
DARTFlo - Discrete Adjoint for Rapid Transonic Flows

Theory manual and quick reference guide

Adrien Crovato

Department of Aerospace & Mechanical Engineering
©University of Liège

Abstract

This document provides the mathematical formulation of the main equations implemented in

DARTFlo 1, version 1.2.0, October 2022. For more detailed information about the original

implementation, refer to the author’s PhD thesis [1]. Additionally, more details about the math-

ematical foundation can be found in the journal article [2].

This theory manual and quick reference guide is organized as follows. Section 1 presents the

formulation of the discretized full potential equation and the mesh morphing laws. Section 2

presents the formulation of their partial gradients. Section 3 presents the direct and adjoint

solution procedures. Finally, section 4 gives an overview of the available API as well as their

configuration parameters.

1https://gitlab.uliege.be/am-dept/dartflo, Accessed October 2022.

i

https://gitlab.uliege.be/am-dept/dartflo

Contents

Abstract i

Contents ii

1 Model equations 1

1.1 Full potential . 1

1.1.1 Residuals . 1

1.1.2 Functional . 5

1.2 Mesh deformation . 5

1.2.1 Residuals . 5

2 Partial gradients 7

2.1 Full potential . 7

2.1.1 Residuals . 7

2.1.2 Functional . 10

2.2 Mesh deformation . 11

2.2.1 Residuals . 11

3 Solution procedures 12

3.1 Direct solution . 12

3.2 Adjoint solution . 13

4 Quick reference guide 15

4.1 Available API . 15

4.2 Usage . 16

Bibliography 18

ii

1 Model equations

1 Model equations

This section presents the formulation of the discretized full potential model and mesh morphing

laws.

1.1 Full potential

This section details the formulation of the full potential equation written in residual form, and of

the aerodynamic loads.

1.1.1 Residuals

The steady full potential equation is derived form the Navier-Stokes equations by assuming that

the fluid is inviscid, and that the flow is steady and isentropic. As a consequence, the vorticity

is conserved. Since the freestream flow is irrotational, the whole flow is therefore irrotational

and the velocity derives from a potential ϕ. Considering a domain Ω enclosed by a surface

Γ = Γf ∪Γb, as depicted in Figure 1.1, the full potential equation can be written in weak form as∫
Ω
ρ∇ϕ ·∇ψ dV −

∫
Γ
ρ∇ϕ · n̂ψ dS = 0, ∀ψ ∈ Ω, (1.1)

where ψ is a test function, n̂ is the unit vector normal to Γ pointing inwards, and where the

density ρ is given by the isentropic flow relationship,

ρ = ρ∞

[
1 +

γ − 1

2
M2

∞
(
1− |∇ϕ|2

)] 1
γ−1

. (1.2)

In Equation 1.2, ρ∞ is the freestream density, γ is the heat capacity ratio and M∞ is the

freestream Mach number. Note that the term |∇ϕ| in Equation 1.2, which is the magnitude

of the total velocity, has been normalized by the freestream velocity. An important limitation of

the nonlinear potential equation is the isentropicity assumption, which restricts its use to tran-

sonic flows with embedded weak shocks only. A common upper limit for the local normal Mach

number upstream of the shock is Mn < 1.3 [3].

1

1 Model equations 1.1 Full potential

Body boundary Γb

Farfield boundary Γf

𝑼∞ = [cos𝛼, sin𝛼]

𝛼

Domain Ω

Wake boundary Γw

Figure 1.1: Typical domain used for a finite element computation, illustrated in two dimensions
for simplicity.

The boundary surface Γ is split into a farfield boundary Γf , and a body boundary Γb, as depicted

in Figure 1.1, onto which Neumann boundary conditions are applied. Such boundary conditions

impose a flux through the boundaries of the domain and are naturally recovered in the second

term of the weak formulation of the full potential equation 1.1. Since the derivative of the

potential is the velocity, the weak form of the Neumann boundary condition can be written as∫
Γf

ρ∇ϕ · n̂ψ dS =

∫
Γf

ρ∞U∞ · n̂ψ dS, ∀ψ ∈ Γf∫
Γb

ρ∇ϕ · n̂ψ dS = 0, ∀ψ ∈ Γb

(1.3)

where U∞ is the freestream velocity vector given by,

U∞ =

cosα cosβ

sinβ

sinα cosβ

 , (1.4)

and where α is the angle of attack and β is the angle of sideslip. Additionally, wake boundary

conditions and the Kutta condition need to be enforced to allow potential flows to produce

aerodynamic loads. This is accomplished by creating a flat wake sheet, denoted Γw, extending

from the trailing edge of any lifting body to the farfield boundary located downstream of these

bodies, as depicted in Figure 1.1. The unknown potential value is discontinuous across the

wake, and two boundary conditions are applied to restore the continuity in the flow variables.

2

1 Model equations 1.1 Full potential

The first condition prescribes the equality of the mass flux across the wake,∫
Γw

[[ρ∇ϕ · n̂]]ψ dS = 0, ∀ψ ∈ Γw,l, (1.5)

and the second condition prescribes the equality of the pressure across the wake,∫
Γw

[[|∇ϕ|2]]Ψ dS = 0, ∀Ψ ∈ Γw,u, (1.6)

where Ψ is a stabilized test function, the double square bracket indicates a jump between the

quantities on the upper and lower sides of the wake, and the subscripts u and l refer to the

upper and lower sides of the wake, respectively. Similarly, the Kutta condition, prescribing the

equality of the pressure on both sides of the trailing edge, writes∫
ΓTE,u

1

h2
|∇ϕ|2Ψ dS −

∫
ΓTE,l

1

h2
|∇ϕ|2Ψ dS = 0, ∀Ψ ∈ ΓTE,u, (1.7)

where h is the square root of the surface area of the trailing edge, and where ΓTE,u and ΓTE,l

denote the suction and pressure sides of the trailing edge, respectively.

Finally, supersonic regions of the flow need to be stabilized. The physical density is upwinded

and replaced by

ρ̃ = ρ− µ(ρ− ρU), (1.8)

where ρU is the density evaluated at an upwind point, and where the switching function is

defined as

µ = µCmax

(
0, 1−

M2
C

M2
, 1−

M2
C

M2
U

)
. (1.9)

The parameters µC, which controls the amplification of the density bias, andMC, which controls

the extent of the region where the bias is applied, are controlled by the numerical scheme. They

are initialized to 2 and 0.925 in order to produce strong stabilization over a large portion of the

flow. As the solution converges, they are varied to 1 and 0.975. These final values were chosen

from the literature, as they are suitable for most cases. The parameters are updated each

time the relative residual of the full potential equation drops below 10−2. This specific switching

function, whereby the Mach number M is replaced by the Mach number evaluated at an upwind

point MU whenever the supersonic flow decelerates, is chosen to bring additional numerical

dissipation near shocks, hence improving the robustness of the method, as recommended by

Habashi and Hafez [4].

The domain Ω and its boundary Γ are discretized using continuous Galerkin finite elements. An

unstructured grid strategy is chosen in order to easily mesh three-dimensional complex shapes.

3

1 Model equations 1.1 Full potential

The potential, test functions and coordinates are expressed as

ϕ = Niϕi,

ψ = Niψi,

xk = Nixi,k

(1.10)

where Ni are the shape functions associated to an element, and interpolate the nodal values ϕi
and ψi of the potential and the test functions, as well as the nodal coordinates xi,k = [x, y, z]i, on

that element. Note that subscript k counts the dimensions. The shape functions are expressed

locally on each element as

Ni = Ni(ξk) = Ni ([ξ, η, ζ]) , (1.11)

where ξk is the vector of coordinates attached to the reference frame of an element. The weak

form of the full potential equation 1.1 must hold for any test function ψ. It can then be discretized

and rewritten in residual form,

Rϕ =
∑
e

∫
Ωe

ρ̃e∇Njϕj ·∇Ni dVe −
∑
e

∫
Γe
ρ∇ϕe · n̂eNi dSe

= 0,

(1.12)

where the subscript e refers to elemental quantities. The associated Neumann boundary con-

ditions 1.3 become ∑
e

∫
Γfe

ρ∇ϕe · n̂eNi dSe =
∑
e

∫
Γfe

ρ∞U∞ · n̂eNi dSe,

∑
e

∫
Γbe

ρ∇ϕe · n̂eNi dSe = 0.

(1.13)

The equality of mass flux across the wake 1.5 is enforced on the lower wake nodes as

∑
e

∫
Γw,le

ρ̃e∇Njϕj ·∇Ni dSe −
∑
e

∫
Γw,ue

ρ̃e∇Njϕj ·∇Ni dSe = 0, (1.14)

and the equality of the pressure 1.6 is enforced on the upper wake nodes as

∑
e

∫
Γwe

(
[∇ϕ ·∇Njϕj]w,u − [∇ϕ ·∇Njϕj]w,l

)(
Ni +

h

2
Ũ∞,k∂xk

Ni

)
w,u

dSe = 0. (1.15)

where Ũ∞ = [1, 0, 0]. Similarly, the equality of the pressure on the trailing edge 1.7 is prescribed

as ∑
e

∫
ΓTE,ue

1

h2
∇ϕ ·∇Njϕj

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
dSe

−
∑
e

∫
ΓTE,le

1

h2
∇ϕ ·∇Njϕj

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
dSe = 0.

(1.16)

4

1 Model equations 1.2 Mesh deformation

1.1.2 Functional

The total aerodynamic load vector is obtained by multiplying the aerodynamic total load coeffi-

cient CF by the freestream dynamic pressure,

F =
1

2
ρ∞u

2
∞SrefCF. (1.17)

The resulting aerodynamic load coefficient is computed by integrating the normalized pressure

coefficient on the body surface,

CF =
1

Sref

∫
Γb

Cpn̂ dS, (1.18)

where Sref is a reference area, and where the pressure coefficient is given by

Cp =
2

γM2
∞

(ργ − 1) . (1.19)

The aerodynamic load coefficients are obtained by projecting CF on the lift and drag directions,

yielding

CL = CF · eL, CD = CF · eD, (1.20)

where the directions are defined with respect to the angle of attack α, and the angle of sideslip

β,

eL =

− sinα

0

cosα

 , eD =

cosα cosβ

sinβ

sinα cosβ

 . (1.21)

1.2 Mesh deformation

This section details the formulation of the linear elasticity laws written in residual form, driving

the mesh morphing.

1.2.1 Residuals

An efficient way to deform the grid for the kind of wing deflections considered in practical aeroe-

lasticity, is to use linear elasticity theory. The grid is assumed to behave like an elastic body,

rigid near the deforming boundaries, and flexible elsewhere. Moreover, the linear elasticity

equations can be easily solved by the finite element method, and require little supplementary

implementation work.

For an elastic solid, the equilibrium between the internal and external forces can be written in

weak form as ∫
Ω
∇σσσ ·∇ψ dV −

∫
Γ
∇σσσ · n̂ψ dS =

∫
Ω
fψ dV, ∀ψ ∈ Ω, (1.22)

where the internal stress σσσ can be related to the displacement ∆x using Hooke’s constitutive

5

1 Model equations 1.2 Mesh deformation

law for linear isotropic solids,

σσσ =
Eν

2(1 + ν)(1− 2ν)
tr
(
∇ (∆x) +∇ (∆x)T

)
I+

E

2(1 + ν)

(
∇ (∆x) +∇ (∆x)T

)
. (1.23)

The Young modulus E and the Poisson’s ratio ν are constitutive parameters. In the present

work, they are set to 1/V and 0, respectively, as suggested by Dwight [5]. As a result, the mesh

behaves as a linear elastic solid, rigid close to the wing where the elements are small, and flex-

ible in the farfield where the elements are large. Note that, in the context of mesh deformation,

the external forces f are zero, and the deformation is driven by a Dirichlet boundary condition

imposed on the moving boundary.

After discretization, Equation 1.22 must hold for any test function ψ, and can therefore be

rewritten as a set of equations,

Rx =
∑
e

∫
Ωe

[
Eeνe

2(1 + νe)(1− 2νe)
∂xk

Nl∆xl,kδij +
Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

= 0.

(1.24)

The Dirichlet boundary condition on the deforming surface are enforced as,

∆xi,j |Γb
= ∆xbi,j . (1.25)

On the wake, the periodic boundary conditions are discretized as follows. The upper wake

volume element contributions are added to the lower wake equations, and the upper wake

unknowns are prescribed to match the lower wake unknowns,

∑
e

∫
Ωw,le

[
Eeνe

2(1 + νe)(1− 2νe)
∂xk

Nl∆xl,kδij +
Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

+
∑
e

∫
Ωw,ue

[
Eeνe

2(1 + νe)(1− 2νe)
∂xk

Nl∆xl,kδij +
Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

=0,

∆xi,j |Γw,u −∆xi,j |Γw,l
= 0.

(1.26)

6

2 Partial gradients

2 Partial gradients

This section presents the formulation of the discretized gradients of the full potential and mesh

morphing equations. Note that the summation symbol has been dropped for conciseness.

2.1 Full potential

This section details the formulation of the partial gradients of full potential equation, and of the

aerodynamic loads.

2.1.1 Residuals

The partial gradient of the potential residuals with respect to the potential variables, also known

as the flow Jacobian, is given by,

∂Rϕ,i

∂ϕj
=

∫
Ωe

(1− µ)
[
−M2

∞ρ
2−γ
e ∂xk

ϕ∂xk
Nj∂xk

ϕ∂xk
Ni + ρe∂xk

Nj∂xk
Ni

]
dVe

+

∫
Ωe

µ
[
−M2

∞ρ
2−γ
U ∂xk

ϕU∂xk
NU,j∂xk

ϕ∂xk
Ni + ρU∂xk

Nj∂xk
Ni

]
dVe

−
∫
Ωe

(ρe − ρU)

[
2µCM

2
C

M3·

(
1√

∂xk
ϕ2a2·

+
γ − 1

2

√
∂xk

ϕ2

3
√
a2·

)
∂xk

ϕ∂xk
Nj∂xk

ϕ∂xk
Ni

]
dVe,

(2.1)

where a · is the speed of sound on an element and is computed as

a · =

√
1

M2
∞

+
γ − 1

2
(1− |∇ϕ|2). (2.2)

The Mach number M · and the speed of sound a · can be evaluated on the current element e

or the upwind element U, depending on the switching function. In order to avoid non-physical

large gradients which may appear at the trailing edge of the wingtip, the speed of sound is

limited so that the local Mach number remains below M < 1.7. Similar to the residuals Rϕ, the

wake boundary conditions are prescribed in two steps. Firstly, the equality of the mass flux is

enforced by adding the contributions of the upper wake nodes to the lower wake rows, instead

of the upper wake rows, in the flow Jacobian matrix,

∂Rϕ,i

∂ϕj
|w,l ←

∂Rϕ,i

∂ϕj
|w,l +

∂Rϕ,i

∂ϕj
|w,u, (2.3)

where the left pointing arrow denotes an assignment operator. Secondly, the following terms

are then assembled on the upper wake rows,

∂Rϕ,i

∂ϕj
|w,u = 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xk

Ni

)
w,u

(
[∂xk

ϕ∂xk
Nj]w,u − [∂xk

ϕ∂xk
Nj]w,l

)
dSe. (2.4)

7

2 Partial gradients 2.1 Full potential

Finally, the Kutta condition is enforced by assembling the following terms on the upper trailing

edge rows,

∂Rϕ,i

∂ϕj
|TE,u =

∫
ΓTE,ue

2

h2

(
Ni

TE,u
+
h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
Nj dSe

−
∫
ΓTE,le

2

h2

(
Ni

TE,u
+
h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
Nj dSe.

(2.5)

The partial gradient of the potential residuals with respect to the mesh coordinates is given by

∂Rϕ,i

∂xj
=

∫
Ωe

(1− µ)
(
−M2

∞ρ
2−γ
e ∂xl

ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ
)
∂xk

ϕ∂xk
Ni dVe

+

∫
Ωe

µ
(
−M2

∞ρ
2−γ
U ∂xl

ϕU

(
−J−1

U,lk∂xjJU,kl

)
∂xl
ϕU

)
∂xk

ϕ∂xk
Ni dVe

+

∫
Ωe

[(1− µ) ρe + µρU]
[
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
Ni + ∂xl

Ni

(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ
]
dVe

−
∫
Ωe

(ρe − ρU)

[
2µCM

2
C

M3·

(
1√

∂xk
ϕ2a2·

+
γ − 1

2

√
∂xk

ϕ2

3
√
a2·

)
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ∂xk

ϕ∂xk
Ni

]
dVe

+

∫
Ωe

[(1− µ) ρe + µρU] ∂xk
ϕ∂xk

Ni ∂xjdVe.

(2.6)

The partial gradient of the Jacobian matrix of an element with respect to the mesh coordinates

is computed as

∂xk
J · ,ij =

∂

∂xk

∂ξjNlxl,i, (2.7)

where · refers to a variable evaluated on the current element e or on the upstream element

U. Since Gauss quadrature is used to compute the integrals in the finite elements method,

computing the partial gradient of an elementary volume with respect to the mesh coordinates

amounts to computing the partial gradient of the Jacobian matrix determinant of an element as

∂xk
dVe = ∂xk

det(Je,ij) = det(Je,ij)tr(J
−1
e,ij∂xk

Je,ij). (2.8)

The contributions of the farfield boundary condition are not taken into account since the outer

boundary is fixed. The partial gradient of the wake boundary conditions with respect to the

mesh coordinates are assembled in a similar way as the flow residuals: the contributions of the

upper wake rows are first added to the lower wake rows, and the upper wake rows are then

8

2 Partial gradients 2.1 Full potential

computed as

∂Rϕ,i

∂xj
|w,u =

∫
Γwe

(
∂xj

(
h

2
Ũ∞,k∂xk

Ni

))
w,u

(
[∂xk

ϕ∂xk
ϕ]w,u − [∂xk

ϕ∂xk
ϕ]w,l

)
dSe

+ 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xk

Ni

)
w,u

[
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ
]
w,u

dSe

− 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xk

Ni

)
w,u

[
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ
]
w,l

dSe

+

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xk

Ni

)
w,u

(
[∂xk

ϕ∂xk
ϕ]w,u − [∂xk

ϕ∂xk
ϕ]w,l

)
∂xjdSe.

(2.9)

Similarly, the partial gradient of the Kutta condition with respect to the mesh coordinates are

computed as

∂Rϕ,i

∂xj
|TE,u = −

∫
ΓTE,ue

2

h3
∂xjh

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ dSe

+

∫
ΓTE,ue

1

h2
∂xj

(
h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ dSe

+

∫
ΓTE,ue

2

h2

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ dSe

+

∫
ΓTE,ue

1

h2

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ ∂xjdSe

+

∫
ΓTE,le

2

h3
∂xjh

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ dSe

−
∫
ΓTE,le

1

h2
∂xj

(
h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ dSe

−
∫
ΓTE,le

2

h2

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕ dSe

−
∫
ΓTE,le

1

h2

(
NiTE,u +

h

2
Ũ∞,k∂xk

Ni

)
∂xk

ϕ∂xk
ϕ ∂xjdSe.

(2.10)

The partial gradient of the stabilization term in Equations 2.9 and 2.10 can further be developed

as

∂xj

(
h

2
Ũ∞,k∂xk

Ni

)
= ∂xj

h

2
Ũ∞,k∂xk

Ni +
h

2
Ũ∞,lϕJ

−1
e,lk∂xjJe,kl∂xl

Ni. (2.11)

Computing the partial gradient of an elementary surface with respect to the mesh coordinates

amounts to computing the partial gradient of the surface Jacobian matrix determinant of an el-

ement. For a two-dimensional surface in a three-dimensional space, this gradient is expressed

as

∂xjdSe = ∂xj det(JS,e,i) =
JS,e,i
|JS,e,i|

(
∂xj∂ξNkxk × ∂ηNkxk + ∂ξNkxk × ∂xj∂ηNkxk

)
. (2.12)

The angle of attack affects the potential residuals only through the farfield boundary condition.

The partial gradient of the potential residuals with respect to the angle of attack is thus given

9

2 Partial gradients 2.1 Full potential

by
∂Rϕ,i

∂α
=
∑
e

∫
Γfe

ρ∞
∂U∞
∂α

· n̂eNi dSe (2.13)

where the gradient of the freestream velocity with respect to the angle of attack is

∂U∞
∂α

=

− sinα cosβ

0

cosα cosβ

 . (2.14)

2.1.2 Functional

The partial gradient of the aerodynamic loads with respect to the potential variables is given by,

∂Fi

∂ϕj
=

1

2
ρ∞u

2
∞

∫
Γb,e

∂ϕj
Cpe n̂e,i dSe

= −ρ∞u2∞
∫
Γb,e

ργe∂xk
ϕ∂xk

Njn̂e,i dSe.

(2.15)

The partial gradient of the aerodynamic loads with respect to the mesh coordinates is given by,

∂Fi

∂xj
=

1

2
ρ∞u

2
∞∂xj

∫
Γb,e

Cpe n̂e,i dSe

=
1

2
ρ∞u

2
∞

[∫
Γb,e

−2ργe∂xl
ϕ
(
−J−1

e,lk∂xjJe,kl

)
∂xl
ϕn̂e,i dSe

+

∫
Γb,e

Cpe∂xj n̂e,i dSe

+

∫
Γb,e

Cpe n̂e,i ∂xjdSe

]
.

(2.16)

where the partial gradient of an elementary surface is computed as in Eq 2.12, and the partial

gradient of the unit normal vector is given by

∂n̂i
∂xj

= (Iik − n̂in̂k)
1

|nk|
∂xjnk (2.17)

where the partial gradient of the normal vector to a two-dimensional triangular area in a three-

dimensional space is given by,

∂n

∂xj
= ∂xj (x1 − x0)× (x2 − x0) + (x1 − x0)× ∂xj (x2 − x0) . (2.18)

The partial gradients of the aerodynamic load coefficients can be readily obtained from Equa-

tions 2.15 and 2.16. Additionally, the partial gradients of the aerodynamic coefficients with

10

2 Partial gradients 2.2 Mesh deformation

respect to the angle of attack is given by,

CL

∂α
= CF ·

∂eL
∂α

,
CD

∂α
= CF ·

∂eD
∂α

, (2.19)

where the gradients of the directions are defined as,

∂eL
∂α

=

− cosα

0

− sinα

 , ∂eD
∂α

=

− sinα cosβ

0

cosα cosβ

 . (2.20)

2.2 Mesh deformation

This section details the formulation of the partial gradients of mesh morphing equations.

2.2.1 Residuals

The mesh deformation residuals only depend linearly on the mesh coordinates. The partial

gradients of the mesh deformation residuals with respect to the mesh coordinates, also known

as the mesh Jacobian, is therefore given by,

∂Rx,i

∂xj
= Jx,ij

=
∑
e

∫
Ωe

[
Eeνe

2(1 + νe)(1− 2νe)
∂xk

Nlδij +
Ee

2(1 + νe)

(
∂xjNl + ∂xiNl

)]
∂xjNl dVe.

(2.21)

Note that, similar to the residuals Rx, periodic boundary conditions are prescribed on the wake

by adding the upper wake volume element contributions to the lower wake equations, and by

prescribing the upper wake unknowns to match the lower wake unknowns.

11

3 Solution procedures

3 Solution procedures

This section presents the direct and adjoint solution procedures that are readily available in

DART. If multiphysics computations are to be performed, the interfaces for CUPyDO [6, 7] 2 and

MPHYS 3, built on top of OpenMDAO [8] 4, can be used.

3.1 Direct solution

The full potential equation being nonlinear, it needs to be solved in an iterative fashion. A Taylor

expansion around a solution vector ϕϕϕs allows to write

0 = Rϕ +
∂Rϕ

∂ϕϕϕ
∆ϕ∆ϕ∆ϕ+O(∆ϕ∆ϕ∆ϕ2), (3.1)

where ∆ϕ∆ϕ∆ϕ = ϕϕϕ − ϕϕϕs. Neglecting second order terms, and given a known solution estimate ϕϕϕn
at iteration n, a better estimate of the solution, ϕϕϕn+1, can be found by solving

∂Rϕ

∂ϕϕϕ
|ϕϕϕn

(ϕϕϕn+1 −ϕϕϕn) = −Rϕ|ϕϕϕn
. (3.2)

The Newton-Raphson method exhibits a second-order convergence rate as it gets closer to the

solution. However, it might be unstable for transonic flow computations where the local Mach

numbers are high. An effective way to stabilize the Newton method is to restrict the change

in the solution using a line search procedure. In such a technique, the new solution vector is

computed as

ϕϕϕn+1 = ϕϕϕn + sn(ϕϕϕn+1 −ϕϕϕn), (3.3)

where sn is the step length of the line search. The Bank and Rose [9] algorithm has been

implemented to find the optimal step length for a given iteration and is depicted in Figure 3.1.

2http://github.com/ulgltas/cupydo, accessed October 2022.
3https://github.com/OpenMDAO/mphys, accessed October 2022.
4https://openmdao.org/, accessed October 2022.

12

http://github.com/ulgltas/cupydo
https://github.com/OpenMDAO/mphys
https://openmdao.org/

3 Solution procedures 3.2 Adjoint solution

𝑘 = 0: 𝐾 = 0

𝑅𝑘 = 𝑓(𝑥𝑘)

𝑡𝑘 =
1

1 + 𝐾𝑅𝑘

𝑥𝑘+1 = 𝑥𝑘 + 𝑡𝑘Δ𝑥𝑘

𝑅𝑘+1 = 𝑓(𝑥𝑘+1)

1

𝑡𝑘
1 −

𝑅𝑘+1
𝑅𝑘

< 𝜀LS

Quasi-Newton

scheme converges

𝑘 = 𝑘 + 1

𝐾 =
𝐾

10

𝑥𝑘+1 − 𝑥𝑘 < 𝜀QN

𝐾 = 0

𝐾 = 1

𝐾 = 10𝐾

true

false

false

true

true

false

Line search

Figure 3.1: Bank and Rose line search algorithm wrapped in a quasi-Newton method.

3.2 Adjoint solution

An adjoint method has also been implemented to compute the total gradients of the lift and the

drag with respect to the angle of attack and the surface grid coordinates. These gradients can

then be used in an optimization process. For pure aerodynamic optimization, the problem can

be formulated as follows,
min
x,α

Fobj(ϕϕϕ,x, α)

s.t.Rϕ = 0

Rx = 0

(3.4)

where ϕϕϕ denote the vector of aerodynamic potential variables, α is the angle of attack, Rϕ rep-

resents the full potential equation noted in residual form, and Fobj is the functional (lift or drag)

to be minimized. Since a nonlinear aerodynamic model is used, the full potential equations

must be solved in the volume surrounding the geometry, which will deform according to follow

the movement of the surface grid. In such a case, it is also convenient to explicitly introduce

the vector of volume mesh coordinates, x, and the mesh morphing laws residuals, Rx, into the

13

3 Solution procedures 3.2 Adjoint solution

optimization formulation.

In order to minimize Fobj, the augmented Lagrangian L is first constructed as,

L = Fobj + λλλϕRϕ + λλλxRx (3.5)

and then differentiated such that,

δL = 0⇒

∂Fobj

∂ϕϕϕ + λλλϕ
∂Rϕ

∂ϕϕϕ + λλλx
∂Rx
∂ϕϕϕ = 0

∂Fobj

∂x + λλλϕ
∂Rϕ

∂x + λλλx
∂Rx
∂x = 0

∂Fobj

∂α + λλλϕ
∂Rϕ

∂α + λλλx
∂Rx
∂α = 0

Rϕ = 0

Rx = 0

. (3.6)

In order to obtain the total gradients of Fobj, the nonlinear potential and linear mesh equations,

Rϕ = 0 and Rx = 0 must first be solved. The coupled set of linear adjoint equations,[
∂ϕϕϕRϕ

T ∂xRx
T

∂ϕϕϕRϕ
T ∂xRx

T

][
λλλϕ

λλλx

]
= −

[
∂ϕϕϕF

T
obj

∂xF
T
obj

]
(3.7)

must then be solved for the Lagrange multipliers λλλϕ and λλλx. The total gradient with respect to

the surface mesh coordinates can readily be recovered from λx, as they are a subset of this

vector [10]. The total gradient with respect to the angle of attack can finally be obtained by

injecting the solution into
dFobj

dα
=
∂Fobj

∂α

T

−
∂Rϕ

∂α

T

λλλϕ. (3.8)

14

4 Quick reference guide

4 Quick reference guide

This section lists the various Application Programming Interface (API) available in DART, as well

as the parameters required to configure them. The full documentation is available at: https:

//gitlab.uliege.be/am-dept/dartflo/-/wikis/home, accessed October 2022.

4.1 Available API

The main API used to initialize and access the components making up DART is the so-called

core API 5. Three other API, built on top of the core, are also available: internal, CUPyDO and

MPHYS API. The internal 6 API is meant for users wanting to run a standard computational

procedure, such as computing a polar curve, on a classical lifting configuration. The CUPyDO 7

and MPHYS 8 API are direct interfaces to their respective software.

5https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_core, accessed October 2022.
6https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_internal, accessed October

2022.
7https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_cupydo, accessed October

2022.
8https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_mphys, accessed October

2022.

15

https://gitlab.uliege.be/am-dept/dartflo/-/wikis/home
https://gitlab.uliege.be/am-dept/dartflo/-/wikis/home
https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_core
https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_internal
https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_cupydo
https://gitlab.uliege.be/am-dept/dartflo/-/wikis/use_api_mphys

4 Quick reference guide 4.2 Usage

4.2 Usage

The list of parameters used to configure DART is provided below:

1 cfg = {
2 # Options
3 ’ Threads ’ : i n t , # number o f threads
4 ’ Verb ’ : i n t , # v e r b o s i t y
5 # Model (geometry or mesh)
6 ’ F i l e ’ : s t r , # Inpu t f i l e con ta in ing the model
7 ’ Pars ’ : d i c t , # parameters f o r i npu t f i l e model
8 ’Dim ’ : i n t , # problem dimension (2 or 3)
9 ’ Format ’ : s t r , # save format (v t k or gmsh)

10 # Markers . . .
11 ’ F l u i d ’ : s t r , # name of phys i ca l group con ta in ing the f l u i d
12 ’ F a r f i e l d ’ : l i s t o f s t r , # LIST of names of phys i ca l groups con ta in ing the f a r f i e l d

boundaries (downstream should be l a s t element)
13 # . . . on ly 2D
14 ’ Wing ’ : s t r , # name of phys i ca l group con ta in ing the a i r f o i l boundary (w i l l be the body of

i n t e r e s t f o r a e r o s t r u c t u r a l and o p t i m i z a t i o n)
15 ’Wake ’ : s t r , # name of phys i ca l group con ta in ing the wake
16 ’ Te ’ : s t r , # name of phys i ca l group con ta in ing the t r a i l i n g edge
17 # . . . on ly 3D
18 ’ Wings ’ : l i s t o f s t r , # LIST of names of phys i ca l groups con ta in ing the l i f t i n g sur face

boundary (f i r s t element w i l l be the body of i n t e r e s t f o r a e r o s t r u c t u r a l and o p t i m i z a t i o n)
19 ’Wakes ’ : l i s t o f s t r , # LIST of names of phys i ca l group con ta in ing the wake
20 ’ WakeTips ’ : l i s t o f s t r , # LIST of names of phys i ca l group con ta in ing the f ree edge of the

wake (not f o r 2.5D)
21 ’ Tes ’ : l i s t o f s t r , # LIST of names of phys i ca l group con ta in ing the t r a i l i n g edges
22 # . . . o p t i o n a l f o r 3D
23 ’ Symmetry ’ : s t r , # name of phys i ca l group con ta in ing the symmetry boundaries
24 ’ Fuselage ’ : s t r , # name of phys i ca l group con ta in ing the fuse lage boundary
25 ’WakeExs ’ : s t r , # LIST of names of phys i ca l group con ta in ing the f ree edge of the wake and

the i n t e r s e c t i o n o f l i f t i n g sur face wi th fuse lage (to be excluded from Wake B.C .) , on ly
requ i red i f a ’ Fuselage ’ i f present , o therwise ’ WakeTips ’ i s s u f f i c i e n t

26 # Freestream
27 ’ M_inf ’ : f l o a t , # f reest ream Mach number
28 ’AoA ’ : f l o a t , # f reest ream angle o f a t t ack [deg] (op t iona l , d e f a u l t =0)
29 ’AoS ’ : f l o a t , # f reest ream angle o f s i d e s l i p [deg] (op t iona l , d e f a u l t =0)
30 ’ Q_inf ’ : f l o a t , # freesteam dynamic pressure (on ly requ i red f o r a e r o s t r u c t u r a l computat ions

)
31 # Geometry
32 ’ S_ref ’ : f l o a t , # re ference sur face leng th
33 ’ c_ re f ’ : f l o a t , # re ference chord leng th
34 ’ x_ re f ’ : f l o a t , # x−coord ina te o f re ference po in t f o r moment computat ion
35 ’ y_ re f ’ : f l o a t , # y−coord ina te o f re ference po in t f o r moment computat ion
36 ’ z_ re f ’ : f l o a t , # z−coord ina te o f re ference po in t f o r moment computat ion
37 # Numerical
38 ’ LSolver ’ : ’GMRES ’ , # inne r so l ve r (PARDISO, MUMPS or GMRES)
39 ’ G _ f i l l ’ : i n t , # f i l l − i n f a c t o r f o r GMRES precond i t i one r (op t iona l , d e f a u l t =2)
40 ’ G_tol ’ : f l o a t , # to le rance f o r GMRES (op t iona l , d e f a u l t =1e−5)
41 ’ G_res ta r t ’ : i n t , # r e s t a r t f o r GMRES (op t iona l , d e f a u l t =50)
42 ’ Re l_ to l ’ : f l o a t , # r e l a t i v e to le rance on so l ve r r e s i d u a l
43 ’ Abs_to l ’ : f l o a t , # abso lu te to le rance on so l ve r r e s i d u a l
44 ’ Max_it ’ : i n t # maximum number o f i t e r a t i o n s f o r non l i nea r so l ve r
45 }

16

4 Quick reference guide 4.2 Usage

The core API can then be initialized using:

1 from dar t . ap i . core impor t i n i t D a r t
2 _dar t = i n i t D a r t (cfg , scenar io= ’ aerodynamic ’ , task= ’ ana l ys i s ’ , ‘ v iscous=False ‘)

where scenario can be aerodynamic or aerostructural, and task can be analysis

or optimization, and viscous is a boolean indicating whether the solver should also be

configured for viscous-inviscid interaction. _dart is a python dictionary containing the following

objects (named after their key):

• dim is the number of dimensions (2 or 3),

• qinf is the freestream dynamic pressure (0 except if scenario=’aerostructural’),

• msh is the mesh,

• wrt is the utility to write mesh/results on disk,

• mrf is the mesh morpher (None except if scenario=’aerostructural’ or task=’optimization’),

• pbl is the formulation of the problem,

• bnd is the body of interest,

• blwb is the blowing boundary condition on the body (None except if viscous=True),

• blww is the blowing boundary condition on the wake (None except if viscous=True),

• sol is the direct (Newton) solver,

• adj is the adjoint solver (None except if task=’optimization’).

In order to use the other API, please refer to the main documentation.

17

References References

References

[1] Adrien Crovato. Steady Transonic Aerodynamic and Aeroelastic Modeling for Preliminary

Aircraft Design. PhD thesis, University of Liège, October 2020.

[2] Adrien Crovato, Alex P. Prado, Pedro H. Cabral, Romain Boman, Vincent E. Terrapon, and

Grigorios Dimitriadis. An adjoint full potential solver for fast aerostructural optimization in

preliminary aircraft design. Submitted to Aerospace Science and Technology, 2022.

[3] Joseph L. Steger and Barrett S. Baldwin. Shock waves and drag in the numerical calcula-

tion of isentropic transonic flows. Technical report, NASA, 1972.

[4] Wadgi G. Habashi and Mohamed M. Hafez. Finite Element Solutions of Transonic Flow

Problems. AIAA Journal, 20(10):1368–1376, 1982.

[5] Richard P. Dwight. Robust Mesh Deformation using the Linear Elasticity Equations. Jour-

nal of Computational Fluid Dynamics, 12:401–406, 2009.

[6] David Thomas, Marco-Lucio Cerquaglia, Romain Boman, Thomas Economon, Juan

Alonso, Grigorios Dimitriadis, and Vincent E. Terrapon. CUPyDO: An integrated Python

environment for coupled fluid-structure problems. Advances in Engineering Software,

2019.

[7] Marco-Lucio Cerquaglia, David Thomas, Romain Boman, Vincent E. Terrapon, and Jean-

Phillipe Ponthot. A fully partitioned Lagrangian framework for FSI problems characterized

by free surfaces, large solid deformations and displacements, and strong added-mass

effects. Computer Methods in Applied Mechanics and Engineering, 2019.

[8] Justin S. Gray, John T. Hwang, Joaquim R. R. A. Martins, Kenneth T. Moore, and Bret A.

Naylor. OpenMDAO: An open-source framework for multidisciplinary design, analysis, and

optimization. Structural and Multidisciplinary Optimization, 59(4):1075–1104, April 2019.

[9] Randolph E. Bank and Donald J. Rose. Global Approximate Newton Method. Numerische

Mathematik, 27:179–295, 1981.

[10] Markus Widhalm, Joël Brezillon, Caslav Ilic, and Tobias Leicht. Investigation on Adjoint

Based Gradient Computations for Realistic 3d Aero-Optimization. In 13th AIAA/ISSMO

Multidisciplinary Analysis Optimization Conference. AIAA, September 2010.

18

	Abstract
	Contents
	Model equations
	Full potential
	Residuals
	Functional

	Mesh deformation
	Residuals

	Partial gradients
	Full potential
	Residuals
	Functional

	Mesh deformation
	Residuals

	Solution procedures
	Direct solution
	Adjoint solution

	Quick reference guide
	Available API
	Usage

	Bibliography

