V (6)

∑
p∈P

qpitv ≤ Qyitv ∀i ∈ N0, v ∈ V (7)

∑
j∈N ,i 6=j

xijtv +
∑

j∈N ,i 6=j
xjitv = 2yitv ∀i ∈ N , v ∈ V (8)

∑
i∈S,

∑
j∈S,i 6=j

xijtv ≤
∑
i∈S

yitv − yιtv ∀S ⊆ N0, ι ∈ S , v ∈ V (9)

Ip0t = Ip0t−1 −
∑
i∈N

∑
v∈V

qpitv −
∑
i∈N

wp0it + gpt ∀p ∈ P (10)

qpivt, wp0it ≥ 0 ∀p ∈ P, i ∈ N0, v ∈ V (11)
xi0tv ∈ {0, 1, 2} ∀i ∈ N0, v ∈ V (12)
xijtv ∈ {0, 1} ∀i, j ∈ N0, v ∈ V (13)
yitv ∈ {0, 1} ∀i ∈ N0, v ∈ V (14)

The objective function (4) is to minimise the cost of routing and direct shipments. Con-
straints (5) defines the total quantity supplied to a given customer d′pit with respect to the
delivery modes. Constraints (6) ensure that vehicle capacity is not exceeded and constraints
(7) stipulate that CW’s vehicle supplies quantities only to customers allocated to a visit.
Constraints (8) and (9) are respectively degree and sub-tour elimination constraints. The con-
servation conditions of inventory at the central warehouse are expressed by constraints (10).
Constraints (11)-(14) state the conditions of non-negativity and integrality on the variables.
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4.2. Transshipment and substitution model

After the routing decisions have been constructed based on the (rpit, Spit) system, in TSM, the
objective is therefore to use transshipment and substitution as emergency measures whenever
demands that have been revealed exceeds the quantity of products made available to each
customer. In TSM, an inventory level Ipit−1 refers to the initial inventory per product at the
beginning of each period of the rolling horizon. That is, TSM is solved for each period t after
demands have been revealed.

For each period t, TSM is formulated as follows:

min

∑
i∈N0

∑
p∈P

hpiIpit +
∑
i∈N0

∑
p∈P

fpilpit +
∑
i∈N0

∑
(p,s)∈P

aspzspit + α
∑

(i,j)∈N0,i 6=j

cij
∑
p∈P

wpijt

 (15)

Subject to:

Ipit−1 = Ipit−1 + d′pit −Dpit ∀p ∈ P, i ∈ N0 (16)

Ipit = Ipit−1 + lpit +
∑

j 6=i∈N0

(wpjit − wpijt) +
∑

s 6=p∈P
(zspit − zpsit) ∀p ∈ P, i ∈ N0 (17)

0 ≤ Ipit ≤ Ki ∀p ∈ P, i ∈ N0 (18)

I ′pit−1 = Ipit−1 +
∑

s 6=p∈P
(zspit − zpsit) ∀p, s ∈ P, i ∈ N0 (19)

0 ≤ lpit ≤ −min[0, I ′pit−1] ∀p ∈ P, i ∈ N0 (20)

0 ≤ wpijt ≤ min[max[0, I ′pit−1],−min[0, I ′pjt−1]] ∀p ∈ P, i, j ∈ N0 (21)

The objective function (15) is to minimise the cost of inventory holding, lost sales, substi-
tution and transshipment costs. Constraints (16) define actual inventory level after demands
is revealed. Constraints (17) state that the inventory level at the end of period of a product
p at the level of each customer i is computed using the actual inventory level at i, quantities
transshipped from and to customer i and the difference between the quantity of product s
used as substitute of p and the quantity of p used as a substitute of the other products. Con-
straints (18) impose bound on inventory level. Constraints (19) define the inventory level after
products’ substitutions have taken place. Constraints (20) state that if the initial inventory
of a product p is non-negative, both boundaries are equal to zero, and thus lpi = 0, i.e. no
demand is lost; otherwise the number of lost units is maximum -I ′pit− 1. Constraints (20)
state that if the initial inventory of a product p is non-negative, then no demand is lost, and
both boundaries are equal to zero; otherwise, a minimum of zero and a maximum of I ′pit−1
units are lost. Similarly, for each product p, constraints (21) place limits on the transshipment
arc flows. For customers i and j, there are four possible combinations of inventory levels, all
of which can be managed by these constraints:

• I ′pit−1 < 0 and I ′pjt−1 < 0 : no transshipment is possible since there is not enough
inventory to ship to j.
• I ′pit−1 ≥ 0 and I ′pjt−1 < 0 : Ipjt−1 is the upper bound on the arc of the emergency

transshipment from i to j.
• I ′pit−1 < 0 and I ′pjt−1 ≥ 0 : no transshipment is needed since customer j does not need
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LT and i does not have enough inventory.
• I ′pit−1 ≥ 0 and I ′pjt−1 ≥ 0 : no transshipment is needed since customer j has enough

inventory.

5. Genetic Algorithm and Deep Reinforcement Learning

The classical Vehicle Routing problem (VRP) is NP-hard (Laporte, 2009). Consequently, exact
methods can fail to find optimal solutions for large-size problems. In view of the complexity
of the RM, our approach is, therefore, to use first a metaheuristic, namely Genetic Algo-
rithm (GA) to determine routing decisions. Unlike Neighborhood Search Algorithms known
for their propensity to deliver solution which are only local optima, GA is an efficient compu-
tational tool which known for its simplicity, great global search ability and adaptable topology
(Baker and Ayechew, 2003). On the other hand, metaheuristics in general and GA in partic-
ular, through their iterative search processes generate a lot of data that can be turned to
explicit knowledge if coupled with machine learning models (Talbi, 2020). This data relates
to decision-making solutions and the objective spaces visited during the search process, solu-
tion or trajectory sequence, successive solution populations, movements, recombination, local
optima, elite solutions, bad solutions, etc. In fact, machine learning techniques may assist in
analyzing this data, learning useful knowledge and guiding to improve metaheuristics’ search
performance and speed. Thus, techniques for metasearch are data-driven, well informed and
therefore smarter. In this paper, to speed up our GA we use Deep Q-learning (DQ) which
combines reinforcement learning (RL) and deep learning techniques. We further explain these
steps in the following sections.

Once RM is solved in the current period, the solution is used as a parameter for TSM
which is solved exactly using CPLEX with default parameters. To do so, we use a matheuristic
(noted DQ-GA) in a rolling horizon framework which hybridises the exact method and GA.
The pseudo code of this procedure is provided in Algorithm 1.
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Algorithm 1 DQ-GA executed for each period t
1: initialise
2: Input: RM’s parameters, GA’s parameters, DQ’s parameters
3: G ← Generate an initial population using 2-opt heuristic
4: for all X in G do
5: F (X) ← 1

OF (X)

6: Execute the constraints violation procedure
7: end for
8: repeat
9: Select chromosomes from G

10: Execute the crossover operator based on DQ
11: Execute mutation operator based on DQ
12: Measure the fitness value F (X) of the newly created chromosomes
13: Execute the constraints violation procedure
14: Execute cloning operator for G
15: G ← Construct new population comprising the 20% best chromosomes of the previous

population and newly created chromosomes
16: until no improvement of the solution is noted or a time limit is reached
17: Retrieve the best solution found for RM and use the obtained values as parameters in

TSM
18: Solve TSM using CPLEX
19: return transshipment, substitution and inventory-related solution values

We now describe these steps in detail.

5.1. Genetic Algorithm

The algorithm begins with a set of initial solutions called population. For each slice time of the
rolling horizon, each individual in the population is referred to as a chromosome, reflecting
the sequence of assigned customers to each vehicle. During each generation, the fitness of
each solution is measured, and solutions are evaluated and selected for cloning, crossover and
mutation operations based on their fitness (computed using objective function values).

5.1.1. Chromosomes encoding

In this paper, each chromosome X is represented using a one-dimensional array of integer
values, representing the nodes (customers) to be visited (see Figure 2). A repair heuristic is
used to check the RM constraints. It ensures for instance that no customer with a non-zero
d′pi is missing on the routes or it belongs to several routes.

5.1.2. Generating the initial population

To generate an initial population for GA, we use a variant of 2-opt heuristic, an algorithm
based on the conditional permutation of nodes (Sabba and Chikhi, 2012). The heuristic begins
by randomly selecting two nodes in a tour and allowing permutation between segments as long
as the total cost is reduced. Also, this permutation relies on inter-route moves. That is, we
permit swapping nodes that belong to different tours. This process is repeated until tours are
optimised.
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[Representation of a
chromosome]Representation of a chromosome for an RM with 12 customers, 2 vehicles,

routes and direct shipment.

Figure 2. Representation of a chromosome for an RM with 12 customers and 2 vehicles.

5.1.3. Fitness function

The fitness function of a chromosome X is calculated from the objective function OF (X) of
RM as follows:

F (X) =
1

OF (X)
(22)

5.1.4. Genetic Operators

In this algorithm, the following operators are used:

• Cloning operator which retains the best solutions found so far. The trade-off between
the performance of the algorithm and its speed led to pick the best 20% of the present
population of chromosomes to be copied into the next generation.
• Parent selection operator which uses a binary selection process that begins with two

chromosome pairs. Two chromosomes are selected randomly from the existing population
each. For crossover operations, the two best chromosomes are selected for each pair. This
leads to two children, each counting in the new population.
• Crossover operator which is necessary to mate the chromosome pairs so that they pro-

duce their offspring. This paper implements double-point crossover to guarantee the
preservation of the best chromosomes. A crossover is performed on the basis of a PC
probability.
• Mutation operator is a second operator used to explore new neighbours. It consists of

producing random alterations in different chromosomes. A reversal mutation is used since
it is shown to be effective (Zhang et al., 2010). A random set of two nodes are selected,
and the nodes between are reversely ordered. Just like the crossover, the mutation process
is performed with a PM probability. Accordingly, each node in chromosome is checked
for possible mutation by generating a random number between zero and one, and if this
number is less than or equal to PM , the node value is changed.

5.1.5. Constraints violation penalty

In order to respect the constraints of the model, a simple penalty strategy is adopted. In
other words, the feasibility of each chromosome is tested in light of the violations of the model
constraints during the generation of initial solutions along with the crossover and mutation
operations. If there is an infeasibility in the solution, then the value of the fitness function of the
corresponding chromosome is correlated with a penalty. In this way, infeasible chromosomes
are less likely to integrate the next generation of chromosomes.
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GA stops when a time limit is reached or no improvement in the quality of the solution is
noted.

5.2. Deep Reinforcement

In this section, we present the deep RL algorithm used to speed up the convergence of GA.

5.2.1. Q-learning

Q-Learning is an RL off-policy algorithm characterised by its strong self-adaptability and its
environmental feedback signals (Alom et al., 2019). The main idea is to use the feedback
signal to adjust an agent’s action policy to optimise its choice when interacting with an
environment. By performing actions (i.e., genetic operators), the agent (a chromosome here)
arrives in different conditions known as states. Actions contribute to rewards that can be
positive and negative. The idea behind Q-learning consists of putting the agent in sequences
of state-action pairs, observing the resulting rewards, and adjusting the predictions of a table
(called a Q-table) to those rewards until correctly predicted by the best policy. The "Q" stands
for quality, which measures how beneficial a given action is in achieving a potential reward.

An agent communicates with the environment in one of two ways: exploration and exploita-
tion (Silver, 2015). Exploration consists of allowing the agent to choose randomly the action
it will take regardless of the reward, while in exploitation, the agent uses the Q-table and
chooses an action depending on the maximum reward. Initially, the exploration rate noted ε
(also called ε-greedy policy) is set to 1 as all the actions have a Q-value of 0. As the agent starts
to learn more about its environment, ε is decayed by a certain rate so that the probability of
exploration decreases.

5.2.2. Deep Q-learning

Q-learning is a very simple and efficient algorithm for our GA to construct a Q-table with.
This allows the latter to figure out exactly the best actions to perform for crossover, cloning
and mutation operators in terms of the best moves. However, it could be time consuming since
the amount of memory needed to save and update the table will increase as the number of
states increases and the amount of time needed to explore each state to build the appropriate
Q-table would be impractical. Since computational time is our primary concern, we estimate
these Q-values with deep learning models, namely neural networks, which is known as DQ
(Adams et al., 2021; Zhang et al., 2010). Indeed, to approximate the Q-value function, we use
a neural network. This function maps a state to the Q values of all the actions that can be
taken from that state. It learns the network’s parameters (weights) such that it can output
the optimal Q-values. Choosing the correct action means comparing the possible rewards of
each action and choosing the best one.

5.2.3. DQ exploitation

As it is depicted in Figure 3, DQ starts with random Q-value estimations and uses the ε-
greedy policy to explore the environment. DQ improves its Q-value estimations by using the
same concept of dual actions, a current action with a current Q-Predicted value and a target
action with a Target Q-value. As the network and its weights are identical, the direction of the
predicted Q-Target values also changes; they remain unchanged but may fluctuate following
each update. The stabilisation of the Q-Target values is ensured by using a second network
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which is not trained. The learned weights from the Q-Predicted Network are copied to the
Q-Target network after a pre-set number of steps noted C-iteration. From Figure 3, we can
see that there are two neural networks in the DQ architecture (Q-Predicted and Q-Target)
and an agent Experience Replay. Replay Experience interacts with the environment for data
generation for Q-network training. This information contains all moves carried out by GA’s
operators and saved as <st,a,R,st’> tuples (see notation below Equation 23). Then a sample
is picked randomly from this data such that it consists a mix of older and more recent samples.
This batch of training data is used in the Q-Predicted and Q-Target networks. The Q-Predicted
network takes the current state and move out of each sample, and for that particular move
predicts the Q value. Q-Predicted value, Q-Target value and the observed data sample reward
are used to compute the loss for the Q network training (see Equation 23). To reduce variance
and guarantee the stability of the algorithm, in C-iteration, a batch of data is selected from
all prior experiences.

[DQ architecture]Two neural networks in the DQ architecture (Q-Predicted and Q-Target)
and an agent Experience Replay that interacts with the environment for data generation for

Q-network training.

Figure 3. DQ architecture

Loss = [Rt+1 + γmax
a

(θTQ(st′, a′)− θTQ(st, a))]2 (23)

Where:

• γ: discount-rate parameter. It measures how much weight the future awards are given.
• a, a′: current and future action respectively.
• st, st′ : current and future state respectively.
• Rt+1: future reward.
• Q(st, a): learned action-value function.
• θT : Transpose matrix of network weights.

Finally, to further speed up the GA, all genetic moves we have gotten as of yet are stored.
Instead of "starting from scratch" every time the algorithm is run to solve the RM either for
the current instance, or for a different period, or for a new given instance, which happens to
be similar to the chromosomes that have already been treated, we use the “memory” to rapidly
exploit the best optimal policies. The selection of the best moves depends on how the instance
to be solved is similar to the previously addressed instances. K-Nearest Neighbours algorithm
is used to determine clusters of instances that are closer to a given “new and unseen” instance
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(Mohammed et al., 2017).

6. Computational Results

6.1. Experimental design

First, to test the effectiveness and validate the proposed resolution approach, we perform ex-
periments on a set of well-known benchmark instances developed for the single-vehicle and
product DSIRP with and without transshipment. It is composed of 150 instances proposed
by Coelho et al. (2014a): 5 to 200 customers and planning horizon of 5 to 20 periods for
a total of 10 instances for each set of customers. The instances follow some standards de-
fined for the deterministic IRP instances of Archetti et al. (2012, 2007b), namely the mean
customer demand, initial inventories, vehicle capacity and distances matrix. The demand
follows a normal distribution, the mean of which is generated as an integer random num-
ber after an interval of discrete uniform distribution [10, 100], and the standard deviation
is generated as an integer random number after an interval of discrete uniform distribution
[2, 10]. A negative demand value, if generated, is replaced by zero. The maximum inven-
tory capacity is a multiple of the average demand, and initial inventories are equal to the
maximum capacity minus the average demand. In the interval [0.02, 0.10], holding costs are
generated randomly from a continuous uniform distribution, and the shortage penalty cost
equals 200 times the cost of holding. Finally, the unit cost α is set to 0.01 and the vehi-
cle capacity to 1.5

∑
i∈N0

∑
p∈P upi. Where u is the expected demand. All instances avail-

able from: https://www.leandro-coelho.com/instances/inventory-routing/ and solutions are
retrieved from Coelho et al. (2014a). Finally, a fair comparison between algorithms, hardware
benchmarking is used in order to compare the speed of the algorithms. The reported CPU
of the matheuristic is thus recalculated to align the computational time with regards to the
performance of the computer used in Coelho et al. (2014a). Further information on the CPU
speed of both computers can be found on: www.cpubenchmark.net.

Second, to evaluate the DSIRPTS for multi-products and multi-vehicle and highlight the
benefit of transshipment and substitution on the supply chain’s overall performance, we con-
sider a set of randomly generated instances. The generation precisely follows the standards
defined for the single-vehicle-product DSIRP. As the supplier has a fleet of homogeneous vehi-
cles, the vehicle capacity no longer needs to be expressed as a function of the expected demands.
In this paper, we consider a set of 10 homogeneous vehicles, each having a capacity of Q=2000
units. For products’ substitution, we consider a constant unit cost of c = 0.1$/product (for
identical products: s = p, c = 0$/product). All steps of optimisation were carried out with a
personal computer (MacBook Pro, macOS Big Sur, 3.3 GHz Quad-Core Intel Core i7 CPU
with 8 GB of RAM) and with CPLEX 12.9 for the resolution of TSM and Python for RM,
Python and Pytorch for DQ.

6.2. Parameters tuning

Sophisticated optimisation algorithms typically require a large number of parameters to be set
in order to enhance their performance. The immediate purpose of the automated configuration
of the algorithm is to automatically find the optimiser’s best parameter settings. Automatic
configuration of algorithms essentially has the ability to contribute to new design paradigms
for optimisation applications. The Irace package is a software package that implements a vari-
ety of automated configuration procedures (López-Ibáñez et al., 2016). It provides particularly
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iterated racing procedures which have been used effectively to automatically configure var-
ious state-of-the-art algorithms. Irace’s iterated racing processes include the iterated F-race
algorithm and several improvement and extensions. In this paper, a set of training instances
representing the problem (40 instances with 5, 10, 15... 50 customers each) is used to choose
the best algorithm configuration (see Table 2). The selected algorithm configuration can then
be used to solve new instances of the same problem.

Table 2. Parameters tuning using Irace package
Parameters Range Chosen values
Crossover probability PC [0.60,0.81] 0.7
Mutation probability PM [0.33,0.37] 0.34
Population size [100;140] 110
Maximum number of iteration [100;140] 110

6.3. Computational results

6.3.1. Computational results for the single-vehicle-product DSIRP with and without
transshipment

In this section, we present the results of the experiments performed on the set of small to large
scale dataset generated by Coelho et al. (2014a). To assess the performance of the matheuristic,
we compare it with the result obtained using the best known ALNS of Coelho et al. (2014a)
developed to solve a single vehicle-product DSIRP. A statistical analysis using ANOVA is also
conducted in order to assess the randomness or not of the differences between the obtained
results (p-value > 0.05). For each size of instances (small, medium and large) we present the
average total cost and the CPU time in second. Results are summarised in the Table 3.

First, for all 150 instances under consideration, we notice that on average our algorithm
provides better solutions both in terms of CPU and costs than those of Coelho et al. (2014a)
apart from small instances, with a very small gap between the costs. Thus, our algorithm is
found to be competitive and efficient compared to the most known state of the art algorithm
applied to solve a such specific DSIRPT under a reactive policy. Finally, as it is expected, we
notice that sharing inventories between customers helps to significantly reduce the lost sales
and thus total costs.

Table 3. Summary of comparison between the results obtained by Coelho et al. (2014a) and this paper

Instances
Average cost Average CPU (s)

Coelho et al. (2014a) DQ-GA Coelho et al. (2014a) DQ-GA
DSIRP DSIRPT DSIRP DSIRPT DSIRP DSIRPT DSIRP DSIRPT

Small 10,225.9 7,926.7 9,473.6 8,788.9 46.3 44.6 42.7 11.6
Medium 30,360.7 26,527.1 27,797.7 26,244.4 452.7 444.1 125.2 129.0
Large 61,250.2 54,292.4 50,550.0 47,352.2 3,860.1 4,100.1 136.6 127.0

Average 33,945.6 29,582.0 29,273.8 27,461.8 1,453.0 1,529.6 101.5 89.2

6.3.2. Computational results for the multi-vehicle-product DSIRP with substitution and
transshipment

We now evaluate the impact of transshipment and substitution on solution cost for a more
realistic DSIRP. We first consider DSIRP for 20 products and compare the results obtained for
DSIRP without transshipment (DSIRP), DSIRP with transshipment (DSIRPT), DSIRP with
substitution (DSIRPS) and finally DSIRP with transshipment and substitution (DSIRPTS).
Later, we apply the same logic for 40 products. The aim is to confirm the representativeness of
the results, highlight the benefits of both transshipment and substitution and to re-evaluate the

17



accuracy of the proposed algorithm. The generation of the 300 instances (150 for the of 20 and
40 products respectively), follows exactly the standards defined for the single-vehicle-product
DSIRP. Results are summarised in the Tables 4 and 7. Also, for an illustrative purpose, Tables
5 and 6 report the breakdown of total costs namely: transportation, transshipment, inventory,
substitutions and lost sales cost. The nomenclature of instances follows that of Coelho et al.
(2014a): each instance is generated 5 times. 3-4-2 thus refers to the second instance consisting
of 3 customers and 4 periods.

Table 4. Summary of computational results for 20 products

Instances Average cost Average CPU (s)
DSIRP DSIRPT DSIRPS DSIRPTS DSIRP DSIRPT DSIRPS DSIRPTS

Small 112,479.0 90,647.5 88,195.7 73,306.5 169.2 182.3 176.9 141.5
Medium 332,970.5 265,625.6 260,424.7 214,757.3 279.2 280.2 291.0 218.6
Large 601,088.3 490,336.0 472,007.6 389,921.1 307.4 247.4 293.0 263.9
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Table 5. Breakdown of costs for a number of customers varying between 5 and 15 and a number of periods between 1
and 20 (20 products)

Instance Transportation Transshipment Inventory Substitution Lost sales Total cost
5-5-1.txt 12,024 2,812 1,893 2,817 1,549 21,095
5-5-2.txt 11,097 2,672 1,475 1,346 1,025 17,615
5-5-3.txt 7,838 1,537 1,281 980 1,006 12,642
5-5-4.txt 5,720 1,280 757 1,093 526 9,377
5-5-5.txt 10,097 2,253 1,235 1,471 971 16,026
5-10-1.txt 12,646 2,971 1,788 1,426 1,242 20,073
5-10-2.txt 11,991 2,394 1,779 1,580 1,288 19,033
5-10-3.txt 13,341 3,878 2,649 2,113 1,841 23,824
5-10-4.txt 15,118 3,093 2,531 1,972 2,070 24,784
5-10-5.txt 18,028 4,420 2,153 2,784 1,692 29,077
5-20-1.txt 45,864 10,380 6,902 12,110 5,207 80,462
5-20-2.txt 39,415 8,214 5,998 5,421 4,525 63,572
5-20-3.txt 30,386 7,090 4,278 5,662 3,227 50,643
5-20-4.txt 35,879 9,175 4,239 6,056 3,468 58,817
5-20-5.txt 40,886 11,081 5,137 8,319 3,875 69,298
10-5-1.txt 20,962 4,801 2,918 2,478 2,113 33,273
10-5-2.txt 20,618 4,398 2,879 4,206 2,262 34,363
10-5-3.txt 12,048 2,773 1,518 2,169 1,242 19,750
10-5-4.txt 18,588 3,203 2,017 3,267 1,522 28,597
10-5-5.txt 11,948 2,708 2,109 1,682 1,466 19,913
10-10-1.txt 35,697 6,782 5,077 6,491 3,528 57,576
10-10-2.txt 35,077 11,024 5,093 7,276 4,167 62,638
10-10-3.txt 34,773 6,366 3,782 6,055 2,521 53,497
10-10-4.txt 24,531 4,554 2,589 4,622 2,034 38,329
10-10-5.txt 42,985 9,913 5,544 4,708 4,014 67,164
10-20-1.txt 65,252 16,538 10,873 12,285 7,556 112,504
10-20-2.txt 72,421 18,829 10,555 10,602 8,293 120,701
10-20-3.txt 53,299 10,045 6,874 6,156 5,624 81,998
10-20-4.txt 95,696 20,190 12,396 18,857 9,740 156,879
10-20-5.txt 77,009 18,730 12,314 13,914 8,557 130,524
15-5-1.txt 14,952 3,898 2,211 3,118 1,601 25,779
15-5-2.txt 20,843 6,551 3,125 4,618 2,083 37,220
15-5-3.txt 23,444 5,470 3,357 4,470 2,333 39,074
15-5-4.txt 23,209 3,999 2,522 3,994 1,982 35,706
15-5-5.txt 17,191 4,062 3,146 2,365 2,373 29,138
15-10-1.txt 45,246 12,778 7,255 6,795 5,936 78,010
15-10-2.txt 42,919 11,332 6,482 9,470 5,093 75,296
15-10-3.txt 52,269 11,172 6,890 6,745 4,594 81,670
15-10-4.txt 39,809 9,682 5,729 8,271 3,981 67,473
15-10-5.txt 42,037 8,760 6,591 5,442 4,972 67,802
15-20-1.txt 99,142 22,819 13,858 15,821 10,888 162,528
15-20-2.txt 81,608 16,322 15,081 12,948 10,054 136,013
15-20-3.txt 60,237 15,662 9,355 8,084 7,057 100,395
15-20-4.txt 84,307 18,748 12,669 18,724 8,446 142,893
15-20-5.txt 81,834 25,311 12,464 14,934 9,026 143,568
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Table 6. Breakdown of costs for a number of customers varying between 125 and 200 and a number of periods between
1 and 20 (20 products)

Instance Transportation Transshipment Inventory Substitution Lost sales Total cost
125-5-1.txt 72,582 19,355 10,792 10,742 7,499 120,971
125-5-2.txt 99,770 19,568 12,782 19,543 9,256 160,919
125-5-3.txt 92,134 19,199 12,754 15,653 8,863 148,603
125-5-4.txt 62,202 15,016 9,413 15,954 6,541 109,126
125-5-5.txt 84,576 19,936 15,109 20,467 10,941 151,029
125-10-1.txt 131,385 22,639 17,780 16,356 13,970 202,131
125-10-2.txt 191,388 45,219 25,517 43,012 19,250 324,386
125-10-3.txt 185,475 43,572 21,209 29,411 14,738 294,405
125-10-4.txt 109,188 30,885 16,241 26,904 11,761 194,978
125-10-5.txt 142,719 39,671 21,030 22,613 15,864 241,897
125-20-1.txt 352,853 84,343 43,613 55,407 32,901 569,117
125-20-2.txt 321,885 72,258 55,037 67,549 38,246 554,975
125-20-3.txt 283,157 63,710 33,830 39,182 22,553 442,433
125-20-4.txt 287,268 80,183 45,914 55,976 34,637 503,978
125-20-5.txt 326,592 82,114 69,623 52,348 52,522 583,199
150-5-1.txt 120,356 28,471 18,557 16,482 13,438 197,305
150-5-2.txt 82,792 16,409 11,048 16,436 9,040 135,725
150-5-3.txt 99,676 23,551 15,909 19,201 10,606 168,943
150-5-4.txt 90,557 17,948 14,282 13,982 11,685 148,454
150-5-5.txt 96,354 18,108 12,941 15,777 9,762 152,943
150-10-1.txt 136,464 39,078 25,147 26,852 20,575 248,117
150-10-2.txt 232,048 47,699 28,701 40,748 19,134 368,331
150-10-3.txt 145,821 32,631 16,968 30,300 13,332 239,051
150-10-4.txt 259,283 51,857 50,093 37,510 33,396 432,138
150-10-5.txt 241,995 53,425 25,855 31,521 19,504 372,301
150-20-1.txt 309,588 72,400 53,244 66,071 41,834 543,137
150-20-2.txt 359,755 93,279 70,830 60,603 57,952 642,420
150-20-3.txt 363,111 100,932 56,093 52,990 42,316 615,442
150-20-4.txt 397,142 82,076 72,892 54,806 54,988 661,904
150-20-5.txt 411,929 96,771 53,882 52,256 39,018 653,856
200-5-1.txt 114,984 29,564 18,324 17,619 14,397 194,888
200-5-2.txt 100,311 32,008 14,809 24,532 10,724 182,384
200-5-3.txt 122,907 25,612 15,870 21,379 12,469 198,237
200-5-4.txt 114,141 25,111 17,727 19,883 13,373 190,235
200-5-5.txt 108,411 25,614 16,707 21,878 11,138 183,748
200-10-1.txt 227,646 40,976 24,424 42,667 19,984 355,697
200-10-2.txt 208,150 61,240 32,213 39,272 24,301 365,175
200-10-3.txt 189,240 44,606 34,971 41,633 27,478 337,928
200-10-4.txt 335,300 97,476 57,775 68,049 40,149 598,749
200-10-5.txt 397,885 78,037 58,670 64,673 42,485 641,749
200-20-1.txt 519,553 131,680 99,776 78,255 66,517 895,782
200-20-2.txt 459,192 86,299 62,754 75,188 45,443 728,876
200-20-3.txt 533,211 122,726 83,781 78,545 55,854 874,117
200-20-4.txt 492,376 105,623 57,121 94,155 44,881 794,155
200-20-5.txt 509,961 115,646 70,396 68,919 57,596 822,518

We can see from Tables 4, 5 and 6 that the results of comparison confirm that any re-
duction in total cost is made possible by either considering transshipment between customers
or substitution of products. Moreover, considering transshipment combined with substitution
enhances considerably the performance of the overall supply chain. By substituting products,
less inventory is being held and by sharing further their inventory, customers are allowed to
meet better their demands and decrease the lost sales and inventory costs. This is reconfirmed
in the case of 40 products as it is shown in Table 7. On average, both DISIRPT and DSIRPS
may lead to the same results as they both can be used to mitigate shortage, lower inventory
and transportation costs. Combining these two emergency measures allows for a considerable
reduction of costs for all the instances under consideration. Finally, the algorithm again proves
to be efficient and competitive as it allows to find a solution in a reasonably short amount of
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time.

Table 7. Summary of computational results for 40 products

Instances Average cost Average CPU
DSIRP DSIRPT DSIRPS DSIRPTS DSIRP DSIRPT DSIRPS DSIRPTS

Small 958,123.8 814,014.9 808,906.6 643,880.2 396.6 378.1 385.2 386.5
Medium 2,828,370.3 2,427,250.4 2,401,466.8 1,922,767.0 565.4 564.9 517.4 594.4
Large 5,157,985.9 4,389,631.7 4,382,510.6 3,493,632.6 1,127.3 1,176.2 1,123.3 1,192.0

6.3.3. Computational results for other demand patterns

Intermittency of demands of products such as spare part can be characterised by the
infrequent demands that occur at irregular intervals, often of variable size. Modelling
demand from constituent components, i.e. the demand size and inter-demand interval, is
thus preferable. Compound theoretical distributions (which explicitly take into account the
combination of size and interval) are therefore commonly used in these application contexts
(Conceição et al., 2015; Syntetos et al., 2012; Turrini and Meissner, 2019). In this paper,
dpit represents demand that each customer i has to satisfy per product p and per period
t. Different distributions have been studied. We have chosen discrete distributions as they
provide a better fit for intermittent demands compared to the continuous ones. According
to Syntetos et al. (2012) these distributions are: (1) Poisson Distribution (PD) for demand
occurrence, combined with demands of constant size over the planning horizon. (2) Stuttering
Poisson distribution (SPD) which is a combination of a Poisson distribution for demand
occurrence and a Geometric distribution for demand size over the planning horizon. (3)
Negative Binomial Distribution (NBD) which a combination of a Poisson distribution for
demand occurrence and a Logarithmic distribution for demand size over the planning horizon.

For ζ = 0, 1, 2, ... the distribution functions can be written as:
Poisson distribution occurrence PDλ:

PDλ(ζ) =
λζ eζ

ζ!
(24)

Stuttering Poisson distribution SPD(λ,ω)(ζ) :

SPD(λ,ω)(ζ) =
∑

1≤i≤ζ
eζ
λζ

i!

(
ζ − 1

i− 1

)
ωi(1− ω)ζ−i (25)

where λ and ω are the Poisson and geometric distribution parameters.
Negative Binomial distribution NBD(r,l)(ζ):

NBD(r,l)(ζ) =

(
ζ + r − 1

ζ

)
lr(1− l)ζ (26)

where r is the number of successes, and l is the probability of success.
We used the Inverse Transform Sampling (algorithm 2) to generate independent and

identical distributed (i.i.d.) random sample for dpit realizations for each distribution under
consideration.
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Algorithm 2 Inverse Transform Sampling
1: procedure ITS(F ) . F is a distribution function
2: χ ← Generate random number from the standard uniform distribution in [0, 1];
3: ζ ← F−1(χ)
4: end procedure

To get more insight about the advantage of both transshipment and substitution, we conduct
extra experiments on 150 instances generated based on the experimental design. We consider
a set of customers varying between 5 and 200, periods between 5 and 20 and a number of
products of 40. For each customer, period and product, Poisson and geometric distribution
parameters λ and ω as well as the NBD parameters r and l are random numbers generated
between 0 and 1. Table 8 reports the summary of computational results for the different
demand’s distributions under consideration.

Table 8. Computational results for the different distribution patterns

Distribution Instances Average cost Average CPU
DSIRP DSIRPT DSIRPS DSIRPTS DSIRP DSIRPT DSIRPS DSIRPTS

PD

Small 579,620.0 510,199.0 512,898.8 395,199.3 172.5 206.2 185.5 191.6
Medium 1,717,250.6 1,514,218.5 1,515,691.4 1,157,961.0 913.9 895.7 879.7 975.9
Large 3,094,277.0 2,717,394.1 2,692,526.4 2,104,930.6 1,785.5 1,920.2 1,671.7 1,723.1
Average 1,797,049.2 1,580,603.9 1,573,705.6 1,219,363.6 957.3 1,007.4 912.3 963.5

SPD

Small 659,197.4 582,248.4 580,904.5 450,600.6 203.2 183.5 187.6 206.8
Medium 1,870,371.9 1,661,277.5 1,649,561.1 1,281,203.8 201.5 747.4 947.4 939.4
Large 3,590,243.8 3,175,741.8 3,141,875.6 2,407,310.5 1,818.8 1,996.7 1,714.0 1,744.5
Average 2,039,937.7 1,806,422.6 1,790,780.4 1,379,705.0 741.2 975.9 949.7 963.5

NBD

Small 706,205.3 626,912.6 617,771.5 472,025.9 180.1 180.0 219.1 181.3
Medium 2,081,957.6 1,845,195.7 1,820,708.2 1,391,390.4 739.7 827.9 982.4 690.8
Large 3,772,317.6 3,338,938.7 3,287,841.0 2,539,575.3 1,860.2 1,800.6 1,952.2 1,690.9
Average 2,186,826.8 1,937,015.6 1,908,773.6 1,467,663.9 926.7 936.2 1,051.2 854.3

We can notice that allowing transshipment and substitution permit to reduce considerably
the total cost. When these two options are not taken into account, the supply chain experi-
ences a high cost of inventory and loss of sales. Both transshipment and substitution reduce
lost sales and inventory holding costs at the level of each customer. When transshipment is
permitted, results show that it offers a number of advantages: customers receiving the quan-
tity latterly transshipped, are able to satisfy even more demand and consequently reduce lost
sales. Customers from which the transshipment is carried out, are in counterpart able to lower
their inventory holding costs. When the substitution is also allowed along with transshipment,
compared to the other configurations, we observe a considerable reduction of the costs (to
about 32%). In addition to what it can be received through transshipment, each customer is
able to use the quantities of products, if compatible, that could constitute idle stock (which
leads to high holding cost) to meet the demand of other products. Furthermore, by means of
substitution a product of what could be transshipped could be used as a substitute for other
products. As for demands patterns, very low size variability and value of demands (as in the
case of PD), regardless of the average inter-demand interval may be less stressful than the
case when demands experiences high variability and size. Indeed, when demands to satisfy
are higher than the available quantity to promise, there would not be enough quantity for
substitution and transshipment to lessen any possible lost sales. For this reason, the impact
of transshipment and substitution depends whether the distribution of demands to meet may
or not be considered as a stressful scenario.
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7. Conclusions & Perspectives

In this paper, we consider a two-level supply chain. At the upper level, a manufacturer-owned
central warehouse distributes products to a given number of customers (the lower level). We
model the problem as a dynamic and stochastic inventory-routing problem that considers the
two flexible instruments of transshipment and substitution to mitigate shortages. We assume
that lost sales are allowed when shortage occurs. We solve the problem using a new matheuris-
tic which combines the mathematical modeling, the strong global search ability of Genetic
Algorithm and the self-adaptability of the Deep Q-learning. The matheuristic is first applied
to a set of 150 known instances and is found to be competitive and efficient as it enhances
the best known solutions of the single-vehicle-product DSIRP. We later solve the problem for
multi-product-vehicle DSIRP. Four demand distributions have been studied, namely Normal
distribution, Poisson distribution for demand occurrence, combined with demands of constant
size; Stuttering Poisson distribution and Negative Binomial distribution. Regarding the man-
agerial insights, for all the demand patterns under consideration, we demonstrate the benefits
of promoting either inventory sharing or substitutions as emergency measures to sidestep
shortages. In addition, we show that combining these two flexible instruments can be seen as
a viable solution for supply chain managers aiming to improve the system’s wide service level
under dynamic and stochastic demands. Moreover, results show that the impact of transship-
ment and substitution on the overall performance depends on the size variability of demands,
regardless of the average inter-demand interval.

This paper can be expanded to investigate a multi-echelon either of centralised or decen-
tralised supply chains. One can consider non-parametric methods for demand, whereby the
empirical demand distribution is instead directly constructed from the data. The effect of
the forecasting method and the resulting error can also be integrated in the model. Also, a
stochastic optimisation on demands such as sample average approximation could be applied.
In this paper, we have assumed that the lead times are long between the facility and the
central warehouse. Additionally stochastic lead time and and production rate can also be in-
vestigated. Furthermore, it would be interesting to consider a substitution rate instead of a
compatibility matrix. This would allow customers to more explicitly express their preference
with regards to the available products.
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