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Notation

Data sample: D = ((x1, y1), . . . , (xn, yn)) ∈ Z := X ×Y ,
1 ≤ i ≤ n, n ∈ N

X ⊆ Rd, Y ⊆ R, closed, X 6= ∅, Y 6= ∅

f(xi) = quantity of interest of PYi|Xi=xi

Loss function: L : Y ×R→ [0,∞), L(yi, f(xi)), convex

Assumption: (Xi, Yi) i.i.d. ∼ P ∈M1, P unknown
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Loss functions for regression

Method Loss, r := y − f(x)
ε-insensitive Lε(y, f(x)) = max {0, |r| − ε}
Huber, c ∈ (0,∞) LHuber(y, f(x)) = r2/2 if |r| ≤ c

= c|r| − c2/2 if |r| > c
Pinball, τ ∈ (0, 1) Lτ (y, f(x)) = (τ − 1)r if r < 0

= τr if r ≥ 0
Logistic Llog(y, f(x)) = − log(4Λ(r)[1− Λ(r)])

Λ(r) := 1/[1 + exp(−r)]
Least Squares LLS(y, f(x)) = r2

L1 LL1(y, f(x)) = |r|
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Loss functions
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Kernel methods

Reproducing Kernel Hilbert Space

Let H be a Hilbert space of functions f : X → R. A
reproducing kernel for H is a map k : X ×X → R with
Φ(x) := k(x, ·) ∈ H, f(x) = 〈f, k(x, ·)〉 ∀x ∈ X, f ∈ H.

k(x, x′) = 〈Φ(x), Φ(x′)〉,∀x, x′

k � RKHS unique

Bounded: ||k||∞ :=
√

supx∈X k(x, x) < ∞

GRBF: k(x, x′) = e−γ||x−x′||22 , γ > 0
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Example for feature map Φ(x) = k(x, ·)
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Empirical Risk Minimization (ERM)

Vapnik ’98

RL,P(f) := EPL(Y, f(X))

Rreg
L,P,λ(f) := RL,P(f) + λ||f ||2H , λ ∈ (0,∞) fixed

Pn := 1
n

∑n
i=1 δ(xi,yi)

KBR estimator: S(Pn) = fPn,λ = arg minf∈H Rreg
L,Pn,λ(f)

L convex, H RKHS with reprod. kernel k, λ > 0

fPn,λ(x) =
∑n

i=1 αik(x, xi).
If αi 6= 0 : xi is support vector.

KBR functional: S(P) := fP,λ = arg minf∈HRreg
L,P,λ(f)
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Learnability of SVMs

Universal (weak) consistency:
RL,P(fPn)−→P inff∈HRL,P(f)

L−risk consistency:
RL,P(fPn,λn)−→P RL,P, where
RL,P := inff :X→R measurableRL,P(f) for suitable λn ↓ 0

C&S 2007
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Question

”Which properties must

the map S(P) = fP,λ,

the kernel k,

and the loss function L

have for good robustness properties of ERM?”
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Robustness

What is the impact on S(P) = fP,λ due to violations from
(Xi, Yi) i.i.d. ∼ P, P ∈M1 unknown ?
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Bouligand differentiability

Bouligand-derivative

f : X → Z is Bouligand-differentiable at x0 ∈ X, if ∃ a
positive homogeneous function ∇Bf(x0) : X → Z such that

f(x0 + h) = f(x0) +∇Bf(x0)(h) + o(h) ,

i.e.

lim
h↓0

∥∥f(x0 + h)− f(x0)−∇Bf(x0)(h)
∥∥

Z
/ ‖h‖X = 0.
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Strong approximation

f : X → Z strongly approximates F : X × Y → Z in x at
(x0, y0) (f ≈x F ) if ∀ε > 0 ∃ neighborhoods N (x0) of x0 and
N (y0) of y0 such that ∀x, x′ ∈ N (x0),∀y ∈ N (y0) holds∥∥(

F (x, y)− f(x)
)
−

(
F (x′, y)− f(x′)

)∥∥
Z
≤ ε ‖x− x′‖X .

Strong Bouligand-derivative

F : X × Y → Z has partial B-derivative ∇B
1 F (x0, y0) w.r.t. x

at (x0, y0). Then ∇B
1 F (x0, y0) is strong if

F (x0, y0) +∇B
1 F (x0, y0)(x− x0) ≈x F

at (x0, y0).
Robinson (1991)
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Bouligand influence function

BIF (C&VM ’07)

The Bouligand influence function (BIF) of a function
S : M1 → H for a distribution P in the direction of a
distribution Q 6= P is the special B-derivative (if it exists)

lim
ε↓0

∥∥S
(
(1− ε)P + εQ

)
− S(P)− BIF(Q; S, P)

∥∥
H

ε
= 0.

Goal: Bounded BIF
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Main result

Assumptions

X ⊂ Rd, Y ⊂ R closed sets,

H is RKHS with bounded, measurable kernel k,

fP,λ ∈ H,

L : Y ×R→ [0,∞) convex and Lipschitz continuous
w.r.t. the 2nd argument with uniform Lipschitz constant
|L|1 := supy∈Y |L(y, ·)|1 ∈ (0,∞),

L has measurable partial B-derivatives w.r.t. to the 2nd

argument with κ1 := supy∈Y

∥∥∇B
2 L(y, ·)

∥∥
∞ ∈ (0,∞),

κ2 := supy∈Y

∥∥∇B
2,2L(y, ·)

∥∥
∞ < ∞ ,

Vrije Universiteit Brussel Bouligand Derivatives & Robustness of SVM
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Assumptions

δ1 > 0, δ2 > 0,

Nδ1(fP,λ) := {f ∈ H; ‖f − fP,λ‖H < δ1},
λ > 1

2
κ2 ‖Φ‖3

H,

P, Q probability measures on
(
X × Y,B(X × Y )

)
with

EP|Y | < ∞ and EQ|Y | < ∞.

Define G : (−δ2, δ2)×Nδ1(f(P, λ)) → H,

G(ε, f) := 2λf + E(1−ε)P+εQ∇B
2 L(Y, f(X))Φ(X) ,

G(0, fP,λ) = 0 and ∇B
2 G(0, fP,λ) is strong.
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Theorem (C&VM ’07)

The Bouligand influence function of S(P) := fP,λ in direction
of Q exists and

BIF(Q; S, P) = T−1
(
EP

(
∇B

2 L(Y, fP,λ(X))Φ(X)
)

−EQ

(
∇B

2 L(Y, fP,λ(X))Φ(X)
))

,

where T : H → H with
T = 2λ idH + EP∇B

2,2L(Y, fP,λ(X))〈Φ(X), ·〉HΦ(X), and is
bounded.
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Examples

The assumptions of the theorem are valid and thus
BIF(Q; S, P) exists and is bounded, if

ε-insensitive loss Lε, pinball loss Lτ

∀δ > 0∃ positive constants ξP, ξQ, cP, and cQ such that
∀t ∈ R with |t− fP,λ(x)| ≤ δ‖k‖∞ the following inequalities
hold ∀a ∈ [0, 2δ‖k‖∞] and ∀x ∈ X:
P

(
Y ∈ [t, t + a]

∣∣ x
)
≤ cPa1+ξP

Q
(
Y ∈ [t, t + a]

∣∣ x
)
≤ cQa1+ξQ .
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The assumptions of the theorem are valid and thus
BIF(Q; S, P) exists and is bounded, if

Huber loss LHuber

∀x ∈ X:
P

(
Y ∈

{
fP,λ(x)− c, fP,λ(x) + c

} ∣∣ x
)

= Q
(
Y ∈

{
fP,λ(x)− c, fP,λ(x) + c

} ∣∣ x
)

= 0 .

Logistic loss Llog

No special assumptions on the probabilities needed.

Vrije Universiteit Brussel Bouligand Derivatives & Robustness of SVM

Arnout Van Messem - avmessem@vub.ac.be 18



ERM Robustness Project Summary References

Project

Description

cooperation partner: union of 15 German insurance
companies (Verband öffentlicher Versicherer, Düsseldorf)

n ≈ 4.5 million customers

primary goal: model the claim amount (in EUR)

secondary goal: model the probability for a claim

many potential risk variables and complex dependency
structures

Vrije Universiteit Brussel Bouligand Derivatives & Robustness of SVM
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Questions

Can we improve the current insurance tariff?

Which groups of persons have especially often claims?

Does the data set contain unknown information?

If yes, how can we extract and model the information?

Can we develop a method which is able to ”learn” to do
this automatically?

Vrije Universiteit Brussel Bouligand Derivatives & Robustness of SVM
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Project

Estimation of claim amount (in EUR)
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Summary

Kernel based methods like SVM:

Non-parametric, flexible

Can model complex high-dimensional dependency
structures

Robustness of SVM:

Bounded BIF(Q;T,P)
Robustness for regression if ∇B

2 L and k bounded

Applications: insurance tariffs, credit scoring in banks,
fraud detection, data mining, genomics, . . .
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More on the theorem

For the proof of the theorem we showed:

i. For some χ and each f ∈ Nδ1(fP,λ), G(· , f) is Lipschitz
continuous on (−δ2, δ2) with Lipschitz constant χ.

ii. G has partial B-derivatives with respect to ε and f at
(0, fP,λ).

iii. ∇B
2 G(0, fP,λ)

(
Nδ1(fP,λ)− fP,λ

)
is a neighborhood of

0 ∈ H.

iv. δ
(
∇B

2 G(0, fP,λ), Nδ1(fP,λ)− fP,λ

)
=: d0 > 0.
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v. For each ξ > d−1
0 χ there exist δ3, δ4 > 0, a neighborhood

Nδ3(fP,λ) := {f ∈ H; ‖f − fP,λ‖H < δ3}, and a function
f ∗ : (−δ4, δ4) → Nδ3(fP,λ) satisfying

v.1) f∗(0) = fP,λ.
v.2) f∗(·) is Lipschitz continuous on (−δ4, δ4) with Lipschitz

constant |f∗|1 = ξ.
v.3) For each ε ∈ (−δ4, δ4) is f∗(ε) the unique solution of

G(ε, f) = 0 in (−δ4, δ4).
v.4) It holds

∇Bf∗(0)(u) =
(
∇B

2 G(0, fP,λ)
)−1 (

−∇B
1 G(0, fP,λ)(u)

)
.
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