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→

Which properties should L, k, H, and λ = (λn)n∈N have such that

IfDn,λn
can be efficiently computed, with Dn the empirical distribution

IEPL(Y, fDn,λn
(x)) P−→ R∗

L,P = inff :X→RmeasurableEPL(Y, f (X))

IfP,λ has good robustness properties

Questions

KKT conditions: necessary and sufficient conditions for a viable solution

Regression
with ε-insensitive loss

min W (α, α∗) = εΣi(αi + α∗
i ) − Σi(αi − α∗

i )yi

+1
2ΣiΣj(αi − α∗

i )(αj − α∗
j)k(xi, xj)

s.t. Σi(αi − α∗
i ) = 0; αi, α

∗
i ∈ [0, C]; ε, C > 0

Classification
with hinge loss

arg min 1
2α

′Qα − α′1

s.t. Σiαiyi = 0; αi ∈ [0, C]; C > 0; where Qij = yiyjk(xi, xj)

Lagrange approach gives the following dual problems

Regression
Y ⊆ R

Loss function
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eps−insensitive
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Least Squares

Lε(y, f (x)) = max{0, |y − f (x)| − ε} LLS(y, f (x)) = (y − f (x))2

Remark: L = LLS, k linear, λ = 0 ⇒ standard LS-regression.

Classification
Y = {−1, 1}

Loss function
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Hinge
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Logistic

LHinge(y, f (x)) = max{0, 1 − yf (x)} LLog(y, f (x)) = ln(1 + exp(−yf (x)))

Improves generalization

‖f‖H also possible

3. Penalizing term
Avoids overfitting

X 6= ∅, H reproducing kernel Hilbert space over X

k : X × X → R is reproducing kernel of H if

I∀x ∈ X : k(x, ·) ∈ H and

I∀f ∈ H, ∀x ∈ X : f (x) = 〈f, k(x, ·)〉

Linear: k(xi,xj) = 〈xi,xj〉
Gaussian RBF: k(xi,xj) = exp(−γ−2‖xi − xj‖

2
2)

2. Kernel
Difference between xi and xj

L : Y ×R → [0,∞)

Convex ⇒ problem not NP-hard

1. Loss function
Difference between Y and f (X)

fP,λ = arg min
f∈H

EPL(Y, f(X)) + λ‖f‖2
H

Given: training data {(xi, yi) | i = 1 . . . n} ∈ X × Y , X ⊆ R
d, Y ⊆ R, (Xi, Yi) i.i.d. ∼ P unknown

Goal: minimize the regularized risk
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