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Notation

Assumptions:

X ⊆ Rd closed, Y ⊆ R closed, X 6= ∅, Y 6= ∅
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, 1 ≤ i ≤ n

(Xi, Yi) i.i.d. ∼ P ∈M1(X × Y), P (totally) unknown
↪→ PX on X , P(y|x) on Y

Aim:

f(x) = quantity of interest

e.g., conditional median for robust regression

Assumption:

Loss function L : X × Y ×R→ [0,∞), L(x, y, f(x))
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Loss functions for regression
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Support Vector Machines (SVMs)

Definition

fL,P,λ := arg inf
f∈H

EPL(X,Y, f(X)) + λ ‖f‖2
H

Yi|xi depends on an unknown function f : X → R

RKHS H � kernel k : X × X → R, k measurable

λ > 0 regularization parameter

fL,D,λ := arg minf∈H
1
n

∑n
i=1 L

(
Yi, f(Xi)

)
+λ ‖f‖2

H ,

where D is empirical distribution for data set D
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Support Vector Machines

Notions

L is called convex, continuous, Lipschitz continuous,
differentiable, if L has this property w.r.t. 3rd argument

k is called bounded, if ||k||∞ :=
√

supx∈X k(x, x) < ∞

e.g. Gaussian RBF: k(x, x′) = e−γ||x−x′||22 , γ > 0

Φ : X → H, Φ(x) := k(·, x), is called canonical feature
map

Reproducing property:

f(x) = 〈f, k(x, ·)〉H ∀ f ∈ H,∀x ∈ X .
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Example for feature map Φ(x) = k(x, ·)
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Risk
Definitions

Risk RL,P(f) EPL(X, Y, f(X))
Bayes risk R∗

L,P inff :X→R measurableRL,P(f)
Bayes function f ∗L,P arg inff :X→R measurableRL,P(f)

Questions

Under which conditions on X , Y , L, H, and k do we have:

1 fL,P,λ: existence, uniqueness

2 Universal consistency to Bayes risk/function, i.e., ∀ P
RL,P(fL,D,λ)−→P R∗

L,P for |D| = n →∞
fL,D,λ−→P f ∗L,P for |D| = n →∞

3 Robustness of fL,P,λ ?
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Known

Support Vector Machines are consistent and robust, if based
on Lipschitz continuous loss and bounded kernel.

Christmann & Van Messem ’08
Steinwart & Christmann ’08

Christmann & Steinwart ’07

Question

Can the assumptions f ∈ L1(PX) and
∫
|Y | dP < ∞ be

weakened?
(both for regression and classification problems)

f ∈ L1(PX) if
∫
X |f(x)| dPX(x) < ∞
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Shifted loss function

Loss function L : X × Y ×R→ [0,∞) measurable

Definition

L? : X × Y ×R→ R with

L?(x, y, t) := L(x, y, t)− L(x, y, 0).

Huber, 1967

L? can be negative!

Properties

L (strictly) convex, then L? (strictly) convex.

L Lipschitz continuous, then L? Lipschitz continuous.
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Shifted loss function

Conditions for finite risk

For L Lipschitz continuous

RL,P(f) < ∞ if f ∈ L1(PX) and EP|Y | < ∞.

RL?,P(f) < ∞ if f ∈ L1(PX).

Equality of SVMs

If fL,P,λ exists, then fL?,P,λ = fL,P,λ.
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Existence and Uniqueness of SVM solution

Uniqueness

L convex and RL?,P(f) < ∞ for some f ∈ H and
RL?,P(f) > −∞ for all f ∈ H
OR
L is convex, Lipschitz continuous and f ∈ L1(PX).

Then, for all λ > 0, there exists at most one SVM fL?,P,λ.

Existence

L convex, Lipschitz continuous,
H RKHS of a bounded measurable kernel k.

Then, for all P ∈M1(X × Y) and for all λ > 0,
there exists an SVM solution fL?,P,λ.
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Consistency

Theorem

L convex, Lipschitz continuous loss function,
H RKHS of a bounded, measurable kernel k,
(λn) sequence of strictly positive numbers with λn → 0.

Then, for all P ∈M1(X × Y) and all D with |D| = n,

1 if λ2
nn →∞, then RL?,P(fL?,D,λn) −→P R∗

L?, P .

2 if λ2+δ
n n →∞ for some δ ∈ (0,∞), then

RL?,P(fL?,D,λn) −→a.s. R∗
L?, P .

3 if L = Lτ pinball loss: d(fL?,D,λn , f∗Lτ ,P) → 0.
d is a metric describing convergence in probability.
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Robustness

1 What if (Xi, Yi) i.i.d. ∼ P, P ∈M1 unknown is invalid?

2 What is the impact on S : P 7→ fL?,P,λ?
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Derivatives and Influence Functions

Hadamard +3 Gâteaux

$,QQQQQQQQQQQQQQ

QQQQQQQQQQQQQQ

Fréchet
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PPPPPPPPPPPP

2:mmmmmmmmmmmm

mmmmmmmmmmmm
IF

Bouligand +3 BIF

2:nnnnnnnnnnnnnn
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Christmann & Van Messem (2008)

Notation: ∇F , ∇G, ∇B, ∇B
3 , etc.

Property: ∇F
3 L? = ∇F

3 L, ∇B
3 L? = ∇B

3 L
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Bouligand differentiability

Bouligand-derivative

f : U → Z is Bouligand-differentiable at x0 ∈ U , if ∃ a
positive homogeneous function ∇Bf(x0) : U → Z such that

f(x0 + h) = f(x0) +∇Bf(x0)(h) + o(h) ,

i.e.

lim
h↓0

∥∥f(x0 + h)− f(x0)−∇Bf(x0)(h)
∥∥

Z

‖h‖U

= 0.

g : E → F positive homogeneous if

g(αx) = αg(x) ∀α ≥ 0 , ∀x ∈ E
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Influence Function

Definition (Hampel, ’68, Hampel et al. ’86)

The influence function (IF) of a function S : M1 → H for a
distribution P is given by

IF(z; S, P) := lim
ε↓0

S
(
(1− ε)P + εδz

)
− S(P)

ε
,

in those z := (x, y) ∈ X × Y where this limit exists.

If ∇G(z; S, P) exists: ∇G = IF and IF is linear and continuous

Goal: Bounded IF
Problem: Loss function L often not Fréchet-differentiable
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Bouligand Influence Function

Definition (C&VM ’08)

The Bouligand influence function (BIF) of a function
S : M1 → H for a distribution P in the direction of a
distribution Q 6= P is the special Bouligand-derivative

lim
ε↓0

∥∥S
(
(1− ε)P + εQ

)
− S(P)− BIF(Q; S, P)

∥∥
H

ε
= 0

(if it exists).

If BIF exists and Q = δz: IF exists and BIF = IF

Goal: Bounded BIF
Vrije Universiteit Brussel Consistency and Robustness of SVMs
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Result for BIF

Assumptions

H is RKHS with bounded, continuous kernel k

L convex and Lipschitz continuous with |L|1 ∈ (0,∞)

∇B
3 L(x, y, ·) and ∇B

3,3L(x, y, ·) measurable with

κ1 := sup(x,y)∈X×Y
∥∥∇B

3 L(x, y, ·)
∥∥
∞ ∈ (0,∞),

κ2 := sup(x,y)∈X×Y
∥∥∇B

3,3L(x, y, ·)
∥∥
∞ < ∞

λ > 1
2
κ2‖k‖∞

3
(κ2 = 0 for eps-insensitive and pinball)

P 6= Q, probability measures on X × Y
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Theorem BIF

Then BIF(Q; S, P) with S(P) := fL?,P,λ and Q 6= P ∈M1

1 exists,

2 equals

T−1
(
EP∇B

3 L?(X, Y, fL?,P,λ(X))Φ(X)

−EQ∇B
3 L?(X,Y, fL?,P,λ(X))Φ(X)

)
,

where T : H → H with T (·) :=
2λ idH(·) + EP∇B

3,3L
?(X, Y, fL?,P,λ(X))〈Φ(X), ·〉HΦ(X),

3 is bounded.
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Simulated data

Predict f(x) = 50 sin(x/20) cos(x/10) + x

n = 1000 data points xi ∼ U(−100, 100)

Output yi = f(xi) + εi, where εi ∼ Cauchy distribution

ε-insensitive loss and Gaussian RBF kernel

hyperparameters (λ, ε, γ) determined by minimizing
L?-risk via grid search over 17× 12× 17 = 3468 knots

λ regularization parameter of SVM
ε parameter of ε-insensitive loss
γ parameter of Gaussian RBF kernel

Result (λ, ε, γ) =
(
2−12, 2−8, 2−4

)
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Simulated data
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Simulated data
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Simulated data
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Danish data

2167 fire insurance claims over 1 million DKK (1980 –
1990)

Regression with time as explanatory variable

Classical least squares regression
Conditional quantile regression using SVMs

Pinball loss for τ ∈ {0.50, 0.75, 0.90, 0.99, 0.995}
Gaussian RBF kernel

Extreme value distribution
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Danish data
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Danish data
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Danish data
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Conclusions

SVMs based on L?(x, y, t) := L(x, y, t)− L(x, y, 0)

1 Weaker assumption on P: only f ∈ L1(PX) is needed
e.g. f bounded and X ⊂ Rd bounded

2 Existence and uniqueness of fL?,P,λ

3 Consistency of risk and SVM solution
4 Robustness

Existence of BIF
BIF(Q;S, P) bounded if ∇B

3 L, ∇B
3,3L measurable and

bounded as well as k continuous and bounded
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Reason

Conditions for finite risk

For L Lipschitz continuous

EPL(X,Y, f(X)) < ∞ if f ∈ L1(PX) and Y ∈ L1(PY |x).

RL,P(f) ≤ |L|1
(∫

X
|f(x)|dPX(x)+

∫
X

∫
Y
|y|dP(y|x) dPX(x)

)

EPL?(X, Y, f(X)) < ∞ if f ∈ L1(PX).

RL,P(f) ≤ |L|1
∫
X
|f(x)| dPX(x)
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