
Faculty of Sciences and
Bio-engineering Sciences

Department of Mathematics

Robustness and Consistency Re-
sults for Support Vector Machines

Dissertation submitted to the Vrije Universiteit Brussel
in fulfillment of the requirements for the degree of Doctor
in Science

Arnout Van Messem

Supervisor: Prof. Dr. Uwe Einmahl
Co-Supervisor: Prof. Dr. Andreas Christmann

Academic Year: 2010 – 2011



Print: Silhouet, Maldegem

c⃝2011 Arnout Van Messem

2011 Uitgeverij VUBPRESS Brussels University Press
VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerij 28
B-1000 Brussels
Tel. +32 (0)2 289 26 50
Fax +32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5487 910 7
NUR 916/919/984
Legal deposit D/2011/11.161/073

All rights reserved. No parts of this book may be reproduced or transmitted in

any form or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior written permission of the author.



Acknowledgments

First of all I would like to express my fondest gratitude to my supervi-
sor Andreas Christmann who introduced me to the world of support vec-
tor machines and who motivated me during my research. His support and
guidance were an invaluable help in accomplishing this work. Even after
his return to Germany, he never failed to make time for me and to answer
my questions. I also would like to thank Andreas for his hospitality during
my visits in Bayreuth, for introducing me to his colleagues and for giving
me the opportunity to present my work at several conferences.

Secondly, I would like to thank Uwe Einmahl, who took over the role of
supervisor after Andreas got a position in Bayreuth, and who guided me
during the final part of my thesis.

A special word of thanks goes to Christophe Croux without who I prob-
ably never would have written this thesis. It was Christophe whose courses
increased my interest in statistics and who, as supervisor of my licentiate
thesis, introduced me to robust statistics.

I also would like to thank the members of the jury – Christophe Croux ,
Julia Dony, Tetyana Kadankova, Davy Paindaveine, Mark Sioen, and Stefan
Van Aelst – for their insightful questions, comments and remarks, which
helped me to improve this work.

I can also not forget to mention my colleagues here at the VUB for
creating a nice and enjoyable working atmosphere. In particular I think of
my two office mates Ann and Julia without whom these years would have
been a lot duller.

I also think back fondly at the many conferences I attended and the peo-
ple I met there. I want to thank Anneleen, Christel, Dina, Ellen, Géraldine,
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Summary

Classification and regression problems have been known and studied for
a long time. Recent technological developments made it possible to im-
plement algorithms that will do the work for us. This method is called
statistical machine learning. Support vector machines (SVMs) are one of
the techniques of machine learning, which also have the advantage of be-
ing a non-parametric method, and therefore do not assume any, or very
little, prior knowledge on the underlying distribution of the data. For pre-
diction purposes, such as classification or regression, we will always as-
sume to be in the possession of a set of data points, the training data set
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, with X the set of input variables
and Y the set of possible output variables. The statistical method will then
use these (observed) data in order to obtain a prediction function, that will
assign an output to new unobserved inputs. In theory, statistical procedures
work well given a data set, however, there always exists the possibility that
errors entered in the data, which can make the prediction obtained by
our statistical method unreliable. Even small errors might cause huge dif-
ferences in the prediction. These errors might be extremes or outliers in
the data, measurement errors, or just simply typing errors when entering
the data in the system, but the result is the same: if the method is not
robust, the predicted function might be very different from the true un-
derlying function. Also data obtained from distributions with heavy tails
might pose a problem for a statistical prediction method.

In the first chapter, we will give a short introduction to the field of
statistical learning as well as an overview on the different stages of the de-
velopment of SVMs. We will first recreate the original support vector ma-
chines as introduced by Vapnik and Lerner (1963), Boser et al. (1992) and
Cortes and Vapnik (1995) which were based on the underlying geometrical
idea and we will then move on to study the empirical risk minimization
method that led to the analytic description of support vector machines.
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Analytically, support vector machines are kernel methods that are inspired
by convex risk minimization in infinite dimensional Hilbert spaces. This
technique is quite popular for three reasons. Firstly, SVMs are very flexible
methods. They were introduced as a linear classification method, but by us-
ing an appropriate kernel, their use can easily be extended to the non-linear
case. Secondly, due to their sparseness, they are computationally efficient
and thirdly, they can easily deal with large data sets with unknown, complex
and high-dimensional dependency structures, which can occur for example
in bioinformatics or genetics.

Empirical risk minimization (ERM) will look for a function f : X → R

that minimizes the L-risk

RL,P(f) := EPL(X,Y, f(X)) ,

where L : X×Y×R → [0,∞) is called a loss function and gives an indication
of how well the prediction f(x) approximates the true observed output y.
The smallest possible risk R∗

L,P is called the Bayes risk, and the function
f∗ that achieves the Bayes risk is called the Bayes function. It is however
impossible to optimize the risk over all functions, and so a reasonably large
subclass of functions will be considered, namely the reproducing kernel
Hilbert space (RKHS) H. Furthermore, optimizing the risk without further
ado might produce a very wiggly or irregular function that will indeed give
excellent approximations f(x) of y for observed data points x, but will
perform very bad for previously unseen inputs. To avoid this overfitting of
the data, a regularization term will be added to the risk, which will then
be called the regularized risk

Rreg
L,P,λ(f) := RL,P(f) + λ ∥f∥2H .

This additional term will restrict the function, since very wiggly functions
will have large norms and are thus less likely to be selected as optimal
function. The support vector machine is then defined as

fL,P,λ := arg inf
f∈H

RL,P(f) + λ ∥f∥2H .

Next, we will take a closer look at the loss function and its associated
risk and explain why convex and Lipschitz continuous losses are of special
importance. Also kernels and the RKHS will be treated more in detail.

An important part of Chapter 1 is Section 1.7 in which the simple con-
cept of the shifted loss function L⋆ is introduced. From a non-parametric
point of view, it is difficult to know in supervised machine learning whether
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the moment condition EP|Y | <∞ is fulfilled. However, some recent results
on consistency and statistical robustness properties of SVMs, which are
based on a Lipschitz continuous loss function and a bounded kernel, for
unbounded output spaces were derived under the assumption that this ab-
solute moment is finite, see e.g., Christmann and Steinwart (2007, 2008),
and Steinwart and Christmann (2008b). Unfortunately, this condition ex-
cludes distributions with heavy tails, such as the Cauchy distribution, and
extreme value distributions that can occur in financial or actuarial prob-
lems. In order to enlarge the applicability of SVMs to situations where the
output space Y is unbounded, e.g., Y = R or Y = [0,∞), without the need
for the above mentioned moment condition, we will introduce the L⋆-trick.
This trick, previously used in robust statistics by, e.g., Huber (1967), con-
sists in shifting the loss function L downwards to obtain the new, shifted
loss L⋆ : X × Y ×R → R defined by

L⋆(x, y, t) := L(x, y, t)− L(x, y, 0) .

Some properties of L⋆ and its associated risk RL⋆,P(f) and regularized risk
Rreg

L⋆,P,λ(f) are examined. We also show that, under rather weak conditions
that do not depend on the data and are thus easily verifiable, the SVM
fL⋆,P,λ based on the shifted loss function does exist and is unique. This
explains the importance of the shifted loss, because it allows us to inves-
tigate statistical properties of support vector machines for all probability
measures P, since no moment assumptions on the conditional distribution
of Y given x are needed to guarantee the existence of such SVMs. In this
section we also give a representation of the support vector machine based
on L⋆ in function of the subdifferential. Assumption 1.7.1 contains the gen-
eral assumptions for this thesis.

In Chapter 2 we will take a look at the consistency of support vector
machines. Consistency is an important concept for learning methods, since
it will guarantee that the method will effectively learn. For an L-risk consis-
tent method, the empirical risk RL,P(fD) of a decision function fD that is
based on the training data set D, will converge to the Bayes risk R∗

L,P and
the decision function produced by the method will thus be near optimal. A
method is called consistent if the function fD converges to the Bayes func-
tion f∗. Christmann and Steinwart (2007) and Steinwart and Christmann
(2008b) already showed that SVMs are L-risk consistent, and that the SVM
for quantile regression based on the pinball loss is consistent. However, they
needed the moment condition EP|Y | <∞ to obtain these results. Their re-
sults therefore exclude heavy-tailed distributions.
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In Section 2.2 we will use the L⋆-trick to enlarge the applicability of these
results to also include SVMs based on data coming from heavy-tailed dis-
tributions that thus violate the moment condition EP|Y | <∞. Given some
weak conditions we are able to show that support vector machines based on
shifted loss functions are L-risk consistent and we also obtain a consistency
result for the specific case of the pinball loss. The necessary conditions are
satisfied, if the researcher uses a convex Lipschitz continuous loss function,
a bounded continuous kernel, and a null-sequence of positive regularization
parameters λn such that λ2nn converges to infinity.

In Chapter 3 we will investigate the robustness properties of support vec-
tor machines. As mentioned before, outliers or extreme data points might
have a bad influence on the prediction function. To avoid this effect, robust
methods have been developed. These methods will look for the model that
fits the majority of the data and will hence be more robust against pos-
sible outliers in the data. The method will thus still perform (reasonably)
well, even in the presence of outliers or bad data points. One method to
verify the robustness of a statistic T : M1 → H1 is to look at its influence
function (IF) at a point z ∈ Z for a distribution P, which was defined by
Hampel (1968) as

IF(z;T,P) = lim
ε↓0

T ((1− ε)P + εδz)− T (P)

ε
,

if this limit exists. From the definition it is clear that the IF is related to
Gâteaux-derivatives. Furthermore, the IF has become a cornerstone of ro-
bust statistics, see Hampel (1974), Hampel et al. (1986), and Maronna et al.
(2006). Within the approach of influence functions, a method is called
robust if its IF is bounded, thus if the contaminating distribution only
has a limited influence on the statistical method. Recent results on the
robustness of SVMs by using the influence function can be found, e.g.,
in Christmann and Steinwart (2004, 2007) and Steinwart and Christmann
(2008a). One of the conditions however is that the loss function has to
be twice Fréchet-differentiable, and of the most often used losses, only
the logistic loss fulfills this property. Therefore we introduce a general-
ization of the IF that is based on Bouligand-derivatives (Robinson, 1991).
Bouligand-derivatives and strong Bouligand-derivatives have successfully
been used in approximation theory for non-smooth functions, see for ex-
ample Clarke (1983), Robinson (1987, 1991), Ip and Kyparisis (1992), and

1Here M1 is the set of all probability distributions on some measurable space
(Z,B(Z)).
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the references cited therein. To the best of our knowledge however, these
directional derivatives were not yet used in robust statistics. We first calcu-
late the Bouligand-derivative of some loss functions and then, using these
Bouligand-derivatives, we introduce the Bouligand influence function (BIF)
as a modification of Hampel’s influence function. The Bouligand influence
function of the function T : M1 → H for a distribution P in the direction
of a distribution Q ̸= P is the special Bouligand-derivative (if it exists)

lim
ε↓0

∥∥T ((1− ε)P + εQ
)
− T (P)− BIF(Q;T,P)

∥∥
H

ε
= 0 .

The BIF will allow us to study the robustness of a broad class of support
vector machines with non-smooth loss functions. Examples of these are the
support vector machine based on the ϵ-insensitive loss function, and kernel
based quantile regression based on the pinball loss function. Another ad-
vantage of the BIF, besides being able to work with non-smooth functions,
is that it is positive homogeneous which is in general not true for Hampel’s
influence function. A third advantage of the BIF is that the contaminating
distribution is not restricted to a point distribution as is the case for the
IF, but that it can be any distribution Q ̸= P. Furthermore, if the BIF
exists, then the IF exists and both are equal.

In Sections 3.3 and 3.4 we will show that many support vector machines
for regression have a bounded Bouligand influence function and are thus
robust. Section 3.3 contains our first robustness result: under some weak
assumptions, the BIF for support vector machines based on a bounded ker-
nel and a twice Bouligand-differentiable, Lipschitz continuous and convex
loss function exists, it is bounded and an explicit formula for the BIF of
T (P) := fL,P,λ in the direction of Q ̸= P is given by:

BIF(Q;T,P) = S−1
(
EP∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)

−S−1
(
EQ∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)
,

where S : H → H is defined as

S( · ) := 2λ idH( · ) + EP∇B
3,3L(X,Y, fL,P,λ(X)) · ⟨Φ(X), · ⟩HΦ(X) .

We then go on to prove that this result covers the important special cases of
SVMs based on the loss functions Lϵ, Lτ−pin, and Lc−Huber, which were not
covered by earlier results on the influence function, as well as Lr−log. The IF
of support vector machines based on the logistic loss was recently derived by
Christmann and Steinwart (2007) and Steinwart and Christmann (2008b).
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We also show that the asymptotic bias fL,(1−αε)P+α εQ, λ − fL,P,λ will be
of the form αBIF(Q;T,P) + o(αh), with h = ε(Q − P). Even though we
are able to avoid that the loss function needs to be Fréchet-differentiable,
we still have the condition EP|Y | <∞ as an assumption. This means that
heavy-tailed distributions are not covered by this theorem, which leads to
the second part of our robustness results.

In Section 3.4 we will use the L⋆-trick to extend some existing robustness
results to heavy-tailed distributions. First we adapt the robustness result
on the influence function derived in Christmann and Steinwart (2007) and
Steinwart and Christmann (2008b). We show that, using a shifted loss func-
tion, the IF of a support vector machine fL⋆,P,λ based on a bounded, con-
tinuous kernel and a twice Fréchet-differentiable, Lipschitz continuous and
convex loss function exists and is bounded, even for heavy-tailed distribu-
tions. We obtain a formula for the influence function similar to the one ob-
tained by Christmann and Steinwart (2007) and Steinwart and Christmann
(2008b). A bound for the bias

∥∥fL⋆,(1−ε)P+εQ,λ − fL⋆,P,λ

∥∥
H is also derived.

This difference will increase at most linearly. In the next step we recalculate
the Bouligand influence function for the SVM, but this time using the L⋆-
trick. We show that also here the BIF of fL⋆,P,λ exists, that it is bounded
and given by the above formulation if we use a bounded, continuous ker-
nel and a twice Bouligand-differentiable, Lipschitz continuous and convex
loss. Hence SVMs are robust in the sense of influence functions, even when
the underlying distribution has heavy tails or is an extreme value distri-
bution. We conclude this chapter with some numerical examples in which
we demonstrate the usefulness of SVMs even for heavy-tailed distributions
by applying support vector machines to a simulated data set with Cauchy
errors and to a data set of large fire insurance claims of Copenhagen Re.

Appendix A contains all mathematical prerequisites that might be needed
to fully understand this thesis. I tried to present this work as self-containing,
so the topics here range from topology over functional analysis and proba-
bility theory to convex optimization. Appendix B gives an overview of the
notations and abbreviations used in this work.

To summarize, in this thesis we investigate the robustness and consis-
tency of support vector machines. We have introduced a new notion on
robustness, called the Bouligand influence function, which is a modifica-
tion of the classical influence function. Using this method, we show that
SVMs that use non-smooth loss functions are robust in the sense of in-
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fluence functions. Furthermore, by using the L⋆-trick, we are also able to
proof that SVMs based on the shifted loss are both L⋆-risk consistent and
robust. Using this trick allows us to treat even SVMs for which the un-
derlying distribution has heavy tails or is an extreme value distribution,
something that was excluded from previous results. In the special case of
the pinball loss, we also show consistency of the decision function.

Other recent work on SVMs includes Christmann and Hable (2011) in
which the authors investigate the robustness – by using the BIF – and
consistency of SVMs for additive models, Hable and Christmann (2011)
where they look at the qualitative robustness of support vector machines,
Steinwart and Christmann (2009b) on the sparsity of SVMs that use the
ϵ-insensitive loss function, and Xu et al. (2009) who investigate the equiv-
alence between the regularization of the SVM and robust optimization.

Let us conclude with some considerations that might be made after read-
ing this work. First, we decided to consider only non-negative loss functions
L (although the shifted loss function L⋆ can have negative values), because
almost all loss functions used in practice are non-negative and no results
on SVMs seem available for loss functions with negative values. Secondly,
it might be possible to derive results similar to ours for convex, but lo-
cally Lipschitzian loss functions, including the least squares loss, although
Lipschitz continuous loss functions can offer better robustness properties,
see Christmann and Steinwart (2004, 2007) and Steinwart and Christmann
(2008b). And thirdly, from a robustness point of view, bounded and non-
convex loss functions might also be of interest. We did not consider these
loss functions for two reasons. The first reason is that existence, uniqueness,
consistency, and availability of efficient numerical algorithms are widely ac-
cepted as necessary properties which SVMs should have to avoid numeri-
cally intractable problems for large and high-dimensional data sets, say for
n > 105 and d > 100, see e.g. Vapnik (1998) or Schölkopf and Smola (2002).
These properties will be achieved if the risk is convex which is the case for
convex loss functions. Secondly, there are currently – as far as we know –
no general results on support vector machines available which guarantee
that the risk will be convex although the loss function is non-convex and
bounded. However, the convexity of the risk plays a key role in the proofs
of the existence and uniqueness of SVMs. From our point of view, such re-
sults should therefore first be examined before investigating bounded and
non-convex loss functions.

Finally, we would like to point out that, even though the Bouligand-
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derivative has not been used in robust statistics before, we think that it
is a promising concept for the following reason. Many robust estimators
that are proposed in the literature are implicitly defined as solutions of
some minimization problem where the objective function or loss function
is continuous or Lipschitz continuous, but not necessarily twice Fréchet-
differentiable. Examples are not only support vector machines, but also
M-estimators of Huber-type and certain maximum likelihood estimators
under non-standard conditions. Bouligand-differentiation nicely fills the gap
between Fréchet-differentiation, which is too strong for many robust esti-
mators, and Gâteaux-differentiation which is the basis for the robustness
approach based on influence functions. Bouligand-derivatives fulfill a chain
rule as well as an implicit function theorem which is in general not true for
Gâteaux-derivatives.

This thesis has left some possibilities for further research. A first option
might be to investigate the consistency of SVMs that are based on other loss
functions than the pinball loss, such as, e.g., the support vector machine
based on the ϵ-insensitive loss. Another interesting point could be to look
more in detail at robustness properties of SVMs for classification. We did
obtain results on the Bouligand influence function that, given our assump-
tions, are valid for all support vector machines, but we were so far only
able to check the assumption concerning the strong Bouligand-derivative
for loss functions for regression. A final road to investigate might be to con-
sider either locally Lipschitz loss functions instead of Lipschitz continuous
losses or to look at bounded and non-convex losses instead of convex losses.

The work presented in this thesis is based on the following publications:

⋆ Christmann, A. and Van Messem, A. (2008). Bouligand Derivatives
and Robustness of Support Vector Machines for Regression. Journal
of Machine Learning Research, 9, 915–936.

⋆ Christmann, A., Van Messem, A., and Steinwart, I. (2009). On Con-
sistency and Robustness Properties of Support Vector Machines for
Heavy-Tailed Distributions. Statistics and Its Interface, 2, 311–327.

⋆ Van Messem, A. and Christmann, A. (2010). A review on consistency
and robustness properties of support vector machines for heavy-tailed
distributions. Advances in Data Analysis and Classification, 4(2-3),
199–220.
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Samenvatting

Classificatie- en regressieproblemen worden al lange tijd bestudeerd, maar
recente technologische ontwikkelingen hebben het mogelijk gemaakt om
algoritmes te ontwikkelen en te implementeren die deze problemen voor
ons kunnen oplossen. Dit wordt statistical machine learning genoemd. Een
voorbeeld van zulk een techniek zijn support vector machines (SVMs). Deze
methode is niet-parametrisch en heeft bijgevolg geen, of erg weinig, vooraf-
gaande kennis over de onderliggende verdeling van de data nodig. Om voor-
spellingen te kunnen maken, zoals bij classificatie of regressie, zullen we
steeds veronderstellen dat we een verzameling van datapunten hebben, de
verzameling van trainingsdata D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n,
waarbij X de verzameling van de input variabelen is en Y de verzameling
van de mogelijke output variabelen. De statistische methode zal vervolgens
deze (geobserveerde) data gebruiken om een predictiefunctie op te stellen.
Deze predictor zal een outputwaarde toekennen aan elke nieuwe, nog niet
geobserveerde input. In theorie werken statistische methodes goed met een
gegeven data set, maar in de praktijk bestaat er altijd de mogelijkheid dat
de data fouten bevatten waardoor de voorspelling door onze statistische
methode onbetrouwbaar kan zijn: zelfs kleine foutjes kunnen voor een groot
verschil zorgen in de voorspelde waarden. Er kunnen zich op verschillende
manieren problemen in de data voordoen: extreme waarden of uitschieters
kunnen in de data set voorkomen, of er kunnen zich simpelweg typfouten
hebben voorgedaan bij het ingeven van de gegevens in het systeem. Het
resultaat is echter telkens hetzelfde: als de gebruikte methode niet robuust
is, kan de gevonden functie enorm verschillen van de echte, onderliggende
functie. Ook data komende van verdelingen met zware staarten kunnen een
probleem vormen voor een statistische voorspellingsmethode.

Het eerste hoofdstuk bevat een korte inleiding over statistische leermetho-
des alsook een overzicht van de verschillende stages die SVMs doorlopen
hebben tijdens hun ontwikkeling. We beginnen met het opstellen van de
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originele support vector machines zoals ingevoerd door Vapnik en Lerner
(1963), Boser et al. (1992) en Cortes en Vapnik (1995) en die gebaseerd
waren op een geometrisch idee. Daarna gaan we over naar de methode via
empirische risicominimalisatie die leidde tot de analytische beschrijving
van support vector machines. Analytisch gezien zijn support vector ma-
chines kern-methodes die gëınspireerd zijn op convexe risicominimalisatie
in oneindigdimensionale Hilbert ruimten. Er zijn drie redenen waarom deze
techniek zo populair is. Ten eerste zijn SVMs erg flexibel. Oorspronkelijk
konden ze enkel lineaire classificatie uitvoeren, maar door gebruik te maken
van een geschikte kern werd dit al snel uitgebreid naar het niet-lineaire
geval. Een tweede voordeel is dat de methode rekenkundig erg efficiënt is
doordat het maar een kleine fractie van het totale aantal datapunten nodig
heeft om mee te werken. En ten derde kunnen SVMs makkelijk overweg
met grote data sets waarin zich ongekende, complexe en hoogdimensionale
afhankelijkheden bevinden, zoals bij voorbeeld in de genetica of bij bio-
informatica.

Empirische risicominimisatie (ERM) zal een functie f : X → R zoeken
die het L-risico

RL,P(f) := EPL(X,Y, f(X))

minimaliseert. Hierbij is L : X × Y × R → [0,∞) een verliesfunctie die
een indicatie geeft van hoe goed de voorspelling f(x) de geobserveerde out-
put y benadert. Het kleinst mogelijke risico R∗

L,P wordt het Bayes risico
genoemd, en de functie f∗ waarvoor het Bayes risico bereikt wordt, is de
Bayes functie. Het is echter onmogelijk om het risico te minimaliseren over
alle functies, en dus zal er een voldoend grote deelverzameling van func-
ties, de reproducerende kern Hilbert ruimte (RKHS) H, beschouwd worden.
Bovendien kan het klakkeloos optimaliseren van het risico leiden tot zeer
onregelmatige of oscillerende functies. Deze functies zullen zeer goede be-
naderingen f(x) van y produceren voor geobserveerde datapunten x, maar
zullen het extreem slecht doen voor nog niet eerder waargenomen inputs.
Om dit overfitten te vermijden, wordt een regularisatieterm toegevoegd aan
het risico. Het geregulariseerde risico is dan

Rreg
L,P,λ(f) := RL,P(f) + λ ∥f∥2H .

Deze extra term beperkt de doelfunctie f aangezien zeer onregelmatige
functies een grote norm zullen hebben en dus minder in aanmerking komen
als optimale functie. De support vector machine zelf is gedefinieerd als

fL,P,λ := arg inf
f∈H

RL,P(f) + λ ∥f∥2H .

Samenvatting



xiii

Vervolgens zullen we de verliesfunctie en het daarbij horende risico meer
in detail bestuderen. We leggen tevens uit waarom convexe en Lipschitz
continue functies zo belangrijk zijn en kijken ten slotte nog naar kernen en
de RKHS.

Een belangrijk deel van Hoofdstuk 1 is Sectie 1.7 waarin het concept
van de verschoven verliesfunctie L⋆ wordt ingevoerd. Vanuit een niet-pa-
rametrisch standpunt is het een moeilijke opgave om te weten of de mo-
mentvoorwaarde EP|Y | < ∞ al dan niet voldaan is bij machine learning.
Recente resultaten in oneindigdimensionale output-ruimten over de con-
sistentie en statistische robuustheid van SVMs, gebaseerd op een Lipschitz
continue verliesfunctie en een begrensde kern, maken echter gebruik van het
feit dat dit absolute moment eindig is, zie b.v. Christmann en Steinwart
(2007, 2008) en Christmann en Steinwart (2008b). Jammer genoeg sluit
deze voorwaarde verdelingen met zware staarten, zoals de Cauchy verdel-
ing, alsook extreme waarde verdelingen die bij financiële of actuariële pro-
blemen kunnen voorkomen, uit. Om de bruikbaarheid van SVMs dus uit te
breiden naar situaties waar de output-ruimte Y onbegrensd is, b.v. Y = R

or Y = [0,∞), zonder hierbij de hierboven genoemde momentvoorwaarde
te vereisen, zullen we gebuik maken van de L⋆-truc. Deze truc, die al eerder
gebruikt is in robuuste statistiek door b.v. Huber (1967), bestaat erin om
de verliesfunctie L neerwaarts te verschuiven en zo de nieuwe, verschoven
verliesfunctie

L⋆(x, y, t) := L(x, y, t)− L(x, y, 0)

te bekomen. We bestuderen de eigenschappen van L⋆ en het daaraan ge-
associeerde risico RL⋆,P(f) en geregulariseerde risico Rreg

L⋆,P,λ(f). We tonen
tevens dat, gegeven enkele zwakke voorwaarden die niet afhangen van de
data en die dus makkelijk na te gaan zijn, de SVM fL⋆,P,λ gebaseerd op de
verschoven verliesfunctie effectief bestaat en zelfs uniek is. Het verschuiven
van de verliesfunctie laat dus toe om de statistische eigenschappen van
support vector machines te bestuderen voor alle kansmaten P aangezien er
geen momentvoorwaarde op de voorwaardelijke verdeling van Y gegeven x
meer nodig is om het bestaan van zulke SVMs te garanderen. In deze sectie
geven we ook een representatie van de support vector machine gebaseerd
op L⋆ in functie van de subdifferentiaal. Aanname 1.7.1 bevat de algemene
assumpties voor deze thesis.

In Hoofdstuk 2 bestuderen we de consistentie van support vector ma-
chines. Consistentie is een belangrijk concept voor leermethodes daar het
garandeert dat de methode effectief zal leren. Voor een L-risico consistente
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methode zal het empirisch risico RL,P(fD) voor een beslissingsfunctie fD
gebaseerd op de trainingsdata D, convergeren naar het Bayes risico R∗

L,P.
De door de methode bekomen beslissingsfunctie zal dus bijna optimaal
zijn. Een methode wordt consistent genoemd als de functie fD convergeert
naar de Bayes functie f∗. Christmann en Steinwart (2007) en Steinwart en
Christmann (2008b) toonden reeds aan dat SVMs L-risico consistent zijn,
en dat de SVM voor kwantielregressie gebaseerd op de pinball verliesfunctie
consistent is. Hiervoor maakten ze echter wel gebruik van de momentvoor-
waarde EP|Y | <∞. Hun resultaten sluiten bijgevolg verdelingen met zware
staarten uit.

In Sectie 2.2 zullen we de L⋆-truc gebruiken om de toepasbaarheid van
deze resultaten uit te breiden naar SVMs gebaseerd op data komende van
verdelingen met zware staarten die dus de momentvoorwaarde EP|Y | <∞
violeren. Onder enkele zwakke voorwaarden kunnen we aantonen dat sup-
port vector machines gebaseerd op verschoven verliesfuncties L-risico con-
sistent zijn en bekomen we eveneens een consistentieresultaat voor het spec-
ifieke geval van de pinball verliesfunctie. De benodigde voorwaarden zijn
voldaan als de onderzoeker een convexe en Lipschitz continue verliesfunc-
tie, een begrensde continue kern, en een nulrij van positieve regularisatiepa-
rameters λn zodat λ2nn naar oneindig convergeert gebruikt.

In Hoofdstuk 3 zullen we robuustheidseigenschappen van support vector
machines onderzoeken. Zoals reeds eerder gezegd, kunnen uitschieters of
extreme waarden een slechte invloed uitoefenen op de voorspellingsfunctie.
Om dit te vermijden, zijn er robuuste methodes ontwikkeld. Deze methodes
zullen een model zoeken dat goed aansluit bij het merendeel van de data,
maar dat beter bestand is tegen mogelijke uitschieters in de data. De meth-
ode zal dus nog steeds (redelijk) goed presteren, zelfs in de aanwezigheid
van uitschieters of slechte datapunten. Een manier of de robuustheid van
een statistiek T : M1 → H2 te testen, is door te kijken naar haar invloeds-
functie (IF) in een punt z ∈ Z en voor een verdeling P. De IF is door
Hampel (1968) gedefinieerd als

IF(z;T,P) = lim
ε↓0

T ((1− ε)P + εδz)− T (P)

ε
,

als deze limiet bestaat. Uit de definitie is het duidelijk dat de IF direct gere-
lateerd is aan Gâteaux-afgeleiden. Bovendien is de IF een hoeksteen gewor-
den van de robuuste statistiek, zie hiervoor Hampel (1974), Hampel et al.

2Hierbij is M1 de verzameling van alle kansverdelingen op een meetbare ruimte
(Z,B(Z)).
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(1986), en Maronna et al. (2006). Binnen de benadering door invloedsfunc-
ties wordt een methode robuust genoemd als haar IF begrensd is, dus als
de contaminerende verdeling slechts een beperkte invloed uitoefent op de
statistische methode. Recente resultaten aangaande de robuustheid van
SVMs, gebruik makend van de invloedsfunctie, worden gegeven in b.v.
Christmann en Steinwart (2004, 2007) en Steinwart en Christmann (2008a).
Een van de voorwaarden hier is echter dat de verliesfunctie twee maal
Fréchet-afleidbaar moet zijn, een eigenschap waaraan bij de veelgebruikte
verliesfuncties alleen door de logistische verliesfunctie voldaan wordt. Om
die reden introduceren we een veralgemening van de IF die gebaseerd is
op Bouligand-afgeleiden (Robinson, 1991). Bouligand-afgeleiden en sterke
Bouligand-afgeleiden zijn reeds succesvol gebruikt in approximatietheorie
voor niet-gladde functies, zie b.v. Clarke (1983), Robinson (1987, 1991), Ip
en Kyparisis (1992) en de referenties daarin geciteerd, maar voor zover wij
weten zijn deze richtingsafgeleiden nog niet gebruikt in robuuste statistiek.
Om te beginnen berekenen we de Bouligand-afgeleide van enkele verlies-
functies waarna we, gebruik makend van deze afgeleiden, de Bouligand
invloedsfunctie (BIF) invoeren als een aanpassing van Hampel’s invloeds-
functie. De Bouligand invloedsfunctie van de functie T : M1 → H voor een
verdeling P in de richting van een verdeling Q ̸= P is de speciale Bouligand-
afgeleide (als deze bestaat)

lim
ε↓0

∥∥T ((1− ε)P + εQ
)
− T (P)− BIF(Q;T,P)

∥∥
H

ε
= 0 .

De BIF zal ons toelaten om de robuustheid van een brede klasse van support
vector machines met niet-gladde verliesfuncties te bestuderen. Voorbeelden
hiervan zijn de support vector machine gebaseerd op de ϵ-insensitive ver-
liesfunctie, of kern-gebaseerde kwantielregressie die gebruik maakt van de
pinball verliesfunctie. Een ander voordeel van de BIF, naast de mogelijkheid
om met niet-gladde functies te kunnen werken, is dat ze positief homogeen
is, een eigenschap die meestal niet geldt voor Hampel’s invloedsfunctie. Een
derde voordeel van de BIF is dat de contaminerende verdeling niet beperkt
wordt tot een puntverdeling, zoals het geval is voor de IF, maar dat deze om
het even welke verdeling Q ̸= P kan zijn. Bovendien hebben we aangetoond
dat als de BIF bestaat ook de IF bestaat en dat beide gelijk zijn.

In Secties 3.3 and 3.4 bewijzen we dat veel support vector machines
voor regressie een begrensde Bouligand invloedsfunctie bezitten en dus ro-
buust zijn. Sectie 3.3 bevat ons eerste robuustheidsresultaat: onder enkele
zwakke voorwaarden zal de BIF voor support vector machines gebaseerd
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op een begrensde kern en een twee maal Bouligand-afleidbare, Lipschitz
continue en convexe verliesfunctie bestaan, is ze begrensd en wordt de BIF
van T (P) := fL,P,λ in de richting van Q ̸= P expliciet gegeven door:

BIF(Q;T,P) = S−1
(
EP∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)

−S−1
(
EQ∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)
,

waarbij S : H → H gedefinieerd is als

S( · ) := 2λ idH( · ) + EP∇B
3,3L(X,Y, fL,P,λ(X)) · ⟨Φ(X), · ⟩HΦ(X) .

We tonen vervolgens dat dit resultaat de belangrijke speciale gevallen van
SVMs gebaseerd op de verliesfuncties Lϵ, Lτ−pin, and Lc−Huber – dewelke
uitgesloten waren bij eerdere resultaten omtrent de invloedsfunctie – alsook
Lr−log omvat. De IF van support vector machines gebaseerd op de logis-
tische verliesfunctie werd recent bekomen door Christmann en Steinwart
(2007) en Steinwart en Christmann (2008b). We bewijzen tevens dat de
asymptotische bias fL,(1−αε)P+α εQ, λ− fL,P,λ van de vorm αBIF(Q;T,P)+
o(αh) zal zijn waarbij h = ε(Q− P). Ook al kunnen we in onze resultaten
de voorwaarde dat de verliesfunctie Fréchet-afleidbaar moet zijn vermij-
den, we hebben nog steeds de aanname dat EP|Y | < ∞. Dit betekent dat
verdelingen met zware staarten niet gedekt worden door deze stelling, wat
leidt naar het tweede deel van onze robuustheidsresulaten.

In Sectie 3.4 zullen we de L⋆-truc gebruiken om enkele bestaande ro-
buustheidsresultaten uit te breiden naar verdelingen met zware staarten.
De resultaten over de invloedsfunctie bekomen in Christmann en Steinwart
(2007) en Steinwart en Christmann (2008b) worden aangepast. We tonen
dat, door gebruik te maken van de verschoven verliesfunctie, de IF van een
support vector machine fL⋆,P,λ gebaseerd op een begrensde, continue kern
en een twee maal Fréchet-afleidbare, Lipschitz continue en convexe verlies-
functie bestaat en is begrensd, zelfs indien de data komen van een verdeling
met zware staarten. We verkrijgen tevens een formule voor de invloeds-
functie naar analogie met Christmann en Steinwart (2007) en Steinwart en
Christmann (2008b). Daarnaast bekomen we ook een begrenzing voor de
bias

∥∥fL⋆,(1−ε)P+εQ,λ − fL⋆,P,λ

∥∥
H, waaruit blijkt dat dit verschil ten hoog-

ste lineair zal stijgen. Daarna herberekenen we de Bouligand invloedsfunctie
voor de SVM, maar deze keer gebruik makend van de L⋆-truc. We tonen
dat ook hier de BIF van fL⋆,P,λ bestaat, dat deze begrensd is en dat ze
gegeven wordt door de eerder vermelde formule indien we werken met een
begrensde, continue kern en een twee maal Bouligand-afleidbare, Lipschitz
continue en convexe verliesfunctie. Bijgevolg mogen we stellen dat SVMs
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robuust zijn in de zin van invloedsfuncties, zelfs wanneer de onderliggende
verdeling zware staarten heeft of een extreme waarden verdeling is. We
sluiten dit hoofdstuk af met enkele numerieke voorbeelden waarin we de
bruikbaarheid van SVMs aantonen voor dit soort verdelingen. Eerst passen
we een SVM toe op een gesimuleerde data set met Cauchy errors (verdeling
met zware staarten), daarna op een data set met grote brandschadeclaims
(extreme waardenverdeling) komende van Copenhagen Re.

Appendix A bevat alle wiskundige voorkennis die nodig kan zijn om deze
thesis volledig te begrijpen. Ik heb geprobeerd ervoor te zorgen dat dit werk
gelezen kan worden zonder al te veel opzoekwerk te moeten verrichten, en
bijgevolg lopen de onderwerpen hier van topologie over functionaalanalyse
en kanstheorie tot convexe optimalisatie. Appendix B geeft een overzicht
van alle notaties en afkortingen die in dit werk gebruikt zijn.

Samengevat kunnen we dus stellen dat in deze thesis robuustheid en
consistentie van support vector machines werd onderzocht. We voeren een
nieuw begrip in voor robuustheid, namelijk de Bouligand invloedsfunctie,
dewelke een aanpassing is van de klassieke invloedsfunctie. Door gebruik
te maken van deze methode zijn we in staat aan te tonen dat SVMs die
een niet-gladde verliesfunctie gebruiken ook robuust zijn in de zin van in-
vloedsfuncties. Bovendien, door gebruik te maken van de L⋆-truc, kunnen
we tevens bewijzen dat SVMs gebaseerd op de verschoven verliesfunctie
zowel L⋆-risico consistent als robuust zijn. Deze truc laat ons toe om ook
SVMs waarvoor de onderliggende verdeling zware staarten heeft of een ex-
treme waarden verdeling is, te beschouwen, iets wat in eerdere resultaten
niet mogelijk was. In het geval van de pinball verliesfunctie tonen we ook
de consistentie van de beslissingsfunctie aan.

Ander recent onderzoek over SVMs omvat Christmann en Hable (2011)
waarin de auteurs de robuustheid – aan de hand van de BIF – en de con-
sistentie van SVMs voor additieve modellen nagaan, Hable en Christmann
(2011) waarin ze kijken naar kwalitatieve robuustheid van support vec-
tor machines, Steinwart en Christmann (2009b) over de ijlheid van SVMs
gebaseerd op de ϵ-insensitive verliesfunctie en Xu et al. (2009) die de equi-
valentie tussen het regulariseren van de SVM en robuuste optimalisatie
bestudeert.

Laat ons afsluiten met enkele nabeschouwingen die gemaakt kunnen wor-
den na dit werk gelezen te hebben. Ten eerste, we besloten om enkel niet-
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negatieve verliesfuncties L te beschouwen (alhoewel de verschoven verlies-
functie L⋆ wel negatieve waarden kan aannemen) omdat bijna alle verlies-
functies die in de praktijk gebruikt worden niet-negatief zijn en er geen
onderzoek over SVMs voorhanden lijkt te zijn voor verliesfuncties met
negatieve waarden. Ten tweede, het zou mogelijk kunnen zijn om gelijk-
aardige resultaten als de onze te bekomen voor convexe, maar lokaal Lip-
schitze verliesfuncties, zoals de least squares verliesfunctie, maar Lipschitz
continue verliesfuncties leveren betere robuustheidseigenschappen op, zie
hiervoor Christmann en Steinwart (2004, 2007) en Steinwart en Christ-
mann (2008b). En ten derde, vanuit een robuustheidsstandpunt zouden
begrensde en niet-convexe verliesfuncties ook interessant kunnen zijn. Wij
hebben deze echter niet beschouwd om twee redenen. De eerste reden is
dat het bestaan, de uniekheid, de consistentie en de beschikbaarheid van
efficiënte numerieke algoritmes wijd en zijd aanvaard wordt als nodige voor-
waarden waaraan SVMs zouden moeten voldoen om ervoor te zorgen dat
numerieke problemen voor grote en hoog-dimensionale data sets, laat ons
zeggen voor n > 105 en d > 100 oplosbaar zijn, zie b.v. Vapnik (1998)
of Schölkopf en Smola (2002). Deze eigenschappen worden bereikt als het
risico convex is, wat het geval is voor convexe verliesfuncties. Ten tweede
bestaan er momenteel – voor zover we weten – geen algemene resultaten
betreffende support vector machines die ons garanderen dat het risico con-
vex zal zijn als de verliesfunctie niet-convex en begrensd is. Het feit dat
het risico convex is speelt echter een belangrijke rol in de bewijzen van het
bestaan en de uniekheid van SVMs. Vanuit ons standpunt zouden er dus
eerst zulke resultaten bestudeerd moeten worden vooraleer onderzoek te
verrichten naar SVMs met begrensde en niet-convexe verliesfuncties.

Ten slotte willen we nogmaals benadrukken dat de Bouligand-afgeleide,
ook al was deze hiervoor nog niet gebruikt in robuuste statistiek, een veel-
belovend concept is. Veel robuuste schatters die in de literatuur worden
voorgesteld worden impliciet gedefinieerd als de oplossing van een zeker
minimalisatieprobleem waarbij de objectieffunctie of verliesfunctie wel con-
tinu of Lipschitz continu is, maar niet noodzakelijk twee maal Fréchet-
afleidbaar. Voorbeelden hier zijn niet enkel support vector machines, maar
ook M-schatters van het Huber-type en bepaalde maximum likelihood schat-
ters onder niet-standaard voorwaarden. Bouligand-afleidbaarheid valt mooi
tussen Fréchet-afleidbaarheid, wat een te sterk begrip is voor vele robuuste
schatters, en Gâteaux-afleidbaarheid, die de basis vormt voor de robuuste
benadering gebaseerd op invloedsfuncties. Bovendien voldoen Bouligand-
afgeleiden aan een kettingregel en bestaat er een impliciete functie stelling,

Samenvatting



xix

iets wat in het algemeen niet waar is voor Gâteaux-afgeleiden.

Enkele mogelijke onderwerpen voor verder onderzoek die uit deze the-
sis voortvloeien zijn de volgende: een eerste optie zou verder onderzoek
naar de consistentie van SVMs zijn. De consistentie is bewezen voor het
specifieke geval van een SVM gebaseerd op de pinball verliesfunctie, maar
nog niet voor SVMs die gebruik maken van andere verliesfuncties zoals
b.v. de ϵ-insensitive verliesfunctie. Een ander interessant onderwerp zou
kunnen zijn om robuustheid van SVMs voor classificatie meer in detail te
bestuderen. De resultaten die bekomen zijn aan de hand van de Bouligand
invloedsfunctie zijn, gegeven onze veronderstellingen, geldig voor alle sup-
port vector machines, maar tot nog toe hebben we de aanname aangaande
de sterkte Bouligand-afgeleide enkel kunnen verifiëren voor verliesfuncties
voor regressie. Een laatste pad dat mogelijks bewandeld kan worden zou zijn
om ofwel lokaal Lipschitze verliesfuncties in plaats van Lipschitz continue
verliesfuncties te beschouwen, ofwel om naar begrensde en niet-convexe ver-
liesfuncties te kijken in plaats van naar convexe verliesfuncties.

Deze thesis is gebaseerd op de volgende publicaties:

⋆ Christmann, A. en Van Messem, A. (2008). Bouligand Derivatives
and Robustness of Support Vector Machines for Regression. Journal
of Machine Learning Research, 9, 915–936.

⋆ Christmann, A., Van Messem, A. en Steinwart, I. (2009). On Con-
sistency and Robustness Properties of Support Vector Machines for
Heavy-Tailed Distributions. Statistics and Its Interface, 2, 311–327.

⋆ Van Messem, A. en Christmann, A. (2010). A review on consistency
and robustness properties of support vector machines for heavy-tailed
distributions. Advances in Data Analysis and Classification, 4(2-3),
199–220.
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Chapter 1

An Introduction to
Support Vector Machines

Let us start with a short overview of the development of support vector ma-
chines (SVMs). In 1936, R. A. Fisher (1952) suggested the first algorithm for
pattern recognition, and in 1956 Frank Rosenblatt (1958, 1962) invented
a linear classifier which he called the perceptron and which can be seen
as the simplest kind of a feedforward neural network. Vapnik and Lerner
(1963) introduced the Generalized Portrait Algorithm (see Section 1.2.1),
which formed the basis for support vector machines. The algorithm imple-
mented by support vector machines is namely a non-linear generalization
of the Generalized Portrait Algorithm by using the theory of reproduc-
ing kernels as given by Aronszajn (1950). Next, Aizerman et al. (1964)
introduced the geometrical interpretation of kernels as inner products in
a feature space, and in the same year Vapnik and Chervonenkis (1964)
further developed the Generalized Portrait Algorithm. Cover (1965) dis-
cussed large margin hyperplanes in the input space as well as sparseness,
while similar optimization techniques were used in pattern recognition by
Mangasarian (1965). The introduction of slack variables to overcome the
problem of noise and non-separability was done by Smith (1968) and large
margin hyperplanes in the input space were discussed by Duda and Hart
(1973). The field of ‘statistical learning theory’ began – in Russian – with
Vapnik and Chervonenkis (1974) with a book on pattern recognition that
was translated into German in 1979. SVMs can be said to really have started
when Vapnik (1979) – still in Russian – continued to develop statistical
learning theory in ‘Estimation of Dependences Based on Empirical Data’,
a book that was translated in English in 1982. Several statistical mechanics

1
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papers, such as the one of Anlauf and Biehl (1989) suggested using large
margin hyperplanes in the input space, while Poggio and Girosi (1990) and
Wahba (1990) discussed the use of kernels. Improvement upon Smith’s work
on slack variables was done by Bennett and Mangasarian (1992), while in
the same year Boser et al. (1992) first introduced SVMs close to their cur-
rent form (see Section 1.2.2) in a paper at the COLT 1992 conference.
In 1995 the soft margin classifier (see Section 1.2.3) was introduced by
Cortes and Vapnik (1995) and in the same year the algorithm was ex-
tended to the case of regression by Vapnik (1995) in his book ‘The Nature
of Statistical Learning Theory’. Further early work on SVMs comprises of
the first rigorous statistical bound on the generalization of hard margin
SVMs (Bartlett, 1998, Shawe-Taylor et al., 1998) and statistical bounds on
the generalization of soft margin algorithms and for the regression case
(Shawe-Taylor and Cristianini, 1999).

In the next section, we will give a short introduction to the field of sta-
tistical learning theory, while Section 1.2 will describe the (geometrical)
history of SVMs. Section 1.3 will shift the focus from the geometrical in-
terpretation of SVMs to the, nowadays more common, interpretation via
empirical risk minimization. Next, we will take a closer look at the loss
function and the reproducing kernel Hilbert space in Sections 1.4 and 1.5,
we will give conditions for the existence and uniqueness of the SVM in Sec-
tion 1.6, and we will conclude this chapter with a note on shifting the loss
function in Section 1.7.

1.1 An Introduction to
Statistical Learning Theory

1.1.1 Statistical Machine Learning

Support vector machines belong to the large class of techniques from mod-
ern statistical machine learning theory. They are non-parametric methods
and can be used both for classification and regression purposes. For more
details on statistical learning, we refer the reader to such books as Vapnik
(1995, 1998), and Hastie et al. (2001).

The aim in non-parametric statistical machine learning is to find a func-
tional relationship between an X -valued input random variable X and a
Y-valued output, or response, random variable Y , under the assumption

An Introduction to Support Vector Machines



1.1. An Introduction to Statistical Learning Theory 3

that the joint distribution P of (X,Y ) is (almost) completely unknown.
Knowing whether this dependence between the input and the output vari-
ables exists, and if so what function will describe it, can be of value in
real-life applications, such as:

i) predicting whether a client will pay back a loan to a bank based on
data of previous clients of the bank;

ii) estimating the total yearly amount of claims of car insurances based
on insurance data over the previous years.

Since nowadays the structure of the measurements can be too complex
to be reasonably understood by humans (think, e.g., of DNA strings) or the
amount of data can be too large to manually find the relationship, people
will depend on computers to do the work for them and hence the name
machine learning. One expects a machine to use observed data to “learn”
the unknown dependency via some algorithm as well as automatically as-
sign a response to future input values. So it is not sufficient to find a good
description of the relationship of the observed data, it is also needed to
find a prediction rule that works well for new, unseen inputs. For both of
the above mentioned examples the input space X could be the set of all
personal information gathered on the client. The output set Y for the first
example would be {“no”, “yes”} or {−1,+1}, while in the other example
it would be the set of all possible claim amounts, most likely R.

In order to model the relationship between the input and response vari-
ables, one therefore typically assumes that one has a finite training data
set D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n consisting of observations from
independent and identically distributed (i.i.d.) random variables (Xi, Yi),
i = 1, . . . , n, which all have the same, but unknown, distribution P on
X × Y equipped with the corresponding Borel σ-algebra. This Borel σ-
algebra will exist, since both X and Y will be topological spaces, as will
become clear later on when we state our assumptions. The method is called
non-parametric since no, or very little, additional assumptions are made on
the distribution P. This means that we do not assume the existence of
densities, symmetry, or a parametric model. The goal is then to build a
predictor f : X → Y, based solely on the observations, which will assign
to each input vector, sometimes also called risk vector, x a prediction f(x)
which hopefully will be a good approximation of the observed output y.
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As can be seen from the two examples mentioned above, the type of out-
put values can be categorized in two classes, either they are quantitative
(such as the claims amount) or they are categorical (yes/no). For quantita-
tive measurements, there exists a ranking of the values, and measurements
that are close in value will be similar in nature. Categorical, or qualitative
or discrete, responses can only take on values in a finite set of possibilities
and usually have no ranking among themselves. Usually, these different
classes are described by labels rather than by numbers. Most often there
are only two possibilities and a 0/1 or −1/+ 1 coding is sufficient. If there
are more than two categories, coding can be done, e.g., by using dummy
variables.

The difference in output type defines the different prediction tasks: clas-
sification when we predict categorical values, and regression when the re-
sponses are quantitative. Common choices of input and output spaces are
X×Y = Rd×{−1,+1} in the binary classification case and X×Y = Rd×R

in the regression case. Most of the results in this thesis are meant for re-
gression, but classification can be seen as a special case of regression where
the responses can only take on a limited number of values.

Two basic examples of non-parametric pattern recognition are the least
squares method and the k-nearest neighbors method, which we will briefly
describe below. The least squares method is most often used for regression
purposes, but is also applicable for classification of data. The k-nearest
neighbors method is mainly meant for classification. Of course there are a
lot of other prediction methods in existence, some examples of which are
discriminant analysis, logistic regression, and neural networks.

1.1.2 Ordinary Least Squares

In this subsection, we will discuss the least squares method for a linear
model, also called ordinary least squares (OLS). This method is probably
the most widely known and used technique for pattern recognition in exis-
tence.

Given some input vector X = (X1, . . . , Xd) ∈ Rd, and outcome Y ∈ R,
we will assume that the following linear model

Y = β0 +

d∑
j=1

βjXj
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holds. The term β0 is called the intercept or bias term. In order to facilitate
calculation, a constant 1 is often incorporated in the vector X and β =
(β0, . . . , βd) is written for the vector of the coefficients. This allows us to
rewrite the model as

Y = XTβ ,

whereXT is the transposition of the column vectorX. The function f(X) =
XTβ is the linear predictor function as described earlier. However, β is un-
known, and will be estimated using observed data. In that case, we will
write β̂ and ŷ for the predictions of β and y respectively.

Given a set of training data D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the
assumption tells us that

yi = xTi β + εi , i = 1, . . . , n ,

with εi the error term. The linear model can be fitted to the data by many
different methods, but the least squares method will look at minimizing the
residual sum of squares

RSS(β) =
n∑

i=1

(yi − xTi β)
2 . (1.1)

RSS(β) is clearly a quadratic function, and hence will have a minimum,
though a priori this minimum is not necessarily unique. If we write y =
(y1, . . . , yn)

T ∈ Rn, x = (x1, . . . , xn)
T ∈ Rn×(d+1), and β = (β0, . . . , βd)

T ∈
Rd+1, we can rewrite (1.1) in matrix notation as

RSS(β) = (y − xβ)T (y − xβ) . (1.2)

Differentiating (1.2) with respect to β and imposing stationarity (meaning
we will set the value of this derivative to zero), gives the normal equations

xT (y − xβ) = 0 .

For xTx non-singular, the (unique) solution is given by

β̂ = (xTx)−1xT y ,

and the fitted value for xi is ŷi = ŷ(xi) = xTi β̂ = xTi (x
Tx)−1xT y. Similarly,

the prediction for some unknown input x0 is given by ŷ(x0) = xT0 β̂.
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The assumption of a linear model is a quite important model assumption,
but helps the method yield rather stable, but possibly quite inaccurate,
results. Extension to a non-linear model is naturally possible, but we will
not discuss this here. Furthermore, we only looked at the case where the
response variable Y is a scalar, but of course Y could also be a vector of
outputs. In that case β will be a matrix instead of a vector, but the method
remains unchanged.

1.1.3 k-Nearest Neighbors

The second method for pattern recognition that we will shortly describe, is
the k-nearest neighbors (k-NN) method. This method is one of the simplest
of all learning algorithms: an object will be classified by a majority vote
among its neighbors.

The idea of k-NN methods for classification is to construct a decision
function locally for each x by first determining the k > 0 points of the
training data set D that are closest to x and then making the prediction
for y based on the (possibly weighted) average of the k corresponding y-
values. This concept of closeness implies the use of a metric, which can
influence the outcome. Depending on the used metric, the k closest vectors
can vary, and thus so can the prediction. Also the choice of k itself is of
importance, and will depend on the data provided. The smaller k is chosen,
the less errors the method will make, but the more irregular the decision
boundary will become. Larger values of k will reduce the effect of noise,
but decrease the distinction between the classes.

The k-NN method makes no real structural assumption such as the least
squares fit does, which improves the accuracy of the method, but reduces
its stability, since it depends heavily on the local structure of the data.

1.2 History of Support Vector Machines

The original idea for support vector machines is a geometrical one: the
aim of support vector classification is to find a computationally efficient
way of learning ‘good’1 separating hyperplanes in a high-dimensional fea-
ture space. Support vector machines produce sparse dual representations

1‘Good’ can be defined in different ways. We will use the notion of the maximal margin
separating hyperplane, but another possibility would be to find the separating hyperplane
that minimizes the number of support vectors.
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of the hypothesis, which results in extremely efficient algorithms due to
the Karush-Kuhn-Tucker conditions which hold for the solution and play a
very important role in the practical implementation and analysis of SVMs.
A second important feature is that, due to Mercer’s conditions on the ker-
nels, the corresponding optimization problem is convex, and hence there
are no local extremes. This fact, in combination with the strongly reduced
number of non-zero parameters, is exactly why support vector machines dis-
tinguish themselves from other learning algorithms such as neural networks.

The following description of the geometrical evolution of support vec-
tor machines is based upon Vapnik (1998, 2000, Chapter 10 resp. Chap-
ter 5.5), Burges (1998, Chapters 3 and 4), Cristianini and Shawe-Taylor
(2000, Chapter 6), and Steinwart and Christmann (2008b, Chapter 1.3).

1.2.1 The Generalized Portrait Algorithm

As remarked in the introduction to this chapter, the foundation for SVMs
was laid by the Generalized Portrait Algorithm (GPA) as introduced by
Vapnik and Lerner (1963). The GPA, which is a binary classification algo-
rithm, consideres the simplest case possible: a linear machine trained on
separable2 data. This means that the set of data points will be completely
separable by a linear hyperplane. To distinguish between the two classes,
the data points will be labeled +1 and −1.

The set-up is the following: since we consider the case of binary classi-
fication, Y = {−1,+1}, and let X ⊂ Rd. We also posses a training data
set D = ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n that is perfectly separable. This
means that there exists a hyperplane

H0 : ⟨w, x⟩+ b = 0 (1.3)

characterized by w ∈ Rd and b ∈ R such that the training data satisfy

⟨w, xi⟩+ b ≥ +1 ∀ i with yi = +1 , (1.4)

⟨w, xi⟩+ b ≤ −1 ∀ i with yi = −1 , (1.5)

which can be rewritten as

yi(⟨w, xi⟩+ b) ≥ 1 ∀ i = 1, . . . , n . (1.6)

2In this case ‘separable’ means that both classes of the data can be separated and has
nothing to do with the mathematical definition of a separable space as on p. 110.
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8 1.2. History of Support Vector Machines

Since the hyperplane (1.3) separates the positive from the negative samples
without error, it is called the separating hyperplane. The parameter w is the
normal to the hyperplane and b/∥w∥2 is the perpendicular distance from
the hyperplane to the origin. The geometrical margin γg of the separating
hyperplane will be defined as the distance from the closest vector to the
hyperplane (Vapnik, 2000, p. 131). Let us call d+ the shortest distance from
the separating hyperplane to a positive point, and d− the distance to the
closest negative point.

margin γg

H0

H1

H2

Figure 1.1: A linear hyperplane H0 in R2, separating the two classes. The
decision boundaries are H1 and H2, the geometrical margin is shown in red
and is equal on both sides.

The GPA will then search for the perfectly separating hyperplane (wD, bD)
that has maximal geometrical margin. This hyperplane will be called the
optimal hyperplane or maximal margin hyperplane. Once this hyperplane
is found, the resulting decision function is defined by

fD(x) := sign(⟨wD, x⟩+ bD) ∀x ∈ Rd ,

which means that fD will assign positive labels to one affine half-space and
negative labels to the other.
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This decision function will be found by solving a quadratic problem. Let
us therefore take a look at the margin γg, which needs to be maximized.
The points for which the equality in (1.4) holds, will lie on the hyperplane

H1 : ⟨w, xi⟩+ b = +1 .

The points satisfying equation (1.5), lie on

H2 : ⟨w, xi⟩+ b = −1 .

The perpendicular distance of H1 to the origin is |1− b|/∥w∥2, that of H2

is |1 + b|/∥w∥2. Therefore, using that H0, H1, and H2 are parallel since
their normals are the same, we see that d+ = d− = 1/∥w∥2 and thus the
geometrical margin γg = 1/∥w∥2. This implies that maximizing this margin
will be equivalent to minimizing the norm ∥w∥22 subject to (1.6).

Mathematically, this gives the following optimization problem:

minimize
1

2
⟨w,w⟩ over w ∈ Rd, b ∈ R

subject to yi(⟨w, xi⟩+ b) ≥ 1 , i = 1, . . . , n , (1.7)

which forces the hyperplane to make no classification errors on D.

The optimization problem (1.7) will be solved using the Lagrangian ap-
proach, as described in Subsection A.4.3. There are two reasons for doing
so. First of all, the constraints in (1.7) will be replaced by constraints on the
Lagrange multipliers, and it is much easier to work with these. Secondly,
the training data will only appear in the form of inner products between
vectors, which will allow us to later on generalize this algorithm to the
non-linear case via kernels.

By applying Lagrangian theory to our problem, we obtain the following
primal Lagrangian:

LP (w, b, α) =
1

2
⟨w,w⟩ −

n∑
i=1

αi

(
yi(⟨w, xi⟩+ b)− 1

)
(1.8)

with α = (α1, . . . , αn) the vector of the positive Lagrange multipliers.

Since the SVM problem is a convex problem with linear constraints,
the Karush-Kuhn-Tucker (KKT) conditions are necessary and sufficient
for some wD, bD and α∗ to be an optimal solution to the problem, see
Theorem A.4.9. Thus solving the (primal) problem is equivalent to finding
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a solution to the KKT conditions:

∂LP (w, b, α)

∂w
= w −

n∑
i=1

yiαixi = 0 , (1.9)

∂LP (w, b, α)

∂b
= −

n∑
i=1

yiαi = 0 , (1.10)

yi(⟨w, xi⟩+ b)− 1 ≥ 0 , ∀ i = 1, . . . , n ,

αi ≥ 0 , ∀ i = 1, . . . , n ,

αi

(
yi(⟨w, xi⟩+ b)− 1

)
= 0 , ∀ i = 1, . . . , n . (1.11)

One of the possible approaches to implement these conditions, is the ap-
proach using the dual Lagrangian, with addition of the complementarity
condition(1.11).

Substituting (1.9) and (1.10) in the primal (1.8) produces the dual for-
mulation

LD(w, b, α) =
1

2

n∑
i,j=1

yiyjαiαj⟨xi, xj⟩ −
n∑

i,j=1

yiyjαiαj⟨xi, xj⟩+
n∑

i=1

αi

=

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαj⟨xi, xj⟩ ,

and the corresponding optimization problem is then given by

maximize
n∑

i=1

αi −
1

2

n∑
i,j=1

yiyjαiαj⟨xi, xj⟩ over αi ∈ R

subject to
n∑

i=1

yiαi = 0 , (1.12)

αi ≥ 0 , i = 1, . . . , n .

Therefore, training the SVM amounts to maximizing LD with respect to the
Lagrange parameters αi. Each training point xi corresponds to one of the
αi. The xi for which αi ̸= 0 are called the support vectors since only these
points will add a contribution in the expression (1.9) of the vector w, hence
they “support” the hyperplane. Let us define the set of the indices of the
support vectors as sv. The complementarity condition makes it clear that
the support vectors lie either onH1 orH2. Using (1.11), it is easy to see that
only for inputs xi that have yi(⟨w, xi⟩ + b) = 1, the corresponding αi can
be non-zero. All other αi will be equal to zero and thus the corresponding
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data points will not be support vectors. The support vectors are the critical
elements of the data set D, since only these vectors determine the decision
boundaries. Removing all other points from D and repeating the training
process, would give the same separating hyperplane.

Given that the Lagrange parameters α∗ = (α∗
1, . . . , α

∗
n) solve the opti-

mization problem (1.12), the vector

wD =

n∑
i=1

yiα
∗
i xi =

∑
i∈sv

yiα
∗
i xi

will be the normal to the maximal margin hyperplane. However, since bD
does not appear in the dual problem, its value will need to be computed
using the primal constraints:

bD = −maxyi=−1⟨wD, xi⟩+minyi=1⟨wD, xi⟩
2

.

Using this, the maximal margin hyperplane will be given by

0 = ⟨wD, x⟩+ bD =
∑
i∈sv

yiα
∗
i ⟨xi, x⟩+ bD . (1.13)

The complementarity condition can facilitate the computation of bD: take
an index i for which α∗

i ̸= 0, and compute bD using (1.11). Of course it is
numerically safer to do this for all i with α∗

i ̸= 0 and then take the mean
of all found bD.

Also using the complementarity condition, we see that for i ∈ sv holds
that

1 = yi
(
⟨wD, xi⟩+ bD

)
= yi

(∑
j∈sv

yjα
∗
j ⟨xj , xi⟩+ bD

)
,

which, together with (1.10), can be used to calculate the optimal geomet-
rical margin.

∥wD∥22 = ⟨wD, wD⟩ =
n∑

i,j=1

⟨yiα∗
i xi, yjα

∗
jxj⟩

=
∑
i∈sv

yiα
∗
i

∑
j∈sv

yjα
∗
j ⟨xi, xj⟩

=
∑
i∈sv

α∗
i (1− yibD) =

∑
i∈sv

α∗
i .

Therefore, γg = 1/∥wD∥2 =
(∑

i∈sv α
∗
i

)−1/2
.

There are however two major issues with the setup of the GPA:
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i) The first problem is that we use a linear hyperplane to separate the
data. However, a linear decision function may not always be suitable
for the classification we wish to perform. This is, for example, the
case if the set D is not linearly separable.

ii) The second issue has to do with noise. Due to the effect of noise on our
data, we might actually allow that some points will be misclassified in
order to avoid overfitting. Especially for the case where the dimension
d is greater than the sample size n overfitting can form a serious
problem.

1.2.2 The Hard Margin SVM

In order to extend the problem to the case of a non-linear decision function,
Boser et al. (1992) showed that a rather old trick (Aizerman et al., 1964)
can be used to accomplish this feat in a pretty easy way.

Note that the data xi only appear in the form of inner products in the
optimization problem. The idea is to map the input data (x1, . . . , xn) into
some (possibly infinite-dimensional) Hilbert space H0, called the feature
space, by a typically non-linear map Φ : X → H0, which is called the
feature map, such that the mapped data Φ(xi) can be separated in the
feature space H0. Next, the GPA will be applied to the mapped data set
((Φ(x1), y1), . . . , (Φ(xn), yn)). The training algorithm will then depend on
the data through inner products in the feature space H0, which are of
the form ⟨Φ(xi),Φ(xj)⟩, which is exactly the definition of the kernel k, see
Definition 1.5.1, and therefore we can work with only the kernel k in the
training algorithm, without explicitly knowing the function Φ. For more
details on the kernel, the feature space and the feature map, we refer to
Section 1.5. Although w will now live in the feature space H0 and no longer
in Rd, and calculating w requires knowledge of the feature map due to its
form

w =
∑
i∈sv

yiα
∗
iΦ(xi) ,

the separating hyperplane (and thus also the decision function) can be
calculated using only the kernel by adapting the expression (1.13):

0 =
∑
i∈sv

yiα
∗
i ⟨Φ(xi),Φ(x)⟩+ bD

=
∑
i∈sv

yiα
∗
i k(xi, x) + bD .

An Introduction to Support Vector Machines



1.2. History of Support Vector Machines 13

This method was originally called the maximal margin classifier and
later also the hard margin SVM. Given that there are no contradictory
data in D, i.e., there are no (xi, yi) and (xj , yj) with xi = xj and yi ̸= yj ,
and by choosing a suitable feature map Φ, see Steinwart and Christmann
(2008b, Sect. 4.6), then for every training data set this method will be able
to perfectly separate the training data by a hyperplane in the feature space.

There is however a price to pay for this high flexibility: the hyperplane
now lies in a high- or even infinite-dimensional space, and hence the problem
of overfitting becomes even more prominent.

1.2.3 The Soft Margin SVM

ξi

H0

H1

H2

Figure 1.2: Interpretation of the slack variable in the case where X = H0 =
R2 and a linear kernel k(x, x′) = ⟨x, x′⟩ is used.

The problem of overfitting was solved by the introduction of the soft mar-
gin SVM by Cortes and Vapnik (1995). The idea of the soft margin SVM
is to relax the constraints in (1.7) by introducing positive slack variables
ξi, i = 1, . . . , n. These slack variables will allow for the margin constraints
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to be violated, but only when necessary, i.e., they will add an extra cost to
the primal objective function. Combining this with the idea of the feature
map then gives:

minimize
1

2
⟨w,w⟩+ C

n∑
i=1

ξi over w ∈ H0, b ∈ R, ξ ∈ Rn

subject to yi(⟨w,Φ(xi)⟩+ b) ≥ 1− ξi , i = 1, . . . , n

ξi ≥ 0 , i = 1, . . . , n , (1.14)

where C > 0 is a free, but fixed constant that is used to balance the weight
accorded to both parts of the objective function and ξ = (ξ1, . . . , ξn) is the
vector of slack variables. The larger the value of C, the more the training
errors are penalized. In practice, the value of C will be found by using a
grid search or cross-validation technique. For a classification error to be
made, the value of ξi has to surpass one – since this means crossing the
separating hyperplane – and thus

∑n
i=1 ξi can be seen as an upper bound

on the number of training errors. Minimizing this upper bound will assure
us to make a minimal number of training errors.

This optimization problem is also called the 1-norm soft margin, since
the slack variables are introduced in the objective function using the norm
∥ξ∥1. It is of course also possible to use some other k-norm, with k > 0. For
example, the 2-norm soft margin algorithm will have an objective function
1
2⟨w,w⟩+ C

∑n
i=1 ξ

2
i and is also easy to use.

Clearly this problem is still a convex programming problem (and for both
the 1-norm and 2-norm soft margin SVM it is even quadratic) with linear
constraints, and thus the primal-dual approach can be applied to it. As
will become clear, the choice of the 1-norm soft margin algorithm has the
advantage that neither the ξi nor their associated Lagrange multipliers will
appear in the dual problem.

Putting the optimization problem (1.14) in the primal Lagrangian form
gives us

LP (w, b, ξ, α, β)=
1

2
⟨w,w⟩+C

n∑
i=1

ξi

−
n∑

i=1

αi

(
yi(⟨w,Φ(xi)⟩+b)−1+ξi

)
−

n∑
i=1

βiξi (1.15)

with α = (α1, . . . , αn) and β = (β1, . . . , βn) the vectors of the positive
Lagrange multipliers. The dual formulation is found by differentiating with
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respect to w, b and ξ and imposing stationarity,

∂LP (w, b, ξ, α, β)

∂w
= w −

n∑
i=1

yiαiΦ(xi) = 0 , (1.16)

∂LP (w, b, ξ, α, β)

∂b
= −

n∑
i=1

yiαi = 0 , (1.17)

∂LP (w, b, ξ, α, β)

∂ξi
= C − αi − βi = 0 , i = 1, . . . , n , (1.18)

and then plugging these expressions into the primal Lagrangian. The KKT
conditions are the equations (1.16)-(1.18) completed with

yi(⟨w,Φ(xi)⟩+ b)− 1 + ξi ≥ 0

ξi ≥ 0

αi ≥ 0

βi ≥ 0

αi

(
yi(⟨w,Φ(xi)⟩+ b)− 1 + ξi

)
= 0 (1.19)

βiξi = 0 (1.20)

Inserting (1.16)-(1.18) into the primal (1.15) gives us as dual

LD(w, b, ξ, α, β) =
1

2

n∑
i,j=1

yiyjαiαj⟨Φ(xi),Φ(xj)⟩+ C
n∑

i=1

ξi

−
n∑

i,j=1

yiyjαiαj⟨Φ(xi),Φ(xj)⟩+
n∑

i=1

αi

−
n∑

i=1

αiξi −
n∑

i=1

βiξi

=

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαj⟨Φ(xi),Φ(xj)⟩

+

n∑
i=1

(C − αi − βi)ξi

=
n∑

i=1

αi −
1

2

n∑
i,j=1

yiyjαiαj⟨Φ(xi),Φ(xj)⟩ ,

which is identical to the dual of the maximal margin algorithm (or the GPA
with Φ(xi) instead of xi). The only difference occurs in the constraints.
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C − αi − βi = 0, together with βi ≥ 0 enforces that 0 ≤ αi ≤ C, thus it
provides an upper bound for the αi. Keeping the definition of the kernel k
in mind, the optimization problem becomes

maximize

n∑
i=1

αi −
1

2

n∑
i,j=1

yiyjαiαjk(xi, xj) over αi ∈ R

subject to

n∑
i=1

yiαi = 0 , (1.21)

0 ≤ αi ≤ C , i = 1, . . . , n .

Given that α∗ = (α∗
1, . . . , α

∗
n) is a solution of the dual program (1.21),

the normal to the separating hyperplane will be

wD =
∑
i∈sv

yiα
∗
iΦ(xi) .

The complementarity condition (1.20) combined with (1.18) shows that
if ξi ̸= 0 then βi = C − α∗

i = 0 and thus α∗
i = C. Also, if α∗

i < C, then
ξi = 0. This allows us to calculate the value of bD by taking any training
point for which 0 < α∗

i < C and ξi = 0, and compute bD via (1.19). As
before, it will be safer to take the average over all such training points.

The condition (1.19) shows that the training points for which αi ̸= 0
will lie between the boundaries determined by the hyperplanes H1 and H2.
Their distance from the separating hyperplane is thus less than 1/ ∥w∥ and
these points are called 1/ ∥w∥-margin errors. If 0 < αi < C, then they lie
at exactly the target distance 1/ ∥w∥ from the separating hyperplane and
thus on either H1 or H2.

If we define f(x) :=
∑n

i=1 yiα
∗
i k(x, xi) + bD, then the decision function

will be fD(x) = sign(f(x)). We also see that the choice of bD implies,
through (1.19), that yf(x) = 1 for the training points with 0 < α∗

i < C,
which shows again that these points lie on H1 or H2.

Since ∥wD∥2 =
∑

i,j∈sv yiyjα
∗
iα

∗
jk(xi, xj), the geometrical margin will be

γg =
(∑

i,j∈sv yiyjα
∗
iα

∗
jk(xi, xj)

)−1/2
.

1.3 Empirical Risk Minimization and
Support Vector Machines

In this section, we will motivate why support vector machines are defined
the way they are, and describe the main goals of SVMs. The precise defi-
nition of a support vector machine is given in Definition 1.3.1. We refer to
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Vapnik (1998), Cristianini and Shawe-Taylor (2000), Schölkopf and Smola
(2002), and Steinwart and Christmann (2008b) for textbooks on SVMs and
related topics.

As already stated in Section 1.1, the predictor f : X → Y will assign
to each risk vector x a prediction f(x) which, we hope, will be a good ap-
proximation of the observed output y. To formalize the aim of estimating
this predictor function f , we call a function L : X ×Y ×R → [0,∞) a loss
function (or just loss) if L is measurable. Some examples and properties
of loss functions will be given in Section 1.4. The loss function assesses the
quality of a prediction f(x) for an observed output value y by L(x, y, f(x)),
i.e., it measures the “closeness” between y and f(x). We follow the conven-
tion that the smaller L(x, y, f(x)) is the better the prediction is. We will
also assume that L(x, y, y) = 0 for all y ∈ Y, because the loss is zero, if the
forecast f(x) equals the observed value y.

Of course, in order to assess the quality of a predictor f it is not sufficient
to only know the value L(x, y, f(x)) for a particular choice of (x, y), but
in fact we need to quantify how small the function (x, y) 7→ L(x, y, f(x))
is. There are various ways to do this, but a common choice in statistical
learning theory is to consider the expected loss of f , also called the L-risk,
defined by

RL,P(f) := EPL(X,Y, f(X)) .

The learning goal is then to find a decision function fD that (approxi-
mately) achieves the smallest possible risk, i.e., the Bayes risk

R∗
L,P := inf{RL,P(f) ; f : X → R measurable} . (1.22)

However, since the distribution P is unknown, the risk RL,P(f) is also
unknown and consequently we cannot compute fD. To resolve this problem,
we can replace P by the empirical distribution

D =
1

n

n∑
i=1

δ(xi,yi)

corresponding to the data set D. Here δ(xi,yi) denotes the Dirac distribution
in (xi, yi). This way we obtain the empirical L-risk

RL,D(f) :=
1

n

n∑
i=1

L(xi, yi, f(xi)) .
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Although RL,D(f) can be considered as an approximation of RL,P(f)
for each single f , solving inff :X→RRL,D(f) will in general not result in a
good approximate minimizer of RL,P( · ). This is partially due to the effect
of overfitting. Overfitting means that the learning method will model the
data D too closely and thus will have a poor performance on future data
points. The algorithm will construct a very wiggly function that will give
good approximations for all observed data in D, but will hence perform
quite bad for new and previously unseen inputs.

One way to reduce the danger of overfitting is to not consider all measur-
able functions f : X → R but to choose a smaller, but still reasonably rich,
class F of functions that is assumed to contain a good approximation of
the solution of (1.22). Instead of then looking for the infimum3 of RL,D( · )
over all measurable functions, one only searches over F , i.e., one solves

inf
f∈F

RL,D(f) . (1.23)

This approach, called empirical risk minimization (ERM), often tends to
produce approximate solutions of

R∗
L,P,F := inf

f∈F
RL,P(f) . (1.24)

There are, however, two serious issues with ERM. The first one is that our
knowledge of the distribution P is often not good enough to identify a set
F such that a solution of (1.24) is a reasonably good approximation of a
solution of (1.22). Or, the other way around, we usually cannot guarantee
that the model error R∗

L,P,F −R∗
L,P is sufficiently small. The second prob-

lem is that solving (1.23) might be computationally infeasible.

A first step of SVMs to make the optimization problem computationally
feasible is to use a convex loss function, because it is easy to show that
then the risk functional f 7→ RL,P(f) is convex. If we further assume that
the set F of functions over which we will have to optimize is also convex,
the learning method defined by (1.23) will become a convex optimization
problem.

A second step of SVMs towards computational feasibility is to consider
only a very specific set of functions, namely the reproducing kernel Hilbert
space (RKHS) H of some measurable kernel k : X×X → R. The kernel can
be used to describe all functions contained inH. Moreover, the value k(x, x′)

3Which, in practice, will most often be a minimum.
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can often be interpreted as a measure of similarity or dissimilarity between
the two vectors x and x′. For more details on the kernel and reproducing
kernel Hilbert spaces, we refer to Section 1.5.

A third step of SVMs towards computational feasibility – and also to
uniqueness of the SVM – is to use a special Hilbert norm regularization
term which we will describe now. It is obvious that the sum of a convex
function and of a strictly convex function over a convex set is strictly convex.
Let us fix an RKHS H over the input space X and denote the norm in H
by ∥ · ∥H. The regularization term λ ∥f∥2H also serves to reduce the danger
of overfitting, see e.g., Vapnik (1998) and Schölkopf and Smola (2002). It
will penalize rather complex functions f which model the output values in
the training set D too closely, since these functions will have a large RKHS
norm. The term

Rreg
L,P,λ(f) := RL,P(f) + λ ∥f∥2H

is called the regularized L-risk, the constant λ is the regularization param-
eter. The regularized empirical L-risk is given by

Rreg
L,D,λ(f) := RL,D(f) + λ ∥f∥2H .

Definition 1.3.1. Let X be the input space, Y ⊂ R be the output space,
L : X × Y × R → R be a loss function, H be a reproducing kernel Hilbert
space of functions from X to R, and λ > 0 be a constant. For a probability
distribution P on X × Y, a support vector machine is defined as the
minimizer, if it exists,

fL,P,λ := arg inf
f∈H

RL,P(f) + λ ∥f∥2H . (1.25)

The empirical SVM will be denoted by

fL,D,λ := arg inf
f∈H

RL,D(f) + λ ∥f∥2H

= arg inf
f∈H

1

n

n∑
i=1

L(xi, yi, f(xi)) + λ ∥f∥2H .

Conditions for the existence and uniqueness of the SVM fL,P,λ will be
stated in Section 1.6.

If we recall that anM -estimator is some estimator Tn := Tn(X1, . . . , Xn)
defined as

argmin
∑

ρ(xi;Tn) ,

with ρ an arbitrary function on X × R, see, e.g., Huber (1981), then the
above definition of fL,D,λ shows us that SVMs can be seen asM -estimators
with a Hilbert norm regularization term for functions.
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1.4 Loss Functions and the Risk

As seen in the previous section, the support vector machine uses a loss
function to measure the similarity between the observed output yi and the
predicted output f(xi) for a given risk vector xi. This similarity will be
measured by looking at the L-risk associated with the loss function L. In
this section we will take a closer look at the loss and the risk, and state
some properties of the L-risk.

1.4.1 Definitions

We will start by defining the loss function and the L-risk, and give some
examples of commonly used losses. We will assume that, unless otherwise
stated, all subsets of Rd are equipped with their Borel σ-algebra, and that
products of measurable4 spaces are equipped with the corresponding prod-
uct σ-algebra.

Definition 1.4.1. Let (X ,A) be a measurable space, and Y be a closed
subset of R. A function L : X ×Y ×R → [0,∞) is called a loss function,
or in short a loss, if it is measurable.

The value L(x, y, f(x)) gives the cost or loss incurred for predicting y
by f(x). Therefore, the smaller this value is, the better the prediction will
be. In the same reasoning, it is logical to assume that L(x, y, y) = 0 for all
y ∈ Y, since in this case the forecast f(x) equals the observed value y and
hence there is no loss.

Recall from the previous section that it was our goal to obtain a small
average loss for future, so far unseen, observations. Therefore we need the
following definition.

Definition 1.4.2. Let L : X × Y × R → [0,∞) be a loss function, and P
be a probability measure on X × Y. For a measurable function f : X → R,
the L-risk is then defined as

RL,P(f) := EPL(X,Y, f(X)) =

∫
X×Y

L(x, y, f(x))dP(x, y) .

The Bayes risk with respect to P and L is given by

R∗
L,P := inf{RL,P(f) ; f : X → R measurable} ,

4If not specified, we mean Borel-measurable.
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and the measurable function f∗L,P : X → R for which RL,P(f
∗
L,P) = R∗

L,P is
the Bayes decision function.

We call a loss function L convex, continuous, Lipschitz continuous, or
differentiable, if L has this property with respect to its third argument.
E.g., L is Lipschitz continuous if there exists a constant |L|1 ∈ (0,∞),
called the Lipschitz constant, such that, for all (x, y) ∈ X × Y and all
t1, t2 ∈ R,

|L(x, y, t1)− L(x, y, t2)| ≤ |L|1 |t1 − t2|.

If L : X × Y × R → [0,∞) only depends on its last two arguments,
i.e., if there exists a measurable function L̆ : Y × R → [0,∞) such that
L(x, y, t) = L̆(y, t) for all (x, y, t) ∈ X ×Y×R, then L is called a supervised
loss.

A supervised loss L : Y × R → [0,∞) is called margin-based, if there
exists a representing function φ : R → [0,∞) such that

L(y, t) = φ(yt)

for all (y, t) ∈ Y ×R. A loss function L : Y ×R → [0,∞) is called distance-
based , if there exists a representing function ψ : R → [0,∞) with

L(y, t) = ψ(y − t)

for all (y, t) ∈ Y ×R and ψ(0) = 0. It is called symmetric if ψ(r) = ψ(−r)
for all r ∈ R. As will become clear, most losses for classification are margin-
based, whereas most loss functions often used in regression are distance-
based.

A loss function L is called a Nemitski loss if there exists a measurable
function b : X ×Y → [0,∞) and an increasing function h : [0,∞) → [0,∞)
such that

L(x, y, t) ≤ b(x, y) + h(|t|) , (x, y, t) ∈ X × Y ×R .

If additionally b ∈ L1(P), we say that L is a P-integrable Nemitski loss.

Traditionally, research in non-parametric regression is often based on the
least squares loss

LLS(x, y, t) := (y − t)2 .

The least squares loss function is convex in t, is useful to estimate the
conditional mean function, and is advantageous from a numerical point of
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view, but LLS is not Lipschitz continuous. From a practical point of view
there are situations in which a different loss function is more appropriate.

In some situations one is actually not interested in modeling the condi-
tional mean, but in fitting a conditional quantile function instead. For this
purpose the pinball loss function

Lτ−pin(x, y, t) :=

{
(τ − 1)(y − t) , if y − t < 0

τ(y − t) , if y − t ≥ 0
(1.26)

is used, where τ ∈ (0, 1) specifies the desired conditional quantile, see
Koenker and Bassett (1978) and Koenker (2005) for parametric quantile
regression and Takeuchi et al. (2006) for non-parametric quantile regres-
sion. The pinball loss is, for example, often used in econometrics.

If the goal is to estimate the conditional median function, then the ϵ-
insensitive loss given by

Lϵ(x, y, t) := max{|y − t| − ϵ, 0} ,

ϵ ∈ (0,∞), promises algorithmic advantages in terms of sparseness com-
pared to the L1-loss function LL1(y, t) = |y − t|, see Vapnik (1998) and
Schölkopf and Smola (2002).

And finally, if the conditional distribution of Y given X = x is known
to be symmetric, basically all distance-based loss functions of the form
L(y, t) = ψ(r) with r = y − t, where ψ : R → [0,∞) is convex, symmetric
and has its only minimum at 0, can be used to estimate the conditional
mean, see Steinwart (2007). An example is the logistic loss for regression
defined as

Lr−log(x, y, t) := − ln
4 exp(y − t)

(1 + exp(y − t))2
(1.27)

= − ln
(
4Λ(y − t)(1− Λ(y − t))

)
,

with Λ(y − t) = 1/
(
1 + e−(y−t)

)
. If one fears outliers in y-direction, then a

less steep loss function such as Huber’s loss function given by

Lc−Huber(x, y, t) :=

{
0.5(y − t)2 if |y − t| ≤ c

c|y − t| − c2/2 if |y − t| > c

for some c ∈ (0,∞), may be more suitable, see, e.g., Huber (1964) and
Christmann and Steinwart (2007).

Since the focus of this work is mainly on regression, we have concentrated
the above reasoning on loss functions for (quantile) regression. Plots of these
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Figure 1.3: The plot shows some commonly used loss functions for regres-
sion: ϵ-insensitive loss with ϵ = 0.5, pinball loss with τ = 0.7, Huber loss
with α = 0.5, and logistic loss.

loss functions can be seen in Figure 1.3. However, for completeness, we will
also define two losses that are commonly used in classification problems.
These are the the hinge loss

Lhinge(x, y, t) := max{0, 1− yt}

and the logistic loss for classification

Lc−log(x, y, t) := ln(1 + exp(−yt)) (1.28)

for classification, for which (x, y, t) ∈ X × {−1,+1} ×R.
Notice that all six loss functions mentioned above (not counting the least

squares loss and the L1-loss) are convex and Lipschitz continuous super-
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vised losses, but only the logistic losses are twice continuously Fréchet-
differentiable.5 Note that both the ϵ-insensitive loss and the pinball loss are
not even once Fréchet-differentiable. Clearly, the hinge loss and the logistic
loss for classification are margin-based losses, whereas the other four are
distance-based. All of the mentioned distance-based losses, except for the
pinball loss with τ ̸= 0.5, are symmetric.

The reason to consider only SVMs based on a convex loss function is that
then they have, under weak assumptions, at least the following four advan-
tageous properties, see e.g., Vapnik (1998), Cristianini and Shawe-Taylor
(2000), Schölkopf and Smola (2002), and Steinwart and Christmann (2008b)
for details.

i) Firstly, the objective function in (1.25) becomes convex in f and a
support vector machine fL,D,λ exists, is unique, and depends contin-
uously on the data points in basically all situations of interest (see
Theorem 1.6.3). The SVM is therefore the solution of a well-posed
convex optimization problem in Hadamard’s sense. 6 Moreover, this
minimizer is of the form

fL,D,λ =
n∑

i=1

αik(xi, · ) , (1.29)

where k is the kernel corresponding to the RKHS H and the αi ∈ R,
i = 1 . . . n, are suitable coefficients. We see that the minimizer fL,D,λ

is thus a weighted sum of (at most) n kernel functions k(xi, · ), where
the weights αi are data-dependent, cfr. the historical discussion of
SVMs in Section 1.2. A consequence of (1.29) is that the SVM fL,D,λ

is contained in a finite dimensional space, even if the space H itself
is considerably larger. This observation makes it possible to consider
even infinite dimensional spaces H such as the one corresponding to
the popular Gaussian radial basis function (RBF) kernel defined in
(1.30).

ii) Furthermore, these SVMs are under very weak assumptions L-risk
consistent, i.e., for suitable null-sequences (λn) with λn > 0 we have

RL,P(fL,D,λn) → R∗
L,P , n→ ∞ ,

in probability.

5See Appendix A.3.3 for the definition of Fréchet-derivatives.
6See the definition on p. 128.
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iii) Next, support vector machines based on a convex loss function have
good statistical robustness properties, if k is continuous and bounded
in the sense of ∥k∥∞ := sup{

√
k(x, x) : x ∈ X} < ∞ and if L is

Lipschitz continuous, see Christmann and Steinwart (2004, 2007). In
a nutshell, statistical robustness implies that the SVM fL,P,λ only
varies in a smooth and bounded manner if P changes slightly in the
set M1 of all probability measures on X × Y.

iv) And last but not least, there exist efficient numerical algorithms to
determine the vector of the weights7 α = (α1, . . . , αn) in the empirical
representation (1.29) and therefore also the SVM fL,D,λ even for large
and high-dimensional data sets D. From a numerical point of view,
the vector α is usually computed as a solution of the convex dual
problem derived from a Lagrange approach, see Section 1.2.

If the loss function is not convex, the SVM may in general be not unique,
and the optimization problem might encounter computational difficulties.
It needs to be remarked that recently non-convex functions or non-convex
optimization problems have also been considered, see, e.g., Wu and Liu
(2007), Guillory et al. (2009), Masnadi-Shirazi and Vasconcelos (2009) or
Ding and Vishwanathan (2011). It should also be noted that, in fact, we
do not really need the convexity of the loss function itself, but rather the
fact that the risk is convex for all distributions P, because in this case we
obtain (by adding the strictly convex regularization term) a strictly convex
objective function. However, to the extent of our knowledge, there exist no
non-convex losses for regression such that the risk is convex for all P.

Often, the Lipschitz continuity of the loss function L is also needed since
this will be a condition for most robustness and consistency results. Clearly,
the six loss functions defined earlier are all Lipschitz continuous. Another
nice feat is that Lipschitz continuous loss functions are trivially Nemitski
loss functions for all probability measures on X × Y, because

L(x, y, t) = L(x, y, 0) + L(x, y, t)− L(x, y, 0)

≤ b(x, y) + |L|1 |t| ,

where b(x, y) := L(x, y, 0) for (x, y, t) ∈ X × Y × R and |L|1 ∈ (0,∞)
denotes the Lipschitz constant of L. Furthermore, Lipschitz continuous L

7The vector α is in general not unique. This is easy to see from (1.29) for the case
that two data points are identical, say (xi, yi) = (xj , yj) for some pair of indices i ̸= j.
However, the SVM fL,D,λ exists and is unique under the very weak assumptions from
Assumption 1.7.1.
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are P-integrable if RL,P(0) is finite, see Steinwart and Christmann (2008b,
p. 31).

As a final remark, we would like to mention that, although the least
squares loss is not Lipschitz continuous, there has been extended research
on the least squares support vector machine (LS-SVM), see Suykens et al.
(2002a) and the references therein. However, sparseness is lost in the LS-
SVM case and this method is not robust. To solve these shortcomings, a
weighted LS-SVM has been proposed (Suykens et al., 2002b).

1.4.2 Properties of the Loss and the Risk

In this subsection, we will give some necessary properties of the loss and
its associated risk. The first lemma, see, e.g., Steinwart and Christmann
(2008b, Lemma 2.13) shows that the use of a convex loss function implies
that the risk is also convex.

Lemma 1.4.3 (Convexity of the risks). Let L : X × Y × R → [0,∞) be
a (strictly) convex loss, and P be a probability measure on X × Y. Then
RL,P : L0(X ) → [0,∞] is (strictly) convex.

It can be shown that, given some minor assumptions (e.g., the loss needs
to be Lipschitz continuous), the continuity of the loss function will assure
the continuity of the risk. A modified version of this lemma is given in
Lemma 1.7.8.

The next lemma (Steinwart and Christmann, 2008b, Lemma 2.19) relates
the Lipschitz continuity of L to the Lipschitz continuity of its risk.

Lemma 1.4.4 (Lipschitz continuity of the risks). Let L : X × Y × R →
[0,∞) be a Lipschitz continuous loss, and P be a probability measure on
X × Y. Then we have, for all f, g ∈ L∞(PX),

|RL,P(f)−RL,P(g)| ≤ |L|1 · ∥f − g∥L1(PX) .

1.5 Kernels and the Reproducing
Kernel Hilbert Space

In this section, we examine the kernel and the reproducing kernel Hilbert
space more closely. As we have seen in Subsection 1.2.2, the kernel and the
associated feature map allowed us to obtain non-linear decision functions
by using the linear SVM approach by mapping the original input data in a
higher-dimensional feature space H. An example can be seen in Figure 1.4,
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where the original two-dimensional data are mapped in a three-dimensional
space so that the regression can be done by fitting a hyperplane in feature
space instead of a (possibly more difficult) non-linear function in the original
space.

Figure 1.4: Mapping the original data to a higher dimensional space allows
for regression by a hyperplane instead of a non-linear function.

We will start by giving a formal definition of the kernel and the feature
map, we will then describe the reproducing kernel Hilbert space, and finally
we will state some needed properties of kernels and RKHSs.

1.5.1 An Overview on Kernels

We will first introduce the kernel, the feature map and the feature space and
give some examples of commonly used kernels. We will only consider real-
valued kernels, but for completeness we should mention that most of the
theory described below will also be applicable to complex-valued kernels.
Since we only work with R-valued kernels, the Hilbert spaces we consider
will be R-Hilbert spaces, and we will not explicitly state this further on.

Definition 1.5.1. Let X be a non-empty set and k : X ×X → R. We call
k a kernel on X if there exists a Hilbert space H0 and a map Φ : X → H0

such that for all x, x′ ∈ X we have

k(x, x′) = ⟨Φ(x),Φ(x′)⟩ .

In this case, Φ is called the feature map and H0 the feature space of k.
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For a given kernel, neither the feature map, nor the feature space are
uniquely defined. To obtain this uniqueness, we will introduce the repro-
ducing kernel Hilbert space in the next subsection.

Before we give some examples of commonly used kernels, we will first
discuss how we can create kernels from scratch (Steinwart and Christmann,
2008b, Chapter 4.1).

Lemma 1.5.2 (Construction of kernels). Let X , X̃ , X1, X2 be non-empty
sets, α ≥ 0, k, k† be kernels on X , k1 be a kernel on X1, k2 be a kernel on
X2, A : X̃ → X be a map, and fn : X → R, n ∈ N, be functions such that
(fn(x)) ∈ ℓ2 for all x ∈ X . Then:

i) The function k̃ : X × X → R given by

k̃(x, x′) :=

∞∑
i=1

fn(x)fn(x
′) , x, x′ ∈ X ,

defines a kernel on X .

ii) (Restriction of kernels) The function k̃ : X × X → R defined by
k̃ := k(A(x), A(x′)), x, x′ ∈ X , is a kernel on X̃ . In particular, if
X̃ ⊂ X , then the restriction k|X̃×X̃ is a kernel on X̃ .

iii) Both αk and k + k† are also kernels on X .

iv) (Product of kernels) k1 · k2 is a kernel on X1 × X2. In particular, if
X1 = X2 = X , then k̃(x, x′) := k1(x, x

′)k2(x, x
′) defines a kernel on

X .

Remark that, in general, differences of kernels are not kernels. With
these rules,and in some cases with the help of Taylor series, it is possible
to construct the following kernels.

Let m ≥ 0 be an integer and c ≥ 0 be a real number, and take x, x′ ∈ X .
Some kernels that are often used in practice are the polynomial kernel
defined as

k(x, x′) := (⟨x, x′⟩+ c)m ,

with as special case the linear kernel (m = 1 and c = 0), the exponential
kernel that is given as k(x, x′) := exp(⟨x, x′⟩), and the Gaussian radial basis
function (RBF) kernel which is defined as

kRBF(x, x
′) = exp(−γ−2 ∥x− x′∥2) , (1.30)
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where γ is a positive constant, called the width.

Recall that a function k : X ×X → R is called positive definite if, for all
n ∈ N, α1, . . . , αn ∈ R, and all x1, . . . , xn ∈ X , holds that

n∑
i=1

n∑
j=1

αiαjk(xj , xi) ≥ 0 .

If for mutually distinct x1, . . . , xn ∈ X the equality only holds if α1 = . . . =
αn = 0, then k is called strictly positive definite. k is said to be symmetric
if k(x, x′) = k(x′, x) for all x, x′ ∈ X .

The following well-known result shows that symmetry and positive defi-
niteness are sufficient and necessary conditions for kernels, see, for instance,
Steinwart and Christmann (2008b, Theorem 4.16).

Theorem 1.5.3 (Symmetric, positive definite functions are kernels). A
function k : X × X → R is a kernel if and only if it is symmetric and
positive definite.

1.5.2 The Reproducing Kernel Hilbert Space

We will now introduce reproducing kernel Hilbert spaces and relate them
to kernels. It can be shown that the RKHS is in a way the smallest feature
space of the kernel and can thus be seen as a canonical feature space.

Definition 1.5.4. Let X ̸= ∅ and H a Hilbert space consisting of functions
mapping from X into R.

i) a function k : X × X → R is called a reproducing kernel of H if,
for all x ∈ X , k( · , x) ∈ H and the reproducing property

f(x) = ⟨f, k( · , x)⟩H (1.31)

holds for all f ∈ H and all x ∈ X .

ii) The space H is called a reproducing kernel Hilbert space (RKHS)
over X if it possesses a reproducing kernel.

The following theorem (Yosida, 1974, Theorem 1, p. 96) is based on
results from Aronszajn (1950) and Bergman (1950) and tells us a bit more
about the existence of reproducing kernels.
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Theorem 1.5.5 (Existence of reproducing kernel). Let X be a set and H0

be a Hilbert space of functions over X . H0 then has a reproducing kernel
k if and only if there exists, for all x ∈ X , a positive constant Cx which
depends on x, such that for all f ∈ H0

|f(x)| ≤ Cx ∥f∥H0
.

Moreover, this reproducing kernel k is unique.

In order to have the existence of a reproducing kernel, all functions in
the Hilbert space thus have to be pointwise bounded by a multiple of
their norm. Another way to state this, is to say that the Dirac functional
δx : H → R defined as δx(f) := f(x), f ∈ H, has to be continuous.

It can be shown, see, e.g., Steinwart and Christmann (2008b, Lemma 4.19),
that reproducing kernels are kernels in the sense of Definition 1.5.1.

Lemma 1.5.6. Let H be a function Hilbert space over X that has a repro-
ducing kernel k. Then H is an RKHS and H is also a feature space of k.
In this case the feature map Φ : X → H is given by

Φ(x) := k( · , x) , x ∈ X ,

and is called the canonical feature map.

From the above lemma follows that every Hilbert function space with a
reproducing kernel is an RKHS. Because of (1.31), the kernel can be used
to describe all functions contained in H. Moreover, the value k(x, x′) can
often be interpreted as a measure of similarity or dissimilarity between the
two risk vectors x and x′. Due to the above, the reproducing property can
be also written as, for all f ∈ H and all x ∈ X ,

f(x) = ⟨f,Φ(x)⟩H .

Furthermore, every RKHS is uniquely defined by its kernel k and vice
versa. From Theorem 1.5.5 we already know that the reproducing kernel of
a given Hilbert space is unique, Steinwart and Christmann (2008b, Theo-
rem 4.21) show us the uniqueness of the RKHS for a given kernel k.

Theorem 1.5.7 (Every kernel has a unique RKHS). Let X be a non-
empty set and k be a kernel over X with feature space H0 and feature map
Φ0 : X → H0. Then

H := {f : X → R | ∃w ∈ H0 with f(x) = ⟨w,Φ0(x)⟩H0 for all x ∈ X}
(1.32)
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equipped with the norm

∥f∥H := inf{∥f∥H0
| ∃w ∈ H0 with f = ⟨w,Φ0( · )⟩H0}

is the only RKHS with k as reproducing kernel. Obviously, both definitions
are independent of the choice of H0 and Φ0. Moreover, the operator V :
H0 → H defined by

V w := ⟨w,Φ0( · )⟩H0 , w ∈ H0 ,

is a metric surjection, this means that V B∗
H0

= B∗
H, where B

∗
H0

and B∗
H

are the open unit balls of respectively H0 and H.

Theorems 1.5.5 and 1.5.7 thus tell us that there exists a one-to-one rela-
tionship between the kernel and the RKHS. The expression (1.32) tells us
that the RKHS associated with a kernel k consists exactly of all possible
functions of the given form, which consequently allows us to determine the
RKHS of a given kernel. Moreover, it also shows that this set of functions
remains unchanged when considering other feature spaces of k. For more
details on reproducing kernels and their RKHSs, we refer the interested
reader to the book by Berlinet and Thomas-Agnan (2004).

To conclude this part, we will take a look at when the RKHS H is dense
in L1(µ) with µ a distribution on X , since this will be a key assumption on
H needed to obtain consistency. There exists a characterization for this fact
that is, unfortunately, often hard to verify, see Steinwart and Christmann
(2008b, Lemma 4.59). Luckily, Steinwart and Christmann (2008b, Theo-
rem 4.63) shows that the denseness assumption for the special case of the
Gaussian RBF kernel with width γ is trivial. Both of these characterizations
are based on results from Steinwart et al. (2006).

Theorem 1.5.8. Let γ > 0, p ∈ [1,∞), and µ be a finite measure on Rd.
Then the RKHS H of the Gaussian RBF kernel kRBF is dense in Lp(µ).

1.5.3 Properties of the RKHS

In this subsection, we will verify that some properties of the kernel, such as
boundedness or measurability, are transferred to the functions of the RKHS.

For k a kernel on X with RKHS H, the Cauchy-Schwarz inequality and
(1.31) show us that

|k(x, x′)|2 = |⟨k( · , x), k( · , x′)⟩H|2 ≤ ∥k( · , x)∥2H
∥∥k( · , x′)∥∥2H

= k(x, x) · k(x′, x′) (1.33)
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for all x, x′ ∈ X . Therefore supx,x′∈X |k(x, x′)| = supx∈X k(x, x), and hence
a kernel k is called bounded, if

∥k∥∞ := sup
x∈X

√
k(x, x) <∞ .

The equation (1.33) also shows that, for Φ : X → H a feature map of k,
∥Φ(x)∥H =

√
k(x, x) for all x ∈ X . Thus Φ is bounded if and only if k is

bounded. Using this equality and the reproducing property, we can obtain
the well-known inequalities

∥f∥∞ ≤ ∥k∥∞ ∥f∥H and ∥Φ(x)∥∞ ≤ ∥k∥∞ ∥Φ(x)∥H ≤ ∥k∥2∞ (1.34)

for f ∈ H and x ∈ X . As an example of a bounded kernel we mention
the Gaussian RBF kernel, a feat that adds to its popularity. Furthermore,
this kernel is universal in the sense of Steinwart (2001), that is, its RKHS
is dense in C(X ) for all compact X ⊂ Rd. Finally, see Theorem 4.63 of
Steinwart and Christmann (2008b), its RKHS is dense in L1(µ) for all prob-
ability measures µ on Rd. The corresponding RKHS of this kernel has in-
finite dimension.

We will need the following results, see, e.g., Steinwart and Christmann
(2008b, Lemma 4.23 and Lemma 4.24), for our proofs. The first lemma
shows that if k is bounded, so are all the functions in its RKHS.

Lemma 1.5.9 (RKHSs of bounded kernels). Let X be a set and k be a
kernel on X with RKHS H. Then k is bounded if and only if every f ∈ H is
bounded. Moreover, in this case the inclusion id : H → ℓ∞(X ) is continuous
and we have ∥id : H → ℓ∞(X )∥ = ∥k∥∞.

The second lemma gives a similar result for k a measurable kernel.

Lemma 1.5.10 (RKHSs of measurable kernels). Let (X ,A) be a measur-
able space and k be a kernel on X with RKHS H. Then all f ∈ H are
measurable if and only if k( · , x) : X → R is measurable for all x ∈ X .

1.6 Existence and uniqueness of the SVM

We saw before that the SVM, also called the SVM solution or SVM decision
function, was defined as

fL,P,λ := arg inf
f∈H

RL,P(f) + λ ∥f∥2H .
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Of course this raises the question when exactly the SVM is defined and
when is it unique. The following lemmae, see Steinwart and Christmann
(2008b, Lemma 5.1 and Lemma 5.2), will provide us with an answer.

Lemma 1.6.1 (Uniqueness of SVM solutions). Let L : X ×Y×R → [0,∞)
be a convex loss, H be the RKHS of a measurable kernel over X , and P be
a distribution on X × Y with RL,P(f) < ∞ for some f ∈ H. Then for all
λ > 0 there exists at most one general SVM solution fL,P,λ.

Lemma 1.6.2 (Existence of SVM solutions). Let L : X ×Y ×R → [0,∞)
be a convex loss, H be the RKHS of a bounded measurable kernel over X ,
and P be a distribution on X × Y such that L is a P-integrable Nemitski
loss. Then for all λ > 0 there exists a general SVM solution fL,P,λ.

There exist also a number of representation theorems for support vector
machines, and we would in particular like to mention the following result
for the empirical SVM fL,D,λ (Steinwart and Christmann, 2008b, Theo-
rem 5.5).

Theorem 1.6.3. Let L : X × Y × R → [0,∞) be a convex loss, D =
((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n, and H an RKHS over X . Then, for all
λ > 0, there exists a unique empirical SVM solution fL,D,λ ∈ H satisfying

RL,D(fL,D,λ) + λ ∥fL,D,λ∥2H = inf
f∈H

RL,D(f) + λ ∥f∥2H .

Furthermore, there exist α1, . . . , αn ∈ R such that

fL,D,λ(x) =
n∑

i=1

αik(x, xi) , x ∈ X . (1.35)

We see that, by using a convex loss function, the empirical SVM solution
can be written as a weighted sum of at most n kernel terms, where the
weights αi are data-dependent, cfr. the explanation given after formula line
(1.29). This clearly shows the connection with the geometrical interpreta-
tion of SVMs derived in Section 1.2: the set of support vectors will consist
of the xi for which αi is not zero.

1.7 Shifting the Loss Function

Support vector machines are known to be consistent and robust both for
classification and regression purposes if they are based on a Lipschitz con-
tinuous loss and a bounded kernel with a separable RKHS that is dense
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in L1(µ) for all distributions µ, see e.g., Christmann and Steinwart (2007,
2008), and Steinwart and Christmann (2008b). These facts are even true in
the regression context for unbounded output spaces, if the target function f
is integrable with respect to the marginal distribution of the input variable
X and if the output variable Y has a finite first absolute moment. However,
the latter assumption clearly excludes distributions with heavy tails, such
as several stable distributions, including the Cauchy distribution, or some
extreme value distributions which occur in financial or insurance projects.

In this section we will show that we can enlarge, by considering shifted
loss functions, the applicability of SVMs even to heavy-tailed distributions,
which violate the previously mentioned moment condition. We will describe
the approach of SVMs based on shifted loss functions and list some prop-
erties of such SVMs. We will also give results on existence, uniqueness and
representation. The consistency and statistical robustness of such SVMs
will be proven in the following chapters, thus showing that SVMs can even
successfully deal with heavy-tailed conditional distributions of the response
variable Y given x. The results for SVMs based on shifted loss functions are
mainly meant for regression purposes. Of course, the case of classification
where the output space Y is just a set of a finite number of real numbers is
a special case and thus classification is covered by the results we will show.
The problem of heavy tails is however not present in classification because
the conditional distribution of the response variable Y given x has then
obviously a bounded support.

The goal of this section is twofold. First we clarify why SVMs for re-
sponse variables with heavy tails need careful consideration, and secondly
we show that SVMs based on shifted loss functions L⋆ are defined for all
distributions and that they are identical to SVMs based on unshifted loss
functions for all data sets. Hence no new algorithms need to be established
to compute the SVM based on the shifted loss function.

1.7.1 The L⋆-Trick

Let us assume that the probability measure P on X × Y can be split up
into the marginal distribution PX on X and the conditional probability
P(y|x) on Y. This is, e.g., possible when Y ⊂ R is closed, because in that
case Y is a complete separable metric space, and therefore a Polish space
(see the text after Definition A.1.2), and X is a measurable space and thus
Lemma A.2.7 is applicable. Furthermore, take L : X × Y × R → [0,∞)
a Lipschitz continuous loss function. If we then take a look at the L-risk,
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keeping in mind that L(X,Y, Y ) = 0, we obtain the inequality

RL,P(f) = EP

(
L(X,Y, f(X))− L(X,Y, Y )

)
(1.36)

=

∫
X

∫
Y
L(x, y, f(x))− L(x, y, y) dP(y|x) dPX(x)

≤ |L|1
∫
X

∫
Y
|f(x)− y| dP(y|x) dPX(x)

≤ |L|1
∫
X
|f(x)| dPX(x) + |L|1

∫
X

∫
Y
|y|dP(y|x) dPX(x) ,

which is finite, if f ∈ L1(PX) and the first absolute moment

EP|Y | =
∫
X

∫
Y
|y| dP(y|x) dPX(x) <∞ . (1.37)

It is exactly this latter condition that excludes heavy-tailed distributions
such as many stable distributions, including the Cauchy distribution, and
many extreme value distributions which occur in financial or actuarial prob-
lems. The moment condition (1.37) is one of the assumptions made by
Christmann and Steinwart (2007) and Steinwart and Christmann (2008b)
for their consistency and robustness proofs of SVMs for an unbounded out-
put set Y.

As said in the introduction to this section, we would like to enlarge the
applicability of SVMs even to heavy-tailed distributions, which violate the
moment condition EP|Y | < ∞. This will be done by using a trick well-
known in the literature on robust statistics, see e.g., Huber (1967) for an
early use of this trick on M-estimators (without regularization term). The
trick consist of shifting the loss L(x, y, t) downwards by the amount of
L(x, y, 0) ∈ [0,∞). We will call the function L⋆ : X × Y ×R → R defined
by

L⋆(x, y, t) := L(x, y, t)− L(x, y, 0)

the shifted loss function or the shifted version of L. Using this definition,
we obtain, for all f ∈ L1(PX),

RL⋆,P(f) = EPL
⋆(X,Y, f(X)) (1.38)

= EP

(
L(X,Y, f(X))− L(X,Y, 0)

)
≤

∫
X×Y

|L(x, y, f(x))− L(x, y, 0)| dP(x, y)

≤ |L|1
∫
X
|f(x)| dPX(x) <∞ ,
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no matter whether the moment condition (1.37) is fulfilled or violated.
We will use this “L⋆-trick” to show, either in this chapter or in one of
the following chapters, that many important results on the SVM fL,P,λ,
such as existence, uniqueness, representation, consistency, and statistical
robustness, can also be shown for

fL⋆,P,λ := arg inf
f∈H

RL⋆,P(f) + λ ∥f∥2H ,

where

RL⋆,P(f) := EPL
⋆(X,Y, f(X))

denotes the L⋆-risk of f . Moreover, we will show that

fL⋆,P,λ = fL,P,λ

if fL,P,λ exists. Hence, there is no need for new algorithms to compute
fL⋆,D,λ because the empirical SVM fL,D,λ exists for all data sets D =
((x1, y1), . . . , (xn, yn)) ⊂ (X × Y)n. The advantage of fL⋆,P,λ over fL,P,λ is
that fL⋆,P,λ is still well-defined and useful for heavy-tailed conditional distri-
butions P(y|x), for which the first absolute moment

∫
Y |y|dP(y|x) is infinite.

In particular, our results will show that even in the case of heavy-tailed
distributions, the forecasts fL⋆,D,λ(x) = fL,D,λ(x) are consistent (Chap-
ter 2) and robust (Chapter 3) with respect to the influence function and
the maxbias, if the kernel is bounded and a Lipschitz continuous loss func-
tion is used. In this respect, the combination of the Gaussian RBF kernel
with the ϵ-insensitive loss function or Huber’s loss function for regression
purposes or with the pinball loss for quantile regression yields SVMs with
good consistency and robustness properties.

1.7.2 Properties of Shifted Loss Functions

In this section we will state some general facts on the function L⋆ which will
be used to obtain our results in the next section. The general assumptions
for the rest of this thesis are summarized in

Assumption 1.7.1. Let n ∈ N, X be a complete separable metric space
(e.g., a closed X ⊂ Rd or X = Rd), Y ⊂ R be a non-empty and closed
set (e.g., Y = R or Y = {−1,+1}), and P be a probability distribution on
X × Y equipped with its Borel σ-algebra. Since Y is closed, P can be split
up into the marginal distribution PX on X and the conditional probability
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P(y|x) on Y. Let L : X × Y ×R → [0,∞) be a loss function and define its
shifted loss function L⋆ : X × Y ×R → R by

L⋆(x, y, t) := L(x, y, t)− L(x, y, 0) .

We say that L (or L⋆) is convex, Lipschitz continuous, continuous or dif-
ferentiable, if L (or L⋆) has this property with respect to its third argument.
If not otherwise mentioned, k : X × X → R is a measurable kernel with
reproducing kernel Hilbert space H of measurable functions f : X → R,
and Φ : X → H denotes the canonical feature map, i.e., Φ(x) := k( · , x) for
x ∈ X .

Please note that these assumptions are independent of the data set, and
therefore can really be checked. The reason why the trick uses the value
L(x, y, 0) is simply that the zero function f(x) = 0, for all x ∈ X , is always
an element of the RKHS H, whereas for other (constant) functions this
might not be the case.

Since L(x, y, t) ∈ [0,∞), it clearly follows from the definition that −∞ <
L⋆(x, y, t) < ∞, and thus it is no longer a non-negative loss. As shown in
Section 1.7.1, we obtain by (1.36) that the L-risk EPL(X,Y, f(X)) is finite,
if f ∈ L1(PX) and EP|Y | < ∞. On the other hand, (1.38) shows us that
EPL

⋆(X,Y, f(X)) is finite, if f ∈ L1(PX) no matter whether EP|Y | < ∞
is finite or infinite. Therefore, by using the L⋆-trick, we can enlarge the
applicability of SVMs by relaxing the finiteness of the risk. As a remark,
we would like to state that there is no intuitive interpretation of the L⋆-
function, since in practice negative losses do not make sense. The shift we
use is only a mathematical trick to enlarge the domain on which SVMs are
defined. In practice this means that for all data sets the SVM based on L
and the SVM based on L⋆ will give identical results, the trick only shifts
the objective function, but not the value where this function is minimal.

The following obvious result gives a relationship between L and L⋆ in
terms of convexity and Lipschitz continuity.

Proposition 1.7.2. Let L be a loss function. Then the following statements
are valid.

i) L⋆ is (strictly) convex, if and only if L is (strictly) convex.

ii) L⋆ is Lipschitz continuous, if and only if L is Lipschitz continuous.
Furthermore, both Lipschitz constants are equal, i.e., |L|1 = |L⋆|1.
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It follows from Proposition 1.7.2 and the strict convexity of the mapping
f 7→ λ ∥f∥2H, f ∈ H, that L⋆(x, y, · ) + λ ∥ · ∥2H is a strictly convex function
if L is convex. This also yields for a convex loss L that the mapping

f 7→ RL⋆,P(f) + λ ∥f∥2H , f ∈ H ,

is a strictly convex function because it is the sum of the convex risk func-
tional RL⋆,P and the strictly convex mapping f 7→ λ ∥f∥2H.

Remark, however, that for L a distance-based loss, L⋆ will not necessarily
share this property as the following example shows. For the least squares
loss LLS(x, y, t) = (y−t)2 we obtain L⋆(x, y, t) = (y−t)2−(y−0)2 = t(t−2y)
which clearly cannot be written as a function in y − t only.

Proposition 1.7.3. The following assertions are valid.

i) inft∈R L
⋆(x, y, t) ≤ 0.

ii) If L is a Lipschitz continuous loss, then for all f ∈ H:

−|L|1EPX
|f | ≤ RL⋆,P(f) ≤ |L|1EPX

|f | , (1.39)

−|L|1EPX
|f |+λ ∥f∥2H ≤ Rreg

L⋆,P,λ(f) ≤ |L|1EPX
|f |+ λ ∥f∥2H . (1.40)

iii) inff∈HRreg
L⋆,P,λ(f) ≤ 0 and inff∈HRL⋆,P(f) ≤ 0.

iv) Let L be a Lipschitz continuous loss and assume that fL⋆,P,λ exists.
Then we have

λ∥fL⋆,P,λ∥2H ≤−RL⋆,P(fL⋆,P,λ) ≤ RL,P(0) ,

0 ≤−Rreg
L⋆,P,λ(fL⋆,P,λ) ≤ RL,P(0) ,

λ∥fL⋆,P,λ∥2H≤min
{
|L|1EPX

|fL⋆,P,λ|,RL,P(0)
}
. (1.41)

If the kernel k is additionally bounded, then

∥fL⋆,P,λ∥∞ ≤ λ−1|L|1 ∥k∥2∞ <∞ , (1.42)

|RL⋆,P(fL⋆,P,λ)| ≤ λ−1|L|21 ∥k∥
2
∞ <∞ . (1.43)

v) If the partial Fréchet- and Bouligand-derivatives8 of L and L⋆ exist
for (x, y) ∈ X × Y, then

∇F
3 L

⋆(x, y, t) = ∇F
3 L(x, y, t) , ∀ t ∈ R , (1.44)

∇B
3 L

⋆(x, y, t) = ∇B
3 L(x, y, t) , ∀ t ∈ R . (1.45)

8See Appendix A.3.3 for Fréchet-derivatives and Section 3.2.1 for Bouligand-
derivatives
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Proof of Proposition 1.7.3. (i) Obviously, inft∈R L
⋆(x, y, t) ≤ L⋆(x, y, 0) =

0.
(ii) We have for all f ∈ H that

|RL⋆,P(f)| = |EPL
⋆(X,Y, f(X))|

= |EPL(X,Y, f(X))− L(X,Y, 0)|
≤ EP|L(X,Y, f(X))− L(X,Y, 0)|
≤ |L|1 EPX

|f | ,

which proves (1.39). Equation (1.40) follows from Rreg
L⋆,P,λ(f) = RL⋆,P(f)+

λ ∥f∥2H.
(iii) As 0 ∈ H, we obtain

inf
f∈H

Rreg
L⋆,P,λ(f) ≤ Rreg

L⋆,P,λ(0) = 0

and the same reasoning holds for inff∈HRL⋆,P(f).
(iv) Due to (iii) we have Rreg

L⋆,P,λ(fL⋆,P,λ) ≤ 0. Because L ≥ 0 we obtain

λ ∥fL⋆,P,λ∥2H ≤ −RL⋆,P(fL⋆,P,λ)

= EP

(
L(X,Y, 0)− L(X,Y, fL⋆,P,λ(X))

)
≤ EPL(X,Y, 0) = RL,P(0) .

Using similar arguments as above, we get that

0 ≤ −Rreg
L⋆,P,λ(fL⋆,P,λ)

= EP

(
L(X,Y, 0)− L(X,Y, fL⋆,P,λ(X))

)
− λ ∥fL⋆,P,λ∥2H

≤ EPL(X,Y, 0) = RL,P(0) .

Furthermore, by (ii), we obtain

−|L|1 EPX
|fL⋆,P,λ|+ λ ∥fL⋆,P,λ∥2H ≤ Rreg

L⋆,P,λ(fL⋆,P,λ)

≤ Rreg
L⋆,P,λ(0) = 0 .

This yields (1.41). Using (1.34) and (1.41), we obtain for fL⋆,P,λ ̸= 0 that

∥fL⋆,P,λ∥∞ ≤ ∥k∥∞ ∥fL⋆,P,λ∥H
≤ ∥k∥∞

√
λ−1|L|1EPX

|fL⋆,P,λ|

≤ ∥k∥∞
√
λ−1|L|1 ∥fL⋆,P,λ∥∞ <∞ .
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Hence ∥fL⋆,P,λ∥∞ ≤ ∥k∥2∞ λ−1|L|1. The case fL⋆,P,λ = 0 is trivial.

Using (ii) we see that

|RL⋆,P(fL⋆,P,λ)| ≤ |L|1 EPX
|fL⋆,P,λ|

≤ |L|1 ∥fL⋆,P,λ∥∞
≤ λ−1|L|21 ∥k∥

2
∞ .

(v) By definition of L⋆ and of the Fréchet-derivative we immediately
obtain

∇F
3 L

⋆(x, y, t) = lim
h→0, h ̸=0

L⋆(x, y, t+ h)− L⋆(x, y, t)

h

= lim
h→0, h ̸=0

L(x, y, t+ h)− L(x, y, t)

h

= ∇F
3 L(x, y, t) .

An analogous calculation is valid for the Bouligand-derivative because the
term L(x, y, 0) will cancel out in the definition of the Bouligand-derivative
and we obtain ∇B

3 L
⋆(x, y, t) = ∇B

3 L(x, y, t). �

The following proposition ensures that the optimization problem to de-
termine fL⋆,P,λ is well-posed.

Proposition 1.7.4. Let L be a Lipschitz continuous loss and f ∈ L1(PX).
Then RL⋆,P(f) /∈ {−∞,+∞}. Moreover, we have Rreg

L⋆,P,λ(f) > −∞ for all
f ∈ L1(PX) ∩H.

Proof of Proposition 1.7.4. Using (1.39) we have

|RL⋆,P(f)| ≤ |L|1EPX
|f | <∞

for f ∈ L1(PX). Then (1.40) yields

Rreg
L⋆,P,λ(f) ≥ −|L|1EPX

|f |+ λ ∥f∥2H > −∞ .

�

1.7.3 SVMs for Heavy-Tailed Distributions

In this subsection we will show the existence and uniqueness of the SVM
fL⋆,P,λ together with a representation theorem.
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Theorem 1.7.5 (Uniqueness of SVM). Let L be a convex loss function.
Assume that (i) RL⋆,P(f) < ∞ for some f ∈ H and RL⋆,P(f) > −∞ for
all f ∈ H or (ii) L is Lipschitz continuous and f ∈ L1(PX) for all f ∈ H.
Then for all λ > 0 there exists at most one SVM solution fL⋆,P,λ.

Lemma 1.7.6 (Convexity of risks). Let L be a (strictly) convex loss. Then
RL⋆,P : H → [−∞,∞] is (strictly) convex and Rreg

L⋆,P,λ : H → [−∞,∞] is
strictly convex.

Proof of Lemma 1.7.6. Proposition 1.7.2 yields that L⋆ is (strictly) con-
vex. Trivially RL⋆,P is also convex. Further f 7→ λ ∥f∥2H is strictly convex,
and hence the mapping f 7→ Rreg

L⋆,P,λ(f) = RL⋆,P(f)+λ ∥f∥2H is strictly
convex. �

Proof of Theorem 1.7.5. Let us assume that the mapping f 7→ λ ∥f∥2H +
RL⋆,P(f) has two minimizers f1 and f2 ∈ H with f1 ̸= f2. (i) By application
of Lemma A.3.7, we then find

∥(f1 + f2)/2∥2H < ∥f1∥2H /2 + ∥f2∥2H /2 .

The convexity of f 7→ RL⋆,P(f), see Lemma 1.7.6, and

λ ∥f1∥2H +RL⋆,P(f1) = λ ∥f2∥2H +RL⋆,P(f2)

then shows for f∗ := 1
2(f1 + f2) that

λ ∥f∗∥2H +RL⋆,P(f
∗) < λ ∥f1∥2H +RL⋆,P(f1) ,

i.e., f1 is not a minimizer of f 7→ λ ∥f∥2H+RL⋆,P(f). Consequently, the as-
sumption that there are two minimizers is false. (ii) This condition implies
that |RL⋆,P(f)| <∞, see Proposition 1.7.4, and the assertion follows from
(i). �

Theorem 1.7.7 (Existence of SVM). Let L be a Lipschitz continuous and
convex loss function and let H be the RKHS of a bounded measurable kernel
k. Then for all λ > 0 there exists an SVM solution fL⋆,P,λ.

Lemma 2.17 from Steinwart and Christmann (2008b) gives us a result on
the continuity of risks, which we will adapt to our needs.

Lemma 1.7.8 (Continuity of risks). Let L be a Lipschitz continuous loss
function. Then the following statements hold:
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i) Let fn : X → R, n ≥ 1, be bounded, measurable functions for which
there exists a constant B > 0 with ∥fn∥∞ ≤ B for all n ≥ 1. If the
sequence (fn) converges PX-almost surely to a measurable function
f : X → R, then we have

lim
n→∞

RL⋆,P(fn) = RL⋆,P(f) .

ii) The mapping RL⋆,P : L∞(PX) → R is well-defined and continuous.

A consequence of this lemma is that the function f 7→ Rreg
L⋆,P,λ(f) is

continuous, since both mappings f 7→ RL⋆,P(f) and f 7→ λ ∥f∥2H are con-
tinuous.

Proof of Lemma 1.7.8. (i) Obviously, f is a bounded and measurable func-
tion with ∥f∥∞ ≤ B. Furthermore, the continuity of L shows

lim
n→∞

|L⋆(x, y, fn(x))− L⋆(x, y, f(x))|

= lim
n→∞

|L(x, y, fn(x))− L(x, y, f(x))| = 0

for P-almost all (x, y) ∈ X × Y. In addition, we have

|L⋆(x, y, fn(x))− L⋆(x, y, f(x))|
≤ |L|1 |fn(x)− f(x)|
≤ |L|1(∥fn∥∞ + ∥f∥∞)

≤ 2B|L|1 <∞

for all (x, y) ∈ X × Y and all n ≥ 1. Since the constant function 2B|L|1
is P-integrable, Lebesgue’s theorem of dominated convergence, see Theo-
rem A.2.4, together with

|RL⋆,P(fn)−RL⋆,P(f)| ≤
∫
X×Y

|L⋆(x, y, fn(x))− L⋆(x, y, f(x))| dP(x, y)

gives the assertion.
(ii) We know from Proposition 1.7.4 that |RL⋆,P(f)| <∞ for f ∈ L1(PX)

and thus also for all f ∈ L∞(PX), i.e., RL⋆,P(f) actually maps L∞ into R.
Moreover, the continuity is a direct consequence of (i). �

Proof of Theorem 1.7.7. Since the kernel k of H is measurable, H consists
of measurable functions by Lemma 1.5.10. Moreover, k is bounded, and
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thus Lemma 1.5.9 shows that id : H → L∞(PX) is continuous. In addi-
tion we have L(x, y, t) ∈ [0,∞), and hence −∞ < L⋆(x, y, t) < ∞ for all
(x, y, t) ∈ X × Y × R. Thus L⋆ is continuous by the convexity of L⋆ and
Lemma A.4.1. Therefore, Lemma 1.7.8 shows that RL⋆,P : L∞(PX) → R

is continuous and hence RL⋆,P : H → R is continuous since H ⊂ L∞(PX),
see Lemma 1.5.9. In addition, Lemma 1.7.6 provides the convexity of this
mapping. These lemmas also yield that f 7→ λ ∥f∥2H +RL⋆,P(f) is strictly
convex and continuous. Proposition A.4.2 shows that if RL⋆,P(f) + λ ∥f∥2H
is convex and continuous and additionally RL⋆,P(f) + λ ∥f∥2H → ∞ for
∥f∥H → ∞, then Rreg

L⋆,P,λ( · ) will have a minimizer. Therefore we need to
show that this limit is infinite. By using (1.34) we obtain

Rreg
L⋆,P,λ(f) ≥ −|L|1EPX

|f |+ λ ∥f∥2H
≥ −|L|1 ∥f∥∞ + λ ∥f∥2H
≥ −|L|1 ∥k∥∞ ∥f∥H + λ ∥f∥2H → ∞ for ∥f∥H → ∞ ,

as |L|1 ∥k∥∞ ∈ [0,∞) and λ > 0. �

Knowing now that a solution fL⋆,P,λ of the shifted problem exists and
is unique, it is interesting to investigate what relationship it has to the
solution fL,P,λ of the original problem, given that this solution exists.

The application of the L⋆-trick is superfluous if RL,P(0) < ∞, because
in this case we obtain

Rreg
L⋆,P,λ(fL⋆,P,λ) = inf

f∈H
EP

(
L(X,Y, f(X))− L(X,Y, 0)

)
+ λ ∥f∥2H

= inf
f∈H

(
EPL(X,Y, f(X)) + λ ∥f∥2H

)
− EPL(X,Y, 0)

= Rreg
L,P,λ(fL,P,λ)−RL,P(0)

and RL,P(0) is finite and independent of f . Hence, fL⋆,P,λ = fL,P,λ, and
thus both solutions coincide if RL,P(0) < ∞. Remark that there is a link
between the finiteness of the risk and the moment condition (1.37). If we
take a look at (1.36) and plug in f = 0, we immediately see that the risk
can only be finite if the moment EP|Y | is finite. The above calculation thus
shows that, when the moment is finite and the application of the trick is
thus unnecessary, fL⋆,P,λ and fL,P,λ are always equal.

The following result gives a useful representation of fL⋆,P,λ and shows
that the mapping P 7→ fL⋆,P,λ behaves similar to a Lipschitz continuous
function. The subdifferential of L⋆ is denoted by ∂L⋆, and is defined in
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Definition A.4.3. With a slight misuse of notation we will write EPhΦ for
EPh(X,Y )Φ(X).

Theorem 1.7.9 (Representer theorem). Let L be a convex and Lipschitz
continuous loss function, k be a bounded and measurable kernel with sep-
arable RKHS H. Then, for all λ > 0, there exists an h ∈ L∞(P) such
that

h(x, y) ∈ ∂L⋆(x, y, fL⋆,P,λ(x)) ∀ (x, y) , (1.46)

fL⋆,P,λ = −(2λ)−1EP(hΦ) , (1.47)

∥h∥∞ ≤ |L|1 , (1.48)∥∥fL⋆,P,λ − fL⋆,P̄,λ

∥∥
H ≤ λ−1 ∥EP(hΦ)− EP̄(hΦ)∥H , (1.49)

for all distributions P̄ on X × Y. If L is additionally distance-based, we
obtain for (1.46) that

h(x, y) ∈ −∂ψ(y − fL⋆,P,λ(x)) ∀ (x, y) . (1.50)

Proof of Theorem 1.7.9. The existence and uniqueness of fL⋆,P,λ follow
from the Theorems 1.7.5 and 1.7.7. As k is bounded, Proposition 1.7.3(iv) is
applicable and (1.42) and (1.43) yield ∥fL⋆,P,λ∥∞ ≤ λ−1|L|1 ∥k∥2∞ <∞ and

|RL⋆,P(fL⋆,P,λ)| ≤ λ−1|L|21 ∥k∥
2
∞ <∞. Further, the shifted loss function L⋆

is continuous because L and hence L⋆ are Lipschitz continuous. Moreover,
R : L1(P) → R defined by

R(f) :=

∫
X×Y

L⋆
(
x, y, f(x, y)

)
dP(x, y) , f ∈ L1(P) ,

is well-defined and continuous. The first property follows by the definition
of L⋆ and its Lipschitz continuity, because

|R(f)| ≤ |L|1
∫
X×Y

|f(x, y)| dP(x, y) <∞ , f ∈ L1(P) , (1.51)

and hence R is well-defined. The continuity of R can be shown as follows.
Fix δ > 0 and let f1, f2 ∈ L1(P) with ∥f1 − f2∥L1(P)

< δ. The Lipschitz
continuity of L⋆ yields

|R(f1)−R(f2)| ≤
∫
X×Y

∣∣L⋆(x, y, f1(x, y))− L⋆(x, y, f2(x, y))
∣∣ dP(x, y)

≤ |L|1
∫
X×Y

|f1(x, y)− f2(x, y)| dP(x, y) < δ |L|1 ,
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which shows the continuity of R. We can now apply Proposition A.4.6
with p = 1 because (1.51) guarantees that R(f) exists and is finite for all
f ∈ L1(P). The subdifferential of R can thus be computed by9

∂R(f) =
{
h ∈ L∞(P) : h(x, y) ∈ ∂L⋆(x, y, f(x, y))

for P-almost all (x, y)
}
.

Now, we infer from Lemma 1.5.9 that the inclusion map I : H → L1(P)
defined by (If)(x, y) := f(x), f ∈ H, (x, y) ∈ X × Y, is a bounded linear
operator. Moreover, for h ∈ L∞(P) and f ∈ H, the reproducing property
yields

⟨h, If⟩L∞(P),L1(P) = EPhIf = EPh⟨f,Φ⟩H
= ⟨f,EPhΦ⟩H = ⟨ιEPhΦ, f⟩H′,H ,

where ι : H → H′ is the Fréchet-Riesz isomorphism described in Theo-
rem A.3.8. Consequently, the adjoint operator I ′ of I is given by I ′h =
ιEPhΦ, h ∈ L∞(P). Moreover, the L⋆-risk functional RL⋆,P : H → R re-
stricted to H satisfies RL⋆,P = R◦I, and hence the chain rule for subdiffer-
entials (see Proposition A.4.5) yields ∂RL⋆,P(f) = ∂(R ◦ I)(f) = I ′∂R(If)
for all f ∈ H. Applying the formula for ∂R(f) thus yields

∂RL⋆,P(f) =
{
ιEPhΦ : h ∈ L∞(P) with

h(x, y) ∈ ∂L⋆(x, y, f(x)) P-a.s.
}

for all f ∈ H. In addition, f 7→ ∥f∥2H is Fréchet-differentiable and its
derivative at f is 2ιf for all f ∈ H. By picking suitable representations of
h ∈ L∞(P), Proposition A.4.5 thus gives

∂Rreg
L⋆,P,λ(f) = 2λιf +

{
ιEPhΦ : h ∈ L∞(P) with

h(x, y) ∈ ∂L⋆(x, y, f(x)) ∀ (x, y)
}

for all f ∈ H. Now recall that Rreg
L⋆,P,λ( · ) has a minimum at fL⋆,P,λ, and

therefore we have 0 ∈ ∂Rreg
L⋆,P,λ(fL⋆,P,λ) by another application of Proposi-

tion A.4.5. This together with the injectivity of ι yields the assertions (1.46)
and (1.47).

Let us now show that (1.48) holds. Since k is a bounded kernel, we have
by (1.42) and (1.43) that

∥fL⋆,P,λ∥∞ ≤ λ−1|L|1 ∥k∥2∞ := Bλ <∞ .

9We have h ∈ L∞(P) since there exists an isometric isomorphism between (L1(P))
′

and L∞(P), see Theorem A.3.6.
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Now (1.46) and Proposition A.4.4 with δ := 1 yield, for all (x, y) ∈ X ×Y,

|h(x, y)| ≤ sup
(x,y)∈X×Y

∣∣∂L⋆(x, y, fL⋆,P,λ(x))
∣∣ ≤ |L|1

and hence we have shown h ∈ L∞(P) and (1.48).

Let us now establish (1.49). To this end, observe that we have by (1.46)
and the definition of the subdifferential

h(x, y)
(
fL⋆,P̄,λ(x)− fL⋆,P,λ(x)

)
≤ L⋆

(
x, y, fL⋆,P̄,λ(x)

)
− L⋆

(
x, y, fL⋆,P,λ(x)

)
for all (x, y) ∈ X × Y. By integrating with respect to P̄, we hence obtain

⟨fL⋆,P̄,λ − fL⋆,P,λ , EP̄hΦ⟩H
≤ RL⋆,P̄(fL⋆,P̄,λ)−RL⋆,P̄(fL⋆,P,λ) .

(1.52)

Moreover, an easy calculation shows

2λ ⟨fL⋆,P̄,λ − fL⋆,P,λ , fL⋆,P,λ⟩H
+ λ

∥∥fL⋆,P,λ − fL⋆,P̄,λ

∥∥2
H

= λ
∥∥fL⋆,P̄,λ

∥∥2
H − λ ∥fL⋆,P,λ∥2H .

(1.53)

By combining (1.52) and (1.53), we thus find⟨
fL⋆,P̄,λ − fL⋆,P,λ , EP̄hΦ+2λfL⋆,P,λ

⟩
H

+λ
∥∥fL⋆,P,λ − fL⋆,P̄,λ

∥∥2
H

≤ Rreg
L⋆,P̄,λ

(fL⋆,P̄,λ)−Rreg
L⋆,P̄,λ

(fL⋆,P,λ) ≤ 0 ,

and consequently the representation fL⋆,P,λ = − 1
2λ EPhΦ yields in combi-

nation with the Cauchy-Schwarz inequality that

λ
∥∥fL⋆,P,λ − fL⋆,P̄,λ

∥∥2
H

≤
⟨
fL⋆,P,λ − fL⋆,P̄,λ , EP̄hΦ− EPhΦ

⟩
H

≤
∥∥fL⋆,P,λ − fL⋆,P̄,λ

∥∥
H · ∥EP̄hΦ− EPhΦ∥H .

From this we easily obtain (1.49).

It remains to show (1.50) for the special case of a distance-based loss
function. By the definition of the subdifferential we obtain for L and L⋆
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that, for all (x, y) ∈ X × Y,

∂L⋆(x, y, t)

=
{
t′ ∈ R′ : ⟨t′, v − t⟩ ≤ L⋆(x, y, v)− L⋆(x, y, t) ∀ v ∈ R

}
=

{
t′ ∈ R′ : ⟨t′, v − t⟩ ≤ L(x, y, v)− L(x, y, t) ∀ v ∈ R

}
= ∂L(x, y, t) , t ∈ R .

Hence ∂L(f) = ∂L⋆(f) for all measurable functions f : X → R. If we
combine this with Proposition A.4.5, it follows, for all (x, y) ∈ X ×Y, that
∂L⋆(x, y, t) = ∂L(x, y, t) = −∂ψ(y − t) for all t ∈ R, and therefore (1.46)
implies (1.50). �

If we take L and H as in Theorem 1.7.9, then the conditions of Theo-
rem 1.6.3 are also fulfilled. If additionally L is Fréchet-differentiable, and
if we take P = D the empirical distribution of the data set D as in Theo-
rem 1.6.3, we obtain from (1.46) that h(x, y) = ∇F

3 L
⋆(x, y, fL⋆,D,λ(x)) and

from (1.47) that

fL⋆,D,λ(x) =

n∑
i=1

αik(x, xi) , x ∈ X ,

where a small calculation yields that the coefficients are equal to

αi = − 1

2λn
∇F

3 L
⋆(xi, yi, fL⋆,D,λ(xi)) .

At first this might seem strange, but the values fL⋆,D,λ(xi) are already
known from the empirical risk minimization step and can therefore be used
to determine the value of fL⋆,D,λ in all other points x ∈ X . In this case we
thus obtain an explicit formula for the empirical decision function fL⋆,D,λ

as a linear combination of the kernel functions k( · , xi) = Φ(xi), for i =
1, . . . , n.
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Chapter 2

Consistency of
Support Vector Machines

In this chapter we will focus our attention on the consistency of the SVM
solution fL⋆,P,λ of the shifted problem. As explained in Section 1.7 this is in
particular useful for SVMs based on heavy-tailed distributions. We will start
by giving an introduction on consistency and then state our consistency
results for SVMs based on heavy-tailed distributions. Consistency results
for standard SVMs can be found in, e.g., Christmann and Steinwart (2007,
2008), and Steinwart and Christmann (2008b). Due to the presence of the
moment condition EP|Y | < ∞ in these results, they exclude distributions
with heavy tails and extreme value distributions. Our aim is to extend the
consistency results to also include these distributions.

2.1 Consistency

As mentioned in the introduction, the aim of a support vector machine
in particular, or a statistical learning method in general, is to find a deci-
sion function fD, based on the set D of training data, such that the L-risk
RL,P(fD) is as close as possible to the Bayes risk R∗

L,P. Since this set D
consists of realizations of i.i.d. random variables from an unknown distri-
bution P, also fD and RL,P(fD) will be random variables. To verify if the
learning method D 7→ fD is really capable of learning, we should investigate
what the probability is that the empirical risk RL,P(fD) will be close to
minimal risk R∗

L,P or whether the difference between both will tend to zero
when the size of the data set increases. Possible answers to this question
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can be given by two notions, namely consistency and learning rates. Con-
sistency is of an asymptotical nature and can often be verified without any
assumptions on the distribution P, whereas learning rates are more related
to practical needs, but will almost always require some assumption on the
unknown distribution P. In this work, we will only discuss the consistency
of SVMs.

Concerning the rate of convergence of support vector machines, we refer
to Steinwart and Christmann (2009a) and the references cited therein. In
this paper, the authors consider rates of convergence not only for i.i.d. ran-
dom variables (Xi, Yi) but also allow for some kind of weak dependence, so-
called alpha-mixing. We would also like to remark that, due to the no-free-
lunch theorem (Devroye, 1982, Devroye et al., 1996, Theorem 7.2), there
exists no uniform rate of convergence for all distributions, a fact is holds
in general and not only for SVMs. It is however possible to obtain uniform
rates of convergence within special classes of distributions.

Since consistency is a way to describe the “learning ability” of a statistical
method, we will first define the concept of a learning method more formally.

Definition 2.1.1. Let X be a set and Y ⊂ R. A learning method L on
X×Y maps every data set D ∈ (X×Y)n, n ≥ 1, to a function fD : X → R.
If additionally, X ̸= ∅ is equipped with some σ-algebra and Y ̸= ∅ is closed
and equipped with the Borel-σ-algebra, then the learning method L is said
to be measurable if for all n ≤ 1 the map

(X × Y)n ×X → R : (D,x) 7→ fD(x)

is measurable with respect to the universal completion of the product σ-
algebra on (X × Y)n × X , and where fD is the decision function obtained
from L.

Recall that the P-completion AP of a σ-algebra A is the smallest σ-
algebra that contains both A and all subsets of P-zero sets in A, and that
the universal completion is defined as the intersection of all such comple-
tions AP over all P in the set of probability measures on A. We will from
here on assume that (X ×Y)n will be equipped with the universal comple-
tion of the product σ-algebra on (X × Y)n.

It was shown, see, e.g., Steinwart and Christmann (2008b, Lemma 6.17
and Lemma 6.23), that both ERM and SVMs are measurable learning meth-
ods under some minimal assumptions. Since for measurable learning meth-
ods the maps x 7→ fD(x) are measurable, the risksRL,P(fD) will exist for all
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fixed D ∈ (X ×Y)n and all n ≥ 1. This implies, Steinwart and Christmann
(2008b, Lemma 6.3), that also the maps (X×Y)n → [0,∞] : D 7→ RL,P(fD)
are measurable.

Knowing all this, we can now introduce the concept of consistency.

Definition 2.1.2. Let L : X ×Y×R → [0,∞) be a loss, P be a distribution
on X × Y, and L be a measurable learning method on X × Y. Then L is
said to be L-risk consistent for P if, for all ε > 0, we have that

lim
n→∞

Pn
(
D ∈ (X × Y)n : RL,P(fD) ≤ R∗

L,P + ε
)
= 1 .

Furthermore, L is called universally L-risk consistent if it is L-risk
consistent for all distributions P on X × Y.

This means that, when the data set becomes sufficiently large, an L-risk
consistent method will deliver a decision function fD whose associated risk
will be close to the Bayes risk. Or, that with high probability, fD will be
nearly optimal. The method will thus be able to learn. If the method is
even universally L-risk consistent, this learning can be done without any
specific knowledge of the underlying distribution P, and is thus a prereq-
uisite for non-parametric methods. The only drawback is that we do not
know at what speed the convergence takes place, thus we do not know at
what rate the method is able to learn. It just tells us that, in the long
run, the method will learn the optimal decision function. Furthermore, we
will call a learning method consistent if the decision function fD converges
to the Bayes function f∗. For a more detailed treatise of the consistency
of several learning methods, we refer to Devroye et al. (1996), Koenker
(1986), Tewari and Bartlett (2005), Zhang (2004), and Stone (1977). The
latter being the article wherein it was shown for the first time that a
learning method, namely nearest neighbors, was consistent. For more in-
formation about the consistency of SVMs in particular, good references
are Christmann and Steinwart (2007), Christmann and Steinwart (2008),
Steinwart (2001), Steinwart (2002), and Steinwart (2005).

2.2 Consistency of SVMs Based on
Shifted Loss Functions

2.2.1 Some Consistency Results

The first result shows that, when the size n of the training data set D =
((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n goes to infinity, the L⋆-risk of the em-
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pirical SVM fL⋆,D,λn stochastically converges to the smallest possible risk,
i.e., to the Bayes risk. This is somewhat astonishing at first glance because
fL⋆,D,λn is evaluated by minimizing a regularized empirical risk over the
RKHS H, whereas the Bayes risk is defined as the minimal non-regularized
risk over the broader set of all measurable functions f : X → R. To make
this universal consistency achievable, we need the denseness assumption on
H in the following theorem.

Theorem 2.2.1 (Risk consistency). Let L be a convex, Lipschitz contin-
uous loss function, L⋆ its shifted version, and H be a separable RKHS of
a bounded measurable kernel k such that H is dense in L1(µ) for all dis-
tributions µ on X . Let (λn) be a sequence of strictly positive numbers with
λn → 0.

i) If λ2nn→ ∞, then, for all P ∈ M1(X × Y),

RL⋆,P(fL⋆,D,λn) → R∗
L⋆,P , n→ ∞ , (2.1)

in probability P∞ for all |D| = n.

ii) If λ2
nn

ln(n) → ∞, then the convergence in (2.1) holds even P∞-almost
surely.

Proof of Theorem 2.2.1. (i) To avoid handling too many constants, let us
assume ∥k∥∞ = 1. This implies ∥f∥∞ ≤ ∥k∥∞ ∥f∥H ≤ ∥f∥H for all f ∈ H.
Now we use the Lipschitz continuity of L (and thus also of L⋆), |L|1 <∞,
and Lemma 1.4.4 to obtain, for all g ∈ H,∣∣RL⋆,P(fL⋆,P,λn)−RL⋆,P(g)

∣∣ ≤ |L|1 ∥fL⋆,P,λn − g∥H . (2.2)

For n ∈ N and λn > 0, we write hn := hL⋆,n : X ×Y → R for the function h
obtained by the representer theorem 1.7.9. Let Φ : X → H be the canonical
feature map. We have fL⋆,P,λn = −(2λn)

−1EPhnΦ, and for all distributions
Q on X × Y, we have

∥fL⋆,P,λn − fL⋆,Q,λn∥H ≤ λ−1
n ∥EPhnΦ− EQhnΦ∥H .

Note that ∥hn∥∞ ≤ |L|1 due to (1.48). Moreover, let ε ∈ (0, 1) and D be
a training set of n data points and corresponding empirical distribution D
such that

∥EPhnΦ− EDhnΦ∥H ≤ λnε . (2.3)
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Then Theorem 1.7.9 gives ∥fL⋆,P,λn − fL⋆,Dn,λn∥H ≤ ε and hence (2.2)
yields ∣∣RL⋆,P(fL⋆,P,λn)−RL⋆,P(fL⋆,D,λn)

∣∣
≤ |L|1 · ∥fL⋆,P,λn − fL⋆,D,λn∥H ≤ |L|1ε .

(2.4)

Let us now estimate the probability of D satisfying (2.3). To this end,
we first observe that λnn

1/2 → ∞ implies that λnε ≥ n−1/2 for all suffi-
ciently large n ∈ N. Moreover, Theorem 1.7.9 shows ∥hn∥∞ ≤ |L|1, and
our assumption ∥k∥∞ = 1 thus yields ∥hnΦ∥∞ ≤ |L|1. Consequently,
Hoeffding’s inequality in Hilbert spaces (see Theorem A.3.9) yields for
ξi = hn(Xi, Yi)Φ(Xi), B = |L|1 and

τn =
3

8

|L|−2
1 ε2λ2nn

|L|−1
1 ελn + 3

=
3

8

a2nn

an + 3

with an := |L|−1
1 λnε, the bound

Pn
(
D ∈ (X × Y)n : ∥EPhnΦ− EDhnΦ∥H ≤ λnε

)
(2.5)

≥ Pn
(
D ∈ (X × Y)n : ∥EPhnΦ− EDhnΦ∥H

≤ |L|1(
√
2τn + 1)√
n

+
4|L|1τn

3n

)
(2.6)

≥ 1− exp
(
−3

8
· ε2λ2nn/|L|21
ελn/|L|1 + 3

)
= 1− exp

(
−3

8
· ε2λ2nn

(ελn + 3|L|1)|L|1

)
for all sufficiently large values of n. In order to go from (2.5) to (2.6), we
used the following inequality:

√
2τn + 1√
n

+
4τn
3n

=
an
2

√
3√

an + 3
+

1√
n
+
an
2

an
an + 3

<
an
2

+
1√
n
+
an
2

1

3
< an = |L|−1

1 λnε .

Now using λ > 0, λn → 0 and λnn
1/2 → ∞, we find that the probability

of sample sets D satisfying (2.3) converges to 1 if |D| = n → ∞. As
we have seen above, this implies that (2.4) holds true with probability
tending to 1. Now, since λn > 0 and λn → 0, n → ∞, we additionally
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have |RL⋆,P(fL⋆,P,λn)−R∗
L⋆,P| ≤ ε for all sufficiently large n, and hence we

obtain the assertion of L⋆-risk consistency of fL⋆,P,λ.

(ii) First observe that λ2
nn

ln(n) → ∞ allows us to rewrite λn as

λn = ζh(n)

√
ln(n)

n
,

with h(n) : (0,∞) → (0,∞) a positive function such that h(n) → ∞

and λn → 0 for n → ∞ and with ζ =

√
16(|L|1+3|L|21)

3 . This gives λ2
nn

ln(n) =(
ζh(n)

)2
. In order to show the second assertion, we define εn := 1/h(n)

and
δn := RL⋆,P(fL⋆,P,λn)−R∗

L⋆,P + εn , n ∈ N .

A small calculation yields that εnλn = ζ

√
ln(n)
n ↓ 0 for n → ∞ and that

ε2nλ
2
nn = ζ2 ln(n). Therefore

ε2nλ
2
nn

(εnλn + 3|L|1)|L|1
=

ζ2 ln(n)

(εnλn + 3|L|1)|L|1
≥ ζ2 ln(n)

|L|1 + 3|L|21
for n sufficiently large.

Moreover, for an infinite sample

D∞ := ((x1, y1), (x2, y2), . . .) ∈ (X × Y)∞ ,

we write Dn := ((x1, y1), . . . , (xn, yn)). With these notations, we define, for
n ∈ N,

An :=
{
D∞ ∈ (X × Y)∞ : RL⋆,P(fL⋆,Dn,λn)−R∗

L⋆,P > δn
}
.

Now, our estimates above together with λ2
nn

ln(n) → ∞ yield, for n large enough,

P(An) ≤ exp

(
−3

8
· ε2nλ

2
nn

(εnλn + 3|L|1)|L|1

)
≤ exp

(
−3

8
· ζ2 ln(n)

|L|1 + 3|L|21

)
= exp

(
− 2 ln(n)

)
= n−2 ,

from which the convergence of the series
∑

n∈N P∞(An) follows. We obtain
by the Borel-Cantelli lemma A.2.8 that

P∞( {
D∞ ∈ (X × Y)∞ : ∃n0 ∀n ≥ n0 with

RL⋆,P(fL⋆,Dn,λn)−R∗
L⋆,P ≤ δn

} )
= 1 .

The assertion follows because λn → 0 implies δn → 0. �
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We see from the theorem that, in order to obtain consistency, the reg-
ularization parameters can be chosen in a data-independent way, as long
as they constitute an appropriate null sequence. The regularization pa-
rameter λ can also be determined in a data-dependent manner for SVMs,
e.g., by using a training-validation support vector machine (TV-SVM), see
Steinwart and Christmann (2008b, Chapter 6.5) and p. 100 for a short de-
scription. It has been shown that the training-validation method gives mea-
surable SVMs and even oracle inequalities for TV-SVMs are available, so
consistency can be obtained for this method.

Most often the goal in practice is to minimize the risk, and thus in those
cases, the knowledge of risk consistency will be enough. However, sometimes
practitioners are also interested in explicitly knowing the goodness of the
function fL,D,λ and the predictions fL,D,λ(x) made by it for previously
unseen input values x ∈ X .

In general, it is unclear whether the convergence of the risks in (2.1)
implies the convergence of fL⋆,D,λn to a minimizer f∗L⋆,P of the Bayes risk
R∗

L⋆,P. However, Theorem 2.2.2 will show such a convergence for the im-
portant special case of non-parametric quantile regression. Estimation of
conditional quantiles instead of estimation of conditional means is espe-
cially interesting for heavy-tailed distributions that often have no finite
moments. It is known that the pinball loss function defined in (1.26) can
be used to estimate the conditional τ -quantiles, τ ∈ (0, 1),

f∗τ,P(x) :=
{
t∗ ∈ R : P

(
(−∞, t∗] |x

)
≥ τ and

P
(
[t∗,∞) |x

)
≥ 1− τ

}
,

x ∈ X , see Koenker (2005) and Takeuchi et al. (2006). For some recent
results on support vector machines based on this loss function we refer to
Christmann and Steinwart (2008) and Steinwart and Christmann (2008a).
Remember that the pinball loss function is convex and Lipschitz continuous,
but asymmetric for τ ̸= 1

2 . Before we formulate the next result, we define

d0(f, g) := EPX
min{1, |f − g|} ,

where f, g : X → R are arbitrary measurable functions. It is known that d0
is a translation-invariant metric describing the convergence in probability.

Theorem 2.2.2 (Consistency). For τ ∈ (0, 1), let L be the τ -pinball loss
and L⋆ its shifted version. Moreover, let P be a distribution on X ×R whose
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conditional τ -quantile f∗τ,P : X → R is PX-almost surely unique. Under the
assumptions of Theorem 2.2.1, we then have

d0(fL⋆,D,λn , f
∗
τ,P) → 0 , n→ ∞ ,

where the convergence is either in probability P∞ or P∞-almost surely,
depending on whether assumption (i) or (ii) on the null-sequence (λn) is
taken from Theorem 2.2.1.

Before we can prove Theorem 2.2.2, we need some prerequisites on self-
calibrated loss functions and related results, cfr., Steinwart and Christmann
(2008b, Chapter 3). Let τ ∈ (0, 1), L be a pinball loss, and L⋆ its shifted ver-
sion. Hence, L is Lipschitz continuous, convex, and L(x, y, t) = ψ(y− t) →
∞ for |t| → ∞. Our goal is to extend the consistency results derived
in Christmann and Steinwart (2008) to all distributions P on X × R. To
this end, we adopt the inner risk notation from Steinwart and Christmann
(2008b) by writing, for t ∈ R,

CL⋆,Q(t) :=

∫
R

L⋆(x, y, t) dQ(y) =

∫
R

ψ(y − t)− ψ(y) dQ(y) ,

where Q is a distribution on R that will serve us as a template for the con-
ditional distribution P( · |x). Similarly, we write C∗

L⋆,Q := inft∈R CL⋆,Q(t)
for the minimal inner L⋆-risk. Note that, like for the L⋆-risk, we have
|C∗

L⋆,Q| < ∞. Finally, for ε ∈ [0,∞], we denote the set of ε-approximate
minimizers by

ML⋆,Q(ε) :=
{
t ∈ R : CL⋆,Q(t)− C∗

L⋆,Q < ε
}

and the set of exact minimizers by

ML⋆,Q(0
+) :=

∩
ε>0

ML⋆,Q(ε) =
{
t ∈ R : CL⋆,Q(t) = C∗

L⋆,Q

}
.

Since |C∗
L⋆,Q| < ∞ it is easy to verify that these notations coincide with

those of Steinwart and Christmann (2008b, Chapter 3) modulo the fact
that we now consider the shifted loss function L⋆ rather than L. The fol-
lowing proposition, which is an L⋆-analogue to Steinwart and Christmann
(2008b, Proposition 3.9), computes the L⋆-excess risk and the set of exact
minimizers.

Proposition 2.2.3. For τ ∈ (0, 1), let L be the τ -pinball loss and L⋆ its
shifted version. Moreover, let Q be a distribution on R and t∗ be a τ -quantile
of Q, i.e., we have

Q
(
(−∞, t∗]

)
≥ τ and Q

(
[t∗,∞)

)
≥ 1− τ .
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Then there exist real numbers q+, q− ≥ 0 such that q+ + q− = Q({t∗}) and

CL⋆,Q(t
∗ + t)− C∗

L⋆,Q = tq+ +

∫ t

0
Q
(
(t∗, t∗ + s)

)
ds , (2.7)

CL⋆,Q(t
∗ − t)− C∗

L⋆,Q = tq− +

∫ t

0
Q
(
(t∗ − s, t∗)

)
ds , (2.8)

for all t ≥ 0. Moreover, we have

ML⋆,Q(0
+) = {t∗} ∪

{
t > t∗ : q+ +Q((t∗, t))=0

}
∪
{
t < t∗ : q− +Q((−t, t∗))=0

}
.

Proof of Proposition 2.2.3. Let us consider the distribution Q(t∗) defined
by Q(t∗)(A) := Q(t∗ + A) for all measurable sets A ⊂ R. Then it is not
hard to see that 0 is a τ -quantile of Q(t∗). Moreover, we obviously have
CL⋆,Q(t

∗ + t) = CL⋆,Q(t∗)(t). Therefore, we may assume without loss of gen-
erality that t∗ = 0. Then our assumptions together with Q((−∞, 0]) +
Q([0,∞)) = 1 + Q({0}) yield τ ≤ Q((−∞, 0]) ≤ τ + Q({0}), i.e., there
exists a q+ ∈ R satisfying 0 ≤ q+ ≤ Q({0}) and

Q((−∞, 0]) = τ + q+ . (2.9)

Let us now prove the first expression for the excess inner risks of L⋆. To
this end, we first observe that, for t ≥ 0, we have

CL⋆,Q(t)

= (1− τ)

∫
y<0

(t− y) + y dQ(y)

+

∫
0≤y<t

(1−τ)(t−y)−τy dQ(y) + τ

∫
y≥t

(y−t)− y dQ(y)

= (1−τ)tQ((−∞, 0))+

∫
0≤y<t

(1−τ)t−y dQ(y)−τt
∫

y≥t

dQ(y)

= (1− τ)tQ((−∞, t))−
∫
0≤y<t

y dQ(y)− τtQ([t,∞))

= tQ((−∞, 0))− τt+ tQ([0, t))−
∫
0≤y<t

y dQ(y) .

Moreover, using a well-known relationship between expectations and tail

Consistency of Support Vector Machines



58 2.2. Consistency of SVMs Based on Shifted Loss Functions

bounds, see Lemma A.2.5, we get

tQ([0, t))−
∫

0≤y<t

y dQ(y) =

t∫
0

Q([0, t)) ds−
t∫

0

Q([s, t)) ds

= tQ({0}) +
∫ t

0
Q((0, s)) ds ,

and since (2.9) implies

Q((−∞, 0)) + Q({0}) = Q((−∞, 0]) = τ + q+ ,

we thus obtain

CL⋆,Q(t) = tq+ +

∫ t

0
Q
(
(0, s)

)
ds .

Applying this equation to the pinball loss with parameter 1 − τ and the
distribution Q̄ defined by Q̄(A) := Q(−A), A ⊂ R measurable, gives a real
number 0 ≤ q− ≤ Q({0}) such that Q([0,∞)) = 1− τ + q− and

CL⋆,Q(−t) = tq− +

∫ t

0
Q
(
(−s, 0)

)
ds

for all t ≥ 0. Consequently, t∗ = 0 is a minimizer of CL⋆,Q( · ) and we
have C∗

L⋆,Q = CL⋆,Q(0) = 0. From this we conclude both (2.7) and (2.8).
Moreover, combining Q([0,∞)) = 1− τ + q− with (2.9), we find q+ + q− =
Q({0}). Finally, the formula for the set of exact minimizers is an obvious
consequence of (2.7) and (2.8). �

In order to investigate how well approximate L⋆-risk minimizers approx-
imate the exact L⋆-risk minimizers, we further have to adopt the self-
calibration approach of Steinwart and Christmann (2008b, Chapter 3). For-
tunately, the fact that we always have |C∗

L⋆,Q| <∞makes our considerations
a little easier than those in Steinwart and Christmann (2008b, Chapter 3)
for general loss functions. To further decrease the notational burden we as-
sume in the following that the considered distribution Q on R has a unique
τ -quantile, denoted by t∗τ,Q or simply t∗ if no confusion can arise. Fortu-
nately, this uniqueness assumption is by no means necessary, and we refer
the interested reader to Steinwart and Christmann (2008b, Chapter 3) for
a modification to this general situation.

With these preparations, the L⋆-generalization of the self-calibration func-
tion now reads as follows:

δmax(ε,Q) := inf
|t−t∗|≥ε

CL⋆,Q(t)− C∗
L⋆,Q , ε > 0 .
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Note that, for t ∈ R and ε := |t− t∗|, we have

δmax(|t− t∗|,Q) = δmax(ε,Q) ≤ CL⋆,Q(t)− C∗
L⋆,Q ,

i.e., as for standard loss functions δmax(ε,Q) measures how well approxi-
mate CL⋆,Q( · )-minimizers approximate the exact minimizer t∗. Moreover,
by Proposition 2.2.3 we conclude that, for all ε > 0, we have

δmax(ε,Q) = min
{
εq+ +

∫ ε

0
Q
(
(t∗, t∗ + s)

)
ds ,

εq− +

∫ ε

0
Q
(
(t∗ − s, t∗)

)
ds
}
> 0 ,

where we used the assumption that t∗ is the only τ -quantile, i.e., the only
exact CL⋆,Q( · )-minimizer. Since the proofs of Theorem 3.61 and its Corol-
lary 3.62 in Steinwart and Christmann (2008b) only consider excess inner
risks and not the underlying loss function itself, a literal repetition of these
proofs then yields the following result.

Corollary 2.2.4. For τ ∈ (0, 1), let L be the τ -pinball loss and L⋆ its shifted
version. Moreover, let P be a distribution on X × R whose conditional τ -
quantile f∗τ,P : X → R is PX-almost surely unique. Then, for all sequences
(fn) of measurable functions fn : X → R, the convergence

RL⋆,P(fn) → R∗
L⋆,P

implies
fn → f∗τ,P in probability PX .

Proof of Theorem 2.2.2. Due to the assumptions, Theorem 2.2.1 is appli-
cable and hence fL⋆,D,λn satisfies RL⋆,P(fL⋆,D,λn) → R∗

L⋆,P in probability
(or almost surely) for n → ∞. The existence of a unique minimizer f∗τ,P
is guaranteed by the assumptions of Theorem 2.2.2. Hence, Corollary 2.2.4
yields the assertion. �
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Chapter 3

Robustness of
Support Vector Machines

3.1 Robustness

As shown in the previous section, a strong argument in favor of SVMs is
that they are L-risk consistent under weak assumptions, that is SVMs are
able to “learn”. It is, however, also important to investigate the robustness
properties for such statistical learning methods. In almost all cases statis-
tical models are only approximations to the true random process which
generated a given data set. Hence the natural question arises what impact
such deviations may have on the results. J.W. Tukey, one of the pioneers
of robust statistics, mentioned already in 1960 (Hampel et al., 1986, p. 21):

“A tacit hope in ignoring deviations from ideal models was that
they would not matter; that statistical procedures which were
optimal under the strict model would still be approximately op-
timal under the approximate model. Unfortunately, it turned out
that this hope was often drastically wrong; even mild deviations
often have much larger effects than were anticipated by most
statisticians.”

Let us consider T (P) := fL,P,λ, with P a probability measure, as a map-
ping T : P 7→ fL,P,λ. In robust statistics we are interested in smooth and
bounded functions T , because this will give stable regularized risks within
small neighborhoods of P. If an appropriate derivative ∇T (P) of T (P) is
bounded, then the function T (P) cannot increase or decrease unlimited in
small neighborhoods of P. We thus expect the value of T (Q) to be close
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Figure 3.1: Schematic representation of the robustness of a statistic S. On
the left, a neighborhood of P in the set M1(X ×Y) is shown. On the right
we see that this neighborhood is mapped onto a neighborhood of S(P).

to the value of T (P) for distributions Q in a small neighborhood of P. A
schematic representation of the robustness of a statistic S(P) is given in Fig-
ure 3.1. Several notions of differentiability have been used for this purpose.1

From a mathematical point of view, the Fréchet-derivative would probably
be the most suitable notion to use for robustness properties, but there exist
many interesting statistical methods which don’t have a Fréchet-derivative,
since Fréchet-differentiability is a rather strict concept. Therefore many
approaches use weaker notions on differentiability, such as Hadamard- or
Gâteaux-differentiability. It was exactly Gâteaux-differentiability that in-
spired Hampel to introduce the influence function, which is an even weaker
concept since it is defined as a Gâteaux-derivative, but without the assump-
tion of linearity. These other, weaker concepts are especially important if
the estimates use non-smooth functions, such as some of the loss functions
we saw in Section 1.4.

As said above, one general approach to robustness is the one based
on influence functions (Hampel, 1968, 1974) which are closely related to
Gâteaux-derivatives. Of course there also exist other notions to verify ro-
bustness, such as the breakdown2 point of an estimator, its maxbias or its
sensitivity curve. For more detail on the theory of robustness, we refer to
Hampel et al. (1986), Huber (1981), and Maronna et al. (2006). Robustness
results on SVMs can be found in, e.g., Christmann and Steinwart (2007)

1For more details on Gâteaux-, Hadamard-, and Fréchet-derivatives, we refer to Ap-
pendix A.3.3. Bouligand-derivatives are treated in Subsection 3.2.1.

2As far as we know, there exist no published results on the breakdown point of SVMs,
but since the breakdown point is a measure of robustness, we conjecture there is a conflict
of goals between universal consistency and a positive breakdown point (cfr. p. 97).
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and Steinwart and Christmann (2008b).

Definition 3.1.1. Let M1 be the set of probability distributions on a mea-
surable space (Z,B(Z)) and let H be a reproducing kernel Hilbert space.
The influence function (IF) of T : M1 → H at a point z ∈ Z for a
distribution P is defined as

IF(z;T,P) = lim
ε↓0

T ((1− ε)P + εδz)− T (P)

ε
, (3.1)

if the limit exists.

Within this approach robust estimators are those which have a bounded
influence function.3 The influence function is neither supposed to be linear
nor continuous. If the influence functions exists for all points z ∈ Z and if
it is continuous and linear, then the IF is a special Gâteaux-derivative.

Christmann and Steinwart (2004, 2007) and Steinwart and Christmann
(2008a) showed that SVMs have a bounded influence function in binary
classification and in regression problems provided that the kernel is bounded
and continuous, L is twice Fréchet-differentiable, and the first and second
Fréchet-derivative of L are bounded. Hence Lipschitz continuous loss func-
tions are of special interest from a robustness point of view. An example of
a loss function with these properties is the logistic loss for regression given
by (1.27). However the important special cases Lϵ, Lτ−pin, and Lc−Huber

are excluded in these results, because these loss functions are not every-
where (twice) Fréchet-differentiable.

We try to fill this gap by proposing an alternative to the classical influ-
ence function in Definition 3.2.3. This alternative is based on Bouligand-
derivatives whereas Hampel’s influence function was defined having Gâ-
teaux-derivatives in mind. Since Bouligand-derivatives are only supposed
to be positive homogeneous instead of linear, our tacit hope what that this
notion would allow us to extend the robustness result on SVMs to also
those SVMs that are based on non-smooth loss functions. Using then this
new notion of robustness, we show in Sections 3.3 and 3.4 that SVMs are
robust in this sense even if the loss function has no Fréchet-derivative.

The main objects in this work are the consistency and robustness of
SVMs. However, the precision of an estimator T (Dn) of the statistic T (P),
called the efficiency of the estimator, is also of importance. This efficiency

3In the following we use the term “robust” in this sense, unless otherwise stated.
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will often be determined through the asymptotic variance. In a parametric
context, it is often said that

√
n(T (Dn) − T (P)) will be asymptotically

normal with mean zero and asymptotic variance

V (T,P) =

∫
IF(x;T,P)2dP(x) , (3.2)

see, e.g., Hampel et al. (1986, p. 85) or Huber (1981, p. 39). Davies (1993,
p. 1856) remarks however that in general there is no such connection be-
tween the influence function and the asymptotic approximation of a sta-
tistical method, at least not without further conditions, and he also shows
this through a counterexample. As we could also see in Huber (1981, p. 39),
the existence of the Fréchet-derivative of T at P is a necessary assumption
to obtain asymptotic normality such that the asymptotic variance can be
written as (3.2).

For the case of SVMs we see nevertheless two problems with this for-
mulation. First of all, Hable (2011) showed that for a sequence of SVM-
estimators

(X × Y)n → H , Dn 7→ fL,Dn,λDn

asymptotic normality holds for the difference between the empirical SVM
and the theoretical SVM fL,P,λ0 with λ0 ∈ (0,∞), that is

√
n(fL,Dn,λDn

− fL,P,λ0)

converges weakly to a (zero-mean) Gaussian process in the function space
H, given that

√
n(λDn − λ0) → 0 in probability. It would of course also be

desirable to have asymptotic normality of

√
n(fL,Dn,λDn

− f∗L,P) ,

but in the non-parametric setting where H is a large infinite-dimensional
function space, this is probably not possible because such a result would
violate the no-free-lunch theorem, and thus we do not obtain the desired
asymptotic normality.

And secondly, even if the asymptotic normality would hold, there are, to
our knowledge, no results published so far that the SVM-functional P 7→
fL,P,λ is Fréchet-differentiable. It is known that, given some assumptions,
support vector machines are Bouligand- and Gâteaux-differentiable (see the
results on the IF and the BIF), as well as Hadamard-differentiable (Hable,
2011, Theorem 5.8), but the Fréchet-differentiability of the SVM-functional
itself remains unknown.
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3.2 The Bouligand Influence Function

3.2.1 Bouligand-Derivatives

In this subsection we will recall some facts on Bouligand-derivatives and
strong approximation of functions, because these notions will be used to
introduce our alternative to the influence function (which we will call the
Bouligand influence function, or, in short, BIF) as well as to investigate
robustness properties for SVMs for non-smooth loss functions. For the rest
of this subsection, let E1, E2,W , and Z be normed linear spaces, and let us
consider neighborhoods N (x0) of x0 in E1, N (y0) of y0 in E2, and N (w0)
of w0 in W . Let F and G be functions from N (x0)×N (y0) to Z, h1 and h2
functions from N (w0) to Z, f a function from N (x0) to Z and g a function
from N (y0) to Z. A function f approximates F in x at (x0, y0), written as
f ∼x F at (x0, y0), if

F (x, y0)− f(x) = o(x− x0) .

Similarly, g ∼y F at (x0, y0) if F (x0, y) − g(y) = o(y − y0). This kind of
approximation can be seen in the definition of the partial Fréchet-derivative.
E.g., F has a partial Fréchet-derivative∇F

1 F at (x0, y0) is the same as saying
that F (x0, y0) +∇F

1 F (x0, y0)(x− x0) ∼x F at (x0, y0) (Robinson, 1991).
A function h1 strongly approximates h2 at w0, written as h1 ≈ h2 at

w0, if for each ε > 0 there exists a neighborhood N (w0) of w0 such that
whenever w and w′ belong to N (w0),∥∥(h1(w)− h2(w)

)
−

(
h1(w

′)− h2(w
′)
)∥∥ ≤ ε

∥∥w − w′∥∥ .
Strong approximation amounts to requiring h1−h2 to have a strong Fréchet-
derivative equal to 0 at w0, though neither h1 nor h2 is assumed to be
differentiable in any sense. We define strong approximation for functions of
several groups of variables, for example G ≈(x,y) F at (x0, y0), by replacing
W by E1×E2 and making the obvious substitutions. A function f strongly
approximates F in x at (x0, y0), written as f ≈x F at (x0, y0), if for each
ε > 0 there exist neighborhoods N (x0) of x0 and N (y0) of y0 such that
whenever x and x′ belong to N (x0) and y belongs to N (y0) we have∥∥(F (x, y)− f(x)

)
−

(
F (x′, y)− f(x′)

)∥∥ ≤ ε
∥∥x− x′

∥∥ .
A similar definition is made for strong approximation in y. For exam-
ple, if F (x, y) is Fréchet-differentiable in x in a neighborhood of (x0, y0)
and its partial Fréchet-derivative ∇F

1 F is continuous in both x and y at
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(x0, y0), then ∇F
1 F (x0, y0) ≈x F at (x0, y0) (Dontchev and Hager, 1994).

Note that one has both f ≈x F and g ≈y F at (x0, y0) exactly if
f(x) + g(y) ≈(x,y) F at (x0, y0).

Recall that a function f : E1 → Z is called positive homogeneous if

f(αx) = αf(x) ∀α ≥ 0 , ∀x ∈ E1 .

Following Robinson (1987) we can now define the Bouligand-derivative.

Definition 3.2.1. Given a function f from an open subset U of a normed
linear space E1 into another normed linear space Z, we say that f is
Bouligand-differentiable at a point x0 ∈ U , if there exists a positive
homogeneous function ∇Bf(x0) : U → Z such that

f(x0 + h) = f(x0) +∇Bf(x0)(h) + o(h).

which can be rewritten as

lim
h→0

∥∥f(x0 + h)− f(x0)−∇Bf(x0)(h)
∥∥
Z

∥h∥E1

= 0 . (3.3)

We will sometimes use the abbreviations B-, F-, H-, and G-derivatives
for Bouligand-, Fréchet-, Hadamard-, and Gâteaux-derivatives respectively.

Let F : E1 × E2 → Z, and suppose that F has a partial B-derivative4

∇B
1 F (x0, y0) with respect to x at (x0, y0). We say that∇B

1 F (x0, y0) is strong
if

F (x0, y0) +∇B
1 F (x0, y0)(x− x0) ≈x F at (x0, y0) .

Robinson (1987) showed that the chain rule holds for Bouligand-derivatives.
Let f be a Lipschitzian function from an open set Ω ⊂ Rm to Rk, x0 ∈ Ω,
and f B-differentiable at x0. Let g be a Lipschitzian function from an open
set Γ ⊂ Rk, with f(x0) ∈ Γ, to Rl be B-differentiable at f(x0). Then g ◦ f
is B-differentiable at x0 and

∇B(g ◦ f)(x0) = ∇Bg
(
f(x0)

)
◦ ∇Bf(x0) .

The fact that B-derivatives, just as F- and H-derivatives, fulfill the chain
rule is no contradiction to the fact that H-differentiability is the weakest
S-differentiation5 which fulfills the chain rule (Averbukh and Smolyanov,

4Partial B-derivatives of f are denoted by ∇B
1 f , ∇B

2 f , ∇B
2,2f := ∇B

2

(
∇B

2 f
)
etc.

5See Appendix A.3.3.
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1967, 1968) because the B-derivative is not necessarily a continuous linear
function.

In general are Gâteaux- and Bouligand-differentiability not directly com-
parable, because B-derivatives are by definition positive homogeneous, but
not necessarily linear. We will show in Subsection 3.2.3 that the existence
of the BIF implies the existence of the IF and that in that case both are
equal. Please note however, that this in general still does not imply that
the IF is a Gâteaux-derivative.

Since every linear function is trivially also positive homogeneous, it fol-
lows directly from the definition that every Fréchet-differentiable function
is also Bouligand-differentiable.

The following implicit function theorem for B-derivatives, can be found
in Robinson (1991, Corollary 3.4). For a function f from a metric space
(X, dX) to another metric space (Y, dY ), we define

δ(f,X) = inf{dY
(
f(x1), f(x2)

)
/ dX(x1, x2) | x1 ̸= x2; x1, x2 ∈ X} .

Clearly δ(f,X) ̸= 0 only if f is one-to-one on X.

Theorem 3.2.2 (Implicit function theorem). Let Y be a Banach space
and X and Z be normed linear spaces. Let x0 and y0 be points of X and
Y , respectively, and let N (x0) be a neighborhood of x0 and N (y0) be a
neighborhood of y0. Suppose that G is a function from N (x0)×N (y0) to Z
with G(x0, y0) = 0. In particular, for some ϕ and each y ∈ N (y0), G( · , y)
is assumed to be Lipschitz continuous on N (x0) with modulus ϕ. Assume
that G has partial B-derivatives with respect to x and y at (x0, y0), and
that:

(i) ∇B
2 G(x0, y0)( · ) is strong.

(ii) ∇B
2 G(x0, y0)(y − y0) lies in a neighborhood of 0 ∈ Z, ∀y ∈ N (y0).

(iii) δ(∇B
2 G(x0, y0),N (y0)− y0) =: d0 > 0.

Then for each ξ > d−1
0 ϕ there are neighborhoods U of x0 and V of y0, and

a function f∗ : U → V satisfying

(a) f∗(x0) = y0.

(b) f∗ is Lipschitz continuous on N (x0) with modulus ξ.
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(c) For each x ∈ U , f∗(x) is the unique solution in V of G(x, y) = 0.

(d) The function f∗ is B-differentiable at x0 with

∇Bf∗(x0)(u) =
(
∇B

2 G(x0, y0)
)−1 (−∇B

1 G(x0, y0)(u)
)
.

3.2.2 The Bouligand-Derivative of Some Loss Functions

In this subsection we will calculate the Bouligand-derivatives of some loss
functions.

Least squares loss
Let us start easy with a function we know to be F-differentiable. In this
case, the B-derivative should be the same as the F-derivative. We will thus
show for the least squares loss

L(x, y, t) = LLS(x, y, t) := (y − t)2

that
∇B

3 L(x, y, t)(h) = −2(y − t)h

and ∇F
3,3L(x, y, t)(h) = 2h.

The first B-derivative is

∇B
3 L(x, y, t)(h) + o(h) = L(x, y, t+ h)− L(x, y, t)

= (y − t− h)2 − (y − t)2

= 2th− 2yh+ h2

= −2h(y − t) + h2 ,

and therefore ∇B
3 L(x, y, t) = −2(y − t) = ∇F

3 L(x, y, t).
In the same way, we find the second B-derivative:

∇B
3,3L(x, y, t)(h) + o(h) = ∇B

3 L(y, t+ h)−∇B
3 L(x, y, t)

= −2(y − t− h)− (−2(y − t)) = 2h .

So ∇B
3,3L(x, y, t) = 2, which also corresponds to the second order partial

F-derivative.

ϵ-insensitive loss
We shall show for the ϵ-insensitive loss

L(x, y, t) = Lϵ(x, y, t) := max{|y − t| − ϵ, 0}
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that

∇B
3 L(x, y, t)(h) =


−h if {t < y − ϵ} or {y − t = ϵ, h < 0}
0 if {y − ϵ < t < y + ϵ} or {y − t = ϵ, h ≥ 0}

or {y − t = −ϵ, h < 0}
h if {t > y + ϵ} or {y − t = −ϵ, h ≥ 0}

and ∇B
3,3L(x, y, t)(h) = 0.

For the derivation of ∇B
3 L(x, y, t) we need to consider 5 cases.

i) If t > y + ϵ, we have t + h > y + ϵ as long as h is small enough.
Therefore,

∇B
3 L(x, y, t)(h) + o(h) = L(x, y, t+ h)− L(x, y, t)

= t+ h− y − ϵ− (t− y − ϵ) = h .

ii) If t < y − ϵ, we have t+ h < y + ϵ if h is sufficiently small. Thus

∇B
3 L(x, y, t)(h) + o(h) = y − t− h− ϵ− (y − t− ϵ) = −h .

iii) If y − t ∈ (−ϵ, ϵ) we have y − t − h ∈ (−ϵ, ϵ) for h → 0. This yields
∇B

3 L(x, y, t)(h) + o(h) = 0− 0 = 0.

iv) If y − t = ϵ we have to consider 2 cases. If h ≥ 0 and small, then
−ϵ < y − t− h < ϵ and hence ∇B

3 L(x, y, t)(h) + o(h) = 0− 0 = 0.
If h < 0, we have y − t− h > ϵ and thus

∇B
3 L(x, y, t)(h) + o(h) = y − t− h− ϵ− 0 = −h .

v) If y − t = −ϵ we have again to consider 2 cases. If h ≥ 0, we have
y − t− h < −ϵ. Hence

∇B
3 L(x, y, t)(h) + o(h) = t+ h− y − ϵ− 0 = h .

If h < 0, we get −ϵ < y−t−h < ϵ which gives∇B
3 L(x, y, t)(h)+o(h) =

0− 0 = 0.

This gives the assertion for the first partial B-derivative. Using the same
reasoning we obtain ∇B

3,3L(x, y, t)(h) = 0.
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Pinball-loss
It will be shown that for the pinball loss

L(x, y, t) = Lτ−pin(x, y, t) :=

{
(τ − 1)(y − t) , if y − t < 0

τ(y − t) , if y − t ≥ 0

we get

∇B
3 L(x, y, t)(h) =

{
(1− τ)h if {y − t < 0} or {y − t = 0, h ≥ 0}
−τh if {y − t > 0} or {y − t = 0, h < 0}

and ∇B
3,3L(x, y, t)(h) = 0.

For the calculation of ∇B
3 L(x, y, t) we consider 3 cases.

i) If y − t < 0 we have y − t− h < 0 for sufficiently small values of |h|.
Hence

∇B
3 L(x, y, t)(h) + o(h) = L(x, y, t+ h)− L(x, y, t)

= (τ − 1)(y − t− h)− (τ − 1)(y − t)

= (1− τ)h .

ii) If y − t > 0 we have y − t − h > 0 for sufficiently small values of |h|
which yields

∇B
3 L(x, y, t)(h) + o(h) = τ(y − t− h)− τ(y − t) = −τh .

iii) Assume y − t = 0. If y − t− h < 0 we have

∇B
3 L(x, y, t)(h) + o(h) = (1− τ)h .

If y − t− h > 0 it follows

∇B
3 L(x, y, t)(h) + o(h) = τ(y − t− h)− τ(y − t) = −τh .

Together this gives the assertion for ∇B
3 L(x, y, t)(h). In the same way we

get ∇B
3,3L(x, y, t)(h) = 0.

Huber loss
It will be shown that for the Huber loss

L(x, y, t) = Lc−Huber(x, y, t) :=

{
0.5(y − t)2 if |y − t| ≤ c

c|y − t| − c2/2 if |y − t| > c
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we have

∇B
3 L(x, y, t)(h) =

{
−c sign(y − t)h if |y − t| > c
−(y − t)h if |y − t| ≤ c

and

∇B
3,3L(x, y, t)(h) =


h if {y − t = c, h ≥ 0} or {y − t = −c, h < 0}

or {|y − t| < c}
0 if else .

For the derivation of ∇B
3 L(x, y, t) we consider the following 5 cases.

i) Let y − t = c. If h ≥ 0 or y − t− h ≤ c then

∇B
3 L(x, y, t)(h) + o(h) = L(x, y, t+ h)− L(x, y, t)

=
1

2
(y − t− h)2 − 1

2
(y − t)2

= −(y − t)h+
h2

2
.

If h < 0 or y − t− h > c > 0 we have

∇B
3 L(x, y, t)(h) + o(h) = c|y − t− h| − c2

2
− 1

2
(y − t)2

= c(y − t− h)− c2

2
− c2

2
= c(c− h)− c2 = −(y − t)h .

ii) Now we consider the case y − t = −c. If h ≥ 0 or y − t− h ≤ −c < 0
we obtain

∇B
3 L(x, y, t)(h) + o(h) = c|y − t− h| − c2

2
− 1

2
(y − t)2

= c(c+ h)− c2

2
− c2

2
= −(y − t)h .

If h < 0 or y − t− h > −c we get

∇B
3 L(x, y, t)(h) + o(h) =

1

2
(y− t− h)2 − 1

2
(y− t)2 = −(y− t)h+

h2

2
.
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iii) If y − t > c, we have y − t− h > c and thus

∇B
3 L(x, y, t)(h) + o(h) = c|y − t− h| − c2

2
− c|y − t|+ c2

2
= c(y − t− h)− c(y − t)

= −ch = −c sign(y − t)h .

iv) If y − t < −c, we have y − t− h < −c and obtain analogously to (iii)
that

∇B
3 L(x, y, t)(h) + o(h) = c|y − t− h| − c2

2
− c|y − t|+ c2

2
= c(−y + t+ h)− c(−y + t)

= ch = −c sign(y − t)h .

v) If −c < y − t < c, then −c < y − t− h < c and

∇B
3 L(x, y, t)(h) + o(h) =

1

2
(y− t− h)2 − 1

2
(y− t)2 = −(y− t)h+

h2

2
.

This gives the assertion for ∇B
3 L(x, y, t)(h). Only the first two cases, where

y − t = ±c, were necessary to compute, since in the other 3 parts the
function is already F-differentiable, and thus also B-differentiable. For the
second partial B-derivative we consider 3 cases.

i) Assume y − t = c. If y − t− h < c then

∇B
3,3L(x, y, t)(h) + o(h) = ∇B

3 L(x, y, t+ h)−∇B
3 L(x, y, t)

= −(y − t− h)− (−(y − t)) = h .

If y − t− h > c then ∇B
3,3L(x, y, t)(h) + o(h) = −c− (−(y − t)) = 0.

ii) Assume y − t = −c. If y − t − h < −c we obtain ∇B
3,3L(x, y, t)(h) +

o(h) = c− (−(y − t)) = 0.
If y − t− h > −c then

∇B
3,3L(x, y, t)(h) + o(h) = −(y − t− h)− (−(y − t)) = h .

iii) Assume that |y − t| ̸= c. Then ∇B
3 L(x, y, t + h) = ∇B

3 L(x, y, t). The
difference, and consequently ∇B

3,3L(x, y, t)(h) = 0.
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This gives the assertion for Huber’s loss function.

Hinge loss
Finally we will show that for the hinge loss

L(x, y, t) = Lhinge(x, y, t) := max{0, 1− yt}

we obtain the following partial B-derivatives:

∇B
3 L(x, y, t)(h) =


−yh if {yt < 1} or {y = t = 1, h < 0}

or {y = t = −1, h ≥ 0}
0 if {yt > 1} or {y = t = 1, h ≥ 0}

or {y = t = −1, h < 0}

and ∇B
3,3L(x, y, t)(h) = 0.

For the first derivative, we need to differ 3 cases:

i) If yt < 1 then for h small enough, we also have y(t+ h) < 1. Thus

∇B
3 L(x, y, t)(h) + o(h) = L(x, y, t+ h)− L(x, y, t)

= 1− y(t− h)− (1− yt) = −yh .

ii) Likewise if yt > 1 then also y(t+ h) > 1 if h is sufficiently small and
so

∇B
3 L(x, y, t)(h) + o(h) = L(y, t+ h)− L(y, t)

= 0− 0 = 0 .

iii) The third case is where yt = 1. Here we have to consider 2 cases. If
y(t+ h) > 1 we have

∇B
3 L(x, y, t)(h) + o(h) = 0− 0 = 0 .

Or else, for y(t+ h) < 1, we obtain

∇B
3 L(x, y, t)(h) + o(h) = 1− y(t+ h)− 0 = −yh ,

which gives us the assertion. Following the same reasoning, it is clear that
∇B

3,3L(x, y, t)(h) = 0.
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3.2.3 The Bouligand Influence Function

We will now define the Bouligand influence function as a new measure in
robust statistics, and we then will use it to show that a broad class of
support vector machines based on a Lipschitz continuous, but not neces-
sarily Fréchet-differentiable, loss function are robust in the sense of having
a bounded Bouligand influence function. Recall that we denote the set of
all probability distributions on some measurable space (Z,A) by M1 and
let H be a Hilbert space.

Definition 3.2.3. The Bouligand influence function (BIF) of the
function T : M1 → H for a distribution P in the direction of a distribution
Q ̸= P is the special Bouligand-derivative (if it exists)

lim
ε↓0

∥∥T ((1− ε)P + εQ
)
− T (P)− BIF(Q;T,P)

∥∥
H

ε
= 0 . (3.4)

The BIF has the interpretation that it measures the impact of an in-
finitesimal small amount of contamination of the original distribution P in
the direction of Q on the quantity of interest T (P). It is thus desirable that
the function T has a bounded BIF.

Note that (3.4) is indeed a special B-derivative, because we consider the
directions h = ε(Q− P) and x0 = P. If Q equals the Dirac distribution δz
in a point z ∈ Z, that is δz({z}) = 1, we write BIF(z;T,P). The choice of
the metric on M1 is not important for the definition of the BIF, because
∥ε(Q− P)∥ = ε ∥Q− P∥ and ∥Q− P∥ is a positive constant. For the norm
of total variation ∥ · ∥M we obtain for example,

lim
ε(Q−P)↓0

∥∥T (P + ε(Q− P)
)
− T (P)− BIF(Q;T,P)

∥∥
H

∥ε(Q− P)∥M
= 0 ,

(cf., Equation 3.3). Since ε(Q − P) → 0 if and only if ε → 0 and by the
assumption that Q ̸= P we obtain (3.4).

The Bouligand influence function is a modification of the influence func-
tion given by (3.1). Recall that the Gâteaux-derivative of some mapping f
at a point x0 equals

∇Gf(x0)(h) = lim
ε↓0

f(x0 + εh)− f(x0)

ε
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if it exists for every h ∈ X. Hence the influence function is the special
Gâteaux-derivative with Q = δz and h = δz − P, if the IF is continuous
and linear. However, the BIF is always positive homogeneous because it is a
Bouligand-derivative, which is in general not true for the influence function.
As will be shown in (3.24), this property leads to the result that for α ≥ 0
and h := ε(Q− P) the asymptotic bias T ((1− αε)P + αεQ)− T (P) equals
αBIF(Q;T,P) + o(αh).

The following simple calculations clarify the connection between the BIF
and the IF. In general we have for B-derivatives with h = εh̃, where ε ∈
(0,∞) and h̃ ∈ X with 0 < ∥h̃∥ ≤ 2,

0 = lim
h→0

∥f(x0 + h)− f(x0)−∇Bf(x0)(h)∥
∥h∥

⇔ 0 = lim
ε↓0

∥f(x0 + εh̃)− f(x0)− ε∇Bf(x0)(h̃)∥
ε∥h̃∥

⇔ 0 = lim
ε↓0

∥∥∥f(x0 + εh̃)− f(x0)

ε
−∇Bf(x0)(h̃)

∥∥∥ .
Hence

lim
ε↓0

f(x0 + εh̃)− f(x0)

ε
= ∇Bf(x0)(h̃) .

In particular we obtain for Q ̸= P and taking 0 < ∥Q−P∥ ≤ 2 into account
that, if BIF(Q;T,P) exists, then

BIF(Q;T,P) = lim
ε↓0

T ((1− ε)P + εQ)− T (P )

ε
,

which is the definition of the IF, if we choose Q = δz.
Figure 3.2 show the connections between the various types of differenti-

ation and their link to the influence functions.

In the following sections, we will investigate the robustness of a specific
learning method, namely the SVM, through the use of influence functions
(both IF and BIF) and bounds on the bias.

Using these general concepts of robust statistics, it is possible to compare
different methods with respect to their robustness properties. Methods with
a smaller norm of the influence function or with a smaller maximal bias are
generally considered as more robust. In our case one could consider either
the supremum norm or the Hilbert norm.

It would of course also be possible to look at the (Bouligand) influence
function of the risk, but this is not done in the scope of this work. This
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Figure 3.2: Overview on the relation between the different types of differ-
entiation and influence functions.

would probably be an easier problem than the one solved in the following
sections, since the function fL,P,λ ∈ H, whereas the risk, either RL,P or
Rreg

L,P,λ, is only an element of R.

3.3 Robustness of SVMs Based on
Standard Loss Functions

After introducing the Bouligand influence function, we are ready to show
that a broad class of support vector machines based on a Lipschitz continu-
ous, but not necessarily Fréchet-differentiable, loss function has a bounded
Bouligand influence function.

3.3.1 Robustness of SVMs

We can now give a general result on the BIF of the support vector machine.
To this end define

T : M1(X × Y) → H, T (P) := fL,P,λ .

We restrict attention to Lipschitz continuous loss functions, because the
growth behavior of the loss function L plays an important role to obtain
consistency and robustness results as shown by Christmann and Steinwart
(2007). For notational convenience we shall often write ∇B

3 L(X,Y, f(X))
instead of ∇B

3 L(X,Y, · )(f(X)), because f(X) ∈ R. We will sometimes
explicitly write “·” for multiplication to avoid misunderstandings.

Theorem 3.3.1 (Bouligand influence function). Let X ⊂ Rd be closed,6 H
be an RKHS with a bounded, continuous kernel k, fL,P,λ ∈ H, and L : X ×

6Or more general, X a complete separable normed linear space.
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Y×R → [0,∞) be a convex loss function which is Lipschitz continuous with
Lipschitz constant |L|1 ∈ (0,∞). Further, assume that L has measurable
partial B-derivatives with

κ1 := sup
(x,y)∈X×Y

∥∥∇B
3 L(x, y, · )

∥∥
∞ ∈ (0,∞) ,

κ2 := sup
(x,y)∈X×Y

∥∥∇B
3,3L(x, y, · )

∥∥
∞ <∞ .

(3.5)

Let P,Q be probability measures7 on
(
X × Y,B(X × Y)

)
with EP|Y | < ∞

and EQ|Y | <∞, δ1 > 0, δ2 > 0,

Nδ1(fL,P,λ) := {f ∈ H; ∥f − fL,P,λ∥H < δ1} ,

and λ > 1
2κ2 ∥k∥

3
∞. Define G : (−δ2, δ2)×Nδ1(fL,P,λ) → H,

G(ε, f) := 2λf + E(1−ε)P+εQ∇B
3 L(X,Y, f(X)) · Φ(X) , (3.6)

and assume that ∇B
2 G(0, fL,P,λ) is strong. Then the Bouligand influence

function of T (P) := fL,P,λ in the direction of Q ̸= P exists,

BIF(Q;T,P) = S−1
(
EP∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)

(3.7)

−S−1
(
EQ∇B

3 L(X,Y, fL,P,λ(X)) · Φ(X)
)
, (3.8)

where S : H → H with

S( · ) := ∇B
2 G(0, fL,P,λ)( · )

= 2λ idH( · ) + EP∇B
3,3L(X,Y, fL,P,λ(X)) · ⟨Φ(X), · ⟩HΦ(X) ,

and BIF(Q;T,P) is bounded.

The proof of Theorem 3.3.1 is based upon the implicit function theo-
rem 3.2.2 for Bouligand-derivatives as well as Theorem A.3.2.

Remark 3.3.2. In order to prove 3.3.1, we additionally show that under
the assumptions of Theorem 3.3.1 we have:

i) For some χ and each f ∈ Nδ1(fL,P,λ), G( · , f) is Lipschitz continuous
on (−δ2, δ2) with Lipschitz constant χ.

7Because X and Y are assumed to be closed, P can be split up into the marginal
distribution PX and the regular conditional probability P( · |x), x ∈ X , on Y. Same for
Q.
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ii) G has partial B-derivatives with respect to ε and f at (0, fL,P,λ).

iii) ∇B
2 G(0, fL,P,λ)(h − fL,P,λ) lies in a neighborhood of 0 ∈ H, ∀h ∈

Nδ1(fL,P,λ).

iv) The constant d0 defined as

inf
h1,h2∈Nδ1

(fL,P,λ)−fL,P,λ

h1 ̸=h2

∥∥∇B
2 G(0, fL,P,λ)(h1)−∇B

2 G(0, fL,P,λ)(h2)
∥∥
H

∥h1 − h2∥H

is strictly positive.

v) For each ξ > d−1
0 χ there exist constants δ3, δ4 > 0, a neighborhood

Nδ3(fL,P,λ) := {f ∈ H; ∥f − fL,P,λ∥H < δ3}, and a function f∗ :
(−δ4, δ4) → Nδ3(fL,P,λ) satisfying

v.1) f∗(0) = fL,P,λ.

v.2) f∗ is Lipschitz continuous on (−δ4, δ4) with Lipschitz constant
|f∗|1 = ξ.

v.3) For each ε ∈ (−δ4, δ4) is f∗(ε) the unique solution of G(ε, f) = 0
in Nδ3(fL,P,λ).

v.4) ∇Bf∗(0)(u) =
(
∇B

2 G(0, fL,P,λ)
)−1 (−∇B

1 G(0, fL,P,λ)(u)
)
, u ∈

(−δ4, δ4).

The function f∗ is the same as in the implicit function theorem 3.2.2.

Remark 3.3.3. It has been shown in Subsection 3.2.2 that κ2 = 0 for
L = Lϵ and L = Lτ−pin and thus in these cases the regularization condition
only states that λ > 1

2κ2 ∥k∥
3
∞ = 0.

Note that S can be interpreted as the (Bouligand-)Hessian of the regu-
larized risk, see (3.9) and (3.12). Further the formula in (3.7) and (3.8) is
similar to the one obtained by Christmann and Steinwart (2007) for the IF
of T (P) = fL,P,λ. The difference is that we used B-derivatives instead of
F-derivatives, because we allow for non-smooth loss functions.

Also note that the first summand of the BIF given in (3.7) does not de-
pend on the contaminating distribution Q. In contrast to that, the second
summand of the BIF given in (3.8) depends on Q and consists of two factors.
The first factor depends on the partial B-derivative of the loss function, and
is hence bounded due to (3.5). For many loss functions this factor depends
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only on the residual term y − fL,P,λ(x). The second factor is the feature
map Φ(x) which is bounded, because k is bounded. For the Gaussian RBF
kernel we expect that the second factor is not only bounded, but that the
impact of Q ̸= P on the BIF is approximately local, because k(x, x′) con-
verges exponentially fast to zero if ||x− x′||2 is large.

The key ingredient of our proof of Theorem 3.3.1 is of course the map
G : R × H → H defined by (3.6). If ε < 0 the integration is with respect
to a signed measure. The H-valued expectation used in the definition of
G is well-defined for all ε ∈ (−δ2, δ2) and all f ∈ Nδ1(fL,P,λ), because
κ1 ∈ (0,∞) by (3.5) and ∥Φ(x)∥∞ ≤ ∥k∥2∞ < ∞ by (1.34). For F- and
B-derivatives holds a chain rule and F-differentiable functions are also B-
differentiable. For ε ∈ [0, 1] we thus obtain

G(ε, f) =
∂Rreg

L,(1−ε)P+εQ,λ

∂H
(f) = ∇B

2 R
reg
L,(1−ε)P+εQ,λ(f) . (3.9)

Since f 7→ Rreg
L,(1−ε)P+εQ,λ(f) is convex and continuous for all ε ∈ [0, 1] equa-

tion (3.9) shows that we have G(ε, f) = 0 if and only if f = fL,(1−ε)P+εQ,λ

for such ε. Hence
G(0, fL,P,λ) = 0 . (3.10)

By using the steps in Remark 3.3.2, we shall show that Theorem 3.2.2 is
applicable for G and that there exists a B-differentiable function ε 7→ fε
defined on a small interval (−δ2, δ2) for some δ2 > 0 satisfying G(ε, fε) = 0
for all ε ∈ (−δ2, δ2). From the existence of this function we shall obtain
BIF(Q;T,P) = ∇Bfε(0).

Proof of Theorem 3.3.1. The existence of fL,P,λ follows from the convexity
of L and the penalizing term, see also Christmann and Steinwart (2007,
Proposition 8). The assumption that G(0, fL,P,λ) = 0 is valid by (3.10). Let
us now prove the results of Remark 3.3.2 parts 1 to 5.

Remark 3.3.2 part (i). For f ∈ H fixed let ε1, ε2 ∈ (−δ2, δ2). Using
∥k∥∞ <∞ and (3.10) we obtain∣∣E(1−ε1)P+ε1Q∇

B
3 L(X,Y, f(X)) · Φ(X)

−E(1−ε2)P+ε2Q∇
B
3 L(X,Y, f(X)) · Φ(X)

∣∣
=

∣∣EP∇B
3 L(X,Y, f(X))Φ(X) + ε1EQ−P∇B

3 L(X,Y, f(X))Φ(X)

−EP∇B
3 L(X,Y, f(X))Φ(X)− ε2EQ−P∇B

3 L(X,Y, f(X))Φ(X)
∣∣

=
∣∣(ε1 − ε2)EQ−P∇B

3 L(X,Y, f(X)) · Φ(X)
∣∣
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=
∣∣(ε1 − ε2)

∫
∇B

3 L(x, y, f(x))Φ(x) d(Q− P)(x, y)
∣∣

≤ |ε1 − ε2|
∫ ∣∣∇B

3 L(x, y, f(x)) · Φ(x)
∣∣ d|Q− P|(x, y)

≤ |ε1 − ε2|
∫

sup
(x,y)∈X×Y

|∇B
3 L(x, y, f(x))| sup

x∈X
|Φ(x)| d|Q− P|(x, y)

≤ |ε1 − ε2| ∥Φ(x)∥∞ sup
(x,y)∈X×Y

∥∥∇B
3 L(x, y, · )

∥∥
∞

∫
d|Q− P|(x, y)

≤ 2 ∥k∥2∞ sup
(x,y)∈X×Y

∥∥∇B
3 L(x, y, · )

∥∥
∞ |ε1 − ε2|

= 2 ∥k∥2∞ κ1 |ε1 − ε2| <∞ .

Remark 3.3.2 part (ii). We have

∇B
1 G(ε, f) = ∇B

1

(
E(1−ε)P+εQ∇B

3 L(X,Y, f(X)) · Φ(X)
)

= ∇B
1

(
(1− ε)EP∇B

3 L(X,Y, f(X))Φ(X)

+εEQ∇B
3 L(X,Y, f(X))Φ(X)

)
= ∇B

1

(
EP∇B

3 L(X,Y, f(X)) · Φ(X)

+εEQ−P∇B
3 L(X,Y, f(X)) · Φ(X)

)
= EQ−P∇B

3 L(X,Y, f(X)) · Φ(X)

= EQ∇B
3 L(X,Y, f(X)) · Φ(X) (3.11)

−EP∇B
3 L(X,Y, f(X)) · Φ(X) .

These expectations exists due to (1.34) and (3.5). Furthermore, we obtain

∇B
2 G(0, fL,P,λ)(h) + o(h)

= G(0, fL,P,λ + h)−G(0, fL,P,λ)

= 2λh+ EP∇B
3 L(X,Y, (fL,P,λ(X) + h(X))) · Φ(X)

−EP∇B
3 L(X,Y, fL,P,λ(X)) · Φ(X)

= 2λh+ EP

(
∇B

3 L
(
X,Y, (fL,P,λ(X) + h(X))

)
−∇B

3 L
(
X,Y, fL,P,λ(X)

))
· Φ(X) .

This expectation exists, as the term ∇B
3 L

(
X,Y, (fL,P,λ(X) + h(X))

)
−

∇B
3 L

(
X,Y, fL,P,λ(X)

)
is bounded due to (1.34), (3.5), and ∥k∥∞ < ∞.
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Using ⟨Φ(x), · ⟩H ∈ H, for all x ∈ X , we get

∇B
2 G(0, fP,λ)( · ) = 2λidH( · )+EP∇B

3,3L(X,Y, fL,P,λ(X))·⟨Φ(X), · ⟩HΦ(X) .
(3.12)

Note that EP∇B
3,3L

(
X,Y, f(X)

)
= ∇B

3 EP∇B
3 L

(
X,Y, f(X)

)
, because by

using the definition of the Bouligand-derivative, we obtain for the partial
Bouligand-derivatives

∇B
3 EP∇B

3 L
(
X,Y, f(X)

)
− EP∇B

3,3L
(
X,Y, f(X)

)
= EP

(
∇B

3 L(X,Y, (f(X) + h(X)))−∇B
3 L(X,Y, f(X))

)
−EP∇B

3,3L(X,Y, f(X)) + o(h)

= EP

(
∇B

3 L(X,Y, (f(X) + h(X)))−∇B
3 L(X,Y, f(X))

−∇B
3,3L(X,Y, f(X))

)
+ o(h)

= o(h) , h ∈ H .

Remark 3.3.2 part (iii). Let Nδ1(fL,P,λ) be a δ1-neighborhood of fL,P,λ.
Because H is an RKHS and hence a vector space it follows for all h ∈
Nδ1(fL,P,λ) that ∥fL,P,λ − h− 0∥H ≤ δ1 and hence h−fL,P,λ ∈ Nδ1(0) ⊂ H.
Note that ∇B

2 G(0, fL,P,λ)( · ) computed by (3.12) is a mapping from H to
H. For ξ := h − fL,P,λ we have ∥ξ∥H ≤ δ1 and the reproducing property
yields

∇B
2 G(0, fL,P,λ)(ξ) = 2λξ + EP∇B

3,3L(X,Y, fL,P,λ(X)) · ξΦ(X) .

Using (1.34) and (3.5) we obtain∥∥2λξ + EP∇B
3,3L(X,Y, fL,P,λ(X)) · ξΦ(X)− 0

∥∥
H

≤ 2λ ∥ξ∥H +
∥∥EP∇B

3,3L(X,Y, fL,P,λ(X)) · ξΦ(X)
∥∥
H

≤ 2λ ∥ξ∥H + sup
(x,y)∈X×Y

∥∥∇B
3,3L(x, y, · )

∥∥
∞ ∥ξ∥∞ ∥Φ(x)∥∞

≤ 2λ ∥ξ∥H + κ2 ∥ξ∥H ∥k∥3∞
≤

(
2λ+ κ2 ∥k∥3∞

)
δ1 ,

which shows that∇B
2 G(0, fL,P,λ)(h−fL,P,λ) lies in a neighborhood of 0 ∈ H,

for all h ∈ Nδ1(fL,P,λ).

Remark 3.3.2 part (iv). Due to (3.12) we have to prove that

d0 := inf
f1 ̸=f2

∥∥2λ(f1 − f2) + EP∇B
3,3L

(
X,Y, fL,P,λ(X)

)
· (f1 − f2)Φ(X)

∥∥
H

∥f1 − f2∥H
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is strictly positive. If f1 ̸= f2, then (1.34), (3.5), and λ > 1
2 κ2 ∥k∥3∞ yield

that ∥∥2λ(f1 − f2) + EP∇B
3,3L

(
X,Y, fL,P,λ(X)

)
· (f1 − f2)Φ(X)

∥∥
H

∥f1 − f2∥H

≥
∥2λ(f1 − f2)∥H −

∥∥EP∇B
3,3L(X,Y, fL,P,λ(X)) · (f1 − f2)Φ(X)

∥∥
H

∥f1 − f2∥H
≥ 2λ− κ2 ∥k∥3∞ > 0

by our assumption, which gives the assertion.
Remark 3.3.2 part (v). The assumptions of Robinson’s implicit func-

tion theorem, see Theorem 3.2.2, are valid for G due to the results of
Remark 3.3.2 parts (i) to (iv) and the assumption that ∇B

2 G(0, fL,P,λ) is
strong. This gives part (v).

The result of Theorem 3.3.1 now follows from inserting (3.11) and (3.12)
into Remark 3.3.2 part (v.4). Using (3.5) we see that S is bounded. The
linearity of S follows from its definition and the inverse of S does exist by
Theorem 3.2.2. If necessary we can restrict the range of S to S(H) to obtain
a bijective function S∗ : H → S(H) with S∗(f) = S(f) for all f ∈ H. Hence
S−1 is also bounded and linear by Theorem A.3.2. This gives the existence
of a bounded BIF specified by (3.7) and (3.8). �

3.3.2 Some Examples

In this subsection we will show that our Theorem 3.3.1 covers some SVMs
that are widely used in practice. The following result treat SVMs based
on the ϵ-insensitive loss function or Huber’s loss function for regression,
and SVMs based on the pinball loss function for non-parametric quantile
regression. These loss functions have uniformly bounded first and second
partial B-derivatives, see Subsection 3.2.2.

Corollary 3.3.4. Let X ⊂ Rd and Y ⊂ R be closed, and P,Q be distribu-
tions on X × Y with EP|Y | <∞ and EQ|Y | <∞.

i) For L ∈ {Lτ−pin, Lϵ}, assume that for all δ > 0 there exist pos-
itive constants ξP, ξQ, cP, and cQ such that for all t ∈ R with
|t − fL,P,λ(x)| ≤ δ ∥k∥∞ the following inequalities hold for all a ∈
[0, 2δ ∥k∥∞] and x ∈ X :

P
(
Y ∈ [t, t+ a]

∣∣x) ≤ cPa
1+ξP and Q

(
Y ∈ [t, t+ a]

∣∣x) ≤ cQa
1+ξQ .
(3.13)
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ii) For L = Lc−Huber, assume for x ∈ X :

P
(
Y ∈

{
fL,P,λ(x)− c, fL,P,λ(x) + c

} ∣∣x) = 0 ,

Q
(
Y ∈

{
fL,P,λ(x)− c, fL,P,λ(x) + c

} ∣∣x) = 0 .
(3.14)

Then the assumptions of Theorem 3.3.1 are valid: BIF(Q;T,P) of T (P) :=
fL,P,λ exists, is given by (3.7) to (3.8), and is bounded.

For the proof of Corollary 3.3.4 we need to know the partial B-derivatives
for the three loss functions and also have to check that ∇B

2 G(0, fL,P,λ) is
strong. We have already computed the partial B-derivatives for these loss
functions in advance, see Subsection 3.2.2, so it only remains to show that
these partial derivatives are strong.

Proof of Corollary 3.3.4. It has been shown that these loss functions have
bounded first and second partial B-derivatives, so now we are ready to
check if ∇B

2 G(0, fL,P,λ) is strong in these cases. Recall that ∇B
2 G(0, fL,P,λ)

is strong, if for all ε∗ > 0 there exist a neighborhood Nδ1(fL,P,λ) and an
interval (−δ2, δ2) with δ1, δ2 > 0 such that for all f1, f2 ∈ Nδ1(fL,P,λ) and
for all ε ∈ (−δ2, δ2) we have∥∥(G(ε, f1)− g(f1)

)
−

(
G(ε, f2)− g(f2)

)∥∥
H ≤ ε∗ ∥f1 − f2∥H , (3.15)

where, for f ∈ H,

g(f) = 2λfL,P,λ(X) + EP∇B
3 L

(
X,Y, fL,P,λ(X)

)
· Φ(X)

+2λ idH(f(X)− fL,P,λ(X))

+EP∇B
3,3L

(
X,Y, fL,P,λ(X)

)
· ⟨(f(X)− fL,P,λ(X)),Φ(X)⟩HΦ(X) .

Fix ε∗ > 0. Obviously, (3.15) is valid for f1 = f2. For the rest of the proof
we therefore fix arbitrary functions f1, f2 ∈ Nδ1(fL,P,λ) with f1 ̸= f2. We
obtain for the term on the left hand side of (3.15) that∥∥∥(2λf1(X) + E(1−ε)P+εQ∇B

3 L(X,Y, f1(X)) · Φ(X)

− 2λfL,P,λ(X)− EP∇B
3 L(X,Y, fL,P,λ(X)) · Φ(X)

− 2λ(f1(X)− fL,P,λ(X))

− EP∇B
3,3L(X,Y, fL,P,λ(X)) · (f1(X)− fL,P,λ(X))Φ(X)

)
−

(
2λf2(X) + E(1−ε)P+εQ∇B

3 L(X,Y, f2(X)) · Φ(X)

− 2λfL,P,λ(X)− EP∇B
3 L(X,Y, fL,P,λ(X)) · Φ(X)

− 2λ(f2(X)− fL,P,λ(X))

− EP∇B
3,3L(X,Y, fL,P,λ(X)) · (f2(X)− fL,P,λ(X))Φ(X)

)∥∥∥
H

Robustness of Support Vector Machines



84 3.3. Robustness of SVMs Based on Standard Loss Functions

=
∥∥∥E(1−ε)P+εQ

(
∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))

)
· Φ(X)(3.16)

− EP∇B
3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))Φ(X)

∥∥∥
H

≤ |1− ε|
∥∥∥EP

(
∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))

−∇B
3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))

)
Φ(X)

∥∥∥
H

+|ε|
∥∥∥EQ

(
∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))

)
· Φ(X)

∥∥∥
H

+|ε|
∥∥∥EP∇B

3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))Φ(X)
∥∥∥
H

=: |1− ε|A+ |ε|B + |ε|C . (3.17)

We shall show that (3.17) is bounded from above by ε∗ ∥f1 − f2∥H. When
we look at the first partial B-derivatives of our loss functions, we see that we
can separate them in 2 cases: for Lϵ and Lτ−pin there are one or more dis-
continuities in ∇B

3 L, whereas ∇B
3 L is continuous for Lc−Huber. Recall that

the set D of points where Lipschitz continuous functions are not Fréchet-
differentiable, has Lebesgue measure zero by Rademacher’s theorem A.2.3.
Define then the function

h
(
y, f1(x), f2(x)

)
:= ∇B

3 L
(
x, y, f1(x)

)
−∇B

3 L
(
x, y, f2(x)

)
.

For L ∈ {Lϵ, Lτ−pin}, denote the set of discontinuity points of ∇B
3 L by

D. Take f1, f2 ∈ Nδ1(fL,P,λ). For ∇B
3 L(X,Y, fL,P,λ(x)) /∈ D we obtain

∇B
3 L(X,Y, f1(x)) = ∇B

3 L(X,Y, f2(x)) for sufficiently small δ1 and hence
h(y, f1(x), f2(x)) = 0. If, on the other hand, ∇B

3 L(X,Y, fL,P,λ(x)) ∈ D and
f1(x) < fL,P,λ(x) < f2(x) or f2(x) < fL,P,λ(x) < f1(x), then we have that
∇B

3 L(X,Y, f1(x)) ̸= ∇B
3 L(X,Y, f2(x)) and hence h(y, f1(x), f2(x)) ̸= 0.

Define m = 2|D|.

Pinball loss
Using the first part of this proof we see that for the pinball loss L = Lτ−pin

we obtain |h(y, f1(x), f2(x))| ≤ c1, with c1 = 1, D = {0}, m = 2, and
∇B

3,3L(x, y, t) = 0, for all t ∈ R. For all f ∈ Nδ1(fL,P,λ) we get

|f(x)− fL,P,λ(x)| ≤ ∥f − fL,P,λ∥∞ ≤ ∥k∥∞ ∥f − fL,P,λ∥H ≤ ∥k∥∞ δ1 .
(3.18)

Further

|f1(x)− f2(x)| ≤ ∥f1 − f2∥∞ ≤ ∥k∥∞ ∥f1 − f2∥H ≤ 2 ∥k∥∞ δ1 . (3.19)

Robustness of Support Vector Machines



3.3. Robustness of SVMs Based on Standard Loss Functions 85

Using (3.18), (3.19), and (3.13) we obtain

A =
∥∥EP(∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))) · Φ(X)

∥∥
H

≤ EP|h(Y, f1(X), f2(X))| |Φ(X)|
≤ ∥k∥2∞ EP|h(Y, f1(X), f2(X))|1{h̸=0}

≤ ∥k∥2∞ c1P
(
∇B

3 L(X,Y, f1(X)) ̸= ∇B
3 L(X,Y, f2(X))

)
= ∥k∥2∞

(
P
(
{Y − f1(X) < 0} ∧ {Y − f2(X) > 0}

)
+ P

(
{Y − f2(X) < 0} ∧ {Y − f1(X) > 0}

))
= ∥k∥2∞

∫
X
P
(
Y ∈ (f2(x), f1(x)) |x

)
+P

(
Y ∈ (f1(x), f2(x)) |x

)
dPX(x)

= ∥k∥2∞
∫
X
P
(
Y ∈ (f2(x), f2(x) + [f1(x)− f2(x)]) |x

)
+ P

(
Y ∈ (f1(x), f1(x) + [f2(x)− f1(x)]) |x

)
dPX(x)

≤ m ∥k∥2∞
∫
X
cP|f1(x)− f2(x)|1+ξPdPX(x)

≤ m ∥k∥2∞ cP ∥f1 − f2∥1+ξP
∞

≤ mcP ∥k∥3+ξP
∞ ∥f1 − f2∥1+ξP

H ,

where PX denotes the marginal distribution of X. Similar calculations

give that B ≤ mcQ ∥k∥3+ξQ
∞ ∥f1 − f2∥

1+ξQ
H . We obtain C = 0, because

∇B
3,3L(X,Y, fL,P,λ(X)) = 0. Hence, the term in (3.17) is less than or equal

to

|1− ε|mcP ∥k∥3+ξP
∞ ∥f1 − f2∥1+ξP

H + |ε|mcQ ∥k∥3+ξQ
∞ ∥f1 − f2∥

1+ξQ
H

=
(
|1− ε|cP ∥k∥ξP∞ ∥f1 − f2∥ξPH + |ε|cQ ∥k∥ξQ∞ ∥f1 − f2∥

ξQ
H

)
·m ∥k∥3∞ ∥f1 − f2∥H

≤ ε∗∥f1 − f2∥H ,

where ε∗ = (|1− ε|cP ∥k∥ξP∞ 2ξPδξP1 + |ε|cQ ∥k∥ξQ∞ 2ξQδ
ξQ
1 )m ∥k∥3∞ .

ϵ-insensitive loss
The proof for the ϵ-insensitive loss L = Lϵ is analogous to the proof for
Lτ−pin, but with c1 = 2, D = {−ϵ,+ϵ}, m = 4 and thus we must consider
4 cases instead of 2 where h(y, f1(x), f2(x)) ̸= 0.
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Huber loss
For Huber’s loss function L = Lc−Huber we have |∇B

3,3L(x, y, t)| ≤ 1 := c2
and h(y, f1(x), f2(x)) is bounded by c1 = 2c. Let us define

h∗(y, fL,P,λ(x), f1(x), f2(x)) := ∇B
3 L(x, y, f1(x))−∇B

3 L(x, y, f2(x))

−∇B
3,3L(x, y, fL,P,λ(x)) · (f1(x)− f2(x)) .

Somewhat tedious calculations show that there exist 8 cases where we ob-
tain that h∗(y, fL,P,λ(x), f1(x), f2(x)) ̸= 0 and 6 cases for which we get
that h∗(y, fL,P,λ(x), f1(x), f2(x)) = 0. In each of the 8 cases, y−fL,P,λ(x) ∈
{−c, c} and |h∗(y, fL,P,λ(x), f1(x), f2(x))| ≤ |f1(x)−f2(x)|. Due to symme-
try of the Huber loss function, the calculations are quite similar, therefore
we only consider here some cases.

If −c < Y − fL,P,λ(x) < c, then ∇B
3,3L(X,Y, fL,P,λ(x)) · (f1(x)− f2(x)) =

f1(x)−f2(x) and for sufficiently small δ1, ∇B
3 L(X,Y, f1(x)) = −(Y −f1(x))

and ∇B
3 L(X,Y, f2(x)) = −(Y − f2(x)). A small calculation shows that

h∗(Y, fL,P,λ(x), f1(x), f2(x)) = 0.
Straightforward calculations give us that h∗(Y, fL,P,λ(x), f1(x), f2(x)) =

0 for the following 5 cases:

i) Y − fL,P,λ(x) < −c or Y − fL,P,λ(x) > c,

ii) Y − fL,P,λ(x) = −c and fL,P,λ(x) > f2(x) > f1(x),

iii) Y − fL,P,λ(x) = −c and f1(x) > f2(x) > fL,P,λ(x),

iv) Y − fL,P,λ(x) = c and fL,P,λ(x) > f2(x) > f1(x),

v) Y − fL,P,λ(x) = c and f1(x) > f2(x) > fL,P,λ(x).

For Y − fL,P,λ(x) = −c and for f1(x) > fL,P,λ(x) > f2(x), we ob-
tain that ∇B

3 L(X,Y, f1(X)) = c, ∇B
3 L(X,Y, f2(x)) = −(Y − f2(x)) and

∇B
3,3L(X,Y, fL,P,λ(x)) · (f1(x)− f2(x)) = 0. Hence,

h∗(Y, fL,P,λ(x), f1(x), f2(x)) = c+ Y − f2(x) = fL,P,λ(x)− f2(x) ̸= 0 ,

since f2(x) < fL,P,λ(x).
Analogously, some calculations show that h∗(Y, fL,P,λ(x), f1(x), f2(x)) ̸=

0 for the following 7 cases:

i) Y − fL,P,λ(x) = −c and f2(x) > fL,P,λ(x) > f1(x),

ii) Y − fL,P,λ(x) = −c and fL,P,λ(x) > f1(x) > f2(x),
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iii) Y − fL,P,λ(x) = −c and f2(x) > f1(x) > fL,P,λ(x),

iv) Y − fL,P,λ(x) = c and f1(x) > fL,P,λ(x) > f2(x),

v) Y − fL,P,λ(x) = c and f2(x) > fL,P,λ(x) > f1(x),

vi) Y − fL,P,λ(x) = c and fL,P,λ(x) > f1(x) > f2(x),

vii) Y − fL,P,λ(x) = c and f2(x) > f1(x) > fL,P,λ(x).

Using (3.14) in (3.17) we get for the term A in (3.17) that

A = ∥EPh
∗(Y, fL,P,λ(X), f1(X), f2(X))Φ(X)∥H

≤ ∥k∥2∞
∫

|h∗(y, fL,P,λ(x), f1(x), f2(x))|1{h∗ ̸=0}dP(x, y)

≤ ∥k∥2∞
∫

|f1(x)− f2(x)|P
(
Y ∈ {−c+ fL,P,λ(x), c+ fL,P,λ(x)}

∣∣x)dPX(x)

= 0 .

Also

C =
∥∥EP∇B

3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))Φ(X)
∥∥
H

≤ κ2 ∥k∥3∞ ∥f1 − f2∥H .

One can compute the analogous terms to A and C, say A(Q) and C(Q),
respectively, where the integration is with respect to Q instead of P. Com-
bining these expressions we obtain

B =
∥∥EQ(∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))) · Φ(X)

∥∥
H

≤ EQ

∣∣∇B
3 L(X,Y, f1(X))−∇B

3 L(X,Y, f2(X))−
∇B

3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))
∣∣ |Φ(X)|

+EQ

∣∣∇B
3,3L(X,Y, fL,P,λ(X)) · (f1(X)− f2(X))

∣∣ |Φ(X)|
= A(Q) + C(Q) ≤ κ2 ∥k∥3∞ ∥f1 − f2∥H .

Hence, the term in (3.17) is less than or equal to ε∗ ∥f1 − f2∥H where ε∗ =
2|ε|κ2 ∥k∥3∞. This gives the assertion, because |ε| can be chosen arbitrarily
small. �

For the somewhat smoother Huber loss function we only need to exclude
by (3.14) that the conditional probabilities of Y given X with respect to
P and Q have no point probabilities at the two points fL,P,λ(x) − c and
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fL,P,λ(x)+ c. Therefore, for this loss function Q can be a Dirac distribution
and in this case we have BIF = IF.

For the pinball loss function some calculations give

BIF(Q;T,P) =
1

2λ

∫
X

(
P
(
Y ≤ fL,P,λ(x)

∣∣x)− τ
)
Φ(x) dPX(x)

− 1

2λ

∫
X

(
Q
(
Y ≤ fL,P,λ(x)

∣∣x)− τ
)
Φ(x) dQX(x) ,

if the BIF exists. We expect the first integral to be small, because fL,P,λ(x)
approximates the τ -quantile of P( · |x) and even rates of convergence are
known (Steinwart and Christmann, 2008a,b). As seen in the proof, (3.13)
and (3.14) guarantee that the regular conditional probabilities P( · |x) and
Q( · |x) do not have large point masses at those points where the Lipschitz
continuous loss function L is not F-differentiable or in small neighbor-
hoods around these points. Even for the case of parametric quantile re-
gression, that is for L = Lτ−pin, λ = 0 and the unbounded linear kernel
k(x, x′) := ⟨x, x′⟩, some assumptions on the distribution P seem to be nec-
essary for the existence of the IF, see Koenker (2005, p. 44). He assumes
that P has a continuous density which is strictly positive where needed.

Nevertheless, the question arises whether we can proof Theorem 3.3.1
and Corollary 3.3.4 without any assumption on the distributions P and Q.
This is—at least with the techniques we used—not possible for non-smooth
loss functions as the following counterexample shows.

Let us consider kernel based quantile regression based on the Gaussian
RBF kernel, that is L = Lτ−pin, k = kRBF , and λ > 0. Hence the set D
of discontinuity points of ∇B

3 L is D = {0}. Fix x ∈ X and y, y∗ ∈ Y with
y ̸= y∗. Define P = δ(x,y) and Q = δ(x,y∗). Consider f1, f2 ∈ Nδ1(fL,P,λ)
with f1(x) ̸= f2(x), y − f1(x) > 0, y − f2(x) < 0, y∗ − f1(x) > 0, and
y∗ − f2(x) < 0. Hence, ∇B

3 L(x, y, f1(x)) = ∇B
3 L(x, y

∗, f1(x)) = −τ and
∇B

3 L(x, y, f2(x)) = ∇B
3 L(x, y

∗, f2(x)) = 1− τ . Note that ∇B
3,3L(x, y, t) = 0

for all y, t ∈ R. We thus obtain for the H-norm in (3.16) that∥∥E(1−ε)P+εQ

(
∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))

)
· Φ(X)

∥∥
H

= ∥Φ(x)∥H > 0 .

Hence ∇B
2 G(0, fL,P,λ) is not strong in this special case, because ∥Φ(x)∥H is

in general greater than ε∗ ∥f1 − f2∥H for arbitrarily small values of ε∗.
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Now we shall show for Lr−log that the assumptions (3.13) or (3.14) are
not needed to obtain a bounded BIF. It is easy to see that Lr−log is strictly
convex and Fréchet-differentiable with

∇F
3 Lr−log(x, y, t) = 1− 2Λ(y − t) ,

∇F
3,3Lr−log(x, y, t) = 2Λ(y − t)[1− Λ(y − t)]

and

∇F
3,3,3Lr−log(x, y, t) = −2Λ(y − t)[1− Λ(y − t)][1− 2Λ(y − t)]

with Λ(y − t) = 1/
(
1 + e−(y−t)

)
. Obviously, these partial derivatives are

bounded for all y, t ∈ R. Furthermore,

κ1 = sup
(x,y)∈X×Y

|∇F
3 Lr−log(x, y, · )|1 = 1

and
κ2 = sup

(x,y)∈X×Y
|∇F

3,3Lr−log(x, y, · )|1 ≤ 1/2 ,

because an everywhere F-differentiable function g is Lipschitz continuous
with |g|1 = ||∇F g||∞ if ∇F g is bounded.

Corollary 3.3.5. Let X ⊂ Rd and Y ⊂ R be closed, L = Lr−log, and
P,Q be distributions on X ×Y with EP|Y | <∞ and EQ|Y | <∞. Then the
assumptions of Theorem 3.3.1 are valid, and BIF(Q;T,P) of T (P) := fL,P,λ
exists, is given by (3.7) to (3.8), and BIF(Q;T,P) is bounded.

Proof of Corollary 3.3.5. Both partial F-derivatives ∇F
3 Lr−log(x, y, t) =

1 − 2Λ(y − t) and ∇F
3,3Lr−log(x, y, t) = 2Λ(y − t)[1 − Λ(y − t)] are clearly

bounded, because Λ(z) ∈ (0, 1), z ∈ R. Thus it only remains to show that
∇B

2 G(0, fL,P,λ) is strong for L = Lr−log, that is that the term in (3.16) is
bounded by ε∗ ∥f1 − f2∥H for arbitrary chosen ε∗ > 0. A Taylor expansion
gives for arbitrary y, t1, t2 ∈ R that

Λ(y−t2) = Λ(y−t1)+(t1−t2)Λ(y−t1)
(
1−Λ(y−t1)

)
+O((t1−t2)2) . (3.20)

Combining (1.34), (3.18), (3.19), and (3.20) we obtain∣∣EP

(
∇B

3 L(X,Y, f1(X))−∇B
3 L(X,Y, f2(X))

−∇B
3,3L(X,Y, fL,P,λ) · (f1(X)− f2(X))

)
Φ(X)

∣∣
≤ 2 ∥k∥2∞ EP

∣∣Λ(Y − f2(X))− Λ(Y − f1(X))

−Λ(Y − fL,P,λ(X))(1− Λ(Y − fL,P,λ(X))

·
(
f1(X)− f2(X)

)∣∣
Robustness of Support Vector Machines



90 3.3. Robustness of SVMs Based on Standard Loss Functions

≤ 2 ∥k∥2∞ EP

∣∣(f1(X)− f2(X)
)[
Λ(Y − f1(X))(1− Λ(Y − f1(X)))

−Λ(Y − fL,P,λ(X))(1− Λ(Y − fL,P,λ(X)))
]

+O((f1(X)− f2(X))2)
∣∣

≤ 2 ∥k∥2∞ EP

(
∥f1 − f2∥∞

∣∣Λ(Y − f1(X))(1− Λ(Y − f1(X))) (3.21)

−Λ(Y − fL,P,λ(X))(1− Λ(Y − fL,P,λ(X)))
∣∣

+c3 ∥f1 − f2∥2∞
)
.

A Taylor expansion around fL,P,λ(x) shows that Λ(y − f1(x))(1 − Λ(y −
f1(x))) equals

Λ(y − fL,P,λ(x))(1− Λ(y − fL,P,λ(x)))

+
(
fL,P,λ(x)− f1(x)

)
Λ(y − fL,P,λ(x))(1− Λ(y − fL,P,λ(x)))

· (1− 2Λ(y − fL,P,λ(x)))

+ O((f1(x)− fL,P,λ(x))
2) .

Using this expansion and (1.34), (3.18), and (3.19) it follows that the term
in (3.21) is bounded by

2 ∥k∥2∞ EP

(
∥f1 − f2∥∞ (

∥f1 − fL,P,λ∥∞
4

+ c4δ
2
1 ∥k∥

2
∞) + c3 ∥f1 − f2∥2∞

)
≤ ∥k∥4∞

(
δ1/2 + 2c4δ

2
1 ∥k∥∞ + 4c3δ1

)
∥f1 − f2∥H . (3.22)

Using the Lipschitz continuity of ∇B
3 L(x, y, · ), (1.34), and (3.20) we obtain

|ε|EQ−P

∣∣(∇B
3 L(X,Y, f1(X))−∇B

3 L(X,Y, f2(X))
)
· Φ(X)

∣∣
≤ |ε| ∥k∥2∞ E|Q−P|

∣∣∇B
3 L(X,Y, f1(X))−∇B

3 L(X,Y, f2(X))
∣∣

≤ |ε| ∥k∥3∞ ∥f1 − f2∥H . (3.23)

Combining (3.22) and (3.23) shows that the term in (3.16) is bounded by
ε∗ ∥f1 − f2∥H with the positive constant

ε∗ = ∥k∥3∞
(
δ1 ∥k∥∞ /2 + 2c4δ

2
1 ∥k∥

2
∞ + 4c3δ1 ∥k∥∞ + |ε|

)
,

where δ1 > 0 and ε > 0 can be chosen as small as necessary. �

Corollary 3.3.5 is of course also valid for empirical distributions Dn and
Qm consisting of n and m data points, because no specific assumptions on
P and Q are made.
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The influence function of T (P) = fL,P,λ based on Lr−log and error bounds
of the type ∥∥T ((1− ε)P + εδ(x,y) − T (P)

)∥∥
H ≤ c∗ ε

where the constant c∗ is known and depends only on P, Q := δ(x,y), and
λ, were recently derived by Christmann and Steinwart (2007). We like to
mention that Corollary 3.3.5 shows that this influence function is even a
Bouligand-derivative, hence it is positive homogeneous in h = ε(Q − P).
Therefore, we immediately obtain from the existence of the BIF that the
asymptotic bias of SVMs has the form

fL,(1−αε)P+α εQ, λ − fL,P,λ = T (P + αh)− T (P)

= αBIF(Q;T,P) + o(αh) (3.24)

= α
(
T (P + h)− T (P) + o(h)

)
+ o(αh)

= α
(
fL,(1−ε)P+εQ, λ − fL,P,λ

)
+ o(αε(Q− P)) ,

for α ≥ 0. This equation nicely describes the behavior of the asymptotic bias
term fL,(1−ε)P+εQ, λ−fL,P,λ if we consider the amount αε of contamination
instead of ε.

3.4 Robustness of SVMs Based on
Shifted Loss Functions

3.4.1 Robustness of SVMs

Let us now consider robustness properties of SVMs based on shifted loss
functions. To this end, define the function

T : M1(X × Y) → H, T (P) := fL⋆,P,λ .

The same remarks as stated at the beginning of Section 3.3 apply. We will
first give a result for the influence function of such SVMs and afterwards
show a similar result for the Bouligand influence function.

Theorem 3.4.1 (Influence function). Let X be a complete separable metric
space and H be an RKHS of a bounded continuous kernel k. Let L be a
convex, Lipschitz continuous loss function with continuous partial Fréchet-
derivatives ∇F

3 L(x, y, · ) and ∇F
3,3L(x, y, · ) which are bounded by

κ1 := sup
(x,y)∈X×Y

∥∥∇F
3 L(x, y, · )

∥∥
∞∈ (0,∞)

κ2 := sup
(x,y)∈X×Y

∥∥∇F
3,3L(x, y, · )

∥∥
∞<∞ .

(3.25)
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Then, for all probability measures P on X×Y and for all z := (x, y) ∈ X×Y,
the influence function IF(z;T,P) of T (P) := fL⋆,P,λ exists, is bounded, and
equals

EP∇F
3 L

⋆
(
X,Y, fL⋆,P,λ(X)

)
S−1Φ(X)

−∇F
3 L

⋆
(
x, y, fL⋆,P,λ(x)

)
S−1Φ(x) ,

(3.26)

where S : H → H is the Hessian of the regularized risk and is given by

S( · ) := 2λ idH( · ) +EP∇F
3,3L

⋆(X,Y, fL⋆,P,λ(X))⟨Φ(X), · ⟩HΦ(X) . (3.27)

Proof of Theorem 3.4.1. Let z = (x, y) ∈ X × Y. The two key ingredients
of our analysis are the function G : R×H → H defined by

G(ε, f) := 2λf + E(1−ε)P+εδz∇
F
3 L

⋆(X,Y, f(X))Φ(X) , (3.28)

and the application of the implicit function theorem for Fréchet-derivatives
A.3.11. Let us first check that G is well-defined. Recall that every function
f ∈ H is bounded because we assumed that H has a bounded kernel k. By
using (1.44) and (3.25) we get EP|∇F

3 L
⋆(X,Y, f(X))| ≤ κ1 ∈ (0,∞) for all

f ∈ H. As Φ(x) := k(x, · ) ∈ H for all x ∈ X , we obtain that Φ : X → H
is a bounded mapping. Therefore, the H-valued (Bochner) integral used in
the definition of G is well-defined for all ε ∈ R and all f ∈ H. Note that
for ε /∈ [0, 1] the H-valued integral in (3.28) is with respect to a signed
measure. As in Christmann and Steinwart (2007) we obtain for ε ∈ [0, 1]
the equation

G(ε, f) =
∂Rreg

L⋆,(1−ε)P+εδz ,λ

∂H
(f) = ∇F

2 R
reg
L⋆,(1−ε)P+εδz ,λ

(f) . (3.29)

Given an ε ∈ [0, 1], the function f 7→ Rreg
L⋆,(1−ε)P+εδz ,λ

(f) is convex and

continuous (see the proof of Theorem 1.7.7) and hence (3.29) shows that
G(ε, f) = 0 if and only if f = fL⋆,(1−ε)P+εδz ,λ. Our aim is to show the
existence of a Fréchet-differentiable function ε 7→ fε defined on a small
interval (−δ, δ) for some δ > 0 that satisfies G(ε, fε) = 0 for all ε ∈ (−δ, δ).
Once we have shown the existence of this function, we immediately obtain

IF(z;T,P) = ∇F fε(0) .

For the existence of ε 7→ fε we have to check by Theorem A.3.11 that G
is continuously differentiable and that ∇F

2 G(0, fL⋆,P,λ) is invertible. Let us
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start with the first. By the definition of G and by using ∇F
3 L

⋆(x, y, · ) =
∇F

3 L(x, y, · ) for all (x, y) ∈ X × Y, we get

∇F
1 G(ε, f) (3.30)

= −EP∇F
3 L

⋆(X,Y, f(X))Φ(X) +∇F
3 L

⋆(x, y, f(x))Φ(x)

= −EP∇F
3 L(X,Y, f(X))Φ(X) +∇F

3 L(x, y, f(x))Φ(x) .

A similar, but slightly more involved computation using (1.44) and (3.27)
yields

∇F
2 G(ε, f) (3.31)

= E(1−ε)P+εδz∇
F
3,3L(X,Y, f(X))⟨Φ(X), · ⟩HΦ(X)

+2λidH ,

which equals S. To prove that ∇F
1 G is continuous, we fix ε ∈ R and a

sequence (fn)n∈N such that fn ∈ H for all n ∈ N and limn→∞ fn = f ∈ H.
Since k is bounded, the sequence (fn)n∈N is uniformly bounded. By (3.25),
we have, for all (x, y, t) ∈ X × Y ×R, that |∇F

3 L(x, y, t)| ≤ κ1 + |t|. Hence
|∇F

3 L| is a P-integrable Nemitski loss function for all probability measures
P, because we only have to choose the constant function b(x, y) ≡ κ1 in the
definition of a P-integrable Nemitski loss defined in Subsection 1.4.1.

We can thus find a bounded, measurable function g : X → R with
|∇F

3 L
⋆(x, y, fn(x))| ≤ |∇F

3 L
⋆(x, y, g(x))| for all n ∈ N and all (x, y) ∈

X × Y. For the function v : X × Y → R with v(x, y) := L⋆(x, y, g(x)), we
hence obtain by the definition of L⋆ and by the Lipschitz continuity of L
that ∫

X×Y
|v(X,Y )| dP

=

∫
X×Y

|L(X,Y, g(X))− L(X,Y, 0)| dP ≤ |L|1 ∥g∥∞

is finite for all P ∈ M1(X ×Y). Thus, an application of the dominated con-
vergence theorem for Bochner integrals, see Theorem A.3.4, gives the con-
tinuity of ∇F

1 G. Because the continuity of G and ∇F
2 G can be shown analo-

gously, we obtain that G is continuously differentiable, see Theorem A.3.10.
To show that ∇F

2 G(0, fL⋆,P,λ) is invertible, it suffices by the Fredholm
alternative (see Theorem A.3.1) to show that ∇F

2 G(0, fL⋆,P,λ) is injective
and that

Ag := EP∇F
3,3L

⋆(X,Y, fL⋆,P,λ(X))g(X)Φ(X) , g ∈ H ,
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defines a compact operator on H. To show the compactness of the operator
A, recall that X , Y, and X × Y are Polish spaces because X is a complete
separable metric space and Y ⊂ R is closed, see Dudley (2002). Further-
more, Borel probability measures on Polish spaces are regular by Ulam’s
theorem (Theorem A.2.6), that is, they can be approximated from inside
by compact sets. Hence, there exists a sequence of measurable compact
subsets Xn × Yn ⊂ X × Y with P(Xn × Yn) ≥ 1 − 1

n , n ∈ N. Let us also
define a sequence of operators An : H → H, where Ang equals∫

Xn

∫
Yn

∇F
3,3L

⋆(x, y, fL⋆,P,λ(x)) P(dy|x) g(x)Φ(x) dPX(x)

for all g ∈ H. Note that if X×Y is compact, we can choose Xn×Yn := X×Y,
which implies A = An. Let us now show that An, n ≥ 1, is a compact
operator. To this end we assume without loss of generality that ∥k∥∞ ≤ 1.
Denote the closed unit ball in H by BH. For g ∈ BH and x ∈ X , we have
due to the assumption (3.25) that

hg(x) :=

∫
Yn

∇F
3,3L

⋆(x, y, fL⋆,P,λ(x)) |g(x)| P(dy|x)

≤ κ2 ∥g∥∞ =: h(x) .

Therefore, we have h ∈ L1(P), which implies hg ∈ L1(P) with ∥hg∥1 ≤
∥h∥1 < ∞ for all g ∈ BH. Consequently, µg := hgPX and µ := hPX are
finite measures. By Theorem A.3.5 we hence obtain

Ang :=

∫
Xn

sign g(x)Φ(x)hg(x) dPX(x)

=

∫
Xn

sign g(x)Φ(x) dµg(x)

∈ µg(Xn) acoΦ(Xn) ⊂ µ(Xn) acoΦ(Xn) , g ∈ H ,

where acoΦ(Xn) denotes the absolute convex hull of Φ(Xn), and the closure
is with respect to ∥ · ∥H. The continuity of k yields the continuity of the
canonical feature map Φ. Thus, Φ(Xn) is compact and hence so is the
closure of acoΦ(Xn). This shows that An is a compact operator.

To see that A is compact, it therefore suffices to show ∥An −A∥ → 0
with respect to the operator norm for n→ ∞. Recalling that the convexity
of L⋆ and the existence of its second derivative implies ∇F

3,3L
⋆(x, y, · ) ≥ 0

for all (x, y) ∈ X × Y, it follows from (3.25) that

0 ≤
∫

∇F
3,3L

⋆(x, y, fL⋆,P,λ(x)) dP(x, y) ≤ κ2 ,
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which shows due to (1.44) that

∇F
3,3L

⋆( · , · , fL⋆,P,λ( · )) = ∇F
3,3L( · , · , fL⋆,P,λ( · )) ∈ L∞(P)

for all P ∈ M1(X × Y). Now define B := (X × Y)\(Xn × Yn). Then the
desired convergence follows from (1.34), P(Xn × Yn) ≥ 1− 1

n , and

∥Ang −Ag∥H

≤
∫
B
∇F

3,3L
⋆(x, y, fL⋆,P,λ(x)) |g(x)| ∥Φ(x)∥H dP(x, y)

≤ ∥g∥∞ ∥Φ(x)∥H
∫
B
∇F

3,3L
⋆(x, y, fL⋆,P,λ(x)) dP(x, y)

≤
κ2 ∥g∥H ∥k∥3∞

n
.

Let us now show that ∇F
2 G(0, fL⋆,P,λ) = 2λidH + A is injective. To this

end, let us choose g ∈ H\{0}. Then we find

⟨(2λidH +A)g, (2λidH +A)g⟩H
> 4λ ⟨g,Ag⟩H
= 4λEP∇F

3,3L
⋆(X,Y, fL⋆,P,λ(X))g2(X) ≥ 0 ,

which shows the injectivity. The implicit function Theorem A.3.11 for Fréchet-
derivatives guarantees that ε 7→ fε is differentiable on (−δ, δ) if δ > 0 is
small enough. Furthermore, (3.30) and (3.31) yield, for all z = (x, y) ∈
X × Y, that

IF(z;T,P) = ∇F fε(0)

= −S−1 ◦ ∇F
1 G(0, fL⋆,P,λ)

= S−1
(
EP

(
∇F

3 L
⋆(X,Y, fL⋆,P,λ(X))Φ(X)

))
−∇F

3 L
⋆(x, y, fL⋆,P,λ(x))S

−1Φ(x) ,

which yields the existence of the influence function and (3.26). The bound-
edness follows from (3.25) and (3.26). �

The Lipschitz continuity of L already guarantees κ1 < ∞. Some cal-
culations for the logistic loss functions defined in (1.28) and (1.27) give
(κ1, κ2) = (1, 14) for classification and (κ1, κ2) = (1, 12) for regression.

Remark 3.4.2. (i) Note that only the second term of IF(z;T,P) in (3.26)
depends on z, where the contamination of P occurs. (ii) All assumptions of
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Theorem 3.4.1 can be verified without knowledge of P, which is not true for
Steinwart and Christmann (2008b, Theorem 10.18). It is easy to check that
the assumptions of Theorem 3.4.1 on L are fulfilled, e.g., for the logistic loss
functions for classification and for regression defined in (1.28) and (1.27).
The Gaussian RBF kernel defined in (1.30) is bounded and continuous.

Unfortunately, the previously mentioned conditions on the existence of
partial Fréchet-derivatives of the loss function are not fulfilled for some
losses that are often used in practice, such as the ϵ-insensitive loss or the
pinball loss.

The next result shows that the H-norm of the difference fL⋆,(1−ε)P+εQ,λ−
fL⋆,P,λ, the bias of the SVM, increases at most linearly with the radius
ε ∈ [0, 1] of a mixture contamination neighborhood around P. We denote
the norm of total variation of a signed measure µ by ∥µ∥M.

Theorem 3.4.3 (Bounds for bias). Let L be a convex and Lipschitz con-
tinuous loss function and let H be a separable RKHS of a bounded and
measurable kernel k. Then, for all λ > 0, all ε ∈ [0, 1], and all probability
measures P and Q on X × Y, we have∥∥fL⋆,(1−ε)P+εQ,λ − fL⋆,P,λ

∥∥
H ≤ cP,Q ε ,

where
cP,Q = λ−1 ∥k∥∞ |L|1 ∥P−Q∥M .

Let Q = δz be the Dirac measure in z = (x, y) ∈ X × Y. If the influence
function of T (P) = fL⋆,P,λ exists, then

∥IF(z;T,P)∥H ≤ cP,δz .

Proof of Theorem 3.4.3. Theorem 1.7.9 guarantees the existence of a boun-
ded measurable function h : X × Y → R such that ∥h∥∞ ≤ |L|1 and∥∥fL⋆,P,λ − fL⋆,(1−ε)P+εQ,λ

∥∥
H ≤ ε

λ
∥EPhΦ− EQhΦ∥H .

From (1.49) we get∥∥fL⋆,P,λ − fL⋆,(1−ε)P+εQ,λ

∥∥
H

≤ ε

λ
∥EPhΦ− EQhΦ∥H ≤ 1

λ
∥h∥∞ ∥k∥∞ ∥P−Q∥M ε ,

which gives the assertion. �

Robustness of Support Vector Machines



3.4. Robustness of SVMs Based on Shifted Loss Functions 97

Remark that the upper bounds for the bias and the influence function
are proportional to λ−1, and thus the bounds will go to infinity for λ→ 0,
which is unfortunate. However, please note that (i) these are only bounds
that might help to estimate the bias. (ii) The goodness of these bounds
is unknown, and will depend on the distribution P. (iii) Due to the no-
free-lunch theorem (Devroye, 1982, Devroye et al., 1996, Theorem 7.2),
there will always exist an arbitrary P such that the average risk con-
verges arbitrarily slow to the Bayes risk. Therefore there is no learning
method that learns with a uniform rate and confidence for all distribu-
tions. (iv) There seems to be a conflict in goals between the universal
consistency and qualitative robustness (Hable and Christmann, 2011). The
authors showed that SVMs are qualitatively robust for fixed regularization
parameters λ ∈ (0,∞). However, if the fixed λ is replaced by a null sequence
of parameters λn ∈ (0,∞) – as is the case for universal consistency results –
then support vector machines are no longer qualitatively robust under mild
conditions. (v) Large values of λ force the support vector machine fL⋆,P,λ to
be smoother, thereby limiting the influence of perturbations Q. This fact,
however, is not linked with the intrinsic robustness of the method, but is
more related to the regularization itself. On the other hand, small λ will
allow for an interpolation of the data, which leaves room for even a single
point to have a large influence on the estimated curve, and thus can lead
to large biases.

Recall that the Bouligand influence function as defined in Subsection 3.2.3
is in particular useful to study robustness properties of statistical function-
als which are defined as minimizers of non-Fréchet-differentiable objective
functions, such as, e.g., the ϵ-insensitive loss or the pinball loss.

Theorem 3.4.4 (Bouligand influence function). Let X be a complete sepa-
rable normed linear space8 and H be an RKHS of a bounded, continuous ker-
nel k. Let L be a convex, Lipschitz continuous loss function with Lipschitz
constant |L|1 ∈ (0,∞). Let the partial Bouligand-derivatives ∇B

3 L(x, y, · )
and ∇B

3,3L(x, y, · ) be measurable and bounded by

κ1 := sup
(x,y)∈X×Y

∥∥∇B
3 L(x, y, · )

∥∥
∞∈ (0,∞) ,

κ2 := sup
(x,y)∈X×Y

∥∥∇B
3,3L(x, y, · )

∥∥
∞<∞ .

(3.32)

8E.g., X ⊂ Rd closed. By definition of the Bouligand-derivative, X has to be a normed
linear space.
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Let P and Q ̸= P be probability measures on X × Y, δ1 > 0, δ2 > 0,

Nδ1(fL⋆,P,λ) := {f ∈ H : ∥f − fL⋆,P,λ∥H < δ1} ,

and λ > 1
2κ2 ∥k∥

3
∞. Define G : (−δ2, δ2)×Nδ1(fL⋆,P,λ) → H,

G(ε, f) := 2λf + E(1−ε)P+εQ∇B
3 L

⋆(X,Y, f(X)) · Φ(X) , (3.33)

and assume that ∇B
2 G(0, fL⋆,P,λ) is strong. Then the Bouligand influence

function BIF(Q;T,P) of T (P) := fL⋆,P,λ exists, is bounded, and equals

S−1
(
EP∇B

3 L
⋆(X,Y, fL⋆,P,λ(X)) · Φ(X)

)
−S−1

(
EQ∇B

3 L
⋆(X,Y, fL⋆,P,λ(X)) · Φ(X)

)
,

(3.34)

where S := ∇B
2 G(0, fL⋆,P,λ) : H → H is given by

S( · ) = 2λ idH( · ) + EP∇B
3,3L

⋆(X,Y, fL⋆,P,λ(X)) · ⟨Φ(X), · ⟩HΦ(X) .

Proof of Theorem 3.4.4. In Section 1.7.3 we have seen that fL⋆,P,λ exists
and is unique. By definition of L⋆ it follows from (1.45) that ∇B

3 L(x, y, t) =
∇B

3 L
⋆(x, y, t). Therefore,

G(ε, f) := 2λf + E(1−ε)P+εQ∇B
3 L

⋆(X,Y, f(X))Φ(X)

= 2λf + E(1−ε)P+εQ∇B
3 L(X,Y, f(X))Φ(X) .

Hence G(ε, f) is the same as in Theorem 3.3.1. All conditions of Theo-
rem 3.3.1 are fulfilled since we assumed that ∇B

2 G(0, fL⋆,P,λ) is strong.
Hence the proof of Theorem 3.4.4 is identical to the proof of Theorem 3.3.1,
which is based on the implicit function theorem for B-derivatives 3.2.2, and
the assertion follows. �

Note that also in this case the Bouligand influence function of the SVM
only depends on Q via the second term in (3.34). Recall from Subsec-
tion 3.2.2 that (κ1, κ2) = (1, 0) for the ϵ-insensitive loss and (κ1, κ2) =
(max{1− τ, τ}, 0) for the pinball loss.

3.4.2 Numerical considerations

To illustrate our robustness result, we include two numerical examples. The
first example treats some simulated data, based upon a Cauchy distribu-
tion, the second (real-life) example is an insurance data set with extreme
values. For both examples we used R (R Development Core Team, 2009) for
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the numerical calculations.

Before we state our numerical results, we would like to draw attention
to the estimation of the hyperparameters (such as γ for the Gaussian RBF
kernel, the ϵ-value of the ϵ-insensitive loss or the c-value of the Huber
loss or the regularization parameter λ). Since the quality of the estimator
RL,D(fL,D,λ) and the accuracy of predictions fL,D,λ(x) for unseen x ∈ X
not only depends on the data set used for the training of the SVM, but also
on the hyperparameters, the choice of these is of crucial importance. Unfor-
tunately, choosing optimal values for the hyperparameters usually requires
computing fL,D,λ for many different combinations of the hyperparameters
which means that one has to solve a series of convex problems instead of
only one. A reasonable choice of the hyperparameters will depend on the cri-
teria used to measure their quality. For regression problems, this criterium
is usually a minimization of the empirical L-risk.

There exist of course various methods to obtain the optimal values of
these parameters, some of which we will describe here in short, and none of
which is optimal for all data sets and is applicable for sample sizes of any
size. Most often the parameters are chosen in a data-dependent manner by
methods such as random search, cross-validation, a grid search or through
a training-validation SVM.

Optimization through a grid search is quite easy. After first determining
the search space (being the space of all possible combinations of the hyper-
parameters), each search dimension is split up into parts. The intersections
of these splits will form the grid with the trial points for which the objec-
tive function is calculated. The best performing point is then taken. A two
stage grid search is also possible. In the first stage a rough grid covers a
broad region of the space. The optimal point from this search is then in
the second stage used as the center of a finer grid, and the best point of
this last search is taken as the result. Given that the search range is large
enough and the grid is fine enough, there is little danger that the algorithm
will only find a local optimum instead of the global one. Clearly, the larger
and the finer the grid is chosen, the more time consuming the method will
become.

Another standard technique is (k-fold) cross-validation. This method is
mostly used for relatively small to moderate-sized data sets. This method
will randomly divide the data set in k equal-sized disjoint subsets, where
each subset is once used as a validation set while the other k−1 subsets to-
gether form the training set. The combination of hyperparameters with the
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best performance will then be chosen. Although cross-validation is widely
used in practice, there are however some disadvantages to the method, see,
e.g., Schölkopf and Smola (2002). One of these is the apparent danger of
overfitting, since the training set and the validation set are related to each
other. Another is that the found hyperparameters depend on the number of
folds (and thus the size of each subset) chosen, since often smaller training
sets require a larger value of the regularization parameter λ, which in turn
can lead to different values for the other hyperparameters.

A simple method specific for choosing the regularization parameter λ is
the use of a training-validation SVM (Steinwart and Christmann, 2008b,
Chapter 6.5). The idea of TV-SVMs is to use the training set to construct
a couple of SVM decision functions and then use the decision function that
performs best on some independent validation set. We need to remark here
that the validation step not necessarily provides a unique regularization pa-
rameter. Steinwart and Christmann (2008b) show in Lemma 6.29 that for
all interesting cases, a measurable TV-SVM will exist, and in Theorem 6.32
they provide the consistency of the method.

Other methods include the Nelder-Mead algorithm (Nelder and Mead,
1965), heuristic choices of the hyperparameters (Mattera and Haykin, 1999,
Cherkassky and Ma, 2004), or pattern search (Momma and Bennett, 2002).

Numerical example for simulated data

For this first example we will try to predict the function

f(x) = 50 sin(x/20) cos(x/10) + x

with an SVM. For this purpose, n = 1000 data points xi from a uniform
distribution U(−100, 100) have been generated. The corresponding output
values yi were generated by yi = f(xi) + εi, where εi were pseudo-random
numbers from a Cauchy distribution. The SVM-regression was done by us-
ing the ϵ-insensitive loss function and the Gaussian RBF kernel as defined in
Chapter 1. The computation was executed via the R function svm from the
library e1071. Using the set of generated data points, the hyperparameters
(λ, ϵ, γ) of the SVM have been determined by minimizing the L⋆-risk via a
three dimensional grid search over 17×12×17 = 3468 knots, where λ is the
regularization parameter of the SVM, ϵ is the parameter of the ϵ-insensitive
loss function, and γ is the parameter of the Gaussian RBF kernel. For each
knot in the grid, an SVM was fitted to our 1000 data points. For each of
these points the shifted loss was then calculated and used to determine
the L⋆-risk for this particular SVM. The grid search resulted in the choice
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(λ, ϵ, γ) =
(
2−9/n, 2−8, 2−4

)
as parameters for the SVM with the smallest

L⋆-risk. With these parameters, the optimal SVM was then determined.

Figure 3.3 shows the fitted SVM (in blue). The upper sub-plot clearly
shows that there are extreme values in the data set which was intended
because we simulated error terms from a Cauchy distribution, but the SVM
fits nevertheless the pattern set by the majority of the data points quite
well. Due to these extreme values, a relatively small systematic bias of the
SVM would not be visible. Therefore, we zoomed in on the interesting part
of the y-axis to get a better view of the plot, as shown in the lower sub-plot
of Figure 3.3. In this graph we see that there is almost no bias and that
the SVM neatly covers the true function (in red). Hence, this numerical
example confirms our theoretical robustness result of a bounded Bouligand
influence function: the SVM is a good approximation of the true function
even for heavy-tailed distributions with large extreme values, if the sample
size is large enough.

Numerical example for large fire insurance claims in Denmark

For the second example we used the data set ‘danish’ from the R package
evir. This set consists of 2167 fire insurance claims over 1 million Danish
Krone (DKK) during the period from Thursday, January 3rd, 1980 until
Monday, December 31st, 1990. The claims are total figures, i.e., they in-
clude damage to buildings, furniture and personal property as well as loss
of profits. The data were supplied by Mette Rytgaard of Copenhagen Re.
These data form an irregular time series. The plot of the data shows that
there really is a time effect which we will use for our SVM purposes. We
have done both classical least squares regression as well as non-parametric
conditional quantile regression by means of SVMs. Time was the only ex-
planatory variable. The SVM-regression was done by using the pinball loss
for different τ -values. We chose τ ∈ {0.50, 0.75, 0.90, 0.99, 0.995} since we
are interested in big claims. We used the Gaussian RBF kernel. For the
SVMs the computations were done with the function kqr from the package
kernlab (Karatzoglou et al., 2004) in R, for the least squares regression we
used the standard R function lm. The optimal value of the hyperparameter
γ of the kernel was determined by the kqr function itself. For each of the
τ -values, an SVM was fitted to the data set.

Figure 3.4 shows the fitted curves for the Danish data set. The least
squares fit is shown as a dotted line, the SVM-quantiles are drawn as solid
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Figure 3.3: The upper sub-plot shows all data points, including all extreme
values, as well as the true function (in red) and SVM (in blue). The dif-
ference between both functions is hardly visible. The lower sub-plot zooms
in on the y-axis. It shows that the bias between the SVM and the true
function is almost invisible in this example despite the extreme values.
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curves. The upper sub-plot shows the data with 3 remarkable large ex-
treme claims, these being the claims of over 100 million DKK. However,
the SVM-quantiles appear to follow the bulk of the points, and do not seem
to be much attracted by these extremes. This is in good agreement to our
theoretical result stating that SVMs are robust. Due to the extremes, the
conditional quantile curves fitted by SVMs and the LS-fit are hardly dis-
tinguishable in the upper plot. Therefore we zoomed in on the y-axis to get
a better view. On the second sub-plot, we can clearly see all curves, but
no longer the extreme data points. The third sub-plot zooms even further,
showing only the 90%-quantile and lower quantiles, as well as the least
squares regression line. We see that the LS fit lies above the 50% SVM-
quantile curve (and in this case often even above the 75% SVM-quantile
curve) because it is more attracted towards the extreme values and hence
is less robust.

The Danish data set is well-known in the literature on extreme value
theory and is therefore used as a benchmark data set in the R package evir
developed by Alexander McNeil and Alec Stephenson. To demonstrate that
the residuals of an SVM for non-parametric median regression based on the
pinball loss function with τ = 0.5 have a distribution close to an extreme
value distribution, we fitted a generalized Pareto (GPD) distribution by
the maximum likelihood method to the residuals, see Pickands (1975) and
Hosking and Wallis (1987) for details. The computations were done with
the function gpd from the evir package. Figure 3.5 shows that a GPD
distribution, which is well-known to have heavy tails, actually offers a good
fit for these residuals. The ML estimates for the two parameters of the GPD
distribution are 0.498 (0.149) for the shape parameter and 7.824 (1.377) for
the scale parameter.
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Figure 3.4: All data points, including the extreme values, are visible in the
upper sub-plot. The SVM-quantiles seem to follow the mass of the data
points and are not attracted to the extremes. The lower sub-plots zoom in
on different scales of the y-axis. Here both the LS regression (dotted line)
and the SVM-quantiles are distinguishable. There seems to be almost no
attraction towards the extreme values for the SVM based quantile curves.
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Figure 3.5: Plots to check whether the residuals of the median regression
based on SVMs with the pinball loss function have an approximate gen-
eralized Pareto distribution. Upper left: excess distribution; Upper right:
tail of the underlying distribution; Lower left: scatterplot of the residuals;
Lower right: qqplot of the residuals.
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Appendix A

Mathematical Prerequisites

A.1 Topology

In this work, both metric spaces and Polish spaces are used. We will give
their definitions here and will at the same time review the notions of conti-
nuity and convergence. For more information on topology and topological
spaces, we refer to Kuratowski (1968), Willard (1970) or Dudley (2002).

Definition A.1.1. Let X be a set. A subset τ of the power set 2X of X is
called a topology on X if it satisfies the following three conditions:

i) ∅ ∈ τ , X ∈ τ .

ii) If O1 ∈ τ and O2 ∈ τ , then O1 ∩O2 ∈ τ .

iii) If I is any index set and Oi ∈ τ for all i ∈ I, then
∪

i∈I Oi ∈ τ .

The pair (X, τ) is called a topological space and each O ∈ τ is called an
open set.

A special case of topological spaces are the metric spaces. For d : X×X →
[0,∞) a metric, we call the pair (X, d) a metric space. If d is clear from the
context, we omit it and simply call X a metric space.

The most trivial example of a metric space is the Euclidean space Rd,
d ∈ N, equipped with the Euclidian distance

d2(x, y) = ∥x− y∥2 :=
( d∑

i=1

|xi − yi|
)1/2

, x, y,∈ Rd .
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A metric d is called translation-invariant if d(x+ a, y + a) = d(x, y) for all
x, y, a ∈ X.

The closed ball with radius ε > 0 and center x ∈ X on some metric space
(X, d) is defined as

Bd(x, ε) := {y ∈ X : d(x, y) ≤ ε} ,

while for the open ball B∗
d(x, ε) a strict inequality holds. A subset O ⊂ X

is called open if for all x ∈ O there exists an ε > 0 such that B∗
d(x, ε) ⊂ O.

The open sets in a metric space (X, d) form a topology on X, called the
metric topology τd.

For (X, τ) a topological space, we call a set A ⊂ X closed if X \ A is
open. The closure of a set A is defined by

A :=
∩{

C ⊂ X : C is closed and A ⊂ C
}
.

A is said to be compact if, for every family (Oi), i ∈ I, of open sets
with A ⊂

∪
i∈I Oi, there exist finitely many indices i1, . . . , in ∈ I with

A ⊂
∪n

j=1Oij . For A ⊂ Rd an easier equivalence holds: A is compact if and
only if it is bounded and closed (Willard, 1970, Example 17.9(a)).

Moreover, A is called dense if A = X. A topological space (X, τ) is called
separable if there exists a countable and dense subset of X. R is separable,
since Q is a countable and dense subset of R.

A family C of sets is a covering of the space X if each point of X belongs
to some member C of C.

Let (X1, τ1) and (X2, τ2) be topological spaces and x0 ∈ X1. A map
f : X1 → X2 is called continuous at x0 if for all O2 ∈ τ2 with f(x0) ∈ O2

there exists an O1 ∈ τ1 such that x0 ∈ O1 and f(O1) ⊂ O2. The map f is
called continuous if f is continuous at every x ∈ X. If f is a real function,
an easier definition can be given. A function f : X → R is continuous at
x0, if limx→x0 f(x) = f(x0) or in ε-δ-notation if for all ε > 0 there exists a
G ⊂ X open with x0 ∈ G, and a δ > 0 such that for all x ∈ G holds

|x− x0| < δ ⇒ |f(x)− f(x0)| < ε .

The continuous image of a compact set is again compact. A homeomorphism
or topological isomorphism is a continuous bijective function between two
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topological spaces that has a continuous inverse function.

A sequence (xn)n is said to converge in a metric space (X, d) if there
exists an element x ∈ X such that for all ε > 0 there exists an n0 ≥ 1
such for all n ≥ n0 we have d(x, xn) ≤ ε. The limit x is unique and we
write limn→∞ xn = x or xn → x for n → ∞. If for a sequence (an)n ⊂ R

holds that an → 0, we call it a null sequence. A sequence (xn)n is called
a Cauchy sequence if for every ε > 0 there exists an n0 ≥ 1 such that,
for all m,n ≥ n0, d(xm, xn) ≤ ε. Trivially, every convergent sequence is
also a Cauchy sequence, but the inverse is in general not true. Therefore,
a metric space is called complete if and only if every Cauchy sequence
converges. The metric d is then said to be a complete metric for X. A
topological space (X, τ) is (completely) metrizable if it is homeomorphic
to a (complete) metric space. This means that there exists at least one
(complete) metric d for X which generates (or induces) the topology τ ,
i.e., for which τ equals the metric topology τd. Note that completeness is
a property of a metric space, whereas complete metrizability is a property
of a topological space. E.g., the open interval (0, 1) is not complete since
(1/n)n is a non-converging Cauchy sequence on (0, 1), but it is completely
metrizable since it is homeomorphic with the complete space R.

A sequence of functions (fn)n∈N, fn : X → R is said to be pointwise
convergent to a function f : X → R, if and only if for each x ∈ X we have
that fn(x) → f(x). The sequence is uniformly convergent if ∥f − fn∥∞ → 0.

A basis of a topology τ is any subset τ1 of τ such that every open set can
be written as a union of sets in τ1. The set of open balls of a metric space
is thus a basis of its topology.

The following definition was first introduced by Bourbaki.

Definition A.1.2. A topological space (X, τ) is called a Polish space if τ
has a countable basis and there exists a complete metric defining τ .

Another definition is that the topological space (X, τ) is separable and
completely metrizable. This means that the space has to be homeomorphic
to a complete metric space that has a countable dense subset. Although
Polish spaces are metrizable, they are not necessarily themselves metric
spaces. Each Polish space admits many complete metrics giving rise to the
same topology, but not one of these is singled out or distinguished. A Polish
space with a distinguished complete metric is called a Polish metric space.
For example, the Euclidean spaces Rd are Polish. Trivially, also all complete
separable metric spaces are Polish.
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A.2 Probability and Measure Theory

In this section we will state the necessary notions and results concerning
measure and probability theory. More details on global measure theory and
probability can be found in, e.g., Chow and Teicher (1988) and Billingsley
(1995), for the specific parts on Polish spaces, we refer to Dudley (2002).

Definition A.2.1. Let X be a non-empty set. A subset A of the power set
2X of X is called a σ-algebra on X if it satisfies:

i) X ∈ A.

ii) AC := X \A ∈ A for all A ∈ A.

iii)
∪

n∈NAn ∈ A for all sequences (An)n∈N of sets in A.

We call (X,A) a measurable space and the elements of A are called
measurable sets.

If A is clear from the context, or if its specific form is irrelevant, we just
call X a measurable space.

It is easy to verify that the intersection of σ-algebras on X is once again
a σ-algebra on X. This implies that for any C ⊂ 2X , there exists a smallest
σ-algebra that contains C. This σ-algebra will be denoted as σ(C) and is
called the σ-algebra generated by C. This means that C ⊂ σ(C) ⊂ A for all
σ-algebras A on X with C ⊂ A. An example of such a generated σ-algebra
is the Borel σ-algebra B(τ) of some topological space (X, τ). In this case
B(τ) := B(X) := σ(X), and its elements are called Borel sets.

For (X1,A1) and (X2,A2) two measurable spaces, a function f : X1 →
X2 is called measurable, or (A1,A2)-measurable, if f−1A2 ⊂ A1.

If (fn)n∈N is a sequence of measurable functions mapping from (X,A) to
[−∞,+∞], then supn∈N fn, infn∈N fn, lim supn→∞ fn, and lim infn→∞ fn
are also measurable. In addition, for any measurable function f : X →
[0,∞] there exists a sequence (fn)n∈N of simple non-negative measurable
functions with fn ↑ f pointwise, meaning that fn(x) → f(x) for all x ∈ X
and fn(x) ≤ fn+1(x) for all x ∈ X and n ≥ 1. Finally, for f bounded,
we can pick an increasing sequence (fn) such that the convergence is even
uniform, i.e., ∥f − fn∥∞ → 0.

Definition A.2.2. Given some measurable space (X,A), we call a function
µ : A → [−∞,+∞] a signed measure if µ(∅) = 0 and

µ
( ∪
n∈N

An

)
=

∑
n∈N

µ(An)
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for all sequences (An)n∈N of mutually disjoint sets An ∈ A.

A signed measure µ is called a measure if µ(A) ≥ 0 for all A ∈ A.
A measure is said to be finite if, in addition, µ(X) < ∞. Moreover, if
µ(X) = 1, then it is called a probability measure or a distribution. A
measure is called σ-finite if X = ∪n∈NAn for some sets An ∈ A satisfying
µ(An) <∞, n ∈ N.

The triple (X,A, µ) is called a (finite, σ-finite) measure space or a prob-
ability space if (X,A) is a measurable space and µ is a (finite, σ-finite)
measure, respectively probability measure, on A. A probability measure
will most often be written as P instead of µ.

An example of a σ-finite measure is the counting measure µ on (Z, 2Z),
where µ(A) equals the number of points in a set A ∈ 2Z. Another one is
the Lebesgue measure on (Rd,B(Rd)), which is given by

µ({x ∈ Rd : ai < xi ≤ bi, i = 1, . . . , d}) =
d∏

i=1

(bi − ai) ,

for all ai < bi, i = 1, . . . , d. This means that, for bounded rectangles, the
Lebesgue measure is nothing else than the ordinary volume. The Dirac
measure δx for some measurable space (X,A) and some x ∈ X is defined
as δx(A) := 1 if x ∈ A and δx(A) := 0 if x /∈ A.

The following theorem (Rademacher, 1919) describes the measure of the
set of differentiable points of a Lipschitz continuous function f .

Theorem A.2.3 (Rademacher’s theorem). Let U ⊂ Rn be open, and
f : U → Rm be a Lipschitz continuous function. Then f is Fréchet-
differentiable almost everywhere (i.e., the points where f is not Fréchet-
differentiable form a set of Lebesgue measure 0).

Let (X,A, µ) be a measure space, we call N ∈ A a µ-zero set or µ-
null set if µ(N) = 0. A property P(x) is said to hold µ-almost surely if
µ({x ∈ X : P(x) is false}) = 0.

Now consider a probability space (X,A,P). In general, the subsets of
P-zero set are not P-zero sets themselves, since it can be that they are not
measurable. However, we can always add such sets to A. If we define

AP := {A ∪B : A ∈ A, ∃N ∈ A with P(N) = 0 and B ⊂ N} ,

then AP is a σ-algebra, called the P-completion of A.
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A measurable space (X,A) is said to be P-complete if, for a probability
measure P : A → [0, 1], A = AP. Moreover, the σ-algebra

Â :=
∩

P:A→[0,1]

AP

where P runs over all probability measures on A, is called the universal
completion of A.

For (X,A,P) a probability space, a sequence (fn) of measurable functions
fn : X → R, is said to converge in probability P if for all ε > 0 and all
δ > 0 there exists an n0 ∈ N such that, for all n ≥ n0,

P({x ∈ X : |f(x)− fn(x)| ≥ δ}) ≤ ε .

The sequence converges P-almost surely if fn(x) → f(x) for P-almost all
x ∈ X. It can be shown that convergence almost surely implies convergence
in probability.

Let (X,A, µ) be a measure space. A measurable function f : X →
[−∞,∞] is called µ-integrable if∫

X
|f |dµ <∞ .

The set of all µ-integrable functions is written as L1(µ).
The following theorem treats the continuity of the integral with respect

to almost sure convergence (Dudley, 2002, p. 132).

Theorem A.2.4 (Dominated convergence, Lebesgue). Let (X,A, µ) be a
measure space and fn : X → [−∞,∞], n ≥ 1, be measurable functions
that converge µ-almost surely to an f : X → [−∞,∞]. If there exists a
g ∈ L1(µ) such that |fn| ≤ g for all n ≥ 1, then f ∈ L1(µ) and

lim
n→∞

∫
X
fndµ =

∫
X

lim
n→∞

fndµ =

∫
X
fdµ .

The next lemma, see, e.g., Bauer (2001, Theorem 23.8, p. 141), gives a
formulation to compute expectations by using tail bounds.

Lemma A.2.5. Let (X,A, µ) be a finite measure space, and f : X → [0,∞)
be a measurable function. Let φ : [0,∞) → [0,∞) be a continuous function
that is continuously differentiable op (0,∞) and satisfies φ(0) = 0. Then∫

X

φ ◦ fdµ =

∫ ∞

0
φ′(t)µ(f ≥ t)dt .
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Let us also review some properties of σ-algebras and measures defined by
a topology. We defined the Borel σ-algebra for a topological space (X, τ)
already as B(X) := σ(τ). A measure µ : B(X) → [0,∞] is then called a
Borel measure.

Let (X, τ) be a topological space and µ be a Borel measure on X. µ is
said to be regular if for each A ∈ B(X) we have both outer regularity, i.e.,

µ(A) = inf{µ(O) : A ⊂ O,O open} ,

and inner regularity, i.e.,

µ(A) = sup{µ(C) : C ⊂ A,C compact} .

The proof of the following theorem can be found in Dudley (2002, p. 225).

Theorem A.2.6 (Ulam’s theorem). Every finite Borel measure on a Polish
space is regular.

Polish spaces are also important in ‘splitting’ probability measures, see,
e.g. Dudley (2002, Section 10.2).

Lemma A.2.7 (Regular conditional distribution for Polish spaces). Let
(X,A) be a measurable space, Y be a Polish space with its Borel σ-algebra
B(Y ), and P be a probability measure on A ⊗ B(Y ). Then there exists a
map P( · | · ) : B(Y )×X → [0, 1] such that

i) P( · |x) is a probability measure on B(Y ) for all x ∈ X.

ii) x 7→ P(B|x) is measurable for all B ∈ B(Y ).

iii) For all A ∈ A, B ∈ B(Y ), we have

P (A×B) =

∫
A
P(B|x)dPX(x) .

The map P( · |x) is called a regular conditional probability or regular
conditional distribution of P. PX is called the marginal probability
or marginal distribution.

Here, A ⊗ B(Y ) denotes the product σ-algebra on the product space
X × Y . For a sequence (Xn,An) of measurable spaces, the product σ-
algebra ⊗n∈NAn on the product space "n∈NXn is defined as the σ-algebra
generated by the sets An × "m̸=nXm, An ∈ A, n ∈ N.
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For a probability space (X,A,P) we define the expectation of a func-
tion f ∈ L1(P) as EPf :=

∫
X fdP. If P is a distribution on X × Y , then

EPf :=
∫
X×Y fdP, and if in this case P can be split into a marginal distri-

bution PX on X and a conditional distribution P( · |x) on Y , we write for
f ∈ L1(PX) that EPX

f :=
∫
X fdPX .

Let (X,A) and (Y,B) be measurable spaces, we call a map ξ : X → Y a
random variable if ξ is (A,B)-measurable. The set σ(ξ) := {ξ−1(B) : B ∈
B} is called the σ-algebra generated by ξ. Trivially, σ(ξ) is a sub-σ-algebra
of A.

For ξ : X → Y and ξ′ : X ′ → Y two random variables defined on the
probability spaces (X,A,P) and (X ′,A′,P′) respectively, and with (Y,B) a
measurable space, we say that ξ and ξ′ are identically distributed if P(ξ ∈
B) = P′(ξ′ ∈ B) for all B ∈ B. We will write Pξ(B) := P(ξ ∈ B).

If I is an index set, and (Ai)i∈I a family of sets for which Ai ∈ A
for all i ∈ I, then the events Ai are said to be (stochastically) indepen-
dent if for all distinct indices i1, . . . , in ∈ I and for all n ∈ N holds that
P
(∩n

j=1Aij

)
=

∏n
j=1 P(Aij ). The members of family of σ-algebras (Ai)i∈I

with Ai ⊂ A are called independent if all families (Ai)i∈I of events for
which Ai ∈ Ai, are independent. For (Yi,Bi), i ∈ I, measurable spaces,
then the random variables ξi : X → Yi, i ∈ I, are independent if their
generated σ-algebras σ(ξi) are independent.

For (X,A,P) still a probability space, and for ξi : X → R, i = 1, . . . , n,
random variables holds that EP

∏n
i=1 ξi =

∏n
i=1 EP(ξi). A similar result is

valid for Hilbert spaces. If ξ1, ξ2 : X → H are independent random variables
mapping into a separable Hilbert space, then

EP⟨ξ1, ξ2⟩H = ⟨EPξ1,EPξ2⟩H .

We will here also repeat the Borel-Cantelli lemma, see, e.g.,Dudley (2002,
p. 262) or Billingsley (1995, Theorems 4.3 and 4.4). Recall that lim supAn =
∩n∈N ∪i≥n Ai for a sequence of sets An, n ∈ N.

Lemma A.2.8 (Borel-Cantelli). Let (X,A,P) be a probability space and
(An)n∈N a sequence of sets with An ∈ A. Then:

i) If
∑

n∈N P(An) <∞, then P(lim supAn) = 0.

ii) If
∑

n∈N P(An) = ∞ and if A1, A2, . . . are stochastically independent,
then P(lim supAn) = 1.
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A.3 Functional Analysis

In this section we will review the needed concepts from functional analysis.
We refer the interested reader to, e.g., Dudley (2002) and Lax (2002).

A.3.1 Banach Spaces

Let E be a vector space and ∥ · ∥ : E → [0,∞) a norm, we then call
(
E, ∥ · ∥)

a normed space. If the metric associated with the norm is complete, the pair(
E, ∥ · ∥) is called a Banach space. If there is no confusion possible, we will
write E instead of

(
E, ∥ · ∥

)
. To distinguish between norms, we will often

add an index ∥ · ∥E for the norm of the normed space E.

We will denote the closed unit ball by BE := {x ∈ E : ∥x∥E ≤ 1}. A set
A ⊂ E is called bounded if A ⊂ cBE for some c ∈ [0,∞).

For E and F two vector spaces, a map S : E → F is called a (linear)
operator if S(αx) = αS(x) and S(x + y) = S(x) + S(y) for all α ∈ R and
x, y ∈ E. We will often write Sx instead of S(x). An operator S : E → F is
bounded if the image SBE of the unit ball is bounded under S. If E and F
are normed spaces, then this is equivalent to saying that S is continuous,
or that there exists a constant c ∈ [0,∞) such that for all x ∈ E we have
∥Sx∥E ≤ c ∥x∥F .

The space of all bounded (linear) operators mapping from E to F is
written as L(E,F ). If E = F , we will use L(E) := L(E,E). If S ∈ L(E,F )
satisfies ∥Sx∥F = ∥x∥E for all x ∈ E, then S is called an isometric em-
bedding. Obviously, S is injective in this case. If, in addition, S is also
surjective, then S is called an isometric isomorphism and E and F are said
to be isometrically isomorphic. An S ∈ L(E,F ) is called compact if SBE is
a compact subset in F . The following result can be found in, e.g., Cheney
(2001).

Theorem A.3.1 (Fredholm alternative). Let E be a Banach space and let
S : E → E be a compact operator. Then idE +S is surjective if and only if
it is injective.

A special case of linear operators are the bounded linear functionals,
i.e., the elements of the dual space E′ := L(E,R). Note that, due to
the completeness of R, dual spaces are always Banach spaces. For x ∈ E
and x′ ∈ E′, the evaluation of x′ at x is often written as a dual pairing,
i.e., ⟨x′, x⟩E′,E := x′(x). The smallest topology on E′ for which the maps
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x′ 7→ ⟨x′, x⟩E′,E are continuous on E′ for all x ∈ E is called the weak*
topology. For S ∈ L(E,F ), the adjoint operator S′ : F ′ → E′ is defined by
⟨S′y′, x⟩E′,E := ⟨y′, Sx⟩F ′,F for all x ∈ E and y′ ∈ F ′.

For the proof of Theorem 3.3.1 we will also need the following conse-
quence of the open mapping theorem, see Lax (2002, p. 170) or Dudley
(2002, p. 214).

Theorem A.3.2. Let E and F be Banach spaces, S : E → F be a bounded,
linear, and bijective operator. Then the inverse S−1 : F → E is a bounded
linear operator.

Next we will quickly review Banach space valued integration. For more
details on this subject, we refer to Diestel and Uhl (1977, Chapter II). Let
(X,A) be a measurable space and E be a Banach space. A function f :
X → E is called a measurable step function if there exist x1, . . . , xn ∈ E
and A1, . . . , An ∈ A such that

f =

n∑
i=1

1Aixi . (A.1)

We call f : X → E an E-valued measurable function if there exists a
sequence (fn) of measurable step functions fn : X → E such that

lim
n→∞

∥f(x)− fn(x)∥E = 0

holds for all x ∈ X. The integral of a measurable step function f : X → E
with representation (A.1) and a σ-finite measure µ on X is then defined as∫

X
fdµ :=

n∑
i=1

µ(Ai)xi .

Definition A.3.3. Let (X,A, µ) be a σ-finite measure space and E be
a Banach space. An E-valued measurable function f : X → E is called
Bochner µ-integrable if there exists a sequence (fn) of E-valued measur-
able step functions fn : X → E such that

lim
n→∞

∫
X
∥fn − f∥E dµ = 0 .

Then the limit ∫
X
f dµ := lim

n→∞

∫
X
fn dµ

exists and is called the Bochner integral of f . If µ is a probability, the
integral can also be written as Eµf .
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It can easily be shown that this integral is linear. Furthermore, an E-
valued measurable function f : X → E is Bochner µ-integrable if and only
if x 7→ ∥f(x)∥E is µ-integrable. In this case∥∥∥∫

X
f dµ

∥∥∥
E
≤

∫
X
∥f∥E dµ .

If S : E → F is a bounded linear operator, and f : X → E is Bochner
µ-integrable, then the composition S ◦ f : X → F will also be Bochner
µ-integrable and the integral and S will commute:

S
(∫

X
f dµ

)
=

∫
X
Sf dµ .

The following theorem can be found in, e.g., Diestel and Uhl (1977, Theo-
rem 3, p. 45)

Theorem A.3.4 (Dominated convergence theorem). Let (X,A, µ) be a σ-
finite measure space, E be a Banach space, and (fn) a sequence of Bochner
µ-integrable fn : X → E. If limn→∞ fn(x) = f(x) for µ-almost all x ∈ X
and if there exists a µ-integrable function g : X → R with ∥fn∥ ≤ g, then
f is Bochner µ-integrable and

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ .

The next result, see Diestel and Uhl (1977, Corollary 8, p. 48), shows
that the Bochner integral is in some sense a convex combination.

Theorem A.3.5. Let (X,A, µ) be a finite measure space, E be a Banach
space, and f : X → E be Bochner µ-integrable. Then, for each A ∈ A with
µ(A) > 0, we have

1

µ(A)

∫
A
f dµ ∈ co(f(A)) .

Let us now take a look at some important Banach spaces. The supnorm
of a function f : X → R is defined as ∥f∥∞ := supx∈X |f(x)|. Then the
set B(X) := {f : X → R : ∥f∥∞ < ∞} equipped with the supnorm is a
Banach space. A function f : X → R is called bounded if there exists an
M <∞ such that ∥f∥∞ ≤M . A sequence of functions fn : X → R, n ∈ N,
is uniformly bounded if there exists an M < ∞ such that, for all n ∈ N,
∥fn∥∞ ≤M .

Given a measurable space (X,A), L0(X) denotes the set of all real-valued
measurable functions f on X and L∞(X) the set of all bounded measurable

Mathematical Prerequisites



120 A.3. Functional Analysis

functions, i.e., L∞(X) := {f ∈ L0(X) : ∥f∥∞ < ∞}. L0(X) is a vector
space and L∞(X) becomes a Banach space when equipped with the norm
∥ · ∥∞. Let us now assume we have a measure µ onA. For p ∈ (0,∞) and f ∈
L0(X) we write ∥f∥Lp(µ)

:= (
∫
X |f |pdµ)1/p. To treat the case p = ∞, we call

N ∈ A a local µ-zero set if µ(N∩A) = 0 for all A ∈ A with µ(A) <∞. Then
∥f∥L∞(µ) := inf{a ≥ 0 : {x ∈ X : |f(x)| > a} is a local µ-zero set}. In both
cases the set of p-integrable functions Lp(µ) := {f ∈ L0(X) : ∥f∥Lp(µ)

<

∞} is a vector space of functions, and for p ∈ [1,∞] all properties of a
norm on Lp(µ) are followed by the mapping ∥ · ∥Lp(µ)

. As usual, we call

f, f ′ ∈ Lp(µ) equivalent, written f ∼ f ′, if ∥f − f ′∥Lp(µ)
= 0. In other

words, f ∼ f ′ if and only if f(x) = f ′(x) for µ-almost all x ∈ X. The set
of equivalence classes Lp(µ) := {[f ]∼ : f ∈ Lp(µ)}, where [f ]∼ := {f ′ ∈
Lp(µ) : f ∼ f ′}, is a vector space and ∥[f ]∼∥Lp(µ)

:= ∥f∥Lp(µ)
is a complete

norm on Lp(µ) for p ∈ [1,∞], i.e., (Lp(µ), ∥ · ∥Lp(µ)
) is a Banach space. It

is common practice to identify the Lebesgue spaces Lp(µ) and Lp(µ) and
hence we often abbreviate both ∥ · ∥Lp(µ)

and ∥ · ∥Lp(µ)
as ∥ · ∥p. In addition,

we usually write Lp(X) := Lp(µ) and Lp(X) := Lp(µ) if X ⊂ Rd and µ is
the Lebesgue measure on X. For µ the counting measure on X, we write
ℓp(X) instead of Lp(µ).

The following result can, e.g., be found in Werner (2002, Theorem II.2.4)
or Dudley (2002, p. 208).

Theorem A.3.6 (Riesz representation theorem). Let (X,A, µ) be a σ-
finite measure space and 1 ≤ p < ∞. Define q by 1

p + 1
q = 1. Then is

T : Lq(µ) →
(
Lp(µ)

)′
defined by

(Tg)(f) :=

∫
X
fg dµ

an isometric isomorphism.

A.3.2 Hilbert Spaces

A very important example of Banach spaces are Hilbert spaces. For ⟨ · , · ⟩ :
H × H → R an inner product, the pair (H, ⟨ · , · ⟩) is called a pre-Hilbert
space. To differentiate between different inner products, we will often write
⟨ · , · ⟩H . If the inner product is clear from the context, H is called a pre-
Hilbert space.

The Cauchy-Schwarz inequality

|⟨x, y⟩|2 ≤ ⟨x, x⟩⟨y, y⟩ , x, y ∈ H ,
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can be used to show that ∥x∥H :=
√
⟨x, x⟩, x ∈ H, defines a norm on H.

If this norm is complete, (H, ⟨ · , · ⟩) is called a Hilbert space.
The following lemma shows the connection between the norm and the

inner product.

Lemma A.3.7 (Parallellogram identity). Let (H, ⟨ · , · ⟩) be a Hilbert space.
Then, for all x, y ∈ H, we have

4⟨x, y⟩ = ∥x+ y∥2H − ∥x− y∥2H ,

∥x+ y∥2H + ∥x− y∥2H = 2 ∥x∥2H + 2 ∥y∥2H .

We refer to Werner (2002, Theorem II.2.5) or Dudley (2002, p. 174) for
the following fact concerning the dual of a Hilbert space H. Note that for
a given x ∈ H the map ⟨ · , x⟩ : H → R : y 7→ ⟨y, x⟩ is a bounded linear
functional, and therefore thus an element in H ′.

Theorem A.3.8 (Fréchet-Riesz representation). Let H be a Hilbert space
and H ′ its dual. Then the mapping ι : H → H ′ defined by ιx := ⟨ · , x⟩ for
all x ∈ H is an isometric isomorphism.

Some straightforward calculations allow us to transform the Bernstein
inequality as given in Yurinsky (1995, Theorem 3.3.2) into the following
version of Hoeffding’s inequality.

Theorem A.3.9 (Hoeffding’s inequality in Hilbert spaces). Let (Ω,A,P)
be a probability space, H be a separable Hilbert space, and B > 0. Further-
more, let ξ1, . . . , ξn : Ω → H be independent H-valued random variables
satisfying ∥ξi∥∞ ≤ B for all i = 1, . . . , n. Then, for all τ > 0, we have

P
(∥∥n−1

n∑
i=1

(ξi − EPξi)
∥∥
H

≥ B

√
2τ

n
+B

√
1

n
+

4Bτ

3n

)
≤ e−τ .

A.3.3 Derivatives in Normed Spaces

Let us take a look at the following results from Averbukh and Smolyanov
(1967, 1968), Fernholz (1983) and Rieder (1994) on various notions of dif-
ferentiation to clarify the connections between these notions.

For every pair of normed real vector spaces (E,F ) let a subset S(E,F ) of
the functions from E to F be given. The following conditions are imposed
on this system S, which will provide the (Landau) o remainder of the first-
order Taylor approximation of an S-differentiation:
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i) ϱ(0) = 0, ϱ ∈ S(E,F ),

ii) S(E,F ) is a real vector subspace of all functions from E to F ,

iii) S(E,F )∩C0(E,F ) = {0} where C0(E,F ) is the space of continuous
linear mappings from E to F , and 0 stands for the zero operator and

iv) moreover, in the case where E = R, it is required that

S(R, F ) = {ϱ : R → F | lim
t→0

ϱ(t)/t = 0} .

If S fulfills (i) to (iv), then some mapping T : E → F is called S-
differentiable at x if there exists some A ∈ C0(E,F ) and ϱ ∈ S(E,F )
such that for all h ∈ E,

T (x+ h) = T (x) +Ah+ ϱ(h) .

The continuous linear mapping∇ST (x) = A is called S-derivative of T at x.
The set of all functions T : E → F which are S-differentiable at x is denoted
by DS(E,F ;x). From conditions (ii) and (iii) it is seen that the S-derivative
∇ST (x) is uniquely defined. Condition (iv) ensures that S-differentiability
in case E = R coincides with the usual notion of differentiability. The
function T 7→ ∇ST (x) is a linear mapping from DS(E,F ;x) to C

0(E,F ).

S-differentiations may be constructed in a special way by means of cov-
erings C, whose elements are naturally assumed to be bounded sets C (so
that th → 0 uniformly for h ∈ C as t → 0). For every normed real vector
space E let a covering CE of E be given which consists of bounded subsets
of E. If F is another normed real vector space, define

SC(E,F ) = {ϱ : E → F | lim
t→0

sup
h∈C

∥ϱ(th)∥
t

= ϱ(0) = 0 , ∀C ∈ CE} .

Then the class SC satisfies the conditions (i) to (iv). With E ranging through
all normed real vector spaces, we can then define the following concepts of
differentiation by varying the covering CE :

i) Gâteaux -differentiation corresponds to CGE = {C ⊂ E |C finite}.

ii) For Hadamard -differentiation, CHE = {C ⊂ E |C compact}, and

iii) Fréchet-differentiation uses CFE = {C ⊂ E |C bounded}.
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The three differentiations will be indicated by the corresponding authors’
initials. From these definitions it is clear that ∇F implies ∇H which implies
∇G. It can be shown that ∇H is actually the weakest S-derivative which
fulfills the chain rule.

Since these definitions are hard to work with, we will also recall the
definitions of the Gâteaux- and Fréchet-derivative by using limits. Let E
and F be normed spaces, U ⊂ E and V ⊂ F be open sets, and f : U → V
be a function. We say that f is Gâteaux-differentiable at x0 ∈ U if there
exists a bounded linear operator ∇Gf(x0) ∈ L(E,F ) such that

lim
t→0, t̸=0

∥∥f(x0 + tx)− f(x0)− t∇Gf(x0)(x)
∥∥
F

t
= 0 , x ∈ E.

We say that f is Fréchet-differentiable at x0 if there exists a bounded linear
operator ∇F f(x0) ∈ L(E,F ) such that

lim
x→0, x ̸=0

∥∥f(x0 + x)− f(x0)−∇F f(x0)(x)
∥∥
F

∥x∥E
= 0 .

We call∇Gf(x0) the Gâteaux-derivative and∇F f(x0) the Fréchet-derivative
of f at x0. The function f is called Gâteaux- (or Fréchet-) differentiable if
f is Gâteaux- (or Fréchet-) differentiable for all x0 ∈ U , respectively. Fur-
thermore, f is called continuously (Fréchet-) differentiable if it is Fréchet-
differentiable and the derivative ∇F f : U → L(E,F ) is continuous.

The next result, see, e.g., Akerkar (1999, Theorem 2.6), gives the Fréchet-
derivative of a function that is defined on a product space.

Theorem A.3.10 (Partial Fréchet-differentiability). Let E1, E2 and F be
Banach spaces, U1 ⊂ E1 and U2 ⊂ E2 be open subsets, and G : U1 × U2 →
F be a continuous map. Then G is continuously Fréchet-differentiable if
and only if G is partially Fréchet-differentiable and the partial Fréchet-
derivatives ∂G

∂E1
and ∂G

∂E2
are continuous. In this case, the Fréchet-derivative

of G at (x1, x2) ∈ U1 × U2 is given by

∇FG(x1, x2)(y1, y2) =
∂G

∂E1
(x1, x2)y1+

∂G

∂E2
(x1, x2)y2 , (y1, y2) ∈ E1×E2 .

We refer to Chapter 4 of Akerkar (1999) for the following implicit function
theorem for Fréchet-derivatives.

Theorem A.3.11 (Implicit function theorem). Let E and F be Banach
spaces, and let G : E × F → F be a continuously Fréchet-differentiable
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function. Suppose that we have (x0, y0) ∈ E × F such that G(x0, y0) = 0
and ∇F

2 G(x0, y0) is invertible. Then there exists a δ > 0 and a continuously
Fréchet-differentiable function f : x0 + δBE → y0 + δBF such that for all
x ∈ x0 + δBE, y ∈ y0 + δBF we have

G(x, y) = 0 if and only if y = f(x) .

Moreover, the Fréchet-derivative of f is given by

∇F f(x) = −
(
∇F

2 G(x, f(x))
)−1∇F

1 G(x, f(x)) .

A.4 Convex Analysis

In this section we will discuss some necessary properties of convex functions.
Let us therefore start with the definition of a convex set and a convex
function.

A subset A of some Banach space E is called convex if, for all x1, x2 ∈ A
and for all α ∈ [0, 1] holds that αx1 + (1 − α)x2 ∈ A. In this case we
call f : A → R ∪ {∞} a convex function if, for all x1, x2 ∈ A and for all
α ∈ [0, 1], we have

f
(
αx1 + (1− α)x2

)
≤ αf(x1) + (1− α)f(x2) .

If, for all x1 ̸= x2 the inequality is strict, f is called a strictly convex
function. A function that is twice differentiable will be convex provided its
Hessian matrix is positive semi-definite. The set A is called absolute convex
if for all x1, x2 ∈ A and for all α1, α2 satisfying |α1| + |α2| ≤ 1 holds that
α1x1 + α2x2 ∈ A.

Furthermore, f is called concave if −f is convex. For A ⊂ Rd, a function
f is affine if f is convex, concave and finite; i.e., if there exists a vector
a ∈ Rd and a constant b ∈ R such that f(x) = aTx+ b for all x ∈ A.

The convex hull coA of A ⊂ E is the smallest convex set containing A
and can be characterized as

coA = {
n∑

i=1

aixi : xi ∈ A, ai ∈ R, n ∈ N,

n∑
i=1

ai = 1, ai ≥ 0} .

The absolute convex hull is the intersection of all absolute convex sets con-
taining A and is given by

acoA = {
n∑

i=1

aixi : xi ∈ A, ai ∈ R, n ∈ N,

n∑
i=1

|ai| ≤ 1} .
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Clearly, coA ⊂ acoA.

Given two Banach spaces E and F and A ⊂ E, a function f : A → F
is called Lipschitz continuous if there exists a constant c ≥ 0 such that
∥f(x)− f(x′)∥F ≤ c ∥x− x′∥E for all x, x′ ∈ A. The smallest constant that
fulfills this inequality is denoted by |f |1. We will call this |f |1 the Lipschitz
constant.

In the next subsection we will review some continuity properties of convex
functions, then we will give in introduction to subdifferential calculus in
Subsection A.4.2 and Subsection A.4.3 describes the optimization of convex
programs using Lagrange multipliers and duality.

A.4.1 Properties of Convex Functions

The following result on the continuity of convex functions can be found,
e.g., in Rockafellar and Wets (2009).

Lemma A.4.1 (Continuity of convex functions). Let f : R → R∪ {∞} be
a convex function with domain Domf := {t ∈ R : f(t) < ∞}. Then f is
continuous at all t ∈ IntDomf .

The next result is a consequence of Ekeland and Turnbull (1983, Propo-
sition II.4.6).

Proposition A.4.2 (Uniqueness of minimizer). Let E be a Banach space
and let f : E → R ∪ {∞} be a convex function. If f is continuous and
lim∥x∥E→∞ f(x) = ∞, then f has a minimizer. Moreover, if f is strictly
convex, then f has a unique minimizer in E.

A.4.2 Some Facts on Subdifferentials

In this subsection we will state some important properties of the subdiffer-
ential of a convex function (see e.g., Phelps, 1993, Rockafellar and Wets,
2009). For the remainder of this subsection, E and F will denote R-Banach
spaces. Let us begin by recalling the definition of subdifferentials.

Definition A.4.3. Let f : E → R∪{∞} be a convex function, and w ∈ E
with f(w) <∞. Then the subdifferential of f at w is defined by

∂f(w) :=
{
w′∈E′ : ⟨w′, v − w⟩ ≤ f(v)− f(w) for all v∈E

}
.
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The following proposition provides some elementary facts on the subdif-
ferential, see Phelps (1993, Proposition 1.11).

Proposition A.4.4. Let f : E → R∪{∞} be a convex function and w ∈ E
such that f(w) <∞. If f is continuous at w, then the subdifferential ∂f(w)
is a non-empty, convex, and weak*-compact subset of E′. In addition, if
c ≥ 0 and δ > 0 are constants satisfying∣∣f(v)− f(w)

∣∣ ≤ c ∥v − w∥E , v ∈ w + δBE ,

then we have ∥w′∥E ≤ c for all w′ ∈ ∂f(w).

This next proposition shows the extent to which the known rules of cal-
culus carry over to subdifferentials.

Proposition A.4.5 (Subdifferential calculus). Let f, g : E → R ∪ {∞} be
convex functions, λ ≥ 0, and A : F → E be a bounded linear operator. We
then have:

i) (Homogeneity) For all w ∈ E with f(x) <∞, we have

∂(λf)(w) = λ∂f(w) .

ii) (Additivity) If there exists a w0 ∈ E at which f is continuous, then,
for all w ∈ E satisfying both f(w) <∞ and g(w) <∞, we have

∂(f + g)(w) = ∂f(w) + ∂g(w) .

iii) (Chain rule) If there exists a v0 ∈ F such that f is finite and contin-
uous at Av0, then, for all v ∈ F satisfying f(Av) <∞, we have

∂(f ◦A)(v) = A′∂f(Av) ,

where A′ : E′ → F ′ denotes the adjoint operator of A.

iv) (Minima) The function f has a global minimum at w ∈ E if and only
if 0 ∈ ∂f(w).

v) (Differentiability) If f is finite and continuous at w ∈ E, then f is
Gâteaux-differentiable at w if and only if ∂f(w) is a singleton, and
in this case we have ∂f(w) = {f ′(w)}.
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vi) (Monotonicity) If f is finite and continuous at all w ∈ E, then ∂f is a
monotone operator, i.e., for all v, w ∈ E and v′ ∈ ∂f(v), w′ ∈ ∂f(w),
we have

⟨v′ − w′, v − w⟩ ≥ 0 .

The following proposition shows how the subdifferential of a function
defined by an integral can be computed.

Proposition A.4.6 (Representation of subdifferential). Let L̃ : X × Y ×
R → R be a measurable function which is both convex and Lipschitz con-
tinuous with respect to its third argument, P be a distribution on X × Y,
and p ∈ [1,∞). Assume that R : Lp(P) → R ∪ {±∞} defined by

R(f) :=

∫
X×Y

L̃(x, y, f(x, y)) dP(x, y)

exists for all f ∈ Lp(P) and define p′ by 1
p + 1

p′ = 1. If |R(f)| < ∞ for at
least one f ∈ Lp(P), then, for all f ∈ Lp(P), we have

∂R(f) =
{
h ∈ Lp′(P) : h(x, y) ∈ ∂L̃(x, y, f(x, y))

for P-almost all (x, y)
}
,

where ∂L̃(x, y, t) denotes the subdifferential of L̃(x, y, · ) at the point t.

Proof of Proposition A.4.6. Since L̃ is measurable, Lipschitz continuous,
and finite, it is a continuous function with respect to its third argument.
Thus it is a normal convex integrand by Proposition 2C of Rockafellar
(1976). Then Corollary 3E of Rockafellar (1976) gives the assertion. �

A.4.3 Convex Progams, Lagrange Multipliers and Duality

Optimization theory will try to characterize the solutions of an optimization
problem, which will typically be subject to some constraints. It will provide
us with necessary and sufficient conditions for a function to be a solution
to the problem. It will also try to develop effective algorithms to solve these
problems. As shown in Section 1.2, the SVM problem can be converted into
a form that suits this framework.

A number of classes of problems can be distinguished. However, for the
case of support vector machines, it is sufficient to consider the optimization
problem of maximizing (or minimizing) a convex function given a number
of linear constraints.
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Definition A.4.7. A convex program (P) is the optimization problem

minimize f(x) , x ∈ A
subject to gi(x) ≤ 0 , i = 1, . . . ,m ,

hi(x) = 0 , i = 1, . . . , n ,

where A ⊂ Rd is a convex set, and the functions f, g1, . . . , gm, h1, . . . , hn :
A→ R are finite convex functions.

The function f is known as the objective function, the functions gi(x) ≤ 0
define the inequality constraints, and the functions hi(x) = 0 the equal-
ity constraints. For more details on convex problems we refer the inter-
ested reader to, e.g., Cristianini and Shawe-Taylor (2000, Chapter 5), and
Steinwart and Christmann (2008b, Chapter A.6), a discussion on more gen-
eral optimization problems can be found in, e.g., Gill et al. (1981, Chap-
ter 3).

Remark that it suffices to consider the problem (P) since maximization
problems can easily be converted to minimization problems by changing
the sign of the function f . In the same way can the constraints always be
written as given above.

If the objective function, the equality and the inequality constraints are
all linear, the optimization problem is called a linear program. If the objec-
tive function is quadratic, while all constraints remain linear, it is called a
quadratic program.

We call a vector z a feasible solution of the convex program (P) if z ∈ A
and z satisfies the constraints from Definition A.4.7. The set of all feasible
solutions is called the feasible region and will be denoted as R. R is a
(possibly empty) convex set. The objective function can also be rewritten
as the convex function f0 : R

d → R defined by

f0(x) := f(x)1R(x) +∞1RC (x) .

Thus minimizing f0 over Rd is exactly the same as minimizing f over the
feasible region R. The infimum of f0 will be called the optimal value in
(P), the points where the infimum is attained are known as the optimal
solutions to (P), given that R ̸= ∅.

A convex program is said to be well-posed in the sense of Hadamard if
the optimal solution exists and is unique for all data sets, and it depends
on the data in a smooth (or continuous) way.

Mathematical Prerequisites



A.4. Convex Analysis 129

An inequality constraint gi(x) ≤ 0 is said to be active (or thight) if
the solution z satisfies gi(z) = 0, otherwise it is called inactive. Equality
constraints can be considered to be always active. Sometimes slack variables
ξi, i = 1, . . . ,m, are introduced to transform the inequality constraints into
equality constraints:

gi(x) ≤ 0 ⇐⇒ gi(x) + ξi = 0 ,with ξi ≥ 0 .

For active constraints, the slack variables will be zero, for inactive con-
straints they will give a measure of ‘looseness’ in the constraint.

One way to solve such a convex program is by using the Lagrange ap-
proach. The purpose of Lagrangian theory (1788) was to characterize the
solution of an optimization problem with only equality constraints by intro-
ducing the Lagrange multipliers and the Lagrange function. This method
was a generalization of the result of Fermat (1629), which gave the solution
for an unconstrained optimization problem. Details on these methods can
be found, e.g., in Vapnik (1998, Chapter 9.5). Later, in 1951, Kuhn and
Tucker provided a more general result that was able to cope with both
equality and inequality constraints.

We will first define the Lagrangian multipliers and the Lagrangian func-
tion, which contains information about both the objective function and the
constraints, and then state the Kuhn-Tucker Theorem.

Definition A.4.8. Given an optimization problem with objective function
f : A → R, where A ⊂ Rd, and equality constraints hi(x) = 0, for i =
1, . . . , n, the Lagrangian function, or in short Lagrangian, is defined as

L(x, β) := f(x) +

n∑
i=1

βihi(x)

where β = (β1, . . . , βn) and the βi ≥ 0 are called the Lagrange mul-
tipliers. If, in addition, there are also inequality constraints gi(x) ≤ 0,
i = 1, . . . ,m, then the generalized Lagrangian function is defined as

L(x, α, β) := f(x) +
m∑
i=1

αigi(x) +
n∑

i=1

βihi(x) ,

and the components of both α = (α1, . . . , αm), αi ≥ 0, and β = (β1, . . . , βn),
βi ≥ 0, are the Lagrange multipliers.
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Remark that, for inequalities of the form gi(x) ≥ 0 the sign of the middle
summand will change, since in that case −gi(x) ≤ 0. Furthermore, if there
are no equality constraints, we will simply write L(x, α) for the Lagrangian.

Theorem A.4.9 (Kuhn-Tucker). Given a convex program (P) with affine
functions gi, i = 1, . . . ,m and hi, i = 1, . . . , n, then necessary and sufficient
conditions for a point x∗ to be an optimal solution are the existence of
α∗ = (α∗

1, . . . , α
∗
m) and β∗ = (β∗1 , . . . , β

∗
n) such that

∂L(x∗, α∗, β∗)

∂x
= 0 ,

∂L(x∗, α∗, β∗)

∂β
= 0 ,

α∗
i gi(x

∗) = 0 , i = 1, . . . ,m ,

gi(x
∗) ≤ 0 , i = 1, . . . ,m ,

αi ≥ 0 , i = 1, . . . ,m .

The first condition will give us a set of new equations, the second one
will return us the equality constraints. The third relation is known as the
Karush-Kuhn-Tucker complementarity condition, which implies that for an
active constraint the Lagrange multiplier will be α∗

i ≥ 0, while those of the
inactive constraints need to be zero. The whole of these five conditions is
often called the Karush-Kuhn-Tucker (KKT) conditions.

For the special case of the SVM as described in Subsection 1.2, the second
relation will be superfluous, since there are no equality constraints. Also,
the first condition will be split up, since the objective function, being the
separating hyperplane, is given in terms of both the vector w and the real
number b.

Definition A.4.10. The Lagrangian dual problem of the primal prob-
lem from Definition A.4.7 is

maximize θ(α, β) ,
subject to α ≥ 0 ,

where θ(α, β) = infx∈A L(x, α, β).

The Lagrangian treatment of a convex problem passes via the dual de-
scription of the problem. Often this dual problem will be easier to treat than
the primal problem, since it avoids handling the inequality constraints di-
rectly and tries to optimize the dual function over the Lagrange multipliers

Mathematical Prerequisites
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instead of optimizing over the vectors x in the feasible region.

To go from the primal to the dual program, we can set the derivatives of
the Lagrangian with respect to the primal variables to zero, thus imposing
stationarity, and then substitute these relations into the Lagrangian, which
removes the dependence on the primal variables. This is precisely the same
as computing the function

θ(α, β) = inf
x∈A

L(x, α, β) .

The resulting function only contains the Lagrange multipliers as variables
and will be maximized under simpler constraints, namely the remaining
KKT conditions.

Mathematical Prerequisites





Appendix B

List of Symbols and
Notations

Sets and Spaces
∅ Empty set
N Set of positive integers
Q Set of rational numbers
R Set of real numbers
(a, b) Open interval
[a, b] Closed interval

A Closure of a set A
|A| Number of elements in a set A
coA Convex hull of a set A
acoA Absolute convex hull of a set A
X Input space (complete seperable metric space)
Y Output space (closed subset of R)
H Hilbert space
H0 Feature space
H Reproducing kernel Hilbert space
C(X) Space of continuous functions f : X → R

L(E,F ),L(E) Space of bounded linear S : E → F or S : E → E
L0(X) Set of all measurable functions on X
L∞(X) Set of all bounded measurable functions on X
Lp(µ) Set of p-integrable functions (w.r.t. µ)
Lp(µ) Set of equivalence classes of p-integrable functions
ℓp(X) Lp(µ) with µ the counting measure
⟨ · , · ⟩, ⟨ · , · ⟩H Inner product (in Hilbert space H)
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BE Closed unit ball in space E
D Set of discontinuity points of a function
Nδ(x) δ-neighborhood of x

Functions and Operators
1A(x) Indicator function: 1A(x) = 1, x ∈ A; 1A(x) = 0, x /∈ A
id Identity map: x 7→ x
IF Influence function
BIF Bouligand influence function
ι Fréchet-Riesz isomorphism: x 7→ ⟨ · , x⟩
f ∼x F f approximates F in x
f ≈ g f strongly approximates g
f ≈x F f strongly approximates F in x
F ≈(x,y) G F strongly approximates G

S′ Adjoint operator of S
∇F Fréchet-derivative
∇G Gâteaux-derivative
∇H Hadamard-derivative
∇B Bouligand-derivative
∂f(x) Subdifferential of f at x

Norms
∥ · ∥2 Euclidean norm
∥ · ∥p p-norm

∥ · ∥Lp
LP -norm

∥ · ∥∞ Supremum norm
∥ · ∥E Norm of space E
∥ · ∥H Norm of RKHS H
∥ · ∥M Norm of total variation

Measure theory and Probability
(X,A) Measurable space with σ-algebra A
(X,A,P) Probability space with distribution P
σ(X) σ-algebra on a non-empty set X
B, B(τ) Borel σ-algebra on R, or w.r.t. topology τ
µ Unspecified (signed) measure
P, P̄,Q Probability distributions
PX Marginal distribution
P( · |x) Regular conditional distribution
D Empirical distribution for the data set D
δx, δ{x} Dirac measure at some point x

M1, M1(Z) Set of all probability distributions on a measurable space

List of Symbols and Notations
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X, Xi Input random variable
Y , Yi Output random variable
Z, Zi Z = (X,Y ), Zi = (Xi, Yi)
EP(X) Expectation of X w.r.t. P

Statistical Learning Theory
D Training data set
n Sample size
d Dimension of the input vector X
sv Set of support vectors
H0 Separating hyperplane
H1, H2 Decision boundaries
γg Geometrical margin
L, LP , LD Lagrangian, primal and dual Lagrangian
α, β Lagrange parameters
ξ Slack variables
fL,P,λ SVM decision function w.r.t. P and L
fL,D,λ Empirical SVM decision function w.r.t. data set D
f∗L,P Bayes decision function w.r.t. P and L

T (P) Value of statistic T at P, often T (P ) = fL,P,λ
k Kernel
kRBF Gaussian RBF kernel
γ Width of Gaussian RBF kernel
Φ Canonical feature map of RKHS H
L Loss function
L⋆ Shifted loss function
Lc−log Logistic loss for classification
Lhinge Hinge loss for classification
LLS Least squares loss
Lϵ ϵ-insenstive loss for regression
Lc−Huber Huber loss for regression, c > 0
Lr−log Logistic loss for regression
Lτ−pin Pinball loss for quantile regression, τ ∈ (0, 1)
LL1 L1-loss for regression
λ Regularization parameter
RL,P( · ) L-risk w.r.t. P
R∗

L,P Bayes risk

RL,D( · ) Empirical L-risk w.r.t. data set D
Rreg

L,P,λ( · ) Regularized L-risk w.r.t. P

Rreg
L,D,λ( · ) Regularized empirical L-risk w.r.t. data set D

List of Symbols and Notations
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CL,Q( · ) Inner risk w.r.t. Q
ML⋆,Q(ε) Set of ε-approximate minimizers
ML⋆,Q(0

+) Set of exact minimizers
δmax(ε,Q) Self-calibration function

Abbreviations
BIF Bouligand influence function
ERM Empirical risk minimization
GPA Generalized portrait algorithm
IF Influence function
KKT Karush-Kuhn-Tucker
k-NN k-nearest neighbors
OLS Ordinary least squares
RKHS Reproducing kernel Hilbert space
RSS Residual sum of squares
SVM Support vector machine
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Fréchet-Riesz representation,
121

Fredholm alternative, 117
Hoeffding inequality, 121
Implicit function
Bouligand, 67
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