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Herein, we compared the ability of linear and cyclic peptides generated in silico to target different

protein sites: internal pockets and solvent-exposed sites. We selected human lysozyme (HuL) as a model

target protein combined with the computational evolution of linear and cyclic peptides. The sequence

evolution of these peptides was based on the PARCE algorithm. The generated peptides were screened

based on their aqueous solubility and HuL binding affinity. The latter was evaluated by means of scoring

functions and atomistic molecular dynamics (MD) trajectories in water, which allowed prediction of the

structural features of the protein–peptide complexes. The computational results demonstrated that cyc-

lic peptides constitute the optimal choice for solvent exposed sites, while both linear and cyclic peptides

are capable of targeting the HuL pocket effectively. The most promising binders found in silico were

investigated experimentally by surface plasmon resonance (SPR), nuclear magnetic resonance (NMR),

and electrospray ionization mass spectrometry (ESI-MS) techniques. All tested peptides displayed

dissociation constants in the micromolar range, as assessed by SPR; however, both NMR and ESI-MS

suggested multiple binding modes, at least for the pocket binding peptides. A detailed NMR analysis

confirmed that both linear and cyclic pocket peptides correctly target the binding site they were

designed for.

1. Introduction

The growing interest in peptides as potential drugs,1–6 along
with emerging technologies such as cell penetrating peptides
and peptide–drug conjugates3 and their use as modulators of
protein/protein interactions,7 calls for novel design strategies.
Highly effective binders capable of capturing large bio-
molecules are typically optimized either experimentally8,9 or
computationally10–14 by generating, screening, and selecting
the best candidate out of a large number of possible solutions.

Computational tools are particularly appealing as in silico
design allows promising candidates to be pre-selected for wet
lab validation, thus resulting in a more time- and cost-effective
selection process of potential hits.15,16 Recent developments in
this field include a number of evolutionary algorithms for
peptide design based either on docking17 or molecular
dynamics (MD)18,19 for the identification of short peptide
sequences capable of binding small molecules and
proteins.10–12,20 These methods are capable of tailoring the
binding affinity of a peptide towards optimal values by itera-
tively mutating its sequence and adapting its conformation to
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the chosen target. The binding affinity is generally evaluated
through one or more scoring functions, which guarantee a fast,
albeit rough, estimation of the expected binding affinity of the
peptide/target complex.21 While the evaluation of a single
scoring function sufficed for the design of peptides,10–13,17–20

for the design of larger systems – such as antibody fragments –
a collection of scoring functions is best suited.22,23

The emergence of novel molecular modelling tools10,11,24

allows addressing a burdening problem: the control of the
target binding site. This aspect is particularly important for
the design of binders targeting surface binding sites, which are
often involved in the protein–protein interactions that regulate
biological functions.25 These sites are often considered
‘‘undruggable’’ by small molecule approaches, but can be
explored by rational peptide design.7 The computational design
of novel peptides requires (i) a model for the target protein,
ideally derived from an experimentally determined structure
(NMR spectroscopy, X-ray crystallography) or, in its absence, a
model built by homology, and (ii) an effective exploration of the
peptide conformational space,26 together with sequence
optimization.27 One open question is the correct peptide topol-
ogy to employ for targeting sites of different nature. It could be
argued that cyclic peptides would guarantee an entropic gain
over linear peptides, due to the restricted conformational space
assured by cyclization.7 However, we will show that this is not
always true and that the optimum peptide topology (linear or
cyclic) depends on the location and the nature of the binding
site chosen on the target. We will prove this point by designing
peptides for different binding sites of a well-characterized
system: human lysozyme (HuL).

Lysozyme has been an excellent model system as a target for
(i) the development of novel computational methods,22,28

including new methods for predicting binding affinities29 or
for free energy calculations,30 and (ii) the study of drug/protein
interactions.31–34 Indeed, lysozyme possesses a druggable
pocket, similar to human and egg proteins, and a large
solvent-exposed area comprising the whole protein surface
which can be assumed to contain a number of possible binding
sites. In this study, we will explore both types of binding sites
on HuL. For each site, we designed both cyclic and linear
peptides to explore the effect of the binding site nature (pocket
or surface-exposed) on the choice of ligand topology. The
design was based on PARCE,35 a software developed to optimize
sequences and conformations of randomly generated
peptides,10,11 as well as larger binders,23 towards a preselected
site on a target protein. The idea was to explore the results
obtained by choosing a random peptide with an arbitrarily
chosen starting conformation close to the selected binding site,
and drive the peptide sequence optimization without human
intervention. Peptides were then screened using MD simula-
tions to identify good candidates. The binding affinities of the
selected peptides were evaluated by surface plasmon resonance
(SPR) and electrospray ionization mass spectrometry (ESI-MS).
The mechanism of recognition of two pocket binding peptides
was structurally characterized using nuclear magnetic
resonance (NMR).

2. Materials and methods
2.1 Materials

Unlabelled human lysozyme (HuL) was purchased from SIGMA.
Peptides with 95% purity were purchased from ProteoGenix SAS
(Schiltigheim, France), with the exception of the cyclic peptides
368 and 278 which were purchased from NovoPro Bioscience
(Shanghai, China).

2.2 Protein preparation and binding site selection

The HuL structure with PDB code 1JSF36 was first minimized
using the steepest descent minimization method, then placed
into a cubic box with a water layer of 0.7 nm and Na+ Cl� ions to
neutralize the system, and a second minimization was per-
formed. NVT and NPT equilibrations for 100 ps, followed by
50 ns NPT production run at 300 K, were performed as
described below. 10 conformations were sampled at constant
time intervals from the trajectory. The protein surface of each
MD conformation was explored using the Peptimap37 tool to
identify possible peptide binding sites. Peptimap is a fast
Fourier transform based grid-sampling method that allows
exploring the protein target surface to identify druggable sites
specific for peptides. The binding sites were grouped according
to their location on the protein surface (see Section 3.1), and
scored according to the rank provided by Peptimap in each
exploration. The PPI mode, which is a minor modification in
Peptimap to the scoring function that reduces the weight of a
cavity term and thus optimizes the results on a protein–protein
interaction test set, was activated.

2.3 Peptides design

A starting peptide CAAAAAAAAAAC, with an arbitrary selected
conformation, was put close to the chosen binding site and
PARCE10,11,23 was used to evolve its conformation and
sequence. PARCE is a Monte Carlo (MC) optimization method
looking for sequences that best bind a target protein. Each MC
step starts with a molecular complex associated with a binding
score for the receptor–peptide pair. At each step, an amino acid
of the peptide is replaced by another residue, randomly. The
new system is minimized. Then, the binding conformation of
the protein target and the mutated peptide is sampled. Here,
with respect to the standard PARCE implementation, a short
replica exchange MD (REMD) scheme was employed; the REMD
configurations were clustered and the binding score of each
cluster-representative conformation was assessed. It is worth
noticing that the REMD exchange ratio was kept to a minimum,
as the goal of this step was not to build a statistical ensemble at
a certain temperature, but to generate conformations. If the
computational resources were limited, this step could as well
be replaced by a set of parallel MD – without exchanges. The
score is then compared with the score of the structure before
the point mutation on the peptide. The MC step ends with a
decision on whether to accept or reject the mutation. The
acceptance probability Pacc depends both on the energy change
associated with the proposed mutation and on a parameter
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T which modulates the strictness of acceptance probability
itself as in a standard MC scheme:38

Pacc = min[1, exp[�(Enew � Eold)/T]]

where Eold is the estimated binding affinity of the previous
configuration, and Enew is that of the attempted mutation.

Each optimization consisted of three MC paths, run at three
different T values and, thus, at three different acceptance
probabilities. A parallel tempering scheme was implemented
to allow for exchanges between the paths after each attempted
mutation. Exchanges between two randomly selected paths
were attempted after each step.

At each step of the design, a random mutation of one
random peptide residue (excluding the cysteines at each extre-
mity) was performed by using the AmberTools program.39 After
each mutation, the structure was fully relaxed by three succes-
sive minimizations: (i) a partial minimization only for the side
chain of the mutated residue, (ii) a partial minimization for the
mutated amino acid and nearest neighboring residues, and (iii)
a global minimization. This procedure was followed by a REMD
simulation with 8 NVT replicas at temperatures of 375, 391, 407,
423, 440, 458, 477 and 495 K (predicted exchange rate of 0.08,
40 exchanges in the simulated time, according to the webtool
http://folding.bmc.uu.se/remd 40), with all atomic bonds con-
strained by using LINCS algorithm,41 and with the HuL back-
bone restrained to initial conformation by a harmonic potential
with a force constant of 1000 kJ mol�1 nm�2. Each replica was
run for 1 ns, with a time step of 2 fs and an attempt of exchange
every 2 ps. We clustered the peptide–protein samples obtained
from all replicas by using the Daura method42 as implemented
in the g_cluster program (part of the GROMACS package) with a
cutoff of 0.105 nm. We discarded clusters containing less than
10 structures for the scoring evaluation. The score of the
peptide/protein complexes was estimated using AutoDock
Vina.43 The new configuration was accepted or rejected follow-
ing the standard Metropolis rule, then an exchange between
two randomly selected runs was attempted, and accepted or
rejected following the standard parallel tempering scheme.
After 500 PARCE steps, the lowest energy peptide conforma-
tions were selected. The solubility of the peptides was assessed
with the online tool www.pepcalc.com.

2.4 Computational screening

Each peptide/HuL complex was minimized using the steepest
descent method, then placed into a cubic box with a water layer
of 0.7 nm and Na+ Cl� ions to neutralize the system, and a
second minimization was performed. Four NVT equilibrations
were performed followed by one NPT using the leap-frog Verlet
integrator with a time step of 1 fs. A first equilibration of 25 ps
was done by freezing both HuL and peptide. The temperature
of the previously minimized system was raised from 0 to 100 K
using velocity rescaling. A second equilibration of 50 ps was
performed by keeping the temperature of solvent plus ions
constant at 100 K and increasing the temperature of the protein
and peptide from 0 to 200 K. In a third equilibration of 50 ps,
we raised the temperature from 100 to 200 K and from

200 to 300 K for water plus ions and protein/peptide, respec-
tively. In a fourth equilibration of 50 ps, the full system was
equilibrated to 300 K. The fifth and last equilibration of 100 ps
was done in NPT keeping the pressure constant to a reference
value of 1 bar using the Parrinello–Rahman pressure coupling,
while the temperature remained constant at 300 K. Production
runs consisted of 50 ns long NPT simulations with a 2 fs time
step. Selected systems were run for further 250 or 500 ns, as
required. In all cases, configurations and energies were
sampled every 10 ps. All simulations were performed with
amber99sb-ildn force fields.44 The systems were solvated using
the tip4p water model.45,46 The Particle Mesh Ewald summa-
tion accounted for long range electrostatic interactions. All the
calculations as well as their analysis were performed using
Gromacs-4.6.2.47 The score of the peptide/protein complexes
was estimated using AutoDock Vina.43

2.5 ESI-MS

HuL and peptides were suspended in 10 mM ammonium
acetate pH 7 and mixed at different final molar ratios (17 : 0,
17 : 22 and 17 : 111 for peptide 410; 17 : 0, 17 : 25 and 17 : 128 for
peptide 140). The resulting samples were incubated at room
temperature for 15 min and then injected into a hybrid quad-
rupole – time-of-flight mass spectrometer (QSTAR Elite, AB
Sciex, Framingham, MA, USA) equipped with a nano-
electrospray ion source. Metal-coated borosilicate capillaries
with medium length emitter tips of 1 mm internal diameter
(Thermo Fisher Scientific, Waltham, MA, USA) were used to
directly infuse the sample into the spectrometer. The following
instrumental setting was applied: source heater OFF, decluster-
ing potential 80 V, ion spray voltage 1.1–1.2 kV and curtain gas-
pressure 20 psi. Spectra were averaged over 1 min acquisition.

2.6 Surface plasmon resonance

Real time binding assays were performed at 25 1C using a
Biacore 3000 Surface Plasmon Resonance (SPR) instrument (GE
Healthcare). Human lysozyme was immobilized at 1095 RU, on
a CM5 Biacore sensor chip in 10 mM sodium acetate at pH 5.5,
by using the EDC/NHS chemistry, at a flow rate of 5 mL min�1

and an injection time of 7 min. Binding assays were carried out
by injecting 90 mL of the analyte, at a flow rate of 20 mL min�1

using HBS buffer at pH = 7.4 with an association phase of 270 s,
and a dissociation phase of 300 s. A regeneration of the sensor
surface was performed with 20 mL of 10 mM NaOH. Each
peptide was injected at the following concentrations: (i) 47.6,
68, 204, 340, 700 and 900 mM for peptide 140; (ii) 40, 100, 200,
300 and 500 mM for peptides 410 and 368; and (iii) 80, 200, 300,
400 and 500 mM for peptide 278. The experiments were carried
out in duplicate. Kinetic parameters (kon and koff) were esti-
mated assuming a 1 : 1 binding model and using the version 4.1
Evaluation Software (GE Healthcare).

2.7 Protein expression

Uniformly 15N labelled HuL was expressed in Pichia pastoris
and purified as previously described.48 Protein purity was

PCCP Paper

Pu
bl

is
he

d 
on

 1
6 

Se
pt

em
be

r 
20

21
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
 D

e 
L

ie
ge

 o
n 

10
/8

/2
02

1 
3:

12
:0

5 
PM

. 
View Article Online

http://folding.bmc.uu.se/remd
http://www.pepcalc.com
https://doi.org/10.1039/d1cp02536h


Phys. Chem. Chem. Phys. This journal is © the Owner Societies 2021

495% based on SDS-PAGE analysis and the molecular mass
was confirmed by MS.

2.8 NMR experiments

NMR experiments were recorded at 310 K using a Bruker
Avance spectrometer operating at 500 MHz (1H). 1D 1H spectra
were acquired with 4096 data points, a spectral width of 16 ppm
and 4096 scans. Water suppression was achieved by excitation
sculpting scheme.49 2D [1H, 15N] HSQC spectra were acquired
with 2048 and 400 points in the direct and indirect dimensions,
respectively, and 32 scans, over spectral widths of 16 and
37 ppm in the 1H and 15N dimensions, respectively. NMR
samples were prepared in 50 mM sodium phosphate buffer at
pH 6.5 and contained 8% D2O for locking purposes. The
protein concentrations were 299 mM and 239 mM for
the titration with peptide 410 and peptide 140, respectively.
The data were processed with Topspin 2.1 and analyzed with
Sparky.50 Combined chemical shift perturbation (CSP) was
calculated as Dd (ppm) = [(DdH)2 + (DdN/6.5)2]1/2 where DdH

and DdN are the chemical shift variations for 1H and 15N,
respectively.51 The HuL assignment was based on the one
deposited in the Biological Magnetic Resonance Data Bank
(code 5130).

3. Results
3.1 Target preparation and binding site selection

To pinpoint suitable binding sites for peptide design, we first
run 50 ns MD atomistic simulations of HuL (PDB ID 1JSF36) in
full water solvent. We sampled 10 conformations along the
generated MD trajectory and explored the protein surface using
Peptimap37 (Fig. S1, ESI†). We identified three recurrent sites
(Fig. 1a): a pocket site (indicated as P site), followed by two
surface sites labelled as R (named after ‘‘right-side region’’,
Fig. 1b) and B (named after ‘‘bottom-side’’ region, Fig. 1c).
Within the P site is located the known active site of the protein
for polysaccharide hydrolysis,52 while the surface sites R and B
play no known physiological role.

We found that the binding site P (pocket) has the largest
binding surface area that can reach up to 1042.116 Å2 by
involving about 20 residues of the protein pocket. This size
allows hosting peptide chains as long as 12 residues, corres-
ponding to a surface area range of 1000–2000 Å2. The most
recurrent surface site along the trajectory was the one labelled
as ‘‘B’’. The binding site B has a surface area of 949.5 Å2

involving up to 14 protein residues. This size is compatible
with a 10-residue cyclic peptide, the surface of which ranges
from 1000–1700 Å2. Peptides were designed for the pocket site P
and the surface exposed site B. For ease of comparison, we
employed 10mer peptides capped with cysteines on both ends
for all sites.

3.2 Generation of the peptide sequences

We started from two dodecapeptides composed by ten alanines
sandwiched by two terminal cysteines. The cyclic variants

contain a disulphide bridge between these two terminal Cys,
while linear sequences have free thiol cysteines. The starting
dodecapeptides, in either linear or cyclic form, were indicated
as 0 (‘‘zero’’) in Table 1. Four different peptide/HuL starting
configurations were assembled by placing a linear/cyclic start-
ing peptide in the proximity of a P or B binding site on HuL.

To generate high affinity ligands, we run multiple PARCE-
based optimizations of both cyclic and linear peptides by
targeting either the pocket P site (Fig. 2a–c) or the solvent-
exposed site B (Fig. 2d–g). PARCE was run with a single scoring
function (AutoDock Vina43) and by using the parallel tempering
scheme with three parallel Monte Carlo (MC) runs at T = 0.3,
0.6, and 0.9. Each optimization consisted of 500 steps, corres-
ponding to 500 subsequent attempted mutations.

To assess the peptide-optimization procedure, we kept track
of the binding score evolution along each MC path. In each
PARCE run, three MC paths, each associated with a different

Fig. 1 (a) Suitable peptide binding sites on the HuL surface identified
using Peptimap:37 pocket (P), right site (R), and a bottom site (B), and two
examples of the Peptimap output corresponding to the sites identified:
R (pink) and B (blue). Molecular dynamics snapshots taken at (b) 20 ns and
(c) 15 ns.

Table 1 Main features of the peptides analyzed in this study. Id indicates
the step number in the mutation cycle. The binding sites are labelled as in
Fig. 1: pocket (P), and surface exposed (B) sites; (me), S-methylated

Id Topology
Binding site
(label) Sequence

0 Cyclic P/B

0 Linear P/B CAAAAAAAAAAC
410 Cyclic P CPEYFEYWEQQC (S–S between C1/

C12)
140 Linear P C(me)QNGKDFWSRWC(me)

368 Cyclic B

278 Cyclic B
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acceptance probability, are clearly distinguishable (Fig. 2a–g).
The highest path corresponds to the highest acceptance prob-
ability (i.e. T = 0.9). In the highest path (in green in Fig. 2),
peptides are likely to mutate also towards unfavorable scores
allowing for a thorough exploration of the mutational space.
The lowest path is instead associated with the lowest accep-
tance probability (i.e. T = 0.3). As unfavorable mutations are
quite unlikely in this path, the peptide is more likely to mutate
towards more favorable scores. This kind of path can easily
settle and get trapped, at a sub-optimum sequence. This is why
exchanges with the other optimization paths, which are less
strict, are necessary to overcome the trap. The exchange events
are visible as vertical lines connecting the paths of the PARCE
runs (for instance the green line at step 200 in Fig. 2b). An
optimization was considered concluded when the path score
settled to a constant value.

3.3 Computational screening

From each optimization run, we selected a set of sequences
associated with the lowest scores in the MC optimization
(highlighted by circles in Fig. 2a–g) and predicted to be water
soluble. The associated peptide/HuL complexes underwent
50 ns of MD simulations in full water solvent to pre-screen all
candidates. A number of parameters were monitored: (i) the
peptide distance from the binding site, (ii) the number of
hydrogen bonds between the peptide and HuL, (iii) the back-
bone root mean squared deviation (RMSD) of both the peptide
and HuL, and (iv) the binding affinity score. Overall, a consis-
tently low and stable binding affinity score turned out to be the
only relevant indicator for a successful binder.

To compare several peptides, the binding affinity scores
averaged along the MD trajectories can be effectively repre-
sented by histogram channels with error bars indicating their
respective standard deviations, as reported in Fig. 3a and b for
the pocket peptides. Surprisingly, this average value also corre-
lated well with the optimization output (Fig. 2a–c), suggesting
this short screening to be almost unnecessary for selecting
binders for the pocket sites, such as site P. However, a longer
MD trajectory of few well-behaved candidates turned out to be

an important step to fully characterize the binders, especially
those designed for the more labile surface exposed sites.

Peptides targeting the pocket site P. Among cyclic peptides,
peptide 390 and peptide 408 had the lowest scores (Fig. 3a), but
the large variation in their scores along the simulated time
suggested they are too labile. Peptide 410, despite having a less
favorable score (�19 a.u. to be compared with �24 a.u. for
peptide 390 and �21 a.u. for peptide 408) better behaved as
indicated by its score error bar of �2 a.u. (to be compared with
�4 a.u. for both peptide 390 and peptide 408). Linear peptides,
even if endowed with less favorable scores, presented smaller
error-bars (Fig. 3b) and the one with the lowest score was
chosen as optimum binder. This corresponds to peptide 140
(Table 1), associated with a score of �21 � 2 a.u. Longer MD
simulations, accounting for 250 ns, were run on peptides 410
and 140. The distance profile between the peptide centers of
mass and their binding site along the trajectory (Fig. 3c and d)
indicated that the cyclic peptide 410 changed its conformation
along the simulated time, while peptide 140 maintained its
position inside the pocket site. Simulation snapshots further
revealed that peptide 410 binds to the pocket with one of its
tyrosines (Y7) (Fig. 3e) but can also expand outside the pocket
by anchoring itself to the HuL surface with the other tyrosine
(Y4) (Fig. 3f). Instead, the linear peptide 140 kept its position
close to the target binding site along the entire simulated time
(Fig. 3g and h). While the linear peptide 140 kept its position on
HuL binding site, it also showed a less favorable score with
respect to the cyclic peptide, making it difficult to predict
a priori which would be the optimum binder. Both peptides
140 and 410 underwent further experimental analyses.

Peptides targeting the solvent-exposed site B. The MD
screening showed a distinct advantage of the cyclic peptides
with respect to the linear ones to target the solvent exposed site
B. The dotted line in Fig. 4a and b allows the scores reached by
cyclic peptides (Fig. 4a) to be compared with the optimum score
reached by linear peptides (�14 a.u. for peptides 106 and 338,
Fig. 4b). The cyclic peptides are consistently predicted to bind
HuL with a stronger affinity with respect to the linear peptides.
However, longer simulations were required for an effective
screening of the peptides targeting the solvent exposed site

Fig. 2 PARCE runs for peptide optimization: evolution of the score along 500 MC optimization steps, paths at: T = 0.3 (black), T = 0.6 (blue), and T = 0.9
(green) for (a and b) cyclic peptides targeting the pocket site P, (c) linear peptides targeting the pocket site P, (d and e) cyclic peptides targeting the
surface exposed site B, and (f and g) linear peptides targeting the surface exposed site B. Sequences corresponding to peptides selected for MD screening
are marked (circles) and those tested experimentally are further highlighted (red). Scores are expressed in arbitrary units (a.u.).
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since they tended to leave their site at longer timescales. In fact,
the optimal peptide designed for the solvent exposed site (i.e.,
the cyclic peptide 313) initially selected after the first 50 ns long
simulation, shows a high lability as confirmed by NMR (data
not shown) and by longer MD simulations (Fig. 4c).

From a set of 50 ns long MD simulations for the solvent-
exposed B site, we selected 15 peptides (marked by asterisks in
Fig. 4a) that were further screened by longer MD simulations.
In the additional 500 ns timeframe, several peptides left their
binding sites (Fig. 4c), while seven sequences (259, 262, 278,
317, 329, 368, and 386) remained at their initial positions
(Fig. 4d). The RMSD, which measures how much the backbone
atoms of a protein change their position at each timestep with
respect to their initial coordinates, showed that these seven
peptides did not undergo major structural rearrangements

(Fig. 4e). Their RMSD in the protein framework (thus calculated
after HuL backbone alignment) also confirmed that they did
not move away from their binding site throughout the whole
simulation time (Fig. 4f). Among them, the peptide 278 was
associated with the lowest score, as calculated along the whole
trajectory, followed by the peptide 368 (Fig. 4g). Both peptides
278 and 368 were chosen for initial experimental
characterization.

Overall, on the basis of computational studies, peptides 410,
140, 278, and 368 (Table 1) were chosen to be experimentally
investigated by means of different techniques. While for opti-
mization and screening we employed free cysteins, in all
experiments, S-methylated residues were introduced to avoid
disulphide bond formation in the linear peptides upon air
oxidation.

3.4 Affinity measurements

SPR assays were carried out to evaluate the ability of the
selected peptides to bind to HuL. All peptides exhibited a
dose–response variation of RU intensity versus the peptide
concentration (Fig. 5). The kinetic parameters derived from a
global fitting of the curves, allowed the estimation of the
dissociation constants (KD) for peptide 410, peptide 368 and
peptide 278. For peptide 140, too fast association and dissocia-
tion phases negatively affect the fitting of experimental curves,
thus not allowing for the estimation of KD. The 1 : 1 Langmuir
equation was employed for the estimation of KDs as reported in
Table 2. In all three cases, comparable KD values in high
micromolar range were estimated, in line with previous
studies.10–13

3.5 Peptides binding mode by NMR titration and ESI-MS

All peptides, with the exception of peptide 278, were soluble
under the conditions employed for NMR investigations and did
not oligomerise, as thoroughly verified for peptide 410 (Fig. S2,
ESI†).

1H–15N HSQC experiments were recorded using 15N labelled
HuL at increasing concentrations of the peptides with the
peptide : protein ratios up to 3 for the peptides 410 and 368
and up to 5.6 for peptide 140. While with the peptides 410 and
140, a significant variation of the chemical shift (Dd) of some
protein backbone amide peaks was observed (Fig. 6), with
peptide 368, under the employed experimental conditions, a
trend in the chemical shift deviations was observed (Fig. S3c,
ESI†), although the maximum values reached were extremely
small and comparable with the threshold of significance. A
possible explanation for the disagreement between NMR and
SPR might be due to a more favorable entropic factor when the
protein is constrained on the chip surface of SPR in a position
exposing the 368 binding site.

For peptide 140 and peptide 410, the presence (Fig. 6) of
single shifted peaks, whose positions are the weighted average
of the free and bound species, indicates that the exchange
between the two states is fast on the NMR timescale.53 In other
terms, in both cases, the exchange rate, kex, of the peptide :
protein complex formation is greater (at least 10 times) than

Fig. 3 Computational screening of the pocket peptides. (a and b) First
screening: average scores along 50 ns MD simulations for (a) cyclic
peptides and (b) linear peptides for the HuL pocket site; scores are
expressed in arbitrary units; error bars are standard deviation. The two
peptides selected for the second screening and subsequent experimental
validation are highlighted. (c and d) Second screening: distance of the
peptide from the binding site for the optimal peptides of each set and
selected simulation snapshots for (e and f) the cyclic peptide 410 and
(g and h) the linear peptide 140. Color code: HuL (cyan), cyclic peptide
410 (red), and linear peptide 140 (blue).
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the difference of the chemical shift of the bound and unbound
proteins (Do in rad s�1).53 In the hypothesis of a diffusion-
limited ligand : protein interaction, the on-rate constant, kon, is

typically around 109 M�1 s�1;54 therefore, the dissociation
constant, KD, can be approximated to koff/109, where koff is
the off-rate constant in s�1. Since in the fast exchange regime,

Fig. 4 Computational screening for the solvent exposed binding site. (a and b) First screening: average score along 50 ns MD simulations for (a) cyclic
peptides and (b) linear peptides. Scores are expressed in arbitrary units, error bars are standard deviations, a dashed horizontal line marks the lowest
average score achieved by the lowest scoring linear peptide. Peptides selected for the second computational screening are marked with an asterisk and
peptides selected for experimental validation are further highlighted (the peptide 278 in pink, and the peptide 368 in blue). (c and d) Second screening:
(c) simulation snapshot at 500 ns MD simulation of the 15 cyclic peptides selected from the first screening and (d) the same configurations for the subset
of 7 peptides that did not leave their binding site. Color code: HuL (green) and peptides 313 (ochre), 242 (white), 255 (red), 259 (tan), 262 (orange), 268
(yellow), 278 (magenta), 302 (silver), 317 (cyan), 329 (black), 336 (pink), 368 (blue), 386 (purple), 481 (lime), and 498 (mauve). (e) RMSD of the peptide
backbone with respect to the peptide initial configuration, and (f) in the frame of the HuL backbone, (g) scores of the 7 peptides that did not leave their
binding site along the 500 ns long trajectories.

Fig. 5 Overlay of SPR sensograms showing the binding and dissociation of different peptides (a) 410, (b) 140, (c) 278, and (d) 368, to immobilized HuL.
The colored lines show experimental measurements and black lines correspond to the fitting of the results (with the exception of panel B).
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kex c Do and the maximum Do1H found with peptide 140 was
785 rad s�1, we infer a lower limit for kex in the order of
8 � 103 s�1. It can be shown that at high ligand concentrations,
kex and koff are of the same order of magnitude, leading to a KD

lower limit of about 8 � 10�6 M.53 The same calculation
performed with the proton maximum chemical shift perturba-
tion (CSP) value obtained with peptide 410 gave a lower limit
for KD in the same order of magnitude.

The CSP obtained in the presence of peptide 140 is higher
than that obtained in the presence of peptide 410; this

observation suggests a larger perturbation of the protein resi-
dues when bound to the linear peptide (Fig. S3, ESI†). Instead, a
plateau was reached earlier with peptide 410 (peptide :
protein = 3) than with peptide 140 (peptide : protein = 5.6)
indicating a lower affinity of the latter. Moreover, the chemical
shift plots of the most perturbed residues in the presence of
peptides 410 and 140 highlight a complex binding scheme, not
consistent with a simple quadratic curve representing a 1 : 1
binding model (Fig. S4, ESI†). This result suggests the involve-
ment of multiple binding modes or of cooperative binding; the
latter is however less likely due to the relatively weak binding.

To further investigate the binding mode of peptides 410 and
140, the protein : peptide mixtures were analyzed by native MS
(Fig. 7). This technique can capture non-covalent complexes by
preserving weak interactions during an ionization/desolvation
process conducted under mild conditions.55–57 The spectra of
the free HuL are similar to those previously reported and are
typical of a well-folded globular protein.58,59 New peaks, spe-
cific for the protein : peptide complexes, appear upon the addi-
tion of either peptide 410 or peptide 140, allowing a direct

Table 2 SPR based kinetic parameters, equilibrium dissociation constants
(KD) for the interaction of HuL with peptides using the BIA evaluation v.4.1
software and 1 : 1 binding model. The dataset fit to the model, estimated by
w2, is also indicated

Peptide kon (M�1 s�1) koff (�10�3 s�1) KD (mM) w2

410 10.6 1.7 160.4 4.5
278 25.7 4.6 179.5 7.0
368 15.4 2.6 165.9 4.7

Fig. 6 Overlay of 1H–15N HSQC spectra of 15N labelled HuL with (a) peptide 410 and (b) peptide 140 at peptide : protein ratios of 0 (red), 0.6 (dark
orange), 1 (green), 1.6 (cyan), 2 (blue), 2.6 (medium purple) and 3 (purple). Some representative peak shifts are reported in the colored boxed insets.
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visualization of the supramolecular assemblies. Major differ-
ences are, however, observed between the two peptides. In first
place, peptide 410 exhibits a higher apparent affinity, with
more predominant complex-specific peaks than peptide 140
under similar conditions. This result is in line with the satura-
tion curves obtained by NMR (Fig. S4, ESI†) as peptide 410
reached saturation at a lower peptide : protein ratio than pep-
tide 140. Secondly, clear evidence of both 1 : 1 and 1 : 2 binding
modes is offered by titration with peptide 410. Again, native MS
is in agreement with NMR, indicating more complex schemes
than the simple 1 : 1 stoichiometry and suggesting the existence
of a secondary binding site. This conclusion, however, is
supported only for peptide 410, since the low intensity of the
HuL : 140 peaks does not allow to draw conclusions on possible
signals of the 1 : 2 complex.

The ESI-MS result, which is in agreement with the NMR
observations, is in disagreement with the SPR measures.
Indeed, while the w2 value obtained by fitting the SPR data to
the 1 : 1 binding model suggests that the majority of the peptide
410 bind in the ratio of 1 : 1 to the protein when the protein is
immobilised on a surface; however, this does not hold true in

solution where all accessible binding sites are available. Dock-
ing results60,61 confirmed the presence of competing binding
sites on the HuL surface (Fig. S5, ESI†).

3.6 Locating the binding site by analysing the NMR chemical
shift perturbation (CSP)

We were able, based on the literature,62,63 to fully assign the
HSQC spectrum of apo-HuL and to identify the backbone
amides perturbed the most by the addition of the peptides in
the holo-HuL. The CSP distribution identifies several residues
which are mostly involved in the binding of peptides (Fig. S3,
ESI†). These residues can be grouped in three classes (Table 3):
(i) Dd 4 Ddav + s, (ii) Dd 4 Ddav + 2s and (iii) Dd 4 Ddav + 3s,

Fig. 7 Native ESI-MS results for 17 mM HuL with increasing concentrations of (a–c) the cyclic 410 and (d–f) linear 140 pocket peptides. The
peptide : protein ratios employed are 0 (a and d), 1.3 (b), 6.5 (c), 1.5 (e) and 7.5 (f). Each protein peak is labelled by the corresponding charge state.
Black labels correspond to the free protein; red labels to the 1 : 1 protein : peptide complex and blue labels to the 1 : 2 protein : peptide complex.

Table 3 Residues showing a significant chemical shift deviation Dd with
the addition of 3 equivalents of each peptide

Peptide 410 Peptide 140

Dd 4 Ddav + 3s A111, W109Ne-He A111, W109Ne-He
Dd 4 Ddav + 2s I59, R21 I59, E35
Dd 4 Ddav + s E35, V100, W109 V100, W109, R113, R50, H78
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where Ddav is the average CSP and s is the standard deviation.
The identified residues allowed locating the possible peptide
binding site on HuL. To this aim, the residues were highlighted
on the protein structure and compared with conformations
predicted by the design algorithm PARCE (Fig. 8).

Fig. 8 shows that the perturbed region is located between the
a-helix-rich and the b-strand-rich domains, where the active
site cleft has previously been identified.64 With both peptides
(410 in Fig. 8a and 140 in Fig. 8b) the C-terminus of helix B, the
N-terminus of helix D, and the strand b3 are involved in
the peptide binding and they are all reported to belong to the
enzyme pocket.64 In the presence of peptide 140 (Fig. 8b)
another two protein portions are perturbed: the loop between
strand b3 and helix C and the loop b1–b2, identifying a possible
second interaction site or conformational variations following
the binding site occupancy.

3.7 Structural considerations

As shown above, most of the perturbed residues unveiled via
NMR analysis clearly identifies the HuL binding pocket as the
interaction site for peptides 410 and 140. This is supported by
the CSP of HuL-E35 which is one of the two enzyme catalytic
residues, the other being D53. Another residue of the pocket
which is mostly affected by the binding is W109, along with its
indole ring. In the HuL : peptide complexes obtained by simu-
lations, the W109 side chain can interact through sandwich

p-stacking with peptide 410-Y7 (distance 4.5 Å, Fig. 9a) and
through an edge-to-face interaction with peptide 140-W8 (dis-
tance 3.5 Å, Fig. 9b). Moreover, HuL-I59 appears to be per-
turbed by both peptides. I59 is very close to the pocket and its
sec-butyl side chain is positioned 3 Å apart from the aromatic
ring of 410-Y7 (Fig. 9a) and 4 Å from the aromatic ring of 140-
W8, allowing the formation of a CH–p interaction (Fig. 9b).
Interestingly, although not belonging to the binding site, A111
is the residue that exhibits the highest CSP, with both peptides.
It is located just opposite to E35 and its backbone NH forms a
hydrogen bond (H-bond) with the E35 carboxyl group. These
observations suggest the possibility of a conformational change
of the target protein upon binding with the peptide. Notably,
the docking of the peptide 140 is consistent with the formation
of a salt bridge between peptide 140-R10 and HuL-E35, as
distances between carboxyl oxygens and amino groups hydro-
gens are shorter than 3 Å. The higher perturbation of HuL-A111
recorded in the presence of the peptide 140 could be due to the
fact that HuL-E35 interacts with both amino groups of 140-R10
forming a salt bridge (a stronger bond than a H-bond) and as a
consequence HuL-A111 loses its H-bond with HuL-E35. On the
other hand, in the presence of peptide 410, HuL-E35 forms an
H-bond with an indolic NH (distance 2.3 Å), which still allows
the formation of a H-bond between the other carboxyl oxygen of
E35 and the amino group of A111. This structural consideration
can explain the higher CSP of A111 with peptide 140, despite an

Fig. 8 Interaction of (a) peptide 410 and (b) peptide 140 with HuL according to CSP analysis. Residues that exhibit Dd4Ddav + s (yellow), Dd4Ddav + 2s
(orange), or Dd 4 Ddav + 3s (red) are highlighted. The secondary structure elements are labeled in white according to H. Kumeta et al.64 Peptides are
positioned according to PARCE outcome (peptide green licorice and protein blue cartoon).
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observed lower binding affinity indicated by a slower saturation
under NMR conditions. Furthermore, the simulation of pep-
tide140–HuL complex is congruent with other two interactions
involving the perturbed residue R113: a salt bridge between
HuL-R113 side chain and 140-C12 C-terminal carboxylate (dis-
tances of 3.4 and 3.8 Å) and a H-bond between HuL-R113
carbonyl and 140-Q2 side chain amino group (distance 2.6 Å).
As stated above, significant variations of HuL-H78 and HuL-R50
were observed with peptide 140. To rule out possible effects due
to small pH variations during titration, we calculated HuL-H78
pKa with and without the peptide obtaining similar values
(6.29 and 6.30, respectively).65 In the case of peptide 410, a salt
bridge between peptide 410-E6 and HuL-R21 (distances of 3.2
and 4.0 Å) is also in agreement with the observed CSP. HuL-R21
is located in the loop between helix A and B and does not
belong to the binding pocket, but its long side chain is posi-
tioned to possibly interact with the peptide located inside the
pocket. The perturbation of HuL-V100, which has its carbonyl
group close to the amino group of the HuL-R21 side chain
(3.6 Å) and its amino group close to the peptide 410-E6 carboxylic
group (3.8 Å), can be attributed to the general rearrangement of the
H-bond/salt bridge network in that region of the protein.

4. Discussion and conclusions

The goal of this study was to define a set of guidelines for the
computational design of peptides for biomolecular recognition
with focus on the peptide structure to be employed for concave
binding sites inside protein pockets or for surface-exposed, flat

binding sites. To this aim, we chose human lysozyme (HuL) as a
test case. We have computationally designed and screened both
linear and cyclic peptides for two distinct binding sites of HuL.
The best in silico performing binders were tested experimen-
tally and an improved protocol for peptide selection was
defined. We have shown that the optimum peptide topology
(linear or cyclic) critically depends on the binding site to be
targeted. Cyclic peptides, due to the restricted conformational
space they can explore, generally guarantee a reduced entropy
loss upon binding.66,67 Overall, we have confirmed that cyclic
peptides should be employed when targeting surface-exposed
sites, while linear and cyclic peptides are both well-suited for
pocket sites. In a pocket, greater backbone peptide flexibility
seems important to achieve optimal interactions between the
peptide and the protein. This factor might counter-balance the
greater loss of entropy upon binding by linear peptides.

Two pocket peptides were thoroughly characterized. In
particular, NMR confirmed the pocket targeting of both linear
(140) and cyclic (410) peptides; however, this study indicated a
more complex binding mode than the 1 : 1 stoichiometry. The
multimodal behaviour was confirmed both in silico and by ESI-
MS. SPR and NMR gave contrasting results in terms of binding
affinities and kinetic parameters, making it difficult to deter-
mine which of the two candidates was the optimum binder. In
NMR experiments, for which both peptide and HuL were free in
solution, a peptide : protein ratio of 3 was sufficient to reach the
plateau for peptide 410, while with peptide 140 it was necessary
to increase the ratio up to 5.6.

For surface exposed binding sites, the design algorithm
evolved cyclic peptides with much favourable predicted affinity

Fig. 9 HuL : peptide structures according to the design algorithm output for (a) peptide 410 and (b) peptide 140. All peptide residues (green), as well as
the most perturbed residues of HuL identified by NMR analysis (blue) are highlighted (licorice) and labelled (black for protein and red for peptides). The
distances between interacting atoms are indicated (dotted black lines).
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towards HuL than the generated linear peptides. Only the cyclic
peptides were then characterized. During computational
screening we found that peptides targeting surface-exposed
sites required much longer simulated times for a reliable
ranking to be achieved before being translated into the wet
lab with respect to those targeting pockets. Indeed, peptides
targeting the HuL pocket required only 50 ns long molecular
dynamics (MD) trajectories to be chosen for experimental
validation, while peptides designed for the nearby surface site
required as much as 500 ns.

While cyclic peptides were computationally confirmed to be
better candidates than linear ones for surface exposed binding sites,
targeting such sites with ex novo design methods remains elusive
when both recognition partners are intended to be free in solution.
While binding affinity measurements were feasible when the target
was surface-bound (namely, in the SPR setup where experiments
confirmed that the selected peptides could bind the target with
micromolar binding affinity), no reliable estimate was possible
when both peptide and HuL were free in solution, as in the NMR
setup. In particular the CSPs recorded in the presence of peptide
368, while consistent with the computational results, was negligible
under the experimental conditions used and peptide 278 showed
solubility problems at the typical concentrations used for NMR. This
behaviour was consistent with previous observations: when target-
ing proteins, measurements on computationally designed peptides
were feasible when at least one of the binding partners was surface
bound, thus restricting the conformational space explored by the
peptide.10,11

Another aspect explored in this paper was to test whether
generating a binder from an arbitrarily chosen starting con-
formation close to the selected binding site was feasible with-
out human intervention. To this aim we run multiple
optimisations of an arbitrarily chosen initial peptide configu-
ration which led to different sets of peptides, as expected from
the stochastic nature of the optimisation. A different choice of
starting configurations, for instance by randomising all initial
conformations, would have been another suitable alternative
allowing to further explore the peptides conformational space.
Intuitively, as the optimisation process at its core is Monte
Carlo based, and a Monte Carlo optimisation is known to lead
to a minimum (not necessarily corresponding to the global
minima) randomising the initial conformation of each stochas-
tic optimisation path could open the possibility to identify
further peptides candidates.

Another interesting aspect of PARCE, which is now based on
a molecular dynamics (MD) engine, is that it allows for induced
fit effects, an effect that can be controlled by choosing appro-
priate restrains on target conformation. In this work all opti-
misations were here run by restraining the target backbone to
reduce protein conformational changes, but depending on the
particular application the peptides will be employed in (drug
design, protein immobilisation, and protein reactivation) dif-
ferent restrains can be employed. For instance, if the binding
affinity should be maximized regardless of the protein confor-
mation, induced fit can be introduced by releasing all restrains
or by restraining only the structured segments of the protein.

Overall, the in silico process of evolving high-affinity binders
remains highly promising by giving correct prediction on the
geometry of the system. The NMR analysis underlined the need
for an improvement in the design of peptides targeting surface-
exposed sites. Further control on the binding site selectivity can
be achieved by further algorithmic development or by changing
the ligand to achieve higher affinities not always achievable by
small peptides. While the computational method does not
necessarily aim to outperform simple intuitive design, the low
measured binding affinities point to a problem in the correla-
tion between computational predictions and measures. The
choice of larger and less degradable binders, such as antibody-
derived ligands,23 would also allow outcompeting physiologi-
cally relevant binding events. We are thus confident that the
introduction of a consensus acceptance probability, based on
multiple scoring functions,35,68 coupled with the optimisation
of larger, less flexible ligands holds the potential to further
improve the binding affinity of the designed binders and break
the micromolar limit.
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