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Avant-propos

Ce fascicule a été rédigé dans le cadre du cours de signaux et systemes (SYST0002) pour les étudiant-es
de I"Université de Liege. Il suit un format systématique afin de permettre une bonne compréhension
des différents concepts du cours et de pouvoir les appliquer a des exercices.

Chaque TP est divisé en cingq parties :

e Concept : cette section résume les notions abordées durant les deux heures de cours théoriques.

e Exercices résolus au tableau : cette section reprend les énoncés et des schémas de résolution. Les
réponses complétes sont expliquées en classe.

e Exercices a faire : les étudiant-es sont amené-es a pratiquer les notions théoriques avec les explica-
tions pratiques sur des nouveaux exercices. Ils/elles seront guidé-es par des schémas de résolution
et encadré-es durant la séance de TP.

e Pour s’exercer : en dehors des deux heures de TP, nous proposons une série d’exercices supplé-
mentaires pour s’entrainer d’avantage.

e Sources supplémentaires : nous proposons une série de vidéos, de références pour découvrir
d’autres manieéres d’apprendre les concepts du cours.

Le fascicule a été rédigé majoritairement par Kathleen Jacquerie. N'hésitez pas a envoyer des re-
marques pour les typos ou autres coquilles a kathleen.jacquerieQuliege.be. Ce manuscript n’est pas
peer-reviewed.
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" Schéma de résolution : piste pour guider dans la résolution d’un exercice

AB(
Section faite au tableau par I’étudiant-e-moniteur-rice

[XXX] | Source de 'exercice

Sources

La section "Algebre linéaire : concepts & maitriser" se base sur le cours "Introduction of Linear Models"
de Mark Goldman dans le cadre de la summer school Methods in Computational Neuroscience.
[TXB] Livre d’exercices des années précédentes (disponible en ligne) (uniquement temps-continu) :
http://www.montefiore.ulg.ac.be/systems/SYST002/exercices2014_2015.pdf

[STR| Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, ... by Steven H. Stro-
gatz.

[Online] Enoncé disponible sur la page du cours : https://sites.google.com/site/gdrion25/
teaching/syst0002| ou sur ecampus.


http://www.montefiore.ulg.ac.be/systems/SYST002/exercices2014_2015.pdf
https://sites.google.com/site/gdrion25/teaching/syst0002
https://sites.google.com/site/gdrion25/teaching/syst0002
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STGNAUX & SYSTEMES: RESUME

Probléme réel
= mise en situation d’un systéme

mi +ct + kxr = F

z(t) = ...
F
o N e
Propriétés des signaux et des systémes:
Y causalité, linéarité, temps-invariance, ...

DOMATNE TEMPOREL

Representatlon ’Modéle d’état’

113 1§ .35

] i
i i
i i
|
; Comment étudier des systémes -+  Comment trouver la représentation — - Linéarisation d’un systéme i
i non linéaires 1D ou 2D modéle d’état d’un probléme réel ? - Représentation matricielle du :
: Est-ce que la représentation ABCD est systéme linéarisé |
2 possible? Comment faire le bloc :
i X2 diagramme? i
| |
i [ i
, . D
| u Ll |
| v |
i X i
i . i
i z !
|
5 Y @
i i
i i
|

- identification des variables d’état

- ou méthode des variables axillaires
H)M,[) - . ) . - ou mise en bloc diagramme
Equation entrée-sortie . . . .

puis extraire les variables d’état

oy + By + vy = ot + eu

1
¥(t) = u(t)*h(t)

La convolution permet d’obtenir la sortie sur base
de I'entrée u et de la réponse impulsionnelle A

u—>» ht) |—»y




OUTILS TRANSFORMATLON
TEMPOREL A FREQUENTLEL

Série de Fourier

| 5
kez ‘ L2, fouw ‘ ‘ A

; i o ;
T AVAVAVAVA B = [dp|ei<d |
b — 4 Les coefficients de Fourier sont complexes: Tx = |Zx|e’“"* |
. m 1 = _T/ 2 D2 On peut dessiner le spectre en amplitude et en phase des coefficients. i
o |
i Signal périodique i
! + .. 5 L& i
z k
} ) ey 1 i
i o i
() = = Fpelh T T I [
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Transformée de Fourier

_______________________________________________________________________________________________________________________________________________________________ .

Signal non-périodique

+ . . . .
2(t) = 1 OO X (jw)el*tdw La transformée de Fourier X (jw) est une fonction complexe qui dépend de w.
21 J_ oo On peut dessiner 'amplitude et la phase de la transformée en fonction de w.

Condition d’existence: ‘ “fou w ‘ > fou w

+o0 )
/ z(t)e 7t dt < oo

. ig
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“+o0 ) !
X(jw) = / z(t)e I@tdt | X] /X i
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Transformée de Laplace

ROC: I'ensemble des valeurs complexes de la variable

! |
! |
! |
! |
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! |
! |
I — 00 — 00 |
i i
! |
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! |
! |
! |
|

| X(jw) = /+°° [e(t)e=""] e~7tdt = /+°° s(t)e— @+t gy s = 0 + jw pour lesquelles l'intégrale existe.
i +00 |
i X(s) = / z(t)e”*tdt -« Pour calculer X(s), on essaye de repartir des transformées i
- @ de Laplace uselles et d’utiliser les propriétés. !
i



Fonction de transfert

= transformée de Laplace de la réponse impulsionnelle (%) DOM AINE H{EQU[NH E l_
AL DOMATNE TEMPOREL DOMAINE FREQUENTIEL
Description u—» at) |—»y Uls)—» H(s) > Y(s)
d’un systéme Obtenir h(t) depuis H(s)
P . _;_A ______ ;9 ____________ : P ! - en effectuant la décomposition en
Modéle d’état : &= AT DU : D= C(sI—A)"'B+D : fractions simples
o y_:_q:f j"_D_ wo i - | - puis, en appliquant les propriétés
s \ i . des transformées de Laplace
Equation . . e i | _ Os+e |
entrée-sortie | of + By +y = i+ eu i : H(s) = as?+fBs+vy | h(t) =e ™I(t) " H(s)= !
S = A 4 -1 s+ta
O | e :
: i o B ! I ROC
Convolution i y(t) = h(t)*u(t) : i Y(s) = H(s)U(s) ;
! i i i
(e e ARt = S S S L Y -
Calcul de la réponse d’un systéme Wm
r Calcul dle: la réponse forcée (U) | Calcul de la réponse libre (CI) Transformé
—\/ \/ “— 1,107 ransrormee
m [—» Su(t) = > Us) Yis) :£9 1(SI —A)7 (0]« de Laplace unilatérale
5 () () U Yos) £7e)
> - Yis) = yit)
J "o
Diagrammes de Bode WM
Décomposition en amplitude et en phase de la fonction de transfert (pour ¢ = 0)
H(jw) = Re(H(jw)) + j Im(H(ju)) = [H(juw)] e “H)
DOMAINE TEMPOREL DOMAINE FREQUENTIEL
DIAGRAMMES DE BODE
Y
|UA |H| ¢ | 9
u(t) y(t)
W W
> A(t) >
=t =Z’
w




Algebre linéaire : concepts a maitriser

Ce chapitre s’est inspiré sur base du cours théorique du Professeur Mark Goldman, de UC Davis, lors
de la summer school "Methods in Computational Neuroscience". Le podcast est disponible via ce [lien

1 Rappels sur les matrices

o Addition de matrices :

On additionne les éléments un a un.

1 2 n 5 6y (6 8
3 4 7 8) \10 12
e Multiplication d'un vecteur par un scalaire a@ : chaque élément est multiplié par le scalaire. Sur
le dessin, le vecteur reste dans la méme direction mais change de longueur.

X1 axry
ar To ars
ar = a . = .
z TN arnN

e Produit de deux vecteurs :

(1) Produit élément par élément :

(o) () = (o)

(2) "Dot product" (aussi appelé "inner product")

Zg=
(x1 @2 zy) (1
Y2
.| =ran Hxy2 + -+ TNYN
YN
1XN NX1 1X1
\ /I_J
MATLAB: ‘inner matrix dimensions

Outer dimensions give
must agree’ size of resulting matrix

Intuitivement, on peut aussi représenter ce calcul en dessinant les vecteurs.

z \
|I‘l g
\..’/""/’J
|Z] cos(6)
-y = |Z[|y] cos(0)


https://mbl.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=c1f959d8-8753-4eb9-85ee-aee10166a2d7

Le cosinus de I'angle formé par les deux vecteurs donne une indication de la superposition des
deux vecteurs. Le produit est maximum quand les deux vecteurs sont superposés.

(3) "Outer product" :

1 (y1 EREE yM) 1Y1 1Y2 1Ym
T2 T2Y1 r2Yy2 To2YmMm
TN INYLT INY2 - TINYM
NX1 1XM NXM

e Multiplication d’une matrice et d’un vecteur

(1) en utilisant le "inner product" : I’élement 7 du vecteur y est obtenu en calculant le dot product
entre la i-éme rangée de W avec x.

Y1 Wi Wi -+ Wiy
Y2 War Wiy - Wan T
; ; ; ; L2
yi | | W Wi - Wiy
. . . . . xN
YMm Wyr Wyz -+ Wun

(2) en utilisant le "outer product" :
Le produit est la somme pondérée des colonnes de W avec les entrées de .

On peut visualiser ce calcul graphiquement :

i

0 E)-

0 n 3\ (3

4 1/  \5
¢ Note: different

combinations of

the columns of

M can give you
.............. anyvectorin

: the plane

(we say the columns of M
“span” the plane)

e Produit de deux matrices
(1) en utilisant le "inner product" :

L’élément ij s’obtient en calculant le "inner product" de la i-éme rangée de A avec la j-iéme
colonne de B : Cj; = > 1 PA; By

A A - Arp
A21 ‘422 AQP Bll BIZ e Blj e BlA\'[ Cll CIZ e le\[
: : : By By -+ By -+ Ban Cor Cop o+ Com
- | N : T e
: : : Bp1 Bpy -+ Bpj -+ Bpum Cn1 Cn2 -+ Cnm
Ant An2 -+ Anp

10



(2) en utilisant le "outer product" :
La matrice C est le "outer product" entre les colonnes de A et les rangées de B.

A A - Arp By Bz -+ Bim Cn Cia -+ Cwu
Agp Asp oo Asp By Baa -+ Bam Coy Oy -+ Coy
Ayt An2 -+ Anp) \Bpi Bp2 -+ Bpu Cnvi Cna -+ Cnm

Brl Br2 BrP
?:(Acl)( )+<Acz>( )+-~-+<A°P>( :

2 Vecteurs propres et valeurs propres

Introduction
Que font les matrices aux vecteurs?

i

ED O 000+ 0-0

1) rotated
2) scaled

Existent-ils des vecteurs "spéciaux" qui ne font qu’une mise a ’échelle 7
Si on utilise par exemple le vecteur colonne écrit (1,1)7.

b
\

30

Pour ce vecteur "particulier', multiplier M par ce vecteur donne exactement la méme chose que
multiplier le vecteur par un scalaire. Ce vecteur est appelé vecteur propre et le facteur de multiplication
<>

est la valeur propre associée a ce vecteur propre. Mathématiquement, on écrit : M€ = \€.
Les vecteurs propres sont définis a un scalaire pres. Par convention, on indique souvent le premier
élément du vecteur égal a 1.

Comment calculer les valeurs propres ?
+ o
11 suffit de résoudre I’équation : (M —X1)€ = 0 pour € # 0. Cela revient a calculer cette expression :

<~ e
det(M — A1) = 0. On appelle cette expression, le polynéme caractéristique pour A. Pour une matrice
de dimensions /V, il y a N valeurs propres et N vecteurs propres.
Pour plus d’informations, consultez cette vidéo (de la chaine youtube 3bluelbrown).

11


https://www.youtube.com/watch?v=PFDu9oVAE-g

Applications

On utilise souvent le calcul des valeurs propres et des vecteurs propres dans le domaine de réduction
de dimensionalité. Cela s’appelle la technique "Principal Component Analysis' (PCA) Les vecteurs
propres permettent de calculer la direction de variance maximale dans les données.

Plus d’informations :

- lien 1

- lien 2

3 Résolution d’équations différentielles linéaires
Equation différentielle & 1D sans entrée
On démarre avec une équation différentielle & 1D (a coefficient constant) :
T = —ax
En bac 1, la résolution analytique pour cette équation a été détaillée :
z(t) = z(0)e” ™

Si a est positif, il s’agit d’'une exponentielle décroissante car le coefficient sur I’exponentielle est négatif.
La fonction démarre a la condition initiale 2:(0) et converge vers 0 (courbe bleue sur la figure ci dessous).
Dans le cas contraire, si le coefficient de I’exponentielle est positive, la fonction diverge (courbe orange).
On peut également écrire cette expression a l'aide d’une constante de temps, 7, :

Tped& = —2X

La constante décrit la rapidité vers laquelle x tend vers 0. Plus la valeur est grande, plus la convergence
est lente.

Exp- négative

Equation différentielle & 1D avec entrée

On peut compliquer I’équation et faire intervenir une constante b (dans le reste du cours, on appelera
cela une entrée au systéme) telle que :
T=—ax+b

On peut réécrire : © = —a(x — b/a).

Pour résoudre facilement cette équation, on va revenir au cas précédent car on connait la solution de
cette équation. Pour cela, il suffit de poser u = x — b/a. L’équation devient :

U= —au

La solution est donnée par :
u(t) = u(t = 0)e™ ™

11 suffit de remplacer pour retrouver la solution en terme de x :
x(t) —b/a = (2(0) — b/a)e™™

Graphiquement, = converge vers sa valeur "steady-state" a partir de sa condition initiale. On comprend
que c’est la différence entre la condition initiale et la valeur a l'infini qui décroit au cours du temps.

12


https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-1cbf392b9e7d
https://www.sartorius.com/en/knowledge/science-snippets/what-is-principal-component-analysis-pca-and-how-it-is-used-507186

On peut écrire une forme générale pour une équation différentielle de premier ordre :
Tk = Too — T
Q Cette équation se lit telle que x converge vers o, avec une constante de temps 7.

Leurs valeurs sont données par 7, = 1/a et 2o = b/a (la valeur de I'entrée divisée par le facteur de
I’exponentielle. La réponse du systeme écrit sous cette forme est donnée par :

z(t) = (2(0) — oo )e ™ + 20g

Systemes d’équations différentielles
On passe maintenant a une systemes d’équations différentielles :
21 = My1x1 + Myisws + Iy
1:2 = M21$1 + MQQQZQ + _[2
On peut écrire matriciellement cette expression :
—=> by — -
=Mz +1
Les deux variables x; et xo sont couplées. Pour obtenir la solution analytique de 1, on a besoin de
celle de =9 et vice-versa. Pour résoudre ce systeme, il faut suivre une procédure en 4 parties. Le but

est d’exprimer les équations dans un nouveaux systemes de coordonnées ou les deux variables sont
découplées. On revient ainsi au cas simple a 1D présenter ci-dessus.

étape 1 : On calcul les valeurs propres et les vecteurs propres.
<~
En effet, M est la matrice de couplage. On peut donc utiliser les vecteurs propres pour transformer

<>
cette matrice : M€ = \e

étape 2 : On décompose T et T selon les composantes des vecteurs propres :
7 =Y¢eli)=c W 4 ,e®
T =5,6:24) =020 +b,2@
On ne connait pas les termes c; et ¢y car ils correspondent aux solutions analytiques de x1 et x5 dans

le nouveau systéme de coordonnées (ie. le systéme donné par les directions des vecteurs propres). Ces

sont encore des inconnues a ce stade-ci. Les valeurs de bl et by peuvent étre estimées soit par identifi-
< <

cation des coefficient soit en calculant analytiquement le produit b =ET avec E~! la matrice des
vecteurs propres, ie. chaque colonne est un vecteur propre.

étape 8 : On injecte b et ¢ dans le systéme pour remplacer 'a?’lﬂ

d N . > . .
% Z Cig(z) =M (Ziv Clg(l)) + ZZN bZE)(Z)
3 %z@ — S e M0 + N e
o~ i 0 20 £ N 20
Zae =Y e +> biel

1. On laisse tomber les indices sur le symbole somatoire pour alléger le calcul.

13



C’est ici que la "magie" s’opére car on remplace un systéeme d’équations différentielles couplées par la
<

matrice M par un systeme d’équation différentielle de premier ordre. Ce nouveau systéme découplé est
facile a résoudre, en utilisant simplement les résultats obtenus aux sections précédents. On peut faire
cela car on passe du systéme de coordonnées (x1,x2) au systéme de coordonnées (e(l), e dans lequel
les variables ne sont plus couplées. On obtient donc deux équations différentielles simples d’ordre 1E| :

dCl
— = A b
7t 1c1+ 01
dCQ
— = ) b
0t 2C2 + 02

La solution s’obtient facilement :

c1(t) = (c1(0) — cl,oo)eht + €100
ca(t) = (e2(0) — CQ,OO)GAQt + €200

<>
avec €100 = —b1 /A1, €200 = —b2/A2. Pour le calcul des conditions initiales, on sait que 7 =FE?C. On

peut donc écrire

21(0) = c1(0)el! + eq(0)el?

22(0) = c1(0)ey) + ea(0)el”
11 suffit de résoudre ce systémes pour trouver ¢;(0) et c2(0) sur bases des conditions initiales données
en 1(0) et x2(0). étape 4 : On écrit le systeme de solutions pour z(t) et xa(t) :

z(t) =ca(tel) +ea(t)el”

2a(t) = cr(t)e) + ea(t)el?)

Exemple
On considere le systeme d’équations différentielles :

1 =0x1 4+ 3x9—2
To =2x1+2x9+3

avec les conditions initiales z1(0) = 0 et z2(0) = 0. On peut déduire la matrice de couplage et la

matrice d’entrée :
& 0 3\ —» -2

On peut résoudre ce systeme a l'aide des 4 étapes détaillées ci-dessus :
étape 1 : Calcul des valeurs propres et des vecteurs propres :
A1 = 3 et o = —2. Les vecteurs propres sont donnés par :

e _ (1 ol _ (15
étape 2 : On décompose 'entrée dans le nouveau systeme de coordonnées :
o -2 1 —-1.5

Pour calculer by et by, on peut soit faire par inspection et trouver des chiffres qui donnent la bonne

réponse soit utiliser la formule : b =FE"'T. Par inspection, on trouve que by = 1 et by = 2.

2. prendre note du changement convention pour les signes : au lieu d’avoir —a devant la variable x comme dans les
paragraphes précédents on a .

14



étape 3 : On trouve la solution pour c;(t) et co(t) en remplacant dans la formule démontrée ci-dessus
avec €100 = —b1/1, €200 = —b2/2 et les conditions initiales sont ¢1(0) =0 et c2(0) =0

ca(t) = (a(0)— cLoo)e)‘lt +c100 =-1/3+ 1/3€3t
ca(t) = (c2(0) —cao)e™ F oo =1—1le

étape 4 : On utilise les solutions trouvées en c(t) pour décrire la réponse en z(t) :

z1(t) = c1 ()1 + e2(t)(—1.5) = —1/3 + 1/3e3t + (=3/2) + (3/2)e
o(t) = c1(t)l + co(t)l = —1/3+1/3e3 41— %

Q 11 est intéressant de noter que la dynamique du systéme est gouvernée par les valeurs propres.

Notions clés

e Calcul élémentaires avec les vecteurs et les matrices

o Comprendre géométrique les opérations dans le plan

o Etre capable de calculer les vecteurs propres et valeurs propres d’une matrice

o Comprendre l'interprétation géométrique des vecteurs propres et des valeurs propres

o Avoir des notions du concept de "Principal Component Analysis" (PCA)

e Résoudre une équation différentielle simple avec et sans entrée

o Comprendre I'utilisation des vecteurs propres et valeurs propres dans le découplage d’un systéme
d’équations différentielles

e Découpler un systeme d’équations différentielles et résoudre entierement le systeme

4 Exercices a faire

Exercice 1 = Devoir 1 (2020)
Le systeme dynamique a deux dimensions est caractérisé par les équations différentielles suivantes :

(5)-( 1))

Calculer z(t) et y(t) a laide des valeurs propres et des vecteurs propres et discuter la stabilité du
systeme.

Schéma de résolution : découplage d’équation différentielle
1- Rechercher les valeurs propres et les vecteurs propres

2- Décomposer les variables z et y selon les vecteurs propres (directions préféren-
tielles pour découpler le systéme)

i i 3- Remplacer le systéme &,y par sa décomposition en considérant des conditions
Q initiales génériques

4- Résoudre le systéme et obtenir x(t), y(t)

5- Discuter la stabilité

Remarque : Essayer de bien comprendre les différents termes qui apparaissent dans la
résolution de votre systeme d’équations différentielles linéaires couplées.
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TP1 : Signaux, systémes et leurs propriétés

1 Concept

1.1 Distinction entre sytéeme et signal

Un systéme peut étre vu comme une boite noire qui transforme un certain nombre de signaux d’entrée
en un certain nombre de signaux de sortie.

- But : modéliser un processus.

- Domaines d’application : biologie, chimie, électricité, mécanique, finance, ...

Le concept de systeme peut étre schématisé comme ci-dessous : on s’intéresse a la transformation des
entrées en sorties.

Signaux d’entrée — Systeme — Signaux de sortie

La Figure[T]illustre le principe de modélisation d’une neurone sous forme de systéme. L’expérimentateur-rice
injecte du courant dans un neurone de rat et s’intéresse a la tension membranaire mesurée en sortie.
La dynamique interne du neurone peut étre modélisée par une "boite noire".

Courant
Tension

time time

Figure 1 — Exemple de systéme : mesure de la tension au niveau d’une neurone

Un signal transporte 'information d’un point & un autre alors qu’un systéme agit sur le signal dit
"d’entrée" pour en produire une version modifiée, dite "de sortie".

Un signal peut étre temps-continu, comme par exemple un courant électrique ou une onde acoustique,
mais également temps-discret, comme par exemple représentation digitale d’un signal audio (MP3) ou
d’une image (JPEG).

Mathématiquement, cette distinction vient de la variable indépendante, qui peut étre :

- soit continue (généralement t), on écrit u(-). Le domainelﬂ de la variable indépendante est un
ensemble continu (ex : R).

- soit discréte (généralement n), on écrit ul-]. Le domaine de la variable indépendante est un
ensemble discret (ex : N).

La variable indépendante continue est fréquemment le temps ¢ mais il peut également s’agir d’une
distance, de la pression, de la température, ...

Par exemple, considérons un microphone. Celui-ci peut étre vu comme un systéme qui convertit une
pression (due au mouvement de lair) en un signal électrique.

3. L’ensemble des valeurs de la variable indépendante pour lesquelles le signal est défini.
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p(t) —» Systeme ——» v(t), (1)

Un systéme est alors dit continu (resp. discret) s’il manipule des signaux continus (resp. discrets).
Cette distinction vient du domaine des signaux.

1.2 Transformations de signaux

Lorsqu’un signal traverse un systéme, celui-ci est transformé. Voici un récapitulatif des transforma-
tions affines, c-a-d opérations de bases que peut subir un signal.

Décalage temporel

u(t) —»{t —o ———» y(t) = u(t — o)

e o > 0 : décalage vers la droite. Intuitivement, ¢ — o représente un retard de o secondes.
Cette transformation peut étre illustrée par le schéma ci-dessous qui représente un courant qui
varie au cours du temps. L’expérimentateur-rice mesure initialement 2[A]. Si le signal est retardé
d’une seconde par un systéme, 'expérimentateur-rice mesurera 0[A] au lieu de 2[A]. En effet, la
courbe s’est déplacée d’une unité vers la droite car elle a subit un retard.

u(t) u(t—1)

2 2

1 1
"432-101 2 3 4 43210123 4 ¢

e o0 < 0 : décalage vers la gauche. Le signal est avancé.

u(t) u(t+1)

2 2
1

“4-32-10 1 2 3 4 ¢ 439101 2 3 4 ¢

Inversion temporelle

u(t) > t —> y(t) = u(—t)

Rotation de 180° selon I’axe des ordonnées = miroir selon l'axe des y.

u(t) u(—t)
2 2
1 1

“4-32-10 1 2 3 4 ¢ “4-39-10 1 2 3 4 ¢
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Dilatation ou contraction

u(t) ———»

Q|+

ea>1:1t— 3 Mathématiquement, la constante a affecte le signal selon ’axe des abscisses.
Autrement dit, le signal est dilaté. Le temps est "divisé par a', ce qui implique que le signal
s’étale sur une durée a fois plus longue (dilatation). Cependant, 'amplitude du signal reste
inchangée. Par exemple, lorsqu’une musique est jouée sur un MP3, si la vitesse d’écoute du MP3
est modifiée (vitesse x %) : le signal sonore est étalé dans le temps. Les sons sont prononcés plus
lentement mais I’amplitude reste la méme.

u(t) u(t/2)
2 p
1 1

—4-3-2-10 1 2 3 4 ¢ —4-3-2-10 12 3 45 6 t

e a<l = % >1: (ex. % = 2t). A l'inverse du cas précédent, cette fois, le bouton x2 du MP3
est pressée, le signal sonore (ou la vidéo, dans un autre contexte) est accéléré. Les informations
contenues dans le son défile plus vite et donc que celui-ci est contracté. Une nouvelle fois, seule
la variable indépendante est modifiée par cette transformation et non l’amplitude du son (ou
dans I’exemple de la vidéo, le contenu visuel est inchangé, seul le nombre d’images par seconde
est affecté).

u(t) u(2t)

Transformation combinée :

y(t) = u(i — a)

Que faire lorsque le signal subit plusieurs transformations 7 Dans quel ordre faut-il appliquer les trans-
formations ? En régle générale, il faut les appliquer dans I’ordre inverse de la priorité des opérations.
Une transformation combinée (par exemple avec a = 2 et 0 = —1 tel que y(t) = u(% + 1)) peut étre
décomposée sous forme de deux sous-systemes. La sortie du premier sous-systéme est notée yiemp(t)
et agit comme entrée du deuxieme sous-systeme.

e Que se passe-t-il si le décalage (addition) a lieu avant la contraction/dilatation (multiplication)
comme illustré ci-dessous par la combinaison des deux sous-systemes ?

u(t) ——» +1 —> Yremp(t) — x5 —> y(t)
o ler sous-systeme : Décalage Yiemp(t) = u(t — o)
u(t+1)
2
1
—4-372-10 1 2 3 4 ¢ —4-3=2-10 1 2 3 4 ¢
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Pour 0 = —1 < 0 (décalage vers la gauche) ; cela correspond donc & un signal en avance de 1.

o 2¢me sous-systéme : Contraction/Dilatation y(t) = yremp(L) = u( — o)
Ytemp(t) Y(t) = Yeemp(t/2)
2 21
1 N
—4-32-10 1 2 3 4 ¢ 432101 2 3 4 ¢

Pour a = 2 > 1, le signal est dilaté selon I’axe des abscisses.

C’est bien dans cet ordre qu’il faut effectuer les opérations.
Si on inverse les deux étapes, on inverse les deux sous-systémes et on obtient une autre sortie que celle
attendue.

u(t) — Ytemp(t) = u(;)

t+1

%mw@)—%y@)zymmﬁt+1)=u<2)

ce qui n’était pas le résultat attendu.

e Pour une autre transformation combinée :

avec u(%) La transformation combinée est décomposée en deux sous-systeémes et fait appel a un

signal intermédiaire yiepmp(t).

o~

o ler sous-systéme : Contraction/Dilatation ysemp(t) = u(;)

u(t)
2
1

—4-3-2-10 1 2 3 4 ¢ —4-3=2-10 12345 6 ¢t
Pour a = 2 > 1, le signal est dilaté selon I’axe des abscisses.
o 2¢me sous-systeme : Décalage y(t) = Yemp(t — 0) = u(=2)

ytemp(t) y(t) = ytemp(t + 1)

“4=3=2-10 1 2 3 4 5 6 ¢ “4=3=2-101 2 3 45 6 ¢
Pour ¢ = —1 < 0, cela correspond a un signal en avance de 1.

Au bilan, la division est effectuée AVANT D’addition car elle porte sur tout le numérateur. Cela peut
étre vu comme des parentheses (t —o)/a :

u(t) —» X —» ytemp(t) —» +1 —» y(t)

N[
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C’est bien dans cet ordre qu’il faut effectuer les opérations. Si I’addition est exécutée avant la multi-
plication, le signal serait modifié comme ceci

w(t) — Ytemp(t) = u(t + 1)

Ytemp(t) — y(t) = ytemp<;> = u<2 + 1)

ce qui n’est pas le résultat attendu.

QO Astuce mnémotechnique : 'opération qui est la plus "proche" de la variable indépendante est effectuée
en dernier car cette opération correspond bien a l'action du dernier sous-systéme.

1.3 Propriétés des signaux

¢ Périodique
Mathématiquement, un signal x(t) est périodique s’il 3 T € R tel que x(t) = x(t +T) , Vt.
Exemple : 2(t) = sin(t)

z(t+T

x(t) )
AWARAWAW) AWATAWAW)
VVAVIVAVES JV VYV V!

¢ Pair ou impair

Pair Impair
x(t) = z(—t) z(t) = —x(—t)
Symétrie orthogonale d’axe Symétrie centrale par I'origine
égal a laxe des ordonnées. des axes.
Exemple : z(t) = cos(t) Exemple : z(t) = V/t

x(t)

x(t)
AR

Utilité ? Un signal peut toujours étre décomposé en une somme de signaux pairs et impairs :

1 1
#(t) = 5 (2(t) — 2(=) +3 (2(0) + (1)
Signal impair Signal pair
1.4 Propriétés des systémes
Continu Discret
Un signal continu en entrée donne un si- Un signal discret en entrée donne un si-
gnal continu en sortie. gnal discret en sortie.
u(t) ———»| Systeme ——» y(¢) u[n] ———» Systeme ——» y[n]
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Hybride (1) Hybride (2)

Un signal discret en entrée donne un si- Un signal continu en entrée donne un si-
gnal continu en sortie. gnal discret en sortie.
u[n] ——» Systeme ——» y(t) u(t) ——»| Systeme —» y[n]

o Univoque
Un systeme est dit univoque si & une entrée u(t) n’est associée qu'une et une seule sortie y(t).

e Statique
Un systeme statique est un systeme dont la sortie ne dépend que de l'entrée d cet instant t* :
y(t*) = f(u(t*)). On dira que le systéme ne posséde pas de mémoire, qu'il n’est fonction que de
I’entrée présente. Une méme entrée donnera donc toujours une méme sortie, a tout instant.

¢ Dynamique
Un systeme dynamique est un systeme dont la sortie dépend du présent, mais aussi de valeurs
de l'entrée a d’autres instants.

e Causal
Un systeme est dit causal si la sortie a un instant t* ne dépend que de l'entrée en t* et des
entrées précédentes t < t* : y(t*) = f(u(t*),u(t* — dt),u(t* — 2dt),...) = f(u(?)) , < t*. Par
convention, un systéme statique est causal. A noter que tout systéme physique est causal.
Exemple : On considere le mouvement d’un chariot, sa position en sortie du systéme et I’entrée
est la force exercée sur le chariot. A un instant donné, la position du chariot dépendra de la force
appliquée, mais aussi des forces précédemment appliquées, déterminant sa position actuelle.

Systeme —» y(t)

u(t)—u(t—=z) ]

Pour le moment, on dira donc qu’un systéme décrit par une équation différentielle est causal,
sans plus de détail.

e Anticausal
Un systeme est dit anticausal si la sortie a un instant t* ne dépend que de 'entrée en t* et des
entrées futures t > t* : y(t*) = f(u(t*), w(t* +dt), u(t* +2dt),...) = f(u(l)) , £ > t*.

u(t+1)

Systeme —» y(t)
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o Non-causal
Un systeme est dit non-causal s’il n’est ni causal, ni anti-causal.

o Additif
Un systeme est dit additif §’il vérifie la propriété suivante[ﬂ

{11002 St = s = STaua(6) = ST 1a} = S+ T2} = 1)l

Cette propriété peut étre facilement illustrée graphiquement :

u1(t) y1(t)
1 —» S —» A
—2-10 1 2t —2-10 1 2t
us(t) ya(t)
—2-10 1 2 ¢t —2-10 1 2 ¢
ot (t) = un (t) + ua(t) Yrot (1)
2A|
—2-101 2t —2-10 1 2 ¢
¢ Homogeéne
Un systeme est dit homogene s’il vérifie la propriété suivante
y(t) = S{u(t)} = Ay(t) = S{Au(t)}
Cette propriété peut étre facilement illustrée graphiquement :
AUy (t) AY1 (t)
A i g AA
—2-10 1 2 ¢ —2-10 1 2 ¢

e Linéaire
Un systeme est dit linéaire s’il est additif et homogene. Mathématiquement, il vérifie donc la
propriété suivante

(t) = S{u(t)} _
{ g;;(t) — S’{u;(t)} = ayi(t) + By2(t) = S{aui(t) + fu(t)} , Vo, €R

¢ Temps-invariant
Un systeme est dit invariant dans le temps lorsque la loi qu’il établit entre entrées et sorties ne
change pas au cours du temps. A une entrée est associée une sortie, peu importe instant. Ainsi,
on a la propriété

y(t) = S{u®)} =yt —7) = S{u(t —7)}

4. On notera y(t) = S{u(t)} le fait que y(¢) soit la sortie du systéme S associée & 'entrée u(t).
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Remarque : Le cours portera principalement sur les systémes linéaires temps-invariant (LTI). Nous
étudierons les outils spécifiques a cette catégorie de systéeme. Il est donc important de comprendre les
différentes notions.

Notions clés
e Distinguer signaux et systémes

o Maitriser des transformations de signaux
o Identifier les propriétés des systemes (linéarité, causalité, invariance)

2 Exercices résolus au tableau

Exercice 1 = Exercice 1.2 (a)-(c) [TXB]

Soit le signal continu z(-) représenté ci-dessous.

x(t)

2 —
—1
Tracer les signaux suivants.
— (a) z(t —1)
=2 /1 1 2 ¢ (c) z(2t + 1)
: -1

Schéma de résolution : transformation affine
e Identifier la transformation : décalage temporel vers la droite/gauche ? inversion
_"_ temporelle ? contraction/dilatation ? transformation affine ?

e S’il y a plusieurs transformations, identifier 'ordre des opérations INVERSES (ou
utiliser I’astuce mnémotechnique)

e Dessiner les transformations

Exercice 2 = Exercice 3.1 (a)-(b) [TXB]

Déterminer si le systeme continu correspondant a la relation entrée-sortie donnée ci-apres est
e dynamique ou statique;
e causal, anti-causal ou non causal;
e linéaire ou non;
e variant ou invariant.
(a) y(t) =u(t—2)+u(2—-1)
(b) y(t) = cos(3t)u(t)
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Schéma de résolution : identifier les propriétés des systémes

e Statique-dynamique ? Pour rappel, un systéme est statique si y(¢*) ne dépend que
de la valeur de l'entrée en t = t*.

e Causalité ? Pour rappel, un systéme est causal si y(¢*) ne dépend que de la valeur
de Pentrée en t < ¢*.

e Linéarité? Pour déterminer si le systéme est linéaire, il suffit de démontrer que
tout combinaison au; + Sus donne une sortie ayy + Bys.
En pratique, une autre facon de voir si un systéme est linéaire est de regarder si
NP les entrées u /sorties y/signaux x (plus généralement, les variables dépendantes)
) ) sont exprimées/modifiées par une fonction non linéaire. Cela n’a donc pas de
rapport avec "t" (c-a-d la variable indépendante), mais bien uniquement avec les
fonctions qui sont appliquées sur les entrées/sorties/signaux.

e Temps-variant ou temps-invariant ? Pour rappel, un systeme est dit invariant dans
le temps lorsque la loi qu’il établit entre entrées et sorties ne change pas au cours
du temps, c’est-a-dire si ’équation ne dépend pas explicitement de la valeur de
la variable indépendante.

En pratique, il faut regarder si le systeme dépend de la variable indépendante ¢
ie. regarder si les coefficients de I’équation sont dépendants du temps (autrement
dit, si & des instants différents, les coefficients prennent des valeurs différentes).

3 Exercices a faire

Exercice 3 = Exercice 1.2 (d) [TXB]

Soit le signal continu z(-) représenté ci-dessous.

2(t)

: ; Tracer le signal suivant.
=2 /~1 1T 2 ¢ z(4— 1)

Schéma de résolution : transformation affine

e Identifier la transformation : décalage temporel vers la droite/gauche ? inversion
) ) temporelle ? contraction/dilatation ? transformation affine ?

e S’il y a plusieurs transformations, identifier 'ordre des opérations INVERSES (ou
utiliser 'astuce mnémotechnique)

e Dessiner les transformations

Exercice 4 = Exercice 3.1 (f) [TXB]

Déterminer si le systéme continu y(t) = wu(%) correspondant & la relation entrée-sortie donnée
ci-apres est
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e dynamique ou statique;

e causal, anti-causal ou non causal ;

linéaire ou non;

variant ou invariant.

Exercice 5 = Exercices 3.15 (a) - (¢) [TXB]

Etudier la linéarité et invariance des systémes suivants.
(a) 9(t) +2y(t) = u(t?)
(c) y(t) +ay(t) = u(t) avec a € constant

Schéma de résolution : identifier les propriétés d’une équation différentielle

e Linéarité : pour cet exercice, pas besoin de refaire la démonstration. Regarder si
les signaux d’entrée et/ou de sortie sont exprimés au travers de fonctions non-

C linéaires (ex : /y(t) , gy , cos(u(t)), ...)

- - e Invariance : regarder si les coefficients dépendent ou non du temps ou faire la

démo.

Rappelez-vous de vos cours d’Analyse sur 1’étude d’équations différentielles, des no-
tions similaires avaient été abordées telles que les équations différentielles linéaires a
coefficients constants par exemple.

Exercice 6 = Interro 2013 - Q3 cliquer ici ou sur le|site ex 2 ou ex 3.7 [TXB]

Etudier la linéarité et 'invariance des deux systémes ci-dessous. Justifier la réponse en détail : donner
une démonstration explicite, e.g., par contre-exemple pour les propriétés non-satisfaites.

(i) y(t) = sin(u(t)) = (sinou)(t) = sin(u(t))
(ii) y(t) = u(sin(t)) = (u o sin)(t) = u(sin(t))

4 Pour s’exercer

Exercice 7 = Exercice 3.9 [TXB]

Caractérisez

(a) un phénomene physique susceptible de mettre en défaut ’hypothese de linéarité d’'un modele de
circuit électrique.

(b) un phénomeéne physique susceptible de mettre en défaut I’hypotheése d’invariance d’un modele
de circuit électrique.
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http://www.montefiore.ulg.ac.be/~guilldrion/Files/interro-20131105.pdf
https://sites.google.com/site/gdrion25/teaching/syst0002

Exercice 8 = Exercice 3.12 (a) [TXB]

Pour chacune des questions suivantes, sélectionner la bonne réponse sur base d’une courte justification.
Un seul des trois systémes suivants est linéaire et statique, lequel ?

(1) wu(t) = t2u(?)
(i) y2(t) = u(t +1)
(i) y3(t) = a(t)
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TP2 : Systémes non-linéaires (1D)

1 Concept

1.1 Introduction aux systemes non-linéaires

Les équations différentielles permettent de décrire la dynamique des systémeslﬂ Par exemple, ’équation
d’un systeme masse-ressort amorti peut étre décrit selon I’équation :

d?z dz

m—s +b—+kxr=0

dt? dt
En premiere année, le cours d’analyse a fourni des outils pour résoudre ce type d’équations, afin
d’aboutir a une expression de z(t).
Lorsque I’équation fait intervenir des non-linéarités, il devient cependant de plus en plus compliqué
de résoudre analytiquement.

Par exemple, & = sin(x) a pour solution (en notant zo la valeur de z en t =0) :

csc(xg) + cot(xo)

t=1
. csc(x) + cot(x)

Comment interpréter ce résultat ? Si xg = 7/4, que vaut z(t) pour t — o0 ?

L’expression analytique de la solution ne permet pas de répondre directement a ces questions. On
souhaiterait donc avoir un outil plus qualitatif afin de comprendre la dynamique du systéme sans ré-
soudre I’équation différentielle entierement. Dit autrement, on souhaiterait pouvoir décrire le systéme
par son fonctionnement global, ses propriétés et les sorties qu’il produit a certaines entrées, et ce en
s’affranchissant le plus possible de la complexité analytique du probléeme.

On va donc représenter 1’équation & = sin(z) graphiquement. Il s’agit du champ de vecteurs qui
associe un vecteur vitesse & a chaque point z. Pour ce faire, on dessine une fleche qui pointe vers la
droite (resp. gauche) si le vecteur vitesse pour & > 0 (resp. # < 0) comme illustré a la Figure

Les vecteurs vitesses indiquent la direction selon laquelle un fluide imaginaire s’écoulerait selon ’axe
x, avec une vitesse variant en fonction de la position. Lorsque & = 0, il n’y a pas de vitesse, autrement
dit le fluide est statique et I’eau ne bouge plus. Il s’agit donc d’un point fixe. Pour déterminer la nature
du point fize, il suffit de regarder vers ou le flux/courant "converge" ou, contrairement, comment le
flux/courant éloigne la particule d’eau d’un point fixe. Dans I’exemple, il y a donc deux types de points
fixes ; un point noir représente un point fixe stable et un point ouvert représente un point fixe instable.

La Figure [2| permet d’étudier la dynamique du systéme et les différentes solutions de I’équation
& = sin(z). Par exemple pour xg = 7/4, il suffit d’imaginer une particule ou une goutte d’eau en
cette abscisse et de regarder comment cette particule est transportée par le flux/courant indiqué par
les fleches du champ de vecteurs. Pour t — oo, la particule approche le point fixe m par la gauche.

5. Ce TP est basé sur les chapitres 1,2,5,6 de [STR]
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Figure 2 — Champ de vecteurs de ¢ = sin(x) [Figure 2.1.1-STR]

1.2 Linéarisation et étude de stabilité

La section précédente permet sur base d’une étude graphique de déterminer les points fixes et leur
stabilité. Il est intéressant de développer une mesure plus quantitative. La stabilité d’un point fixe peut
s’étudier en linéarisant le probleme non-linéaire en ce point. Au lieu d’étudier le probléme de maniére
globale a I'aide du champ de vecteurs, on étudie localement chaque point fixe a 'aide du systéeme
linéarisé autour de ce point.

Un exemple bien connu est celui du pendule, a ’aide de 'approximation des petits angles, on peut
écrire sin(f) ~ 6, permettant de trouver une solution analytique du probléeme. Cependant, en appli-
quant cette méthode, on viole certaines lois de la physique et le domaine d’application de la solution
est restreint. Il faut ainsi garder a l'esprit que la linéarisation ne permet pas d’étudier le probleme
non-linéaire dans son ensemble mais est un outil permettant d’étudier la stabilité du probléme en ses
points fixes avec certaines limitations.

La stabilité de la fonction & = f(x) en un point fixe z* peut se calculer en faisant intervenir 7,
une petite perturbation depuis le point fixe telle que x = £* + 7 . On souhaite déterminer si le systéme
retourne & son point fixe lorsqu’il subit cette petite perturbation, autrement dit si elle grandit ou
diminue. On applique donc le développement de Taylor a la fonction f(z) en remplacant = par x* + 1.
Le premier membre de 1’équation différentielle devient :

j;_dix_d(x*—kn)_
Cdt dt -

et le deuxieme membre devient :

fla) = fa* +n) = f(@") +0f' (") + O()

Par définition, un point fixe z* annule la fonction f(x), i.e. f(z*) = 0. Le développement de Taylor
devient :

fla* +n) =nf'(«*) +O@)

Q L’équation différentielle & = f(x) décrivant la dynamique globale du systéme peut donc étre étudiée
localement autour du point fixe x* sous la forme :

i =nf'(z") +O0(r)

Il faut donc résoudre cette équation différentielle qui caractérise le systéme non-linéaire initial mais
étudié localement autour du point fixe considéré z*.

- Si f'(z*) = 0, les termes d’ordre 2 ne sont pas négligeables et il faut continuer I’étude avec ces

termes :
7= O(n’)
- Si f/(x*) # 0, on peut négliger les termes d’ordre supérieur :
n=nf"(z")

Cette équation différentielle LINEAIRE est facile & résoudre. On obtient :

n(t) = n(0)e’ !
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avec 7(0) une constante et f'(z*) la dérivée premiere de f(z) évaluée en z*. Il s’agit donc de la
pente de la fonction en x*.

Ainsi, pour savoir si le point z* est stable ou non, il suffit de regarder si la perturbation ()
diminue ou grandit. L’analyse de I’équation 7(t) donné par une exponentielle indique directement
la réponse :

o Si f'(z*) < 0, n(t) est caractérisée par une exponentielle décroissante. Dés lors, le point fixe
est stable. La perturbation va bien diminuer.

o Si f'(x*) > 0, n(t) est caractérisée par une exponentielle croissante. Dés lors, le point fixe
est instable. Inversement, la perturbation entraine le systeme loin du point fixe.

Pour conclure, I’étude de la pente de la fonction évaluée au point fixe permet immédiatement de
déduire la nature du point fixe.

Pour illustrer ce concept, on repart de 1’exemple utilisé & la section précédente, & = sin(z), on extrait
la fonction f(x) = sin(z). Les points fixes sont définis par :

f(z) =0« sin(z) =0

On obtient : x* = km ou k est un entier. Pour déterminer la stabilité des points fixes, il suffit d’étudier
le signe de la dérivée premiere f’(x) évaluée aux points fixes z*. Mathématiquement, cela donne :

1(o %\ o 1, k pair
F(@") = cos(km) = { —1, k impair

Les points fixes associés & k pair (resp. impair) sont instables (resp. stables) car la dérivée premiére
évaluée en ces points est positive (resp. négative).

Cela peut facilement se visualiser en dessinant la pente du graphe (dérivée premieére) aux points fixes
(intersections avec 1’axe des x). Si la pente est positive, le point fixe est instable et inversement si la
pente est négative, le point fixe est stable. Sur la Figure 2] n’hésitez pas a dessiner la droite tangente
au graphe au niveau des points fixes. Si la droite decroit (resp. croit), représentant une pente négative
(resp. positive), le point fixe est stable (resp. instable).

Notions clés

Approche Globale | Graphique Locale | Mathématique
tracer & = f(x) équation & = f(x)
Points fixes | intersection avec l'axe x résoudre équation :f(z) =0 — z* = ...
Stabilité tracer le champ de vecteur étudier le signe de la dérivée premiere
&>0:— (i) calcul f'(z)
T <0 (ii) remplacer z par x* : f'(z*)
stable — o f'(z*) < 0 (pente négative)
instable +—o— f(z*) > 0 (pente positive)
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2 Exercices résolus au tableau

Exercice 1 = Exemple 2.2.3 [STR]

Pour ’équation suivante : & = x — cos(x)
Dessiner le champ de vecteurs et indiquer la stabilité de chaque point fixe.

Schéma de résolution : analyse de systéme 1D non-linéaire décomposé en
deux sous fonctions | Stabilité 1D approche graphique

N Lorsque l'expression est un peu plus compliquée & dessiner, on peut écrire 1’équation
- - & = fi(x) — fa(x). Les points fixes s’obtiennent alors en calculant fi(z) — fa(z) = 0,
R autrement dit en déterminant les intersections des deux fonctions. La dérivée/ La vitesse
& sera positive si fi(x) est supérieure a fa(z). Graphiquement, cela signifie que fi(z)
est "au-dessus" de fo(x).

3 Exercices a faire

Exercice 2 = Exemple 2.2.1 [STR]

Le systeme est décrit par ’équation suivante :
t=1z%-1

1- Dessiner & en fonction de x.

2- Calculer les points fixes.

3- Dessiner le champ de vecteurs.

4- Identifier la stabilité des différents points fixes graphiquement.

Schéma de résolution : analyse de systéme non linéaire 1D

1- Ne pas hésiter a réaliser une étude de fonction de 2 — 1. Calcul des zéros, crois-
sance, courbure pour facilement dessiner la fonction.

2- Points fixes
e définition : £ =0
e résoudre :
3- Stabilité graphique (étude globale) :
e définition :
NP N & > 0 : champ de vecteur —
'~ £ < 0 : champ de vecteur +
e résoudre :
4- Stabilité mathématique (étude locale) :
e calcul de la dérivée : f'(x)
e remplacer par l'expression par les différents points fixes f(z])
e donner la stabilité en fonction du signe de la dérivée f'(z}) :

f'(z¥) >0 point fixe instable
f'(z¥) <0 point fixe stable
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Exercice 3 = Paragraphe 2.3 Croissance de la population [p.21-STR]

La croissance de la population d’organismes peut étre simplement modélisée par 1’équation suivante :

. N

N =rN(1- E)
N(t) est la population au temps ¢, r est le taux de croissance de la population. Le modele tient
compte d’un certain facteur K appelé "carrying capacity" qui correspond a une croissance négative
(i.e. lorsque le taux de déces est supérieur au taux de natalité). (K > 0 et r > 0)
Enoncé :
1- Dessiner approximativement N en fonction de N (et/ou utiliser Matlab) - Remarque : la population
ne peut pas étre négative.
2- Calculer mathématiquement les points fixes.
3- Déterminer graphiquement la stabilité du(des) point(s) fixe(s).
4- Déterminer mathématiquement la stabilité de chacun.

Schéma de résolution : analyse de systéme non-linéaire 1D avec des para-
meétres fixes

N’hésiter pas a noter ’équation gouvernant la dynamique du systéme et différencier les
signaux et les constantes.

1- ...

2- Points fixes
o déf: N =0
e résoudre :

3

Stabilité graphique (étude globale) :

. . o déf : .
N>0—

N <0«
e résoudre :
4- Stabilité mathématique (étude locale) :
e calcul de la dérivée : f'(N)
e Remplacer par 'expression par les différents points fixes f(N;)

e Donner la stabilité en fonction du signe de f/(N;) :

f'(NF) >0 point fixe instable

1

f/(N}) <0 point fixe stable

1
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Exercice 4 = Exemple 3.1.2 [STR]

Le systeme est décrit par I’équation suivante :

T=r—x—e %

Etudier la dynamique du systéme pour les différents valeurs possibles de Pentrée (i.e. dessiner & en
fonction de = dans les différentes configurations possibles gouvernées par r et donner la stabilité des
points fixes s’ils existent).

Schéma de résolution : analyse de systéme non linéaire 1D et paramétrique

l 1- Déterminer les points fixes graphiquement pour différentes configurations dictées
- - par 7. Indice : s’inspirer de I’Exercice TP1 | n*1 [STR]

2- Dessiner le champs de vecteur

3- Etude de stabilité (graphique uniquement)

4 Pour s’exercer

Exercice 5 = Exercice 2.3.2 [p.39-STR] "Autocatalysis"
La dynamique du systéme est gouvernée par I’équation suivante :

i = kyax — k_q12°

k1 et k_1 sont des constantes positives. Enoncé :
1- Déterminer les points fixes graphiquement et analytiquement
2- Dessiner le champ de vecteurs
3- Déterminer la stabilité des points fixes

en discutant les différentes valeurs possibles de l'entrée a (avec a > 0).
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TP3 : Systemes non-linéaires (2D)

1 Concept

1.1 Introduction aux systemes non-linéaires & deux dimensions

On peut également étudier des systéemes dynamiques décrits par plusieurs variables. La forme générale
pour un systeme a deux dimensions est donnée par :

{9'31 = fi(x1,72)

Ty = fa(wy,2)

Exemple 1

Pour aborder ce genre de systémes d’équations différentielles, on démarre de ’exemple classique d’un
systéme masse-ressort (voir Figure |3) définit par ’équation différentielle :

mi+kxr =0

ou m est la masse, k est la constante de raideur et = est le déplacement de cette masse. Méme si cette
équation est facile a résoudre analytiquement, elle va servir d’illustration pour comprendre 1’étude de
systemes plus complexes et non linéaires par la suite.

Figure 3 — Systéme masse-ressort [Figure 5.1.1-STR]

On peut décomposer cette équation différentielle d’ordre deux en deux équations différentielles d’ordre
1 en faisant intervenir la vitesse v :
T = v
{ Vo= %“:c

Pour alléger les notations, le ratio k/m sera noté w?.

Ce systéme de deux équations assigne un vecteur (#,%) = (v, —w?x) & chaque point (z,v) et par

conséquent représente un champ de vecteurs dans le plan (z,v). Ce plan s’appelle le plan de phase.

On va donc essayer de reproduire le méme type d’étude graphique que celle faite pour un systéme a
1D mais avec deux variables. Les points fixes (z*,v*) s’obtiennent lorsque, simultanément

@ =0
v = 0
Intuitivement, la masse ayant une vitesse et une accélération nulle, elle est donc au repos.

Pour dessiner le champ de vecteurs, par analogie au systeme a 1D, il faudrait dessiner une fleche repré-
sentant & qui pointe vers la droite (resp. gauche) lorsque que cette dérivée est positive (resp. négative),
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mais également une fleche représentant v qui pointe vers le haut (resp. le bas) lorsque cette dérivée
est positive (resp. négative). Il faudrait ainsi évaluer les paires (&, 0) en chaque point du plan (z,v), et
dessiner un vecteur horizontal (resp. vertical) représentant & (resp.v) dont la longueur est obtenue par
la résolution numérique des équations donnant (&, ) en fonction de (x,y) (et ce en chaque point (x, v)).

Cependant, remplir le plan de phase de tous ces vecteurs est tres chronophage et rendrait la lecture du
graphique illisible. On dessinera donc uniquement la résultante des deux vecteurs pour certains points
du plan.

Dans I'exemple du systéme masse-ressort, lorsque v = 0 (cad, dans le plan de phase, sur 'axe-x),
(#,9) = (0,—w?z), le vecteur est donc uniquement vertical et de longueur -w?z. Plus z augmente,
plus la longueur augmente et le signe moins signifie que le vecteur pointera vers le bas pour des x
positifs et vers le haut pour des x négatifs. De méme, lorsque x = 0 (cad sur laxe-y), (&,0) = (v,0).
Pour le reste du plan de phase, les composantes des vecteurs sont données par (v, —w?z) spécifié au
point considéré. Le champ de vecteurs est illustré Figure [d] On peut déduire 'entiéreté du champs de
vecteurs comme illustré Figure

e an

Figure 4 — Champ de vecteurs dessiné en
quelques points [Figure 5.1.2-STR] Figure 5 — Plan de phase [Figure 5.1.3-STR]

Le systéme masse-ressort est composé d’équations différentielles linéaires. Cependant, la méme mé-
thode peut étre utilisée pour étudier un systéeme d’équations différentielles non-linéaires.

Exemple 2

Considérons le systéme décrit par les équations suivantes [Exemple 6.1.1,p.147-STR] :

T z+e Y

y = -y
On peut dessiner les courbes & = 0 et y = 0. Il s’agit donc de tracer fi(z,y) = 0 et fo(x,y) = 0 dans le
plan (z,y). Ces courbes s’appellent nullclines ©. Lorsque les nullclines se croisent, on a simultanément
= 0et y =0, ce qui, graphiquement, donne la position des points fixes. Mathématiquement, les points

fixes s’obtiennent en résolvant simultanément & = 0 et y = 0. Dans ’exemple considéré, le seul point
fixe (z*,y*) est égal a (-1,0).

Sur la nullcline-z, définie par © = 0, on peut facilement tracer le champ de vecteurs. En effet, la
fleche sera uniquement verticale (le flux horizontal est bien nul par définition de la nullcline-z). Son
orientation et sa longueur seront déterminées pour différentes valeurs de x et y. De maniere analogue,
Sur la nullcline-y, définie par ¢ = 0, on peut facilement tracer le champ de vecteurs car la fleche sera
uniquement horizontale (le flux vertical est bien nul). La construction du champ de vecteurs est illustré

Figure [6]
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Ensuite, on dessine le champ de vecteurs pour différents points du plan en résolvant numériquement
les équations différentielles en ces points. Gréce a cette représentation graphique, on comprend la
dynamique du systéme dans son ensemble (voir le plan de phase Figure [7)).

y
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Figure 6 — Construction du champ de

vecteurs [Figure 6.1.3-STR] Figure 7 — Plan de phase complet [Figure

6.1.4-STR]

QO Comment calculer les fieches ?

Les fleches indiquent la vitesse d’une "particule" en un point du plan. Plus la fleche est grande, plus
la vitesse est grande. Ensuite sa direction permet de savoir vers ou la particule va bouger au temps
suivant. Pour calculer ces fleches, il faut ce mettre sur le point aux coordonnées (x1,y;). Ensuite, il
faut remplacer dans les équations du systémes les valeurs numériques :

¥ = xte™
Y1 = —u

On obtient ainsi une valeur pour 27 qui indique la vitesse horizontale en ce point. Si la valeur est
positive, la particule se déplace vers la droite. Si la valeur est négative, la particule se déplace vers la
gauche. La valeur de ¢; indique la vitesse verticale en ce point. Si la valeur est positive, la particule se
déplace vers la haut. Si la valeur est négative, la particule se déplace vers le bas. Pour avoir la fleche
résultante qui définit le vecteur vitesse, il suffit de calculer la résultante 7e. la somme des deux vecteurs.
L’amplitude donne bien la vitesse de la particule et la direction indique bien vers ou la particule se
déplace.

1.2 Linéarisation d’un systéme a 2D autour des points fixes

La section précédente permet sur base d’une étude graphique de déterminer les points fixes et leur
stabilité. On souhaiterait développer une mesure plus quantitative de la stabilité sans devoir passer a
chaque fois par le dessin du champ de vecteurs.

QO Par analogie au systéeme a 1D, on va étendre la technique de linéarisation afin d’approzimer le
plan de phase et le champ de vecteurs aux alentours des points fixes.

Considérons le systeme a 2D|ﬂ :

gy = g(z,y)
Les points fixes (z*,y*) sont définis en résolvant & = y = 0 simultanément. Dés lors
fl@*y*) = 0
g(z*y*) = 0

On note u et v les petites perturbations selon les deux directions horizontales et verticales, depuis le
point fixe, telles que = z* 4+ u et y = y* +v. Pour étudier la stabilité en ce point, on veut déterminer

6. On utilise (z1,z2) ou (z,y) pour insister sur le fait que le noms des variables n’est pas important.
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ce qu’il se passe lorsque le systeme, se trouvant initialement au point fixe, est faiblement perturbé :
va t-il retourner en ce point ou va t-il s’en éloigner, autrement dit, est-ce que la perturbation diminue
(tend vers 0) ou grandit (explose).

On peut reproduire le développement appliqué au systeme a 1D mais cette fois-ci pour les deux
variables u et v et les deux fonctions f et g.
La premiere équation différentielle du systéme devient :

d(@* +wu) dz*  du

T @ @ Ta iy
On développe le dernier terme :
fxy) =f@" +u,y* +0) substitution
a * * a * *
=f(z",y") +u f(gx’ ) +v f(zy’y ) + O(u?,v?, uv) Taylor
:uaf(x y) + vaf(x ") définition du point fixe

Ox oy
De méme pour la deuxieme équation du systeme :
y=y +0="10=g(zy)
De méme,

_0g(x*,y*) | Og(x*,y*)

Remarque : pour un systéme a 1D, la petite perturbation était notée n et pour un systeme a 2D elle
est notée u (resp. v) pour la premiére (resp. deuxiéme) variable.

Le systeme de deux équations différentielles non-linéaires définis par devient :

‘0 RAACHYS) +U6f(w Y°)

or | W . 2)
o = 29Ny | 99(at,y)

ox oy

Et matriciellement, cela peut s’écrire :
Of(x*,y") Of(a",y")

w\ ox Oy (] :
(1’)) = | ag(z*,y*)  8g(a*,y*) <v>+ termes quadratiques

Ox oy
On définit
of of
_ |l ox Oy

81’ 8y (x*,y*)

comme étant la matrice Jacobienne (ou le Jacobien)Q évaluée au point fixe. Il s’agit de ’analogie pour
le systéeme 1D de la dérivée de f(z) évaluée au point fixe f/(x*). L’expression plus compliquée vient
de 'apparition de la deuxieme variable et de la deuxieme fonction g.

En supposant que les termes quadratiques sont négligeables, le systeme de deux équations différentielles
en x et y est linéarisé en u et v aux alentours de (z*,y*) et on se retrouve avec 1’étude d’un systeme

linéaire a 2D noté :
U u

ol u et v représentent les deux variables locales O (du systéme linéarisé) associées a x et y.
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1.3 © Rappel Algebre Linéaire : valeurs propres & vecteurs propres
Relire le chapitre "Algebre linéaire : concepts a maitriser".

e Révision des vecteurs propres, valeurs propres

" e Résolution d’équations différentielles linéaires
A
o premier ordre

o deuxiéme ordre couplées/non couplées

1.4 Linéarisation et stabilité des points fixes
Pour un systeme a 1D, on a développé un outil plus quantitatif afin d’étudier facilement la stabilité

du point fixe. Il suffit, en effet, d’analyser le signe de la dérivée premiere évaluée au point fixe.

Pour un systeme a 2D, la section 2 développe par analogie un outil similaire pour linéariser le systéme
autour de son point fixe. On se retrouve ainsi avec I’étude de 4 dérivées premieres, celles des fonctions
f et g par rapport aux deux variables x et y, reprises sous la forme de la matrice Jacobienne A.

Comment déterminer la stabilité des points fixes & I’aide de la matrice Jacobienne 7
Reprenons 1’équation peut s’écrire sous la forme condensée :

(-t

Cela ressemble & Péquation 7 = f'(x*)n pour les systémes a 1D qui nous donnait n(t) = n(0)ef @
comme solution. La différence pour les systémes & 2D, c’est que la matrice A couple les deux variables
u et v ce qui rend I’étude de la stabilité légerement moins immédiate que d’étudier le signe de la
dérivée premiere (f'(x*)).

Pour résoudre cette équation différentielle linéaire couplée (4)) et connaitre u(t) et v(t), on utilise les
outils de découplage abordés dans le rappel (section 3) en faisant intervenir

Av = v
ou v correspond aux vecteurs propres et \ correspond aux valeurs propres.

Des lors, on obtient comme solution :

(1) (2)
u(t) Yy At L4 Aot
+ 5
(U(t)> “ (Vé”) ‘ “ 1/52) ‘ 5)

avec c1, ¢ sont déterminés par les conditions initiales, les vecteurs propres :

(1) (2)
1 _ (" (2 _ ("1
1 74 = , V =
(vé”) (vé”)
et leurs valeurs propres associées A\j et As.

Par analogie au systéme 1D (n(t) = n(0)e! *")%), on peut voir que les valeurs propres vont dicter la
stabilité du systeme. En effet, comme pour les systémes 1D, pour un facteur positif de I’exponentielle,
le systeme va s’éloigner du point fixe s’il subit une petite perturbation et inversement pour un facteur
négatif. Ce facteur était donné par la dérivée premiere de f évalué au point fixe. Dans le cas des
systemes a 2D, on va se référer également aux facteurs des exponentielles pour déterminer la stabilité.
Cependant, il ne s’agit plus de la dérivée premiere mais bien des valeurs propres de la matrice Jaco-
bienne (évaluée au point fixe).

Il y a différents cas possibles de stabilité :
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e Les deux valeurs propres ont leur partie réelles positives : R{A\1} > 0, R{A2} > 0; le point fixe
est instable.

e Les deux valeurs propres ont des parties réelles négatives : R{\1} < 0, R{\2} < 0; le point fixe
est stable.

e Une des deux valeurs propres a une partie réelle positive et 'autre a une partie réelle négative ;
le point fixe est un "saddle node" (point de selle). Dans la direction associée a la valeur propre
négative, il est attractif (la trajectoire converge vers le point, ce point parait donc stable) et dans
la direction associée a la valeur propre positive, il est répulsif (la trajectoire diverge du point,
ce point parait donc instable). Si 'on prend une perturbation de composantes quelconques, cad
pas uniquement dirigée dans la direction stable (stable manifold of the saddle), elle ne tendra
pas vers 0, ce qui rend le systéme instable en général.

e Les deux valeurs propres sont nulles; le point fixe est dit marginalement stable.

Q Que se passe-t’il si les valeurs propres sont complexes ? la stabilité ne s’étudie que par la partie

réelle des valeurs propres. En effet, si on décompose les exponentielles : erit = e(R{IMIHZ{MDE —
eRiMby 4 e TN g partie réelle indique la croissance/décroissance. Le signe de \; permet de direc-
tement conclure sur la stabilité. A coté, la partie imaginaire peut s’écrire e Z{M} = cos(A1t)+jsin(At)
ce qui dévoile la présence d’oscillations. Ces notions seront approfonides dans les prochains TP. A ce
stade, la partie réelle des valeurs propres indique la convergence/stabilité des points fixes et la pré-
sence d’une partie imaginaire des valeurs propres indique que la trajectoire/solution va converger vers
le point en tournant dans le plan de phase. On appelle cela une spirale.
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2 Exercices résolus au tableau

Exercice 1 = Lapin versus Mouton [Section 6.4, p.155-STR)

La population des lapins et des moutons sont respectivement notée z(t) et y(t) avec z,y > 0). Leur
dynamique est gouvernée par le systeme d’équations différentielles :

{:i‘ = z(3—xz—2y)
gy = y2-z-y)

Etudier I’évolution des deux populations sachant qu’elles sont liées et interpréter le résultat. Tracer la
trajectoire en partant du point (1,0.5)

Schéma de résolution : analyse d’un systéme non-linéaire 2D
1- Calculer les points fixes (z*,y*) :
& = 0 et simultanément y =0 :
2- Calculer le Jacobien
3- Evaluer le Jacobien pour les différents points fixes et déterminer les valeurs
propres
4- Déterminer la stabilité des différents points sur base des valeurs propres

5- Dessiner le champ de vecteurs. Pour cela, faites un tableau :

- - Point | x; Vi vitesse
A coord. en x | coord. en x | vitesse vitesse résultante

horizontale | verticale
Vous remplissez ce tableau des points que vous choisissez dans les différentes zones
délimitées par les nullclines. Vous calculez numériquement la vitesse horizontales
et verticales. Les signes de ces vitesses vous permettent de déterminer la direction
de la vitesse résultante.

6- Pour tracer une trajectoire, il suffit de "relier" les fleches du champs de vecteur
entre elles. Cela permet de représenter le déplacement de la particule en commen-
¢ant en un point du plan.!!! La trajectoire est toujours parallele aux champs de
vecteurs.

3 Exercices a faire

Exercice 2

Un systeme a deux variables est gouverné par I’équation suivante :

z = 10x — bdzy
g = 3y+ay—3y°

1- Calculer les points fixes
2- Calculer la stabilité des points fixes

3- Dessiner le plan de phase, les nullclines et le champ de vecteurs

39



Exercice 3 = Exercice 6.3.6-STR

Un systeme a deux variables est gouverné par I’équation suivante :
z = zy—1
C_ .3
y = Yy

2- Calculer la stabilité des points fixes

1- Calculer les points fixes

3- Dessiner le plan de phase, les nullclines et le champ de vecteurs

4 Pour s’exercer

Exercice 4 = Janvier 2020 - Q1 (ii) — (vii)

Exercice 5 = Janvier 2021 - Q1

Exercice 6 = Janvier 2022 - Q1

Exercice 7 = Aout 2021 - Q1

5 Sources supplémentaires

Phase portrait of a system of ODE :
http://matlab.cheme.cmu.edu/2011/08/09/phase-portraits-of-a-system-of-odes/
Exemple supplémentaire : http://educ. jmu.edu/~strawbem/Phase_how_to.pdf

40


http://matlab.cheme.cmu.edu/2011/08/09/phase-portraits-of-a-system-of-odes/
http://educ.jmu.edu/~strawbem/Phase_how_to.pdf

TP4 : Modeles d’état

1 Concept

1.1 Introduction

Le but du cours est d’utiliser des outils d’analyse des systémes linéaires sans passer par la résolution
complete des équations différentielles comme au cours d’analyse. Un systéeme mécanique, électrique,
biologique, chimique,... peut étre vu comme une boite noire :

u(t) ——»| Systeme ——» y(t)

Ainsi, on s’intéresse a la sortie du systéme, y(¢), lorsqu’une certaine entrée u(t) est appliquée. Dés lors,
on peut modéliser le probleme pour pouvoir uniquement agir sur I’entrée et en extraire la sortie.

Exemple mécanique : Considérons le chariot illustré a la Figure
avec z(t) la position, k le coefficient d’élasticité du ressort, ¢ le coefficient d’amortissement visqueux

X

—

ANAN F

R |

Q QO

Figure 8 — Exemple de systeme mécanique

et F'(t) la force appliquée.

La méthode vue au cours d’analyse consiste a résoudre I’équation différentielle obtenue en appliquant
les lois de Newton. L’objet de ce cours est de se détacher de cette résolution analytique en utilisant
de nouveaux outils.

Le chariot peut étre considéré comme un systéme pour lequel on s’intéresse a la position du cha-
riot lorsque 'on applique une certaine force. On peut modéliser le chariot comme une boite noire :

F(t) ——»| Systeme ——p x(t)

La premiére étape du cours de systeme va donc étre la construction de cette boite noire ou autrement
dit le modéle d’état du systeme. Un modele d’état est une modélisation mathématique d’un systeme,
sur base des lois de la physique. Celui-ci se base sur la connaissance de 1’état du systeme. "L’état d’un
systeme peut étre défini comme la plus petite quantité d’information caractérisée par un ensemble de
variables qu’il faut connaitre a tout instant ¢y pour pouvoir prédire de fagon univoque le comportement
de ce systeme a tout instant ¢ > tg, et pour toute entrée entre tg et ¢. "|Z|L’idée de la modélisation est de
choisir un certain nombre de variables, qui sont les variables d’état. Ces variables sont ainsi regroupées
dans un vecteur d’état : "un vecteur d’état est un ensemble minimal de variables d’état, c’est-a-dire de
grandeurs temporelles, nécessaires et suffisantes pour déterminer I’évolution future d’un systéme quand
on connait les équations qui décrivent le fonctionnement du systéeme et les entrées de ce systéeme". Le
modele d’état permet alors de décrire totalement le systeme par deux équations (matricielles) :

7. On peut aussi visualiser I’état d’un systéme comme une quantité qui peut évoluer alors que ’entrée est fixe. Dans
I’exemple mécanique, on peut par exemple dire que la position est un état car a force constante, elle peut évoluer.
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1. La loi de mise a jour décrit la dynamique du systeme — () = f(x(t),u(t)). Elle permet de
déterminer I’état suivant d’un systéme, sur base de son état actuel et de ’entrée appliquée.

2. La loi de sortie décrit la sortie du systeme — y(t) = g(x(t),u(t)). Elle permet d’étudier la sortie
d’un systeme sur base de son état actuel et de I'entrée appliquée.

Ces deux fonctions permettent donc de représenter totalement un systéme dynamique :

Vocabulaire :
- x est appelé vecteur d’état du systéme, de dimension n — il y a donc n variables d’état.
- u est appelé vecteur d’entrée du systeme, de dimension m — il y a donc m entrées.
- y est appelé vecteur de sortie du systeme, de dimension p — il y a donc p sorties.

Le modele d’état décrit bien le fonctionnement interne de la boite noire. Les variables d’état (z)
permettent de caractériser la dynamique du systeme et de comprendre plus facilement I'impact de
Pentrée (u) sur la sortie (y).

1.2 Le modele d’état en pratique

Pour construire un modele d’état en pratique, il est conseillé d’étre méthodique en appliquant cette
marche & suivre :

1- Signaux d’entrée : u. Identifier quels sont les signaux d’entrée et préciser leur domaine (O en-
semble de valeurs de la variable indépendante sur lequel ils sont définis) et leur image (O ensemble
des valeurs que le signal peut prendre sur I’ensemble du domaine de la variable indépendante).

2- Signaux de sortie : y. Identifier quels sont les signaux de sortie et préciser leurs domaines et leurs
images.

3- Variables d’état : x. Identifier quelles sont les variables d’état choisies et préciser leur domaine
et leur image.

4- Loi de sortie : y = g(x,u). Loi qui donne I’évolution de I'entrée uniquement en fonction de x(t)
et de u(t).

5- Loi de mise a jour : @ = f(z,u). Loi qui donne ’évolution de I'état uniquement en fonction de
x(t) et de u(t)

Pour résoudre les exercices, il faut tout d’abord identifier le modele d’état en spécifiant les signaux
d’entrée, de sortie, et les variables d’état.

Comment choisir les variables d’état ? Avec un peu d’intuition, il est possible de définir les
variables d’état en repérant les "enregistreurs" d’information qui permettront de remplir notre "boite
noire", en mémorisant les contributions des signaux précédents, pour au final ne s’intéresser qu’a
I’entrée et la sortie. Ils sont dans le cas de systemes physiques les accumulateurs d’énergie :

- variables de vitesses pour 1’énergie cinétique.
- variables de positions intervenant dans une énergie potentielle (gravité, longueur du ressort,... ).
- tensions des capacités et courants des inductances pour les circuits électriques.

D’un point de vue mathématique, on peut choisir les variables pour éviter d’avoir une dérivée de
I’entrée ou de la sortie dans le modele final.

Par ailleurs, on choisit n variables d’état, si n est 'ordre de dérivation le plus élevé dans I’équation
différentielle modélisant le systéme.

Ensuite, il suffit d’établir les lois de sortie et de mise a jour, en effectuant une mise en équation
du systeme.

42



Notions clés

o Maitriser les notions de modele d’état, signaux d’entrée, sortie, variable d’état

e Domaine : regarder la variable indépendante

e Image : regarder toutes les valeurs que peuvent prendre le signal

e Loi de mise a jour, loi de sortie

o Tracer un bloc diagramme

o Utiliser une variable auxiliaire pour transformer une équation entrée-sortie en une représentation
d’état

2 Exercices résolus au tableau

Exercice 1 = Exercice 2.1 [TXB] (adapté)

Un pendule inversé est maintenu par un ressort horizontal de raideur k. La longueur de la
barre inextensible du pendule est L. Le point de fixation ressort-barre est libre de se déplacer, sans
frottements, le long de celle-ci afin de maintenir, en permanence, le ressort en position horizontale.
La longueur naturelle du ressort, [y, est atteinte lorsque le pendule est en position verticale inverse
(f = 0). La hauteur de fixation du ressort est a. Une masse ponctuelle m est fixée en bout de barre
et est soumise a l'effet de la gravité g . De plus, larticulation du pendule est soumise a un couple
de frottement visqueux b@ ot b représente la constante de frottement, et & un couple externe u. On
considére comme sortie la position angulaire du pendule 6 et comme entrée le couple externe wu.
Décrivez le systéme par un modéle d’état basé sur la variable d’état = = (0, 6). Le schéma est donné
ci-dessous.

Grace aux lois de Newton pour les rotations, le dynamique du systeme est donnée par I’équation
différentielle suivante :

mL* = u — b — ka® tan(6) + mgL sin(6)

L sin®
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Schéma de résolution : établir un modéle d’état
1- Signal d’entrée :
o signification : couple externe (information explicite de I’énoncé)
o notation : u(t)
o domaine : R™
o image : R

2- Signaux de sortie :

o signification : position angulaire du pendule (information explicite de
I’énoncé)
o notation : y(t) = 0(t)

o domaine : Rt

. . o image : [—maz, Omaz], Omaz = arccos (%)
-\ (en général : [0, 2] mais restriction physique & cause de la configuration du

pendule et du ressort).

3- Variables d’état : z(t) = <i1> = ( 9> (données explicitement dans 1’énoncé) :
2
RT — [~ Omaz, Omaz] X R.
4- Loi de sortie : y(t) = x1(t).
5- Loi de mise a jour : On transforme I’équation différentielle gouvernant le systéeme
a laide des signaux d’entrée, de sortie et les variables d’état :

{il(t) = w2()

o(t) = M) 49 gy (a0 (8) — 2k tan (a4(2))

mL2 mL2

Question supplémentaire : Est-ce que le systeme est linéaire ? temps-invariant 7

Exercice 2 = Exercice 4.1 [TXB] (adapté)

Soit un circuit électrique RLC série, dans lequel u(t) (entrée) est la tension au générateur et y(t)
(sortie) est la tension aux bornes de la capacité.
La loi des mailles nous indique que :

u(t) = ’UL(t) + UR<t) + Uc(t>

Les relations tension courant aux bornes des composants électriques sont telles que :

vp = Ri
v, = L%
i = %

a) Ecrire équation entrée-sortie du systeme.
b) Tracer un bloc-diagramme du systéme.

¢) Donner la représentation d’état correspondante (=matrice ABCD associée au systeme).
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a) Schéma de résolution : équation entrée-sortie

e Dessin
L R
/OO0 AVAVAY:
\ &)
vp(t) ve(t) ¢
«01(]) I::c
e Données
- entrée :
- sortie :

e Equation entrée-sortie
U

Y+ 7Y + my 7
Au cours d’analyse, des outils ont été développé pour résoudre cette équation différen-
tielles linéaires & coefficients constants. Dans le cadre du cours de systéme, nous allons
développer d’autres sans devoir passer par la résolution analytique de ’équation.

b) Schéma de résolution : dessiner un bloc-diagramme a partir de 1’équation
entrée-sortie

1- Réécrire I’équation pour que la plus grande dérivée soit toute seule et sans coef-

ficient :
U R 1

“tc 1’ 1c!
2- Dessiner les signaux d’entrée et de sortie (fleche qui rentre pour u et fleche qui
sort pour y)

i

3- Ajouter autant de blocs intégrateurs autant qu’il y a de dérivées. Il n’y aura
jamais de bloc de dérivation par définition des bloc-diagramme.

4- Ajouter les coefficients et relier au signe somme avec le signe adéquat. Ainsi
au niveau du symbole sommatoire, tous les termes du membre de gauche de
I’équation entrée-sortie s’additionnent

c) Schéma de résolution : donner la représentation d’état a partir du bloc
diagramme (Méthode 1)

1- On sait que le vecteur d’état est de dimension égale & la plus haute dérivée. De
plus, les variables d’état peuvent étre choisies comme étant les sorties des blocs

intégrateurs.
2- loi de sortie
3

4

loi de mise a jour

Ecrire le systéme sous forme de matrice ABCD.
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Schéma de résolution : trouver la représentation d’état avec la méthode des
variables auxiliaires (Méthode 2)
Cette méthode est utilisée préférentiellement quand I’entrée est également dérivée dans
I’équation entrée-sortie donnée.
- But de la méthode :
Trouver des variables d’état lorsque I'on a uniquement une équation entrée-sortie,
afin de construire un modele d’état. Exemple :

ayj + by + cy = at + fu

- Démarche : on définit v une variable auxilliaire
A partir de I’équation entrée-sortie, on écrit deux équations :

) B, membre de gauche original ou y est remplacé par v = u
A y = membre de droite original ou u est remplacé par v

Dans I'exemple algébrique ci-dessus :

at + bv + cv u
y = av+ v

On choisit alors le vecteur d’état (ou en inversant les composantes)

0

v
Puis on exprime les lois de sorties et de mise a jour a ’aide des variables d’état,
pour finalement obtenir la représentation en matrice ABCD.

Remarque :

Une représentation d’état n’est pas unique. En effet, en fonction du choix des variables d’état, les
matrices A, B, C, D peuvent étre différentes. On peut trouver une matrice 7" qui permet de passer
d’un modele d’état a un autre.

3 Exercices a faire

Exercice 3 = Aout 2019-Q2 [Online]

Adaptation de I’énoncé :
a) Donner une équation entrée-sortie
b) Donner modeéle d’état correspondant au bloc-diagramme suivant.

10
U —P / —> u—» 6 /—»y—»/ > Y
> 6 16 |«
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Exercice 4 = Exercice 2.7 [TXB] (adapté)
- Remarque : Exercice fortement suggéré car on repartira des réponses obtenues au prochain TP. -

Soit le systeme a deux réservoirs illustré par le schéma ci-dessous.
e Débit d’entrée extérieur (le méme pour les deux réservoirs) : u
e Débit de sortie (du second réservoir) : y

e Bilan de masse dans un réservoir : ’yiz = @in — Qout aVeC ¢y le débit total d’entrée et guy: le débit
total de sortie

e Débit de sortie d’un réservoir rempli & hauteur b : avh

On suppose que les deux réservoirs sont identiques; « et v sont deux parametres qui déterminent les
caractéristiques physiques des réservoirs.
On donne les équations régissant le comportement de chaque réservoir :

o réservoir 1 : 'yhl =u— avh
o réservoir 2 : 752 =u+ avhi — avhs

Déduire un modele d’état pour le systéme.

<
<

hy

hy

Questions supplémentaires :
e Est-ce que le systéme est LTI?
e Que signifie LTT? Pourquoi sommes-nous intéréssé-es par les systemes LTI ?

4 Pour s’exercer

Exercice 5 = Janvier 2020 - Q1 (i) (ii) — (vii)
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TP5 : Modeles d’état et linéarisation

1 Concept

Le TP précédent permet de décrire un probleme réel sous forme d’un modele d’état, exprimé a 'aide
de ses signaux d’entrées, de sorties et ses variables d’état. La dynamique du systeme est donc décrite
a 'aide de ses lois de sorties et de mise a jour.

Lors du TP1, les propriétés des systemes ont été abordées et particulierement la linéarité et I'inva-
riance. Lorsqu’un systéme est linéaire, temps-invariant (LTI), il peut s’étudier a 'aide de différents
outils qui vont étre abordés tout au long du cours, tels que les matrices ABCD.

Apres avoir établi le modele d’état, il faut donc vérifier si le systéme est LTI,
e oui; alors il peut etre décrit a ’aide de ses matrices ABCD.
e non; il faut le linéariser.
o soit autour d’une solution quelconque; vous obtiendrez bien un systeme linéaire mais ce
n’est pas garantit qu’il sera temps-invariant.
o soit autour d’un point stationnaire (=point fixe cf. TP2-TP3); vous obtiendrez bien un
systeme LTI.

Etudier un systéme autour de ses points d’équilibre
La dynamique du systéme global est décrite par les signaux x,u,y telle que :

f(t),u(t))
g(x(t), u(t))

Si le systéme est non-linéaire, on doit linéariser autour des points fixes afin de rendre les lois de mise
a jour et de sortie linéaires. On n’étudie non plus le systeme dans son intégralité mais uniquement la
dynamique autour de ses points d’équilibre, ie. la dynamique du systéme local (linéarisé autour des
points d’équilibre). Au début, on va donc écrire les lois linéarisées associées au systeéme local a 'aide
de signaux "locaux" dz(t), dy(t), du(t) (appelés précédemment les petites perturbations)ﬂ

Pour rappel © : un point stationnaire = point d’équilibre est tel que x = 0.

—N—
< &
—~~
o
S—
[

Comment linéariser ?
Il existe deux méthodes :

e Méthode 1 = méthode des petites perturbations
e Méthode 2 = méthode des dérivées (Jacobien)

Les deux méthodes seront approfondies lors des exercices.

Notions clés

o Comprendre 1'utilité de la représentation d’état

e Savoir linéariser

e La méthodes des petites perturbations sera utilisée plutot quand le systeéme est décrit pas son
équation entrée-sortie. La méthode du Jacobien est plus facile lorsque I'on dispose des équations de
mise a jour et de sortie.

o Construire un bloc diagramme

8. Ces notions avaient également été abordées lors du TP2 te TP3
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Résumé graphique

Résolution ODE

F
mi+ct+kr=F m —»

x(t)

Probléme réel

BAC |
]_

Y >

NON

Linéariser autour

Modéle d’état

Systéme LTI ?

0l

Ecriture matricielle

(", 2%, y7) | & =Ax+ Bu
Point Fixe 2 =0 y=Cx+ Du
BOTTE NOTRE
m E, T = Ax + Bu
:l— - y=Cx+ Du > Y
Y >
[00M + DESCRIPTION DE LA BOTTE NOTRE
D
u » B C — ,é >y

%@A/ :

A

A est appelée matrice d’état du systéme, de dimension n X n.

B est appelée matrice de commande du systéme, de dimension n x m.

C' est appelée matrice de sortie du systéme, de dimension p x n.

D est appelée matrice de transmission directe du systeme, de dimension p x m.
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2 Exercices résolus au tableau

Exercice 1 = Exercice 4.26 (suite du 2.7) [TXB]

Soit le systeme & deux réservoirs de l'exercice 2.7 (au TP précédent).

a) Calculer le point de fonctionnement stationnaire (h}, h3) en fonction d’un débit d’entrée constant

u*.

b) Linéariser le modele d’état autour de ce point de fonctionnement.

Questions préliminaires

e Est-ce que le systéme est LTI?

e Que signifie LTI ? Pourquoi sommes-nous intéréssé-s par les systemes LTI ?

a) Points de fonctionnement stationnaire = Points fixes

Trouver les points de fonctionnement stationnaire signifie trouver les points
, (x7,25) = (hj,h3) ici, en fonction d’'un débit constant u*, qui vérifient la défini-

\ ’

) ) tion d’un point stationnaire.

Par définition ©, un point stationnaire est tel que x = 0.

b) Linéarisation du modeéle d’état autour des points de fonctionnement

e Méthode 1

Schéma de résolution : linéariser selon la méthode des petites perturbations
Dans chaque loi de mise a jour et chaque loi de sortie, il suffit de répéter les 4 étapes
suivantes :

| i. Remplacer (u,z,y) par (u* + du,z* + dx,y* + dy)

- - ii. Développer les termes non-linéaires par Mac Laurin en fonction de du, dx, dy :
A f(6x) = f(0) + f(0)dz

iii. Négliger les termes d’ordre > 2 en du, dz, dy

iv. Compenser les termes indépendants

e Méthode 2 :

Lors du premier TP, on a vu comment linéariser un systeme de deux équations non-linéaire. Pour
rappel, il suffit de calculer les points d’équilibre, de calculer le jacobien et de I’évaluer aux points
d’équilibre.

Ici, le systéme considéré est décrit a I'aide des lois de mises a jour et de lois de sortie. Il suffit d’extra-
poler la méthode du Jacobien a ces lois.

Pour la loi de sortie, g(x1,x2,u), il faut calculer sa dérivée par rapport a x1, sa dérivé par rapport
a x9 et sa dérivée par rapport a u, de remplacer les signaux x1,x2,u par la valeur des points fixes
x], x5, u*. On répete I'opération pour les lois de mise a jour.

{ i = f(z,u)

y = 9(z,u)

0t = Abx+ Biu

— ‘ linéarisation autour du point ﬁxe‘ — { Sy = Céx+ Déu

50



Schéma de résolution : linéariser un systéme selon la méthode des dérivées
Résoudre les dérivées suivantes évaluées aux points fixe pour obtenir les matrices

ABCD.

o on
_ _ o1 0o
’\ %
B = gt
ou/ (x¥ a3,u*)
o 0 0
¢ = (& anzﬂ

- ()

("lf{ 7$§ ,’U,*)

(':CT ,ZE; ,’U,*)

("L'j{ 7w; ,’U,*)

3 Exercices a faire

Exercice 2 = Exercice 4.11 [TXB]
Soit le systeme décrit par I’équation différentielle
y+(§ - 2u=u’ (6)

a) Linéarisez le systeme autour de la solution

b) Pourquoi ce systéme linéarisé n’est-il pas analysable par I’ensemble des outils vus dans le cours
de systemes ?

c¢) Choisissez une autre solution (u*,y*) du systéme non linéaire telle que le systéme linéarisé dans
le voisinage de cette solution soit un systeme LTT.

Question préliminaire : d’ou vient la non-linéarité de cette équation ?

Systéme LTI ?

NON
Linéariser autour
(’LL*, ZL'*, y*)
A
Naiturf dg )
SOLUTION QUELCONQUE (", 2", y")" POINT FIIE
Ex 4.11 (a) Ex 4.11 (c)
Sy.stéme' 5| Calculer » Ecriture matricielle
temps-invariant ? NON =0

o1



2

v+ (0—-2)u" =u*

e Deuxieme étape : linéarisation

4 Pour s’exercer

Exercice 3 = Exercice 4.20 (suite du 2.1) [TXB]

Soit le systéeme de pendule inversé modélisé dans 'exercice 2.1.

Schéma de résolution : linéariser un systéme autour d’une solution imposée

a) On donne la solution autour de laquelle on veut linéariser. Les points autour
desquels on veut linéariser le systéme sont donnés. Il suffit donc de choisir sa
méthode de linéarisation. Dans cet exercice, le systéme est décrit par I’équation
entrée-sortie. La méthode des petites perturbations s’applique tres facilement car
il suffit de remplacer : u par u*+du et y par y par y*+dy. Si on choisit la méthode
des dérivées, il faut d’abord transformer ’équation entrée-sortie en modele d’état
a l'aide du variable x et ensuite calculer toutes les dérivées.

b) Le systéme est-il linéaire ? Oui/Non ? Pourquoi ?

Le systéme est-il temps-invariant 7 Oui/Non ? Pourquoi 7

c¢) Pour que le systeme soit LTI, il faut linéariser autour d’un point stationnaire
e Premiére étape : trouver le point stationnaire :

— Y= u* o+ 2u*

Le systéme est-il linéaire 7 Oui/Non ? Pourquoi ?

Le systéme est-il temps-invariant 7 Oui/Non ? Pourquoi 7

a) Pour u = 0, déterminez une condition sur les parametres pour que le systéme possede trois

points d’équilibre.

b) Etudiez la stabilité des trois points d’équilibre sur base d’un raisonnement physique.

¢) Linéarisez le modele d’état autour d’un point d’équilibre stable du systeme.

Questions d’examens
- Remarque : les années précédentes, il était demandé de trouver les lois des circuits ou d’autres
systémes physiques depuis le début. Ici, il suffit juste de mettre sous forme de modele d’état a partir
des équations associées au systéme.

Juin 2016 - Q1 - (i) - (i) (NB : dans la matrice A, la réponse est = et non —R)
Aot 2016 - Q1 - (i) - (ii) (NB : dans I’équation entrée-sortie, c’est @ et non )

Janvier 2017 - Q1

Aottt 2017 - Q1 + Q2 - (i) - (ii)
Janvier 2018 - Q1

Aotit 2018 - Q1

Janvier 2019 - Q1
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TP6 : Convolution

1 Concept

1.1 Signaux particuliers

La fonction échelonf

0 si t<0
I(t):{ 1 si ¢t>0
1(t)
1
0 t

L’impulsion de Dirac

0 sinon

0
#
)

Attention que le "1" ne désigne pas une ordonnée, mais bien ’aire comprise sous la courbe de

I'impulsion. On peut voir I'impulsion de Dirac comme §(t) = lin% d’un rectangle de hauteur %,
E—>

(5(t):{ oo’ sit=0

t

et de largeur . Ainsi, I’aire est constante et vaut 1. C’est une propriété de 'impulsion de Dirac
et c’est cette aire que ’on note a c6té de la fleche :

/_ :O 5(t)dt = 1

L’impulsion peut étre visualisée comme une gaussienne, dont "la largeur" tend vers 0, et 'am-
plitude vers l'infini.

a(t)

0 t

Comme tout signal, on peut lui appliquer des transformations (cf : TP1). Par exemple, le signal
0(t — 2) se représente comme suit.
0

5(t—2)

9. Elle est parfois aussi notée II ou 1 N
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Une propriété intéressante de ce signal est qu’il est nul pour toute valeur sauf une : celle qui,
pour §(7(t)) est telle que 7(t) = 0. Ainsi, si on multiple ce signal par une autre, seule la valeur
de cet autre signal en un seul point sera considéré. Cela permet "d’isoler" une valeur d’un signal.
Mathématiquement, soit f(¢) un signal quelconque :

+00 +o00
/ f(t)o(t)dt = / £(0)d(¢)dt car §(t) est nul partout sauf en t =0
+o0
= f(())/ o(t)dt car f(0) est une constante
= f(0) car I'intégrale est égale a 1 par définition
De méme :
+o0 +oo
/ f(t)o(t —2)dt = f(2)o(t)dt car 0(t — 2) est nul partout sauf en ¢t = 2
+oo
= f(2)/ o(t —2)dt car f(0) est une constante
+oo
= f(2) / o(t*)de* par un changement de variable ¢t — 2 = t*
= f(2) car l'intégrale est égale a 1 par définition

1.2 Introduction a la convolution

Peu importe la complexité du systéme, on souhaiterait utiliser une seule fonction, décrivant la boite
noire, telle que la sortie puisse étre déterminée sur base de n’importe quelle entrée que ’on fournit,
sans se soucier des états internes : y = S{u}.

Espace d’états

. Représentation entrée-sortie
T T
T T

u—l |l =Al. by
U——» S —>Y
T Tn

Attention! On pourra utiliser ces représentations entrée-sortie uniquement si le systeme obéit au
principe de superposition (— additivité et homogénéité), i.e. si uy — y1 et ug — yo alors
auy +buy — ay+bys (cf : TPO). Ce principe est respecté pour les systémes linéaires ! Par conséquent, il
est toujours possible de décrire les systémes LT par une relation y = S{u} entrée—sortie.[r_al

Des lors, le signal d’entrée u(t) peut donc étre décomposé en une somme de signaux simples u;(t)!

N N
Siu= Z a;u; , alors y = Z ;i
i=1 i=1

L’idée de la représentation entrée-sortie va donc étre décomposée en trois étapes :
1. Décomposition du signal en signaux aussi simples que possible.
2. Recherche de la sortie du systeme lorsque I’entrée est un de ces signaux simples.
3. Conclusion quant & la sortie totale du systéme (somme de signaux simples — somme des réponses
a ces signaux simples).

En effet, si on connait la réponse du systeme a des signaux trés simples, par exemple des impulsions,
on peut combiner ces signaux trés simples pour construire le signal d’entrée de départ plus complexe
(a priori, n’importe quel signal pourrait étre décomposé comme une somme éventuellement infinie
d’impulsions). On en déduit donc facilement la sortie du systéme pour ce signal d’entrée complexe,
simplement par cette reconstruction. Schématiquement, on décompose le systéme comme :

10. Pour les systémes non-linéaires, seule la représentation d’états est envisageable en général. Cependant, un systéme
réel peut souvent étre approché localement par une série de systémes linéaires.
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Impulsion —— | § ———» Réponse impulsionnelle

On appelle en effet réponse impulsionnelle la réponse a un signal "impulsion". Un systeme peut donc
étre entierement caractérisé par sa réponse impulsionnelle, au vu de la discussion ci-dessus.

Quel est 'avantage de cette approche ? La représentation entrée-sortie fait abstraction du fonctionne-
ment interne du systeme.

Comment obtenir une formule satisfaisante pour la décomposition de n’importe quel signal ’compliqué’
en signaux simples et la reconstruction de la réponse totale 7
D’une certaine maniéreEL on peut voir le signal u(t) comme une somme de petits batonnets :

u(t)

0 t
Mathématiquement, cela s’écrit
+oo
u(t) = glg(l) Z u(ke)p(t — ke)e
k=—o0
avec p(t) le signal rectangulaire défini par :
p(t)
1
e
~313 t

Le produit p(t — ke)e étant simplement un rectangle de hauteur unitaire, la somme représente bien le
signal u(t).  est la largeur du rectangle et k le numéro du rectangle.

Cependant,

e —0 = p(t) — 4(t)
ke — 71 = p(t—ke) —0o(t—1)

De plus, si € devient infiniment petit, la somme tend vers une intégrale et on a :

u(t) = / T )t — Tydr

—0o0

Q Ainsi, pour un systéme LTI, on décompose I’entrée en une intégrale d’impulsions pondérées par les
valeurs de ’entrée évaluée en 7. La sortie est donc calculée via la méme intégrale mais de la réponse
impulsionnelle, pondérée par les valeurs de ’entrée.

11. Rappelez-vous le cours d’analyse, la maniere dont vous avez défini les intégrales, c’est assez similaire.

95



En effet,
o(t) —> — h(t) (réponse impulsionnelle)

(
5(t —7) —| S| — h(t —7)
w(T)o(t — 1) —[S | — u(r)h(t —7)

+o0 +00
u(t) = / w(r)3(t — 7)dr —[8] — y(t) = / w(r)h(t — T)dr
o o
L’expression mathématique obtenue a la fin du développement
+o0o
y(t) =u(®)<h(t) = [ " u(rh(t - 7)dr

est appelée convolution des signaux u(t) et h(t).
La convolution est commutative, associative et distributive.

Notions clés

e La convolution est un outil mathématique important dans le calcul de la sortie d'un systeme.
Cet outil permet de calculer la sortie d'un systéme pour n’importe quelle entrée via la réponse

impulsionnelle du systéme.
o En pratique, on peut résoudre cette convolution de maniére analytique (Exercice 1) ou de maniére

graphique (Exercice 2).
e Introduction a la notion de réponse impulsionnelle d’un systéme
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2 Exercices résolus au tableau

Exercice 1 = Exercice 3.19 [TXB]

Etablir analytiquement la convolution y(t) = f * h(t) des fonctions f(t) = I(t) et h(t) = 2e~*1(t) —
2e21(t).

Exercice 2 = Exercice 3.20 [TXB]

Etablir graphiquement la convolution y(t) = f * g(t) des fonctions f(t) et g(t) représentées ci-dessous.

f(t) g(t)

L’approche graphique de la convolution peut étre expliquée en deux points :

- L’intégrale calcule 'aire sous le produit des deux fonctions (donc ou elles se "recouvrent"/"se
croisent" ie lorsque les deux fonctions sont définies pour les mémes valeurs des abscisses).!!! Si
une fonction est positive (au dessus de ’axe horizontale) et 'autre est négative (en dessous de
'axe horizontale). Les deux fonctions sont bien définies pour ces valeurs de 'abscisse et donc on
peut calculer la convolution.

- Il s’agit d’une procédure flip and slide. On retourne une des fonctions et on la décale pour
différentes valeurs de t, qui peut étre visualisé comme un curseur.

Schéma de résolution : convolution graphique

1- Ecrire la formule théorique de la convolution (rappel : cette formule est commu-
tative).

2- Ecrire Pexpression analytiques des deux fonctions & convoluer.

N 3- Choisir une courbe qui restera telle que (exemple : f(7). Dessiner l'autre courbe

- - flippée (exemple : g(t — 7)) et positionner en ¢t = 0.

4- Déterminer tous situations de recouvrement possible entre les deux courbes, ie a
quelles valeurs des abscisses les courbes se rencontrent - ¢ agit comme un curseur
pour déplacer la courbe.

5- Résoudre l'intégrale (par rapport a 7) pour chaque intervalle défini sur ¢.

6- Ecrire la réponse finale.
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3 Exercices a faire

Exercice 3 = Janvier 2021- Q3 [Online]

Exercice 4 = Aout 2019 - Q3 [Online] (NB : pas le point (ii))

4 Pour s’exercer

Exercice 5 = Janvier 2019 - Q3 [Online] (NB : uniquement le point (i))

Exercice 6 = Aot 2021- Q3 [Online]

Exercice 7 = Exercice A2-sol [Online]

5 Sources supplémentaires

Ces deux vidéos illustrent la méthode a suivre pour réaliser une convolution de maniere graphique et

sa signification :

ehttps://wuw.youtube.com/watch?v=zoRJZDiPGds
ehttps://dspillustrations.com/pages/posts/misc/convolution-examples-and-the-convolution-integral.
html
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TP7 : Série de Fourier

1 Concept

1.1 Rappels : nombres complexes

Un nombre complexe peut s’écrire sous deux formes :

- partie réelle a et partie imagine btel que : z = Rz + jZ{z = a + jb
- amplitude |Z| et argument /Z : z = |Z|e/4%

Le passage de I'un a 'autre s’obtient via les formules suivantes :

|Z] = Va2 + b2

L7 = tan’l(g)

2 =|Z|e74% = |Z|cos(LZ) + §| Z|sin(£ Z)

a=1Z|cos(£LZ) et b= |Z|sin(£Z) (en faisant attention d’étre dans le bon quadrant du cercle trigonométrique.

Plus d’informations : ici sur le site de la Khan Academy
1.2 Rappels : fonctions trigonométriques

Rappel : un signal continu est périodique de période T' = i—g siz(t)=z(t+1T), V.
Représentation habituelle — évolution temporelle z(¢) :

(t)
AWAY

Equation : z(t) = Asin(35t + ¢)
Cette équation peut étre caractérisée par 3 composantes :

\ /o

\Z

- son amplitude : A
- sa période : T'

- sa phase : ¢

On se rend compte qu’il existe d’autres maniéres pour représenter ce triplet d’information. En effet, on peut
caractériser ces différentes composantes a 1’aide de deux graphiques :
Nouvelle représentation :

- graphe de ’amplitude
- graphe de la phase

A(f) o(f)

A . ¢ .

0 /T f 0 1T f
Cette représentation peut servir a représenter plusieurs sinus simultanément, par leurs fréquences, amplitudes
et phases respectives sans devoir dessiner leur évolution temporelle.

On peut aussi représenter deux de ces trois composantes par un vecteur du plan, de longueur A et dont I'angle
qu’il forme avec ’axe des abscisses est ¢, en t = 0. Si, en plus, ce vecteur se met & tourner autour de son origine
a une vitesse wg = 2w f = 27”, de maniere a ce qu’il mette T" secondes pour faire un tour complet, alors les trois
informations sont représentées.
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Sur base de I'idée développée dans cette derniére représentation, on peut introduire 1’exponentielle complexe. 11
s’agit en quelque sorte de la représentation polaire des nombres complexes.
On note e/t le vecteur de longueur unitaire (ou plutot le point & l'extrémité de ce vecteur) et tournant a
vitesse wy (positive §’il tourne dans le sens trigonométrique, négative sinon), et olt j est le nombre imaginaire.
Pour rappel, on a

eIt = cos(wot) + 7 sin(wot)

Ainsi, projeté sur I’axe réel, ce point tournant décrit un cosinus, et sur ’axe imaginaire, un sinus.E De méme,
on peut écrire e/(“ot*+9) pour tenir compte du déphasage en ¢ = 0.

wot + ¢ 1

Les fonctions trigonométriques peuvent également s’exprimer sous la forme d’exponentielle complexe. En utili-
sant les relations d’Euler :

2m 2m
o (251) - ST 4T
T 2
2m 2m
sin (2777:) - —ej?t T
T 2

Ainsi, le signal z(t) décrit précédemment devient :
2 (2x
z(t) = Asin(T7T +P)=AS {e(j(%tﬂs))}

1.3 Exemple introductif

Pour introduire le concept de série de Fourier, on va s’intéresser aux sons de différents instruments de musique.
Prenons un son pur de fréquence fondamentale de 440 [Hz] (La). Ce son correspond & une variation de pression
suivant une simple sinusoide z(t) = sin (2¢) avec T =1/f.

Pourtant si 'on joue un La avec différents instruments, on entend un son différent. Pourquoi ?

La différence vient des combinaisons d’harmoniques propres & chaque instrument (quelles harmoniques sont
présentes dans 'instrument et en quelle quantité). Pour rappel, une harmonique se définit par une fréquence
multiple de la fréquence fondamentale. Dans notre exemple, la fréquence fondamentale du La est de 440 [Hz].
La deuxiéme harmonique est alors de fréquence 830 [Hz], la troisiéme 1320 [Hz] et ainsi de suite. Si f, désigne
la fréquence fondamentale, on dira alors que la k*¢ harmonique est de fréquence k fo.

12. Voir la section "Sources complémentaires" pour des illustrations et des vidéos.
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Si I’on mesure la pression de ’air pres d’une fliite et d’un violon jouant un La avec une méme amplitude sonore,
on observeraE quelque chose de similaire a la Figure @

FLUTE

VIOLIN

Figure 9 — Variation de la pression au cours du temps pour une fliite et un violon

Ces graphiques, bien que périodiques, n’ont plus du tout ’allure d’une simple sinusoide! En effet, la simple
sinusoide de fréquence 440 [Hz] est modifiée par la présence de sinusoides de fréquences multiples de 440 [Hz], de
sorte que le son pergu est en fait la somme de tous ces sinus (et, plus généralement, d’exponentielles complexes).
On peut donc écrire une équation générale pour le son percu de la forme :

z(t) = Ag + Ap sin (2,17:15 + ¢1> + As sin <221th + ¢2> + Assin (32;75 + ¢3> + ...

On peut donc visualiser la variation de pression de la flite au cours du temps comme un somme de deux sinus
(possédant leur propre fréquence et propre amplitude) comme illustrée & la Figure

Comme illustré dans le rappel, cette équation peut aussi étre étudiée a ’aide de deux graphiques montrant
Pamplitude et le déphasage associés a chaque fréquence.

Ces graphiques (Figure sont parfois appelés spectre fréquentiel d’un signal : il s’agit d’une fonction qui, pour
chaque fréquence, donne son importance dans le signal en question. Dans ce TP, lorsque le signal est périodique,
on aura uniquement des spectres fréquentiels discrets car uniquement les fréquences multiples de la fréquence
fondamentale sont présentes. On trace donc un trait vertical d’amplitude Ay & 'harmonique k. Ces graphiques
montrent donc I'importance que chaque instrument accorde aux différentes harmoniques.

13. http://amath.colorado.edu/pub/matlab/music/MathMusic.pdf
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Fundamental: 440 Hz,0.004 Pa =46 dB

0,006
pressure ' ] /\ /
-0.01 ’ 'd_du\u.y'd, 0.003 W 0.005
-0.002 time
4
0,006

Second Harmonic: 880 Hz, 0.003 Pa=43.5 dB
0.006
0.004

A AWANWAWAWA
-0.001 ooft Koo oyo3/ odgs f o005
-0.80 \} vae v w

-0.004
-0.006

Sum of fundamental and second harmonic.

0.008
0.004
pressure
=N\ N\
r'\ . P . Fa®

oMol \ 000§ 000 Q004 [ 0005
A1.002 time

Figure 10 — Somme de la premiére et deuxiéme harmonique dans la fliite

+
FLUTE & I
§ |
440 880 1320 1760 2200 FREQUENCY +
By
o
VIOLIN g I I | l
E l l I I | I P T
440 880 1760 2640 3520 4400 5280 6160
FREQUENCY ~

Figure 11 — Amplitude des harmoniques de la fliite et du violon
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1.4 Introduction aux séries de Fourier

Il existe un outil mathématique qui permet de décomposer un signal périodique en ses différentes amplitudes et
phases a chaque harmonique. Cet outil s’appelle : la décomposition en série de Fourier.

Q En effet, Fourier a démontré que, mathématiquement, tout signal périodique de période T (et donc de
fréquence f = 1/T) peut étre exprimé comme une somme pondérée de signaux harmoniques de fréquences
multiples de 1/7. En utilisant le formalisme de I’exponentielle complexe, cette somme s’écrit

1 1 2m
x(t) = T Z £elF
kez

ou T correspond a la période du signal z(t) et &) correspond au coefficient de Fourier associé & harmonique k.
Ce coeflicient de Fourier est obtenu a ’aide de la formule :

T
& :/ a(t)e IFFNL, ke Z
0

Il est & noter que le 1/7T n’est la que pour normaliser le signal sur une périodeE

On pourrait se demander pourquoi le formalisme de ’exponentielle complexe a été utilisé alors qu’a priori,
des sinus auraient suffi. De plus, que représentent les fréquences négatives (car la somme porte sur toutes les
valeurs de k) ? Intuitivement, l'exponentielle complexe va permettre de traiter les cas ou les coefficients de
Fourier ne sont pas purement réels, et détiennent ainsi de I'information sur la phase. En faisant cela, certains
termes imaginaires apparaissent, qui a priori n’ont pas de sens physique. Heureusement, la fonction qui décrit
la partie imaginaire des coefficients de Fourier en fonction de la fréquence est impaire, de sorte qu’en sommant
sur toutes les fréquences, y compris les négatives, les composantes imaginaires s’annulent. En réalité, ces fré-
quences négatives découlent directement de la formule d’Euler pour représenter les fonctions trigonométriques
en fonctions d’exponentielles complexes (voir les formules de la section précédente). Elles sont donc nécessaires
pour garantir une expression mathématique correcte. Ceci est expliqué dans la deuxieéme partie de cette vidéo :
https://www.youtube.com/watch?v=1JnayXHhjlg.

Attention que la vidéo traite de la transformée de Fourier qui est abordé au TP suivant. La différence essentielle
est que les séries de Fourier décrivent des signaux périodiques avec un ensemble discret de fréquences (har-
moniques), alors que la transformée de Fourier décrit n’importe quel signal, mais avec un ensemble continu de
fréquences (d’ou l'intégrale au lieu de la somme, voir TP suivant).

On peut aussi se convaincre mathématiquement qu’il est correct d’utiliser des exponentielles complexes et des
fréquences négatives. En effet, comme mentionné ci-dessus, les coefficients de Fourier sont, en toute généralité,
des nombres complexes. Ils peuvent donc s’écrire :

T = |jjk|eJA7'g(l'k)
L’harmonique k, i.e. le sinus/cosinus de fréquence kf, décrite dans la décomposition en série de Fourier est

donnée par :
_ik2m iJo 27
fu(®) = z_pe IFT 4 gy edF T

En utilisant Euler, ’expression devient :
R 2m R
fr(t) = 2|2g]| cos k?t + Arg(2y)

qui est bien une simple fonction trigonométrique de la fréquence attendue, avec un éventuel déphasage. Ce
résultat est obtenu en tenant compte que le spectre d’amplitude de z(t) (i.e. le tracé des |Z| en fonction des
fréquences) est une fonction paire, et que le spectre de phase de x(t) (i.e. le tracé des Arg(Zy) en fonction des
fréquences) est une fonction impaire.

o Arg(Zy)
° Y R
: - T‘F“?T‘J%T“%
T O A
4-3-2-10 1 2 3 4 [l ’
14. Selon les références, on peut aussi trouver z(t) = >, Ere?* 0t et By = £ fo(t)efjk“"’tdt, ou ce sont 1a les

coefficients qui sont normalisés.
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Exemple : décomposition en série de Fourier du signal z(t) = 2 cos (27T10t — %)
Par la formule du cosinus, on a

2(t) = ej(27r10t—§) + e—j(2n10t—g)
— e IFi2mI0t 4 iF —j2ml0t

— @16]27rfot +.’)A3,1€_j27rfot

ol la derniere ligne vient de la formule des séries de Fourier, avec deux coeflicients non nuls seulement. Par
identification entre les deux derniéres équations (puisque fo = 10 [Hz.]), on trouve #; = e~ 7% (ie., |#1] = 1 et
Arg(#1) =—Z) et &1 =€’ (ie., [2_1] =1 et Arg(#_1) = Z). Graphiquement, on a donc ceci :

Quelle est 1’utilité de la décomposition en séries de Fourier dans ce cours?

L’utilité principale est d’obtenir une représentation fréquentielle des signaux. Ceci permettra d’obtenir une re-
présentation entrée-sortie dans le domaine fréquentiel des systémes (avec pour "signal de base" ’exponentielle
complexe par analogie & I'impulsion dans le domaine temporel). Par la suite, les différents avantages de cette
approche seront mis en avant.

Dans I’étude des systemes, il est intéressant de travailler avec les signaux en temporel car c’est ainsi qu’ils sont
percus dans la vie de tous les jours, mais aussi en fréquentiel, car le design et I’analyse s’en voient grandement
facilités. Les séries de Fourier et les transformées que 1’on verra par la suite, sont des outils trés puissants per-
mettant de passer d'un domaine a 'autre.

Enfin, on pourrait se demander demander pourquoi s’intéresser a des fonction trigonométriques et pas n’importe
quel autre signal périodique, comme un signal carré ou triangulaire ?

Notre but est d’obtenir une relation plus simple & manipuler, et il se trouve que les sinusoides sont les seuls
signaux périodiques qui ne changent pas de forme lorsqu’ils sont soumis a ’action d’un systeme LTI. Conserver
la méme allure en entrée et sortie du systeme permet d’étudier le réle du systeme sur base de son gain d’am-
plitude et de déphasage (pour chaque fréquence), ce qui permettra d’obtenir des outils trés puissants pour le
design et Ianalyse des systémes de controle.

Notions clés

e Maitriser les nombres complexes

o Maitriser le passage de la représentation temporelle d’un signal sinusoidal en son spectre en amplitude et en
phase

e Comprendre I'outil de la décomposition en série de Fourier

e Calculer la série de Fourier

o Comprendre et pouvoir expliquer la Figure
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2 Exercices résolus au tableau

Exercice 1

Donner la décomposition en série de Fourier d’un signal périodique carré (square-wave signal). Utiliser matlab

pour illustrer vos résultats.
(t)

-4-3-2-10 1 2 3 4 t

Schéma de résolution : décomposition en série de Fourier

1- Trouver la période

2- Calculer les coefficients de fourier

e Formule : -
T z/ m(t)eijkz%tdt, keZ
0
NN e Expression analytique de x(t)
. ,‘ . e Décomposition de l'intégrale (suivant allure de x(t)

e Remplacer z(t) par son expression analytique dans I'intégrale

e Résolution de I'intégrale et simplifier au maximum 1’expression pour les différentes
valeurs de &

3- Ecrire I'expression de la série de Fourier :

1 o 2n
_ - s JkEEt
x(t) = T Z Zpe!®T
kez
© La Figure illustre un signal carré définit par sa série de Fourier. Cette Figure permet de visualiser la
décomposition fréquentielle du signal comme un nouvel axe d’étude pour décrire le signalE

Signal
m\,\,\,\,\,\/ =somme des ondes sinusoidales en bleu

Q A LAV A
- A A%
2 N
a
2 AV
< [}
r@ =
Mos al oc®
£ LoV
< e

A
Signal temporel

Spectre fréquentiel

Figure 12 — Décomposition d’un signal carré périodique

15. https://blricrex.hypotheses.org/files/2015/03/FormaEEGLab_Basics_Signal.pdf
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3 Exercices a faire

Exercice 2

Soient les spectres en amplitude et en phase suivants. Déterminer le signal temporel auxquels ils correspondent.
|2k | Arg(Zy)

=3fo—2fo —fo . 2fo 3fo f [Hz]
“3fo—2fo —fo O fo 2fo 3f J[Hz] z

| Schéma de résolution : trouver un signal analytique a partir de son spectre fré-

) ) quentiel
) . Ecrire la formule de la série de Fourier et identifier les coefficients puis reconnaitre une expres-
sion connue. Utiliser ’exemple et les schémas indiqués dans la section [1.4

Exercice 3 = Exercice 5.2 [TXB]

Etablir les développements en série de Fourier des signaux continus suivants .

b) x2(t) = sin(w0t)

c) x3(t) = cos(2t + w/4)

d) z4(t) = cos(4t) + sin(6t)
e) w5(t) = sin?(¢)

Exercice 4 = Janvier 2022 - Q3 (i) [Online]
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4 Pour s’exercer

Exercice 5 = Exercice 5.5 [TXB]

Calculer la série de Fourier du signal périodique x,(t) représenté ci-dessous.

Schéma de résolution : décomposition en série de Fourier
1- Période du signal z(t).
2- Calcul des coefficients de Fourier :

e Formule : ...

e Expression analytique de z(¢) : ...

- - e Décomposition de 'intégrale (suivant la forme de z(t)) : ...

e Remplacer z(t) par son expression analytique dans U'intégrale : ...

e Résolution de I'intégrale et simplifier au maximum 1’expression pour les différentes
valeurs de k : ...
Conseils : el jO), intégration par partie, ne pas oublier le cas k = 0, bien mettre en
évidence les coefficients de Fourier pour les différents cas.

3- Ecrire 'expression de la série de Fourier : ...

Exercice 6 = Exercice 5.8 [TXB]

Déterminer la représentation en série de Fourier du signal périodique z(t) de période 2 dont la valeur entre —1
et 1 est
z(t) =€t

5 Sources supplémentaires

https://www.youtube.com/watch?v=r18Gi81SkfM (seulement jusqu’a 10’, suite la semaine prochaine)
https://www.youtube.com/watch?v=1JnayXHhjlg

https://www.youtube.com/watch?v=r6sGWTCMz2k
https://www.youtube.com/watch?v=UKHBWzoOKsY&list=PLT5_DQAJJLh-ogHjHcLtFYMQy7SkZ7-3i
http://w3.cran.univ-lorraine.fr/perso/hugues.garnier/Enseignement/TdS/TdS-Serie_Fourier.pdf
https://blricrex.hypotheses.org/files/2015/03/FormaEEGLab_Basics_Signal.pdf
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TPS8 : Transformée de Fourier

1 Concept

1.1 Point de vue mathématique

La décomposition en série de Fourier du signal x(t) périodique (de période T') permet de représenter le signal
périodique autrement que selon sa représentation habituelle avec le temps en abscisse. En effet, grace aux coef-
ficients de Fourier, on peut représenter le signal selon I’amplitude des différentes harmoniques et les déphasages
(voir TP précédent). On travaille donc dans le domaine fréquentiel au lieu du domaine temporel.

Cependant, que faire si le signal n’est pas périodique ?
Si un signal n’est pas périodique, on peut utiliser une ruse mathématique en écrivant que la période du signal
apériodique tend vers Uinfini ("T" — oo").

Cette astuce va permettre de démontrer le passage de la décomposition en série de Fourier a la transformée de
Fourier.

Pour rappel, les formules obtenues pour les séries de Fourier sont (dans le cas ot ce sont les coefficients qui sont
normalisés et non la série - voir TP précédent pour plus de détails) :

t) = Z i‘kejkWt

kez

1 )
Bp = f/ z(t)e I*tdt, ke 2
T Jr

La premieére équation peut se réécrire en multipliant et en divisant par T :
00 1
E Ti‘k f@jk%t
T
k=—o0
On pose

— ==
T T
La série de Fourier et les coefficients de Fourier se notent

+oo
3wl

k=—o0
& =Thy = / x(t)e 72t
T
Pour T'— oo (i.e. on considére un signal apériodique),

Al — dl (infinitésimal)

I, — 1 (la somme sur k est effectuée pour chaque "petit parcelle" noté [,, ; on )

+oo +o00
% /

k——oo

=1

Ceci étant valable si expression est bien intégrable (cette condition prend tout son sens dans le prochain TP).
Les formules deviennent donc
+oo
/ $ e]27rltdl

/ —j27rltdt
oo
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Attention que la premiére intégrale est par rapport a [ et la deuxiéme par rapport a ¢! Ces deux formules cachent
en réalité celles de la transformée de Fourier. En effet, en notant que [ = f, on met bien en évidence la fréquence

a(t) = - X(f)e* tdf
X(f) = / N z(t)e 72 Itat

Ou encore, on peut faire intervenir la pulsation w = 27 f et on obtient ’expression caractérisant la Transformée
de Fourier et 'inverse de la transformée de Fourier :

1 [t

z(t) = o X (jw)el*tdw

— 00

+oo
X (jw) = / x(t)e Iwtdt

—0Q0

Remarque © : La série de Fourier est représentée a ’aide son spectre fréquentiel discret caractérisé par des
raies & chaque multiple de la fréquence fondamentale (fo = 1/T) du signal période de période T. Cela se voyait
mathématique par la somme sur k indiquant la présence d’harmonique. Or, pour la transformée de Fourier, la
somme discrete a fait place a une intégrale. Le spectre fréquentiel est donc continu.

1.2 Point de vue pratique

La transformée de Fourier est donc un outil pour passer du domaine temporel au domaine fréquentiel. Il s’agit
du méme signal mais on utilise la transformée pour faire le lien entre ces deux domaines. Notons quand on parle
de domaine, on pourrait faire 'analogie entre donner 'adresse d’une maison (allée de la découverte, 10, 4000
Liége) ou donner ses coordonnées GPS (50.6, 5.6). Les deux notations correspondent & linstitut Montefiore
mais sont exprimées différemment.

Notions clés

e Comprendre la différence entre série et transformée de Fourier

e Pouvoir retrouver la formule de la transformée

o Comprendre que la formule X (jw) donne le spectre fréquentiel d’un signal

e Savoir calculer la transformée de Fourier des différents signaux de base et utiliser la définition mathématique
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2 Exercices résolus au tableau

Exercice 1

Calculer de maniére analytique la transformée de Fourier x(t) :

[ A sift <T/2,
=(t) _{ 0 sinon

Schéma de résolution : transformée de Fourier
0- Dessiner le signal z(t)
1- Formule

2- Remplacer z(t) par son expression analytique et en précisant les bornes d’intégration.

3- Résoudre :

_'\- x(t)eX(f):%sin(TrfT)

En utilisant, la fonction sinc(-) définie par :

sin(mx)

sine(x) =
e

on obtient :

X(f) = ATsinc(fT)
La fonction sinc(z) (V) a une propriété intéressante telle qu’en x = 0, on peut écrire grace au théoréme de
I’Hospital :

in(7w0
sinc(0) = sin(r0) =1
w0
sine(w)
1
N\ N
7;171'\/7'277 ZMW @
T T T T

Exercice 2

(a) Tracer la transformée de Fourier X (jw) (sugg : sur Matlab) de 'exercice n*1 pour A = 1 et les différentes
valeurs de T suivantes :

- cas 1: T=10,

-cas 2 : T=l1,

(b) Déduire la transformée de Fourier de I'impulsion de Dirac.
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Exercice 3

(a) Calculer de maniére analytique la transformée de Fourier z(t) :

[ A site]0,T],
=(t) _{ 0 sinon

(b) Tracer la transformée de Fourier X (jw) pour T'=10 et A = 1.
(c¢) Comparer avec les réponses obtenues & I’exercice n*1.

Schéma de résolution : transformée de Fourier

u 0- Dessiner le signal x(t)

) ) 1- Formule
’ . 2- Remplacer x(t) par son expression analytique et en précisant les bornes d’intégration.

3- Résoudre.

Exercice 4

(a) Calculer de maniere analytique la transformée de Fourier z(t) = cos(wot).

(b) Dessiner la transformée de Fourier X (jw) en amplitude et en phase.

(c¢) Comparer le domaine couvert par la transformée de Fourier de cette fonction trigonométrique et le domaine
couvert par la transformée de Fourier de la fonction carrée de I’exercice 1.

3 Exercices a faire

Exercice 5

(a) Calculer de maniére analytique la transformée de Fourier de :

o(t) _{ cos(t) site[-T/2,T/2],

- 0 sinon

avec T' = 20.

(b) Tracer la transformée de Fourier obtenue de maniére analytique sur Matlab.

(c) Tracer la £ft de la transformée sur Matlab.

(d) Exprimer z(t) comme étant un produit de deux fonctions.

(e) Déduire comment un produit de deux fonctions dans le domaine temporel est calculé dans lorsque 1’on
exprime ces fonctions a ’aide de leur transformée de Fourier.

(f) Changer T et décrire comment le spectre fréquentiel évolue.

Exercice 6

(a) Calculer analytiquement la transformée de Fourier de x(t) = sin(wyt).
(b) Dessiner la transformée de Fourier en amplitude et en phase.
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4 Pour s’exercer

Exercice 7 = Exercice 9.1 (a) [TXB]

Etablir la transformée de Fourier du signal suivant :

zi(t) = e a>0

Exercice 8

(a) Calculer analytiquement la transformée de Fourier de I'impulsion de Dirac.
(b) Dessiner la transformée de Fourier en amplitude et en phase.

Exercice 9 = Exercice 9.2 [TXB]

Choisir la bonne réponse : la transformée de Fourier de z(t) = €?! 1(t)
(i) n’existe pas.

ag . 1
(ii) vaut X (jw) = 55=5-

(iii) vaut X (jw) = jw1+2.

5 Sources supplémentaires

https://www.princeton.edu/~cuff/ele301/files/lecture7_2.pdf
https://web.stanford.edu/class/eel02/lectures/fourtran
https://www.youtube.com/watch?v=1JnayXHhjlg&t=405s
https://www.youtube.com/watch?v=spUNpyF58BY
https://www.youtube.com/watch?v=IgF30X8nTOw
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TP9 : Transformée de Laplace

1 Concept

Série de Fouri . . . . .
erie de Foutier La série de Fourier est un outil mathématique qui permet de

- décomposer un signal périodique de période T en une somme

T /vm de signaux harmoniques de périodes multiples de 7.
1 o us
= + x(t) = 7 ) dredt T

T_/,? keZ

/VWW\/\A/\/\/\A/ Il s’agit donc d'une somme pondérée d’exponentielles

complexes (ie. cosinus et sinus) de périodes multiples de 7.
+ .. Les poids de chaque harmonique sont déterminés par les
coefficient de Fourier définit par :

T
ik:/‘d®€ﬁ¥ﬂukez
0

PP\OBMME Que faire si le signal n’est pas périodique 7

SOLUHON On utilise la transformée de Fourier

Transformée de Fourier

+oo . 1 [t .
X(jw) = / z(t)e wdt z(t) = — X (jw)e!“tdw

—00

Pour que la transformée soit définie, il faut que I'intégrale existe:

+ . .
/ - 2(t)e It dt < oo On dit que z(t) est intégrable
S si cette condition est respectée.

PROBL\EME Que faire si le signal n’est pas intégrable? Comme par exemple; z(t)=t, t?, ...

TION: TP
U0 " - On multiplie le signal z(t) par une exponentielle du type e 7" .
- On obtient un nouveau signal: z(t)e” "
- On calcul la transformée de Fourier de ce nouveau signal:
400 ) +oo )
X(jw) = / [z(t)e™ 7] e 79t dt = / x(t)e” Tty

On note s = 0 + jw qui est défini comme une fréquence complexe et qui permet
d’introduire la transformée de Laplace.

| Résumé
Transformée de Laplace
: Périodique ?
400 , |l / \NON
X(s) = / (t)e”* dt i Série de Fourier 0 Intégrable 7
— | 1
: Transformée de Fourier NON

Transformée de Laplace
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1.1 Définitions
Pour un signal z(t), la transformée de Laplace est définie par :
oo
X(s) :/ z(t)e Stdt
—o0

On note la décomposition de s en parties réelle et imaginaire s = o + jw.
Le signal z(t) est la transformée inverse de Laplace de X(s) telle que : ,

| ot L e |
x(t) / X(S)estds = — X(O’ + jw)e(a-‘r]w)tdw

- % —joo 271— —oo

Cette relation exprime le signal z(t) comme une combinaison (infinie) de sinusoides exponentiellement crois-
santes ou décroissantes [section 6.4-TXB théorie]. La transformée inverse est rarement évaluée en intégrant sur le
plan complexe. On essaye de se rapporter a des transformées connues en utilisant les propriétés des transformées.

Remarque : L’argument indiqué comme variable de la transformée X (.) correspond & lexposant de 'ex-
ponentielle se trouvant dans 'intégrale :

- Pour la transformée de Fourier : X (jw) = [*_z(t)e 7*'dt

- Pour la transformée de Laplace : X (s) = [~ _x(t)e~*dt

1.2 Région de convergence

La région de convergence (ROC) de la transformée de Laplace est ’ensemble des valeurs complexes de la variable
s pour lesquelles I'intégrale existe :

ROC, = {s € C/ x(t)e Sdt existe}

Comme indiqué dans la section 1.1; la présence de l'exponentielle e =% permet la création d’un nouveau signal

z(t)e 7! permettant d’intégrer z(t). Cependant, il faut choisir correctement l'intervalle de valeurs possibles pour
o afin que l'intégrale soit bien définie. En effet, si x(t)e 7" présente un caractére croissant infini, ce nouveau
signal n’est pas intégrable.

Formellement, la ROC de la transformée de Laplace est ’ensemble des s tels que
+oo
/ z(t)e stdt 3
—00

i.e.

—+oo —+o0
‘/ x(t)e—stdt’ g/ |(t)]|e”*"|dt

- _+oo
:/ j2(8)]|e~"|dt
— 00
+oo
:/ lz(t)|e”7tdt < +oo
— 00

Seule la partie réelle a donc une influence sur la convergence! La derniere inégalité représente la condition de
convergence. Les bornes (resp. une des bornes) de l'intégrale deviennent (resp. devient) des constantes (resp.
une constante) lorsque le signal est borné sur un intervalle (resp. d’un coté).
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Pour illustrer ce concept, on utilise la fonction échelon 1(¢). En effet, il est important de préciser la région de
convergence (ROC) quand on calcule la transformée de Laplace si 'on veut pouvoir réaliser ’opération inverse
de maniére univoque.

Pour z(t) = I(t), Pour z(t) = —1(—t),
la transformée de Laplace se calcule telle que : la transformée de Laplace se calcule telle que :
— —st 00
X(s) = /_OO W(t)e™dt X(s) = / C(—t)e*tdt
— 7stdt 0
/0 c = / (—1)e~stdt
1 —0o0
=- 1
S I
S

La transformée de Laplace existe uniquement si R(s) >

0 pour garantir la présence d’'une exponentielle décrois- La transformée de Laplace existe uniquement si R(s) <
sante. 0 pour garantir la présence d’une exponentielle décrois-
En résumé, sante.

1 En résumé,
w(t) = 1(t) = X(s) = Z,ROC = {s € C: 0 > 0}

z(t) = —I(=t) = X(s) = %,ROC:{SECIU<O}

Dans beaucoup de situations, on peut facilement déduire la région de convergence :

1- Un signal de durée finie, cad il existe un intervalle [T7, Ty] contenant le support du signal z(t), un intervalle
de la droite réelle en dehors duquel le signal z(-) est identiquement nul. La condition d’existante de la

transformée de Laplace devient :
o) T>
/ x(t)e stdt = / x(t)e stdt
—00 T1

est borné (existe) pour toutes les valeurs de s :

Vs = ROC =C
2- Un signal de support fini a gauche (cad défini sur un intervalle ([T}, 4+oo[) et borné par eM? :

lz(t)] < K1eMt sur [Ty, 4+00] = L(s) existe si 0 > Ay
car si on repart de la définition du ROC :
+oo
/ le()]e=tdt < +oo
T1
+oo
KyeMte ™t dt < +oo
T
Il faut que o — A\; > 0, cad o > A; pour que la transformée de Laplace soit défine.

3- Un signal de de support fini d droite (cad défini sur un intervalle (] — oo; T3]) et borné par e*2? :

|z(t)] < Koe?! sur | — oo, Ty = L(s) existe si o < Ay

On peut reproduire la méme étude que celle faite au point 2.

75



Exemples :

1- z1(t) = 1(t)e | a >0 =5 Xy(s) = 2 » R(s) > —a En effet, il suffit de repartir de la définition de la

transformée de Laplace via l'intégrale :

+oo
Xi(s) = / I(t)e(aT=)tqt

—0o0

+oo
= / e (at)tqy
0

1
_ —(a+s)t +oo
a+s [e }0

L’intégrale converge donc pour R(a + s) > 0 (car on impose la présence d’une exponentielle décroissante
sur lintervalle ¢ > 0) = R(s) > —a comme annoncé. La ROC est donc le demi-plan R(s) > —a.

1 (1) R ROC

S~ .

¢ R

2- xo(t) = —1(—t)e ™, a>0 PN Xa(s) = H%a , R(s) < —a En effet, il suffit de repartir de la définition
de la transformée de Laplace via l'intégrale :

+oo 0
Xo(s) = / _|(_t)e—(a+s)tdt _ _/ e—(ats)t gy
= L [e—(a-i-s)t]o
a—+ s —00

L’intégrale converge donc pour R(a+s) < 0, (car on impose la présence d’une exponentielle qui tend vers
0 surt <0) = R(s) < —a comme annoncé. La ROC est donc le demi-plan R(s) < —a. On constate aussi
qu'apparemment les deux signaux possedent les mémes transformées mais elles différent par leur ROC.

x2(t) ROC S

/

3- z23(t) = 1(t)eMt + 1(—t)e?2t avec A\ < Ay = ROC = {s €C:0 €]\; \a[}

Q) ROC
z3(t)

Ay A2

Notation et relation avec la transformée de Fourier :
L(z)(s) = [T ax(t)e i@tetdt = F(x(t)e ") ot L (resp. F) désigne la transformée de Laplace (resp. Fourier).
On en déduit que F(x(t)) existe si X(s) = L(x)(s) est telle que 0 =0 € ROC, .
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1.3 Propriétés

Les propriétés des transformées de Laplace sont répertoriées en Annexes. Ces propriétés sont a comprendre mais
pas & mémoriser.

Voici un résumé des plus utilisées : R est la ROC initiale (avant transformation) et aprés la virgule, on note la
ROC associée au signal transformé.

Décalage temporel/fréquentiel

t— x(t—to) Ly s e X (s) , R
t s etz (t) Ey s X(s—s9) , R—TR(so)

t s eIta(t) @s»—)X(s—jw) , R

Dualité multiplication/convolution

t—y(t) = (21 * 22)(t) £y s Y (s) = X1(s)Xa(s)

Différentiation et intégration

Notions clés

e Comprendre la différence entre série de Fourier, transformée de fourier et transformée de Laplace.
o Maitriser le concept d’intégrabilité qui apparait avec la transformée de Laplace.

o Maitriser le concept de la région de convergence.

e Calculer la région de convergence associée a une transformée.

 Savoir utiliser les propriétés pour déterminer la transofrmée de Laplace.
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2 Exercices résolus au tableau

Exercice 1 = Exercice 6.1 [TXB]

En utilisant les propriétés de la transformée de Laplace, trouver la transformée des signaux suivants a partir de
la transformée de 1(t) et donner leur région de convergence.

a) 6(t)
b

) 0'(t) (dérivée de 'impulsion de Dirac)
c) tl(¢)
d) e ?I(t)

) te™9t(t)

) cos(wot)l(t)

) e~ cos(wot)1(t)

e
f

g

Schéma de résolution : transformée de Laplace a partir des propriétés

1- Identifier une fonction élémentaire dont la transformée de Laplace est donnée dans le
tableau en Annexe. Ne pas oublier de préciser la ROC.

) ) 2- Identifier si la fonction élémentaire a subi une transformation ; dérivée, décalage temporel,

3- Utiliser les propriétés pour modifier la transformée de la fonction élémentaire sur base
du tableau donné en Annexe.

4- Préciser la ROC de la transformée.

Exercice 2 = Exercice 6.7 [TXB]
En appliquant la définition, calculer la transformée de Laplace du signal suivant :

et siteo,T],
x(t){o, sitd[0,T].

Schéma de résolution : calcul analytique de la transformée de Laplace
b, 1- Formule de la transformée de Laplace
- - 2- Remplacer z(t) par son expression analytique et en précisant les bornes d’intégration.
RA 3- Résoudre

Question supplémentaire : quelle est la ROC?

3 Exercices a faire

Exercice 3 = Exercice 6.2 [TXB]

Calculer la transformée de Laplace du signal
z(t) = e 2U(t) 4+ e cos(3t)I(t).
et déterminer la région de convergence.

Schéma de résolution : transformée de Laplace a partir des propriétés

Utiliser le méme raisonnement que pour 'exercice 1 :

I
N\ z

1- Signal élémentaire
,, 2- Propriétés / transformations affectant le signal élémentaire

3- Calcul/résolution
4- Identification de la ROC
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Exercice 4 = Exercice 6.4 [TXB]

Calculer la transformée de Laplace du signal représenté ci-dessous et déterminer la région de convergence.

ft)

4 Pour s’exercer

Exercice 5 = Janvier 2019 - Q3 [Online]

Exercice 6
Regardez la vidéo https://www.youtube.com/watch?v=2GPtPkT{t8g

5 Sources supplémentaires

Vous trouverez des informations plus détaillées sur les démonstrations des propriétés des transformées ou la
définition de la région de convergence chapitre 6 [TXB-théorie] :

- section 6.5 : région de convergence

- section 6.7 : dualité produit-convolution

Voici également quelques liens intéressants sur les transformées de Laplace :
https://www.youtube.com/watch?v=ZGPtPkT{t8g
http://www.sharetechnote.com/html/EngMath_LaplaceTransform.html
http://fourier.eng.hmc.edu/e102/lectures/Laplace_Transform/nodel.html
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TP10 : Transformée de Laplace et Fonction de Transfert

1 Concept

1.1 Fonction de Transfert

e Rappel domaine temporel et réponse impulsionnelle :

Le principe de superposition applicable aux systémes linéaires et invariants (LTI) permet de trouver la réponse
de tels systémes en décomposant I'entrée u(t) en une somme d’impulsions §(¢), puis en sommant la réponse du
systéme & tous ces composants. Ce formalisme introduit la notion de réponse impulsionnelle h(t).

§(t) —| LTL| — h(t)
+o0 +oo
u(t) = / u(r)8(t — 7)dr —| LTI | — y(t) = / w(P)h(t — 7)dr

— 00 — 00

Dans le domaine fréquentiel, le TP précédent aborde la transformée de Laplace. Cet outil permet de décomposer

un signal arbitraire en une somme d’exponentielles de la forme et

e Comment un systéme LTI modifie une entrée u(t) du type et = e(7 i)t ?

Sinusoide décroissante o < 0 Sinusoide croissante o > 0

u(t) = e avec s = 0 + jw

est > h(t) > y(t)

11 suffit de calculer la convolution du signal d’entrée et de la réponse impulsionnelle du systéme h(t).

y(t) = u(t) * h(t) = e** x h(t)
+o0 +oo
— e I(r)dr = et / e *Th(r)dr = e*"H(s)

— 00 — 00

ou

en changeant la variable d’intégration, on obtient :

H(s) = / T et

— 00

Il s’agit de la transformée de Laplace de la réponse impulsionnelle; elle est appelée la fonction de transfert
du systeme.

e H(s) définit totalement le systéme car pour tout signal exprimé sous la forme d’une combinaison d’expo-
nentielle du type e®+! :

n
u(t) = Z aper?
k=1
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on obtient en sortie .
y(t) =D apH(sg)e™!
k=1

En conclusion, lorsque l'entrée est une exponentielle complexe, la sortie sera une exponentielle complexe de
méme fréquence mais d’amplitude et de phase modifiées par H. Pour une entrée quelconque, il suffit d’écrire
cette entrée via sa décomposition en exponentielle % et d’étudier comme H affecte I’amplitude et la phase en
chaque fréquence (voir TP sur les diagrammes de Bode).

1.2 Convolution et fonction de transfert

Domaine temporel Domaine fréquentiel

u(t) > h(t) N0) U(s) —|{ H(s) —» Y (s)

La convolution dans le domaine temporel devient un

La réponse du systeme LTI s’obtient en faisant la  produit dans le domaine fréquentiel (voir propriété des

convolution de I'entrée u(t) et de la réponse impulsion-  transformées de Laplace - a savoir démontrer). On peut

nelle h(t) : obtenir la transformée de Laplace de la sortie L£(y(t))
y(t) = h(t) * u(t) en multipliant £(u(t)) et L(h(t)) :

La démonstration est décrite page 98 [TXB - théorie]

1.3 Equation différentielle et fonction de transfert

La transformée de Laplace convertit des équations différentielles en simples équations algébriques. On démarre
d’un systéme LTI décrit par une équation différentielle d’ordre k & coefficients constants

i dry(t) f:b dFu(t)
T T LR gk
k=0 k=0

Cette équation est écrite dans le domaine temporel, on peut appliquer la propriété de dérivation (propriété vue
au TP précédent) pour facilement I'écrire dans le domaine de Laplace :

M M
Z aps™Y (s) = Z bis™U (s)
k=0 k=0

La fonction de transfert (telle que Y(s) = H(s)U(s)) peut s’écrire :

Y(s)  Matobus® _ N(s)

U(s) 22/[:0 arskt  D(s)

Q La fonction de transfert d’un systéme LTT prend donc la simple forme d’une fonction rationnelle ; quotient
de deux polynémes en s. En effet, N(s) (resp. D(s)) correspond au numérateur (resp. dénominateur) et est
exprimé sous la forme d’un polynéme en s d’ordre k. Les zéros de N(s) sont appelés les zéros de la fonction
de transfert. Les zéros de D(s) sont appelés les p6les de la fonction de transfert. Aussi nombreux que l'ordre le
plus élevé de dérivation, ils donnent des informations capitales sur la stabilité, la convergence,...

H(s) =

Exemple : un systeme est décrit par ’équation différentielle suivante :
J+3y+2y=2u+u
On exprime cette équation dans le domaine de Laplace, en utilsant la propriété de dérivation :
s2Y (s) + 3sY (s) + 2Y (s) = 2sU(s) + U(s)
On met en évidence Y(s) dans le membre de gauche et U(s) dans le membre de droite :
(s 4+ 35 +2)Y(s) = (25 + 1)U (5s)

Ainsi, Y(s) = SQiS?;iQU(S).

On extrait la fonction de transfert :

2541

H(s)= -T2
(5) s2+3s+2
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1.4 Causalité et stabilité

e Rappel Causalité :

Un systéme est dit causal si y(t) = f(u(ty)) Vito <t ie. sila réponse & un temps donné ne dépend que du
passé et/ou du présent du systeme. Par conséquent, h(t) =0 Vt < 0. En effet, y(t) = [~ u(r)h(t — 7)dr. La
causalité implique donc que h(t —7) =0 V7 >t (out — 7 < 0). A noter que tout systéme physique existant
est par nature causal.

La réponse impulsionnelle d’un tel systéme pourrait donc étre de la forme

h(t)

¢ ROC d’un systéme causal :

Il Sagit d’un signal de support fini d gauche (cad défini sur un intervalle [T7; +oo[ ou dans le cas de la Figure
ci-dessus [0; +00[). Par conséquent, un systéme causal aura toujours une ROC décrite par un demi plan, coupé
parallelement & l'axe jw (imaginaire), limité par la partie réelle de ’exponentielle la plus grande (voir exemple
2 TP précédent).

Pourquoi ?
Une réponse impulsionnelle associée a un systéme causal peut s’exprimer comme une combinaison d’exponen-

tielles €%t telle que :
ht) = (D cxe™")I(t)
k

Sa transformée de Laplace est donnée par :

o0 JFOO 0o
H(s) = / h(t)e 'dt = / h(t)e”stdt avec / |h(t)|e™ " < 400
> 0 .

La réponse impulsionnelle étant de support fini & gauche et décrite par une combinaison d’exponentielle de type
e***, la réponse impulsionnelle est donc bornée par sa plus grande exponentielle e’ :

|h(t)] < cieMit

Le critere de convergence peut s’écrire :
+oo
/ cieMe 7 < 400
0

On en déduit donc que la ROC du systéme causal est o > A;. Il s’agit bien d’un demi-plan, coupé parallelement
a l'axe jw, limité par la partie réelle de I’exponentielle la plus grande.

On peut également exprimer la ROC en étudiant les poles de la fonction de transfert. En effet, pour une
réponse impulsionnelle du type :

h(t) = (cheskt)|(t) = Clesltl(t) + cgeSZtI(t) + ..
k

La fonction de transfert H(s) est obtenue directement via les propriétés de décalage fréquentiel (voir formule
en annexe) :

z(t) = e “I(t) & X(s) = pour ROC = {s € C:R(s) > —a}

sS+a

Et donc pour la fonction de transfert H(s) de la combinaison d’exponentielles associées a la réponse impulsion-

nelle peut s’écrire :

C1 C2
+
S — )\1 S — /\2

H(s) = + ..
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Pour retrouver la réponse impulsionnelle associée au systéme causal de maniére univoque, il faut bien garantir
comme ROC; o > A;, A; étant la plus grande exponentielle mais également le plus grand pdle. Sur le graphe de
placement de pdle, on voit bien qu’il s’agit du pdle le plus a droite.

R ROC

On peut également relier cette conclusion avec la section précédente, lorsque 1'on a mis en évidence le fait que
la fonction de H(s) est souvent exprimée comme étant une fonction rationnelle H(s) = }I;Eg de telle sorte que :

- b() —+ bls —+ b282 + ...
a4 a1s + ags?

H(s)

Pour trouver la ROC associée au systeme causal, on veut que la réponse impulsionnelle soit bornée a gauche
(h(t) =0Vt > 0), et donc il suffit d’étudier les poles de la fonction de transfert et de prendre le demi-plan ouvert
da droite, limité par le pdle le plus a droite/le pole le plus grand Q.

¢ ROC d’un systéme anti-causal : La réponse impulsionnelle associée a un systéeme anti-causal est telle
que h(t) = 0 Vt > 0. Par un raisonnement similaire basé sur I’étude de la ROC d’un signal de support fini &

droite (cad défini sur un intervalle | — 0co; T]), on en déduit que la ROC d’un systéme anti-causal est donnée
par un demi-plan coupé parallelement a 1’axe jw, limité a droite par la partie réelle de la plus petite exponentielle.

ROC R

2] o1 g;

On peut également faire le lien avec la fonction de transfert exprimée sous la forme d’une expression rationnelle.
Cette fonction de transfert a une ROC décrite par un demi-plan coupé parallélement a ’axe jw, ouvert a gauche
limité a droite par le pole le plus a gauche.

e Stabilité :
- Pour qu’un systéme causal soit stable, il faut s’assurer que ’exponentielle qui décroit le moins vite soit
bien négative. Mathématiquement, une réponse impulsionnelle associée a un systeme causal est donnée

par : ) .
h(t) = a1 TN (8) 4 agel 2 TIU (8) 4 ..

11 faut que R(sy) < 0 Vk pour garantir la stabilité du le systéme. Il faut donc que toutes les exponentielles
aient une partie réelle négative. On a alors

R ROC

gi

Le systeme est causal et stable.
Q On peut donc résumer qu’un systéme causal est stable lorsque la ROC inclut 'axe jw. Autrement dit,
la transformée de Laplace est définie en 0 = 0 et donc la transformée de Fourier existe.
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- Pour qu’un systeme anti-causal soit stable, il faut s’assurer que l'exponentielle avec le facteur le plus
petit (le plus & droite sur l’axe) soit bien positif. Il faut que toutes les exponentielles aient une partie
réelle positive;

h(t) = ale(‘71+j“1)tl(—t) + age(‘72+j“’2)tl(—t)

ROC R

Le systeme anti-causal est stable.

Q On peut donc résumer le critére tel que un systéme anti-causal est stable lorsque la ROC (demi-plan
ouvert & gauche et borné a droite) inclut 'axe jw. Autrement dit, la transformée de Laplace est définie
en o0 = 0 et donc la transformée de Fourier existe.

Un systéme est dit BIBO stable (ce qui est clairement souhaitable habituellement : Bounded Input =—
Bounded Output) si

sup |y(t)] < K sup |u(t)|
teR teR

signifiant que n’importe quelle entrée bornée donnera une sortie bornée.

Certains systémes menant a des phénomeénes de résonance importants ne sont pas BIBO stables car il existe une
entrée telle que la sortie est non bornée. Une condition nécessaire et suffisante pour qu'un systeme soit BIBO
stable est que l’axe imaginaire soit compris dans la ROC de la fonction de transfert (c’est aussi équivalent &
dire que h(t) est intégrable). On a donc BIBO stable <= Transformée de Fourier existe.

— Lire section 8.3 [TXB-Théorie| pour des explications plus détaillées.

e En pratique pour déterminer causalité et stabilité de fonction de transfert :

- pour un systéme causal, il faut donc bien s’assurer que la ROC est un demi-plan, coupé parallelement &
I’axe jw, limité a gauche par le pole le plus a droite. Pour qu’il soit stable, il faut en plus s’assurer
que tous les pdles sont a partie réelle négative.

- pour un systeme anti-causal est caractérisé par un demi-plan limité a droite par le poéle le plus a
gauche.

- Autrement, le systéme est non-causal pour les autres valeurs de o.

- pour que le systeme soit stable peu importe sa causalité, il faut que la ROC contienne l’axe des
ordonnées/’axe jw. La réponse impulsionnelle est caractérisée par des exponentielles décroissantes
telles que : e~ ®*I(t) avec @ > 0 ou e**I(—t). La fonction échelon permet de ne considérer que la région
convergente de I’exponentielle.

1.5 Réponse des systéemes LTI : Transformée bilatérale

On considere un systéme causal dont la dynamique est décrit par I’équation différentielle suivante : §+3y+2y =

al(t) , ‘y(O) =y(0) = O‘ (condition de repos initial obligatoire pour les transformées bilatérales).

Peut-on évaluer la réponse du systeme uniquement grice a la fonction de transfert 7 On évalue la fonction de
transfert depuis I’équation différentielle

1
5243542

L’entrée peut facilement s’exprimer avec sa transformée de Laplace, en utilisant la transformée de Laplace de
I(t) et la propriété de linéarité pour a=

H(s) =

u(t) = al(t) <5 U(s) = g
Par conséquent, on calcule aisément la transformée de Laplace de la sortie :
Y(s) = H(s)U(s)
a

S @ issg W0
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Ensuite, on décompose la réponse Y (s) en fractions simples afin de simplier 'expression.

a a a
=L 2 % RG>0

5 s+l 2e1o) 0 )
Pour obtenir la sortie du systéme y(t) a partir de sa transformée de Laplace Y (s); il suffit d’utiliser les tables
de propriétés.

On sait que
1

s+a

pour une systéme causal. On se rend alors compte que Y (s) est une somme de termes de la forme de X(s),
avec différents coefficients et différentes valeurs de a. Par linéarité, la transformée d’une somme de termes est
la somme des transformées de ces termes. On obtient ;

2(t) = 1(t)e™™ | a >0« X(s) = , R(s) > —a

La réponse du systéme (= sa sortie) est donc une combinaison d’exponentielles, dont les facteurs sont les péles
de la fonction de transfert.

1.6 Réponse des systémes LTI : Transformée unilatérale

Il est tres fréquent que le systéme possédent des conditions initiales non nulles (on parle de non-zero state). On
définit alors la transformée de Laplace unilatérale

+oo
X(s) = /o z(t)e Sdt

LA transformée de Laplace unilatérale d’un signal x(t) est la transformée bilatérale du signal z(¢)I(¢). Dés lors,
la ROC de la transformée unilatérale est toujours un demi-plan ouvert a droite. La grande différence entre les
transformées unilatérales et bilatérales réside dans la propriété de différentiation (voir section 8.1 [TXB-Théorie])

dz(t) ., _
T sX(s)—x(07)
d?z(t) ¢

& 52X (s) — s2(07) — 2(07)

de?

Exemple :

3y =al(t) , [y07) =w , §(07) =y}

= 5%Y(s) — yos — yy + 3sY(s) — 3yo + 2Y (s) =

w |

yo(s+3) Yo a

—Y =
() $243s+2  $2+3s+2  s(s24+3s+2)

Q© Les deux premiers termes de Y (s) correspondent & la réponse libre du systéme, i.e. une combinaison d’expo-
nentielles complexes dont les coefficients sont déterminés par la fonction de transfert et les conditions initiales.
Le dernier terme correspond a la réponse forcée du systeme, i.e. la réponse a 'entrée, a conditions initiales
nulles. La sortie d’un systéme LTI est donc la somme d’une réponse libre et d’une réponse forcée. Les poles de
la fonction de transfert déterminent les modes du systéme, c’est-a-dire sa réponse naturelle.

Pour bien saisir la différence entre réponse libre et réponse forcée, prenons I'exemple d’un systéme masse-ressort
a la vertical. La réponse libre du systeme correspond & son mouvement lorsque I’expérimentateur-rice décide de
démarrer la masse a une position donnée. Les conditions initiales de ’objet sont déterminées. Ensuite, I’'objet
est relaché et va osciller. Cette réponse est uniquement une conséquence de la dynamique interne et influencée
par la position initiale. En opposition, I'expérimentateur- applique applique une force constante a l'objet, la
réponse de celui-ci est gouvernée par cette entrée. Il s’agit donc la réponse forcée.

1.7 Représentation d’état et fonction de transfert
On a

|
b
>
=
4
v}
d
=

{x(t) = Ax(t)+ Bu(t) c {SX(S)
y(t) = Cx(t) + Du(t) Y(s) = CX(s)+ DU(s)
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en utilisant la propriété de dérivation temporelle.

On calcule la fonction de transfert telle que :

H(s) = 158 =C(sI — A)'B+D

O La réponse totale d’un systéme LTI caractérisé par les matrices A, B,C, D soumis & une entrée u(t) et
ayant des conditions initiales x(0) est donnée par :

Yiot(s) = H(s)U(s) + C(sI — A)~'z(0)
avec le premier terme associé a la réponse forcée et le deuxiéme terme associée a la réponse libre du systéme.

Les poles de H(s) sont donc les valeurs telles que det(sI — A) = 0, i.e. les valeurs propres de A. Les poles
de la fonction de transfert on le méme réle que les valeurs propres : pour un systéme causal, s’ils sont négatifs,
le systéme est stable et s’ils sont positifs, le systéme est instable! O

A ce stade, il est important de se rendre compte que causalité, stabilité (valeurs propres) et ROC sont totalement
liées. N’hésitez pas a parcourir plusieurs fois les différents rappels pour étre siir que vous comprenez les liens
entre les différents représentations ; domaine temporel, domaine fréquentiel, décomposition en exponentielle e*’*,
décomposition en exponentielle du e/(@T«)t

Notions clés

« Comprendre le concept de décomposition de tout signal sous la forme e*t.

o Définir la fonction de transfert a partir de la réponse impulsionnelle.

o Comprendre la dualité convolution avec la réponse impulsionnelle h(t) dans le domaine temporel versus
produit avec la fonction de transfert H(s) dans le domaine fréquentiel

o Maitriser la transformation d’une équation différentielle dans le domaine de Laplace a ’aide des propriété.

o Calculer la fonction de transfert a partir d'une équation différentielle (équation entrée-sortie).

o Comprendre pourquoi la ROC associée au systéme causal (resp. anti-causal) est définie par la région délimitée
a gauche (resp. a droite) par le pole le plus & droite (resp. & gauche). Pour cela, il faut maitriser la notion de
causalité avec une réponse impulsionnelle définie sur ¢ > 0. Ensuite, il faut avoir en téte la notion d’intégrabilité
et de convergence de h(t). Finalement, avec le passage dans le domaine de la place a 'aide de la propriété de
décalage fréquentiel, les poles de la fonction de transfert entre en jeu.

o Distinguer la réponse libre et de la réponse forcée du systeme.

o Calculer la réponse libre et la réponse forcée depuis la représentation d’état.

2 Exercices résolus au tableau

Exercice 1 = Exercice 7.2 [TXB]

Considérons les systemes LTI en temps continu pour lesquels I’entrée u et la sortie y sont liées par §+y—2y = u.
a) Trouver 'expression algébrique de la fonction de transfert H(s) de ces systémes.

b) Discuter la région de convergence de H(s) et déterminer la réponse impulsionnelle h(t) dans les trois cas
suivants : 7 le systéme est causal, (i) le systeme est stable, (i) le systéme est anti-causal.

Exercice 2 = Janvier 2018 - Q2
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3 Exercices a faire

Exercice 3 =Exercice 7.10 [TXB]
Etude de ROC et implication sur la forme de la réponse impulsionnelle

Soit la fonction de transfert 1

H(S):752+572'

a) Combien de systémes LTI différents peuvent étre associés a H (s) et pourquoi ? Etudier la causalité et la
stabilité de chacun d’entre eux.

b) Etudier la stabilité de chaque réponse impulsionnelle associée aux différents systémes ; indiquer 1'origine
des instabilitées.

c¢) Calculer la réponse impulsionnelle du systéme LTI stable associé & H(s).

Exercice 4 = Exercice 7.3 [TXB]

Un systeme LTT causal est caractérisé par la fonction de transfert

s+4
H(s) = ———.
() s2+55+6
a) Donner une équation différentielle reliant ’entrée et la sortie.
b) Déterminer la réponse impulsionnelle h(t) du systéme.

c) Quelle sera la sortie si entrée est e=4(1 —¢)I(t) ?

Exercice 5 = Janvier 2019 - Q2 (i) — (v)

Exercice 6 = Aout 2016 - Q1 (iv)-(v)-(vi)

4 Pour s’exercer

Exercice 7 = Exercice 7.1 [TXB]
- Calcul de réponse d’un systeme depuis sa fonction de Transfert -

La sortie d'un systéme LTI causal est y(t) = 2e~3!1(¢) lorsque l'entrée est u(t) = I(t).
a) Trouver la fonction de transfert H(s) du systéme et en déduire la réponse impulsionnelle h(t).
b) Trouver la sortie y(t) quand I'entrée est u(t) = e~t1(t).

c¢) Trouver la sortie y(t) quand l'entrée est u(t) = e~ *.

Exercice 8 = Exercice 7.7 [TXB]

Répondre par vrai ou faux et justifier brievement.
a) Le systéme causal décrit par ’équation suivante est instable.

Y+ 25 +y(t) = u(t)

b) Un systeéme causal est nécessairement stable.

¢) Soit H(s) la fonction de transfert d’un systéme stable. Le systéme de fonction de transfert Hy(s) = 10H (s)
a un temps de réponse approximativement dix fois plus court.

d) Le systeme décrit par y(t) = u(t — 2) est BIBO stable.
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TP11 : Diagrammes de Bode

1 Concept

La réponse impulsionnelle h(t) d’un systéme LTI permet de caractériser le comportement de ce systéme et de
calculer la réponse temporelle pour une entrée donnée. Lorsque 'on travaille dans le domaine fréquentiel,
on a montré dans les TP précédents que la fonction de Transfert H(s) caractérise notre systéme. Elle donne
toute I'information sur la "boite noire"; en caractérisant la réponse fréquentielle. On peut simplement étu-
dier H(jw) car cela exprime leffet du systéme sur un signal harmonique de fréquence arbitraire f (ou pulsation
arbitraite w).

e Pourquoi parle-t-on de réponse fréquentielle ?
On part d’une entrée harmonique u(t) = €/“* On calcule la sortie y(¢) du systéme de réponse impulsionelle h(t)
en appliquant la convolution :

+oo +oo
y(t) = h(t) *u(t) = / h(r)e?* = dr = ej“’t/ h(1)e 99Tdr = e H(jw) = uH (jw)

— 00 — 00

+o0 )

H(jw) = / e “Th(r)dr
—0oQ

est la transformée de Fourier de la réponse impulsionnelle du systeme.

En résumé,

et —l S —— H(jw)e!!

e Application

Pour une entrée, u(t) = cos(wt) = & (el + e7I<1),

la sortie est donnée par : y(t) = 3 (H (jw)e/“! + H(—jw)e 3+t).

La réponse d’un systéeme LTI & une exponentielle complexe a une certaine fréquence est donc une exponentielle
complexe de méme fréquence mais dont la phase et amplitude ont été modifiées ©. Cette modification est
entiérement caractérisée par la transformée de Fourier de la réponse impulsionnelle.

En décomposant H(jw) par son amplitude et sa phase; |H(w)|e/“" ) on peut exprimer la sortie y(t) =
|H (w)| cos(wt+2ZH(w)). Le signal u(t) est donc bien modifié en amplitude (gain) et en phase, mais pas en fréquence.

Etudier la fonction de transfert H(jw) = |H (w)|e?“H“) permet de capturer le fonctionnement du systéme LTI
stable. En effet, il s’agit du systeme stable associé a H (s) car il faut sélectionner la ROC contenant s = jw.
Comme illustré dans le TP sur les séries de Fourier, on peut étudier H(jw) Viam son diagramme d’amplitude
|H(w)| = f(w) et son diagramme de phase ZH(w) = g(w). Ces graphes s’appellent les diagrammes de Bode
et correspondent a la représentation graphique usuelle de la réponse fréquentielle d'un systeme LTT.

e Parallélisme entre domaine temporel et domaine fréquentiel

La figure ci dessous illustre ’équivalence entre les deux domaines d’études des signaux. Dans le domaine tem-
porel, le signal est représenté par son évolution au cours du temps. Pour obtenir la réponse du systeme, il suffit
de convoluer lentrée avec la réponse impulsionnelle y(t) = h(t) * u(t).

Ce méme signal d’entrée peut étre décrit a ’aide de son spectre fréquentiel en amplitude et en phase. Cela
permet de simplement voir le contenu fréquentiel du signal (quelles fréquences constituent le signal). Le sys-
téme est décrit a l'aide de sa fonction de transfert (H) qui est simplement la transformée de Fourier de h(t).
Cette fonction de transfert peut également étre visualisée selon son amplitude et sa phase. On appelle cela les
diagrammes de Bode.

Pour obtenir la réponse du systeme, il suffit de lire le diagramme de Bode et indiquer comment H affecte U. A la
fréquence nulle, le diagramme de Bode en amplitude est a égal & 1. Le signal d’entrée n’est donc pas modifiée (la

16. On écrit H(jw) pour mettr en évidence qu’il s’agit d’une fonction complexe. L’amplitude et la phase ne sont pas
complexes. On écrit donc |H (w) et ZH(w).
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barre mauve de |U| reste bien inchangée en [Y]). En wy, le signal d’entrée voit son amplitude doublée car |H (wp)|
est égal & deux (la barre bleue de [Y(wp)| vaut 2 au lieu de |U(wp)|=1. Pour la phase, il suffit d’additionner
comme mentionner & la section précédente.

DOMATNE TEMPOREL
u(t) u(t)
M — h(t) L,
¢ y(t)= h*u t
DOMATNE FREQUENTIEL ek e Y = HU
U] Y]
2
1
1/2 1/2'
Wo W Wo w1 w
paj A[
w

1.1 Dessiner un diagramme de Bode

C’est a partir d’ici que 'on explique comment dessiner des diagrammes de Bode. Prends le temps de lire et
relire les différents points pour étre sur-e de savoir les mettre en pratique!

L’allure de |H| et de ZH nous permet de facilement comprendre I'impact de la boite noire sur le signal d’entrée.
Deés lors, le but de ce TP est de dessiner ces diagrammes de Bode. Pour cela il nous faut 'amplitude et la
phase.

Cas 1 : H est exprimée selon son amplitude et sa phase :

On prend comme systeme y(t) = u(t — o). Il s’agit d’une boite noire qui retarde 'entrée u(t) par un délai de
to. Le systéme est donc décrit par une fonction de transfert H(s) = e %-*. Pour dessiner les diagrammes de
Bode, on se place en s = o + jw avec o = 0. On veut donc dessiner H (jw) = e~7%0-* 1l suffit de décomposer en
amplitude et en phase sous la forme H(jw) = |H|e/“H . Par inspection, on peut écrire :

|H(w)| =1, ZH(w) = —wty

L’amplitude est unitaire et la phase est simplement une fonction linéaire de la pulsation ou la pente de la droite
correspond a tg, le délai généré par la boite noire sur le signal d’entrée.

On peut dessiner les diagrammes de Bode pour cette fonction :

Cas 2 : H est exprimée selon sa partie réelle et imaginaire

H est exprimée selon sa partie réelle et sa partie imaginaire telle que H(jw) = A(w) 4+ jB(w). Les deux
composantes sont dépendantes de la pulsation. On pourrait dessiner sur une graphique A et de B en fonction de
wE Mais comme on I’a souvent rappelé dans le domaine fréquentiel, nous préférons travailler avec I’amplitude
et la phase des signaux. Il suffit d’utiliser les bases d’algébre pour écrire un nombre complexe sous différentes
formes. La fonction complexe de H décrite par A et B peut se transformer de de la maniére suivante :

H(jw) = A(w) + jB(w) = |H (w)|e/“ ")
La conversion s’obtient avec les relations suivantes :
|H(w)| = VAw)? + B(w)?

ZH(w) = arctan (ig:;)

17. on appelle cela un diagramme de Nyquist - voir le cours de Linear System Design
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Figure 13 — Diagrammes de Bode en amplitude (gauche) et en phase (droite) de la fonction de
transfert H(s) = e~%%. I’axe des abscisses est selon une graduation linéaire.

Finalement, il suffit de tracer les deux expressions en fonction de w. C’est comme si on devait dessiner f(z) en
fonction de x

FEzxzemple :

La fonction de transfert D(s) = s + a avec a > 0. En appliquant le raisonnement décrit ci-dessus, on obtient

D(jw) =a+ jw :

|D(w)| = Vw? + a?

/D(w) = arctan (%)

Diagramme de Bode en amplitude |D(w)]

On pourrait tracer vw? + a2 en fonction de w sur un graphique mais I'expression est "compliquée" - ¢’est une
racine carré de w? + une constante. Dés lors, on préfere travailler avec des logarithmes. On introduit la notion
de décibels (dB) ©. C’est nouvelle unité qui s’obtient en calculant : 201log(+). Au lieu de tracer |D(w)|, on dessine
20 log(|D(w)]).

Le calcul s’écrit :

20log(|D(w)]) = 20log(v/w? + a2) = 10log(w? + a?)

Pour dessiner cette fonction de la pulsation, on peut calculer les limites

o w<<a:10log(w? + a?) — 10log(a?) = 20log(a) : ce qui correspond & une constante.

e w>>a:10log(w?+a?) — 10log(w?) = 20log(w) ce qui correspond a une fonction linéaire de w, 7e. une droite
avec une pente croissante de 20 dB/dec lorsque 'axe des abscisses est bien graduée en échelle logarithmique.
On parle donc bien en décade car on fait des sauts de 10 a 100 a 1000 de maniere logarithmique.

e w = a : on va simplifier I’expression de 'amplitude de D et simplement relier les cas limites considérées ci
dessus.

Diagramme de Bode en phase ZD(w)

On repart de la définition : D(jw) = arctan (£) Le graphique de arctan(z) est donnée Figure

On considere différents cas limites :

e w << a:arctan (%) —0

e w>>a:arctan (£) — 7/2

Si 'on trace I’échelle des abscisses en graduation logarithmique, on peut décrire I’allure de I'arctan de maniére
simplifiée.

e w<a/l0: (w)=0

o w € [a/10;10a] : (w) croit de + 7/4 par décade

o w>10a: (w) =7/2

Par convention Matlab, la fonction arctan a un saut de phase de pi lorsque argument est négatif (voir Figure
i)

si a > 0 :arctan (%)

si a < 0:arctan (3) — arctan (%) + 7

a

Les diagrammes de Bode de D(s) = s + a sont illustrés Figure
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Convention
a>0: arctan(x/a) = arctan(x/a)
a<0: arctan(x/a) = arctan(x/a) + pi

arctan(x)
arctan(-x)

-2 L L L )
-20 -10 0 10 20
x
Figure 14 — Graphique de l'arctan(z) et arctan(—z)
DI ZD
[dB] 4 [rad] 4
20 /45)(113 dec ;
0 C m/4
0t o 0 /s
S —m/Ar
L 1 I L > H
110 100 1000 ¢ [rad/s| 1

1 | 1 >
10 100 1000 w](rad/s]

Figure 15 — Diagrammes de Bode en amplitude (gauche) et en phase (droite) de la fonction de
transfert D(s) = s + a avec a = 10. L’amplitude est calculée en dB avec graduation linéaire. La
phase en radian avec graduation linéaire. L’axe des abscisses est bien la pulsation en rad/s avec une
graduation logarithmique.

! Ne pas mélanger les unités et les graduations!

o Figure[13|: amplitude est exprimée en unité naturelle e. si |[H (w*)| = 2 & une pulsation donnée w*, la boite
noire double simplement "amplitude du signal d’entrée. L’axe des abscisses est en rad/s et I’espacement entre
les graduations est linéaire de. il y a le méme espacement entre 1 et 2 qu’entre 3 et 4.

o Figure [I5]: lamplitude est calculée en dB. 11 suffit juste de reporter les résultats trouvés dans cet unité. La
graduation est linéaire. Par exemple un gain unitaire en unité naturelle correspond a 0dB. Vu qu’on obtient
une expression sous la forme de 20log(w), on va modifier la graduation de 1’axe des abscisses pour avoir une
graduation logarithmique ie. I’espacement entre 1 et 10 est le méme qu’entre 10 et 100.

Cas 3 : la fonction de transfert est écrit sous la forme d’une fraction
Lors des TP précédents, on a souvent observé des fonctions de transfert H(s) = H% On aimerait également
tracer le diagramme de Bode de cette fonction. Cela correspond a Uinverse de D(s) tq : H(s) = 1/D(s).

. . , s . . . . 1 .
On doit repartir de la décomposition en amplitude et phase : H(jw) = jota: En bac 1 ou en secondaire on
a—jw
a?+w?"

Il faut ensuite trouver I'amplitude :

transformerait cette expression rationnelle complexe s’écrit : H (jw) = La partie réelle est donnée par
—jw

Alw) = =t rEsmrel
VA? + B? et la phase arctan(B/A). On peut repartir du méme raisonnement que celui fait pour D et calculer
I’amplitude en dB. Les calculs sont laissés aux lectrices et aux lecteurs. Ils sont également donnés dans le livre
[TXB-théorie]. On peut également déduire les résultats depuis 'inverse de D(s). Les diagrammes de Bode sont
illustrés a la Figure

et la partie imaginaire est donnée par B(w) =
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Diagramme de Bode en amplitude ZH (w)

o w<<a:20log(1l/a) : ce qui correspond & une constante.

e w>>a: 10log(1/w?) = —20log(w) ce qui correspond & une fonction linéaire de w, ie. une droite avec une
pente décroissante de -20 dB/dec lorsque I’axe des abscisses est bien graduée en échelle logarithmique.

e w = a : on va simplifier 'expression de 'amplitude de H et simplement relier les cas limites considérées ci
dessus.

Diagramme de Bode en phase ZH (w)

e w<a/l0: ZH(w) =0

o w € [a/10;10a] : ZH(w) décroit de — 7/4 par décade
e w>10a: LH(w) = —7/2

[H] /ZH
[dB] 4 [rad] 4
0 F

10—
-201

-20dB /dec

T S

i I L > L i L >

Figure 16 — Diagramme de Bode en amplitude (gauche) et en phase (droite) de la fonction de
transfert H(s) = SJ%G avec @ = 10. L’amplitude est donnée en dB avec graduation linéaire et la phase
en radian avec graduation linéaire. I’axe des abscisses est bien la pulsation en rad/s avec une

graduation logarithmique.

1.2 Etude de systéme continus 4 ’aide des diagrammes de Bode

Dans les premiers TP, on a découvert qu’on pouvait étudier les systémes sur base de leurs équations différen-
tielles. Ensuite, on a appris a calculer la fonction de transfert. Des lors, on va discuter des diagrammes de Bode
des fonction de transfert de systéemes fondamentaux.

Réponse d’un systéme continu du premier ordre

e Forme générale :
La réponse est donnée par une équation différentielle de premier ordre avec une entrée u :
Ty +y = uK avec 7T est la constante de temps et K une constante.

e Fonction de transfert : K

Hs) = Ts+1

-1
avec ROC={s € C : ¢ > —} (pour un systéme stable). On remarque que la région de convergence contient
T
bien 0 =0
e Réponse temporelle du systeme :
On peut calculer les différentes réponses du systémes : la réponse impulsionnelle h(t) (ie. pour une entrée
u(t) = 0(t)) et la s(t) réponse indicielle( e. pour une entrée u(t) = 1).

H(jw) = jwlr(+1
ht) = Le =it
s(t) = K(1—e 7))

Ces expressions peuvent étre dessinées comme sur la Figure (gauche). La réponse impulsionnelle i(t) d’une
systéme d’ordre 1 est simplement une exponentielle décroissante avec une constante de temps 7. La réponse
indicielle s(¢) montre que la réponse évolue de 0 & 1 avec une constante de temps 7.
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e Diagrammes de Bode :

On connait la fonction de transfert H(s) et on peut donc dessiner les diagrammes de Bode. La forme analytique
ressemble & I'exemple présenté ci-dessus. On pourrait tout redécomposer en amplitude et en phase ou bien
utiliser les disucssions limites.

Diagramme de Bode en amplitude |H(w)]
ew<1:20log|H(w)| ~0.

e w > = :20log|H(w)| décroit linéairement & -20db/dec.
On peut appeler % comme étant la pulsation de coupure w,.

Diagramme de Bode en phase ZH (w)

* Siw < fswe 1 ZH(w) ~ 0.

® Si f5we <w < 10w, : ZH(w) décroit linéairement (avec une pente de —%/ dec) et vaut —% en we.
¢ Si 10w, <w: ZH(w) ~ 7.

Il y a donc un déphasage a hautes fréquences et non a basses fréquences.

1 [dB] | |H(jw)|
s+ 1

h(t) H(s) =

t
s(1)

L [ mimmim s it i e e T3 0

T2 -

71 1

n

T3<T2<T] 9 ‘

0 t 01 1 10 o7

Figure 17 — Systéme d’ordre 1 pour K =1 : (top-left) réponse impulsionnelle A(t), (bottom-left)
réponse indicielle, (top-right) Diagramme de Bode en amplitude, (bottom-right) Diagramme de Bode
en phase. Les courbes vertes correspondent aux courbes noires approximées.

e Résumé pratique des diagrammes de bode de systeme d’ordre 1 a la Figure

0dB
0dB —20dB/déc.
—20}
|1_ w
T
L(H(jw))
0 R
|
_ﬂ_x
_Z_H i 2 T, T T w
T TT
T T T

Figure 18 — Diagrammes de Bode de systéme d’ordre 1 : en simplifié
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Réponse d’un systéme continu du deuxiéme ordre

e Forme générale :

Un systéme d’ordre 2 peut étre exprimé par une équation différentielle de deuxieme ordre comme le systeme
masse-ressort-damper :

i+ 2¢woy + wiy = Wi Ku

Q wp est la pulsation naturelle

Q@ ( est le facteur d’amortissement : plus ¢ 7, plus Pamortissement .

e Fonction de transfert :
K w%

HO) = i atus vk
avec ROC = {s € C:0 > —Cwo +wov/( — 1}

On aimerait tracer le diagramme de Bode donc on se place en 0 =0 :
On a H(jw) = K
) Gyt

Est-ce que le dénominateur est factorisable tq. Wl(s%) ?

On calcule les poles de la fonction de transfert : p1 o = —Cwo £ woy/¢(%2 —1:

Pour savoir si le dénominateur est factorisable il faut que la racine carrée soit positive :

- Si ¢ > 1 (amortissement est trés élevée) : la racine carrée est positive, la fonction de transfert peut s’écrire
comme un produit de deux systémes d’ordre 1 : H(s) = H;(s)Ha(s) = H%%er On peut utiliser les outils
précédents ci dessus a chaque sous-systémes.

- Si 0 < ¢ <1 (Pamortissement est faible) : le dénominateur de la fonction de transfert est caractérisé par deux
complexes conjugués.

Diagramme de Bode en amplitude de |H|

On repart sur la décomposition en amplitude et en phase mais les calculs deviennent plus compliqués. Les
développements sont donnés section 9.5 [TXB-Théorie].

Pour éviter de devoir utiliser les longs développements, on utilise les réponses "toutes" faites pour les systéemes
d’ordre a condition d’exprimer le systéme d’ordre 2 sous la forme canonique présentée ici.

Kuw?
52 4 2Cwps + w3

H(s) =

On peut reprendre les différents cas limites :

e Si w < wy, alors 20log |H (w)| ~ 0.

® Si w > wy, alors 201og |H (w)| décroit linéairement & 40dB/dec.

Les systemes d’ordre deux ont une réponse temporelle différente que ceux d’ordre 1. A cause du facteur d’amor-
tissement, le systéme d’ordre 2 peut présenter un overshoot.A nouveau, les développements mathématiques ne
sont pas présentés mais les informations utiles sont résumées ci-dessous :

-si¢ < g, il y a un overshoot (un pic) dans le réponse fréquentielle, & la pulsation de résonance @ = wgy/1 — 2¢2
(qui tend vers wq lorsque ¢ — 0) et dont 'amplitude est |H (jw)| = 24\/%7 (qui tend vers 400 lorsque ¢ — 0).

-Si¢ > g, il n’y a pas d’overshoot.

Identifier la valeur de I'amortissement dans la fonction de Transfert permet de déterminer si la réponse im-

pulsionnelle h(t) converge sans oscillation ¢ > @ et le diagramme de Bode en amplitude ne présente pas
d’overshoot. Dans le cas contraire, si ( < g, la réponse impulsionnelle oscille avant de converger vers 0 et

le diagramme de Bode en amplitude présente un overshoot. Plus le facteur d’amortissement est faible (ie. le
systéme n’est pas capable d’amortir la réponse), plus la réponse impulsionnelle présente de grandes oscillations,
plus le pic est haut et plus le déphasage est abrupte.

Diagramme de Bode en phase /H
e Siw< %% 1 ZH(jw) ~ 0.

e Si %% <w < (1+k)wp : LH(jw) décroit linéairement (a 5 /dec) et vaut —7 en wo.

1
e Si (1+k)wy) <w: ZH(jw) ~ —.
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k > 0 et diminue si ¢ diminue. Autrement dit, la phase subit une transition d’autant plus abrupte que ¢ est
petit. A la limite ¢ — 0, le systéme devient instable, la phase subit un saut discontinu et le maximum du pic
d’amplitude tend vers 'infini. Il y a donc un déphasage a hautes fréquences et pas a basses fréquences.

h(1) [dB] | |H(jw)|
20+

s(t) ¢=0.1
=02
1.5 + (=04
(=08
l__
0.5 +
(=16
0 H————————————— ‘ ' ' o
012 4 8 wnt 0.1 1 10

Figure 19 — Systéme d’ordre 2 pour K = 1 : (top-left) réponse impulsionnelle h(t), (bottom-left)
réponse indicielle, (top-right) Diagramme de Bode en amplitude, (bottom-right) Diagramme de Bode
en phase.

Les courbes vertes correspondent aux courbes noires approximées et w,, signifie wg selon nos notations

e Résumé pratique des diagrammes de Bode de systéme d’ordre 2 a la Figure 20

On peut soit parfaitement dessiner 'amplitude du pic a la fréquence de résonnance. La valeur est donnée par
PN 1 PR , . . oz N . N .

|H(jo)| = vV e Mais il est fréquent de trouver la version simplifiée comme & la Figure |20[ & droite.

20log(|H(jw)])

: 20log(| H(jw)|)
{=0.05
0dB T=o0 0dB —40dB/déc.
—AQF w
0.1wg cluo 10wyp « 0
/(H(jw))
0 1 /(H(jw))
- 0 ~_
2
N
-7 r T I

Do e (1+Kwg

0. lwo wy 10(.1')0 1+k

Figure 20 — Diagrammes de Bode de systeme d’ordre 2 : en pratique
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1.3 Diagrammes de Bode : pratique courantes
Dans les livres de référence ou les livres d’exercices, on voit souvent revenir quelques pratiques courantes
pour dessiner les diagrammes en amplitude et en phase de H(jw) :

- axe des abscisses pour w est en échelle logarithmique. Cela vient des résultats analytiques présenter
ci-dessus mais également cela permet d’analyser de maniére plus détaillée les basses fréquences, ou une
petite différence est bien plus importante qu’a hautes fréquences.

- Daxe des ordonnées peut étre représenté en échelle logarithmique pour |H (jw)| car cela permet une symé-
trie (les mémes distances, poids,...) entre atténuation et amplification. De plus Y (jw) = H(jw)U (jw) =
log |Y (jw)| = log |H (jw)| + log |U(jw)| — facile a représenter !

- Paxe des ordonnées peut étre exprimé en décibel telle que I'on dessine 20 log(|H (jw)]|). Le 20log a pour
origine l'unité attribuée a 'amplitude ; on parle souvent en décibels (gain +3dB ou atténuation -20dB par
exemple). Cependant, il est fréquent de mettre comme label de I’axe vertical |H (jw)| [-] qui représente
Pamplitude sans décibel (en unité classique) ou bien |H (jw)| [dB] (qui représente 20 log |H (jw)|).

- Echelle linéaire pour ZH (jw) (axe des ordonnées) car celle-ci peut étre aussi bien négative que positive.
De plus Y (jw) = H(jw)U (jw) = LY (jw) = LH(jw) + LU (jw) — facile & représenter !

- On notera que le graphe n’est représenté que pour w > 0 car si la réponse impulsionnelle h(t) est une
fonction réelle, 'amplitude de sa transformée de Fourier est paire et la phase de sa transformée de Fourier
est impaire.

Décomposition en série de systémes simples

Lorsqu’un systeme est décrit par la mise en série de sous-systemes; on peut étudier la fonction de transfert
du systéme total en utilisant les logarithmes a notre avantage. Si la fonction de transfert totale du systeme
s’exprime comme la multiplication de fonctions plus simples telle que :

H(s) = Hy(s)Ha(s)...H,(s)
11 suffit d’utiliser une échelle logarithmique :

201og;o(|H (jw)|) = 201og,o (| H1(jw)|[Ha(jw)]...| Hn(jw)])
= 201og;o(|H1(jw)|) + 201ogyo(|H2(jw)]) + - + 20 logo (| Hn (jw)])

De méme pour la phase;

L(H(ju) = £ (202100 _ o210
= Z(Hi(jw)) + Z(H2(jw)) + ... + Z(Hn(jw))

Des lors, on peut étudier la décomposition en amplitude et en phase de chaque sous-systéme. Ensuite, on
additionne les amplitudes et les phases.

Fonction de transfert sous forme rationnelle

Au TP précédent, on a insisté sur la factorisation de la fonction de Transfert et ensuite en sa décomposition en
fraction simples. Ainsi, on utilise la forme factorisée de la fonction de transfert en systéme d’ordre 1 et d’ordre
2.

Schéma de résolution : tracer les diagrammes de Bode en amplitude et en phase

1- Analyser 'expression de la fonction de transfert globale et identifier les sous-sytémes ie.
. , les différents termes du produit.

- - 2- Etudier chaque sous-systéme séparément et trouver la décomposition en amplitude et en
R=A phase.

3- Additionner les différents résultats obtenus pour donner le diagramme de Bode en am-
plitude et en phase de la fonction de transfert générale.
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En pratique, on se retrouve souvent face a des expressions comme celle-ci :

K(s+a) (52+a5+ﬂ)H6(5)

HE) =000 @ ps )

a>0,b>0,a>0,8>0,u>0,v>0.
Comment dessiner le diagramme de Bode?
étape 1 : décomposer en sous systemes

Hl(S)—K
Hy(s)=s+a

1
H, =
3(5) s+b
Hy(s)=s>+as+f3

1

Hy(s)= —
5(5) 82+/,LS+’7

étape 2 : décomposition en amplitude et en phase de chaque sous-systémes

Si la forme analytique du sous-systéme ressemble a une forme canonique étudiée, on peut éviter de tout recalculer
et reprendre les résultats directement.

Pour notre exemple,

e Hi(s) =K :

Pamplitude est constante et est donnée par 20 log(K) et la phase est nulle pour toutes les valeurs de w.

e Hy(s)=s4+a (a>0):

la pulsation de coupure est égale a a, ’amplitude & basses fréquences est égale a 20log(a) et ensuite a la pulsa-
tion de coupure 'amplitude croit avec une pente de 20db/dec. La phase croit de 0 & 7/2 entre a/10 et 10a.

.H3(s)=SLM(b>0):

la pulsation de coupure est égale & b, 'amplitude & basse fréquence est égale & 20log(1/b) et ensuite & la pul-
sation de coupure 'amplitude décroit avec une pente de -20db/dec. La phase décroit de 0 —7/2 entre a/10 et
10a (les développements analytiques sont montrés au début du rappel).

e Hs(s) = m :
On regarde d’abord si on peut décomposer le polynome de deuxiéme ordre en deux polynomes de premier
ordre et ansi revenir aux points précédents de décomposition de sous-systémes d’ordre 1. Si le polynome n’est
pas factorisable, il faut appliquer les notions vues pour les systemes d’ordre 2. Il faut donc revenir a la forme
canonique identifiant les parameétres clés ¢ et wo depuis p = 2¢wp et v = w3. L’amplitude & basses fréquences
est donnée par 20log(1/v). Il faut ensuite avoir les valeurs numériques pour continuer I’analyse. L’amplitude
va décroitre de -40db/dec a partir de la pulsation de résonance et la phase va chuter de 0 & —m autour de la
pulsation de résonance. La pulsation de résonance est donnée par & = wg+/1 — 2¢2 et Pamplitude & la pulsation

, N 1 . .
de résonance est |H(jw)| = e en unité naturelle.
1
e Hy(s) = . On regarde d’abord si le polynome est factorisable en deux polynémes simples d’ordre

§2 + us +

1 pour applique/rl les frynémes principes que pour s + a. Si le polynome n’est pas factorisable, on va identifier
les parametres clés des systémes d’ordre 2 ( et wy & partir de o = 2¢wp et B = w3. L’amplitude va croitre de
+40db/dec a partir de la pulsation de résonance et la phase va croitre de 0 & +7 autour de la pulsation de
résonance. La pulsation de résonance est donnée par @ = wgy/1 — 2¢2 et 'amplitude & la pulsation de résonance
est |H(jw)| = 2{\/%? en unité naturelle. Le pic de 'overshoot est vers le bas (résultat opposé car 'expression

est au numérateur plutot qu’au dénominateur).

e Hg(s) est une fonction de transfert d’un sous-systéme mais elle n’a pas une "forme canonique" (comme celles
présentées de Hy(s) a Hs(s)). L'expression peut étre par exemple Hg(s) = s —a (a > 0) ou == (b > 0) ou
Ke~%s, Dés lors, il faut appliquer les outils de décomposition en amplitude et en phase précédents au début du
rappel.

étape 3 : additionner tous les résultats obtenus.

Bande passante a -3dB

Dans de nombreux systémes physiques, on s’intéresse a la variation d’énergie entre ’entrée et la sortie. On sait
que I’énergie d’un signal passant par un systéeme de fonction de transfert H(s) est modulée par |H(s)|?. Par
conséquent, le gain (le diagramme de Bode en amplitude) vaut —3dB, on a;

20log(|H (jw)|) = —3dB +— 10log(|H (jw)|?) = —3dB ~ 10log(1/2)

L’énergie d’un signal de fréquence w est divisé par 2 en passant a travers le systéme@
2
La bande passante & -3dB d'un systéme contient 1’ensemble des fréquences pour lesquelles |H (jw)|? > HT

18. Utile pour le cours de Télécommunications par exemple
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Remarque

Pour un systéme causal, si un seul pole est positif (sa partie réelle), alors le systéme est instable. Or, H(jw) est
la transformée de Fourier de h(t), qui n’existe pas si le systéme est instable ! Dés lors, si H(jw)?, les diagrammes
de Bode n’ont plus de sens! Pour un systéme causal, on peut donc tracer les diagrammes de Bode ssi le
systéme est stable.

Construction expérimentale d’un diagramme de Bode

La construction d’un diagramme de Bode peut se faire expérimentalement, sans connaitre la fonction de transfert
du systeme : en appliquant & I’entrée du systéme une sinusoide de fréquence wy et en la comparant a la sortie
mesurée (apres disparition des transitoires), on obtient facilement 'amplitude |H (jwg)| et la phase ZH (jwg) du
systeme a cette fréquence particuliere. En réitérant I’expérience pour différentes fréquences, on obtient différents
points du diagramme de Bode.

Filtres idéaux

Un filtre idéal est un systeme qui atténue 'amplitude du signal pour certaines fréquences. Rappelons que I'entrée
peut étre exprimée dans le domaine fréquentiel ou 'on met en évidence le contenu fréquentiel. Le filtre quant
a lui diminue (ou supprime) le contenu fréquentiel de l'entrée dans certaine bande de fréquence mais laisse le
contenu fréquentiel a d’autres fréquences inchangé. La Figure [21] illustre les différents filtres idéaux qui peuvent
exister@ Comme tout systeme idéal, il n’existe pas en réalité mais certains systémes s’en approchent.

L Passe-bas Passe-haut
|H (w)] |H (w)]
bande passante ’
1

bande coupante

We w We w

A Passe-bande & Coupe-bande
|H (w)| |H (w)] ;
1 4+ 1
Wel We2 Vw Wel We2 w

Figure 21 — Bode diagramme en amplitude de filtres idéaux

19. Source : cours de Circuits Electriques - Bertrand Cornélusse - ULidge. Les notations sont légérement différentes
que celles utilisées dans le cadre du cours.
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Notions clés

o Maitriser le concept des diagrammes de Bode : origine, importance, fonctionnement.

Comment tracer un diagramme ?
1- Décomposer en sous fonction si possible
2- Est-ce que I'expression correspond & une forme canonique ?
g ’ o — 1
Forme canonique d’ordre 1 : H(s) = TaTl

. 5 X . Kuw?
Forme canonique d’ordre 2 : H(s) = TG0 TR

Est-ce que le dénominateur sous la forme du polynome de deuxieme ordre est factorisable 7
Oui > utiliser les outils associés a la forme canonique d’ordre 1
Non > utiliser les outils associés a la forme canonique d’ordre 2.

Oui, 'expression a une forme canonique — j’utilise les outils du cours développées pour les formes canonique
d’ordre 1 et d’ordre 2. Non, I’expression n’a pas une forme canonique — je décompose ’expression complexe

en son amplitude et sa phase qui sont des fonctions de w.
3- Quelles sont les consignes concernant les graduations et unités ?

Amplitude en dB ou en unité naturelle 7 Phase en degré ou en rad ? L’axe des abscisses est gradué selon une

graduation linéaire ou logarithmique ?
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2 Exercices résolus au tableau

Exercice 1 = Exercice 8.2 [TXB]

Tracer les diagrammes de Bode de la fonction de transfert

30(s + 8)
H(s) = —m——2—.
)= 519619
Exercice 2 = Devoir 2020 Q3
On considére la fonction de transfert suivante :
-1

a) Tracez le bloc diagramme de la fonction de transfert. Le diagramme en amplitude a comme abscisse la
pulsation selon une échelle linéaire (uniquement entre Irad/s et 10 rad/s) et en ordonnée I'amplitude
dans des unités naturelles selon une échelle linéaire. Le diagramme en phase est également dessiné avec la
pulsation en abscisse selon une graduation linéaire (uniquement entre 1rad/s et 10 rad/s) et 'ordonnée
est en degré selon une échelle linéaire également.

b) Tracez le diagramme de Bode en amplitude de la fonction de transfert selon les conventions classiques c-
a-d Pabscisse correspond a la pulsation selon une échelle logarithmique (entre 1 et 10 rad/s) et 'ordonnée
correspond a 'amplitude en dB. Expliquez comment vous étes passé-es du diagramme de la question a)
a celui-ci (sur base d’explications mathématiques).

3 Exercices a faire

Exercice 3 = Aout 2021 [Online]
On consideére la fonction de transfert suivante :

s — 1000
s2 + 25+ 64

Dessiner le diagramme de bode en amplitude et en phase.

e Détailler la construction du diagramme sur base de développement analytique de la décomposition en
amplitude et en phase si les outils vus en cours ne sont pas applicables.

o L’axe des abscisses est graduée selon une échelle logarithmique entre 1 rad/s et 10000 rad/s. L’amplitude est
donnée en décibels.

o Dessinez avec soin les diagrammes en indiquant explicitement les informations nécessaires a la compréhension
des courbes (gain statique, pente, amplitude des pics si présents, la valeur de Pamplitude et de la phase en
w=10000rad/s,...)

o Convention mathématique :

si a >0 : arctan(b/a) => arctan(b/a)

si a <0 : arctan(b/a) => arctan(b/a)+m

Exercice 4 = Exercice 8.4 [TXB]

Soit le systéme causal représenté par un circuit RLC série avec R = 1,Q, C = 1, F et L = 1, H. L’entrée u(t)
est la tension au générateur et la sortie y(t) est la tension aux bornes du condensateur.

a) Déterminer la fonction de transfert H(s) entre la tension d’entrée u(t) et la tension de sortie y(t), et
spécifier sa région de convergence.

b) A Taide du diagramme de Bode en amplitude pour H(s), établir le caractére passe-bas, passe-haut ou
passe-bande du circuit.

¢) Procéder comme aux points a) et b) pour R = 10730Q.
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Exercice 5 = Exercice 8.1 [TXB]

Tracer les diagrammes de Bode de la fonction de transfert

Exercice 6 = Janvier 2020 - Q3

4 Pour s’exercer

Exercice 7 = Exercice 8.9 [TXB]

Tracer les diagrammes de Bode du systéme décrit par ’équation différentielle
y(t) + 10y(t) + 9y(t) = 180u(t).

Evaluer le gain statique.

Exercice 8 = Exercice 8.12 [TXB]

Pour chacun des systémes LTI stables suivants, tracer le(s) diagramme(s) de Bode manquant(s) et donner
une expression d’une fonction de transfert a coefficients réels leur correspondant. A quoi peut servir un filtre
analogique de fonction de transfert Hj

20 log |H| 20 log |H| 20log|H(jw)|
w 12 10 ® w
<H <H <H
-90
w w W
2
s+ 0.1s+1
H]: H pr— :2—
2 3 s+ 0.01s+1

Exercice 9 = Janvier 2020 - Q2 (ix)

Exercice 10 = Janvier 2019 - Q2 (viii-ix)
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Exercice 11 = Aout 2019 - Q2

(viii)

5 Sources supplémentaires

Khan Academy 1 : https://wuw
Khan Academy 2 : https://wuw
Khan Academy 3 : https://www
Khan Academy 4 : https://www
Khan Academy 5 : https://wuw
Khan Academy 6 : https://www

.youtube.
.youtube.
.com/watch?v=02Cw_4zd-aU

.youtube

.youtube.
.com/watch?v=4d4WJdU61Js

.youtube

.youtube.

com/watch?v=_ehlconN6YM
com/watch?v=CSAp900oQRTO

com/watch?v=02Cw_4zd-aU

com/watch?v=GI1x9Yu__y8

https://fr.wikipedia.org/wiki/Diagramme_de_Bode
https://cahier-de-prepa.fr/psi-buffon/download?id=54
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https://www.youtube.com/watch?v=_eh1conN6YM
https://www.youtube.com/watch?v=CSAp9ooQRT0
https://www.youtube.com/watch?v=O2Cw_4zd-aU
https://www.youtube.com/watch?v=O2Cw_4zd-aU
https://www.youtube.com/watch?v=4d4WJdU61Js
https://www.youtube.com/watch?v=GIlx9Yu__y8
https://fr.wikipedia.org/wiki/Diagramme_de_Bode
https://cahier-de-prepa.fr/psi-buffon/download?id=54

Solutions des exercices

Algebre linéaire : concepts a maitriser
Solution : Exercice 1

2(t) = ¢1(0)ed + coe™3¢
y(t) = 4c1(0)ed — dege3t
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TP1

Exercice 1 = Exercice 1.2 (a)-(c)

a) x(t=1)

[ x(@t+1)

s 2 V-1 0 1
t
-1
Exercice 2 = Exercice 3.1 (a)-(b)

(a) Systéme dynamique, non-causal, linéaire, variant.

Résolution compléte :

Systeme : y(t) = u(t — 2) + u(2 — 1)

Enoncé (résumé) : Pour chaque systéme, identifier les différentes propriétés soit en démontrant, soit en donnant
un contre-exemple.

e Statique-dynamique ?
Pour rappel, un systéme est statique si y(t*) ne dépend que de la valeur de l'entrée en t = t*. Ici,
y(t*) = u(t* —2) + u(2 — t*) (exemple : t* =4 y(4) = u(2) + u(—2)). La sortie dépend donc de 'entrée
en t* — 2 et en 2 — t*. Par conséquent, le systeme est dynamique.

e Causalité?

Pour rappel, un systéme est causal si y(t*) ne dépend que de la valeur de I’entrée en ¢ < t*. Intuitivement,
on voit que 2 — t* ne sera pas forcément < 2. En effet, on peut facilement trouver un contre-exemple :
pour t* = —1, on a en effet y(—1) = u(—3) + u(3). Si on a bien —3 < —1, on a aussi que la sortie dépend
du futur (3 > —1), de sorte que le systéme n’est pas causal.

Comment qualifier ce systéme alors? Anti-causal signifie que y(¢*) ne dépend que de la valeur de l'en-
trée en t > t*. Non-causal signifie que le systéme n’est ni causal, ni anti-causal. Au vu de I’équation
y(—1) = u(—3) + u(3), le systéme est donc non-causal puisqu’il existe des valeurs pour lesquelles il dé-
pend a la fois du passé et du futur.

e Linéarité?
Pour rappel, un systéme est linéaire si (u1,y1) et (uz2,y2) sont des paires entrées-sortie valides du systéme,
toute combinaison de la forme (au; + Bug, ay; + By2) est également une paire valide. Pour déterminer si
le systéme est linéaire, il suffit de démontrer que tout combinaison au; 4+ Sus donne une sortie ay; + Syso.
Démo :

1. On écrit les paires entrées-sorties (u1,y1) et (u2,y2)



2. On calcule la nouvelle entrée qui est une combinaison linéaire des deux entrées ui(t) et uz(t) :
u(t) = auy(t) + Buz(t).
3. On fait passer cette nouvelle entrée dans le systeme

ut) =5 y(t) = ult —2) +u(2 —t)

On remplace alors grace & la définition de u(t) exprimée au point 2.
y(t) = aur(t = 2) + Bua(t — 2) + aur (2 — 1) + Puz(2 — 1)
Enfin, on associe pour retrouver y;(t) et yo(t) :

y(t) = a (ur(t —2) + u1(2 = 1)) +8 (ua(t — 2) + u2(2 — 1)) = aya(t) + By2(t)

y1(t) y2(t)

Par conséquent, le systeme est bien linéaire.

Autre méthode : Une autre fagon de voir si un systéme est linéaire est de regarder si les entrées/sor-
ties/signaux (plus généralement, les variables dépendantes) sont exprimées/modifiées par une fonction
non linéaire. Cela n’a donc pas de rapport avec "t", mais bien uniquement avec les fonctions qui sont
appliquées sur les entrées/sorties/signaux. Exemple : cos(u(t)) , /y(t) , In(u(t — 1)) , u(@®)y(t) , ... Si
une fonction non-linéaire est présente, on pourra conclure immédiatement que le systéme est non-linéaire,
et, inversement, qu’il est linéaire. Le reste du cours utilisera cette deuxiéme méthode afin d’identifier la
linéarité d’un systeme.

e Temps-variant ou invariant ?
Pour rappel, un systeme est dit invariant dans le temps lorsque la loi qu’il établit entre entrées et sorties
ne change pas au cours du temps, c’est-a-dire si ’équation ne dépend pas explicitement de la valeur de la
variable indépendante.
Démo :

1. L’entrée subit un décalage temporel puis cette entrée différée est modifiée par le systeme :
—A s
u(t) = u(t) =ult—A) = y1(t) =ur1(t —2) +u1 (2 —1t)

c’est-a-dire y1 (t) = u((t —2) — A) +u((2 — t) — A) (puisque uy(t) = u(t — A)).
2. L’entrée est tout d’abord modifiée par le systéme puis cette sortie associée subit un décalage tem-
porel.

s —A
u(t) = y(t)(=ult—2) +u2—1t) == y2(t) =yt —A) =u((t —A) —2) +u(2— (t — A))
cest-a-dire yo(t) = u(t — 2 — A) +u(2 -t + A).
3. Comparer les résultats des points 1 et 2. S’ils sont identiques — le systéme est temps-invariant. Ici,

le systéme est donc temps-variant. En effet, peu importe si I’entrée ou la sortie subit un décalage
temporel, le systeme n’est pas affecté par cette transformation.

Autre méthode : Dire qu’un systéme est invariant signifie que si 'entrée est décalée (exemple : u(t—A), la
sortie l'est également, de la méme valeur (y(t—A)). Cela signifie en outre que le systéme ne dépend pas de
la variable indépendante. Une équation de la forme Y, a;y(7(t)) = 3 ; bju(7}(t)) sera temps-invariante
si les a; et les b; ne sont pas fonction du temps, et si les 7; et les TJ/- sont de la forme t — tg. C’est cette
simple identification que I'on utilisera par la suite en général.

(b) Systeme statique, causal, linéaire, variant.

Résolution compléte :

Systéme : y(t) = cos(3t)u(t)

Enoncé : idem

o Statique-dynamique ?

Pour rappel, les définitions concernant les propriétés des systémes se focalisent sur les signaux d’entrées
et de sorties uniquement. Ainsi, y(t*) = cos(3t*)u(t*) : le sortie en ¢t* ne dépend bien de 'entrée qu’en t*.
En conclusion, le systéme est statique. Le cos(3t*) signifie juste que le coefficient devant le signal d’entrée
n’est pas constant, mais cela reste un simple nombre et on ne considére pas une entrée a un autre moment.
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Causalité ?
Pour rappel, un systéme est causal si y(t*) ne dépend que de la valeur de l'entrée en ¢ < t*. La sortie en
t*, y(t*) ne dépend que de lentrée qu’en t*. Le systéme est donc causal.

Linéarité ?

Pour rappel, un systéme est linéaire si (u1,y1) et (uz2,y2) sont des paires entrées-sortie valides du systéme,
toute combinaison de la forme (au; + Busa, ays + Sy2) est également une paire valide. Comme indiqué dans
le rappel, on regarde si les signaux sont affectés par une fonction non-linéaire du type /u(t), tany(t). Si
on observe ce type de non-linéarité, le systéme est bien défini comme un systéme non-linéaire. Dans cet
énoncé, y(t) et u(t) ne sont pas touchés par des expressions non-linéaires. Le terme cos(3t) est simplement
un coefficient multiplicatif du signal d’entrée.

— Le systéme est donc linéaire.

Voici la démonstration pour s’en convaincre.

1. On écrit les paires entrées-sorties (u1,y1) et (ug2,y2) (on voit que le cos(3t) est bien un simple
coefficient).

U1 (t)
Ug (t)

Sy 41 (t) = cos(3t)us (t)
5 ya(t) = cos(3t)us(t)

2. On calcule la nouvelle entrée qui est une combinaison linéaire des deux entrées ui(t) et uz(t) :
u(t) = auy (t) + Pus(t).
3. On fait passer cette nouvelle entrée dans le systeme

u(t) = y(t) = cos(3t)u(t)
On remplace alors grace a la définition de u(t) exprimée dans le point 2.
y(t) = acos(3t)uq (t) + B cos(3t)usa(t)
Enfin, on fait alors réapparaitre y;(t) et ya(t) :

y(t) = acos(3t)uq(t) + 8 cos(3t)ua(t) = ayy(t) + Bya(t)

y1(¢) Y2 (%)

Par conséquent, le systeme est bien linéaire. En effet, les signaux d’entrées et de sorties ne présentent
aucune non linéarité.

o Temps-variant ou temps-invariant ?

Pour rappel, un systeme est dit invariant dans le temps lorsque la loi qu’il établit entre entrées et sorties
ne change pas au cours du temps.

Il suffit de regarder si les coefficients devant les signaux d’entrée et sortie dépendent du temps. Cela
montre ainsi que le systéme est temps-variant. Dans cet énoncé, le terme cos(3t) multiplie 'entrée u(t).
Pour des instants différents, le terme prend des valeurs différentes.

— Cela rend le systéeme temps-variant.

Voici la démonstration pour s’en convaincre.

1. Décaler d’abord 'entrée puis appliquer cette entrée différée dans le systéme :
u(®) =3 ui(t) = u(t — A) - yi(t) = cos(3t)us (t)
c’est-a-dire y1 () = cos(3t)u(t — A) (puisque uq(t) = u(t — A)).
2. Appliquer d’abord 'entrée dans le systéme puis décaler la sortie associée.
u(t) 5, y(t) (= cos(3t)u(t)) — y2(t) = y(t — A) = cos (3(t — A))u(t — A)

cest-a-dire y(t) = cos (3(t — A))u(t — A).

3. Comparer les résultats des points 1 et 2. S’ils sont identiques — le systéme est temps-invariant.
Ce n’est pas le cas ici, les deux expressions différent. Le systéme dépend de la variable %, il est bien
temps-variant.
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Exercice 3 = Exercice 1.2 (d)

[ x(4-t/2)

Exercice 4 = Exercice 3.1 (f)-(g) [TXB]
Systeme dynamique, non-causal, linéaire, variant.

Exercice 5 = Exercice 3.15 (a)-(c) [TXB]|
(a) Systéme linéaire, variant
(c) Systéme linéaire et invariant.

Exercice 6 = Interro 2013
y(t) = sin(u(t)) : non-linéaire, causal, temps-invariant.
y(t) = u(sin(t)) : linéaire, non-causal, temps-variant.

Exercice 7 = Exercice 3.9 [TXB]

a) Des non-linéarités peuvent apparaitre de différentes maniéres dans les composants électriques ; citons par
exemple la dépendance des parametres R, L et C en fonction de la température (qui elle-méme dépend de
I'intensité de courant), le claquage des condensateurs ou effet de diélectriques non-linéaires. Si le circuit
est couplé & un systéme électromécanique, des dépendances non-linéaires en fonction de la position des
piéces mécaniques apparaissent lorsque l'on veut considérer les lois exactes pour le couple rotorique et la
force contre-électro-motrice.

b) L’usure des composants est inévitable. Des appareils électriques extérieurs peuvent perturber le circuit
par le champ électromagnétique qu’ils créent ; ces perturbations sont en général non-constantes et donc
variantes.

Exercice 8 = Exercice 3.12 (a) [TXB]
(a) Les trois systémes sont linéaires, les systémes (ii) et (iii) ne sont pas statiques; la bonne réponse est donc
(i) (bien que ce systéme soit variant et comporte une non-linéarité vis-a-vis du temps).
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TP2

Exercice 1 = Exemple 2.2.3 [STR]

X

o
Il

NS

Exercice 2 = Exemple 2.2.1 [STR]

Exercice 3 = Paragraphe 2.3 [STR)

O

fo=x" -1

\

K/2 1
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Exercice 4 = Exemple 3.1.2 [STR]

r=x
e* k
G - [ -
(a) )

Exercice 5 = Exercice 2.3.2 [STR]
x* =0, instable; * = kJa/k; stable
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TP3

Exercice 1 = Lapin vs Mouton [STR)

x X

basin boundary =
stable manifold of saddle
sheep
2
'y
1 4
o I -

1 12 ;_ rabbits

Exercice 2
(0,0) : point instable - (0,1) : point de selle - (3,2) point stable

Exercice 3 = Exercice 6.3.6 [STR]
(-1,-1), stable node; (1, 1), saddle point

Exercice 4 = Janvier 2020 - Q1
Réponse en ligne.

Exercice 5 = Janvier 2021 - Q1
Réponse en ligne.

Exercice 6 = Janvier 2022 - Q1
Réponse en ligne.

Exercice 7 = Aout 2021 - Q1
Réponse en ligne.
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TP4

Exercice 1 = Exercice 2.1 [TXB]
- Signal d’entrée : u(-) : R™ - R
- Signal de sortie : y(-) = 0(-) : RT — cercle (R modulo 27 : ok pour [0;2pi] )
- Signal d’état : z(-) = (z1(-) , z2(-)) = (0(-), 8(:)) : Rt — cercle xR
- Loi de sortie : y(t) = 0(t) = x1(t)

- Mise a jour de I'état :

_ult) baa(t) g ok
o mQLQ +T sin(21(¢)) — . F] tan(x1(t))

valable pour [0 : Lcos(f) > a] (condition physique liée a I’étirement maxiumum du ressort sur la barre).

Résolution compléte :
1- Signal d’entrée :
o signification : couple externe (information explicite de 1’énoncé)
o notation : u(t)
o domaine : RT
o image : R
2- Signaux de sortie :

o signification : position angulaire du pendule (information explicite de ’énoncé)
o notation : y(t) = 6(t)
o domaine : RT

o image : [_emaw emcw]v Omaz = arccos (%)
(en général : [0, 27] mais restriction physique & cause de la configuration du pendule et du ressort).

*

Variables d’état : z(t) = (il) = <Z> (données explicitement dans I’énoncé) : R — [—0pa0, Omaz] X R
2

4- Loi de sortie : y(t) = x1(t).
5- Loi de mise & jour : mL26 = u— b — ka? tan() +mgLsin(6) (On applique la loi de Newton en rotation).

{a’cl(t) = a5(t)

Balt) = -+ g sin (0(0) - ok tan (2 (1)

Exercice 2 = Exercice 4.1 [TXB]

a) Equation différentielle : LC(t) + RCH(t) + y(t) = u(t)
Pour u(t) = 0, la solution générale s’écrit :

y(t) = Ae-CHIVER=)t | go(-C=iVwi=c)e
oﬁ§:£etw:—%c.
(Simplement pour montrer la résolution ODE comme au cours d’analyse - & ne pas savoir faire dans le
cadre de ce cours).

b) Bloc-diagramme :

RC
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peut aussi étre dessiné comme ceci :

1
reln
u—»% +>@ > 1 >/—>y—>/ > U
R
L
¢) Choisissant z(t) = [y(t) 4(t)]", on a
0 1 0
0% e8]
y(t)=[1 0] z(t)+ [0] u(t)

Résolution compléte
1- Ici, on voit apparaitre § qui donne l'ordre de I’équation différentielle (n = 2), et donc le nombre de variable
d’état dans le systéme. Cela vient de la définition des variables d’état qui permettent de décrire la dynamique

interne du systeme.
oo (B) 2 (¥
T2 Y

Par ailleurs, par définition de la représentation d’état, il faut que y et u apparaissent sans dérivée.

2- La loi de sortie peut donc étre directement écrite :

y(t) = z1(t)
3- Ensuite, on peut réécrire ’équation donnée en fonction des nouvelles notations introduites :

u R 1

Tog=—— —Tg— —=ZT
T Lt et
Et la deuxiéme loi de mise a jour découle directement du choix des variables d’état
.’bl = T2

4- Ainsi, le modele d’état s’écrit :

Exercice 3 = Aot 2019 - Q2

Résolution compléte

a) Equation entrée-sortie

Lire au niveau du grand symbole somme : "sortie du symbole +" (§) = somme des entrées, avec le signe associé :

§j = 61 + 6u — 107 — 16y

b) Modéle d’état
On réécrit 1’équation § + 10y + 16y = 64 + 6u et on introduit la variable auxiliaire v. Deux équations :

v+ 1004+ 16v = u
y = 6v+6v
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En choisissant le vecteur d’état (x1 et xo peuvent étre inversés)

On obtient directement le modele d’état suivant :

()= (o 20) (2) + ()

=6 0(2)+0u

Exercice 4 = Exercice 2.7 [TXB]
Comportement des réservoirs :

’yhl:u—a\/a
vhy = u+ a(v/hi — V/ha)

= Modele d’état :
- Signal d’entrée : u: Rt — R, débit d’entrée extérieur
- Signal de sortie : y : RT — R, débit de sortie du second réservoir
- Signal d’état : = (21, 22(-)) = (h1,ha) : RT — R?, hauteurs d’eau dans les réservoirs
- Loi de sortie : y(t) = a/z2(t)

- Mise a jour de I’état :

1= 2 (u—ayr)
y = 2(u+alyar — Vaz))

Exercice 5 = Janvier 2020 - Q1 (i)
Réponse en ligne.
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Remarque : Les modeles d’état et bloc-diagrammes associés & un systéme ne sont pas uniques (cf. rappel théo-
rique). Nous présentons ici une seule possibilité, qui nous semble étre la plus directe, pour chaque exercice.
Les autres possibilités sont toutes équivalentes a cette premiere moyennant un changement de variable, que
létudiant pourra rechercher explicitement (matrice T du rappel théorique) en cas de doute.

Exercice 1 = Exercice 4.26 [TXB]

* 2 * 2
a) hf = (%) et hy = (2)
b) Remplagant les variables u(t), y(f) et z(t) par leurs variations aux voisinages du point de fonctionnement
stationnaire (u(t) = u(t) — qf, y(t) = y(t) — a\/h5, T1(t) = z1(t) — h¥, T2(t) = x2(t) — h3) on obtient

[

- loi de sortie : y = —%=1=>
2./}

- mise a jour de I’état :

&1
-
|
2=
/N
|
|
)
Q
>
=%
S
=
~—

Résolution compléte

(a) On a
N\ 2
=0 — ni=(%)
N2
=0 — hy= ()
suivi de,
1 a u* 2
T =0 <= 0=Ju"—2/r] = u' =ayh] << h :(3)2
iy =0 <= 0=u"+ay/hi-ay/hi <= /=2 h*:(”jj)

et la sortie
Y =ayvh;

Le point de fonctionnement stationnaire (u*,z*,y*) (avec x* = (h}, h3)T) est donc

*
ay/h}

(b) Méthode 1
Résolution compleéte
Loi de sortie :

i. Remplacer (u,x,y) par (u* + du,x* + oz, y* + 5y)|§| :
y=ayry — y"+dy=ay/z5+0x

ii. Développer les termes non-linéaires par Mac Laurin en fonction de du, dx, dy :
Ici, le terme non-linéaire en dzg est /x5 + dxo :

f(0m2) = /s + dx2 ~ a/zh + L(ng
v NG

iii. Négliger les termes d’ordre > 2 en du, dx, dy :
Ici rien A faire, mais il aurait pu y avoir dzdu, (§z)2,...

* * «
Yy +5y=a\/x>2+%6x2

20. Au TP1, la petite perturbation était notée u et v mais afin de ne pas confondre avec la variable d’entrée et sortie,
elle est remplacée par dx1 et dxa
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iv. Compenser les termes indépendants :
Utiliser les résultats du point a).

,y/-i-éy = .T; + ﬁél‘g

Notre loi de sortie est donc maintenant bien linéaire en du, dx, oy

Sy = —2 sy = - 4
YTt e

Loi de mise a jour (1) :

i. Remplacer (u,z,y) par (u* + du, z* + dx,y* + dy) :
. 1 ol i . 1, ., a
T =—-u——yr1 — ]+t = —(u" +0u) — —/2F + Iy
Y Y Y Y
Sachant que 7 = 0, puisqu’il s’agit de la dérivée du point stationnaire qui ici est bien un nombre)

ii. Développer les termes non-linéaires par Mac Laurin en fonction de du, dx, dy :
1
N at 40, ~ ot + ——01
! ! 2\/ﬁ

iii. Négliger les termes d’ordre > 2 en du, dx, dy :
Ici rien a faire.

iv. Compenser les termes indépendants :
Utiliser les résultats du point a)

1 1 « a
69’61:/+5u— Tt — ———0x1
v )//f 2yy/a]

Notre loi de mise & jour (1) est donc maintenant bien linéaire en du, dx, dy

1
(5@1 = —du — (SIl
Y

[0
2yy/h}

Loi de mise a jour (2) :

i
1 « «
&5 +0Eg = —(u” + du) + —\/xf + 011 — — /a5 + 0z
~ vy Y v
ii.

%ﬁ+&ww¢ﬁ+%%ﬁm ie{12)

5i 71/+15 +;‘/f+ 5 j/ s
To = — —0U+ — AT + ——=0x2 — —\fT5 — ——=022
Y 2v4/ 2} 2v4/ x5

Notre loi de mise a jour (2) est donc maintenant bien linéaire en du, dx, dy

Sig = You+ S

«
J _
VT o

A faire : écrire la loi de sortie et celles de mise & jour sous forme matricielle (c’est-a-dire déterminer les matrices
A, B, C, D) : c’est le modéle d’état du systéme linéarisé autour du point d’équilibre considéré!

(51"1 . (5{)31
(35) = (Ger) + o

_ 6.’E1
oy==C_ (5:@) + Dou
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Il
[\
)
ﬂ@
=
%
o o
&
I
7N
22|
N———

Méthode 2
Résolution complete
Loi de sortie :

3 3
y=g(r1,22,u) — y= (3791 aT«’;)

0)- 2
(z1,@5,u*) \ L2 ou

(z7,25,u*)

Loi de mise a jour (1) :

. . 9 i
i1 = fi(@r,22,u) = &1 = (T£ 87{2)

(z],m5,u*)

Loi de mise a jour (2) :

1 ; Z1 0f2
1072

(a,25,u*)
Matriciellement, on peut écrire les équations précédentes :

. ofi  Ofr
xl — 6;51 8.’,82
#o) = \ 2B 0B

811 812

u

(z7,25,u%)

(x7,23,u*)

_ (29 @) 1 99
Y Ox1 Oz (wt @5 ,u”) (1’2) + (Bu)‘(z’l‘,z’z‘,u*) u
On trouve
ofr  Ofr — = 0
A = (%}% 2f> e A A
ofr 1
oo @)
ou (z3,x5,u*) Y
) ) a
c = (8 ). = © =)
5 (z3,25,u*)
— g .
D = (%)|(m’l‘7x;7u*) - (0)

Pour conclure : La dynamique du systéme global est donnée par :

Si le systéme est non-linéaire, on linéarise autour de points fixes afin de rendre les lois de mise a jour et de sortie
linéaires. On peut donc écrire les lois a ’aide des matrices A,B,C,D :

{ #(t) = Ax(t)+ Bu(t)
Cz(t) + Du(t)

<

—~
~

~
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Exercice 2 = Exercice 4.11 [TXB]

a) V2t+1y+9=2V2t+ 1u
b) Parce que ce systéme est variant, alors que nous considérons particulierement les systémes LTI

c¢) On aimerait choisir une solution ott u* et y* sont constants. On obtient alors y* = (u*)%2+2u* et 'équation
linéarisée
'y +y=(2u" +2)u.
Exercice 3 = Exercice 4.20 [TXB]

a) On a toujours le point #7 = 0; pour avoir deux autres points en 05 5 = +acos (7229]2) il faut ¢ < 7‘::]’2 <1

b) 6 =0 est instable pour Ti]’z < 1 (stable dans le cas contraire), les 2 autres équilibres sont stables.

¢) Considérant £ = x — z* comme un vecteur colonne, on obtient
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Exercice 1 = Exercice 3.19 [TXB]
y(t) = (3 —2exp —t — exp 2t)1(¥)

Résolution complete
1- Formule :

2- Fonctions & convoluer :

f(t)=1)

h(t) = 2etI(t) — 2 1(t)
Pour rappel,

=03 151

3- Résolution de 'intégrale

—+oo
y(t) = / (2677-'(7') - 262T|(7’)) I(t — 7)dr remplacement dans la formule

— 00

= /+OO I(7) <2€7T - 2€2T) I(t —7)dr

— 0o

+oo
= / <2€_T - 2627) I(t —7)dr car (1) =0 pour 7 <0
0

Or,

0 si t<rT
'“_ﬂ_{1 siot>7

Le premier cas implique que si 7 > t, alors y(t) = 0. Cela permet de décomposer l'intégrale :

a. Pour ¢t <0, on a y(t) = 0 puisque 7 > 0

b. Pour ¢t > 0, 'intégrale se réduit comme suit

= 2/ e T —e*Tdr
0
t
=2[ ]
0
1
=2 e2tr14 =
( 143)
—t 2t + 3
4- Réponse finale y(t) :
En tenant compte des points a. et b., on a donc
y(t) = ( _2emt 2ty 3) I(t)
Exercice 2 = Exercice 3.20 [TXB]
0 sit<-lout >4
(G=b i —1<t<1
v =95°
2 sil<t<2

U2 g9 < <4

Résolution compléte :
1- Formule :



2- Expressions analytiques des courbes & convoluer :

f(t)—l(H—l)—I(t—l)_{(l) zimn tel-1,1]

Lo t €10,3]
— 3 9
g(t) = { 0 sinon

Remarque : La convolution étant commutative, on aurait trés bien pu flip and slide f(t) & la place de g(t)

(y(t) = f(t)x g(t) = [T g(r) f(t — )dr = [T f()g(t — 7)dT).

3- Dessiner les deux fonctions, dont une est flipped. Le curseur est en t = 0. Attention, I’axe est bien 7 et non ¢
(car l'intégrale est bien exprimée selon 7!)

f(7), 9(=7)

]

;_,3;_,101¢¢¢¢ r

4 - Slide la fonction pour trouver les différents intervalles possibles de recouvrement des deux fonctions : t < —1,
—“1<t<],1<t<2,2<t<4,t>4.

5- Résoudre l'intégrale (par rapport & 7) pour intervalle de t.
e t< -1
En —1, il s’agit du moment ot g(¢t — 7) et f(7) commencent & se recouvrir. L’aire de recouvrement est
nulle — y(¢) = 0 dans ce cas.

70, gt =)
1
e~ (11 .
-1 0 1 T

e —1<t<l
En —1, il s’agit du moment ot g(t — 7) et f(7) commencent & se recouvrir, et 1 car c’est le moment ol
g(t — 1) et f(7) commencent & se recouvrir entiérement.
L’aire de recouvrement vaut dans ce cas (les bornes se trouvent en regardant sur le dessin la partie
commune a f(7) et g(t — 7) : de 'intersection jusqu’a ¢ dans ce cas-ci)

_ 1 0 i + + + + .
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e 1<t <2Enl,il gagit du moment o g(t — 7) et f(7) commencent & se recouvrir entiérement, et 2 car
c’est le moment ou g(t — 7) et f(7) commencent & ne plus se recouvrir entiérement.
L’aire de recouvrement vaut dans ce cas (les bornes se trouvent en regardant sur le dessin la partie com-
mune & f(7) et g(t—7) : toute la largeur de f(7) dans ce cas-ci puisque g(t—7) le recouvre complétement)

1 —
y(t)z[ lt 3Td7'

1

ot 11
3 '3 6 6
2t
T3
f(m), gt —7)
11
#_le ¥ é + + + .

e 2<t<4En 2, il sagit du moment ol g(t — 7) et f(7) commencent & ne plus se recouvrir entiérement
et 4 car c’est le moment ot g(t — 7) et f(7) commencent & ne plus se recouvrir du tout.
L’aire de recouvrement vaut dans ce cas (les bornes se trouvent en regardant sur le dessin la partie
commune & f(7) et g(t — 7) : du bord gauche de g(t — 7) (t — 3) jusqu’a l'intersection en 1)

A el N R WY
3 3 s+s-3)
ot ot 8
“ 767376
f(7), g(t —7)
1
+ I_—Ij\ +
-10 1 2 4 T

e t>4En 4, il s'agit du moment ot g(t — 7) et f(7) commencent & ne plus se recouvrir.
L’aire de recouvrement est nulle — y(¢) = 0 dans ce cas.

f(T)v g(t - 7—)

1

10 1 4 T

6- Ecrire la réponse finale en combinant tous les intervalles :

0 si t<—lout>4
%(t+ 1)2 si te[-1;1]
! si te[l;2]
2t 8 & .
T tst+ts sl t€[2,4[
On peut donc vérifier la continuité aux différentes bornes des intervalles. Autrement dit,

li t)= 1l t
tﬁlinlf y( ) t—>1£n1+ y( )

li t)=1i t
[ v(t) = Jlim, v
li t)=1i t
A v(t) = lip, v
lim y(t) = lim y(t)

t—4— t—4+
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Exercice 3 = Janvier 2021 - Q3

Exercice 4 = Aot 2019 - Q3

€] — o0s ~1[= y(t) = 0
[1 Ol plt) = 1— -6+
€051 (1) = 2670 — e (FD 1
el

i doo[— y(t) =27 — e~ () _ o= (t=1)

Exercice 5 = Janvier 2019 - Q3 [Online]
Exercice 6 = Aoiit 2021 - Q3 [Ounline]

Exercice 7 = Exercice A2-sol [Online]
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Exercicel
Résolution compléte

1- Période : T =2 [s] — pulsation : w = 2% =7
2- Calcul des coefficients de Fourier :

e Formule :

e Expression analytique de z(t) :

e Décomposition de l'intégrale (suivant la forme de z(t)) :

T/2 o T - 2m
i :/ x(t)e—ﬁ’“TtdtJr/ a(t)e ML, ke 2
0 T/2

Remplacer z(t) par son expression analytique dans l'intégrale :

T/2 o
2 = / e IFTlAL, ke Z
0

e Résolution de I'intégrale et simplifier au maximum ’expression pour les différentes valeurs de k :
1 —jkwt] ] J —jk
B = ——— e IR = = (e7Ihw 1
k ]kw [ ]0 kw ( )

Or, e~ % = cos(—km) + jsin(—kn) = cos(km) — jsin(k7m) = cos(km). On distingue alors 3 cas :
o kestpair:ik:%(l—l):o
o k est impair : &, = L (-1—1)= 72
o k=0:dg= [ x(t)dt = [} 1dt =1
3- Donner I'expression de la série de Fourier :
1 o o2m 1 1 2
x(t) = T kezzi’k-ejk Tt — Eio + 5 kez’;mpair j—eﬂ”t

En développant selon les valeurs de k£ on a

2(t) = % (k=0)
+ %j%(cos(ﬂt) + jsin(nt) (k=1)
_ %%(COS(M) — jsin(nt)) (k=-1)
+ %ﬁ%(cos(i’mt) +jsin(3mt)  (k=3)
_ ;j?’%(cos(?m’t) — jsin(3wt)) (k= —3)
+ ...
ie. - % . %Sm(m) . %Sm(w) N %sin(fmt) T % + % sin(kt)

k€Z, k impair

Exercice 2
fosin(wt)

Exercice 3 = Exercice 5.2 [TXB]
On a z(t) = Y ,cz ek €0 avec les coefficients suivants.

a) ¢g =c_1 = %, les autres ¢ sont nuls.

b) ¢ =—c_1 = 2%7 les autres ¢ sont nuls.
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c) wp=2,¢1 = %(1 +7),¢c-1 = %(1 — J), les autres ¢j sont nuls.
d) wop=2,c0=c_o= %, g = —C_3 = 2%., les autres ¢, sont nuls.
e) wop=2,co= %, cp=c_1= _Tl, les autres ¢; sont nuls.

Exercice 4 = Janvier 2022 - Q3 (i)
Réponse en ligne.

Exercice 5 = Exercice 5.5 [TXB]
L om — 12l 7
2p(t) = 7 Ypez T IR F avec &y = 2(1-cos(Ti 5k) )

ek pour k # 0 et g = 17.

Exercice 6 = Exercice 5.8 [TXB]

A i N -1
z(t) = %Zkez &1 7 avec 3y, = m(_l)k.
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Exercice 1
X(w) = Zsin (<)

w 2
X(f) = & sin (7T
Exprimé a l'aide de la fonction sinc(a) =
X(w) = AT'sinc (4%)
X (f) = ATsinc(fT)

sin(ra) |
To :

Exercice 2
voir code Matlab

Exercice 3
X(w) = 24397/ 2 gin(wT/2)
X(f)= %ej”fT sin (7w fT)

Exercice 4
z(t) = cos(wot) — X (jw) = 7 (6(w — wo) + d(w + wo))

Exercice 5

(a) X(jw) = Tsinc((w —wo)T) + Tsinc((w — wo)T) ou wy =1

(b) 2 sinc placés en +wy

(¢) voir Matlab

(d) z(t) = f(t)g(t) on f(t) = cos(t) (exercice 4 avec wg = 1) et g(t) = 1 si |¢| < T/2 (exercice 1)

(e) F(z(t)) = X(jw) = F(f(t)) * F(g(t)) (il suffit de convolution les deux transformées — un produit de deux
fonctions dans le domaine temporel devient une convolution dans le domaine fréquentiel.

F(f®) = 70w = 1) +3(w+1)) Flg(t)) = Tep2

Exercice 6

X (jw) = —jmd(w — wp) + j7d(w + wp)

Deux maniéres d’afficher la transformée de fourier Soit un diagramme avec en abscisse la pulsation et en ordonnée
Pentiereté de la transformée de Fourier X (jw). En w = wp (resp. w = —wp , vous dessinez une impulsion de
Dira donc la "hauteur" est de —jm (resp. jm). Cette maniere de dessiner la transformée de Fourier du sinus est
fréquent dans la litérature.

Pour étre plus précis, vous pouvez dessiner le diagramme en amplitude et en phase. Le diagramme en amplitude
correspond & deux pics de valeurs 7w en +wyg. Le diagramme de phase correspond & deux barres; en wq (resp.
—wp), la phase vaut —7/2 (resp. 7/2).

Exercice 7 = Exercice 9.1 (a) [TXB]|

a) Xi(jw) =

_<a _
a?+w?

Exercice 8

F(1) =1

Exercice 9 = Exercice 9.2 [TXB]
La transformée de Fourier de z(t) n’existe pas.
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Exercice 1 = Exercice 6.1 [TXB]

g

a) 1, Vs.
b) s, Vs.

¢) &, R(s)>0.
d) H%, R(s) > —a.
e) (s+1a)2 , R(s) > —a.
f) =35 R(s)>0

)

Mﬁ, R(S) > —a.

Exercice 2 = Exercice 6.7 [TXB]

T is=—1
X(s) = {173—““” o " avec ROC = C (signal de durée finie)

o} , sinon,

Exercice 3 = Exercice 6.2 [TXB]

_ 1 s+1 252455412
X(s)=73z+ (5+1)219 — (s2125+10)(s+2)

, pour o > —1

Exercice 4 = Exercice 6.4 [TXB]
s 25 —4s

F(s) =% — &5 —&— Vs.

52 s

Exercice 5 = Janvier 2019 - Q3 [Online]
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Exercice 1 = Exercice 7.2 [TXB]

1
a) H(s) = GIYG-D avec 3 ROC possibles.
b) (i) Systeme causal : ROC = {s € C:0 > 1} et h(t) = 1el(t ) %e_%l( ).
(ii) Systeme stable : ROC=s€C:-2<o <1} et h( ) ell(—t) — $e721(¢).
(iii) Systéme anti-causal :
ROC = {s € C:0 < =2} et h(t) = Fre'l(—t) + s 2! 1(—1).
Exercice 2 = Janvier 2018 - Q2
Résolution en ligne
Exercice 3 = Exercice 7.1 [TXB]
a) 3 systemes différents car 3 ROC possibles :
— Systéme anti-causal instable pour R(s) < —2;
— Systéme non-causal stable pour —2 < R(s) < 1;
— Systéme causal instable pour R(s) > 1.
b) — Systéme anti-causal : h(t) = Zte'l(t) — 1(—1)e~2!1(—t). L’instabilité¢ vient du deuxiéme terme :

|h(t)] croit exponentiellement pour ¢t — —cc.

— Systeme stable : h(t) = Stefl(—t) — 5e72!1(t). Les deux termes sont stables : [h(t)| décroit exponen-
tiellement pour ¢ — +oo. En effet, les exponentielles sont considérées dans leur partie décroissante.

— Systéme causal : h(t) = Le'1(t) — e~ 2I(t). L'instabilité vient du premier terme : |h(t)| croit expo-
nentiellement pour ¢ — 4o00.

) h(t) = Ftecl(—t) — ge2!1(t).

Exercice 4 = Exercice 7.3 [TXB]

Exercice 5 = Janvier 2019 - Q2 (i) — (v)
Résolution en ligne

Exercice 6 = Septembre 2016 - Q1 (iv)-(v)-(vi)
Résolution en ligne

Exercice 7 = Exercice 7.1 [TXB]

a) H(s) = 3183 avec ROC = {s € Co > —3}; h(t) = 20(t) — 6e=21(¢).

b) y(t) = (3e™3 —e7!) I(¢).

Exercice 8 = Exercice 7.7 [TXB]

a) vrai.

c
d

faux (le second systéme a le méme temps de réponse).

vrai.

)

b) faux (cf. celui ci-dessus).
)
)
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Exercice 1 = Exercice 8.2 [TXB]

20log(IH(jw)I)

20log(3Q

/(H(jw))

f f f f f f w

02 04 0.8 20 40 80
Exercice 2 = Devoir 2020 Q3
La fonction de transfert est donnée par H(s) = iém. Pour tracer son diagramme de Bode en amplitude et
en phase, il suffit d’écrire s = ¢ + jw, de ne considérer que la partie 0 = 0. On obtient H(jw) = 14;71

décomposant ’expression en amplitude et en phase, on obtient :
H(jw) = |H(jw)| exp(j £H (jw))
—1/m 1/m

avec |H(]OJ)‘ = 722 = 2
sage pour aucune pulsation

qui est simplement I'inverse d’une parabole et ZH (jw) = 0 il n’y a aucun dépha-

Diagrammes de Bode en amplitude et en Phase de H - graduation linéaire
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Diagrammes de Bode en amplitude et en Phase de H - graduation conventionnelle
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Exercice 3 = Aout 2021 [Online]
Exercice 4 = Exercice 8.4 [TXB]
Exercice 8.4 a) H(s)

b)
20log(|H(w)!)

1
s2+s+1

Pic
0dB
—40dB/déc.
; w
1
_ 1
Q) H(S) = Z5o0mse1

, pour R(s) > —3.

10!
w (rad /<)

1

Pic: |H({jwmax)| = % ~ 1, alors passe-bas.

, pour R(s) > —1/2000. Méme diagramme en amplitude

que précédemment mais avec un pic ott |H(jwmax)| = 103, alors passe-bande

autourde w = 1.

Exercice 5 = Exercice 8.1 [TXB]

20log(|H(jw) )

0dB[~

—40dB/déc.

Exercice 6 = Janvier 2020 - Q3 [Online]

/(H(jw))

| |
A STE]
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Exercice 7 = Exercice 8.9 [TXB]

20log(| H(jw)|) /(H(w))

20log(20 —20dB/déc.
—40dB/déc.

Gain statique : H(0) = 20.

Bande passante a —3dB : |H(jcu_3dB)|2 = %0)2, alors w_3q4g = \/41 (\ /1+ % - 1) =
0.998.

Exercice 8 = Exercice 8.12 [TXB]

20log(|H(Gw)!) 20log(|H(w)) 20log(|H(jw)])
_ A 20dB/déc. _ 4
20dB/déc. ec 20dB/déc. Hnqp
0dB lodgﬂ A
0dB
w — : w : w
1 1 2 10 1
L(H(jw)) L(H(jw)) L(H(jw))
90+ - ﬂ
-90——Mm— 0 0
90— - — — — L
w — : w : w
1 2 10 1
_1 _ _ V10(Gs+D _ s2+40.1s+1
Hy =5 Hy = (s/2+1)(§710+1) H3 = 532:0.015;1

Un filtre analogique de fonction de transfert H3 permet d’extraire hors d'un si-
gnal une bande de fréquences restreinte autour de w = 1, par exemple pour sé-
lectionner une chaine de radio.

Exercice 9 = Janvier 2020 - Q2 [Online]
Exercice 10 = Janvier 2019 - Q2 [Online]

Exercice 11 = Aout 2019 - Q2 [Online]
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