## **Bouligand Influence Function and Robustness of Support Vector** Machines

### Arnout Van Messem

joint work with Andreas Christmann



Vrije Universiteit Brussel

Robust and Nonparametric Statistical Inference, Hejnice, Sept 1-6, 2007

Vrije Universiteit Brussel

BIF & Robustness of SVM

イロト イポト イヨト イヨト

Arnout Van Messem - homepages.vub.ac.be/~avmessem

Sac

### Notation

#### **Assumptions:**

- $X \subseteq \mathbb{R}^d$ ,  $Y \subseteq \mathbb{R}$ ,  $X \neq \emptyset$ ,  $Y \neq \emptyset$
- $\mathcal{D} = \mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n)), \ 1 \le i \le n$
- $(X_i, Y_i)$  i.i.d.  $\sim P \in \mathcal{M}_1$ , P (totally) unknown

#### Aim:

•  $f(x_i) =$ quantity of interest of  $P_{Y_i|X_i=x_i}$ 

#### Assumption:

• Loss function:  $L: Y \times \mathbb{R} \to [0, \infty)$ ,  $L(y_i, f(x_i))$ , convex



### Loss functions for regression



Vrije Universiteit Brussel

Arnout Van Messem - homepages.vub.ac.be/~avmessem

200

**BIF & Robustness of SVM** 

| SVM    | Robustness | Summary | References |
|--------|------------|---------|------------|
| 000000 |            |         |            |
|        |            |         |            |
|        |            |         |            |
|        |            |         |            |

### Kernel methods

• Kernel:  $k : X \times X \to \mathbb{R}$ , if  $\exists$  Hilbert space  $\mathcal{H}$  and  $\Phi : X \to \mathcal{H}$  such that

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle, \quad \forall x, x' \in X$$

#### Reproducing Kernel Hilbert Space (RKHS)

 $\mathcal H$  a Hilbert space of functions  $f:X\to\mathbb R.$  A reproducing kernel for  $\mathcal H$  is a kernel k with

$$f(x) = \langle f, k(x, \cdot) \rangle \quad \forall f \in \mathcal{H}, \forall x \in X.$$

- Canonical feature map:  $\Phi(x) = k(x, \cdot), \ x \in X$
- $k \rightleftharpoons$  RKHS unique
- Bounded:  $||k||_{\infty} := \sqrt{\sup_{x \in \mathcal{X}} k(x, x)} < \infty$
- $\bullet$  GRBF:  $k(x,x')=e^{-\gamma||x-x'||_2^2}$  ,  $\gamma>0$  ,

Vrije Universiteit Brussel

| SVM    | Robustness | Summary | References |
|--------|------------|---------|------------|
| 000000 |            |         |            |
|        |            |         |            |

### Example for feature map $\mathbf{\Phi}(\mathbf{x}) = \mathbf{k}(\mathbf{x}, \cdot)$



- \* ロ > \* 個 > \* 注 > \* 注 > ・ 注 ・ の < @

Vrije Universiteit Brussel

BIF & Robustness of SVM

### Support Vector Machines (SVMs)

#### Definition

Kernel Based Regression (KBR) operator

$$S(\mathbf{P}) = f_{\mathbf{P},\lambda} = \arg\min_{f\in\mathcal{H}} \mathbb{E}_{\mathbf{P}}L(Y_i, f(X_i)) + \lambda ||f||_{\mathcal{H}}^2,$$

where  $P \in \mathcal{M}_1$ ,  $\mathcal{H}$  is a RKHS and  $\lambda > 0$ .

#### Kernel Based Regression estimator

$$S(\mathbf{P}_n) = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n L(Y_i, f(X_i)) + \lambda \|f\|_{\mathcal{H}}^2 ,$$
  
where  $\mathbf{P}_n := \frac{1}{n} \sum_{i=1}^n \delta_{(x_i, y_i)}$ .

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

イロト イヨト イヨト イヨト

Arnout Van Messem - homepages.vub.ac.be/~avmessem

Sac

### Learnability of SVMs

- Universal (weak) consistency:  $\mathcal{R}_{L,\mathrm{P}}(f_{\mathrm{P}_n}) \xrightarrow{\mathrm{P}} \inf_{f \in \mathcal{H}} \mathcal{R}_{L,\mathrm{P}}(f) := \mathcal{R}^*_{L,\mathrm{P},\mathcal{H}}$
- L-risk consistency:  $\mathcal{R}_{L,\mathrm{P}}(f_{\mathrm{P}_n,\lambda_n}) \xrightarrow{\mathrm{P}} \mathcal{R}_{L,\mathrm{P}}^*$ , where  $\mathcal{R}_{L,\mathrm{P}}^* := \inf_{f:X \to \mathbb{R}} \underset{\text{measurable}}{\operatorname{measurable}} \mathcal{R}_{L,\mathrm{P}}(f)$  for suitable  $\lambda_n \downarrow 0$

Christmann & Steinwart (2007)

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

**BIF & Robustness of SVM** 

#### Vrije Universiteit Brussel

| SVM    | Robustness | Summary | References |
|--------|------------|---------|------------|
| 000000 |            |         |            |
|        |            |         |            |
|        |            |         |            |

### Question

"Which properties must

- $S(\mathbf{P}) = f_{\mathbf{P},\lambda}$ ,
- k,
- $\bullet$  and L

have for good robustness properties of SVMs?"

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     | •0000000   |         |            |
|     |            |         |            |
|     |            |         |            |

### Robustness

What is the impact on  $S(P) = f_{P,\lambda}$  due to violations from  $(X_i, Y_i)$  i.i.d. ~ P,  $P \in \mathcal{M}_1$  unknown ?



▲ロト ▲昼 ト ▲ 臣 ト ▲ 臣 ト ● ○ ●

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

### Bouligand differentiability

#### **Bouligand-derivative**

 $f: X \to Z$  is **Bouligand-differentiable** at  $x_0 \in X$ , if  $\exists$  a positive homogeneous function  $\nabla^B f(x_0): X \to Z$  such that

$$f(x_0 + h) = f(x_0) + \nabla^B f(x_0)(h) + o(h) ,$$

i.e.

$$\lim_{h \downarrow 0} \left\| f(x_0 + h) - f(x_0) - \nabla^B f(x_0)(h) \right\|_Z / \|h\|_X = 0.$$

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

イロト イロト イヨト イヨト

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     | 00000000   |         |            |
|     |            |         |            |
|     |            |         |            |

#### **Strong approximation**

 $f: X \to Z$  strongly approximates  $F: X \times Y \to Z$  in x at  $(x_0, y_0)$  (notation:  $f \approx_x F$ ) if  $\forall \varepsilon > 0 \exists$  neighborhoods  $\mathcal{N}(x_0)$  of  $x_0$  and  $\mathcal{N}(y_0)$  of  $y_0$  such that  $\forall x, x' \in \mathcal{N}(x_0), \forall y \in \mathcal{N}(y_0)$ 

$$\left\| \left( F(x,y) - f(x) \right) - \left( F(x',y) - f(x') \right) \right\|_Z \le \varepsilon \left\| x - x' \right\|_X.$$

#### **Strong Bouligand-derivative**

 $F: X \times Y \to Z$  has partial B-derivative  $\nabla_1^B F(x_0, y_0)$  w.r.t. x at  $(x_0, y_0)$ . Then  $\nabla_1^B F(x_0, y_0)$  is **strong** if

$$F(x_0, y_0) + \nabla_1^B F(x_0, y_0)(x - x_0) \approx_x F$$

at  $(x_0, y_0)$ .

**BIF & Robustness of SVM** 

Robinson (1991)

Vrije Universiteit Brussel

Arnout Van Messem - homepages.vub.ac.be/~avmessem

200

### **Bouligand influence function**

#### BIF (C&VM '07)

The **Bouligand influence function (BIF)** of a function  $S : \mathcal{M}_1 \to \mathcal{H}$  for a distribution P in the direction of a distribution  $Q \neq P$  is the special B-derivative (if it exists)

$$\lim_{\varepsilon \downarrow 0} \frac{\left\| S\left( (1-\varepsilon)\mathbf{P} + \varepsilon \mathbf{Q} \right) - S(\mathbf{P}) - \mathrm{BIF}(\mathbf{Q}; S, \mathbf{P}) \right\|_{\mathcal{H}}}{\varepsilon} = 0.$$

If BIF exists, then Hampel's IF exists and BIF = IFGoal: Bounded BIF

Vrije Universiteit Brussel

BIF & Robustness of SVM

200

### Main result

#### Assumptions

- $X \subset \mathbb{R}^d$ ,  $Y \subset \mathbb{R}$  closed sets,
- $\mathcal{H}$  is RKHS with **bounded**, measurable kernel k,

• 
$$f_{\mathrm{P},\lambda} \in \mathcal{H}$$
,

- $L: Y \times \mathbb{R} \to [0, \infty)$  convex and Lipschitz continuous w.r.t. the  $2^{nd}$  argument with uniform Lipschitz constant  $|L|_1 := \sup_{y \in Y} |L(y, \cdot)|_1 \in (0, \infty)$ ,
- L has measurable partial B-derivatives w.r.t. to the  $2^{nd}$  argument with  $\kappa_1 := \sup_{y \in Y} \left\| \nabla_2^B L(y, \cdot) \right\|_{\infty} \in (0, \infty)$ ,  $\kappa_2 := \sup_{y \in Y} \left\| \nabla_{2,2}^B L(y, \cdot) \right\|_{\infty} < \infty$ ,

イロト イヨト イヨト イヨト 二日

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     | 00000000   |         |            |
|     |            |         |            |
|     |            |         |            |

#### Assumptions

- $\delta_1 > 0$ ,  $\delta_2 > 0$ ,
- $\mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) := \{ f \in \mathcal{H}; \| f f_{\mathrm{P},\lambda} \|_{\mathcal{H}} < \delta_1 \},$
- $\lambda > \frac{1}{2}\kappa_2 \|\Phi\|_{\mathcal{H}}^3$ ,
- P, Q probability measures on  $(X \times Y, \mathcal{B}(X \times Y))$  with  $\mathbb{E}_{P}|Y| < \infty$  and  $\mathbb{E}_{Q}|Y| < \infty$ .
- Define  $G: (-\delta_2, \delta_2) \times \mathcal{N}_{\delta_1}(f(\mathbf{P}, \lambda)) \to \mathcal{H}$ ,

 $G(\varepsilon, f) := 2\lambda f + \mathbb{E}_{(1-\varepsilon)\mathbf{P}+\varepsilon\mathbf{Q}} \nabla_2^B L(Y, f(X)) \Phi(X) \,,$ 

•  $G(0, f_{\mathrm{P},\lambda}) = 0$  and  $\nabla_2^B G(0, f_{\mathrm{P},\lambda})$  is strong.

Vrije Universiteit Brussel

BIF & Robustness of SVM

イロト イポト イヨト イヨト 二日

### Theorem (C&VM '07)

Then BIF(Q; S, P) with  $S(P) := f_{P,\lambda}$ 

exists,

equals

$$T^{-1} \Big( \mathbb{E}_{\mathbf{P}} \nabla_2^B L(Y, f_{\mathbf{P}, \lambda}(X)) \Phi(X) \\ - \mathbb{E}_{\mathbf{Q}} \nabla_2^B L(Y, f_{\mathbf{P}, \lambda}(X)) \Phi(X) \Big)$$

where  $T : \mathcal{H} \to \mathcal{H}$  with  $T = 2\lambda \operatorname{id}_{\mathcal{H}} + \mathbb{E}_{\mathrm{P}} \nabla^{B}_{2,2} L(Y, f_{\mathrm{P},\lambda}(X)) \langle \Phi(X), \cdot \rangle_{\mathcal{H}} \Phi(X)$ , and  $\Im$  is bounded.

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ ○ ○ ○ ○

### Examples

The assumptions of the theorem are valid and thus  ${\rm BIF}({\rm Q};S,{\rm P})$  exists and is bounded, if

#### $\epsilon$ -insensitive loss $L_{\epsilon}$ , pinball loss $L_{\tau}$

 $\begin{aligned} \forall \delta > 0 \,\exists \text{ positive constants } \xi_{\mathrm{P}}, \, \xi_{\mathrm{Q}}, \, c_{\mathrm{P}}, \, \text{and } c_{\mathrm{Q}} \text{ such that} \\ \forall t \in \mathbb{R} \text{ with } |t - f_{\mathrm{P},\lambda}(x)| \leq \delta \|k\|_{\infty} \text{ the following inequalities} \\ \text{hold } \forall a \in [0, 2\delta \|k\|_{\infty}] \text{ and } \forall x \in X \text{:} \\ \mathrm{P}\big(Y \in [t, t + a] \, \big| \, x\big) \leq c_{\mathrm{P}} a^{1 + \xi_{\mathrm{P}}} \\ \mathrm{Q}\big(Y \in [t, t + a] \, \big| \, x\big) \leq c_{\mathrm{Q}} a^{1 + \xi_{\mathrm{Q}}} \,. \end{aligned}$ 

Vrije Universiteit Brussel

BIF & Robustness of SVM

<ロト < 回 ト < 注 ト < 注 ト - 注

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     | 0000000    |         |            |
|     |            |         |            |

# The assumptions of the theorem are valid and thus BIF(Q; S, P) exists and is bounded, if

#### Huber loss *L<sub>Huber</sub>*

$$\forall x \in X: P\left(Y \in \left\{f_{P,\lambda}(x) - c, f_{P,\lambda}(x) + c\right\} \mid x\right) \\ = Q\left(Y \in \left\{f_{P,\lambda}(x) - c, f_{P,\lambda}(x) + c\right\} \mid x\right) \\ = 0.$$

#### Logistic loss L<sub>log</sub>

No special assumptions on the probabilities needed.

▲ロト ▲暦 ト ▲ 臣 ト ▲ 臣 - のへの

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

## Summary

#### Support vector machines

- Non-parametric and flexible
- Robust:
  - $\operatorname{BIF}(\operatorname{Q};T,\operatorname{P})$  is bounded for regression if  $\nabla^B_2 L$  and k bounded
- Applications: insurance tariffs, credit scoring in banks, fraud detection, data mining, genomics, ...

<ロト < 回 ト < 注 ト < 注 ト - 注

200

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     |            |         | 000        |
|     |            |         |            |
|     |            |         |            |

### References

- Christmann & Van Messem (2007). Bouligand derivatives and robustness of support vector machines. Submitted.
- Christmann & Steinwart (2007). Consistency and robustness of kernel based regression. *Bernoulli*, **13**, 799-819.
- Christmann & Steinwart (2004). Robust properties of convex risk minimization methods for pattern recognition. *JMLR*, **5**, 1007-1034.
- Hampel (1974). The influence curve and its role in robust estimation. *J. Amer. Statist. Assoc.*, **69**, 383-393.
- Robinson (1991). An implicit-function theorem for a class of non-smooth functions. *Mathematics of Operations Research*, **16**, 292-309.
- Vapnik (1998). Statistical learning theory. Wiley.

### More on the theorem

For the proof of the theorem we showed:

- i. For some  $\chi$  and each  $f \in \mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda})$ ,  $G(\cdot, f)$  is Lipschitz continuous on  $(-\delta_2, \delta_2)$  with Lipschitz constant  $\chi$ .
- ii. G has partial B-derivatives with respect to  $\varepsilon$  and f at  $(0, f_{\mathrm{P},\lambda})$ .
- iii.  $\nabla_2^B G(0, f_{\mathrm{P},\lambda}) \left( \mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) f_{\mathrm{P},\lambda} \right)$  is a neighborhood of  $0 \in \mathcal{H}$ .
- iv.  $\delta\left(\nabla_2^B G(0, f_{\mathrm{P},\lambda}), \mathcal{N}_{\delta_1}(f_{\mathrm{P},\lambda}) f_{\mathrm{P},\lambda}\right) =: d_0 > 0.$

イロト イボト イヨト イヨト

Vrije Universiteit Brussel

**BIF & Robustness of SVM** 

= nan

| SVM | Robustness | Summary | References |
|-----|------------|---------|------------|
|     |            |         | 000        |
|     |            |         |            |
|     |            |         |            |

- **v.** For each  $\xi > d_0^{-1}\chi$  there exist  $\delta_3, \delta_4 > 0$ , a neighborhood  $\mathcal{N}_{\delta_3}(f_{\mathrm{P},\lambda}) := \{f \in \mathcal{H}; \|f f_{\mathrm{P},\lambda}\|_{\mathcal{H}} < \delta_3\}$ , and a function  $f^* : (-\delta_4, \delta_4) \to \mathcal{N}_{\delta_3}(f_{\mathrm{P},\lambda})$  satisfying
  - **v.1)**  $f^*(0) = f_{\mathrm{P},\lambda}$ .
  - **v.2)**  $f^*(\cdot)$  is Lipschitz continuous on  $(-\delta_4, \delta_4)$  with Lipschitz constant  $|f^*|_1 = \xi$ .
  - **v.3)** For each  $\varepsilon \in (-\delta_4, \delta_4)$  is  $f^*(\varepsilon)$  the unique solution of  $G(\varepsilon, f) = 0$  in  $(-\delta_4, \delta_4)$ .
  - **v.4)** It holds  $\nabla^B f^*(0)(u) = \left(\nabla^B_2 G(0, f_{\mathrm{P},\lambda})\right)^{-1} \left(-\nabla^B_1 G(0, f_{\mathrm{P},\lambda})(u)\right).$

**BIF & Robustness of SVM** 

イロト イポト イラト イラト 一支