Bouligand Influence Function and Robustness of Support Vector Machines

Arnout Van Messem
joint work with Andreas Christmann

Vrije Universiteit Brussel

Robust and Nonparametric Statistical Inference, Hejnice, Sept 1-6, 2007

Notation

Assumptions:

- $X \subseteq \mathbb{R}^{d}, Y \subseteq \mathbb{R}, X \neq \varnothing, Y \neq \varnothing$
- $\mathcal{D}=\mathcal{D}_{n}=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right), 1 \leq i \leq n$
- $\left(X_{i}, Y_{i}\right)$ i.i.d. $\sim \mathrm{P} \in \mathcal{M}_{1}, \mathrm{P}$ (totally) unknown

Aim:

- $f\left(x_{i}\right)=$ quantity of interest of $\mathrm{P}_{Y_{i} \mid X_{i}=x_{i}}$

Assumption:

- Loss function: $L: Y \times \mathbb{R} \rightarrow[0, \infty), L\left(y_{i}, f\left(x_{i}\right)\right)$, convex

Loss functions for regression

Huber, $c=1$

Logistic

Kernel methods

- Kernel: $k: X \times X \rightarrow \mathbb{R}$, if \exists Hilbert space \mathcal{H} and $\Phi: X \rightarrow \mathcal{H}$ such that

$$
k\left(x, x^{\prime}\right)=\left\langle\Phi(x), \Phi\left(x^{\prime}\right)\right\rangle, \quad \forall x, x^{\prime} \in X
$$

Reproducing Kernel Hilbert Space (RKHS)

\mathcal{H} a Hilbert space of functions $f: X \rightarrow \mathbb{R}$. A reproducing kernel for \mathcal{H} is a kernel k with

$$
f(x)=\langle f, k(x, \cdot)\rangle \quad \forall f \in \mathcal{H}, \forall x \in X .
$$

- Canonical feature map: $\Phi(x)=k(x, \cdot), x \in X$
- $k \rightleftarrows$ RKHS unique
- Bounded: $\|k\|_{\infty}:=\sqrt{\sup _{x \in \mathcal{X}} k(x, x)}<\infty$
- GRBF: $k\left(x, x^{\prime}\right)=e^{-\gamma\left\|x-x^{\prime}\right\|_{2}^{2}}, \gamma>0$

Example for feature map $\Phi(\mathrm{x})=\mathrm{k}(\mathrm{x}, \cdot)$

Support Vector Machines (SVMs)

Definition

Kernel Based Regression (KBR) operator

$$
S(\mathrm{P})=f_{\mathrm{P}, \lambda}=\arg \min _{f \in \mathcal{H}} \mathbb{E}_{\mathrm{P}} L\left(Y_{i}, f\left(X_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2},
$$

where $\mathrm{P} \in \mathcal{M}_{1}, \mathcal{H}$ is a RKHS and $\lambda>0$.
Kernel Based Regression estimator

$$
S\left(\mathrm{P}_{n}\right)=\arg \min _{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L\left(Y_{i}, f\left(X_{i}\right)\right)+\lambda\|f\|_{\mathcal{H}}^{2},
$$

where $\mathrm{P}_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{\left(x_{i}, y_{i}\right)}$.

Learnability of SVMs

- Universal (weak) consistency:
$\mathcal{R}_{L, \mathrm{P}}\left(f_{\mathrm{P}_{n}}\right) \xrightarrow{\mathrm{P}} \inf _{f \in \mathcal{H}} \mathcal{R}_{L, \mathrm{P}}(f):=\mathcal{R}_{L, \mathrm{P}, \mathcal{H}}^{*}$
- L-risk consistency:
$\mathcal{R}_{L, \mathrm{P}}\left(f_{\mathrm{P}_{n}, \lambda_{n}}\right) \xrightarrow{\mathrm{P}} \mathcal{R}_{L, \mathrm{P}}^{*}$, where
$\mathcal{R}_{L, \mathrm{P}}^{*}:=\inf _{f: X \rightarrow \mathbb{R} \text { measurable }} \mathcal{R}_{L, \mathrm{P}}(f)$ for suitable $\lambda_{n} \downarrow 0$

Christmann \& Steinwart (2007)

Question

"Which properties must

- $S(\mathrm{P})=f_{\mathrm{P}, \lambda}$,
- k,
- and L
have for good robustness properties of SVMs?"

Robustness

What is the impact on $S(\mathrm{P})=f_{\mathrm{P}, \lambda}$ due to violations from $\left(X_{i}, Y_{i}\right)$ i.i.d. $\sim \mathrm{P}, \mathrm{P} \in \mathcal{M}_{1}$ unknown?

Bouligand differentiability

Bouligand-derivative

$f: X \rightarrow Z$ is Bouligand-differentiable at $x_{0} \in X$, if \exists a positive homogeneous function $\nabla^{B} f\left(x_{0}\right): X \rightarrow Z$ such that

$$
f\left(x_{0}+h\right)=f\left(x_{0}\right)+\nabla^{B} f\left(x_{0}\right)(h)+o(h),
$$

i.e.

$$
\lim _{h \downarrow 0}\left\|f\left(x_{0}+h\right)-f\left(x_{0}\right)-\nabla^{B} f\left(x_{0}\right)(h)\right\|_{Z} /\|h\|_{X}=0 .
$$

Strong approximation

 $f: X \rightarrow Z$ strongly approximates $F: X \times Y \rightarrow Z$ in x at $\left(x_{0}, y_{0}\right)$ (notation: $\left.f \approx_{x} F\right)$ if $\forall \varepsilon>0 \exists$ neighborhoods $\mathcal{N}\left(x_{0}\right)$ of x_{0} and $\mathcal{N}\left(y_{0}\right)$ of y_{0} such that $\forall x, x^{\prime} \in \mathcal{N}\left(x_{0}\right), \forall y \in \mathcal{N}\left(y_{0}\right)$$$
\left\|(F(x, y)-f(x))-\left(F\left(x^{\prime}, y\right)-f\left(x^{\prime}\right)\right)\right\|_{Z} \leq \varepsilon\left\|x-x^{\prime}\right\|_{X}
$$

Strong Bouligand-derivative

$F: X \times Y \rightarrow Z$ has partial B-derivative $\nabla_{1}^{B} F\left(x_{0}, y_{0}\right)$ w.r.t. x at $\left(x_{0}, y_{0}\right)$. Then $\nabla_{1}^{B} F\left(x_{0}, y_{0}\right)$ is strong if

$$
F\left(x_{0}, y_{0}\right)+\nabla_{1}^{B} F\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) \approx_{x} F
$$

at $\left(x_{0}, y_{0}\right)$.

Bouligand influence function

BIF (C\&VM '07)

The Bouligand influence function (BIF) of a function $S: \mathcal{M}_{1} \rightarrow \mathcal{H}$ for a distribution P in the direction of a distribution $\mathrm{Q} \neq \mathrm{P}$ is the special B -derivative (if it exists)

$$
\lim _{\varepsilon \downarrow 0} \frac{\|S((1-\varepsilon) \mathrm{P}+\varepsilon \mathrm{Q})-S(\mathrm{P})-\operatorname{BIF}(\mathrm{Q} ; S, \mathrm{P})\|_{\mathcal{H}}}{\varepsilon}=0 .
$$

If BIF exists, then Hampel's IF exists and BIF $=\mathrm{IF}$
Goal: Bounded BIF

Main result

Assumptions

- $X \subset \mathbb{R}^{d}, Y \subset \mathbb{R}$ closed sets,
- \mathcal{H} is RKHS with bounded, measurable kernel k,
- $f_{\mathrm{P}, \lambda} \in \mathcal{H}$,
- $L: Y \times \mathbb{R} \rightarrow[0, \infty)$ convex and Lipschitz continuous w.r.t. the $2^{\text {nd }}$ argument with uniform Lipschitz constant $|L|_{1}:=\sup _{y \in Y}|L(y, \cdot)|_{1} \in(0, \infty)$,
- L has measurable partial B-derivatives w.r.t. to the $2^{n d}$ argument with $\kappa_{1}:=\sup _{y \in Y}\left\|\nabla_{2}^{B} L(y, \cdot)\right\|_{\infty} \in(0, \infty)$, $\kappa_{2}:=\sup _{y \in Y}\left\|\nabla_{2,2}^{B} L(y, \cdot)\right\|_{\infty}<\infty$,

Assumptions

- $\delta_{1}>0, \delta_{2}>0$,
- $\mathcal{N}_{\delta_{1}}\left(f_{\mathrm{P}, \lambda}\right):=\left\{f \in \mathcal{H} ;\left\|f-f_{\mathrm{P}, \lambda}\right\|_{\mathcal{H}}<\delta_{1}\right\}$,
- $\lambda>\frac{1}{2} \kappa_{2}\|\Phi\|_{\mathcal{H}}^{3}$,
- P, Q probability measures on $(X \times Y, \mathcal{B}(X \times Y))$ with $\mathbb{E}_{\mathrm{P}}|Y|<\infty$ and $\mathbb{E}_{\mathrm{Q}}|Y|<\infty$.
- Define $G:\left(-\delta_{2}, \delta_{2}\right) \times \mathcal{N}_{\delta_{1}}(f(\mathrm{P}, \lambda)) \rightarrow \mathcal{H}$,

$$
G(\varepsilon, f):=2 \lambda f+\mathbb{E}_{(1-\varepsilon) \mathrm{P}+\varepsilon \mathrm{Q}} \nabla_{2}^{B} L(Y, f(X)) \Phi(X),
$$

- $G\left(0, f_{\mathrm{P}, \lambda}\right)=0$ and $\nabla_{2}^{B} G\left(0, f_{\mathrm{P}, \lambda}\right)$ is strong.

Theorem (C\&VM '07)

Then $\operatorname{BIF}(\mathrm{Q} ; S, \mathrm{P})$ with $S(\mathrm{P}):=f_{\mathrm{P}, \lambda}$
(1) exists,
(2) equals

$$
\begin{aligned}
& T^{-1}\left(\mathbb{E}_{\mathrm{P}} \nabla_{2}^{B} L\left(Y, f_{\mathrm{P}, \lambda}(X)\right) \Phi(X)\right. \\
& \left.\quad-\mathbb{E}_{\mathrm{Q}} \nabla_{2}^{B} L\left(Y, f_{\mathrm{P}, \lambda}(X)\right) \Phi(X)\right),
\end{aligned}
$$

where $T: \mathcal{H} \rightarrow \mathcal{H}$ with
$T=2 \lambda \mathrm{id}_{\mathcal{H}}+\mathbb{E}_{\mathrm{P}} \nabla_{2,2}^{B} L\left(Y, f_{\mathrm{P}, \lambda}(X)\right)\langle\Phi(X), \cdot\rangle_{\mathcal{H}} \Phi(X)$, and
(3) is bounded.

Examples

The assumptions of the theorem are valid and thus $\operatorname{BIF}(\mathrm{Q} ; S, \mathrm{P})$ exists and is bounded, if

ϵ-insensitive loss L_{ϵ}, pinball loss L_{τ}

$\forall \delta>0 \exists$ positive constants $\xi_{\mathrm{P}}, \xi_{\mathrm{Q}}, c_{\mathrm{P}}$, and c_{Q} such that $\forall t \in \mathbb{R}$ with $\left|t-f_{\mathrm{P}, \lambda}(x)\right| \leq \delta\|k\|_{\infty}$ the following inequalities hold $\forall a \in\left[0,2 \delta\|k\|_{\infty}\right]$ and $\forall x \in X$:
$\mathrm{P}(Y \in[t, t+a] \mid x) \leq c_{\mathrm{P}} a^{1+\xi_{\mathrm{P}}}$
$\mathrm{Q}(Y \in[t, t+a] \mid x) \leq c_{\mathrm{Q}} a^{1+\xi_{\mathrm{Q}}}$.

The assumptions of the theorem are valid and thus $\mathrm{BIF}(\mathrm{Q} ; S, \mathrm{P})$ exists and is bounded, if

Huber loss $L_{\text {Huber }}$

$\forall x \in X$:

$$
\begin{aligned}
& \mathrm{P}\left(Y \in\left\{f_{\mathrm{P}, \lambda}(x)-c, f_{\mathrm{P}, \lambda}(x)+c\right\} \mid x\right) \\
= & \mathrm{Q}\left(Y \in\left\{f_{\mathrm{P}, \lambda}(x)-c, f_{\mathrm{P}, \lambda}(x)+c\right\} \mid x\right) \\
= & 0
\end{aligned}
$$

Logistic loss $L_{\text {log }}$
No special assumptions on the probabilities needed.

Summary

Support vector machines

- Non-parametric and flexible
- Robust:
- $\operatorname{BIF}(\mathrm{Q} ; T, \mathrm{P})$ is bounded for regression if $\nabla_{2}^{B} L$ and k bounded
- Applications: insurance tariffs, credit scoring in banks, fraud detection, data mining, genomics, ...

References

- Christmann \& Van Messem (2007). Bouligand derivatives and robustness of support vector machines. Submitted.
- Christmann \& Steinwart (2007). Consistency and robustness of kernel based regression. Bernoulli, 13, 799-819.
- Christmann \& Steinwart (2004). Robust properties of convex risk minimization methods for pattern recognition. JMLR, 5, 1007-1034.
- Hampel (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc., 69, 383-393.
- Robinson (1991). An implicit-function theorem for a class of non-smooth functions. Mathematics of Operations Research, 16, 292-309.
- Vapnik (1998). Statistical learning theory. Wiley.

More on the theorem

For the proof of the theorem we showed:
i. For some χ and each $f \in \mathcal{N}_{\delta_{1}}\left(f_{\mathrm{P}, \lambda}\right), G(\cdot, f)$ is Lipschitz continuous on $\left(-\delta_{2}, \delta_{2}\right)$ with Lipschitz constant χ.
ii. G has partial B-derivatives with respect to ε and f at $\left(0, f_{\mathrm{P}, \lambda}\right)$.
iii. $\nabla_{2}^{B} G\left(0, f_{\mathrm{P}, \lambda}\right)\left(\mathcal{N}_{\delta_{1}}\left(f_{\mathrm{P}, \lambda}\right)-f_{\mathrm{P}, \lambda}\right)$ is a neighborhood of $0 \in \mathcal{H}$.
iv. $\delta\left(\nabla_{2}^{B} G\left(0, f_{\mathrm{P}, \lambda}\right), \mathcal{N}_{\delta_{1}}\left(f_{\mathrm{P}, \lambda}\right)-f_{\mathrm{P}, \lambda}\right)=: d_{0}>0$.
v. For each $\xi>d_{0}^{-1} \chi$ there exist $\delta_{3}, \delta_{4}>0$, a neighborhood $\mathcal{N}_{\delta_{3}}\left(f_{\mathrm{P}, \lambda}\right):=\left\{f \in \mathcal{H} ;\left\|f-f_{\mathrm{P}, \lambda}\right\|_{\mathcal{H}}<\delta_{3}\right\}$, and a function $f^{*}:\left(-\delta_{4}, \delta_{4}\right) \rightarrow \mathcal{N}_{\delta_{3}}\left(f_{\mathrm{P}, \lambda}\right)$ satisfying
v.1) $f^{*}(0)=f_{\mathrm{P}, \lambda}$.
v.2) $f^{*}(\cdot)$ is Lipschitz continuous on $\left(-\delta_{4}, \delta_{4}\right)$ with Lipschitz constant $\left|f^{*}\right|_{1}=\xi$.
v.3) For each $\varepsilon \in\left(-\delta_{4}, \delta_{4}\right)$ is $f^{*}(\varepsilon)$ the unique solution of $G(\varepsilon, f)=0$ in $\left(-\delta_{4}, \delta_{4}\right)$.
v.4) It holds

$$
\nabla^{B} f^{*}(0)(u)=\left(\nabla_{2}^{B} G\left(0, f_{\mathrm{P}, \lambda}\right)\right)^{-1}\left(-\nabla_{1}^{B} G\left(0, f_{\mathrm{P}, \lambda}\right)(u)\right)
$$

