Consistency and Robustness Properties of Support Vector Machines for Heavy-Tailed Distributions

Arnout Van Messem Andreas Christmann

PhD Research Day VUB, May 28, 2010

Notation

SVM

000000

Assumptions:

Shifted loss

- $\mathcal{X} \subseteq \mathbb{R}^d$ closed, $\mathcal{Y} \subseteq \mathbb{R}$ closed, $\mathcal{X} \neq \emptyset$, $\mathcal{Y} \neq \emptyset$
- $D = ((x_1, y_1), \dots, (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n, 1 < i < n$
- (X_i, Y_i) i.i.d. $\sim P \in \mathcal{M}_1(\mathcal{X} \times \mathcal{Y})$, P (totally) unknown $\hookrightarrow P_X$ on \mathcal{X} . P(y|x) on \mathcal{Y}

Aim:

• f(x) = quantity of intereste.g., conditional median for robust regression

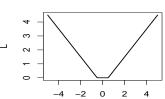
Assumption:

• Loss function $L: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to [0, \infty), L(x, y, f(x))$

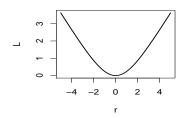
000000

Loss functions for regression

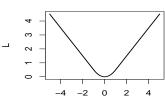
eps-insensitive, eps=0.5



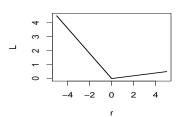
r Logistic



Huber, c=1



Pinball, tau=0.10



Support Vector Machines (SVMs)

Definition

Shifted loss

SVM

0000000

$$f_{L,P,\lambda} := \arg \inf_{f \in \mathcal{H}} \mathbb{E}_{P} L(X, Y, f(X)) + \lambda \|f\|_{\mathcal{H}}^{2}$$

- ullet $Y_i|x_i$ depends on an *unknown* function $f:\mathcal{X} \to \mathbb{R}$
- RKHS $\mathcal{H} \rightleftharpoons \text{kernel } k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}, k \text{ measurable}$
- $\lambda > 0$ regularization parameter
- $f_{L,D,\lambda} := \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} L(Y_i, f(X_i)) + \lambda \|f\|_{\mathcal{H}}^2$,

where D is empirical distribution for data set D

4

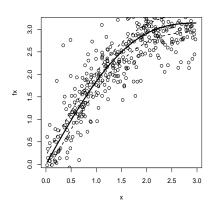
Support Vector Machines

Shifted loss

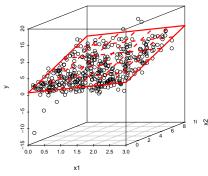
Notions

- L is called **convex**, **continuous**, **Lipschitz continuous**, **differentiable**, if L has this property w.r.t. 3^{rd} argument
- k is called **bounded**, if $||k||_{\infty}:=\sqrt{\sup_{x\in\mathcal{X}}k(x,x)}<\infty$ e.g. Gaussian RBF: $k(x,x')=e^{-\gamma||x-x'||_2^2},\ \gamma>0$
- $\Phi: \mathcal{X} \to \mathcal{H}$, $\Phi(x) := k(\cdot, x)$, is called **canonical feature** map
- Reproducing property:

$$f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}} \quad \forall f \in \mathcal{H}, \forall x \in \mathcal{X}.$$



Shifted loss



SVM

0000000

Risk

0000000

SVM

Definitions

Shifted loss

$$\begin{array}{lll} \text{Risk} & \mathcal{R}_{L,\mathbf{P}}(f) & \mathbb{E}_{\mathbf{P}}L(X,Y,f(X)) \\ \text{Bayes risk} & \mathcal{R}_{L,\mathbf{P}}^* & \inf_{f:\mathcal{X}\to\mathbb{R}} \underset{\text{measurable}}{\text{measurable}} \mathcal{R}_{L,\mathbf{P}}(f) \\ \text{Bayes function} & f_{L,\mathbf{P}}^* & \arg\inf_{f:\mathcal{X}\to\mathbb{R}} \underset{\text{measurable}}{\text{measurable}} \mathcal{R}_{L,\mathbf{P}}(f) \\ \end{array}$$

Questions

Under which conditions on \mathcal{X} , \mathcal{Y} , L, \mathcal{H} , and k do we have:

- **1** $f_{L,P,\lambda}$: existence, uniqueness
- 2 Universal consistency to Bayes risk/function, i.e., $\forall P$ $\mathcal{R}_{L,P}(f_{L,D,\lambda}) \xrightarrow{P} \mathcal{R}_{L,P}^* \text{ for } |D| = n \to \infty$ $f_{L,D,\lambda} \xrightarrow{P} f_{L,P}^*$ for $|D| = n \to \infty$
- **3** Robustness of $f_{L,P,\lambda}$?

Shifted loss

SVM

Known

Support Vector Machines are **consistent** and **robust**, if based on Lipschitz continuous loss and bounded kernel.

> Christmann & Van Messem '08 Steinwart & Christmann '08 Christmann & Steinwart '07

Question

Can the assumptions $f \in L_1(P_X)$ and $\int |Y| dP < \infty$ be weakened?

(both for regression and classification problems)

$$f \in L_1(P_X)$$
 if $\int_{\mathcal{X}} |f(x)| dP_X(x) < \infty$

•00

Loss function $L: \mathcal{X} \times \mathcal{Y} \times \mathbb{R} \to [0, \infty)$ measurable

Definition

SVM

$$L^{\star}: \mathcal{X} \times \mathcal{V} \times \mathbb{R} \to \mathbb{R}$$
 with

$$L^{\star}(x, y, t) := L(x, y, t) - L(x, y, 0).$$

Huber, 1967

 L^{\star} can be negative!

Properties

- L (strictly) convex, then L^* (strictly) convex.
- L Lipschitz continuous, then L^* Lipschitz continuous.

Shifted loss function

Shifted loss

000

Conditions for finite risk

For L Lipschitz continuous

- $\mathcal{R}_{L,P}(f) < \infty$ if $f \in L_1(P_X)$ and $\mathbb{E}_P|Y| < \infty$.
- $\mathcal{R}_{L^{\star},P}(f) < \infty$ if $f \in L_1(P_X)$.

Equality of SVMs

If $f_{L,P,\lambda}$ exists, then $f_{L^*,P,\lambda} = f_{L,P,\lambda}$.

Existence and Uniqueness of SVM solution

Results

Uniqueness

- L convex and $\mathcal{R}_{L^\star,\mathrm{P}}(f) < \infty$ for some $f \in \mathcal{H}$ and $\mathcal{R}_{L^\star,\mathrm{P}}(f) > -\infty$ for all $f \in \mathcal{H}$
- L is convex, Lipschitz continuous and $f \in L_1(P_X)$.

Then, for all $\lambda > 0$, there exists at most one SVM $f_{L^*,P,\lambda}$.

Existence

- L convex, Lipschitz continuous,
- \mathcal{H} RKHS of a bounded measurable kernel k.

Then, for all $P \in \mathcal{M}_1(\mathcal{X} \times \mathcal{Y})$ and for all $\lambda > 0$, there **exists** an SVM solution $f_{L^*,P,\lambda}$.

Consistency

SVM

Theorem

- L convex, Lipschitz continuous loss function,
- \mathcal{H} RKHS of a bounded, measurable kernel k,
- (λ_n) sequence of strictly positive numbers with $\lambda_n \to 0$.

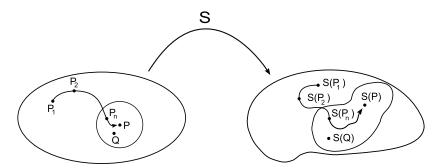
Then, for all $P \in \mathcal{M}_1(\mathcal{X} \times \mathcal{Y})$ and all D with |D| = n,

- \bullet if $\lambda_n^2 n \to \infty$, then $\mathcal{R}_{L^*,P}(f_{L^*,D,\lambda_n}) \xrightarrow{P} \mathcal{R}_{L^*,P}^*$.
- 2 if $\lambda_n^{2+\delta} n \to \infty$ for some $\delta \in (0, \infty)$, then $\mathcal{R}_{L^{\star},P}(f_{L^{\star},D,\lambda_n}) \xrightarrow{\text{a.s.}} \mathcal{R}_{L^{\star},P}^*$.
- **3** if $L = L_{\tau}$ pinball loss: $d(f_{L^*,D,\lambda_n}, f_{L_{\tau},P}^*) \to 0$. d is a metric describing convergence in probability.

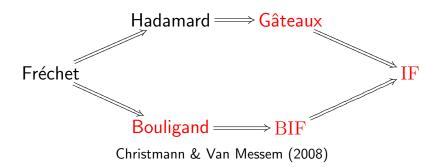
Robustness

SVM

- **1** What if (X_i, Y_i) i.i.d. $\sim P$, $P \in \mathcal{M}_1$ unknown is invalid?
- **2** What is the impact on $S: P \mapsto f_{L^*,P,\lambda}$?



13



Notation: ∇^F , ∇^G , ∇^B , ∇^B , etc.

Property: $\nabla_3^F L^{\star} = \nabla_3^F L$, $\nabla_3^B L^{\star} = \nabla_3^B L$

Bouligand differentiability

Bouligand-derivative

 $f:U\to Z$ is **Bouligand-differentiable** at $x_0\in U$, if \exists a positive homogeneous function $\nabla^B f(x_0):U\to Z$ such that

$$f(x_0 + h) = f(x_0) + \nabla^B f(x_0)(h) + o(h),$$

i.e.

SVM

$$\lim_{h\downarrow 0} \frac{\|f(x_0+h) - f(x_0) - \nabla^B f(x_0)(h)\|_Z}{\|h\|_U} = 0.$$

 $g: E \to F$ positive homogeneous if

$$g(\alpha x) = \alpha g(x) \quad \forall \alpha \ge 0, \forall x \in E$$

Influence Function

Definition (Hampel, '68, Hampel et al. '86)

The **influence function** (IF) of a function $S: \mathcal{M}_1 \to \mathcal{H}$ for a distribution P is given by

$$IF(z; S, P) := \lim_{\varepsilon \downarrow 0} \frac{S((1 - \varepsilon)P + \varepsilon \delta_z) - S(P)}{\varepsilon},$$

in those $z := (x, y) \in \mathcal{X} \times \mathcal{Y}$ where this limit exists.

If $\nabla^G(z; S, P)$ exists: $\nabla^G = IF$ and IF is linear and continuous

Goal: Bounded IF

Problem: Loss function L often not Fréchet-differentiable

Bouligand Influence Function

Definition (C&VM '08)

The **Bouligand influence function** (BIF) of a function $S: \mathcal{M}_1 \to \mathcal{H}$ for a distribution P in the direction of a distribution P is the special Bouligand-derivative

$$\lim_{\varepsilon \downarrow 0} \frac{\left\| S \left((1 - \varepsilon) P + \varepsilon Q \right) - S(P) - BIF(Q; S, P) \right\|_{\mathcal{H}}}{\varepsilon} = 0$$

(if it exists).

If BIF exists and $Q = \delta_z$: IF exists and BIF = IF

Goal: Bounded BIF

Assumptions

- \mathcal{H} is RKHS with **bounded**, continuous kernel k
- L convex and Lipschitz continuous with $|L|_1 \in (0,\infty)$
- $$\begin{split} \bullet \ \, & \nabla^B_3 L(x,y,\cdot) \text{ and } \nabla^B_{3,3} L(x,y,\cdot) \text{ measurable with} \\ \kappa_1 := & \sup_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \left\| \nabla^B_3 L(x,y,\cdot) \right\|_\infty \in (0,\infty), \\ \kappa_2 := & \sup_{(x,y) \in \mathcal{X} \times \mathcal{Y}} \left\| \nabla^B_{3,3} L(x,y,\cdot) \right\|_\infty < \infty \end{split}$$
- ullet $\lambda>rac{1}{2}\kappa_2\|k\|_{\infty}^{-3}$ ($\kappa_2=0$ for eps-insensitive and pinball)
- ullet P \neq Q, probability measures on $\mathcal{X} \times \mathcal{Y}$

Theorem BIF

Shifted loss

SVM

Then BIF(Q; S, P) with $S(P) := f_{L^*,P,\lambda}$ and $Q \neq P \in \mathcal{M}_1$

- exists.
- equals

$$T^{-1} \Big(\mathbb{E}_{P} \nabla_{3}^{B} L^{\star}(X, Y, f_{L^{\star}, P, \lambda}(X)) \Phi(X)$$
$$- \mathbb{E}_{Q} \nabla_{3}^{B} L^{\star}(X, Y, f_{L^{\star}, P, \lambda}(X)) \Phi(X) \Big) ,$$

where $T: \mathcal{H} \to \mathcal{H}$ with $T(\cdot) :=$ $2\lambda \operatorname{id}_{\mathcal{H}}(\cdot) + \mathbb{E}_{P} \nabla^{B}_{3,3} L^{\star}(X, Y, f_{L^{\star},P,\lambda}(X)) \langle \Phi(X), \cdot \rangle_{\mathcal{H}} \Phi(X),$

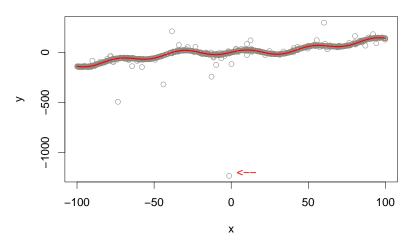
is bounded.

- Predict $f(x) = 50\sin(x/20)\cos(x/10) + x$
- n = 1000 data points $x_i \sim \mathcal{U}(-100, 100)$
- Output $y_i = f(x_i) + \varepsilon_i$, where $\varepsilon_i \sim \text{Cauchy distribution}$
- ε-insensitive loss and Gaussian RBF kernel
- hyperparameters $(\lambda, \epsilon, \gamma)$ determined by minimizing L^{\star} -risk via grid search over $17 \times 12 \times 17 = 3468$ knots
 - \bullet λ regularization parameter of SVM
 - ϵ parameter of ϵ -insensitive loss
 - \bullet γ parameter of Gaussian RBF kernel

Result
$$(\lambda, \epsilon, \gamma) = (2^{-12}, 2^{-8}, 2^{-4})$$

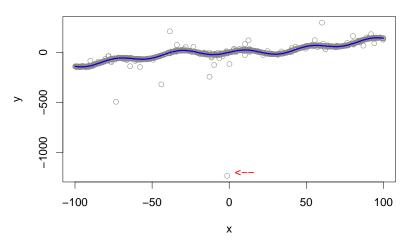
Simulated data

Shifted loss



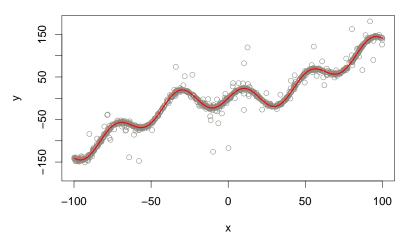
Conclusions

Simulated data



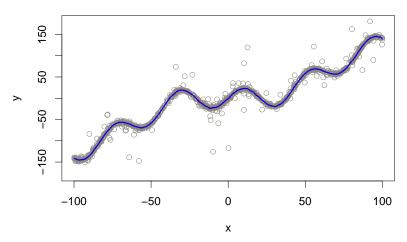
Simulated data

Shifted loss



Simulated data

Shifted loss



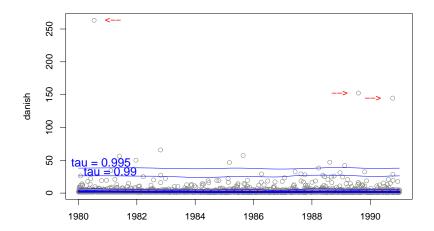
Danish data

Shifted loss

- 2167 fire insurance claims over 1 million DKK (1980 1990)
- Regression with time as explanatory variable
 - Classical least squares regression
 - Conditional quantile regression using SVMs
 - Pinball loss for $\tau \in \{0.50, 0.75, 0.90, 0.99, 0.995\}$
 - Gaussian RBF kernel
- Extreme value distribution

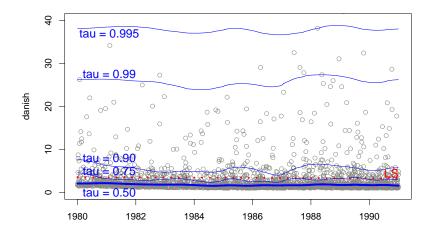
Conclusions

Danish data



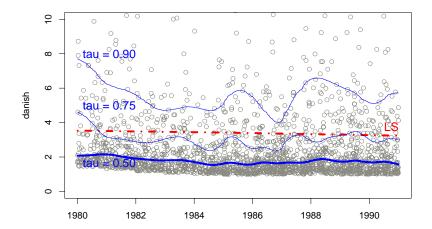
Conclusions

Danish data



Danish data

Shifted loss



Conclusions

SVM

SVMs based on $L^{\star}(x,y,t) := L(x,y,t) - L(x,y,0)$

- ① Weaker assumption on P: only $f \in L_1(P_X)$ is needed e.g. f bounded and $\mathcal{X} \subset \mathbb{R}^d$ bounded
- **2** Existence and uniqueness of $f_{L^{\star},P,\lambda}$
- Onsistency of risk and SVM solution
- O Robustness
 - Existence of BIF
 - BIF(Q; S, P) bounded if $\nabla_3^B L$, $\nabla_{3,3}^B L$ measurable and bounded as well as k continuous and bounded

References

- Van Messem & Christmann (2010). Advances in Data Analysis and Classification, accepted.
- Christmann, Van Messem & Steinwart (2009). Statistics and Its Interface, 2, 311-327.
- Christmann & Van Messem (2008). *Journal of Machine Learning Research*, **9**, 915-936.
- Steinwart & Christmann (2008). Support Vector Machines.
 Springer, New York.
- Christmann & Steinwart (2007). *Bernoulli*, **13**, 799-819.
- Hampel (1974). J. Amer. Statist. Assoc., 69, 383-393.
- Huber (1967). Proceedings of the 5th Berkeley Symposium.
- Koenker (2005). Quantile regression. Cambridge University Press.
- Schölkopf & Smola (2002). Learning with kernels. MIT Press.
- Vapnik (1998). Statistical learning theory. Wiley.

Reason

SVM

Conditions for finite risk

For L Lipschitz continuous

•
$$\mathbb{E}_{\mathbf{P}}L(X,Y,f(X))<\infty$$
 if $f\in L_1(\mathbf{P}_X)$ and $Y\in L_1(\mathbf{P}_{Y|x})$.

$$\mathcal{R}_{L,P}(f) \le |L|_1 \left(\int_{\mathcal{X}} |f(x)| dP_X(x) + \int_{\mathcal{X}} \int_{\mathcal{Y}} |y| dP(y|x) dP_X(x) \right)$$

•
$$\mathbb{E}_{\mathbf{P}}L^{\star}(X,Y,f(X)) < \infty \text{ if } f \in L_1(\mathbf{P}_X).$$

$$\mathcal{R}_{L,P}(f) \le |L|_1 \int_{\mathcal{X}} |f(x)| dP_X(x)$$