Bouligand Derivatives and Robustness of Support Vector Machines

Arnout Van Messem joint work with Andreas Christmann

Vrije Universiteit Brussel

Radon Conference on Financial and Actuarial Mathematics for Young Researchers, Linz, May 30-31, 2007

Vrije Universiteit Brussel

Bouligand Derivatives & Robustness of SVM

ERM ●0000000	Robustness	Project	Summary o	References
NI				

Notation

- Data sample: $\mathcal{D} = ((x_1, y_1), \dots, (x_n, y_n)) \in Z := X \times Y$, $1 \leq i \leq n, n \in \mathbb{N}$
- $X \subseteq \mathbb{R}^d$, $Y \subseteq \mathbb{R}$, closed, $X \neq \varnothing$, $Y \neq \varnothing$
- $f(x_i) =$ quantity of interest of $P_{Y_i|X_i=x_i}$
- Loss function: $L: Y \times \mathbb{R} \to [0, \infty)$, $L(y_i, f(x_i))$, convex
- Assumption: (X_i, Y_i) i.i.d. $\sim P \in \mathcal{M}_1$, P unknown

Bouligand Derivatives & Robustness of SVM

ERM	Robustness	Project	Summary	References
0000000				

Loss functions for regression

Method	Loss, $r := y - f(x)$
ϵ -insensitive	$L_{\epsilon}(y, f(x)) = \max\left\{0, r - \epsilon\right\}$
Huber, $c\in(0,\infty)$	$L_{Huber}(y, f(x)) = r^2/2$ if $ r \le c$
	$= c r - c^2/2$ if $ r > c$
Pinball, $ au \in (0,1)$	$L_{ au}(y,f(x))=(au-1)r$ if $r<0$
	$= au r$ if $r \ge 0$
Logistic	$L_{log}(y, f(x)) = -\log(4\Lambda(r)[1 - \Lambda(r)])$
	$\Lambda(r) := 1/[1 + \exp(-r)]$
Least Squares	$L_{LS}(y, f(x)) = r^2$
<i>L</i> 1	$L_{L1}(y, f(x)) = r $

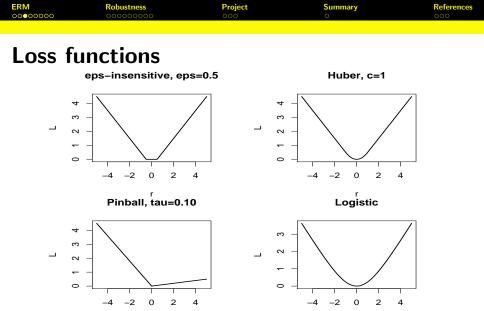
◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ 990

Vrije Universiteit Brussel

Bouligand Derivatives & Robustness of SVM

Arnout Van Messem - avmessem@vub.ac.be

Э



r

Bouligand Derivatives & Robustness of SVM

r 《 다 〉 《 큔 〉 《 코 〉 《 코 〉

Vrije Universiteit Brussel

990

Э

ERM	Robustness	Project	Summary	References
0000000				

Kernel methods

Reproducing Kernel Hilbert Space

Let \mathcal{H} be a Hilbert space of functions $f: X \to \mathbb{R}$. A reproducing kernel for \mathcal{H} is a map $k: X \times X \to \mathbb{R}$ with $\Phi(x) := k(x, \cdot) \in \mathcal{H}$, $f(x) = \langle f, k(x, \cdot) \rangle \ \forall x \in X, f \in \mathcal{H}$.

•
$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle, \forall x, x'$$

• $k \rightleftharpoons \mathsf{RKHS}$ unique

• Bounded: $||k||_{\infty} := \sqrt{\sup_{x \in \mathcal{X}} k(x, x)} < \infty$

• GRBF:
$$k(x, x') = e^{-\gamma ||x-x'||_2^2}$$
, $\gamma > 0$

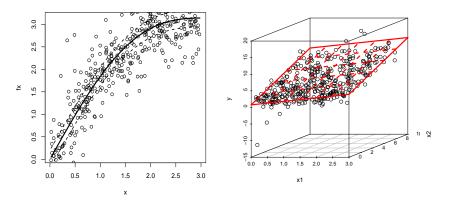
< ロ > < 部 > < 差 > < 差 > 差 の < @</p>

Vrije Universiteit Brussel

Bouligand Derivatives & Robustness of SVM

ERM	Robustness	Project	Summary	References
00000000				

Example for feature map $\mathbf{\Phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x}, \cdot)$



・ロト・日本・モート・モーシーモーのへの Bouligand Derivatives & Robustness of SVM

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
00000000				

Empirical Risk Minimization (ERM)

• Vapnik '98

- $\mathcal{R}_{L,\mathrm{P}}(f) := \mathbb{E}_{\mathrm{P}}L(Y,f(X))$
- $\mathcal{R}_{L,\mathrm{P},\lambda}^{reg}(f):=\mathcal{R}_{L,\mathrm{P}}(f)+\lambda||f||_{\mathcal{H}}^2$, $\lambda\in(0,\infty)$ fixed

•
$$\mathbf{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$$

• KBR estimator: $S(P_n) = f_{P_n,\lambda} = \arg \min_{f \in \mathcal{H}} \mathcal{R}_{L,P_n,\lambda}^{reg}(f)$ L convex, \mathcal{H} RKHS with reprod. kernel $k, \lambda > 0$

•
$$f_{P_n,\lambda}(x) = \sum_{i=1}^n \alpha_i k(x, x_i).$$

If $\alpha_i \neq 0: x_i$ is support vector

• KBR functional: $S(\mathbf{P}) := f_{\mathbf{P},\lambda} = \arg\min_{f \in \mathcal{H}} \mathcal{R}_{L,\mathbf{P},\lambda}^{reg}(f)$

Vrije Universiteit Brussel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ERM	Robustness	Project	Summary	References
00000000				

Learnability of SVMs

- Universal (weak) consistency: $\mathcal{R}_{L,\mathrm{P}}(f_{\mathrm{P}_n}) \xrightarrow{\mathrm{P}} \inf_{f \in \mathcal{H}} \mathcal{R}_{L,\mathrm{P}}(f)$
- L-risk consistency: $\mathcal{R}_{L,P}(f_{P_n,\lambda_n}) \xrightarrow{P} \mathcal{R}_{L,P}$, where $\mathcal{R}_{L,P} := \inf_{f:\mathcal{X} \to \mathbb{R}} \underset{\text{measurable}}{\operatorname{measurable}} \mathcal{R}_{L,P}(f)$ for suitable $\lambda_n \downarrow 0$

C&S 2007

Vrije Universiteit Brussel

Bouligand Derivatives & Robustness of SVM

・ロト ・四ト ・モト ・モト ・ 日

Arnout Van Messem - avmessem@vub.ac.be

ERM	Robustness	Project	Summary	References
0000000				

Question

"Which properties must

- the map $S(\mathbf{P}) = f_{\mathbf{P},\lambda}$,
- the kernel k,
- and the loss function L

have for good robustness properties of ERM?"

	References
00000000 0000000 000 0	

Robustness

What is the impact on $S(P) = f_{P,\lambda}$ due to violations from (X_i, Y_i) i.i.d. ~ P, $P \in \mathcal{M}_1$ unknown ?



◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ シ へ ○
Bouligand Derivatives & Robustness of SVM

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
	00000000			

Bouligand differentiability

Bouligand-derivative

 $f: X \to Z$ is Bouligand-differentiable at $x_0 \in X$, if \exists a positive homogeneous function $\nabla^B f(x_0): X \to Z$ such that

$$f(x_0 + h) = f(x_0) + \nabla^B f(x_0)(h) + o(h),$$

i.e.

$$\lim_{h \downarrow 0} \left\| f(x_0 + h) - f(x_0) - \nabla^B f(x_0)(h) \right\|_Z / \|h\|_X = 0.$$

Vrije Universiteit Brussel

Bouligand Derivatives & Robustness of SVM

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ERM	Robustness	Project	Summary	References
	00000000			

Strong approximation

 $f: X \to Z$ strongly approximates $F: X \times Y \to Z$ in x at (x_0, y_0) $(f \approx_x F)$ if $\forall \varepsilon > 0 \exists$ neighborhoods $\mathcal{N}(x_0)$ of x_0 and $\mathcal{N}(y_0)$ of y_0 such that $\forall x, x' \in \mathcal{N}(x_0), \forall y \in \mathcal{N}(y_0)$ holds

$$\left\| \left(F(x,y) - f(x) \right) - \left(F(x',y) - f(x') \right) \right\|_Z \le \varepsilon \left\| x - x' \right\|_X.$$

Strong Bouligand-derivative

 $F: X \times Y \to Z$ has partial B-derivative $\nabla_1^B F(x_0, y_0)$ w.r.t. x at (x_0, y_0) . Then $\nabla_1^B F(x_0, y_0)$ is *strong* if

$$F(x_0, y_0) + \nabla_1^B F(x_0, y_0)(x - x_0) \approx_x F$$

at (x_0, y_0) .

Robinson (1991)

Vrije Universiteit Brussel

Arnout Van Messem - avmessem@vub.ac.be

Bouligand influence function

BIF (C&VM '07)

The Bouligand influence function (BIF) of a function $S: \mathcal{M}_1 \to \mathcal{H}$ for a distribution P in the direction of a distribution $Q \neq P$ is the special B-derivative (if it exists)

$$\lim_{\varepsilon \downarrow 0} \frac{\left\| S\left((1-\varepsilon)\mathbf{P} + \varepsilon \mathbf{Q} \right) - S(\mathbf{P}) - \mathrm{BIF}(\mathbf{Q}; S, \mathbf{P}) \right\|_{\mathcal{H}}}{\varepsilon} = 0.$$

Goal: Bounded BIF

・ロト・日本・モン・モン・モン・マックの Bouligand Derivatives & Robustness of SVM

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
	00000000			

Main result

Assumptions

- $X \subset \mathbb{R}^d$, $Y \subset \mathbb{R}$ closed sets,
- \mathcal{H} is RKHS with bounded, measurable kernel k,

•
$$f_{\mathrm{P},\lambda} \in \mathcal{H}$$
,

- $L: Y \times \mathbb{R} \to [0, \infty)$ convex and Lipschitz continuous w.r.t. the 2^{nd} argument with uniform Lipschitz constant $|L|_1 := \sup_{y \in Y} |L(y, \cdot)|_1 \in (0, \infty),$
- L has measurable partial B-derivatives w.r.t. to the 2^{nd} argument with $\kappa_1 := \sup_{y \in Y} \left\| \nabla_2^B L(y, \cdot) \right\|_{\infty} \in (0, \infty)$, $\kappa_2 := \sup_{y \in Y} \left\| \nabla_{2,2}^B L(y, \cdot) \right\|_{\infty} < \infty$,

ERM	Robustness	Project	Summary	References
	000000000			

Assumptions

- $\delta_1 > 0$, $\delta_2 > 0$,
- $\mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) := \{ f \in \mathcal{H}; \| f f_{\mathrm{P},\lambda} \|_{\mathcal{H}} < \delta_1 \},$
- $\lambda > \frac{1}{2}\kappa_2 \|\Phi\|_{\mathcal{H}}^3$,
- P, Q probability measures on $(X \times Y, \mathcal{B}(X \times Y))$ with $\mathbb{E}_{P}|Y| < \infty$ and $\mathbb{E}_{Q}|Y| < \infty$.
- Define $G: (-\delta_2, \delta_2) \times \mathcal{N}_{\delta_1}(f(\mathbf{P}, \lambda)) \to \mathcal{H}$,

 $G(\varepsilon, f) := 2\lambda f + \mathbb{E}_{(1-\varepsilon)\mathbf{P}+\varepsilon\mathbf{Q}} \nabla_2^B L(Y, f(X)) \Phi(X) \,,$

• $G(0, f_{\mathrm{P},\lambda}) = 0$ and $\nabla_2^B G(0, f_{\mathrm{P},\lambda})$ is strong.

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
	000000000			

Theorem (C&VM '07)

The Bouligand influence function of $S(\mathbf{P}):=f_{\mathbf{P},\lambda}$ in direction of \mathbf{Q} exists and

$$BIF(Q; S, P) = T^{-1} \Big(\mathbb{E}_{P} \big(\nabla_{2}^{B} L(Y, f_{P,\lambda}(X)) \Phi(X) \big) \\ - \mathbb{E}_{Q} \big(\nabla_{2}^{B} L(Y, f_{P,\lambda}(X)) \Phi(X) \big) \Big),$$

where $T : \mathcal{H} \to \mathcal{H}$ with $T = 2\lambda \operatorname{id}_{\mathcal{H}} + \mathbb{E}_{P} \nabla^{B}_{2,2} L(Y, f_{P,\lambda}(X)) \langle \Phi(X), \cdot \rangle_{\mathcal{H}} \Phi(X)$, and is bounded.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ Q ○
Bouligand Derivatives & Robustness of SVM

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
	000000000			

Examples

The assumptions of the theorem are valid and thus ${\rm BIF}({\rm Q};S,{\rm P})$ exists and is bounded, if

ϵ -insensitive loss L_{ϵ} , pinball loss L_{τ}

 $\begin{aligned} \forall \delta > 0 \,\exists \text{ positive constants } \xi_{\mathrm{P}}, \, \xi_{\mathrm{Q}}, \, c_{\mathrm{P}}, \, \text{and } c_{\mathrm{Q}} \text{ such that} \\ \forall t \in \mathbb{R} \text{ with } |t - f_{\mathrm{P},\lambda}(x)| \leq \delta \|k\|_{\infty} \text{ the following inequalities} \\ \text{hold } \forall a \in [0, 2\delta \|k\|_{\infty}] \text{ and } \forall x \in X \text{:} \\ \mathrm{P}\big(Y \in [t, t + a] \, \big| \, x\big) \leq c_{\mathrm{P}} a^{1 + \xi_{\mathrm{P}}} \\ \mathrm{Q}\big(Y \in [t, t + a] \, \big| \, x\big) \leq c_{\mathrm{Q}} a^{1 + \xi_{\mathrm{Q}}} \,. \end{aligned}$

Vrije Universiteit Brussel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ERM	Robustness	Project	Summary	References
	00000000			

The assumptions of the theorem are valid and thus ${\rm BIF}({\rm Q};S,{\rm P})$ exists and is bounded, if

Huber loss *L_{Huber}*

$$\begin{aligned} \forall x \in X: \\ & \mathbb{P}\left(Y \in \left\{f_{\mathrm{P},\lambda}(x) - c, f_{\mathrm{P},\lambda}(x) + c\right\} \mid x\right) \\ &= & \mathbb{Q}\left(Y \in \left\{f_{\mathrm{P},\lambda}(x) - c, f_{\mathrm{P},\lambda}(x) + c\right\} \mid x\right) \\ &= & 0 \,. \end{aligned}$$

Logistic loss L_{log}

No special assumptions on the probabilities needed.

◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ◆ □ → ○ へ ○Bouligand Derivatives & Robustness of SVM

Vrije Universiteit Brussel

ERM	Robustness	Project	Summary	References
		000		

Project

Description

- cooperation partner: union of 15 German insurance companies (Verband öffentlicher Versicherer, Düsseldorf)
- $n \approx 4.5$ million customers
- primary goal: model the claim amount (in EUR)
- secondary goal: model the probability for a claim
- many potential risk variables and complex dependency structures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ERM	Robustness	Project	Summary	References
		000		

Questions

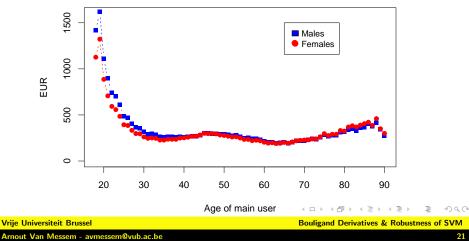
- Can we improve the current insurance tariff?
- Which groups of persons have especially often claims?
- Does the data set contain unknown information?
- If yes, how can we extract and model the information?
- Can we develop a method which is able to "learn" to do this automatically?

イロト イヨト イヨト イヨト

ERM	Robustness	Project	Summary	References
		000		

Project

Estimation of claim amount (in EUR)



ERM	Robustness	Project	Summary	References
0000000	00000000	000	•	000

Summary

Kernel based methods like SVM:

- Non-parametric, flexible
- Can model complex high-dimensional dependency structures
- Robustness of SVM:
 - Bounded BIF(Q; T, P)
 - Robustness for regression if $\nabla_2^B L$ and k bounded
- Applications: insurance tariffs, credit scoring in banks, fraud detection, data mining, genomics, ...

イロト イロト イヨト イヨト 三日

ERM 00000000	Robustness	Project	Summary o	References ●○○

References

- Christmann & Van Messem (2007). Bouligand derivatives and robustness of support vector machines. Submitted.
- Christmann & Steinwart (2004). Robust properties of convex risk minimization methods for pattern recognition. *JMLR*, **5**, 1007-1034.
- Christmann & Steinwart (2007). Consistency and robustness of kernel based regression. To appear: *Bernoulli*.
- Robinson (1991). An implicit-function theorem for a class of non-smooth functions. *Mathematics of Operations Research*, 16, 292-309.
- Schölkopf & Smola (2002). Learning with kernels. MIT Press.
- Vapnik (1998). Statistical learning theory. Wiley.

Vrije Universiteit Brussel

ERM 00000000	Robustness	Project	Summary o	References ○●○

More on the theorem

For the proof of the theorem we showed:

- i. For some χ and each $f \in \mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda})$, $G(\cdot, f)$ is Lipschitz continuous on $(-\delta_2, \delta_2)$ with Lipschitz constant χ .
- ii. G has partial B-derivatives with respect to ε and f at $(0, f_{\mathrm{P},\lambda})$.
- iii. $\nabla_2^B G(0, f_{\mathrm{P},\lambda}) \left(\mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) f_{\mathrm{P},\lambda} \right)$ is a neighborhood of $0 \in \mathcal{H}$.
- iv. $\delta\left(\nabla_2^B G(0, f_{\mathrm{P},\lambda}), \mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) f_{\mathrm{P},\lambda}\right) =: d_0 > 0.$

Bouligand Derivatives & Robustness of SVM

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < < = < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Vrije Universiteit Brussel

ERM 00000000	Robustness	Project	Summary o	References

- **v.** For each $\xi > d_0^{-1}\chi$ there exist $\delta_3, \delta_4 > 0$, a neighborhood $\mathcal{N}_{\delta_3}(f_{\mathrm{P},\lambda}) := \{f \in \mathcal{H}; \|f f_{\mathrm{P},\lambda}\|_{\mathcal{H}} < \delta_3\}$, and a function $f^* : (-\delta_4, \delta_4) \to \mathcal{N}_{\delta_3}(f_{\mathrm{P},\lambda})$ satisfying
 - **v.1)** $f^*(0) = f_{\mathrm{P},\lambda}$.
 - **v.2)** $f^*(\cdot)$ is Lipschitz continuous on $(-\delta_4, \delta_4)$ with Lipschitz constant $|f^*|_1 = \xi$.
 - **v.3)** For each $\varepsilon \in (-\delta_4, \delta_4)$ is $f^*(\varepsilon)$ the unique solution of $G(\varepsilon, f) = 0$ in $(-\delta_4, \delta_4)$.
 - **v.4)** It holds $\nabla^B f^*(0)(u) = \left(\nabla^B_2 G(0, f_{\mathrm{P},\lambda})\right)^{-1} \left(-\nabla^B_1 G(0, f_{\mathrm{P},\lambda})(u)\right).$

Vrije Universiteit Brussel