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Abstract

This document provides the mathematical formulation of the main equations implemented in

DARTFlo [1], version 1.1.0 (October 2021). For more detailed information about the original

implementation, refer to the author’s PhD thesis [2].

This quick reference theory manual is organized as follows. Section 1 presents the formulation

of the discretized full potential equation and the mesh morphing laws. Section 2 presents the

formulation of their partial gradients. Finally, section 3 presents the direct and adjoint solution

procedures.
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1 Model equations

1 Model equations

This section presents the formulation of the discretized full potential model and mesh morphing

laws.

1.1 Full potential

This section details the formulation of the full potential equation written in residual form, and of

the aerodynamic loads.

1.1.1 Residuals

The steady full potential equation is derived form the Navier-Stokes equations by assuming that

the fluid is inviscid, and that the flow is steady and isentropic. As a consequence, the vorticity

is conserved. Since the freestream flow is irrotational, the whole flow is therefore irrotational

and the velocity derives from a potential φ. Considering a domain Ω enclosed by a surface

Γ = Γf ∪ Γb, as depicted in Figure 1.1, the full potential equation can be written in weak form

as, ∫
Ω
ρ∇φ · ∇ψ dV −

∫
Γ
ρ∇φ · n̂ψ dS = 0, ∀ψ ∈ Ω, (1.1)

where ψ is a test function, n̂ is the unit vector normal to Γ pointing inwards, and where the

density ρ is given by the isentropic flow relationship,

ρ = ρ∞

[
1 +

γ − 1

2
M2
∞
(
1− |∇φ|2

)] 1
γ−1

. (1.2)

In Equation 1.2, ρ∞ is the freestream density, γ is the heat capacity ratio and M∞ is the

freestream Mach number. Note that the term |∇φ| in Equation 1.2, which is the magnitude

of the total velocity, has been normalized by the freestream velocity. An important limitation of

the nonlinear potential equation is the isentropicity assumption, which restricts its use to tran-

sonic flows with embedded weak shocks only. A common upper limit for the local normal Mach

number upstream of the shock is Mn < 1.3 [3].
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1 Model equations 1.1 Full potential

Body boundary Γb

Farfield boundary Γf

𝑼∞ = [cos𝛼, sin𝛼]

𝛼

Domain Ω

Wake boundary Γw

Figure 1.1: Typical domain used for a finite element computation, illustrated in two dimensions
for simplicity.

The boundary surface Γ is split into a farfield boundary Γf , and a body boundary Γb, as depicted

in Figure 1.1, onto which Neumann boundary conditions are applied. Such boundary conditions

impose a flux through the boundaries of the domain and are naturally recovered in the second

term of the weak formulation of the full potential equation 1.1. Since the derivative of the

potential is the velocity, the weak form of the Neumann boundary condition can be written as∫
Γf

ρ∇φ · n̂ψ dS =

∫
Γf

ρ∞U∞ · n̂ψ dS, ∀ψ ∈ Γf∫
Γb

ρ∇φ · n̂ψ dS = 0, ∀ψ ∈ Γb

(1.3)

where U∞ is the freestream velocity vector given by,

U∞ =


cosα cosβ

sinβ

sinα cosβ

 , (1.4)

and where α is the angle of attack and β is the angle of sideslip. Additionally, the Kutta condition

needs to be enforced to allow potential flows to produce aerodynamic loads. This is accom-

plished by creating a flat wake sheet, denoted Γw, extending from the trailing edge of any lifting

body to the farfield boundary located downstream of these bodies, as depicted in Figure 1.1.

The unknown potential value is discontinuous across the wake, and two boundary conditions

are applied to restore the continuity in the flow variables. The first condition prescribes the
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1 Model equations 1.1 Full potential

equality of the mass flux across the wake,∫
Γw

[[ρ∇φ · n̂]]ψ dS = 0, ∀ψ ∈ Γw,l, (1.5)

and the second condition prescribes the equality of the pressure across the wake,∫
Γw

[[|∇φ|2]]Ψ dS = 0, ∀Ψ ∈ Γw,u, (1.6)

where Ψ is a stabilized test function, the double square bracket indicates a jump between the

quantities on the upper and lower sides of the wake, and the subscripts u and l refer to the

upper and lower sides of the wake, respectively.

Finally, supersonic regions of the flow need to be stabilized. The physical density is upwinded

and replaced by,

ρ̃ = ρ− µ(ρ− ρU), (1.7)

where ρU is the density evaluated at an upwind point, and where the switching function is

defined as

µ = µC max

(
0, 1−

M2
C

M2

)
. (1.8)

The parameters µC, which controls the amplification of the density bias, andMC, which controls

the extent of the region where the bias is applied, are controlled by the numerical scheme. They

are initialized to 2 and 0.92 in order to produce strong stabilization over a large portion of the

flow. As the solution converges, they are varied to 1 and 0.95. These final values were chosen

from the literature, as they are suitable for most cases. The parameters are updated each time

the relative residual of the full potential equation drops below 10−2.

The domain Ω and its boundary Γ are discretized using continuous Galerkin finite elements. An

unstructured grid strategy is chosen in order to easily mesh three-dimensional complex shapes.

The potential, test functions and coordinates are expressed as

φ = Niφi,

ψ = Niψi,

xk = Nixi,k

(1.9)

where Ni are the shape functions associated to an element, and interpolate the nodal values φi
and ψi of the potential and the test functions, as well as the nodal coordinates xi,k = [x, y, z]i,

on that element. Note that the shape functions are expressed locally on each element as,

Ni = Ni(ξj) = Ni ([ξ, η, ζ]) , (1.10)

where ξj is the vector of coordinates attached to the reference frame of an element. The weak

form of the full potential equation 1.1 must hold for any test function ψ. It can then be discretized
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1 Model equations 1.1 Full potential

and rewritten in residual form,

Rφ =
∑

e

∫
Ωe

ρ̃e∇Njφj · ∇Ni dVe −
∑

e

∫
Γe
ρ∇φe · n̂eNi dSe

= 0,

(1.11)

where the subscript e refers to elemental quantities. The associated Neumann boundary con-

ditions 1.3 become ∑
e

∫
Γfe

ρ∇φe · n̂eNi dSe =
∑

e

∫
Γfe

ρ∞U∞ · n̂eNi dSe,

∑
e

∫
Γbe

ρ∇φe · n̂eNi dSe = 0.

(1.12)

The equality of mass flux across the wake 1.5 is enforced on the lower wake nodes as,

∑
e

∫
Γw,le

ρ̃e∇Njφj · ∇Ni dSe −
∑

e

∫
Γw,ue

ρ̃e∇Njφj · ∇Ni dSe = 0, (1.13)

and the equality of the pressure 1.6 is enforced on the upper wake nodes as,

∑
e

∫
Γwe

(
[∇φ · ∇Njφj ]w,u − [∇φ · ∇Njφj ]w,l

)(
Ni +

h

2
Ũ∞,k∂xkNi

)
w,u

dSe = 0. (1.14)

where h is the square root of the cell area and Ũ∞ = [1, 0, 0].

1.1.2 Functional

The total aerodynamic load vector is obtained by multiplying the aerodynamic total load coeffi-

cient CF by the freestream dynamic pressure,

F =
1

2
ρ∞u

2
∞SrefCF. (1.15)

The resulting aerodynamic load coefficient is computed by integrating the normalized pressure

coefficient on the body surface,

CF =
1

Sref

∫
Γb

Cpn̂ dS, (1.16)

where Sref is a reference area, and where the pressure coefficient is given by

Cp =
2

γM2
∞

(ργ − 1) . (1.17)

The aerodynamic load coefficients are obtained by projecting CF on the lift and drag directions,

yielding

CL = CF · eL, CD = CF · eD, (1.18)
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1 Model equations 1.2 Mesh deformation

where the directions are defined with respect to the angle of attack α, and the angle of sideslip

β,

eL =


− sinα

0

cosα

 , eD =


cosα cosβ

sinβ

sinα cosβ

 . (1.19)

1.2 Mesh deformation

This section details the formulation of the linear elasticity laws written in residual form, driving

the mesh morphing.

1.2.1 Residuals

An efficient way to deform the grid for the kind of wing deflections considered in practical aeroe-

lasticity, is to use linear elasticity theory. The grid is assumed to behave like an elastic body,

rigid near the deforming boundaries, and flexible elsewhere. Moreover, the linear elasticity

equations can be easily solved by the finite element method, and require little supplementary

implementation work.

For an elastic solid, the equilibrium between the internal and external forces can be written in

weak form as ∫
Ω
∇σσσ · ∇ψ dV −

∫
Γ
∇σσσ · n̂ψ dS =

∫
Ω
fψ dV, ∀ψ ∈ Ω, (1.20)

where the internal stress σσσ can be related to the displacement ∆x using Hooke’s constitutive

law for linear isotropic solids,

σσσ =
Eν

2(1 + ν)(1− 2ν)
tr
(
∇ (∆x) +∇ (∆x)T

)
I +

E

2(1 + ν)

(
∇ (∆x) +∇ (∆x)T

)
. (1.21)

The Young modulus E and the Poisson’s ratio ν are constitutive parameters. In the present

work, they are set to 1/V and 0, respectively, as suggested by Dwight [4]. As a result, the mesh

behaves as a linear elastic solid, rigid close to the wing where the elements are small, and flex-

ible in the farfield where the elements are large. Note that, in the context of mesh deformation,

the external forces f are zero, and the deformation is driven by a Dirichlet boundary condition

imposed on the moving boundary.

After discretization, Equation 1.20 must hold for any test function ψ, and can therefore be

rewritten as a set of equations,

Rx =
∑

e

∫
Ωe

[
Eeνe

2(1 + νe)(1− 2νe)
∂xkNl∆xl,kδij +

Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

= 0.

(1.22)

The Dirichlet boundary condition on the deforming surface are enforced as,

∆xi,j |Γb
= ∆xbi,j . (1.23)
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1 Model equations 1.2 Mesh deformation

On the wake, the periodic boundary conditions are discretized as follows. The upper wake

volume element contributions are added to the lower wake equations, and the upper wake

unknowns are prescribed to match the lower wake unknowns,

∑
e

∫
Ωw,le

[
Eeνe

2(1 + νe)(1− 2νe)
∂xkNl∆xl,kδij +

Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

+
∑

e

∫
Ωw,ue

[
Eeνe

2(1 + νe)(1− 2νe)
∂xkNl∆xl,kδij +

Ee

2(1 + νe)

(
∂xjNl∆xl,i + ∂xiNl∆xl,j

)]
∂xjNl dVe

= 0,

∆xi,j |Γw,u −∆xi,j |Γw,l
= 0.

(1.24)
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2 Partial gradients

2 Partial gradients

This section presents the formulation of the discretized gradients of the full potential and mesh

morphing equations. Note that the summation symbol has been dropped for conciseness.

2.1 Full potential

This section details the formulation of the partial gradients of full potential equation, and of the

aerodynamic loads.

2.1.1 Residuals

The partial gradient of the potential residuals with respect to the potential variables, also known

as the flow Jacobian, is given by,

∂Rφ,i
∂φj

= Jφ,ij

=

∫
Ωe

(1− µ)
[
−M2

∞ρ
2−γ
e ∂xkφ∂xkNj∂xkφ∂xkNi + ρe∂xkNj∂xkNi

]
dVe

+

∫
Ωe

µ
[
−M2

∞ρ
2−γ
U ∂xkφU∂xkNU,j∂xkφ∂xkNi + ρU∂xkNj∂xkNi

]
dVe

−
∫

Ωe

(ρe − ρU)

[
2µCM

2
C

M3
e

(
1√

∂xkφ
2a2

e

+
γ − 1

2

√
∂xkφ

2

3
√
a2

e

)
∂xkφ∂xkNj∂xkφ∂xkNi

]
dVe,

(2.1)

where ae is the speed of sound on an element computed as

ae =

√
1

M2
∞

+
γ − 1

2
(1− |∇φ|2). (2.2)

Note that, similar to the residuals Rφ, the Kutta condition is enforced by adding the contribu-

tions of the upper wake nodes to the lower wake rows, instead of the upper wake rows, in the

Jacobian matrix,

Jφ,ij |w,l = Jφ,ij |w,l + Jφ,ij |w,u. (2.3)

The following terms are then assembled on the upper wake rows,

Jφ,ij |w,u = 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xkNi

)
w,u

(
[∂xkφ∂xkNj ]w,u − [∂xkφ∂xkNj ]w,l

)
dSe. (2.4)
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2 Partial gradients 2.1 Full potential

The partial gradient of the potential residuals with respect to the mesh coordinates is given by,

∂Rφ,i
∂xj

=

∫
Ωe

(1− µ)
(
−M2

∞ρ
2−γ
e ∂xlφ

(
−J−1

e,lk∂xjJe,kl

)
∂xlφ

)
∂xkφ∂xkNi dVe

+

∫
Ωe

µ
(
−M2

∞ρ
2−γ
U ∂xlφU

(
−J−1

U,lk∂xjJU,kl

)
∂xlφU

)
∂xkφ∂xkNi dVe

+

∫
Ωe

[(1− µ) ρe + µρU]
[
∂xlφ

(
−J−1

e,lk∂xjJe,kl

)
∂xlNi + ∂xlNi

(
−J−1

e,lk∂xjJe,kl

)
∂xlφ

]
dVe

−
∫

Ωe

(ρe − ρU)

[
2µCM

2
C

M3
e

(
1√

∂xkφ
2a2

e

+
γ − 1

2

√
∂xkφ

2

3
√
a2

e

)
∂xlφ

(
−J−1

e,lk∂xjJe,kl

)
∂xlφ∂xkφ∂xkNi

]
dVe

+

∫
Ωe

[(1− µ) ρe + µρU] ∂xkφ∂xkNi ∂xjdVe.

(2.5)

The partial gradient of the Jacobian matrix of an element with respect to the mesh coordinates

is computed as,

∂xkJ · ,ij =
∂

∂xk
∂ξjNlxl,i, (2.6)

where · refers to a variable evaluated on the current element e or on the upstream element

U. Since Gauss quadrature is used to compute the integrals in the finite elements method,

computing the partial gradient of an elementary volume with respect to the mesh coordinates

amounts to computing the partial gradient of the Jacobian matrix determinant of an element as,

∂xkdVe = ∂xk det(Je,ij) = det(Je,ij)tr(J
−1
e,ij∂xkJe,ij). (2.7)

The contributions of the farfield boundary condition are not taken into account since the outer

boundary is fixed. The partial gradient of the wake boundary conditions with respect to the

mesh coordinates are assembled in a similar way as the flow residuals: the contributions of the

upper wake rows are first added to the lower wake rows, and the upper wake rows are then

computed as,

∂Rφ,i
∂xj

|w,u =

∫
Γwe

(
∂xj

(
h

2
Ũ∞,k∂xkNi

))
w,u

(
[∂xkφ∂xkφ]w,u − [∂xkφ∂xkφ]w,l

)
dSe

+ 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xkNi

)
w,u

[
∂xlφ

(
−J−1

e,lk∂xjJe,kl

)
∂xlφ

]
w,u

dSe

− 2

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xkNi

)
w,u

[
∂xlφ

(
−J−1

e,lk∂xjJe,kl

)
∂xlφ

]
w,l

dSe

+

∫
Γwe

(
Ni +

h

2
Ũ∞,k∂xkNi

)
w,u

(
[∂xkφ∂xkφ]w,u − [∂xkφ∂xkφ]w,l

)
∂xjdSe,

(2.8)

where the first partial gradient can further be developed as,

∂xj

(
h

2
Ũ∞,k∂xkNi

)
= ∂xj

h

2
Ũ∞,k∂xkNi +

h

2
Ũ∞,lφJ

−1
e,lk∂xjJe,kl∂xlNi. (2.9)

Computing the partial gradient of an elementary surface with respect to the mesh coordinates

amounts to computing the partial gradient of the surface Jacobian matrix determinant of an el-
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2 Partial gradients 2.1 Full potential

ement. For a two-dimensional surface in a three-dimensional space, this gradient is expressed

as,

∂xjdSe = ∂xj det(JS,e,i) =
JS,e,i

|JS,e,i|
(
∂xj∂ξNkxk × ∂ηNkxk + ∂ξNkxk × ∂xj∂ηNkxk

)
. (2.10)

The angle of attack affects the potential residuals only through the farfield boundary condition.

The partial gradient of the potential residuals with respect to the angle of attack is thus given

by,
∂Rφ,i
∂α

=
∑

e

∫
Γfe

ρ∞
∂U∞
∂α

· n̂eNi dSe (2.11)

where the gradient of the freestream velocity with respect to the angle of attack is

∂U∞
∂α

=


− sinα cosβ

0

cosα cosβ

 . (2.12)

2.1.2 Functional

The partial gradient of the aerodynamic loads with respect to the potential variables is given by,

∂Fi
∂φj

=
1

2
ρ∞u

2
∞

∫
Γb,e

∂φjCpe n̂e,i dSe

= −ρ∞u2
∞

∫
Γb,e

ργe∂xkφ∂xkNjn̂e,i dSe.

(2.13)

The partial gradient of the aerodynamic loads with respect to the mesh coordinates is given by,

∂Fi
∂xj

=
1

2
ρ∞u

2
∞∂xj

∫
Γb,e

Cpe n̂e,i dSe

=
1

2
ρ∞u

2
∞

[∫
Γb,e

−2ργe∂xlφ
(
−J−1

e,lk∂xjJe,kl

)
∂xlφn̂e,i dSe

+

∫
Γb,e

Cpe∂xj n̂e,i dSe

+

∫
Γb,e

Cpe n̂e,i ∂xjdSe

]
.

(2.14)

where the partial gradient of an elementary surface is computed as in Eq 2.10, and the partial

gradient of the unit normal vector is given by

∂n̂i
∂xj

= (Iik − n̂in̂k)
1

|nk|
∂xjnk (2.15)

where the partial gradient of the normal vector to a two-dimensional triangular area in a three-
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2 Partial gradients 2.2 Mesh deformation

dimensional space is given by,

∂n

∂xj
= ∂xj (x1 − x0)× (x2 − x0) + (x1 − x0)× ∂xj (x2 − x0) . (2.16)

The partial gradients of the aerodynamic load coefficients can be readily obtained from Equa-

tions 2.13 and 2.14. Additionally, the partial gradients of the aerodynamic coefficients with

respect to the angle of attack is given by,

CL
∂α

= CF ·
∂eL
∂α

,
CD
∂α

= CF ·
∂eD
∂α

, (2.17)

where the gradients of the directions are defined as,

∂eL
∂α

=


− cosα

0

− sinα

 , ∂eD
∂α

=


− sinα cosβ

0

cosα cosβ

 . (2.18)

2.2 Mesh deformation

This section details the formulation of the partial gradients of mesh morphing equations.

2.2.1 Residuals

The mesh deformation residuals only depend linearly on the mesh coordinates. The partial

gradients of the mesh deformation residuals with respect to the mesh coordinates, also known

as the mesh Jacobian, is therefore given by,

∂Rx,i

∂xj
= Jx,ij

=
∑

e

∫
Ωe

[
Eeνe

2(1 + νe)(1− 2νe)
∂xkNlδij +

Ee

2(1 + νe)

(
∂xjNl + ∂xiNl

)]
∂xjNl dVe.

(2.19)

Note that, similar to the residuals Rx, periodic boundary conditions are prescribed on the wake

by adding the upper wake volume element contributions to the lower wake equations, and by

prescribing the upper wake unknowns to match the lower wake unknowns.
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3 Solution procedures

3 Solution procedures

This section presents the direct and adjoint solution procedures that are readily available in

DART. If multiphysics computations are to be performed, the interfaces for CUPyDO [5, 6, 7] and

openMDAO [8, 9] can be used.

3.1 Direct solution

The full potential equation being nonlinear, it needs to be solved in an iterative fashion. A Taylor

expansion around a solution vector φφφs allows to write

0 = Rφ +
∂Rφ

∂φφφ
∆φ∆φ∆φ+O(∆φ∆φ∆φ2), (3.1)

where ∆φ∆φ∆φ = φφφ − φφφs. Neglecting second order terms, and given a known solution estimate φφφn
at iteration n, a better estimate of the solution, φφφn+1, can be found by solving

∂Rφ

∂φφφ
|φφφn(φφφn+1 −φφφn) = −Rφ|φφφn . (3.2)

The Newton-Raphson method exhibits a second-order convergence rate as it gets closer to the

solution. However, it might be unstable for transonic flow computations where the local Mach

numbers are high. An effective way to stabilize the Newton method is to restrict the change

in the solution using a line search procedure. In such a technique, the new solution vector is

computed as

φφφn+1 = φφφn + sn(φφφn+1 −φφφn), (3.3)

where sn is the step length of the line search. The Bank and Rose [10] algorithm has been

implemented to find the optimal step length for a given iteration.

3.2 Adjoint solution

An adjoint method has also been implemented to compute the total gradients of the lift and the

drag with respect to the angle of attack and the surface grid coordinates. These gradients can

then be used in an optimization process. For pure aerodynamic optimization, the problem can

be formulated as follows,
min
x,α

Fobj(φφφ,x, α)

s.t.Rφ = 0

Rx = 0

(3.4)

where φφφ denote the vector of aerodynamic potential variables, α is the angle of attack, Rφ rep-

resents the full potential equation noted in residual form, and Fobj is the functional (lift or drag)

to be minimized. Since a nonlinear aerodynamic model is used, the full potential equations

must be solved in the volume surrounding the geometry, which will deform according to follow

the movement of the surface grid. In such a case, it is also convenient to explicitly introduce

11



3 Solution procedures 3.2 Adjoint solution

the vector of volume mesh coordinates, x, and the mesh morphing laws residuals, Rx, into the

optimization formulation.

In order to minimize Fobj, the augmented Lagrangian L is first constructed as,

L = Fobj + λλλφRφ + λλλxRx (3.5)

and then differentiated such that,

δL = 0⇒



∂Fobj

∂φφφ + λλλφ
∂Rφ

∂φφφ + λλλx
∂Rx
∂φφφ = 0

∂Fobj

∂x + λλλφ
∂Rφ

∂x + λλλx
∂Rx
∂x = 0

∂Fobj

∂α + λλλφ
∂Rφ

∂α + λλλx
∂Rx
∂α = 0

Rφ = 0

Rx = 0

. (3.6)

In order to obtain the total gradients of Fobj, the nonlinear potential and linear mesh equations,

Rφ = 0 and Rx = 0 must first be solved. The coupled set of linear adjoint equations,[
∂φφφRφ

T ∂xRx
T

∂φφφRφ
T ∂xRx

T

][
λλλφ

λλλx

]
= −

[
∂φφφF

T
obj

∂xF
T
obj

]
(3.7)

must then be solved for the Lagrange multipliers λλλφ and λλλx. The total gradient with respect to

the surface mesh coordinates can readily be recovered from λx, as they are a subset of this

vector [11]. The total gradient with respect to the angle of attack can finally be obtained by

injecting the solution into
dFobj

dα
=
∂Fobj

∂α

T

−
∂Rφ

∂α

T

λλλφ. (3.8)
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