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Preface

I obtained my Diplom (the rough equivalent of a master’s degree, though includ-
ing a one-year thesis) in physics with a minor in astronomy from the University
of Hamburg in 1993. The thesis, entitled (in translation—the original is in Ger-
man) Determination of cosmological parameters through the redshift statistics
of gravitational lenses, was written at the Hamburg Observatory, under the su-
pervision of the late Sjur Refsdal. Both the thesis and the overall mark of the
Diplom were sehr gut, usually translated as magna cum laude.

I later worked at Jodrell Bank and the Kapteyn Institute, where most of
my work was concerned with gravitational lensing, often within the context of
the CERES network, a European Union project coordinated by Ian Browne at
Jodrell Bank, which resulted in several papers, usually with several co-authors.
In order to avoid overlap with that work, to give this thesis a clear focus, and
to make clear what is my own work, with two exceptions (Chaps. 3 & 5, both
referring to work done in Hamburg) all of the included papers are single-author
papers, though in the case of the exceptions it is fair to say that I did the
lion’s share of the work. Also, with two exceptions (Chaps. 6 & 7) the work
was done before (Chaps. 3–5) or after (Chaps. 1–2 and Chaps. 8–9) the time I
was employed by CERES. The paper included in Chap. 2 was originally written
especially for this thesis (as, of course, were Chaps. 1 & 10); I submitted it to
The Open Journal of Astrophysics and what appears here now is the published
version, incorporating comments from the referees. Like much of my work, the
papers included in this thesis could be classified as ‘theoretical observational
cosmology’.

xi



xii PREFACE



Abstract

In cosmology, one often assumes that the universe is homogeneous and isotropic.
While originally a simplifying assumption, today there is observational evidence
that this is a good approximation in our Universe on scales above a few hun-
dred megaparsecs. This approximation is often used when calculating various
distances as a function of redshift, even though the scales probed by a beam of
light are much smaller than the scale of homogeneity. Since our Universe is ob-
viously not homogeneous and isotropic on small scales, it is at least conceivable
that this could affect distance calculation.

Two models have been proposed in order to take such small-scale inhomo-
geneities into account in a relatively simple way. One, due to Zel’dovich, in-
volves a two-component universe where one component is smoothly distributed
and the other in clumps, with the assumption that, when calculating distance
from redshift, light propagates far from all clumps. Under those assumptions,
one can derive a second-order differential equation for the distance. This is a
simple ansatz but it is not obvious how valid it is. Another approach, originally
due to Einstein and Straus but developed with regard to cosmological-distance
calculation by Kantowski, involves removing material from a spherical region of
an otherwise smooth universe and redistributing it inside this sphere (e.g. as a
point mass at the centre, as a shell at the boundary, or in a more complicated
manner). This ansatz is more difficult for calculations, but is an exact solution
of the Einstein equations, so there is no question about its validity (how realistic
such a mass distribution is as a model of our Universe is a separate question).
Long after both had been investigated in detail, Fleury showed that they are
equivalent at a well controlled level of approximation.

After a review of the history of those two approaches, I present my own
work in this area: an efficient numerical implementation for the solution of the
most general form of the differential equation (i.e. arbitrary values of λ0, Ω0,
and the homogeneity parameter η, the last indicating the fraction of matter
distributed smoothly), a discussion of the uncertainty in distance calculation
due to uncertainty in the value of η, the effect of η on the calculation of H0

from gravitational-lens time delays, the effect of η on the separation between
images in a gravitational-lens system, and the effect of η on the determination
of λ0 and Ω0 from the m–z relation for Type Ia supernovae—including evi-
dence that observations indicate that, in our Universe, the standard distance is
a good approximation, even though small-scale inhomogeneities can be appre-
ciable, probably because the Zel’dovich model does not accurately describe our
Universe.

xiii



xiv ABSTRACT



Résumé

En cosmologie, on suppose souvent que l’univers est homogène et isotrope. Bien
qu’il s’agisse à l’origine d’une hypothèse simplificatrice, il est aujourd’hui prouvé
grâce à l’observation qu’il s’agit d’une bonne approximation dans notre Univers,
à des échelles plus grand que quelques centaines de megaparsecs. Cette approx-
imation est souvent utilisée pour calculer de diverses distances en fonction du
décalage vers le rouge, même si les échelles sondées par un faisceau lumineux
sont beaucoup plus petites que l’échelle d’homogénéité. Étant donné que notre
Univers n’est évidemment pas homogène et isotrope à petite échelle, il apparâıt
concevable que cela pourrait affecter le calcul des distances.

Deux modèles ont été proposés afin de prendre en compte ces inhomogénéités
à petit échelle de manière relativement simple. L’un, dû à Zel’dovich, propose
un univers à deux composants où l’une est distribuée de manière lisse et l’autre
sous forme de petites concentrations, avec l’hypothèse que, lors du calcul de la
distance en fonction au décalage vers le rouge, la lumière se propage loin de
toutes ces concentrations de matière. Adoptant ces hypothèses, on peut dériver
une équation différentielle du second ordre pour la distance. Il s’agit d’une
approche simple, mais sa validité n’est pas démontrée. Une autre approche, due
à l’origine à Einstein et Straus mais développée par Kantowski en ce qui concerne
le calcul de la distance cosmologique, consiste à retirer de la matière d’une région
sphérique d’un univers par ailleurs lisse et à la redistribuer à l’intérieur de cette
sphère (par exemple comme une masse ponctuelle au centre, comme une coque à
sa frontière, ou de toute autre manière plus compliquée). Cet approche est plus
difficile pour les calculs, mais elle conduit à une solution exacte des équations
d’Einstein, donc il n’y a aucun doute sur sa validité (le réalisme d’une telle
distribution de masse comme modèle de notre Univers est un autre question).
Bien aprés que les deux modèles aient été étudiés en détail, Fleury ont montré
qu’ils sont équivalents à un niveau d’approximation bien contrôlé.

Après une revue de l’histoire de ces deux approches, je présente mon propre
travail dans ce domaine: une implémentation numérique efficace du solution de
la forme la plus générale de l’équation différentielle (i.e. valeurs arbitraires de
λ0, Ω0, et le paramètre d’homogénéité η, ce dernier indiquant la fraction de
matière distribué de manière lisse). J’aborde une discussion sur l’incertitude
du calcul de la distance due à l’incertitude sur la valeur de η, l’effet de η sur
le calcul de H0 à partir du décalage temporel observé pour certains mirages
gravitationnelles, l’effet de η sur la séparation entre les images produites par
une lentille gravitationnelle, et l’effet de η sur la détermination de λ0 et Ω0 de
la relation m–z pour supernovae de Type Ia. Les observations semblent aussi
indequer que, dans notre Univers, la distance standard est une bonne approxi-
mation, même si les inhomogénéités à petite échelle peuvent être appréciables,
probablement parce que le modèle Zel’dovich ne décrit pas avec précision notre
Univers.
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Chapter 1

Introduction

Cosmology is the study of our Universe (and/or model universes—the (lack
of) capitalization distinguishes the two) as a whole. That is much easier with
certain simplifications, such as a universe which is homogeneous and isotropic,
at least on large scales. While initially those were assumptions, known as the
Cosmological Principle (e.g. Harrison, 2000), now those are observational facts.
Isotropy is observed, most dramatically in the cosmic microwave background
radiation (CMB), which is isotropic to one part in 100,000 (e.g. Smoot et al.,
1992). Homogeneity is not directly observed, since we can observe only that
which which is on our backward lightcone1 (and can get information on nearby
objects via other means as well). That allows us to observe objects at a variety
of distances but, due to the finite speed of light, at correspondingly different
times. Thus, we cannot say whether or not the Universe is homogeneous at a
particular instant in cosmic time, such as now. However, homogeneity follows
from isotropy as long as we are not in a special position (e.g. Harrison, 2000).

A homogeneous and isotropic universe can be parameterized by a scale factor
R, which in general depends on time. A fundamental quantity is the redshift

z =
λ0

λ
− 1 , (1.1)

where λ is the emitted wavelength and λ0 is the observed wavelength (in general,
the subscript 0 is used to denote the present value of a time-dependent quantity).
That is related to the values of the scale factor now and when the radiation which
we observe now was emitted:

z =
R0

R
− 1 , (1.2)

where R0 is the value of the scale factor now and R the value of the scale factor
when the light was emitted. The redshift increases from 0 for objects at our
location to a maximum value, which can be ∞ if the universe had an arbitrarily
small scale factor in the past, as is the case in big-bang models.

Observational cosmology consists of calculating the dependence of various
observational quantities (e.g. apparent brightness) as a function of redshift for
various cosmological parameters (e.g. the density parameter) and comparing
with observations, which allows one to determine the cosmological parameters,

1If one thinks of a universe with two rather than three spatial dimensions, in the x and y
directions, and time t in the z direction, then at a given time, such as now, we can observe
objects at various distances the light from which left them at various times. Defining a ‘time
dimension’ as ct where c is the speed of light, light moves at 45◦ angles, thus that which we
can observe lies on a cone in this spacetime diagram.

3



4 CHAPTER 1. INTRODUCTION

which in turn determine quantities which are related to different types of dis-
tance, but also other quantities. Distance is proportional to redshift only for
small redshift. At larger redshift, not only is that no longer the case, but also
various distances have different dependencies on redshift. In everyday experi-
ence, distances measured via various methods are equal; that is not the case in
cosmology since, in general, the universe neither has Euclidean geometry nor is
static.

1.1 Kinematics: homogeneous and isotropic uni-
verses

1.1.1 The Robertson–Walker metric

A homogeneous and isotropic cosmological model (I use the terms ‘cosmological
model’ and ‘universe’ interchangeably) is known as a Robertson–Walker model
(Robertson, 1935, 1936; Walker, 1935, 1937, the latter paper by Walker is very
often incorrectly cited as having been published in 1936). Expansion is described
by a time-dependent scale factor. Other coordinates are fixed with time.2 The
corresponding metric is

ds2 = c2 dt2 −R2(t)

(

dσ2

(1− kσ2)
+ σ2 dθ2 + σ2 sin2 θ dφ2

)

, (1.3)

where the symbols are defined as follows (with the corresponding units):

s 4-dimensional interval [length]

c speed of light [velocity]

t time [time]

R scale factor [length]

σ radial coordinate [dimensionless]

k curvature constant [dimensionless]

θ angular coordinate [dimensionless]

φ angular coordinate [dimensionless]

Note that no physics is required to derive this; it is the only metric which
describes a homogeneous and isotropic universe which remains so even if it
expands or contracts. By the same token, the metric says nothing about the
dynamics, i.e. how the scale factor changes with time. One can define the
parameters r = σR and χ as arcsinh(σ), σ, or arcsin(σ) for k equal to −1, 0,
+1, respectively. The proper distance DP, i.e. the distance one could measure
with a rigid ruler instantaneously, is Rχ. Most distances used in cosmology
depend more directly on r.

2That assumes that objects have no peculiar motion, but move away from or towards
each other only as a result of the overall expansion or contraction. Such objects are called
comoving.
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1.1.2 Different forms of the same equation

There are several equivalent forms of the Robertson–Walker metric. One in-
volves writing it in terms of r instead of σ:

ds2 = c2 dt2 − R2(t)

R2
0







dr2
(

1− k r2

R2

0

) + r2 dθ2 + r2 sin2 θ dφ2






. (1.4)

Another involves χ instead of r and Sk defined as sinh(χ), χ, or sin(χ) for k
equal to −1, 0, +1, respectively:

ds2 = c2 dt2 −R2(t)

(

dχ2 + S2

k(χ)
(

dθ2 + sin2 θ dφ2

)

)

. (1.5)

Some authors use an opposite sign convention and/or use dΩ2 := dθ2+sin2 θ dφ2

(not to be confused with the density parameter Ω). Often, a dimensionless scale
factor a := R/R0 is used; in such cases the R can be included in S in Eq. (1.5)
(and writing either R2 dχ2 or d(DP)2 for the first term in parentheses). There
are several further variations. Occasionally, one sees the Robertson–Walker
metric expressed in (locally) Cartesian coordinates:

ds2 = c2 dt2 −R2(t)

(

dx2 + dy2 + dz2

1 + 1

4
k(x2 + y2 + z2)

)

. (1.6)

Care must be taken when comparing different formulations from different au-
thors, since the same symbols can be used for different quantities and/or the
same quantities can be denoted by different symbols; that sometimes happens
with the same author within a few pages (e.g. Heacox, 2015)3. In my notation,
Latin letters (except c, k, and t, which are too entrenched to change) have the
dimension of length and Greek letters are dimensionless.

1.1.3 Observational quantities

What quantities does one actually observe?4 Essentially, one observes angles
(between objects or between parts of one object) and brightnesses. In particular,
σ is a derived quantity from an observational point of view; r = σR is related
to some of the distances discussed below.

1.2 Dynamics: general relativity

1.2.1 Cosmological parameters

This thesis is restricted to homogeneous and isotropic (at least on large scales)
cosmological models based on general relativity (GR), so-called Friedmann–
Lemâıtre–Robertson–Walker (FLRW) models5, without pressure; here, I follow

3This is an excellent book, which I reviewed for The Observatory (Helbig, 2016b). While
the changing definitions can be confusing, they do force one to think the examples through,
though I don’t know if that was the intention. In his equation (8.3) his r is my r; in equa-
tion (8.5) his r is my σ, and in equation (8.6) his r is my DP.

4At some level, of course, all that one observes are counts of photons on a detector as a
function of position, whether in the case of imaging or in the case of spectroscopy, but it is
useful to think of astronomically relevant quantities as basic.

5That is a reference to early papers exploring the expansion history of the universe as a
function of the cosmological parameters (Friedmann, 1922, 1924; Lemâıtre, 1927). Some argue
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the exposition of Kayser, Helbig and Schramm (1997). The dynamics of the
universe is given by the Friedmann equations

Ṙ2(t) =
8πGρ(t)R2(t)

3
+

ΛR2(t)

3
− kc2 (1.7)

and
R̈(t)

R(t)
= −4πGρ(t)

3
+

Λ

3
, (1.8)

where dots denote derivatives with respect to t, G is the gravitational constant,
ρ(t) the matter density (this thesis assumes negligible pressure), Λ the cosmolo-
gical constant and the sign of k determines the curvature of the 3-dimensional
space.

Introducing the usual parameters

H =
Ṙ

R
(Hubble parameter)

Ω =
8πGρ

3H2
(density parameter) (1.9)

λ =
Λ

3H2
(normalized cosmological constant)

(Ω and λ are dimensionless and H has the dimension t−1) we can use Eq. (1.7)
to calculate

kc2 = R2H2 (Ω + λ− 1) , (1.10)

so that
k = sign (Ω + λ− 1) . (1.11)

Since R > 0 we can write

R =
c

H

1
√

|Ω + λ− 1|
; (1.12)

that is the radius of curvature of the 3-dimensional space at time t. For k = 0
it is convenient to define the scale factor R0 to be c/H0 (though note that, in
general, R 6= c/H , including the flat case where R0 = c/H0). The index 0 is used
to denote the present value of a given quantity, fixed, as usual, at the time t0 of
observation.6 The explicit dependence on t will be dropped for brevity. Taking
matter conservation into account and using the present-day values, we have

ρR3 = ρ0R
3

0 , (1.13)

and so from Eqs. (1.7), (1.9), (1.10), and (1.13) follows

Ṙ2 = H2

0R
2

0

(

Ω0R0

R
+

λ0R
2

R2
0

− (Ω0 + λ0 − 1)

)

. (1.14)

that the term Friedmann–Robertson–Walker (FRW) is more appropriate, since Friedmann
had actually explored the entire range of such models, while Lemâıtre, after rediscovering the
models explored by Friedmann, usually discussed a particular type, namely a spatially closed
model with a positive cosmological constant. However, Lemâıtre was responsible for reviving
interest in those models, and also discussed the related astrophysics, whereas Friedmann’s
work is more mathematical. Lemâıtre was also the first to calculate a value for what is now
known as the Hubble constant H0 (Lemâıtre, 1927). Thus, it seems appropriate to include
Lemâıtre in the acronym.

6Note that this work is concerned with the calculation of distances from redshift. We are
not concerned with a change in redshift during a period of observations, so-called redshift
drift (e.g . Sandage, 1962; McVittie, 1962; Rüdiger, 1980; Lake, 1981; Loeb, 1998).
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Since below we want to discuss distances as functions of the cosmological red-
shift z, by making use of the facts that

z =
R0

R
− 1 (1.15)

and that R0 is fixed, we can use Eq. (1.14) to get

dz =
dz

dR
Ṙ dt = −H0(1 + z)

√

Q(z) dt , (1.16)

where
Q(z) = Ω0(1 + z)3 − (Ω0 + λ0 − 1)(1 + z)2 + λ0 . (1.17)

Note: Here, the
√

sign should be taken to signify the positive solution,

except that sign
√

Q(z) = sign(Ṙ) always.

1.2.2 Einstein’s model: matter without motion

The first cosmological model based on GR was the static model proposed by
Einstein (1917). In a static model, there is no cosmological redshift, but of
course all the quantities which are otherwise dependent on redshift do exist.
Also, λ0 and Ω0 are infinite since H0 = 0, though the density ρ and the cos-
mological constant Λ have finite values. Einstein originally had set Λ = 0 and
found that no static solutions existed, so he introduced Λ in order to have a
static solution. That was not completely ad hoc, as in their general form the
Einstein equations contain Λ, as indeed does the classical Poisson equation (e.g.
Nowakowski, 2001). Allegedly, Einstein later referred to his introduction of the
cosmological constant as the “biggest blunder of my life”, though for a long
time the only written source for that was Gamow (1956, 1970), whom some
regard as an unreliable narrator. Sources differ on whether Einstein actually
said (or believed) that. O’Raifeartaigh et al. (2018) give references for both
sides, including newer written ones, and suggest a third alternative: it was a
blunder, but the blunder was not the cosmological constant per se, but rather
“his failure to consider the stability of his static cosmology of 1917”, agreeing
with Weinberg (2005). On the other hand, Barrow (2017) claims that since
Einstein referred to signing the letter to Roosevelt encouraging the Manhattan
project as “the one great mistake in my life”, he would not have used similar
wording to refer to the cosmological constant. However, considering that one
is in the realm of science and the other in the realm of politics, that does not
seem impossible.

1.2.3 de Sitter’s model: motion without matter

The second cosmological model was that of de Sitter (1917c) (based to some ex-
tent on some earlier papers published in English but in the Netherlands (de Sit-
ter, 1917a,b)): ρ = 0 and Λ > 0. This was sometimes referred to as ‘motion
without matter’, as opposed to Einstein’s model of ‘matter without motion’. In
the original presentation, de Sitter used coordinates which appeared to be static,
perhaps influenced, as Einstein explicitly wrote that he (Einstein) was, by the
expectation that the Universe is static at large scales (Weinberg, 2005). (In
general, the presentation is quite different from the way in which the de Sitter
model is thought of today, the latter being exponentially expanding Euclidean
space, though of course mathematically equivalent. Lanczos (1922) was the
first to discuss the de Sitter model in coordinates in which the scale factor is a
function of time.)
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Interestingly, de Sitter (1916c) was one of the first, perhaps the first, to
write a semipopular description of GR in English, around the same time as he
presented a technical account (de Sitter, 1916a,b) and addressed the problem of
inertia (de Sitter, 1917a); this paper was also the first to introduce the de Sitter
model, which he called ‘system B’ in contrast to Einstein’s static universe ‘sys-
tem A’; further details on this model and other aspects of GR followed (de Sitter,
1917b,c), the former paper having the title ‘On the curvature of space’, which,
apart from being in English rather than German, is the same as that of a later
paper by Friedmann (1922), ‘Über die Krümmung des Raumes’. He also wrote
an early paper on ‘distance, magnitude, and related quantities in an expanding
universe’, i.e. what later became known as observational cosmology (de Sitter,
1934).

1.2.4 Friedmann models: wide variety

While Einstein and de Sitter had introduced one cosmological model each, Fried-
mann (1922, 1924) considered the full range of FLRW models. Although pub-
lished in one of the leading journals, his work was largely ignored, perhaps
because he died young without a chance to promote it.

1.2.5 Lemâıtre: the primeval atom

Lemâıtre rediscovered Friedmann’s work, but the emphasis was different. First,
while Friedmann’s work was largely mathematical, Lemâıtre’s was more phys-
ical, discussing the very early Universe, which he dubbed the ‘primeval atom’
and imagined as a very large atomic nucleus which radioactively decayed.7 At
first, Lemâıtre favoured a model, also favoured by Eddington, which started
at t = −∞ arbitrarily close to the static Einstein model then, as a result of
the instability of Einstein’s model, began to expand, asymptotically approach-
ing the de Sitter model for t = +∞ (as do all models which expand forever
and have a positive cosmological constant) (Lemâıtre, 1927, 1931a), though
whether such instabilities can occur as a perturbation of the static Einstein
model and if so whether they lead to expansion was far from clear (Lemâıtre,
1931b). Later, Lemâıtre favoured a big-bang model with an origin in the finite
past (Lemâıtre, 1931c,d,e).8 In particular, he preferred a model which, due to
fine-tuning between the density of matter and the cosmological constant, goes
through a period of very slow expansion between decelerating and accelerating
phases. That allows the age of the universe to be larger than the Hubble time
1/H0, arbitrarily long for arbitrarily fine tuning. (Our Universe is of the same
general type, though the quasi-static phase is neither very long nor very static,
but rather just an inflection point; when Lemâıtre put forward his model, it was
believed that the Hubble constant is much larger, which in a more conventional
model, in particular one with no cosmological constant, would be too young,
e.g. younger than the Earth.)

7Interestingly, if, ignoring gravity, the entire observable Universe could be compressed to
a sphere with the density of nuclear matter, the resulting object would fit comfortably within
the Solar System.

8At just 457 words, Lemâıtre (1931c) was concise; nevertheless, the importance of that
contribution can be gauged by the fact that when the journal General Relativity and Gravi-

tation reprinted it as a ‘Golden Oldie’, it was accompanied by an 18-page editorial (Luminet,
2011).



1.3. CLASSICAL FLRW COSMOLOGY 9

1.3 Classical FLRW cosmology

By ‘classical cosmology’, I refer to the study of FLRW models, both exact and
approximate ones; in the latter case, it is assumed that the large-scale kinemat-
ics and dynamics are FLRW, with any inhomogeneities being essentially test
particles, but also with the possibility that local inhomogeneities can affect the
propagation of light (but do not affect the dynamics, hence no back-reaction).
Building on that are the ideas of the hot big bang, primordial nucleosynthesis,
the cosmic microwave background, the formation and evolution of structure,
and so on—interesting topics all, but beyond the scope of this thesis.

Einstein, de Sitter, and Eddington all have cosmological models named after
them (in Eddington’s case Lemâıtre’s orginal model), as do Lanczos (1922)9 (a
model with Ω0 = 0 and a positive cosmological constant which contracts from
∞ to a finite radius then expands) and Milne (Ω0 = λ0 = 0; actually, this
is the relativistic equivalent of a model proposed by Milne (1935)); Einstein
and de Sitter (1932) have a joint model (Ω0 = 1 and λ0 = 0 and hence k =
0); Friedmann and Lemâıtre have an entire set of models named after them.
(Sometimes, models without a cosmological constant are dubbed Friedmann
models, and those with a cosmological constant Friedmann–Lemâıtre models,
though that is incorrect, as Friedmann explored all possibilities. It was Lemâıtre
(and Eddington), though, who emphasized the importance of the cosmological
constant.) For more on the classification of FLRW models, see Chap. 4 and the
excellent paper by Stabell and Refsdal (1966).

Thus, by the early 1930s, the theory of FLRW models was in place, but
observations were not yet good enough to decide which best describes our Uni-
verse. In addition, the physics of those models was investigated by the likes of
Lemâıtre and Tolman, the latter even considering inhomogeneous models (Tol-
man, 1934). It was clear that, at least in principle, observations could determine
which FLRW we live in or, equivalently, the values of H0, λ0, and Ω0, primarily
by comparing the observed distance (usually the angular-size distance or lumi-
nosity distance) as a function of redshift z to predictions of various models (see
below). At the latest when Rindler (1956) cleared up the confusion concerning
the concepts of different types of horizons, the theory of classical cosmology was
complete. Good overviews of the history relativistic cosmology (including, but
not limited to, the FLRW models) can be found in books by Barrow (2012)
and Harwit (2013)10 and in the Oxford Handbook of the History of Modern Cos-
mology (Kragh and Longair, 2019), while a good review of the history of GR
has been given by Ferreira (2014) (see also my corresponding reviews of those
books: Helbig, 2013, 2014b, 2019, 2014a).

1.4 Many distances

There are various definitions of distance that all correspond in the static Eu-
clidean case, but in general are different. This work concentrates on the angular-
size distance and the closely related luminosity distance; other distances are
mentioned for completeness; see Kayser, Helbig and Schramm (1997, Chap. 3
in this thesis) for more details.

9Lanczos also discovered a solution of the Einstein field equations involving a rigid cylin-
drical arrangement of dust particles, later rediscovered by van Stockum and hence known as
van Stockum dust; this model has closed timelike curves.

10While the emphasis of the book lies elsewhere, despite or perhaps because of that, the
summary of the history of relativistic cosmology is excellent.
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1.4.1 Proper distance

Proper distance DP is shortest distance between two points, as measured by a
rigid ruler. In the cosmological context, one must also specify the time of the
measurement, e.g. for an object at redshift z, when the light was received at
the observer (the usual case) or when the light was emitted. (The former is a
factor of (1 + z) larger than the latter.) That is equivalent to Rχ, where R of
course in general depends on time. R0χ is often termed the co-moving distance.
This distance corresponds most closely to the everyday idea of distance, and is
the basic distance in GR.

1.4.2 Angular-size distance

If one knows the linear size ℓ of an object, then the angle θ under which it
appears defines the angular-size distance: D = ℓ/θ. Since the corresponding
triangle retains its shape as the universe expands, that is equivalent to the
proper distance at the time the light was emitted in the case of a spatially flat
universe; if the universe is not flat, then curvature effects play a role as well,
since the rays of light from opposite ends of the object converge more or less
than they would in the flat-universe case. The curvature effects mean that the
angular-size distance is r/(1 + z) instead of DP/(1 + z) (the proper distance at
the time of emission).

1.4.3 Luminosity distance

In static Euclidean space, the observed flux F of radiation decreases as the
square of the distance, so one can define the luminosity distance

DL = DL

0

√

F0

F
, (1.18)

where F0 is the flux at some fiducial distance DL
0 . Alternatively,

DL =

√

L

4πF
, (1.19)

where L is the luminosity. In the cosmological case, the redshift increases the
distance: since the luminosity is power, i.e. energy per time, the redshift de-
creases the energy of photons by a factor of 1/(1 + z); in addition, the number
of photons per time is reduced by the same factor, giving a factor of 1/(1 + z)2

in flux or (1 + z) in distance. Without that effect, in a flat universe DL would
be equal to the proper distance at the time the light was received (because
the corresponding angle is at the source and not at the observer as with the
angular-size distance). Thus, in the cosmological context, in a flat universe the
luminosity distance is greater than the proper distance at the time the light is
observed by a factor of (1 + z); if the universe is not flat, then curvature effects
play a role as well, since the rays of light diverge more or less than they would in
the flat-universe case. The distance is essentially r due to curvature effects, but
increased by a factor of (1+z) (due to the factor of 1/(1+z)2 in flux mentioned
above). In contrast to the angular-size distance D, the relevant quantity is r
and not r/(1 + z) because the relevant angle is at the source (the luminosity
distance is inversely proportional to the square root of the fraction of light we
receive, which depends on the distance to the source now). That means that
DL = D(1 + z)2 (Etherington, 1933), which implies that the surface brightness
is proportional to (1 + z)−4. (The above applies to the bolometric luminosity.
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In practice, observations are often made within a finite spectral band, reduc-
ing the flux by another factor of (1 + z) since the observed band corresponds
to a smaller band at the source; thus the surface brightness is proportional to
(1 + z)−5 and the signal-to-noise ratio to (1 + z)−10. Also, the so-called K-
correction must be applied to take into account any deviations of the spectrum
from the flat-spectrum case.)

1.4.4 Proper-motion distance

Although proper motion is rarely observed in a cosmological context, the proper-
motion distance DPM is equivalent to D(1 + z), where D is the angular-size
distance. In the static Euclidean case, where all distances are equivalent, one
can think of the proper-motion distance as the angular-size distance but with ℓ
replaced by vt, where v is a known velocity and t is the time taken. Since the
redshift increases all time intervals by (1 + z) (not just the interval defined by
the frequency of light), in the cosmological case the proper-motion distance is
(1 + z) times larger than the angular-size distance. (In the flat-space case, that
is the same as the proper distance DP.)

1.4.5 Parallax distance

For completeness I include the parallax distance Dπ; this is even rarer in cos-
mology. Dπ = DPM/

√
1− kσ2. One might think that Dπ should be the the

same as the proper-motion distance, but with the relevant angle at the source
rather than the observer, since no redshift effects are involved. However, the
actual angle measured, β, is at the observer, and the angle at the object is
computed (in the small-angle approximation, which is correct) to be π/2− β.11

However, that assumes Euclidean space; the extra factor takes spatial curvature
into account. That was already noted by de Sitter (1917c).

1.4.6 Light-travel–time distance

All of the above distances can easily be converted into one another, since only
factors of (1 + z) and the functions sin and sinh and their inverse functions (to
convert from DP to r and vice versa) are needed. The light-travel–time distance
is not so easily convertible. However, it is closely related to the proper distance.
The latter is given by

DP
xy =

c

H0

zy
∫

zx

dz
√

Q(z)
, (1.20)

where Q(z) is defined above in Eq. (1.17), whereas the former is given by

ctxy =
c

H0

zy
∫

zx

dz

(1 + z)
√

Q(z)
. (1.21)

Since the proper distance now would be equivalent to ct if the universe were
static, the factor (1+z) in the integrand takes the expansion of the universe into
account. (Note that one can always define the distance between objects at two
arbitrary redshifts; one does not have to be 0 (corresponding to the observer). In

11Note that in the common case of the parallax of a star due to the motion of the Earth
around the Sun, by convention the Sun–Earth distance is used as the baseline; the correspond-
ing parallax angle is thus half of the one which would correspond to the diameter of Earth’s
orbit, which might be used in practice in order to achieve greater precision.
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practice, that is done most often for the angular-size distance within the context
of gravitational lensing, since, in addition to the distances to the deflector (lens)
and to the source, Dd and Ds, respectively, the distance between the deflector
and the source, Dds, plays a role.)

1.5 Calculation of distances in ideal FLRW mo-

dels

The history of distance calculation is worth a work in itself; here, I give only a
very brief overview.

1.5.1 z ≪ 1

If the redshift z is small (z ≪ 1), then all distances are approximately the same;
D = (c/H0)z (H0 is usually given in the units km/s/Mpc). In this case, the
recession velocity is given by cz. For larger redshifts, in general the linearity of
distance with z breaks down, different definitions of distance (see above) result
in different values for the same redshift, and the recession velocity is no longer
given by cz. (In particular, it is not given by the relativistic Doppler formula
(Harrison, 1993; Helbig, 2017); rather, it is given by H0D

P, and can become
arbitrarily large.)

1.5.2 Special cases

There are analytic formulae for certain special cases. Particularly well known is
the one found by Mattig (1958) for λ0 = 0. A compendium of all known solutions
is given by Kayser, Helbig and Schramm (1997, appendix B); see Chap. 3.

1.5.3 Series expansions

For arbitrary values of λ0 and Ω0, series expansions were important as long as
redshifts were relatively low and/or computing time relatively expensive. Of his-
torical interest is the deceleration parameter q := −(R̈R)/(Ṙ2) ≡ R̈/(RH2) ≡
Ω/2 − λ, in particular q0 = Ω0/2 − λ0, since q0 is the first non-trivial term in
such expansions; Sandage (1970) once described cosmology as ‘a search for two
numbers’, namely H0 and q0. (Note that q = Ω/2 − λ holds in general and
thus the sign of q indicates whether the universe is accelerating, decelerating,
or neither at the time Ω and λ have their corresponding values; in particular,
the sign of q0 indicates whether the universe is accelerating, decelerating, or
neither at the present time. The definition of q0 includes a minus sign because
the assumption when the definition was first made was that the Universe would
be decelerating, and one wanted the parameter to be positive.)

1.5.4 Numerical calculations

One can of course compute solutions numerically. That was done for a large
range of cosmological models by Refsdal, Stabell and de Lange (1967), whose
publication contains results for 100 cosmological models, 10 values of Ω (they
used σ := Ω/2, not to be confused with σ as defined above) and 10 values of q;
in most cases, each model has one page of results. Various quantities, including
distances, related quantities, and the age of the universe, were calculated for
several redshifts.
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1.5.5 Elliptic integrals

The general solution for distance as a function of redshift (and for R(t)) is given
by elliptic integrals. This has long been known, but many authors simply noted
this fact without giving any details: “. . .may be integrated in terms of elliptic
functions, but it will be sufficient for our purposes to carry out a qualitative
integration” (Bondi, 1960); “. . . [l]ike Bondi we shall here only give a qualitative
solution. . . ” (Stabell and Refsdal, 1966). The first clear and detailed exposition
was given by Feige (1992).

1.6 Effect of small-scale inhomogeneities

All of the remarks on distances above assume that the universe is exactly ho-
mogeneous, at least as far as light propagation is concerned. It is certainly the
case that our Universe is not exactly homogeneous, and it is conceivable that
small-scale inhomogeneities affect light propagation even if the large-scale kine-
matics and dynamics are FLRW. In the homogeneous case, one uses the FLRW
model as determined by the cosmological parameters λ0 and Ω0 to calculate the
proper distance now of an object at a given redshift z. In the case of a spa-
tially flat universe, that corresponds to D(1 + z), where D is the angular-size
distance (or, alternatively, to DL/(1+ z), where DL is the luminosity distance).
If the universe is not spatially flat, curvature effects must be taken into account;
see Sect. 1.4 for details. Matter in the universe influences the distance, in this
method of calculation, only in that it influences the dynamics and hence the
expansion history.

Zel’dovich (1964a) (English translation: Zel’dovich, 1964b) developed an al-
ternative method for calculating the angular-size distance, based on a second-
order differential equation where one term describes the expansion of the uni-
verse and another the convergence due to matter in the beam. Historically, that
method has been important because it allows one to calculate the distance for
the case that the density of matter in the beam is less than (or perhaps even
if it is more than) the mean density of the universe. This thesis concerns the
history of that idea and its applications, and more-detailed descriptions of my
own work in this area. However, the method can of course also be used for
distance calculation in the homogeneous case.

1.7 This thesis

Part I includes this introduction, which puts distance calculation into the gen-
eral cosmological context, and Chap. 2, which is a review of the ZKDR12 dis-
tance, i.e. distance calculated assuming an FLRW background to describe the
geometry and expansion history, but with small-scale inhomogeneities which
affect light propagation and hence distances determined by angles; that was
written explicitly for this thesis but before submission published (incorporat-
ing some suggestions from the referees) in The Open Journal of Astrophysics
(Helbig, 2020a). Part II concerns the work of Kayser, Helbig and Schramm
(1997), which provides an overview of cosmological distances and discusses a
general second-order differential equation and its numerical implementation for

12ZKDR is an acronym introduced by Santos and Lima (2006) and referring pioneers in the
field of distance calculation in inhomogeneous universes, namely Zel’dovich, Kantowski, Dyer,
and Roeder, though I take the ‘D’ to refer to Dashevskii as well, my criterion for being part
of the acronym being having (co-)authored at least two papers on this topic, at least one of
which was published within ten years of the first paper on this topic (Zel’dovich, 1964a).
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their calculation, as well as a user’s guide (Helbig, 1996) for technical details.
Part III, consisting of just Chap. 5, demonstrates the potential danger of as-
suming that the Universe is completely homogeneous. Part IV discusses two
different situations where the degree of homogeneity can be important in grav-
itational lensing: Chap. 6 discusses time delays between different images of the
same source (which can be used to measure the Hubble constant H0) (Helbig,
1997), and Chap. 7 discusses the separation between images of the same source
as a function of the inhomogeneity and the cosmological parameters (Helbig,
1998a,b). Part V concerns the m–z relation for Type Ia supernovae: Chap. 8
shows how inhomogeneity can affect the measurement of cosmological param-
eters and, vice versa, how one can determine the inhomogeneity parameter η
from observations of the m–z relation for Type Ia supernovae (Helbig, 2015a).
Observations indicate that η ≈ 1, i.e. the Universe (behaves as if it) is essentially
homogeneous; Chap. 9 discusses a method to determine whether that is the case
just on average, as first pointed out by Weinberg (1976), or whether each line of
sight essentially traverses a fair sample of the Universe, so that η ≈ 1 for each
object observed (Helbig, 2015b).



Chapter 2

Calculation of distances in
cosmological models with
small-scale inhomogeneities
and their use in
observational cosmology: a
review

2.1 Context

This thesis is concerned with the calculation of distances in cosmological mod-
els with small-scale inhomogeneities. The first paper on this topic was written
about 57 years ago (Zel’dovich, 1964a,b). I started my master’s thesis work
at the Hamburg Observatory in 1992, almost precisely halfway between the
start of research in this field and now (and, since I was born in 1964, at the
halfway point of my life up until now.). My papers on this topic (Helbig, 1996;
Helbig and Kayser, 1996b; Kayser, Helbig and Schramm, 1997; Helbig, 1997,
1998a,b, 2015a,b) collected in this thesis, as well as conference presentations
with no additional material (Helbig, 2015c, 2016a), were all born out of neces-
sity: the development of the general code (Helbig and Kayser, 1996a; Helbig,
1996; Kayser, Helbig and Schramm, 1997) and applying it to specific problems
(Helbig and Kayser, 1996b; Helbig, 1997, 1998a,b, 2015a,b). When working on
those, I knew the literature enough to know that I was doing something new,
and cited some of the major papers to provide some basic context. For this the-
sis, I wanted to cite a general review of the topic, in order to present my work in
a broader context. Since I found none, I wrote one myself (Helbig, 2020a), which
is included in this chapter. It is published in The Open Journal of Astrophysics,
which is a new, online-only1 refereed journal. It is of similar quality as longer-
established journals such as Monthly Notices of the Royal Astronomical Society,
The Astrophysicsl Journal, and Astronomy & Astrophysics. Since many in the
fields of cosmology, astrophysics, and astronomy read papers mainly on arXiv,
it uses arXiv as a distribution mechanism, rather than re-inventing the wheel by
setting up its own. The webpage of the journal, https://astro.theoj.org/,

1Note that even some traditional journals are now online only.

15
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contains short descriptions, abstracts, and metadata of the papers as well as a
link to arXiv, where the paper itself can be read. Papers are listed there only
after they have been accepted via the normal refereeing process.
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ABSTRACT

The Universe is not completely homogeneous. Even if it is sufficiently so on large scales, it is very inho-
mogeneous at small scales, and this has an effect on light propagation, so that the distance as a function
of redshift, which in many cases is defined via light propagation, can differ from the homogeneous
case. Simple models can take this into account. I review the history of this idea, its generalization to a
wide variety of cosmological models, analytic solutions of simple models, comparison of such solutions
with exact solutions and numerical simulations, applications, simpler analytic approximations to the
distance equations, and (for all of these aspects) the related concept of a ‘Swiss-cheese’ universe.
Subject headings: cosmology: theory – cosmological parameters – distance scale – large-scale struc-

ture of Universe – cosmology: observations – cosmology: miscellaneous

1. INTRODUCTION

The Universe is not completely homogeneous; if it
were, there would be no observers and no objects to be
observed. Nevertheless, distances are often calculated as
a function of redshift as if that were the case, at least
as far as light propagation is concerned. Whether this
is a good approximation depends at least on the angu-
lar scale involved. The simplest more refined model re-
tains the background geometry and expansion history of
a Friedmann–Robertson–Walker (FRW) model but sep-
arates matter into two components, one smoothly dis-
tributed comprising the fraction η of the total density
and the other (1 − η) consisting of clumps, and consid-
ers the case where light from a distance object propa-
gates far from all clumps (this is equivalent to the case
of negligible shear). Over a period of more than 50 years,
various authors have described more-general versions of
this approximation with regard to cosmology, found an-
alytic solutions, discussed similar approximations, com-
pared it with exact solutions and with brute-force nu-
merical integration based on the gravitational deflection
of matter along and near the line of sight, examined the
assumptions involved, applied it to various cosmological
and astrophysical problems, and developed simple ana-
lytic approximations both for more-exact solutions (the
latter based on more-complicated analytic formulae or
on numerical integration) and for numerical simulations.
While there is no doubt that such an approximation is
valid for a universe with the corresponding mass distri-
bution, recent work indicates that our Universe is not
such a universe, but rather one in which the ‘standard
distance’ (i.e. calculated under the assumption of strict
homogeneity) is valid, even for small angular scales, at
least to a good approximation.
Further refinements of this approximation are not dis-

phillip.helbig@doct.uliege.be, helbig@astro.multivax.de

cussed here, e.g. weak gravitational lensing with non-
negligible shear, strong gravitational lensing1, or inho-
mogeneities so appreciable that they influence the large-
scale geometry and/or expansion history of the universe
(‘back reaction’). Similarly, extensions to the FRW mod-
els, such as some sort of ‘dark energy’ other than the
cosmological constant, are not considered; neither are
those which violate the Cosmological Principle, e.g. ones
in which we are within a large void, Lemâıtre–Tolman–
Bondi models, etc. I also omit wrong results or mislead-
ing conclusions unless they have been often cited without
all of the community noticing the mistake (either there
was no correction or the correction has been ignored).
The order is chronological in the sense that I discuss

all papers on the first topic to appear, then all on the
second topic, and so on.
I refer to the distance calculated based on the above ap-

proximation as the ZKDR distance, a term introduced by
Santos & Lima (2006) and referring to Zel’dovich, Kan-
towski, Dyer, and Roeder, though I take the ‘D’ to refer
to Dashevskii as well, my criteria for being part of the
acronym being having (co-)authored at least two papers
on this topic, at least one of which was published within
ten years of the first paper on this topic (Zel’dovich
1964a,b).
In gravitational lensing, it is clear that the approxima-

tion of a completely homogeneous universe with regard to
light propagation cannot be valid, since otherwise there
would be no gravitational lensing. Perhaps for this rea-
son, the ZKDR distance has been used more in gravi-
tational lensing than in other fields. Since α is almost
universally used to denote the gravitationl-lensing bend-

1 While some cases of strong gravitational lensing are discussed,
in most cases these are not concerned with the influence of the
lensing effect on the distance; rather, the approximations discussed
are used to calculate the distances involved, the strong lensing
being calculated explicitly.

http://arxiv.org/abs/1912.12269v1
mailto:phillip.helbig@doct.uliege.be, helbig@astro.multivax.de
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ing angle, Kayser et al. (1997), hereafter KHS, adopted
η instead of the more confusing α or α̃ used by some
other authors; since then, some authors other than KHS
have also used η instead of α or α̃ for the inhomogene-
ity parameter. In the following, I will use the notation
of KHS except occasionally when explicitly referring to
equations in the works of other authors, who use various
and sometimes confusing notation schemes—in particu-
lar, using z for anything other than redshift in a paper
on cosmology is very confusing (see Tab. 1).

2. ZEL’DOVICH (1964)

Zel’dovich (1964b, hereafter Z64)2 started the tradi-
tion; many (not only) today might find his paper some-
what idiosyncratic, difficult to follow, and wrong in parts,
but he introduced a simple and useful basic idea: local
inhomogeneities in the distribution of matter can lead to
significantly different angular-size and luminosity densi-
ties from those derived under the assumption of a perfect
FRW model.

2.1. Summary

The first attempt to calculate distances in a universe
with small-scale inhomogeneities is, as far as I know, that
of Z64. This begins a tradition of calculating distances
in a more realistic universe, namely one with small-scale
inhomogeneities, but where the large-scale dynamics is
given by an FRW model. In other words, it is a per-
turbed FRW model: The zeroth-order approximation for
cosmology, which is actually quite good (Green & Wald
2014), is that the Universe is described by a Robertson–
Walker metric (Robertson 1935, 1936; Walker 1935, 1937,
the latter paper by Walker is very often incorrectly cited
as having been published in 1936) which is a purely de-
scriptive kinematic idea with no physics content, merely
the characterization of a homogeneous and isotropic uni-
verse, and that the expansion history is given by one of
the models explored by Friedmann (1922, 1924) (hence
FRW), which are in turn based on relativistic cosmol-
ogy as introduced by Einstein (1917). Occasionally, the
term Friedmann–Lemâıtre–Robertson–Walker (FLRW)
is used to include a reference to Lemâıtre (1927); while
he made important contributions to cosmology, none of
them went beyond the work of Friedmann (1922, 1924)
with respect to the metric. ‘It is assumed that. . . the
amount of matter removed is small and the general mo-
tion is not affected.’ The main model considered is ‘a
flat Friedman [sic] model with pressure equal to zero’.
In modern notation, Ω0 = 1 and λ0 = 0. The physi-
cal model assumes that all matter exists in galaxies3 and
that distant objects are seen between galaxies, i.e. such
distant objects ‘do not have galaxies within the cone sub-
tended by them at the observer’. (The cone is often re-
ferred to as the beam.)
After the standard angular-size distance4 is derived via

a differential equation for the separation between two

2 This discussion follows the English translation of the Russian
original (Zel’dovich 1964a).

3 More precisely, that the mass of the intergalactic medium can
be neglected compared to the mass of matter contained in galaxies.

4 His equation (7) assumes the Einstein–de Sitter model (intro-
duced at the start of the appendix as the ‘flat Friedman [sic] model
with pressure equal to zero’); a casual reader might think that it
applies more generally.

light rays, the deflection due to a point mass, equa-
tion (12), is used to calculate the deviation from the
completely homogeneous case when the beam is devoid
of matter. This equation is generalized to a uniform den-
sity distribution to calculate the total deflection, which
is towards the outside since the removal of matter in
the beam formally corresponds to negative mass. This
leads to a differential equation which in turn leads to the
expression for the angular-size distance in the Einstein–
de Sitter model in the empty-beam case, denoted by f1
in Z64. It is noted that this function ‘increases mono-
tonically right up to the [particle] horizon (∆ = 1) where
it reaches the value 2/5’. The value 2/5 is exact, but
the right-hand side of the unnumbered equation between
equations (21) and (22), 1600, is too precise (though the
correct value rounded to four digits is 1599, much closer
than in the case discussed in Sect. 2.2).
It is noted that ‘the calculation can be repeated for

the case when ρ 6= ρc, i.e., for a hyperbolic or closed uni-
verse’, though this is given (without derivation) only for
the ‘limiting case ρ → 0, Milne model’. Equations (23)
and (24), for the Milne and Einstein–de Sitter models
respectively, are of course special cases of the formulae
derived by Mattig (1958), who gives a simple formula
for Ω0 = 0, essentially the same as that of Z64, and a
more complicated formula for Ω0 > 0 (though assuming
λ0 = 0); see KHS, equations (B24) and (B25). In the case
of Ω0 = 0, the value of η doesn’t matter. Equation (25),

f1 = 2/5[1− (1−∆)5/2] ,

is, in modern notation,

H0

c
DA =

2

5

[

1− (z + 1)−
5

2

]

(cf. KHS, equation (B15 (II))).

2.2. Remarks

There are several strange things about this paper.
First, the ‘remarkable feature’ that the angular-size dis-
tance has a maximum is noted. Second, it is claimed that
this ‘is caused by the curvature of space due to the mat-
ter filling the universe’, which is strange because later in
the paper the main model considered is a flat universe,
i.e. one with no spatial curvature. Third, it is pointed
out that the maximum ‘occurs only when there is mat-
ter within the cone subtended by the object at the point
of observation’. Fourth, for a modern reader, the nota-
tion is extremely bizarre; Tab. 1 shows the equivalents
in modern notation of the quantities used. I now discuss
each of these in turn.
What is remarkable about the fact that the angular-

size distance has a maximum at some redshift? In mod-
ern notation, the angular-size distance DA is, by defi-
nition, l/θ, where l is the physical projected length of
the object and θ the angle which it subtends, i.e. the
angle at the observer formed by light rays from both
ends of the object.5 The triangle made by the object
and the light rays retains its shape as the universe ex-
pands. Thus, ignoring curvature effects for the moment,

5 See the paper by KHS for definitions of various cosmological
distances which are consistent, use modern notation, and deviate
as little as possible from the approximate consensus.
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TABLE 1
Note that t, t0, c, ρ are the same in the Z64 and modern
notations. Z64 distinguishes between Θ and Θ1 for the
cases η = 1 and η = 0, respectively, though in both cases
the quantity is the observed angular size. Similarly, Θ2 is

the observed angular size in the case of strong
gravitational lensing. Except in the case of f0, quantities

dependent on the cosmological model assume the
Einstein–de Sitter model.

Z64 notation modern notation

Θ θ
Θ1 θ
Θ2 θ
∆ 1− (1 + z)−1

(1 −∆)−1
− 1 z

ω1 ω0

ω0 ω
r l or ℓ
f Hc−1DA (η = 1)
f1 Hc−1DA (η = 0)
f0 Hc−1DA (Milne model)
κ G
H H0

R DA (η = 1)
R1 DA (η = 0)
Mps Mpc

the angular-size distance is the proper distance to the
object at the time the light was emitted: The proper
distance DP (sometimes written Dp or DP) is the dis-
tance which one could, in a gedankenexperiment , mea-
sure with a rigid ruler instantaneously (such that the
distance does not change during the measurement due
to the expansion of the universe). As such, it changes
with time due to the expansion of the universe. Often,
the co-moving distance is defined as the proper distance
at the present time. Thus, the proper distance at a dif-
ferent time is simply the current proper distance divided
by (1 + z), the time being that when the light of an ob-
ject with redshift z was emitted. This agrees with the
definition used by many authors, such as Berry (1986),
who defines it as ‘the distance measured with a standard
rod or tape, in a reference frame where the events oc-
cur simultaneously’. Beware that sometimes the same
distance is denoted by different symbols, e.g. dprop by
Weinberg (1972), L by Harrison (1993), d by Sandage
(1995), D by Davis & Lineweaver (2004), dp by Heacox
(2015), dp by Ryden (2017), and sometimes also by dif-
ferent names, though it is clear from the discussion that
the same distance as that called the proper distance by
Weinberg (1972) is being discussed, e.g. ‘distance be-
tween two fundamental particles at time t’ (D1) by Bondi
(1961), ‘tape-measure distance’ (L) by Harrison (2000),
‘instantaneous physical distance’ by Carroll (2019); the
term ‘line-of-sight comoving distance’ is also sometimes
used, as opposed to the ‘transverse comoving distance’,
which is very confusingly called the ‘angular size dis-
tance’ by Peebles (1993), who uses the term ‘angular di-
ameter distance’ for what is called the angular-size dis-
tance by almost everyone else—indeed, the two terms
are usually considered to be equivalent; the transverse
comoving distance is the same as the proper-motion dis-
tance; see KHS.
At small redshifts, as the redshift increases, the object

O

R r
x

Rχ

DP

Fig. 1.— Although the corresponding definitions are valid for
models with k of 0 and −1 as well, easiest to visualize are distance
definitions for the case k = +1. The universe can be thought of as
a curved three-dimensional space, corresponding to the circle. Two
dimensions are hence suppressed, so that the two dimensions in the
plane of the figure can show the universe and its spatial curvature.
R is the scale factor of the universe, as usual chosen to correspond
to the radius of curvature. The observer is located at the top of
the circle at O and observes an object located at x. DP, the length
of the arc, is the proper distance to that object. For η = 1, the
angular-size and luminosity distances (as well as other distances
not discussed here such as the proper-motion distance and parallax
distance) depend on r = R sin(χ) in a relatively simple manner (see
KHS). Note that χ is constant in time; one can use it or σ = r/R,
which is also constant in time, as the basis for a so-called co-moving
distance.

was farther away (in proper distance) when the light was
emitted, thus the angular-size distance increases with
redshift. However, at large redshifts, light was emit-
ted when the proper distance was small, long ago, but,
due to the more rapid expansion of the universe in the
past, is reaching the observer just now. Thus, at large
redshifts, the angular-size distance, being the proper dis-
tance when the light was emitted, is small. This explains
the ‘remarkable’ maximum. Another way of thinking of
this is that the angular-size distance approaches zero as
z approaches 0, but also as z approaches ∞, because the
scale factor R (see Fig. 1) approaches 0 in such cases; in
other words, the maximum in the angular-size distance
depends on a finite particle horizon. Of course, not all
cosmological models have a finite particle horizon and
those that don’t also have no maximum in the angular-
size distance. This applies only to the standard distance,
i.e. assuming complete homogeneity. For the ZKDR dis-
tance, it is of course possible that there is no maximum
in the angular-size distance even though the universe has
a particle horizon.
The above explanation is exact in a spatially flat uni-

verse, thus contradicting the claim that the maximum is
somehow caused by the curvature of space. With spa-
tial curvature, the angular-size distance corresponds not
to the proper distance when the light was emitted, but
rather to the coordinate distance r, defined as the prod-
uct of the scale factor R and sin(χ), χ, or sinh(χ) for
k equal to +1, 0, or −1, i.e. positive, zero, or negative
spatial curvature, respectively; χ = DP/R (see Fig. 1.)
This is analogous to the correction applied due to the
curvature of the surface of the Earth when calculating
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the length along a parallel of latitude from the differ-
ence in longitude betweem the ends; the length (in the
limit of small θ) is not DPθ but rather R sin(χ)θ, where
χ is DP/R, DP being the distance measured along the
surface of the Earth (‘as the crow flies’) and R is the
radius of the Earth (assumed to be perfectly spherical).
(Note that χ = π/2 − φ, where φ is the geographic lat-
itude, if we think of the observer as being at the north
pole.) Thus, this distance at first increases with increas-
ing DP, though more slowly than in the flat case, reaches
a maximum at the equator, then decreases to zero at the
opposite pole.
Fig. 1 illustrates various distances. One can see that

for small χ, DP and r are approximately the same (ex-
actly so in the limit DP = r = 0). When χ reaches 90
degrees, r (and hence the angular-size distance) reaches
its maximum. For larger χ, the angular-size distance de-
creases, reaching 0 for χ = 180◦. It then increases again,
reaching its maximum again at χ = 270◦, then decreases
again, reaching 0 at χ = 360◦. The maximum value of χ
depends on the cosmological model. Light travels along
the circle from x to O. In an expanding universe, R was
smaller when the light was emitted, hence, the distance
defined via light-travel time is smaller than DP, while
they coincide in a static universe. The ratio R0/Re, the
scale factor now compared to the scale factor when the
light was emitted, is equal to 1 + z. Distances related
to r depend on η, while DP and the distance defined
via light-travel time do not (the latter at least to a very
good approximation.) (More precisely, the angular-size
distance and other distances can be calculated relatively
easily from r for η = 1. For η 6= 1, r still exists, but the
relation between r and the angle defining the distance is
changed, so the distance can no longer be simply calcu-
lated from r.) For η = 1, since DA = r/(1+z), it is clear
that for z = ∞ the angular-size distance must be zero.
That is another mechanism for the presence of a maxi-

mum in the angular-size distance. Consider first a static
universe with positive spatial curvature (the Einstein
model) and an observer at the ‘pole’. For increasing
proper distance, the angular size of a standard rod first
decreases (i.e. the angular-size distance increases) up to
a minimum at the ‘equator’, then increases again, be-
coming infinite at the opposite ‘pole’. (This can con-
tinue indefinitely, with the angular size decreasing again
as the proper distance further increases until the ‘equa-
tor’ is reached (but at the ‘opposite side’), then increas-
ing again until the object returns back to the observer,
then decreasing again during the second loop around the
universe, and so on.) Of course, in a static model there
is no redshift, but there are quasi-static models where
the universe expands very slowly. Large differences in
proper distance correspond to small differences in red-
shift, and hence small differences in the scale factor at
the time the light was emitted. If light is received from
an object near the opposite ‘pole’, it will obviously have
a much smaller angular-size distance than one near the
‘equator’, even though the scale factor was only slightly
smaller when the light was emitted in the former case
(thus it will have a slightly larger redshift). (Our Uni-
verse never went through such a quasi-static phase, so
the first effect is more important in practice.)
As noted above, the claim that the maximum is due

to the curvature of space is strange, as it can exist in
a flat universe; in particular, it exists in the first model
considered in the paper, the Einstein–de Sitter model,
which is spatially flat. (Perhaps he meant ‘spacetime’
rather than ‘space’; it is not a wrong translation, since
the original also has the Russian word for ‘space’ and
not ‘spacetime’.) The third point is more interesting: a
maximum exists only if the beam is not empty. Since
Z64 seemed surprised that the maximum exists, while I
have shown above that it is perfectly natural to expect
it, perhaps a better formulation is that the maximum
disappears in the empty-beam case. I return to this in
Sect. 3.1.
We are so used to the redshift z as the principle ob-

servable quantity and proxy for distance that the use of
∆ = 1 − 1/(1 + z) is rather confusing. It does have the
interesting property, though, that it ranges from 0 at
the observer to a maximum of 1 for light emitted at the
big bang. It follows from the simple definition given by
equation (8) that ∆ = (ω0 − ω1)/ω0, but note that ‘ω1

is the frequency of light received by the observer at time
t0 and ω0 the frequency of light emitted by the object
at time t’. Usually, ‘0’ refers to the time of reception,
but in any case various quantities almost always have
the same indices to refer to the same times.6 This is
not a misprint, though, since other formulae which fol-
low from this definition can be shown to be equivalent to
more-familiar formulae; e.g. equation (9) corresponds to
equation (B24) in the paper by KHS for Ω0 = 1, i.e. the
angular-size distance in the (completely homogeneous)
Einstein–de Sitter model, denoted by f in Z64; in modern

notation, this is cH−12((1+ z)−
1

2 − (1+ z)−
3

2 ). There is
something of a misprint in equation (2) of Z64: the char-
acter before the exponent ‘2’ in the denominator, which
looks like a dagger in a slanted font, should be t, and it
is not part of the exponent, e.g. correct is

ρ =
1

6πκt2
;

perhaps the lower part of the t has not been printed;
this is correct in the Russian orginal (Zel’dovich 1964a).
(Equation (2) in Z64 follows from the standard definition
Ω = (8πGρ)/(3H2) for Ω = 1 and using equation (3) to
express H in terms of t.)
The bulk of the paper is the appendix (two and a half

pages), which contains all the equations. The first one-
and-one-half pages are essentially a non-mathematical
summary, but also include several interesting points.
Figures 3 and 4 are never referred to in the text (neither

in the translation nor in the original). Figure 3 seems to
show the case in which the two ends of an object are
multiply imaged, while figure 4 seems just to show the
definition of an angle. Note that figure 6 is incorrect in
that it appears that f1 has a maximum for ∆ < 1; the
angular-size distance never has a maximum for η = 0
(see Sect. 3).
The intergalactic medium is said to contain neutrinos

and gravitons. Interestingly, gravitons have a rest-mass

6 There is perhaps some justification for using the subscript 0 to
correspond to the time of emission when the frequency is discussed,
since times earlier than the present correspond to a higher fre-
quency, though shorter wavelengths and smaller quantities based
on length; this probably creates more confusion than it avoids,
though.
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of 0 and neutrinos were believed to as well when the
paper was written. Such particles thus correspond to a
different equation of state (w = 1/3), though in this case
that is irrelevant since the density is assumed to be neg-
ligible. If the density of such matter is not negligible,
then matters become more complicated. In general, the
term ρ above is ρ+p, where p is the pressure. In the case
of ordinary matter (‘dust’), p = 0, hence ρ is sufficient.
In the case of the cosmological constant, which can be
thought of as a perfect fluid with ρ = −p, the two terms
cancel; the only effect of the cosmological constant on
the ZKDR distance is due to its effect on the expansion
history of the universe. Other equations of state can in
principle be taken into account in the ZKDR ansatz by
including the corresponding ρ+p terms, but in such cases
the concept of a single parameter η would be inappropri-
ate, since one would not expect the various components
to clump in the same manner.
Gravitational lensing is mentioned for the case when

there is a galaxy within the cone, confusingly citing Fritz
Zwicky (see below in this section). In this case, it is
noted that no general expression can be derived, but that
(the equivalent of) the angular-size distance as a function
of z is given by a weighted mean, though this is not
defined, much less derived. Though worded somewhat
confusingly, it is pointed out that a mass outside the
cone acts, to first order, as a pure-shear gravitational
lens, distorting though not changing the area subtended
by the object and (due to the conservation of surface
brightness in gravitational lensing7, implicitly assumed
here) thus also not changing the apparent magnitude.
His equation (11) looks suspicious because the right-

hand side of 1200 appears to be too round a number. To
the same precision, the correct value is 1184. (A more
precise value is 1184.365. Of course, this much precision
is not needed, but usually all quoted figures are correct.
If two significant figures are sufficient, then 1.2 × 103

would make more sense.) Units, not explicitly men-
tioned, are Mpc. (Note that the units of H are ‘km/sec ·
Mps’, normally written ‘km/s/Mpc’ or ‘km/(s·Mpc)’ or
‘km s−1Mpc−1’.)
As mentioned above, it is noted that ‘the function f1

increases monotonically right up to the [particle] horizon
(∆ = 1) where it reaches the value 2/5’. However, the
plot of this function in figure 6 clearly shows a maximum
for ∆ < 1, after which the value decreases somewhat.
The reference Zwicky (1937c) is wrongly assigned the

year 1927. That reference contains only a very short and
general discussion on ‘nebulae as gravitational lenses’
and does not address the phenomena mentioned in the
text. It does say that a more detailed description will be
provided in Helv. Phys. Act., but that is not the paper
in that journal mentioned in reference 4 (Zwicky 1933), a
paper in German on various aspects of the redshift of ex-

7 Since gravitational lensing conserves surface brightness, mag-
nification (increase in area) implies amplification (increase in ap-
parent brightness, i.e. energy per time from the source received at
the observer). In this sense, the terms are interchangeable. How-
ever, one or the other term can be more appropriate depending on
the phenomenon discussed, e.g. ‘amplification’ when discussing the
change in apparent magnitude of a lensed source and ‘magnifica-
tion’ when discussing the size of an extended source. In the case
of the number of sources in a certain range of apparent magnitude
in a given area of sky, both effects play a role, and whether there
is an increase or decrease depends on the luminosity function.

tragalactic nebulae, which doesn’t mention gravitational
lensing at all; among other things, Zwicky points out
that the dispersion of velocities of galaxies in the Coma
cluster indicates that the density of dark matter must
be at least 400 times that of luminous matter—and, of
course, this was written before Zwicky (1937c). Zwicky
(1937a,b) are the (two short) papers which discuss nebu-
lae as gravitational lenses, both cited by Zwicky (1937c).

2.3. Discussion

Z64 presented analytic formulae for the angular-size
distance for three cosmological models: Ω0 = 1 and λ0 =
0 (Einstein–de Sitter) for the values η = 1 (standard
distance) and η = 0 (the main result of that work), as
well as for Ω0 = 0 and λ0 = 0 (the general-relativistic
equivalent of the Milne model; since the density is 0 in
this case, the value of η doesn’t matter).
Z64 alerted people to the fact that the standard dis-

tances, which assume complete homogeneity, are perhaps
not appropriate, and demonstrated that effects due to a
universe with small-scale inhomogeneities can be appre-
ciable. He also introduced the idea of calculating the
effect as a negative gravitational-lens effect, based on
simplifying assumptions rather than calculating it for an
analytically soluble (but perhaps less realistic) case.

3. DASHEVSKII & ZEL’DOVICH (1965)

Dashevskii & Zel’dovich (1965, hereafter DZ65)8 de-
rived an expression for the angular-size distance for the
case of a completely empty beam for arbitrary values of
Ω0 (λ0 = 0 is still assumed). Compared to Z64, it is
more general with respect to the large-scale cosmological
model. They noted that the expression does not have a
maximum.

3.1. Summary

As noted above, Z64 claimed that the maximum in the
angular-size distance (in the case of the Einstein–de Sit-
ter model studied) ‘is caused by the curvature of space
due to the matter filling the universe’. This is somewhat
dubious, since the Einstein–de Sitter model is spatially
flat. DZ65 have a perhaps somewhat better formulation,
claiming that the ‘effect depends on the bending of light
rays by matter present within the light cone’ and as-
sert that ‘it follows from this that for objects in whose
light cone there is by chance no matter there should be
no minimum angular diameter right up to the [particle]
horizon’. The claims are true, but one can ask whether
their explanation is the best one. (As will be discussed
in Sect. 4.1, there is always a maximum as long as the
beam is not completely empty, though the emptier the
beam, the higher the redshift of the maximum.)
In addition to the wider range of cosmological models

considered, DZ65 derive the expression via a different,
though equivalent, route. No analytic solutions are pre-
sented, but f and f1 are plotted as functions of ∆ for
a few values of Ω0, and for a few more values of Ω0,
∆max (the value of ∆ at which the maximum in the
angular-size distance for η = 1 occurs) and the values
of f at ∆max and f1 at ∆ = 1 are tabulated. In addi-
tion, there is a column for Ω0 = ∞, where ∆max = 0.25,

8 This discussion follows the English translation of the Russian
original (Dashevskii & Zel’dovich 1964).
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f(∆max) = 0.65/
√
Ω and f1(∆ = 1) = 1.18/

√
Ω. This is

not mentioned in the text, but is apparently an approxi-
mation for Ω0 ≫ 1. I have checked this numerically and
found that their approximation answers pretty nearly.
(Of course, ∆max also depends on Ω0, though less sensi-
tively than f(∆max) and f1(∆ = 1).)
Note that an analytic solution, though a rather com-

plicated one, for the case λ0 = 0 and η = 0 does exist,
first derived by Dyer & Roeder (1972); cf. KHS, equa-
tion (B15). For λ0 = 0 and η = 1, the formulae derived
by Mattig (1958) apply.9

Several interesting features are pointed out in the text
and/or are obvious from the figure (if Ω0 is not men-
tioned, then the effect is independent of the value of Ω0):

• The angular-size distance for η = 0 increases mono-
tonically with redshift.

• The angular-size distance for η = 0 is less than
the light-travel–time distance c(t0 − t) and larger
than the angular-size distance for η = 1 (at least
for λ0 = 0).

• The angular-size distance for η = 0 has its maxi-
mum value at z = ∞.

• For η = 0, dD/dz = 0 at z = ∞.

• The angular-size distance for η = 1 has a maximum
at z < ∞.

• The value of the maximum of the angular-size dis-
tance for η = 1 increases with decreasing Ω0.

• The redshift of the maximum of the angular-size
distance for η = 1 increases with decreasing Ω0.

• The angular-size distance for η = 1 is 0 at z = ∞.

• Both for η = 0 and η = 1, the value of DA at any
redshift increases with decreasing Ω0.

• For given values of Ω0 and z, DA for η = 0 is always
larger than DA for η = 1.

DZ65 end with remarks on the ‘validity of the method
proposed in the paper’, the validity being guaranteed by
the fact that they ‘are adding small effects in the linear
region’.

3.2. Remarks

The title is also confusing, since there is no paper with
a similar title but with ‘I’ instead of ‘II’. It is clear from
the first sentence, though, that Paper I is Z64.
The theme of confusing notation continues. What Z64

called r, DZ65 call z. While r is often used for a length
of some sort, this is less common for z. Of course, the
fact that z is normally used for the redshift adds to the
confusion. What Z64 called Θ, DZ65 call φ. DZ65 adopt
the usual convention of using the suffix 0 to denote the
present time, in this case the time of observation and the
time the radiation reaches the observer. Hence, what Z64

9 Mattig gave formulae for Ω0 > 0 and for Ω0 = 0. Not only does
one need two formulae, but the formula for Ω0 > 0 is numerically
difficult for Ω0 ≈ 0 (Peacock 1999). Both can be avoided via a
more complicated formula which covers both cases (Terrell 1977).

called ω1, DZ65 call ω0, and what Z64 called ω0, DZ65
call ωt.
Criticizing Wheeler (1958), DZ65 note that the claim

that the maximum occurs only in the case of a spatially
closed universe is wrong.
I have calculated the values in their table 1, but in two

cases find different values, namely 0.42 (0.421) instead of
0.40 for f(∆max) for Ω0 = 1/10, and 0.24 (0.237) instead
of 0.23 for f1(∆ = 1) for Ω0 = 10. I suspect that the
former is a misprint while the latter could be as well, or
possibly due to roundoff error in a less accurate numerical
calculation.

3.3. Discussion

DZ65 presented an integral for the angular-size dis-
tance for cosmological models with λ0 = 0 but arbitrary
Ω0 for η = 0 and compared the corresponding distances
to those with η = 1. Although no analytic solution was
presented, DZ65 extended to η = 0 the idea of calculat-
ing distances for various values of Ω0 (though still setting
λ0 = 0). Around the same time, much more extensive nu-
merical calculations were done by Refsdal et al. (1967),
only for η = 1 but for several values of Ω0 and λ0.

4. DASHEVSKII & SLYSH (1966)

Dashevskii & Slysh (1966, hereafterDS66)10 general-
ized the method of Z64 and DZ65 to the more realistic
case that the beam is not completely empty, but only for
the Einstein–de Sitter model.

4.1. Summary

The empty-beam case is criticized as being too unreal-
istic, as there will always be some intergalactic matter;
this will mean that there will always be a maximum in
the angular-size distance. DS66 derive, in their equa-
tion (2), the second-order differential equation which is
the basis for all further work in this field

z̈ − ȧ

a
ż + 4πGρgz = 0 , (1)

‘which determines the linear distance z(t) between rays’,
with ρg = αρ (the subscript g refers to the smooth com-
ponent, considered as a ‘gas at zero pressure that fills all
space uniformly’ [my emphasis], the rest of the ‘matter
being concentrated in discrete galaxies’); a is the scale
factor and G the gravitational constant. Compared to
Z64 and DZ65, they allow α (in the notation of KHS, η)
to take an arbitrary value 0 ≤ α ≤ 1; η is thus completely
general. The cosmological model is implicit in the term
ȧ/a, in principle allowing one to study any cosmological
model in which ȧ/a can be calculated, but DS66 then re-
strict themselves to the Einstein–de Sitter model for the
subsequent discussion, presenting a completely analytic
solution for the angular-size distance for this cosmolo-
gical model, namely the first unnumbered equation in
DS66, which is a generalization of equation (10) in Z64.
DS66 point out that, for arbitrary 0 < η ≤ 1, the

angular-size distance has a maximum at finite z and the
angular-size distance goes to 0 for z = ∞. Also, the

10 This discussion follows the English translation of the Russian
original (Dashevskii & Slysh 1965).
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smaller the fraction of homogeneously distributed mat-
ter, i.e. the smaller η, the higher the redshift of this max-
imum. Without proof, it is stated that this result also
holds in the case of non-zero pressure.

4.2. Remarks

It is not clear why equation (3) is the last numbered
equation; perhaps because the following equations are
not referred to in the text (but, like the others, are of
course part of the text). Also confusing is the expression
0 ≤ α ≤ 1.1 ≤ k ≤ 5, which should be 0 ≤ α ≤ 1,
1 ≤ k ≤ 5. As in Z64, f̃1

11, i.e. the angular-size distance
for η = 0, is incorrectly shown as having a maximum at
finite z (a mistake also made by DZ65, though barely
perceptibly; in all cases, these are probably due to the
figures having been drawn by hand). Also, there should
be no inflection in the dashed curve.

4.3. Discussion

The generalization to an arbitrary value of η is obvious;
less obvious is the relatively simple analytic solution for
arbitrary η for the Einstein–de Sitter model.

5. OTHER PAPERS I

(Being discussed in an ‘other papers’ section does not
imply that the paper lacks quality or influence; quite the
opposite, in fact. Rather, these sections discuss papers
which are not directly relevant to the main theme of this
review, but nevertheless played some role in it.)
Kristian & Sachs (1966) discuss what I like to call

‘theoretical observational cosmology’ for very general
(i.e. anisotropic, inhomogeneous) cosmological models,
not necessarily based on general relativity (GR) (of which
the FRW models—homogeneous and isotropic models
based on GR—are special cases), mainly for inhomo-
geneities on the scale of 109 light-years or more (with
small-scale inhomogeneities considered to be smoothed
out, i.e. in some sense the reverse of the assumptions
above). Many results, after ‘straightforward, though
somewhat tedious’ calculations, are given in terms of se-
ries expansions. A key result is that the relation

dA = r2dΩ

(in their notation), where ‘dA is the intrinsic cross-
sectional area of a distant object; r is a measured quan-
tity, the “corrected luminosity distance,” defined by
equation (19); and dΩ is the meaured solid angle sub-
tended by the distant object’ is very general and holds
in all cosmological models, whether or not they are based
on GR. At the time, observations were not good enough
that one could be sure that the Universe is actually very
well described by an FRW model, hence the emphasis on
generality and discussion of possible observations which
could be used to determine the many more parameters
than those needed to specify an FRW model.
Bertotti (1966) cites Z64 and DZ65 (erroneously mak-

ing Dashevskii an author of Z64 as well), but considers
not just the increase in the angular-size distance as com-
pared with the standard FRW case, but also the decrease
(corresponding to amplification) due to the gravitational-
lens effect, both strong lensing and weak lensing, i.e. ‘the

11 It is unclear why D66 use f̃ while Z64 and DZ65 use f .

small, but distance-dependent, brightening caused by
near galaxies’ which leads to a ‘statistical spread in lu-
minosity’, shown to be proportional to (DA)3 for small
distances. The main result is an expression for appar-
ent luminosity as a function of redshift, noting that, in
the inhomogeneous case, the first correction is quadratic
in redshift and produces a dimming, but for higher val-
ues of z the brightening due to gravitational lensing be-
comes more important. That expression is for arbitrary
Ω0

12 and arbitrary η (called f), i.e. the case consid-
ered by DS6613 but expressed as a series expansion. It
is also noted that, to first order, the correction to the
Euclidean relation to the expression for the number of
sources brighter than a given apparent luminosity does
not depend on η.
Gunn (1967a) also examined statistical fluctuations

due to gravitational lensing, but in position, not ap-
parent magnitude. This was done in more detail by
Fukushige & Makino (1994), who pointed out that ‘the
distance between nearby photons grows exponentially be-
cause the two rays suffer coherent scatterings by the same
scattering object’. Gunn (1967b) extended the discus-
sion to fluctuations in apparent magnitude. Feynman, in
a colloquium at Caltech, had discussed a scenario simi-
lar to that discussed by Z64, concentrating on the effects
on angular diameters, apparently not realizing that ap-
parent magnitude would also be affected. For the topic
of this review, the most important result is the realiza-
tion that, for large-enough redshifts, average luminosi-
ties and angular sizes will be the same as in the strictly
homogeneous case, because not all lines of sight can be
underdense, though there will be a scatter in their val-
ues compared to those in a strictly homogeneous uni-
verse. Babul & Lee (1991) discussed Gunn’s formalism
in more modern notation, adopting some simplification
and deriving some new analytic results. Although only
the Einstein–de Sitter model was considered (with—as
extreme positions—a spectrum of mass fluctuations de-
rived from CDM and a white-noise spectrum), their con-
clusions probably apply more generally, namely that the
dispersion in amplification due to large-scale structure is
negligible, while that on small scales depends strongly on
the nature of the distribution.
Refsdal (1970) also discussed changes in the apparent

luminosity and shape of distant light sources due to in-
tervening inhomogeneities, but using a numerical ray-
tracing approach rather than the more analytic methods
of the works discussed above. (As would become clear
later, this allows the effect of very concentrated masses,
e.g. stars, to be taken into account, as well as general
fluctuations due to galaxies and large-scale structure. In
other words, it can handle strong lensing as well.) Ray-
tracing simulations were done for a static flat universe
(with all the mass in point massees, e.g. η = 0), but
the results were generalized to an interesting collection

12 As was the custom at the time, this was written in terms
of q0, i.e. q0 = Ω0/2 under the assumption λ0 = 0. The reason
that q0—in general, q0 = Ω0/2 − λ0 (or, as was common at the
time, q0 = σ0 − λ0, where σ0 = Ω0/2)—was used is that q0 is,
after H0, the next-higher term in series expansions of observational
quantities as a function of redshift (e.g. Hoyle & Sandage 1956)

13 Since Bertotti (1966) was submitted around the time that
DS66 appeared, presumably the former was derived independently
of the latter and vice versa.
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of cosmological models: Einstein’s static universe14, two
models with λ0 = 0 (Ω0 = 0.3 and Ω0 = 2), and a model
with Ω0 = 0.4 and λ0 = 1.7 (a spatially closed model
which will expand forever with an antipode at z ≈ 4).
In retrospect, one conclusion was very prescient:

An interesting aspect of the problem is the
possibility of using the effect to obtain infor-
mation on the mass distribution in the Uni-
verse. Even if the effect is not observable af-
ter some systematic efforts to detect it, one
should be able to determine upper limits on
the number of condensed and massive objects
in the Universe.

Press & Gunn (1973) pointed out that (at least for
λ0 = 0) if Ω0 is due mainly to compact objects, then the
probability is high that a distant source will be multiply
imaged, independently of the mass of the objects (which
does, of course, set the scale of the image separation).
(At the time, it was not clear that most of Ω0 consists of
non-baryonic matter, and, since arguments against a sub-
stantial density of intergalactic gas had been presented, it
seemed natural to look for the missing matter in compact
objects.) A more detailed analysis shows that the lack
of dependence on the mass is exact, while the image sep-
aration has a weak dependence on Ω0.

15 In contrast to
the other papers in this section and that in the next sec-
tion, the emphasis is on detecting the scattering masses,
not the influence of those masses on observable proper-
ties of the sources. Nevertheless, the ZKDR distance was
used, in particular the extreme empty-beam case, with
the lensing effect of individual clumps explicitly taken
into account.

6. KANTOWSKI (1969)

Kantowski (1969, hereafter K69) took a some-
what different approach, using Swiss-cheese models
(Einstein & Straus 1945, 1946). These are arguably less
realistic than the approximation used in the papers dis-
cussed above, since in these models clumps of matter are
surrounded by voids with ρ = 0. However, since these
models are exact solutions of the Einstein field equa-
tions, the validity of approximations used to calculate the
angular-size distance is not an issue (though, of course,
one can question the validity of this approximation to
the distribution of matter).

6.1. Summary

‘The Swiss-cheese models are constructed by taking a
Friedmann model (p = Λ = 0), randomly removing co-
moving spheres from the dust, and placing Schwarzschild
masses at the “center” of the holes.’ K69 makes five real-
istic assumptions in order to facilitate calculations: the
Schwarzschild radii of the clumps are very small com-
pared to their opaque radii, the size of the Swiss-cheese
hole is much larger than the opaque radius, the change

14 Because it is static, λ0 and Ω0 are infinite, since H0 = 0
(λ0 = Λ/(3H2

0
) and Ω0 = 8πGρ/(3H0

2)). Both the density ρ and
the cosmological constant Λ are positive, Λ = 4πGρ.

15 Since the cross section for strong lensing is proportional to the
mass of the lens, the distribution of masses does not matter. The
weak dependence on Ω0 is due to the effect of Ω0 on the angular-
size distance.

in the scale factor of the universe is negligible during the
time it takes light to cross a hole, there are enough holes
so that the change in the scale factor is negligible during
the time between interactions with two holes, and the
mass density of the opaque clumps is independent of the
clump (though not all clumps have the same mass).
K69 calculated the bolometric luminosity, which is in-

versely proportional to the square of the luminosity dis-
tance. Since the luminosity distance is larger than the
angular-size distance by a factor of (1 + z)2, it is easy
to compare his results with those discussed above. At
least under the assumptions mentioned above, the rela-
tion between scale factor and redshift, 1 + z = R0/R
(R is the scale factor of the universe and, as usual, the
subscript 0 denotes the currecnt value), holds to a high
degree of accuracy. (The previous discussions mentioned
above essentially assume, though correctly, that this is
the case.)
K69 used the optical scalar equations (Sachs 1961)

as the starting point for his calculations, as did Gunn
(1967a). These describe the expansion, shear, and twist
of the cross section of a beam of light due to the gravi-
tational effect of matter on the beam, and are a special
case of the Raychaudhuri equation (Raychaudhuri 1955).
Historically, when observational cosmology was done

with objects at low redshift, cosmology was ‘a search for
two numbers’ (Sandage 1970), H0 := Ṙ/R (giving the

scale) and the deceleration parameter q0 = −R̈R/Ṙ2 ≡
−R̈/(RH2) = Ω0/2−λ0 (describing the first higher-order
effects). K69 points out that in the case that most mat-
ter is in clumps (i.e. η ≈ 0), a real value of q0 = 2.2
would, were one to wrongly assume the standard dis-
tance, appear as q0 = 1.5. This foreshadows later work,
for example as discussed in Sect. 27, stressing the impor-
tance of taking inhomogeneities into account in classical
observational cosmology, at least as long as a significant
fraction of matter is in clumps and the Universe is simi-
lar to the approximations used to calculate distances in
such a case.

6.2. Remarks

Both the approach of K69 and that discussed in the
previous sections have clumps of matter embedded in
a smooth distribution of matter. However, because the
Swiss-cheese approach of K69 has the clumps surrounded
by voids, the mass of the clumps being equal to the mass
removed from the voids, the density of the smooth com-
ponent is the same as the overall density ρ, whereas in
the previous approach the density of the smooth compo-
nent is ηρ, while that of the clumps is (1 − η)ρ. Thus,
light propagating outside the holes will propagate exactly
as in the completely homogeneous case; the defocussing
occurs only because the beam crosses some holes.

6.3. Discussion

K69 has been very influential, having at the time of
writing more than 180 citations, almost as many as the
first three papers discussed above together, although
these papers are easier to understand and good enough
for most purposes; the fact that the latter have fewer ci-
tations is perhaps due to their having been published in
(a translation of) a Russian journal.
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7. DYER & ROEDER (1972)

Dyer & Roeder (1972, hereafter DR72) discussed the
completely empty-beam case; despite starting out with
an expression for arbitrary Ω0 and λ0 (using the standard
notation at the time with σ0 = Ω0/2 and q0 = σ0 − λ0),
results were presented for σ0 = q0, i.e. Λ = 0 (and hence
λ0 = 0).

7.1. Summary

For an integral expression for the angular-size distance,
analytic solutions are presented for the three cases Ω0 <
1, Ω0 = 1, and Ω0 > 1; only the much simpler solutions
for Ω0 = 1 (Z64) and Ω0 = 0 (Mattig 1958) (see also
Z64) were previously known. As was also pointed out by
DZ65, there is no maximum in the angular-size distance
for η = 0. The famous result of Etherington (1933),

DL = (1 + z)2DA , (2)

is invoked to note that an empty beam leads to a lower
apparent luminosity which, as discussed by Kantowski
(1969), leads one to underestimate q0 if a completely
homogeneous universe is assumed; their example has a
real value of q0 = 1.82 which, if calculated assuming a
completely homogeneous universe, results in the value
q0 = 1.40. Kantowski (1969) had a real value of q0 = 2.2
being interpreted as q0 = 1.5. The exact numbers are not
important; the point is that, to first order, the ZKDR dis-
tance is larger than in the standard case, which is also the
case for a lower value of q0. But this is only to first order;
with higher-redshift data, the two effects are not degen-
erate. It is also shown that, while the difference between
the ZKDR distance and the standard distance is non-
negligible, there is little difference between the ZKDR
distance and that obtained by numerical integration in a
corresponding Swiss-cheese model (which, as mentioned
above, is not an exactly equivalent model).

7.2. Remarks

Compared to the papers discussed above, especially
the first three, there is much less emphasis on physical
models and more on mathematical results. Also, compar-
isons are done between a relatively simple formula and
a more involved numerical integration based on a more
complicated mass distribution.

7.3. Discussion

Dyer & Roeder (1972) covered the same ground as
DZ65, but more thoroughly, presenting an analytic so-
lution.
The distance for an empty or partially filled beam

has become known as the Dyer–Roeder distance, al-
though various aspects had been discussed before. This
is probably due to the fact that the corresponding pa-
pers were published in a major English-language journal,
used standard notation, and were more concerned with
results than with theory. Dyer and Roeder were certainly
responsible for putting the topic on the agenda of many
astronomers. However, for the reasons outlined above, I
refer to this distance as the ZKDR distance.

8. DYER & ROEDER (1973)

Dyer & Roeder (1973, hereafter DR73) can be seen as
a combination of DZ65 and DS66, i.e. Ω0 and η are both

arbitrary (though λ0 = 0 is still assumed). For the gen-
eral case, they derive a hypergeometric equation, and
present explicit solutions for η = 0, 2/3, and 1 as well as
Ω0 = 0 (the second one being new).

8.1. Summary

As in DR73, general discussion is narrowed down by
setting λ0 = 0 before explicit solutions are presented.
Second-order differential equations for both the angular-
size distance and the luminosity distance are derived,
though of course once one has a solution one can use
the Etherington reciprocity relation to simply derive one
from the other. Using a substition, these are converted
to hypergeometric equations.
The special case η = 1 is the solution derived by Mattig

(1958) while that for η = 0 is that derived by DR72. New
is a solution for η = 2/3, which is given for the luminos-
ity distance. For Ω0 = 1, one has the solution derived by
DS66, which is given for the angular-size distance. Dif-
ferentiation of that equation leads to an expression for
the maximum in the angular-size distance, showing that
as η goes from 1 to 0, the redshift of this maximum goes
from 1.25 to ∞. The point first made by Z64, that the
maximum is due to matter in the beam, is emphasized.
(Note, however, that an arbitrarily small η will lead to a
maximum, though at arbitrarily large z.) They suggest
comparing observations with calculations for each of the
three values of η for which there is an analytic solution,
given the lack of knowledge about intergalactic matter.
Finally, as in DR72, they note that calculations for Swiss-
cheese models (interestingly, including λ0 6= 0) confirm
that this is a good approximation, i.e. ‘the mass defi-
ciency in the beam is in general much more important
than the gravitational-lens effect for reasonable deflec-
tors’, at least for ‘redshifts in the range of interest’.

8.2. Remarks

There is a huge literature on hypergeometric functions,
and many well known functions, including many used in
phyics, are special cases, but in general it is not possi-
ble to reduce hypergeometric functions to (combinations
of) standard functions which are easily and efficiently
calculated, either analyically or numerically. As such,
the fact that the distance equations are hypergeometric
equations is interesting, but (except for the analyically
soluble special cases) of little practical use.

8.3. Discussion

DR73 can be seen as a combination of DZ65 and DS66,
i.e. Ω0 and η are both arbitrary (though λ0 = 0 was still
assumed).
Starting with the Einstein–de Sitter model, Z64 had

investigated η = 0, presenting an analytic solution (as
well as one for Ω0 = 0, in which the value of η irrelevant
since there is no matter). DZ65 had expanded this to
arbitrary Ω0, though no analytic solution was presented.
DS66 had returned to the Einstein–de Sitter model, but
allowed η to be arbitary. DR72 had covered the same
ground as DZ65, but presented an analytic solution. Fi-
nally, DR73 addressed the most general case so far, with
both Ω0 and η as free parameters, and presented analyic
results (most already known) for special cases.
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9. DYER & ROEDER (1974)

Dyer & Roeder (1974, hereafter DR74) extended
Swiss-cheese models to include cases where λ0 6= 0 and
showed that the distances so computed correspond well
to those based on previous work (DR72, DR73).

9.1. Summary

After a short review of previous work on the topic,
the method of Kantowski (1969) is extended to λ0 6= 0.
Essentially, λ0 6= 0 affects the expansion history of the
universe but nothing else; in particular, R0/R = 1 + z
still holds. A second-order differential equation for (a
quantity simply related to) the angular-size distance is
presented, but no solution is given. It is noted that a ‘se-
ries solution about z = 0 can be obtained’, but the em-
phasis is on calculating the correction factor relative to
the homogeneous model of the same mean density; there
is a series expansion for this, but it breaks down by the
time the redshift has become high enough for the effect
to be interesting, so results have to be calculated numer-
ically. With regard to distortion of the beam, they show
that a beam retains its elliptical cross section, though
orientation and ellipticity can change.
In Swiss-cheese models, the structure of the clumps

must be taken into account, but for realistic assumptions
(assuming that the clumps model galaxies), ‘the calcu-
lations indicate that. . . the distance–redshift relations do
not differ signifancly from the “zero-shear” relations dis-
cussed in [DR72 and DR73]. Similarly, the distortion
effect has been found to be negligible in the range of red-
shifts observable at present, being at most a few percent.’
Although the Swiss-cheese models are perhaps unrealis-
tic in that real galaxies are not usually surrounded by a
region of lower than average density, they do show the
potentially real effect that there is a dispersion in the
distance calculated from redshift which increases with
redshift. (In Sect. 19 it is discussed how important this
is for our Universe.) Another important result is that
the dependence of the distance–redshift relation on Ω0 is
increased for η ≈ 0, thus reducing the precision obtain-
able in practice. Previous conclusions mentioned above
that decreasing η means that observations interpreted
assuming that η = 1 will underestimate q0 are repeated.

9.2. Remarks

Calculations involving the Swiss-cheese models are in-
herently statistical in nature and more complicated than
those based on approximations. The models are even
arguably less realistic. However, they are important be-
cause, being exact solutions to the Einstein equations,
one does not have to worry about approximations. The
fact that results are very similar to those based on sim-
pler assumptions is encouraging, and provides justifica-
tion for using the simpler approach. It could of course
be the case that this approach is too simple for the real
Universe, but in that case a Swiss-cheese model would
also probably be too unrealistic.

9.3. Discussion

DR74 is interesting because it presents for the first
time distance–redshift relations in a universe with ar-
bitrary Ω0, λ0, and η. However, not only because the
calculations are based on Swiss-cheese models, no closed
formulae are given.

10. OTHER PAPERS II

Roeder (1975a) applied the work of DR73 to the data
of Sandage & Hardy (1973), concluding that the value
obtained for q0 depends both on assumptions about
(in)homogeneity and on galaxy evolution and suggest-
ing q0 > 0.5 if the conclusion of Gott et al. (1974) is
assumed, namely that η ≈ 0.
Roeder (1975b) applied the conclusions of DR73 to a

claim by Hewish et al. (1974) that there is a lack of small-
diameter sources at the largest redshifts, whereby they
assume the standard angular-size distance. If η < 1, then
the angular-size distance is larger than otherwise, and if
one wrongly assumes η = 1, then one will underestimate
the true physical size of the source. Thus, an inhomo-
geneous Universe is not a possible explanation of that
claim; rather, it would exacerbate the problem.

11. FURTHER SOLUTIONS (ANALYTIC AND NUMERICAL)
OF THE ZKDR DISTANCE

11.1. Kayser, Helbig & Schramm (1997)

Increasingly general equations (EQ), analytic solutions
(AS), and numerical calculations (NC) had been pre-
sented in the 1960s and 1970s (AS implies EQ) (all but
the last two below discussed above):

Zel’dovich (1964b) (Z64): η = 0 for the Einstein–
de Sitter model (AS)

Dashevskii & Zel’dovich (1965) (DZ65): η = 0 for
arbitrary Ω0, λ0 = 0 (NC)

Dashevskii & Slysh (1966) (DS66): 0 ≤ η ≤ 1 for
the Einstein–de Sitter model (AS)

Kantowski (1969)(K69): Swiss-cheese models: 0 ≤
η ≤ 1, arbitrary Ω0, λ0 = 0 (EQ, NC)

Dyer & Roeder (1972) (DR72): η = 0 for arbitrary
Ω0, λ0 = 0 (AS)

Dyer & Roeder (1973) (DR73): 0 ≤ η ≤ 1 for ar-
bitrary Ω0, λ0 = 0 (hypergeometric EQ); AS for
η = (0, 2/3, 1)

Dyer & Roeder (1974) (DR74): Swiss-cheese mod-
els: 0 ≤ η ≤ 1, arbitrary Ω0 and λ0 (EQ, NC)

Dyer & Roeder (1976): η > 1 (heuristic, not exact,
approach)

Kantowski et al. (1995): 0 ≤ η ≤ 1 for arbitrary Ω0,
λ0 = 0 (hypergeometric EQ); AS for arbitrary val-
ues of η

The only expression available for λ0 6= 0 was a com-
plicated differential equation derived by Dyer & Roeder
(1974), but for Swiss-cheese models. No closed solu-
tion was presented. Of course, it can be integrated
numerically. However, it is rather cumbersome, and
the terms do not have an obvious physical interpreta-
tion like those in the differential equations of Z64 and
DS66. While it was appreciated that Swiss-cheese mod-
els are in some sense equivalent to the ZKDR distance
derived via the Zel’dovich method, this was not shown
strictly until much later (Fleury 2014). Thus, between
the work of Dyer & Roeder (1976) and Kantowski et al.
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(1995), work on the ZKDR distance concentrated mostly
on understanding the approximation, applications (both
in more-traditional cosmology and in gravitational lens-
ing), and, to some extent, more-realistic models (this
field would come into its own only later, when computer
power allowed more-complicated scenarios to be investi-
gated). However, the development of the basic ZKDR
distance picked up again later. Kayser (1985) derived a
differential equation for the angular-size distance in the
style of Z64, DS66, and DR73, but for 0 ≤ η ≤ 1 and
arbitrary values of λ0 and Ω0, which he integrated nu-
merically via standard but basic means. Kayser et al.
(1997) saw a need for an efficient numerical implemen-
tation of that equation, which is the most general equa-
tion for the ZKDR distance under the standard assump-
tions that the universe is a (just slightly) perturbed FRW
model (i.e. no pressure, no dark energy more compli-
cated than the cosmological constant, no back reaction,
only Ricci (de)focussing; even today, there is no evidence
that the first three are not excellent approximations, and
the fourth is as well in many cases). Also, no efficient
general implementation existed for the standard (η = 1)
distance.16 Thus, a description of the differential equa-
tion derived by Kayser (1985) and the efficient numer-
ical implementation—using the Bulirsch–Stoer method
in Fortran (see Helbig 1996, for technical details)—
evolved to include a general description of various types
of cosmological distances and a compendium of analytic
solutions, probably the first time all this information had
been presented in a uniform notation. Despite being a
numerical (though very efficient) implementation, it is
only a factor of ≈ 3 slower than elliptic-integral solutions
for η = 0 or η = 2/3 (Rollin Thomas, personal commu-
nication); for η = 1, the factor is ≈ 20 (Kantowski et al.
2000). Of course, a comparison can be done only for
those cases where elliptic-integral solutions exist, but
the numerical-integration time for the differential equa-
tion, valid for all values of λ0, Ω0, and η, is essentially
the same whether or not an elliptic-integral or analytic
solution exists. (Analytic solutions are of course faster
than elliptic-integral solutions, which can be described as
semi-numerical or semi-analytic; in general, the elliptic-
integral solutions do not work if there is an analytic so-
lution (an exception being the expression for light-travel
time in a flat universe).)

11.2. Kantowski and collaborators

Kantowski, with collaborators, had returned to the
topic of distance calculation in locally inhomogeneous
cosmological models (Kantowski et al. 1995), coinciden-
tally around the same time that I was writing the code
for KHS. Although partially motivated by the m–z rela-
tion for Type Ia supernovae, further progress was made
regarding the theory. Kantowski (1998) used the Swiss-
cheese formalism to derive an analytic expression for
the ZKDR distance using Heun functions, valid for arbi-
trary λ0, Ω0, and η. Kantowski et al. (2000) gave ana-
lytic expresssions using elliptic integrals for arbitrary λ0,
Ω0, and η = (0, 2/3, 1), corresponding to ν = (2, 1, 0);

16 Despite having been known for decades that the standard dis-
tance can be calculated via elliptic integrals, this was almost never
done, results being presented as a ‘qualitative integration’ (e.g.
Bondi 1961) or calculated numerically (e.g. Refsdal et al. 1967).

see Eq. (3) in Sect. 27. For the flat-universe case,
there are simpler expression involving associated Legen-
dre and hypergeometric functions; these were given by
Kantowski & Thomas (2001). Kantowski (2003) pointed
out that the general case can be expressed via the Lamé
equation, which can be solved via Weierstrass ellip-
tic integrals for ν = (2, 1, 0). While not directly re-
lated to the ZKDR distance, but related mathematically,
note that Thomas & Kantowski (2000) also expressed
the age–redshift relation (related to lookback time and
light-travel–time distance) via incomplete Legendre el-
liptic integrals, but only for λ0 > 0.17 To summarize:

Kantowski (1998): arbitrary λ0, Ω0, and η using Heun
functions

Kantowski et al. (2000): arbitrary λ0, Ω0, and η =
(0, 2/3, 1) (corresponding to ν = (2, 1, 0)) using el-
liptic integrals

Kantowski & Thomas (2001): flat but otherwise ar-
bitrary; associated Legendre and hypergeometric
functions

Kantowski (2003): Lamé equation for the general
case, Weierstrass elliptic integrals for η =
(0, 2/3, 1) (corresponding to ν = (2, 1, 0))

Thomas & Kantowski (2000): age–redshift via in-
complete Legendre elliptic integrals

12. TESTING THE APPROXIMATION

Unlike the Swiss-cheese model, the ZKDR distance is
an approximation based on various assumptions. While
it is reasonably clear that it must be correct in the ap-
propriate limit (i.e. the light propagates very far from
all clumps, the fraction of mass in clumps is negligible
so that it is clear that an FRW model is a good approx-
imation, etc.), it is not immediately clear how good the
approximation is in a more realistic scenario. One way to
test this is to compare the ZKDR distance to an explicit
numerical calculation, namely following photon trajecto-
ries through a mass distribution produced by a cosmo-
logical simulation. Some of this work will be mentioned
below in Sect. 28. Watanabe & Tomita (1990), building
on work by Futamase & Sasaki (1989), solved directly
the equations of null geodesics and explicitly calculated
the shear. Only the Einstein–de Sitter model was con-
sidered, and the explicit calculations were compared to
the ZKDR distance for η = 1 and η = 0. The former is
the better fit for the average distance, but it was assumed
that mass is transparent, so this result essentially follows
from flux conservation (Weinberg 1976). Kasai et al.
(1990) carried out a similar study, noting that, as ex-
pected, the distance–redshift relation depends on angu-
lar scale, with the standard (η = 1) distance appropriate
for large angles and the ZKDR distance (in the limiting
case, η = 0) for small angles, a conclusion also arrived at
by Linder (1998). His numerical result was demonstrated
analytically by Watanabe & Tomita (1991). Similar re-
sults were found by Giblin et al. (2016b), who used a

17 The history of the use of elliptic integrals to calculate cosmo-
logical quantities is interesting in itself, but is beyond the bounds
of this review.
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much more realistic model of the mass distribution, based
on state-of-the-art simulations (‘the first numerical cos-
mological study that is fully relativistic, non-linear and
without symmetry’) (Giblin et al. 2016a; Mertens et al.
2016). They stressed the scatter in the distance for a
given redshift, which generally increases with redshift
and is also dependent on the line of sight. Nakamura
(1997) numerically investigated the effect of shear on
the angular-size distance in a linearly perturbed FRW
model and found it to be negligible, thus justifying the
ZKDR distance. (For the Einstein–de Sitter model, an
analytic result was presented.) Okamura & Futamase
(2009), while not setting out to test the ZKDR dis-
tance, found that a universe with the halo-mass func-
tion of Sheth & Tormen (1999) is, remarkably, well ap-
proximated by the ZKDR distance with the η parameter
calculated from their model. Busti et al. (2013) com-
pared the ZKDR distance to other approximations: the
weak-lensing approximation with uncompensated den-
sity along the line of sight, the flux-averaging approxi-
mation, and a modified ZKDR distance which allows for
a different expansion rate along the line of sight. This
work is interesting for its analysis of the underlying is-
sues (essentially assumptions about the mass distribution
and how this affects light propagation, different approxi-
mations corresponding to different assumptions) and its
combination of detailed theory and application to real
data—the Union2.1 sample, also used by Helbig (2015a)
and Yang et al. (2013).

13. WEINBERG (1976)

Weinberg (1976) pointed out that in a locally18 in-
homogeneous universe in which gravitational deflection
by individual clumps is taken into account, the conven-
tional distance formulae remain valid on average as long
as the clumps are sufficiently small, while for galactic-
size clumps, this depends on the selection procedure and
redshift of the source.

13.1. Summary

For a locally inhomogeneous universe, the average ap-
parent luminosity (for the case λ0 = 0, but this is true in
general) is given by the conventional formula, e.g. that
due to Mattig (1958), rather than the empty-beam for-
mula, e.g. that investigated by Dyer & Roeder (1972).
The reason is clear: the empty-beam formula ‘leaves out
the gravitational deflections caused by occasional close
encounters with clumps near the line of sight’. More-
over, ‘[t]hese gravitational deflections produce a shear
which on the average has the same effect in the optical
scalar equation as would be produced in a homogeneous
universe by the Ricci tensor term’.
The special case of q0 ≪ 1 is considered, in which

the average number of clumps close enough to the line
of sight to produce an appreciable deflection is of or-
der q0 for z ≈ 1 (Press & Gunn 1973). Even in this
case, where multiple deflections can be ignored, the stan-
dard formula is appropriate when considering the aver-
age distance. The decrease in the luminosity distance

18 In the context of the ZKDR distance, ‘locally’ means ‘on
small scales’, not some local inhomogeneity near us in an otherwise
(more) homogeneous universe.

due to gravitational lensing cancels the increase due to
the empty-beam formula.
This result is generalized to models with arbitrary q0

and transparent intergalactic matter via a simple argu-
ment: due to flux conservation, the conventional distance
must hold, on average; not all lines of sight can be un-
derdense, and occasional lines of sight with strong am-
plification due to gravitational lensing exactly balance
the larger number of underdense lines of sight. How-
ever, this ignores the selection effect that there can be no
opaque clump between the source and the observer. If
the clumps are dark stars, the conventional distance for-
mula is a very good approximation, but only marginally
so for galaxy-size clumps. The important quantity is
the radius of avoidance, which could lead to the empty-
beam distance being more appropriate at low redshifts
and the conventional formula at high redshifts.19 De-
tails depend on selection effects: perhaps distant objects
are observed (by accident or by design) on lines of sight
which avoid clumps (and hence absorption); on the other
hand, amplification bias might cause objects which have
been gravitationally amplified to be observed preferen-
tially.
The empty-beam distance is nevertheless useful since

it gives a lower limit on the apparent luminosity (for a
given absolute luminosity) at a given redshift. In general,
there is a scatter in luminosity distance, comparable to
the difference between the empty-beam and filled-beam
formulae. Also, it is noted that the standard distance
should be used to calculate the mean inverse-square lu-
minosity distance, not the mean luminostiy distance it-
self. Weinberg speculates that this might be part of the
reason for the difference in apparent luminosity between
quasars at the same redshift.

13.2. Remarks

Weinberg (1976) is not concerned with developing the
theory of the ZKDR distance; in fact, he doesn’t go be-
yond DZ65. Rather, the emphasis is on understanding
the validity of the approximation, its domain of applica-
bility, and its use in a statistical context.

13.3. Discussion

This paper has been cited many times, perhaps because
Weinberg is well known, but probably mainly because it
is clear and to the point. Not until much later were
more-detailed analyses presented.

14. OTHER PAPERS III

Wardle & Pottash (1977) discussed the effect of the
ZKDR distance on the angular sizes of quasars, noting
‘that the median angular size in fact decreased with red-
shift faster than expected in any Friedmann cosmology.
This implied that there was a deficiency of sources of
large linear size at high redshifts’ [emphasis in the orig-
inal].20 A cosmological model with η < 1 could at least
partially explain this.
Wagoner (1977) discussed determining q0 from them–z

relation for supernovae, noting in passing that the Dyer–
Roeder distance can be used. While not dwelling on the

19 This is a special case of η = η(z), discussed by KHS.
20 As mentioned above, Hewish et al. (1974) arrived at the op-

posite conclusion.
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question of distance calculation, the paper is one of the
first to advocate determining cosmological parameters
from the m–z relation for supernovae rather for galax-
ies, deemed to be worth pursuing mainly because of the
lack of knowledge about galaxy evolution.
Ellis (1980) noted that the uncertainty in η needs to

be considered when attempting to derive cosmological
parameters from observations. Ellis would later return
to this topic many times.

15. THE END OF AN ERA

The work by Weinberg (1976) marks a turning point,
for two related reasons. First, the theory is now more
or less complete; future work would be concerned with
refinements. Second, the development of theory is now
secondary to applications, at least in terms of numbers
of papers. The three papers mentioned in Sect. 14 are in
some sense obvious consequences of the theory as known
when they were written; most future work would be more
limited in scope but also more detailed. As such, it makes
sense to switch from the mainly chronological discussion
presented until now to a discussion based on topic. (Nev-
ertheless, some chronology is retained: topics are pre-
sented in the order of their appearance, and the discus-
sion of each topic is roughly chronological. The order of
the topics is based not on the average age of the papers,
but rather on the time of publication of the first one.)
Though some build on somewhat earlier work (some of
which has been mentioned above), most of these topics
were investigated after the work of Weinberg (1976).
Before doing so, however, the influential work of

Canizares (1982) deserves special mention. Building on
the work of Press & Gunn (1973), who had concentrated
on the production of multiple images by compact ob-
jects, he discussed other observational effects. As such,
this work belongs more in the gravitational-lensing camp
than in the light-propagation camp. It also appeared at
a time which saw a rapid increase in the number of pa-
pers devoted to these two topics. Obviously, the discov-
ery of the first gravitational-lens system by Walsh et al.
(1979) played a role as far as gravitational lensing it-
self was concerned; but probably because gravitational
lensing forces one to think about the degree of homo-
geneity between source and observer, many studies were
done which looked at further applications of the ZKDR
distance, and, somewhat later, refinements to and exten-
sions of the basic theory were investigated.
The next 16 sections, discussing various applications

of the ZKDR distance, are chronological with respect to
the first paper discussed in each. These are followed by
a section discussing analytic approximations; the final
section is a summary.

16. FLUX CONSERVATION 1

Weinberg (1976) pointed out that the standard dis-
tance formula, e.g. assuming η = 1, must hold on average
if lenses are transparent and there are no selection effects.
This is due to flux conservation. Dyer & Roeder (1981a)
considered the effect of a finite source size in gravitational
lensing, concluding that, all else being equal, η increases
with the size of the source. (The fact that almost all
beams are underdense and hence the average magnifi-
cation is less than 1 is offset by the occasional strong-
lensing event.) The important quantity is not the size of

the source per se, but rather the size of the source relative
to the clumps; as already mentioned by Weinberg (1976),
one could think of η increasing with redshift since, due
to structure formation, matter was more uniform at high
redshift. The fact that the angular size of the beam also
increases with redshift (the base of the cone is at the
source; the apex at the observer) is an additional effect
in the same direction. This was made more explicit by
Dyer & Roeder (1981b), who showed that, ‘[i]n the weak-
field approximation, the net amplification resulting from
small amplifcations due to many small spherical deflec-
tors bending light at their perimeters corresponds to the
Ricci amplification where the source and observer are lo-
cated well outside the lens’. Ehlers & Schneider (1986)
question several assumptions regarding the derivation of
the ZKDR distance. Subsequent work has shown these
doubts to be misplaced; provided that the universe has
a ‘ZKDR-style’ mass distribution, the ZKDR distance
is appropriate. When calculating the probabilities of a
source being lensed, however, they point out that a ran-
dom line of sight is not an average line of sight. Rather,
what is random is the position of a source on the ce-
lestial sphere. They conclude that lensing probabilities
had thus been underestimated. This conclusion was ar-
rived at considering flux conservation for an ensemble of
lenses; Hamana (1998) showed that it holds for individual
beams also (see Sect. 22). The general idea when consid-
ering averages is that most lines of sight are underdense
and this is offset by the occasional strong-lensing event.
In other words, the fact that the average amplification
is 1 depends on the existence of an ensemble. On the
other hand, a transparent lens neither creates nor ab-
sorbs photons. Avni & Shulami (1988) showed by an ex-
plicit calculation that this also holds for a single, isolated
Schwarzschild gravitational lens; the usual amplification
for small impact parameters is exactly compensated by
de-amplification for large impact parameters.
Around the same time, Peacock (1986) noted that the

solution given by Dyer & Roeder (1973) for arbitrary Ω0

and η (but λ0 = 0) is mathematically valid for η < 25/24,
although η > 1 is unphysical, since this would imply that
light propagates along a uniformly overdense tube. Nev-
ertheless, this can be used as a rough model for grav-
itational lensing (see also Dyer & Roeder 1976). More
importantly, Peacock (1986) generalized the result of
Weinberg (1976) to arbitrary Ω0. (As far as I know,
no-one has repeated this calculation for arbitrary λ0).
He also agrees that the conclusion of Ehlers & Schneider
(1986) that a more exact treatment reveals that lensing
probabilities had been underestimated, but points out
that their final result is not very useful since any differ-
ence between it and previous estimates becomes signif-
icant only at large optical depth, where the single-lens
approximation breaks down. (Nevertheless, it still holds
that previous estimates had underestimated the lensing
probability.)
Fang & Wu (1989) pointed out that flux conserva-

tion can be used as a constraint when evaluating
various approximations used in calculating the prob-
ability of lensing. Isaacson & Canizares (1989) com-
pared the approach of Press & Gunn (1973) to that
of Ehlers & Schneider (1986) in the Einstein–de Sitter
model, finding that the former approach can be made to
agree with the latter ‘by adjusting the average magnifica-
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tion along a random line of sight so as to conserve flux’.
Jaroszyński & Paczyński (1996) considered flux conser-
vation within the context of microlensing (in which case
η = 0 is appropriate, as long as any smooth mass dis-
tribution is ignored, since the lensing effect is taken into
account explicitly in the microlensing calculation, as op-
posed to η ≈ 1 which would be appropriate if one consid-
ered the average effect for a source size larger than that
of the lenses). They pointed out that in addition to the
redistribution of flux, there is another redistribution of
energy because some observers see an additional redshift,
some an additional blueshift.

17. KIBBLE $ LIEU (2005)

Kibble & Lieu (2005) also contributed significantly to
the understanding of flux conservation in the context of
the ZKDR distance; so much so that they deserve their
own section. They showed analytically that, under very
general conditions (including arbitrary shapes of clumps
and strong lensing), the average reciprocal magnification
in a clumpy universe is the same as that in a homoge-
neous universe, as long as the clumps are uncorrelated.
The reciprocal magnification has the advantage that it
goes to zero rather than infinity on the caustics (regions
of—for a point source—infinite magnification), and so
is more useful in the strong-lensing case. They also dis-
cussed various measures of magnification and the circum-
stances in which they are appropriate.
An important distinction is whether one averages over

a set of sources on the unperturbed celestial sphere, or
whether one averages over all lines of sight: ‘If one part
of the sky is more magnified,. . . the corresponding area
of the constant-z surface will be smaller, so fewer sources
are likely to be found there. In other words, choosing a
source at random will give on average a smaller magnifi-
cation or larger angular-size distance.’ This is related to
whether it is the mean magnification or the mean recipro-
cal magnification that is the same as in the homogeneous
case. In the weak-lensing case, both are. In the strong-
lensing case, it is the magnification which averages to 1
over the celestial sphere, the random-source average—the
case implicitly considered by Weinberg (1976)—, how-
ever strong lensing effects are, while it is the reciprocal
magnification which averages to 1 over all lines of sight,
again however strong the lensing effects are. As a corol-
lary, the random-source average of the total magnifica-
tion of unresolved images is the same as in the homo-
geneous case, while for resolved images it can be signif-
icantly different, essentially because there can be more
than one image of a given source.
Another distinction is between the angular-size dis-

tance and the so-called area distance (though both dis-
tances can be applied to both lengths and areas) as in-
troduced by Ellis et al. (1998). If strong lensing is in-
volved, i.e. multiple images (whether resolved or not) are
present, then the magnification can be defined as nega-
tive for images of odd parity; sometimes, the angular-size
distance itself is considered to be negative in such cases.
(This is also the case for an object located at a coor-
dinate distance χ between nπ and 2nπ, where n is an
integer, because the rays defining the angle in the def-
inition of the angular-size distance (see Sect. 2.2) cross
between source and observer.) Such areas are counted
negatively when calculating the average angular-size dis-

tance; if the absolute values are used, the corresponding
distance is the area distance, which is thus always larger
than the angular-size distance. The area distance is thus
appropriate if one is interested in the total number of
images within a given area of sky or their average mag-
nification; the angular-size distance is appropriate if one
is interested in the total number of distinct sources (say,
when multiple images are not resolved) or their average
magnification.
The work of Kibble & Lieu (2005) is also important be-

cause it is analytic (though some assumptions are made,
which in practice are always fulfilled to a very good ap-
proximation: the surface of constant z is the same as
the surface of constant affine parameter; shear vanishes
when light is propagating far from all clumps; the clumps
are widely separated, slowly moving, and randomly dis-
tributed). Their work confirms that of Weinberg (1976),
which is based on energy conservation, when averaging
over the celestial sphere (i.e. the source is random), and
also considers the case of averaging over lines of sight.

18. FLUX CONSERVATION 2

Wang (2000) suggested that flux conservation justifies
the use of the standard distance in the analysis of the
m–z relation for Type Ia supernovae and performed such
flux averaging by combining data in redshift bins, point-
ing out that this reduces systematic uncertainties from
effects such as weak lensing, while Barber (2000) claimed
that weak-lensing effects are about an order of magni-
tude larger than previously found (and hence probably
need to be taken into account more explicitly). On the
other hand, Wang (2005) found only marginal evidence
for weak-lensing effects in the m–z relation for Type Ia
supernovae.
Even if the mean magnification is 1, due to the skew-

ness of the distribution, the median magnification is < 1.
Clarkson et al. (2012) pointed out that most narrow-
beam lines of sight are significantly underdense, even for
beams as thick as 500 kpc. On the other hand, they
also point out that this does not necessarily lead to a in-
crease in apparent magnitude (i.e. dimming) if one drops
the assumption that inhomogeneities can be modelled as
perturbations on a uniformly expanding background, a
point also emphasized by Bolejko & Ferreira (2012); see
also Bagheri & Schwarz (2014).
Although the basic idea of flux conservation is clear

(and there are obvious caveats such as non-transparent
matter), exact treatments can be very complicated and
have led to confusion, much of which has been cleared
up by Kaiser & Peacock (2016): Weinberg (1976) is es-
sentially right, though one needs to keep in mind the dis-
tinction between magnification and reciprocal magnifica-
tion as discussed above in connection with Kibble & Lieu
(2005). Since η ∼ κ, where κ is the convergence, and
µ ∼ (1 − κ)−1, the relation is linear only in the limit of
vanishing deviations, though approximately linear for the
small deviations considered here.21 Non-linear functions
of the conserved quantity µ must be handled with care.
For example, the average angular-size distance 〈DA〉, and
hence the average luminosity distance 〈DL〉, is biased

21 See Wang et al. (2005) and Bolejko (2011) for details on the
relationship between the inhomogeneity parameter η and the con-
vergence κ.
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even in the case of 〈µ〉 = 1. This can be considered one
aspect of the averaging problem: we are interested in
the average values of the cosmological parameters deter-
mined by observers throughout the universe, but can at
best average observations over several lines of sight. See
also Bonvin et al. (2015), who point out that the ensem-
ble average and the directional average do not commute;
‘observing the same thing in many directions over the
sky is not the same thing as taking an ensemble aver-
age’; this is a restatement of the result of Kibble & Lieu
(2005).

19. GALAXY CLUSTERS AND FURTHER WORK ON
SWISS-CHEESE MODELS

Rubin et al. (1973) noted a non-random distribution
of radial velocities on the sky for a sample of galaxies,
later known as the Rubin–Ford effect, and discussed var-
ious possible explanations, though none involving grav-
itational lensing in any form. Karoji & Nottale (1976)
confirmed the effect with two samples of galaxies cho-
sen from the literature, discussed a number of possible
causes, and tentatively concluded that ‘light emitted by
distant galaxies are [sic] redshifted when passing through
clusters of galaxies or distant sources are more luminous
when seen through intermidiate clusters of galaxies which
could act as gravitational lenses’. Similar work was done
by Nottale & Vigier (1977). Dyer & Roeder (1976) tried
to explain the Karoji–Nottale effect via η > 1. On the
one hand this is straightforward: η < 1 implies that
there is less matter in the beam than for a random line
of sight, so η > 1 would imply that there is more. On
the other hand, this situation violates the assumptions
under which the ZKDR distance is calculated, so the ap-
plicability is somewhat questionable. In any case, the
conclusion was that accounting for the effect of gravi-
tational lensing by clusters of galaxies in this manner
cannot explain the Karoji–Nottale effect. Swiss-cheese
models were also used to estimate the effect of inhomo-
geneities on the CMB (e.g. Dyer 1976; Nottale 1984), but
this strays too far from the main topic of this article.
Nottale (1982a), in the spirit of Kantowski (1969), de-

veloped a more complicated but exact-solution model;
the question is then how realistic it is physically, rather
than whether the approximations are valid. While the
Swiss-cheese model of Kantowski (1969) had holes con-
sisting of completely empty voids with the mass re-
moved from the void concentrated at the centre, and the
corresponding Schwarzschild volume considered opaque,
Nottale (1982a) had a more realistic model where the
mass removed from the hole forms a Friedmann model
of higher density than that surrounding the hole; impor-
tantly, the matter at the centre of the hole is transparent.
Between the two Friedmann solutions is a Schwarzschild
solution. The main conclusion here is that there is a
change in the observed redshift of objects seen through
such a cluster. Nottale (1982b) examined the perturba-
tion of the magnitude–redshift relation in that model,
deriving an expression for the change in magnitude de-
pendent on the cosmological model (H0,q0), η, the clus-
ter radius, the cluster redshift, and the source redshift;
typical values of those parameters result in ‘some tenths
of magnitude’. Nottale (1983) studied this model with
respect to ‘the effects intrinsic to a cluster, i.e. the
purely gravitational perturbations on redshift and mag-

nitude (or equivalently diameter) for sources situated
in a cluster, with respect to exterior sources’ [empha-
sis in the original]. Nottale & Hammer (1984) investi-
gated this in more detail, examining the amplification
of light from distant sources by a transparent lens via
an exact solution of the optical scalar equations (Sachs
1961). Nottale & Chauvineau (1986) used this formal-
ism to calculate the global Ricci amplification by multiple
gravitational lenses, noting that it usually differs signifi-
cantly from the product of individual amplifications (an
approximation valid only if all amplifications are small).
Sato (1985) continued working with the Swiss-cheese

paradigm, finding that the modification is third order
in Hrb/c for redshift and first order for apparent lu-
minosity, where rb is the radius of a void (Swiss-cheese
hole). Dyer & Oattes (1988) examined the dispersion of
observational quantities such as magnitudes (related to
the luminosity distance) in a Swiss-cheese model, em-
phasizing a fundamental limit ‘due to the “fuzzy” struc-
ture of the perceived past null cone’ and selection ef-
fects due to the skewness of the distribution of observa-
tional quantities (even though the means are the same
as for FRW). Brouyzakis et al. (2008) arrived at similar
results, noting even ‘inhomogeneities with sizes of order
10 Mpc or larger’ cannot lead to ‘dispersion and bias
of cosmological parameters derived from the supernova
data’ large enough ‘to explain the perceived acceleration
without dark energy, even when the length scale of the
inhomogeneities is comparable to the horizon distance’.
Clifton & Zuntz (2009) investigated the effect of large-
scale structure on the Hubble diagram via a Swiss-cheese
model. Kostov (2010) examined flux conservation in the
sense of averaging over all lines of sight in Swiss-cheese
models, with exact, non-perturbative calculations includ-
ing all non-linear effects.
Fleury et al. (2013b) suggested that the well known

‘tension’ between Planck and the m–z relation for Type
Ia supernovae (see e.g. Conley et al. 2011, for Type Ia
supernovae data) could be relieved if the calculations are
done with a Swiss-cheese model. This is because the
CMB data have a typical angular scale of 5 arcmin while
the typical angular size of a supernova is 10−7 arcsec. If
the Swiss-cheese model is more appropriate, but a ho-
mogeneous model assumed, then one will underestimate
Ω0. Note that at the distances used to determine H0,
the effect of η < 1 is negligible (and would also go in the
opposite direction: compared to η = 1, distances would
be larger and hence the derived value of H0 smaller22).
Rather, Fleury et al. (2013b) pointed out that a lower η
has, to first order, the same effect as a lower value of Ω0

(or a higher value of λ0).
23 Thus, incorrectly assuming

η = 1 leads to an underestimate of Ω0. If in fact η < 1,
then the derived value of Ω0 will be larger, while the
value of H0 changes only slightly. This reduces the ten-
sion between the values derived by Planck and the m–z
relation for supernovae, though by changing the value of

22 Odderskov et al. (2016), by examining the redshift–distance
relation of mock sources in N-body simulations, concluded that
local inhomogeneties cannot explain the tension. However, they
were looking at the effect on H0 itself.

23 To first order in z, the luminosity distance dependes on z, to
second order on q0 (Ω0/2 − λ0), and to third order on Ω0 as well
as q0; thus, at relatively low redshift it is expected that Ω0 is more
important than λ0 (e.g. Solheim 1966).
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Ω0 derived from the m–z relation. While the m–z rela-
tion still prefers higher values of H0, there is no longer
any serious discrepancy with the Planck results. This
interesting result is a consequence of the very detailed
Swiss-cheese calculations by Fleury et al. (2013a). Alas,
as pointed out by Betoule et al. (2014), it appears that
the low value of Ω0 obtained by Conley et al. (2011) was
due to a wrong calibration of the MegaCam zero points
in the g and z bands and corrections to the MegaCam r
and i filter bandpasses, thus the analysis by Fleury et al.
(2013a) is in some sense no longer relevant (though one
could turn it around and see the lack of tension in Ω0

as evidence against such extreme Swiss-cheese models).
Although interesting because they are exact solutions to
the Einstein equation, Swiss-cheese models are today ar-
guably mainly of historical interest. In particular, the
redshift aspects should not be worrying, since they are
merely one aspect of the integrated Sachs-Wolfe effect,
which can be calculated for a CDM-like power spectrum,
now known empirically to be a good approximation.
Fleury (2014) demonstrated with completely analytic

arguments the equivalence of the ZKDR distance and
that calculated from a certain class of Swiss-cheese mod-
els at a well controlled level of approximation. This had
been known for a long time based on comparisons of nu-
merical results, but of course an analytic proof is very
important. Since the Swiss-cheese models are exact so-
lutions of the Einstein equations, this means that there
can be no problem using the ZKDR distance, as long as
one makes the reasonable assumption that the mass at
the centre of a Swiss-cheese hole is effectively opaque and
reasonable assumptions about the order of magnitude of
the mass and compactness of the clumps. (Of course,
as discussed in Sect. 27, even if there can be no debate
that the ZKDR distance is appropriate if a universe has
the corresponding mass distribution, it is another ques-
tion whether our Universe does indeed have such a mass
distribution, even approximately.) He also stressed that
the Etherington reciprocity relation (Eq. (2)) holds for
any spacetime in which the number of photons is con-
served, a point which is sometimes misunderstood. The
present work is concerned with the theory and applica-
tions of the ZKDR distance, assuming that it is correct.
Fleury (2014) has written the definitive paper on the jus-
tification of the ZKDR distance; it and references therein
should be consulted for those interested in details.
Peel et al. (2014, 2015) examined the effcts of inhomo-

geneities on distance measures in a Swiss-cheese model,
concentrating on the distance modulus. Their model is
more general because the holes are non-symmetric struc-
tures described by the Szekeres (1975) metric (in general
inhomogeneous and anisotropic). This allows an exact
description which includes non-trivial evolution of struc-
ture. Interestingly, the standard deviation for dispersions
∆µ was found to be 0.004 ≤ σ∆µ ≤ 0.008, smaller than
the intrinsic dispersion of magnitudes of Type Ia super-
novae.
Lavinto & Räsänen (2015) examined the CMB as seen

through random Swiss cheese. Usually, ‘closed’ holes
had been examined, i.e. an overdense centre surrounded
by an underdensity. Lavinto & Räsänen (2015) examind
‘open’ holes as well, i.e. an underdense void surrounded
by a thin overdense shell. This is arguably a better model
of our Universe, though of course still an approxima-

tion. The size of the holes corresponds to galaxy clusters.
There is no statistically significant systematic shift in
the angular-diameter distance, with a 95-per-cent upper
limit of |∆DA/D̄A| < 10−4, and larger values reported
in the literature are shown to be due to selection effects.
Observed inhomogeneities in the CMB are caused by

a combination of primordial inhomogeneities and the ef-
fects of inhomogeneities on light propagation. Since the
relevant angular scales are much larger than those in-
volved in the ZKDR distance, further discussion of CMB
anisotropies is beyond the scope of the present work.
Lavinto & Räsänen (2015), apart from presenting orig-
inal results, also gave a good review of this topic and its
connection to the ZKDR distance.

20. GRAVITATIONAL LENSING: TIME DELAYS

The basic observational quantities in a strong
(e.g. multiple-image) gravitational lens system—angles,
flux ratios—are dimensionless, except for the time de-
lays between pairs of images (Refsdal 1964). This al-
lows one to determine the Hubble constant from a mea-
surement of the time delay, assuming a mass model for
the lens. However, this is true only in the low-redshift
limit; at higher redshift, the cosmological model plays
a role (Refsdal 1966). The cosmological parameters
Ω0 and λ0 are now known very well from cosmological
tests other than gravitational-lensing time delays (e.g.
Planck Collaboration 2014, 2016, 2019); one could thus
assume them to be exactly known and use observations
related to cosmological distances to determine η (e.g.
Helbig 2015a).24 Within the uncertainties as they were
35–40 years ago, for the angular-size distance, at low red-
shift the values of Ω0 and λ0 are more important, while
η becomes more important at high redshift (e.g. figure 1
in KHS). Due to the different combination of angular-
size distances, for lensing statistics the effect of η tends
to cancel (e.g. Quast & Helbig 1999) while in the case of
gravitational-lensing time delays the importance of η is
enhanced even at lower redshift (e.g. Kayser & Refsdal
1983; Helbig 1997).
Kayser & Refsdal (1983) illustrated this dramatically

for several world models with λ0 = 0, comparing the
η = 1 and η = 0 cases. For the double quasar 0957+561
(Walsh et al. 1979), the cosmological correction factor
(which gives the influence of the cosmological model
compared to the limiting low-redshift case) was calcu-
lated for σ0 values ranging from 0 to 2 (corresponding
to 0 ≤ Ω0 ≤ 4) with q0 values of 1.0, 0.5, 0.0, and −1
(λ0 = σ0 − q0). Helbig (1997) repeated the exercise for
arbitrary combinations of λ0, Ω0, and η, again showing
the importance of η, which has become even more im-
portant now that the values of λ0 and Ω0 are so well
known.
A somewhat more complicated model (not neglecting

shear) was investigated by Alcock & Anderson (1985),
for λ0 = 0 (not stated but assumed) and Ω0 values of 0
and 1, using two gravitational-lens systems as concrete
examples. They stressed the fact that ignorance of the

24 The data from these other tests cannot usefully constrain
Ω0, λ0, and η simultaneously (Busti et al. 2012; Helbig 2015a),
not even if one restricts the analysis to a flat universe; the same
is true of similar tests involving the angular-size–redshift relation
(Santos & Lima 2008).
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mass distribution along the line of sight makes it diffi-
cult to determine the Hubble constant by this method,
but also that, once the Hubble constant is known via
other means, this method could be used to learn some-
thing about the mass distribution. Similar results were
obtained by Watanabe et al. (1993).
Usually one thinks of the possibility of determining

H0 or, if H0 is known, other cosmological parameters
from a measured time delay and mass model for the lens.
Narayan (1991) pointed out that the measurement actu-
ally gives one the angular-size distance between observer
and lens (which, if the redshift of the lens is known, is
easily converted into the Hubble constant). Of course,
this depends on η, but since lens redshifts are usually
low, the effect of η is limited.
Giovi & Amendola (2001) examined a more general

quintessence model where, in addition to ordinary mat-
ter (‘dust’) there is a perfect fluid with equation of state
p = (m3 − 1)ρ with 0 ≤ m < 3. The case m = 0 cor-
responds to the cosmological constant while m = 3 cor-
responds to ordinary matter; m < 2 implies that the
universe is accelerating (as long as the quintessence term
dominates). However, only k = 0 models are consid-
ered. One might think that this is justified since the
Universe does seem to be very close to being flat (e.g.
Planck Collaboration 2014, 2016, 2019); however, such
an interpretation usually assumes that m = 0. Neverthe-
less, all known analytic solutions within this framework
are presented (except one which ‘is so complicated that
it is not worth reporting’). Other cases are calculated
numerically. Including quintessence usually reduces the
estimated value of H0 compared to the standard m = 0
case. Marginalizing over Ω0 and m for the time delays
considered results in H0 = 71 ± 6 and H0 = 64 ± 4
km/s/Mpc for the cases η = 0 and η = 1, respectively.
Considering the facts that there is no evidence at all for
values of m other than 0 (the cosmological constant)
and 3 (dust), apart from radiation with m = 4 which,
however, is important only in the early Universe, and
that η = 1 is obviously not correct (at least in the strict
sense), I find it somewhat disconcerting that there are a
large number of papers investigating the possible effects
of quintessence on the interpretation of cosmological ob-
servations compared to the number which discuss the
influence of η.
While the idea is simple in principle (Refsdal 1964),

in practice many details need to be taken into account
when determining H0 from gravitational-lens time delays
(especially if the uncertainties should be small enough to
be competitive with other methods), such as measuring
the time delay itself and determining realistic uncertain-
ties (e.g. Biggs & Browne 2018) and constructing a re-
alistic mass model for the lens (e.g. Wong et al. 2016;
Rusu et al. 2019). At this level of detail, characterizing
the density along the line of sight by a single parame-
ter η, or even η(z), is too coarse. Rather, one attempts
to measure the mass distribution explicitly, by counting
galaxies (e.g. Rusu et al. 2017) or using weak gravita-
tional lensing (e.g. Tihhonova et al. 2018).

21. GRAVITATIONAL LENSING: AMPLIFICATION

Schneider (1984) showed that a general transparent
mass distribution always leads to amplification of at least
one image compared to the case of an η = 0 universe

(i.e. compared to the case that the lens were absent,
not compared to the case that its mass is smoothly
distributed throughout the universe). Of course, this
is not in contradiction with the result of Weinberg
(1976) that there is no mean amplification compared
to a homogeneous universe, a point also emphasized by
Nottale & Hammer (1984, see Sect. 19) and Hammer
(1985).
Of course, all discussion of the ZKDR distance involves

(negative) amplification, and in general all gravitational
lensing involves amplification. Gravitational lensing has
a huge literature which is beyond the scope of the present
work. Therefore, I discuss here only those aspects of
gravitational lensing which are directly related to the
ZKDR distance, are interesting for other reasons, or in
which I was personally involved. One example of the
last is a study (Zackrisson et al. 2003) which demon-
strated that various claims (Hawkins 1993, 1996, 1997;
Hawkins & Taylor 1997) that most dark matter must be
in compact objects of about a solar mass—because this
is assumed to be responsible for most of the long-term
optical variability of QSOs via microlensing—cannot be
correct. In short, while arguments were presented that
many of the observations are not only compatible with
microlensing but also have no other obvious explanation,
there are nevertheless other observations which contra-
dict this hyposthesis, in particular the distribution of am-
plifications.

22. GRAVITATIONAL LENSING: GENERAL

Alcock & Anderson (1986) qualitatively discussed the
optical scalars—implying a model more complicated than
the ZKDR distance—and the possibility to learn some-
thing about distribution of mass in the universe from the
distance measures derived from gravitational-lens sys-
tems. (Often the reverse is done: one has some model to
calculate the distance as a function of redshift, and uses
this as input for modelling the lens system.) Perhaps
because in the case of gravitational lensing it is obvious
that there are small-scale inhomogeneities which affect
light rays (i.e. the gravitational lenses themselves), the
ZKDR distance and similar topics were discussed earlier
and more often than in other areas, even though their
role there could be just as important.
Lee & Paczyński (1990) investigated gravitational

lensing by three-dimensional mass distributions, finding
that 16 screens are a sufficiently good approximation.
Their conclusion that ‘the distribution of amplifications
of single images is dominated by the convergence due to
matter within the beam’ and that ‘[t]he shear caused by
matter outside the beam has no significant effect’—even
in the case of strong lensing—increases one’s confidence
that the zero-shear ZKDR distance is a realistic approx-
imation (at least in a universe with the corresponding
mass distribution). Although their goal was not to test
the ZKDR approximation, their work could be seen as an
early comparison of the ZKDR distance with numerical
simulations. Jaroszyński et al. (1990) numerically stud-
ied gravitational lensing in the Einstein–de Sitter model,
also concluding that shear can be neglected but also that
the filled-beam approximation (η = 1) appears to be jus-
tified, at least for strong lensing by galaxies or clusters
of galaxies. However, ‘the column density was averaged
over a comoving area of approximately (1h−1Mpc)2’, so
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this could be a self-fulfilling prophecy, together with the
fact that they found no case of strong lensing. Never-
theless, it does seem to be the fact that ‘the large-scale
structure of the universe as it is presently known does
not produce multiple images with gravitational lensing
on a scale larger than clusters of galaxies’. The same
conclusion, namely that Weyl focussing can be neglected
compare to Ricci focussing, was also found by Hamana
(1999) to apply to a universe modelled as randomly dis-
tributed isothermal objects. It thus appears that the
ZKDR distance, which is based on a very simple model,
is also valid in more-realistic models, confirming a result
of Nakamura (1997) based on solving the optical-scalar
equation for light passing through linear inhomogeneities
in CDM models.
Seitz et al. (1994) and Seitz & Schneider (1994) de-

rived the gravitational-lens equations in an ‘on average’
Friedmann universe, in particular one with the mass dis-
tribution (smooth component with clumps) used in the
derivation of the ZKDR distance. This very detailed
work is an analytic complement to the numerical inves-
tigations mentioned above regarding the effects of inho-
mogeneities on the propagation of light beams; in partic-
ular, necessary approximations are made clear, lending
support to the idea that the ZKDR distance is an ac-
ceptable approximation.
Gravitational-lensing statistics (e.g. Turner et al.

1984; Fukugita et al. 1990, 1992; Falco et al. 1998;
Kochanek 1993, 1996a,b; Kochanek et al. 1995;
Quast & Helbig 1999; Helbig et al. 1999; Chae et al.
2002) is usually not concerned with η. Apart from the
general neglect of η in observational cosmology, there
are probably several reasons for this. First, such studies
are usually concerned with all-sky surveys, so one might
expect η to ‘average out’ to 1 (Weinberg 1976). Second,
in the relevant combination of angular-size distances,
the effect of η tends to cancel out (in contrast to the
situation regarding time delays). Third, while selection
effects are important in such analyses, selection effects
due to the value of η are smaller than others. Fourth,
any effect of η would, in practice, be degenerate with
other effects. Covone et al. (2005) found that the
expected number of gravitationally lensed quasars is a
decreasing function of η; Castañeda & Valencia (2008)
investigated strong lensing (by galaxy clusters) with
η = η(z) as a means of taking structure formation into
account.25

Asada (1998), by contrast, assumed the validity of
the ZKDR distance and used it to investigate how in-
homogeneities affect observations of gravitational lenses,
in particular bending angle, lensing statistics, and time
delay. An interesting analytic result is that all three
combinations of distances26 involved in these phenom-

25 Note that one expects η to increase with z for two reasons
when the angular-size distance is concerned. First, structure for-
mation implies that the universe is more homogeneous at higher
redshift. Second, for a fixed angle at the observer, the physical
size of the object observed increases with redshift (as long as the
redshift is lower than that of the maximum in the angular-size dis-
tance), so one averages over a larger volume at higher redshift.
Both effects exist for the luminosity distance as well.

26 The combinations are Dds/Ds, DdDds/Ds, and DdDs/Dds,
respectively. The subscripts refer to the deflector (lens) and source.
In the case of only one subscript, it is the second, the first being
understood to refer to the observer. This is probably the most

ena are monotonic with respect to the clumpiness for all
combinations of λ0, Ω0, and source and lens redshifts.
The clumpiness decreases the bending angle and num-
ber of strong-lensing events and increases the time delay.
(Of course, not all combinations are monotonic in η, but
physically relevant ones are.) In the first two cases, de-
creasing η has the same effect as decreasing λ0. In other
words, using a value of η which is too large (such as
the common assumption η = 1) would lead one under-
estimate the value of λ0.

27 (In the conclusions, this is
confusingly stated as ‘the use of the DR distance always
leads to the overestimate of the cosmological constant’
[emphasis in the original]; of course, it is not an overesti-
mate but rather the correct estimate if the correct value
of η for the ZKDR distance is used.) More detail was
provided by Tomita et al. (1999).
At almost the same time (publication was one month

later) and completely independently, Helbig (1998) in-
vestigated not the common gravitational-lensing topics
mentioned above, but rather the correlation between im-
age separation and source redshift, in a reply to the work
of Park & Gott (1997) who had noted a negative corre-
lation. Helbig (1998) showed that decreasing η has the
same effect as decreasing K := λ0 + Ω0 − 1 (i.e. this ef-
fect is also monotonic in η); also, decreasing η reduces the
differences between cosmological models characterized by
λ0 and Ω0. The strong negative correlation reported by
Park & Gott (1997), though, seems to be based on an
unclean data sample and also is not statistically signifi-
cant.
It had been known for some time (e.g. Schneider et al.

1992; Ehlers & Schneider 1986) that gravitational-
lensing magnification as calculated using the standard
distance is smaller than that using the ZKDR distance
by a factor of the square of the ratio of the corresponding
distances, a result derived by averaging magnifications
over a number of sources and making use of flux conser-
vation. Hamana (1998) showed that it is actually true
not just on average but for each individual ray bundle as
well.

23. MONTE-CARLO SIMULATIONS

Refsdal (1970) had studied numerically the propaga-
tion of light in an inhomogeneous universe (see Sect. 5).
This technique was expanded by Schneider & Weiss
(1988a,b). Pei (1993a,b) showed that, to a reason-
able approximation, the effect of multiple lenses can
be calculated by multiplying the individual amplifica-
tions. Tomita (1998) used N-body simulations with
the CDM power spectrum in four cosmological mod-
els to investigate the behaviour of angular-diameter
distances in inhomogeneous cosmological models, de-
termining η for each pair of rays and investigating
the mean and dispersion of η. Further studies along
these lines (e.g. Premadi et al. 1998, 2001; Martel et al.
2002; Premadi et al. 2004, 2008) involving ray shooting

common notation. Other schemes explicitly write the first sub-
script when it refers to the observer as well, use ‘l’ instead of ‘d’
to refer to the lens (deflector), use capital letters, or some com-
bination of these. The same subscripts are used to refer to the
corresponding redshifts, e.g. zs, though sometimes zd is used in
the sense of a variable and zl to refer to the redshift of an explicit
gravitational lens.

27 Note that this is opposite the effect in the m–z relation.
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through N-body simulations with the explicit calculation
of the paths of (bundles of) light rays, while interesting,
are too far removed from the main topic of the present
article for further discussion.

24. CLASSICAL COSMOLOGY: REDSHIFT–VOLUME
RELATION

Omote & Yoshida (1990) examined the effect of sta-
tistical gravitational amplification on the cosmological
redshift–volume test, in particular its influence on the
derived value of Ω0, using the extreme η = 0 model to ex-
amine the data of Loh & Spillar (1986), concluding that
their derived value of Ω0 is smaller, i.e. η and Ω0 are
positively correlated.28 Of course, there are much better
data today, Loh & Spillar (1986) neglected galaxy evo-
lution, and so on; nevertheless, this work demonstrates
the effect of η on the redshift–volume test.

25. CLASSICAL COSMOLOGY: MAGNITUDES

Wu (1998) suggested that interest in the ZKDR dis-
tance had subsided after Weinberg (1976) had shown
that flux conservation implies that, on average, there is
no amplification.29 He then points out that the fact that
the luminosity distances in the homogeneous and inho-
mogeneous cases are the same on average does not mean
that apparent magnitudes are the same in both cases.
This is illustrated with a simple model. More important
than the model are the conclusions: because most lines
of sight are underdense, compensated by the occasional
large amplification, the apparent magnitude is essentially
a random variable; also, the value of q0 obtained depends
on the value of η assumed, or, vice versa, one could use
the m–z relation to determine η if the cosmological pa-
rameters are known with some degree of certainty.
Rose (2001) pointed out that the argument of

Weinberg (1976) does not hold if the sphere centred on
the observer is affected by the mass distribution, conclud-
ing that, in a perturbed FRW universe, ‘more photons
from a source at a given redshift’ will be received than
in an FRW universe, i.e. the sources are brighter. Some-
what confusingly, it is claimed that they ‘therefore have
a higher apparent magnitude’, which is correct if ‘higher’
means ‘brighter’, but of course larger magnitudes corre-
spond to fainter objects. However, this is a second-order
effect; to first order, small deviations from homogeneity
do not change the average magnification (Claudel 2000).

26. CLASSICAL COSMOLOGY: MAGNITUDE–NUMBER
RELATION

Although going somewhat beyond the simple approx-
imation of the ZKDR distance, Watanabe (1992, 1993)

28 Note that in the simpler case of the m–z relation, η and Ω0

are negatively correlated. This is easy to understand, since both a
higher value of η and a higher value of Ω0 mean that more matter is
in the beam. In the redshift–volume test, both the apparent mag-
nitude and the volume (which is independent of η) are involved,
the luminosity function plays a role, etc., making the test much
more complicated; (e.g. Sandage 1995). Also, all mass was as-
sumed to be in point masses with regard to the gravitational-lens
effect. Yoshida & Omote (1992) performed a similar study using
the model of a spherical opaque lens, arriving at similar conclu-
sions.

29 This is not my impression. There was a slow trickle of papers
up until about 1982, after which the number per year increased
each year. This appears to be mainly data-driven, with a large
increase after the measurement of the m–z relation for Type Ia
supernovae.

investigated the effects of an inhomogeneous universe on
another classic cosmological test, namely the magnitude–
number relation (see e.g. Sandage 1995, for details),
also checking the validity of the assumptions used by
Omote & Yoshida (1990) (see Sect. 24). These sorts of
cosmological tests have gone out of fashion, primarily
because the uncertainty in the evolution of the sources
is too large, leaving the m–z relation for Type Ia super-
novae, baryon acoustic oscillations (BAO), and the CMB
as the most useful cosmological tests. It is not yet pos-
sible to calculate galaxy evolution from first principles,
and observations of it have to be interpreted within the
context of an assumed cosmological model, so now such
classic tests are useful mainly as consistency checks.

27. CLASSICAL COSMOLOGY: MAGNITUDE–REDSHIFT
RELATION

One of the most important advances in observational
cosmology has been the application of the m–z relation
to Type Ia supernovae.30 In an influential paper, Colgate
(1979) had suggested using the Hubble Space Telescope
for that purpose. Goobar & Perlmutter (1995) discussed
the feasability of such a programme, and were later in-
volved in the Supernova Cosmology Project, which re-
ported measurements of λ0 and Ω0 based on 42 super-
novae (Perlmutter et al. 1999; Knop et al. 2003), a result
confirmed and published slightly earlier by the High-z
Supernova Search team (Riess et al. 1998; Schmidt et al.
1998). While there had been hints, based on joint con-
straints from several cosmological tests, not only that
the cosmological constant is positive but also that it
has such a value that the Universe is currently accel-
erating (Ostriker & Steinhardt 1995; Krauss & Turner
1995), the m–z relation for Type Ia supernovae was the
first cosmological test which, by itself, confirmed such a
value for λ0. (Contrary to some claims, this test does not
‘directly’ measure acceleration in any meaningful sense,
even if one does not adopt the extreme view that all
that is ever ‘really’ measured in observational astronomy,
whether in imaging or in spectroscopy, are photon counts
as a function of position on a detector.) Perlmutter et al.
(1999) also checked for the influence of η, using the For-
tran code of KHS to compare the standard distance to
that of two other models, one with η = 0 and the other
with η = η(Ω0), the latter based on the idea that all
matter is in clumps for Ω0 ≤ 0.25 and for Ω0 ≥ 0.25 the
fraction 0.25/Ω0 is in clumps, thus η = 0 for Ω0 ≤ 0.25,
otherwise η = 1 − 0.25/Ω0. Their conclusion, based of
course on their data at the time, is that significant dif-
ferences occur only for models ruled out by other argu-
ments, i.e. Ω0 > 1.
Kantowski et al. (1995), still using the soon-to-be-

obsolete q0-notation, had pointed out that η should be
taken into account when discussing the m–z relation for
Type Ia supernovae. They also presented an analytic so-
lution for λ0 = 0 but arbitrary Ω0 and q0, and introduced
the parameter ν:

η = 1− ν(ν + 1)

6
, (3)

30 The m–z relation for Type Ia supernovae has spawned an
extensive literature; in this review, I mention only those aspects
of it directly concerned with the ZKDR distance. Many good re-
views are available (Riess 2000; Leibundgut 2001; Schmidt 2002;
Perlmutter & Schmidt 2003; Filippenko 2005; Leibundgut 2008).
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due to the fact that there are analytic solutions for
certain integer values of ν. Frieman (1996) disputed the
importance of the effect, arguing that the Swiss-cheese
model is not a valid model for the distribution of mass
in the Universe, and that the uncertainty due to η
would be smaller; Kantowski et al. (1995) disagree.
Frieman (1996) emphasized the dispersion in the ap-
parent magnitude of supernovae caused by a given
mass distribution, rather than considering a range of η.
A similar approach, with the aim of determining the
density of compact objects, the properties of galaxy
haloes, or estimating the uncertainty in the measure-
ment of λ0 and Ω0, was taken up by many authors
(e.g. Holz 1998; Seljak & Holz 1999; Metcalf & Silk
1999; Valageas 2000; Mörtsell et al. 2001; Minty et al.
2002; Amanullah et al. 2003; Payne & Birkinshaw
2004; Metcalf & Silk 2007; Dodelson & Vallinotto
2006; Martel & Premadi 2008; Yoo et al. 2008;
Jönsson et al. 2010; Ben-Dayan & Takahishi 2016;
Zumalacárregui & Seljak 2018). Rather than calculating
the dispersion, one could also attempt to measure it
indirectly due to the fact that the same matter fluctu-
ations would cause weak lensing. However, the shear
maps smoothed on arcminute scales are not of much use
since an appreciable fraction of the lensing dispersion
derives from sub-arcminute scales (Dalal et al. 2003).
Another approach is to estimate the amplification from
the matter visible along the line of sight; Jönsson et al.
(2006, 2007, 2008) and Smith et al. (2014), building on
ideas by Gunnarsson et al. (2006), found a tentative
detection, i.e. a correlation between the computed
and observed amplification (difference between the
observed flux and that expected from the redshift in the
concordance model). One can also turn this around,
and use the observed matter distribution to estimate
the amplification due to lensing and thus correct the
observed flux (Jönsson et al. 2009).
Iwata & Yoo (2015) took a somewhat different ap-

proach, assuming a flat universe and taking Ω0 from
CMB measurements, then calculating η(z) such that the
cosmological parameters from the m–z relation for Type
Ia supernovae agree; this was done for four different sce-
narios. This is complementary to the work of Helbig
(2015a) (next paragraph) who, at almost exactly the
same time, considered only constant η but for arbitrary
FRW models, determining the value of η such that the
m–z relation for Type Ia supernovae results in the same
values for λ0 and Ω0 as those derived from the CMB.
Helbig (2015a) investigated the influence of η, noting

that more and higher-redshift data had become avail-
able. While the data were not good enough to determine
λ0, Ω0, and η simultaneously31, the constraints in the
λ0–Ω0 plane depend strongly on η. Only by assuming
η ≈ 1 does one recover the concordance-cosmology val-
ues of λ0 ≈ 0.7 and Ω0 ≈ 0.3. Since these values are now
known to high precision independently of the m–z rela-
tion for Type Ia supernovae (e.g. Planck Collaboration
2014, 2016, 2019), one can use the m–z relation for Type
Ia supernovae to measure η. The result η ≈ 1 agrees

31 This would imply the somewhat dubious assumption that η is
independent of both redshift and the line of sight. Of course, more-
realistic models could take such effects into account, but obviously
the data would not be able to constrain them since even the simpler
model with a constant η could not be constrained.

well with other tests to determine η from observations.
(While no useful constraints are possible, the global max-
imum likelihood in the λ0–Ω0–η cube also indicates a
high value of η.) Unknown to me at the time, very sim-
ilar results, based on the same data, were obtained by
Yang et al. (2013), Bréton & Montiel (2013), and, some-
what later, Li et al. (2015) (the latter two restricted to
a flat universe). While perhaps not surprising, it is of
course important in science for results to be confirmed
by others working independently. Although they investi-
gated a wider range of models, when restricted to stan-
dard FRW models, the results of Dhawan et al. (2018)
are also consistent.
Since the observations indicate that η ≈ 1, one can ask

whether this is true ‘on average’ as discussed byWeinberg
(1976), or whether each line of sight indicates η ≈ 1. In
the former case, one would expect a dispersion in the dis-
tance at high redshift. Indeed, the scatter does increase
with redshift, but so do the observational uncertainties.
Since their quotient is independent of redshift, this in-
dicates that each line of sight indicates η ≈ 1, in other
words that all lines of sight fairly sample the mass dis-
tribution of the Universe32 (Helbig 2015b). Note that
Holz & Linder (2005) find a scatter (calculated theoret-
ically) approximated by a Gaussian with standard devi-
ation σeff = 0.088z (in flux) or σeff,m = 0.093z (in mag-
nitudes). However, as discussed by Helbig (2015b), the
observed increase in scatter with redshift seems primar-
ily due to observational uncertainties in addition to the
theoretically calculated scatter sometimes incorporated
into those uncertainties.

28. MORE-DETAILED MODELS

Holz & Wald (1998) developed a generalization of the
Swiss-cheese approximation by including all mass explic-
itly (thus there is no smoothed-out ‘cheese’ component),
requiring the mass within a given spherical region (cor-
responding to a hole in the Swiss-cheese approach) to
be equal to that of the background FRW model only
on average, and dropping the requirement of spherical
symmetry. In addition, rather than having a fixed mass
distribution and calculating the trajectories of photons
within it, the mass distribution along a given trajectory
is calculated on the fly. Also, no opaque-radius cutoff
is imposed. Such a model is clearly more realistic than
that of Zel’dovich or a Swiss-cheese model, and leads to a
distribution of apparent luminosities at a given redshift.
In principle, the shape of such a distribution can be used
to determine both the background FRW model and the
fraction of matter in compact objects. While there are a
few highly amplified sources (which, due to flux conser-
vation, there must be, in order to compensate for the fact
that most sources are de-amplified), most of the distribu-
tion can be thought of as η varying with position on the
sky. As expected, if thought of in terms of η, η increases
with redshift, as the higher the redshift, the more likely
it is that a typical trajectory crosses a fair sample of the
universe.
Bergström et al. (2000) generalized the method of

Holz & Wald (1998) by allowing for different types of flu-

32 As discussed in Sects. 16–19, this does not imply that the
Universe is effectively homogeneous, but rather that the distance
calculated from redshift is approximately the same as that which
would be calculated in an effectively homogeneous universe.
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ids, possibly with non-vanishing pressure, instead of just
dust, and by considering the NFW profile (Navarro et al.
1997) in addition to point masses and singular isother-
mal spheres as lenses (see also Goliath & Mörtsell 2000).
Also, multiple imaging is taken into account. This is thus
an even more complicated and thus more realistic model
of the universe. As a consistency check, their results for
empty cells and cells with a homogeneous dust compo-
nent were compared with results obtained from the code
of KHS for η = 0 and η = 1, respectively. For a vari-
ety of cosmological models, the discrepancy was less than
1 per cent up to z = 10. This is a further justification
that the ZKDR distance is an excellent approximation
provided that the mass in the universe is distributed ac-
cording to the assumptions underlying the ZKDR dis-
tance. They also found analytic approximations which
are very good representations of various observable quan-
tities, such as magnification distributions.
Mörtsell (2002) used essentially the same scheme to

investigate the relation between η and the fraction of
compact objects. By definition, 1 − η is the fraction of
compact objects fc in the pure ZKDR case, i.e. only
de-amplification due to underdensity and no amplifica-
tion due to gravitational lensing. As expected, taking
lensing into account results in 1 − η < fc. Interest-
ingly, for a variety of cosmological models ((Ω0, λ0) =
(0.3, 0.6), (0.2, 0.0), (1.0, 0.0)), for redshifts between 0
and 3, and for various models of the mass distribu-
tion (homogeneous and point masses, NFW profiles and
point masses), the relation is approximated very well by
1− η ≈ 0.6fc.
Some authors have claimed that that a universe with

large-scale inhomogeneities could appear as if it has a
positive cosmological constant when in fact it doesn’t,
either because the m–z relation mimics that of an ac-
celerating model (e.g. Alnes et al. 2006; Garfinkel 2006)
and/or because the inhomogeneities produce accelera-
tions without a cosmological constant (e.g. Kai et al.
2007). However, Vanderveld et al. (2006) present evi-
dence against these claims. Also, while in principle one
can reproduce an arbitrary m–z relation with an ad hoc
mass distribution, there are two arguments against this,
other than the fact that it is ad hoc—or, equivalently,
of all possible m–z relation which could be produced, it
just so happens that one is produced which is not only
explicable with 1920s cosmology, but also where the de-
rived parameters agree with those determined by other
means—: there is no believable route to explaining the
CMB observations, and we are required to be at or near
the centre of a large and approximately spherical region.
Those topics go beyond the scope of this article, so I
don’t discuss them further here. However, it has even
been claimed that this is possible in a Swiss-cheese uni-
verse (e.g. Marra et al. 2007, 2008). Vanderveld et al.
(2008) showed, however, that this is not the case if the
voids have a random distribution.
Flanagan et al. (2012) used a variant of the method

of Holz & Wald (1998) to calculate the distribution of
magnitude shifts, but using a simplified Swiss-cheese
model for the mass distribution. Flanagan et al. (2013)
extended this with a more refined Swiss-cheese model:
the mass removed to make the voids is distributed on
shells surrounding the holes in the form of randomly lo-
cated NFW haloes and in the interior of the holes (either

smoothly distributed or as randomly located haloes).
Hada & Futamase (2014) carried out a similar exercise,

concentrating on the difference between the magnitude–
redshift relation in a homogeneous universe and that
in an inhomogeneous universe (with a mass distribution
given by the non-linear matter power spectrum), as well
as its dispersion, taking into account the blocking effect
by collapsed objects and examining the resulting uncer-
tainty in Ω0 (≈ 0.4) and the equation of state w (≈ 0.04),
all in a flat universe.
The work by Giblin et al. (2016a,b) and Mertens et al.

(2016) has been mentioned above in Sect. 12; a simi-
lar approach was adopted by Bentivegna & Bruni (2016).
Detailed discussion of such work is of course beyond the
scope of this review, which concentrates on the use of
the ZKDR distance as opposed to the standard distance
when calculating distance from redshift for a given cos-
mological model. Nevertheless, for present purposes such
works are interesting because they allow for compari-
son between the ZKDR distance and much more real-
istic simulated matter distributions, making it possible
to see how well the ZKDR ansatz approximates real-
ity. However, such simulations are still not entirely free
of approximations: those above are fully relativistic but
use the fluid approximation, while a different approach
was adopted by Adamek et al. (2016), which does not
rely on the fluid approximation, but on the other hand
is based on a weak-field expansion of GR. Which ap-
proach is better of course depends on what one wants
to study. It is perhaps surprising that a simple equa-
tion such as Eq. (1) agrees so well with results from nu-
merical ray tracing through ΛCDM simulations, at least
if one allows the additional freedom of η(z) and a cer-
tain stochastic element depending on the individual line
of sight (η(α, δ)). Somewhat similarly, the FRW metric
was originally a simplifying assumption, made in order
that at least some results could be obtained with the lim-
ited methods of calculation available at the time. Now,
however, it is an observational fact, as demonstrated by
observations of the CMB and the large-scale structure of
the Universe, that our Universe is in fact very close to
an FRW model (Green & Wald 2014).

29. WEAK GRAVITATIONAL LENSING

Weak gravitational lensing is normally defined as grav-
itational lensing without multiple images. If the source
can be resolved, then information can be gleaned from
the distortion of the image. In such a case, however,
if the source is at a cosmological distance, η ≈ 1 (be-
cause the distance implies a large physical extent near
the source, averaging over the matter distribution, and
because it appears that, at large redshift, distances be-
have as if η ≈ 1, as noted in Sect. 27). Relevant for
the ZKDR distance with respect to weak lensing is thus
weak lensing of point sources.33 Some aspects of this are

33 An example of strong lensing of resolved sources are multi-
ple images of background galaxies lensed by clusters of galaxies.
An example of strong lensing of point sources are multiple images
of QSOs; here, η can play a role since it influences the distance
calculated from redshift, which in addition to the lens model is
important for the time delay (see Sect. 20). Microlensing can be
thought of as a combination of weak and strong lensing, depending
on the impact parameter, though since the source is not resolved,
one observes only a change in apparent magnitude due to amplifi-
cation.
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discussed above in Sect. 21. This section is concerned
particularly with weak lensing of standard candles.
Wang (1999) pointed out that weak lensing leads to

a non-Gaussian magnification distribution of standard
candles at a given redshift, due to the fact that η can
vary with direction. One can thus think of our Universe
as a mosaic of cones centred on the observer, each with
a different value of η, where there is a unique mapping
between η and the magnification of a source. Of course,
since the ZKDR distance depends on Ω0 and λ0 as well
as η, different cosmological models can lead to very dif-
ferent magnification distributions for the same matter
distribution.34 Wang (1999) derived an approximation
for the ZKDR distance (see Sect. 32), and also treated η
as a function of position on the sky, i.e. different lines of
sight can have different values of η. This effective value of
η depends not only on the amount of matter in the beam,
but also on how it is distributed (though only the total
amount in the beam is considered—the possibility that a
significant fraction could be in point masses is not taken
into account). An approximation to matter distribution
at a given redshift is found via comparison with the re-
sults of Wambsganss et al. (1997), who used Ω0 = 0.4
and λ0 = 0.6. She then calculated the distribution of
η as well as the magnification distribution for standard
candles, both for the same three different redshifts 0.5,
2, and 5. Also, for the same matter distribution, the
probability of magnification was calculated for the same
three redshifts and three different cosmological models:
(Ω0,λ0) = (1,0), (0.2,0), and (0.2,0.8).
Wang et al. (2002) extended this idea to a universal

probability-distribution function for the reduced con-
vergence which can be directly computed from Ω0 and
λ0, well approximated by a three-parameter stretched
Gaussian distribution, where the three parameters de-
pend only on the variance of the reduced conver-
gence; in other words, all possible weak-lensing proba-
bility distributions can be well approximated by a one-
parameter family, which was normalized via the sim-
ulations of Wambsganss et al. (1997). The reduced
convergence is the same as the direction-dependent η
used by Wang (1999). Fitting formulae were presented
for thre fiducial cosmological models: (Ω0, λ0, h, σ8) =
(1.0, 0.0, 0.5, 0.6), (0.3, 0.7, 0.7, 0.9), (0.3, 0.0, 0.7, 0.85).
Williams & Song (2004) took the opposite approach:

assuming that the standard distance (η = 1) is correct,
they found that bright SNe are preferentially found be-
hind regions (5–15 arcmin in radius) that are overdense
in the foreground due to z ≈ 0.1 galaxies, the difference
between brightest and faintest being about 0.3–0.4 mag.
(In other words, the fact that bright supernovae are pref-
erentially found behind overdense regions indicates that
the standard distance is incorrect.) The effect, significant
at > 99 per cent, depends on the amount and distribu-
tion of matter along the line of sight to the sources but
not on the details of the galaxy-biasing scheme.
In a very detailed work, Kainulainen & Marra (2009)

34 Note that her claim that Perlmutter et al. (1999) ‘assumed
a smooth universe’ is somewhat misleading. While they did not
consider a direction-dependent η, they did compare the extreme
cases of η = 1 and η = 0 as well as the case of an Ω0-dependet
η (i.e. galaxies assigned to clumps and the rest of the matter dis-
tributed smoothly, which implies an increase in η with increasing
Ω0), in all cases using the code of KHS.

studied the effects of weak gravitational lensing caused
by a stochastic distribution of dark-matter haloes, re-
stricted to flat FRW models and examining those with
Ω0 = 0.28 (close to the current concordance model) and
Ω0 = 1 (the Einstein–de Sitter model) as representa-
tive examples. In particular, they calculated the differ-
ence between the distance in their model and the ZKDR
distance for η = 0.5 and η = 0 for these two models,
finding a maximum relative error of only 0.06 for the ex-
treme case of the empty-beam Einstein–de Sitter model
at z = 1.6 (the upper limit of their redshift range). This
is yet another example of the proof of the validity of the
assumptions underlying the ZKDR distance. Their main
goal was to compute the probability-distribution func-
tion and the most likely value of the lens convergence
along arbitrary photon geodesics as a function of their
model parameters.

30. CLASSICAL COSMOLOGY: GENERAL

In an interesting but somewhat confusingly written
paper, Yu et al. (2011) use the m–z relation and the
angular-size–redshift relation (based on data from the lit-
erature) to determine Ω0 and η in flat cosmological mod-
els (and the equation-of-state parameter w—confusingly
referred to as ω—and η for flat models with Ω0 = 0.28).
Of course, H is in general a function of z, but this is not
something which is measured directly.35 Rather, H(z)
is calculated from the magnitude or angular size. Al-
though not stated, presumably the reason is to be able
to fit to both data sets simultaneously. Their results
(1-σ uncertainties) η = 0.80+0.19

−0.2 (with no prior on Ω0)

and η = 0.93+0.07
−0.19 (Ω0 = 0.26 ± 0.1) can be compared

to η = 0.75+0.15
−0.15 (λ0 = 0.72 and Ω0 = 0.28, i.e. the

confordance-model values) obtained by Helbig (2015a)
using only the m–z relation for Type Ia supernovae (see
Sect. 27). Although not directly comparable, and keep-
ing in mind that one would expect the supernova data to
indicate a lower value of η due to the smaller beam size,
the general trend is clear: observational data indicate a
relatively high value of η. There are two possible expla-
nations. First, this could be the averaging mentioned
by Weinberg (1976), skewed to slightly lower values be-
cause of selection effects. Second, the physical model on
which the ZKDR distance is based is wrong, but in our
Universe the m–z relation is similar to that in a high-
η ZKDR universe (Peel et al. 2014; Helbig 2015b) (see
Sect. 27).
Busti & Santos (2011) pointed out that the procedure

used by Yu et al. (2011) to calculate H(z) is not consis-
tent, because the equation relatingH(z) and the angular-
size distance is valid only for η = 1. Santos et al. (2008)
had done a similar analysis to that of Yu et al. (2011)

35 There is a range of directness in measurement. At one level,
all that is ever measured in astronomy is number of photons as a
function of position on a detector, which can be related to apparent
magnitude for a conventional exposure or as the intensity of a spec-
trum in the case of spectroscopy. Everything else is interpretation.
Nevertheless, it makes sense to say that one can directly measure
redshift, magnitude, and angular size, and, one step less concrete,
that one can measure λ0 and Ω0 via the derived parameters (as-
suming some framework, such as FRW). Despite some claims to the
contrary, no cosmological test directly measures acceleration; this
is calculated from the cosmological parameters obtained. Similarly,
H(z) is a calculated quantity.
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using supernova data, concluding that η > 0.42 (2σ).
Adding the H(z) data used by Yu et al. (2011) of course
improves the constraints, resulting in 0.66 ≤ η ≤ 1.0 (2σ)
with the best fit at η = 1, a broadly similar result. Note
that Helbig (2015a) also finds the best-fit value η = 1
if λ0 and/or Ω0 are constrained. Thus, while Yu et al.
(2011) did indeed make a mistake, the fact that η ≈ 1
means that it didn’t appreciably affect their main result.
While there is no evidence that our Universe is not well

described by an FRW model, it is important to test for
deviations from this assumption. One possibility is to
test the Copernican Principle by looking for a redshift
dependence of the curvature parameter (Clarkson et al.
2008); another is to express Ω0 in terms of observable
quantities, resulting in an expression which must hold at
all redshifts (Sahni et al. 2008; Zunkel & Clarkson 2008).
Busti & Lima (2012) pointed out that these tests implic-
itly assume that the universe is assumed to be homo-
geneous and isotropic on all scales (in other words, the
‘RW’ is assumed; the idea is to test the ‘F’ part of FRW),
and showed that using the ZKDR distance leads to false
positives for these tests (i.e. the Copernican Principle ap-
pears to be violated when in fact it is not). Busti & Lima
(2012) also rewrite the ZKDR equation so that η is given
as a function of observable quantities, allowing one to
reconstruct η(z) from observations for a general ΛCDM
model. Such an η(z) can also mimic the behaviour of
model with η = 1 but with w 6= −1, i.e. some form of
dark energy other than a cosmological constant.
Inhomogeneous cosmological models definitely affect

light propagation. Whether they affect the expansion
rate of the universe is still debated. Green & Wald
(2014) claimed that there is no evidence that an FRW
model is not a good description of the Universe on es-
sentially all scales (except perhaps the extremely small
scales encountered in, for example, the m–z relation for
Type Ia supernovae).

31. CLASSICAL COSMOLOGY: ANGULAR DIAMETERS

One of the basic cosmological tests is the ‘standard rod’
test, i.e. the comparison of the angular size as a function
of redshift of an object of given size to the theoretical ex-
pection derived from the angular-size–redshift relation,
which in turn depends on the the cosmological parame-
ters. (By the same token, the calculation of the physical
size from the observed angular size depends on the cos-
mological model, and on η.) Although a classic test, no
useful constraints have been derived from it—except in
the cases of the CMB and BAO, though here the cor-
responding physical lengths are so large that the ZKDR
distance plays no role (e.g. Lewis & Challinor 2006)—
primarily because of the difficulty in finding a standard
rod. Nevertheless, some progress can be made. For ex-
ample, Alcaniz et al. (2004), assuming a Gaussian prior
Ω0 = 0.35 ± 0.07 in a flat universe, found the best fit
at Ω0 = 0.35 and η = 0.8 (consistent with the results
mention in Sect. 27).
Araújo & Stoeger (2009) point out the interesting,

long-known, but generally unappreciated fact that, for
a flat universe, the redshift at which the maximum of
the angular-size distance occurs is a direct measure of
λ0, independently of H0. For a non-flat universe, knowl-
edge of the redshift of the maximum and H0 allows one
to determine both Ω0 and λ0. Note, however, that this

depends on the assumption that η = 1.
Also, Chen & Ratra (2012) examined constraints from

the angular sizes of galaxy clusters, both for general FRW
models and for two classes of flat models with different
types of dark energy. Their conclusion is still valid to-
day: such constraints are approximately as restrictive as
those based on gammay-ray–burst apparent-luminosity
data, strong–gravitational-lensing measurements, or the
age of the Universe, but less so than those from BAO or
the m–z relation for Type Ia supernovae (or the CMB).
Nevertheless, as an independent constraint, the fact that
they are compatible with other data strengthens our con-
fidence in the concordance model.

32. ANALYTIC APPROXIMATIONS

In general, analytic solutions of the ZKDR distance are
very complicated. Moreover, there are analytic solutions
only for special values of λ0, Ω0, or η.
Wang (1999) presented an approximation for the

ZKDR distance as a polynomial in η with coefficients
which depend on redshift and the cosmological parame-
ters, the latter via the fact that the coefficients depend on
the distance calculated for given values of Ω0 and λ0 for η
values of 0, 0.5, 1, and 1.5. Note that η = 1.5 is in conflict
with the assumptions under which the ZKDR distance is
derived; nevertheless, this can be valid from a heuristic
point of view (e.g. Lima et al. 2014). Of course, η > 1
everywhere is impossible, but could be valid if η depends
on the line of sight. In that case, however, one should
think of it as an average along the line of sight, i.e. a
particular line of sight might, by chance, have an above-
average amount of matter along it. If this were constant,
it would imply an extremely long structure aligned with
the line of sight, which would not be compatible with an
approximate FRW model.
Demianski et al. (2003)36 found ‘an approximate ana-

lytic solution. . . which is simple enough and sufficiently
accurate to be useful in practical applications’. It is not
clear how useful this is, though. It was apparently dis-
covered more or less by accident and has no theoretical
basis. As such, it is not clear a priori in which cases it is
a good approximation, so one needs to test it against an
(at least numerically) exact solution, in which case one
might just as well use the better solution.37

Also, the numerical implementation of KHS is, in most
cases, only a factor of 3 or so slower than the elliptic-
integral solution (of course, one can compare only in
those cases where such solutions exist; the numerical im-
plementation knows no special cases—and is valid for all
values of the input parameters, using the same algorithm
for all—and the speed depends only weakly on the input
parameters), so there doesn’t seem to be a real need for
approximate solutions; even if such an approximation is
faster than the elliptic-integral solution (and valid for all
input parameters), the elliptic-integral solution is ‘almost
analytic’ and reasonably fast, so a factor of 3 for a gen-
eral and accurate numerical implementation is not a big
disadvantage in practice. Though restricted to k = 0 and
η = 1, similar remarks apply to the work of Pen (1999).

36 See also Demianski et al. (2000) which is the precursor, but
longer and substantially different in places.

37 Lewis Carroll, in one of his less famous books, describes a
map with a scale of 1:1, but it was easier to just use the real Earth
than the map (Carroll 1893).
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33. SUMMARY

The basis of observational cosmology is calculating the
dependence of some observational quantity—usually re-
lated to some distance—on redshift for a variety of cos-
mological models, then determining the corresponding
cosmological parameters via finding the model which
gives the best fit to the data. Small-scale inhomo-
geneities can affect the relation between redshift and
distance, thus it at least needs to be investigated whe-
ther results depend on the amount of inhomogeneity.
Zel’dovich (1964b) introduced a simple model for such
small-scale inhomogeneities and an analytic solution (for
the Einstein–de Sitter model) for the extreme case,
namely that light propagates through completely empty
space, all of the matter being located in clumps outside
the beam. Subsequent work generalized that model to
other cosmological models and/or intermediate degrees
of inhomogeneity (later known as the ZKDR distance,
after the initials of the most influential pioneers), investi-
gated a similar approach involving so-called Swiss-cheese
models (not necessarily more realistic, but exact solu-
tions of the Einstein equations) which were later shown
to correspond to the Zel’dovich (1964b) model in a well
defined way, investigated assumptions in the models and
their effects (e.g. whether the clumps are transparent,
if averaging whether the average is taken over the ce-
lestial sphere or over all lines of sight, etc.), compared
the results of the models with exact solutions or numer-
ical simulations, and developed approximations to var-
ious distance formulae. Approximations are no longer
needed, now that computing power has increased and
an efficient numerical implementation is available for the
general case (Kayser et al. 1997).
Most of the theory was complete by the middle of the

1970s. The discovery of the first gravitational-lens sys-
tem in 1979 revived interest in this topic: since gravi-
tational lenses obviously require an inhomogeneous uni-
verse, in such cases the assusmption of a completely ho-
mogeneous universe with regard to light propagation be-
comes more obvious. Until the middle of the 1990s or
so, effects of inhomogeneities were not that important in
observational cosmology, for two reasons. First, the un-
certainty in the cosmological parameters was large, com-
parable to (with respect to the effect on the distance
as a function of redshift) variation in the inhomogeneity
parameter η. Second, most observations were at low red-
shift, whereas η is a higher-order effect compared to the
first- and second-order parameters H0 and q0 (see also
equation (8) in Kantowski 1998). The use of Type Ia
supernovae for the m–z relation extended observations

to higher redshift. Also, both this test as well as others
had constrained the cosmological parameters to a degree
that the effect of η could no longer be ignored, which led
to another revival of interest.
In general, the effect of η depends on angular scale:

large angular scales correspond to a fair sample of the
universe within the beam, while this is not necessar-
ily the case for small angular scales. Since supernovae
have an angular scale of about 10−7 arcsec, which is very
small, one would perhaps expect to see effects of η in the
m–z relation for Type Ia supernovae. However, many
independent investigations come to the conclusion that
η ≈ 1, not just on average, as is to be expected, at least
under certain assumptions (Weinberg 1976), but also for
each individual line of sight. The reason for that is prob-
ably that the Zel’dovich (1964b) model is incorrect in the
sense that it is not a good approximation for our Uni-
verse: no-one doubts that the ZKDR distance is correct
in a universe with a mass distribution well modelled by
that on which the idea of the ZKDR distance is based,
but apparently that is not our Universe. In other words,
most of the matter is not outside the beam, even for very
narrow beams, but rather even such very narrow beams
fairly sample the Universe. Note that η ≈ 1 does not nec-
essarily imply that matter is distributed homogeneously
within the beam; it just implies that the distance as cal-
culated from redshift is approximately the same as if that
were the case. In reality, such a beam will traverse voids
with less than average density, but also regions (corre-
sponding to the filaments and sheets of large-scale struc-
ture) with much higher than average density. Although
this violates the assumptions on which the ZKDR dis-
tance is based, nevertheless in practice such a mass dis-
tribution results in distance as a function of redshift very
close to the standard distance, i.e. that optained by as-
suming that the universe, at least with regard to light
propagation, is completely homogeneous.
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Mörtsell E., 2002, A&A, 382, 787
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2.3 Follow-up

Since it is relatively new, there has not been enough time for this paper to
have had much impact, though it does already have at least three citations
(excluding self-citations). I hope that it provides a good introduction to, and
historical survey of, the topic and will prove useful.

A few months later, I published an abridged version, with a bit more empha-
sis on why it turned out that it is usually acceptable to assume η ≈ 1 (Helbig,
2020c).
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Chapter 3

A general and practical
method for calculating
cosmological distances

3.1 Context

When I started my Diplom1 thesis work at the Hamburg Observatory, in the
group of the late Sjur Refsdal, I intentionally chose a topic where it was not
clear from the start that programming would be involved. As it turned out, pro-
gramming was necessary (and, as soon as I got a taste of it, I was happy that it
had turned out that way). In particular, I needed to calculate the angular-size
distance for cosmological models with arbitrary λ0 and Ω0, and also arbitrary
η. There was no standard package to do this.2 Kayser (1985) had derived
the second-order differential equation for the angular-size distance for cosmo-
logical models with arbitrary λ0 and Ω0, and also arbitrary η, but had only a
rudimentary numerical implementation (using Simpson integration). Since that
had been published only in his doctoral thesis, we thought that it would be a
good idea to write it up for a paper and, since I was working on a better nu-
merical implementation, make that code publicly available in conjunction with
the paper. To put things into context, the paper also summarizes the FLRW
models, illustrates various definitions of distance, and discusses the numeri-
cal implementation. Relegated to appendices are a discussion of the symmetry
properties (in particular the generalization of the Etherington (1933) reciprocity
relation), known analytic solutions, and the calculation of the volume element.

The paper is based on the equation derived by Rainer Kayser (1985). I wrote
the paper and wrote the Fortran77 code (Fortran90 compilers were not yet
available). Thomas Schramm was involved in the planning and discussion of the
paper, especially the mathematical aspects. Although I was officially a student
of Refsdal, I worked most closely with Rainer and benefitted greatly from almost
daily discussions with him and Tom.

This paper was published at a time when Astronomy & Astrophysics pub-

1The German Diplom degree, now essentially obsolete as a result of the Bologna process,
was the rough equivalent of a master’s degree, but included a one-year thesis, for a total
nominal time of five years.

2Around the same time, Feige (1992) published a paper dealing with distance calculation
via elliptic integrals for arbitrary λ0 and Ω0, but only for η = 1. His paper was more of a
cookbook, and he didn’t make the code publicly available, but he let me have it on request.
It is written in C but not in a portable fashion.
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lished some content only electronically. In particular, the appendices of this
paper were published only electronically. I posted the full version to arXiv, and
a full version is also available on my own web pages. In order to include official
versions as much as possible in this thesis, the first part of the paper is the PDF
file as provided by ADS (not including the appendices). (As far as I know, PDF
is not available from A&A for papers this old.) The appendices are still available
via anonymous ftp: cdsarc.u-strasbg.fr/A+A/318/680. I have retrieved the
gzipped PostScript file available there. Since the text is cut off at the top
of each page, I have added the PostScript command “0 -72 translate” at the
start of each page in the PostScript file, then converted this to PDF using
GhostScript. As with the other papers, pdftk was used to combine official
PDF versions of the papers with PDF (produced from LATEX via PostScript)
from the rest of the thesis.
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Abstract. The calculation of distances is of fundamental im-

portance in extragalactic astronomy and cosmology. However,

no practical implementation for the general case has previously

been available. We derive a second-order differential equation

for the angular size distance valid not only in all homogeneous

Friedmann-Lemaı̂tre cosmological models, parametrised by λ0

and Ω0, but also in inhomogeneous ‘on-average’ Friedmann-

Lemaı̂tre models, where the inhomogeneity is given by the (in

the general case redshift-dependent) parameter η. Since most

other cosmological distances can be obtained trivially from the

angular size distance, and since the differential equation can

be efficiently solved numerically, this offers for the first time

a practical method for calculating distances in a large class of

cosmological models. We also briefly discuss our numerical im-

plementation, which is publicly available.

Key words: cosmology: theory – methods: numerical – cos-

mology: distance scale – gravitational lensing

1. Introduction

The determination of distances is one of the most important

problems in extragalactic astronomy and cosmology. Distances

between two objects X and Y depend on their redshifts zx
and zy , the Hubble constant H0, the cosmological constant λ0,
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the density parameter Ω0 and the inhomogeneity parameter η.1

Usually, smaller distances are determined by the traditional ‘dis-

tance ladder’ technique and larger distances are calculated from

the redshift, assuming some cosmological model. Since the red-

shift is for most purposes exactly measurable, knowledge of

or assumptions about two of the factors (a) Hubble constant,

(b) other cosmological parameters and (c) ‘astronomical dis-

tance’ (i.e. ultimately tied in to the local distance scale) deter-

mines the third. In this paper we discuss distances given the

Hubble constant H0, the redshifts zx and zy and the cosmolog-

ical parameters λ0, Ω0 and η. Traditionally, a simple cosmolog-

ical model is often assumed for ease of calculation, although

the distances thus obtained, and results which depend on them,

might be false if the assumed cosmological model does not ap-

propriately describe our universe. A general method allows one

to look at cosmological models whether or not they are easy-to-

calculate special cases and offers the possibility of determining

cosmological distances which are important for other astrophys-

ical topics once the correct cosmological model is known.

We stress the fact that the inhomogeneity can be as important

as the other cosmological parameters, both in the field of more

traditional cosmology and in the case of gravitational lensing,

where, e.g. in the case of the time delay between the different

images of a multiply imaged source, the inhomogeneity cannot

be neglected in a thorough analysis (Kayser & Refsdal 1983).

For an example involving a more traditional cosmological test,

Perlmutter et al. (1995) (see also Goobar & Perlmutter (1995))

discuss using supernovae with z ≈ 0.25–0.5 to determine q0;

for z near the top of this range or larger, the uncertainty due to

1 When discussing the distance between two objects, one can always

make a coordinate transformation such that the contribution from the θ
and φ terms in Eq. (1) vanish. Then one simply needs the redshifts and

cosmological parameters in order to determine the distance between

them. When discussing the distances between several objects, for ex-

ample QSOs with α, δ and z as coordinates, this is no longer possible.

In many cases, however, suitable geometrical approximations can be

made so that the most complicated part of the problem is essentially a

determination of a distance between two objects. This point is further

discussed in Sect. 5.
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our ignorance of η is comparable with the other uncertainties of

the method.

The plan of this paper is as follows. In Sect. 2 the basics of

Friedmann-Lemaı̂tre cosmology are briefly discussed; this also

serves to define our terms, which is important since various con-

flicting notational schemes are in use. (For a more thorough dis-

cussion using a similar notation see, e.g., Feige (1992).) Sect. 3

defines the various distances used in cosmology. In Sect. 4 our

new differential equation is derived. Similar efforts in the litera-

ture are briefly discussed. Sect. 5 briefly describes our numerical

implementation and gives the details on how to obtain the source

code for use as a ‘black box’ (which however can be opened)

for use in cosmology and extragalactic astronomy. The sym-

metry properties of the angular size distance, analytic solutions

and methods of calculating the volume element are addressed

in three appendices.

2. Basic theory

Considering for the moment homogeneous Friedmann-Lemaı̂tre

cosmological models, we can write the familiar Robertson-

Walker line element:

ds2 = c2dt2 −R2(t) ×
(

dσ2

(

1 − kσ2
) + σ2dθ2 + σ2 sin2 θdφ2

)

, (1)

where the symbols are defined as follows (with the correspond-

ing units):

s 4-dimensional interval [length]

c speed of light [velocity]

t time [time]

R scale factor [length]

σ radial coordinate [dimensionless]

k curvature constant [dimensionless]

θ angular coordinate [dimensionless]

φ angular coordinate [dimensionless]

The dynamics of the universe is given by the Friedmann equa-

tions

Ṙ2(t) =
8πGρ(t)R2(t)

3
+

ΛR2(t)

3
− kc2 (2)

and

R̈(t)

R(t)
= −4πGρ(t)

3
+

Λ

3
, (3)

where dots denote derivatives with respect to t, G is the grav-

itational constant, ρ(t) the matter density (this paper assumes

negligible pressure), Λ the cosmological constant and the sign

of k determines the curvature of the 3-dimensional space.

Introducing the usual parameters

H =
Ṙ

R
(Hubble parameter)

Ω =
8πGρ

3H2
(density parameter) (4)

λ =
Λ

3H2
(normalised cosmological constant)

(Ω and λ are dimensionless and H has the dimension t−1) we

can use Eq. (2) to calculate

kc2 = R2H2 (Ω + λ− 1) , (5)

so that

k = sign (Ω + λ− 1) . (6)

Since R > 0 we can write

R =
c

H

1
√

|Ω + λ− 1|
; (7)

this is the radius of curvature of the 3-dimensional space at

time t. For k = 0 it is convenient to define the scale factor R to

be c/H . In the following the index 0 will be used to denote the

present value of a given quantity, fixed, as usual, at the time t0

of observation.2 The explicit dependence on t will be dropped

for brevity. Taking matter conservation into account and using

the present-day values, we have

ρR3 = ρ0R
3
0 (8)

and so from Eqs. (2), (4), (5) and (8) follows

Ṙ2 = H2
0R

2
0

(

Ω0R0

R
+
λ0R

2

R2
0

− (Ω0 + λ0 − 1)

)

. (9)

Since below we want to discuss distances as functions of the

cosmological redshift z, by making use of the facts that

z =
R0

R
− 1 (10)

and that R0 is fixed, we can use Eq. (9) to get

dz =
dz

dR
Ṙdt = −H0(1 + z)

√

Q(z) dt, (11)

where

Q(z) = Ω0(1 + z)3 − (Ω0 + λ0 − 1)(1 + z)2 + λ0. (12)

Note: Throughout this paper, the
√

sign should be

taken to signify the positive solution, except that sign
√
Q(z) =

sign(Ṙ) always.

3. Distance measures

3.1. Distances defined by measurement

In a static Euclidean space, one can define a variety of distances

according to the method of measurement, which are all equiv-

alent.

2 Note that this paper is concerned with the calculation of distances

from redshift. We are not concerned with a change in redshift with t0.
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3.1.1. Angular size distance

Let us consider at position y two light rays intersecting at x
with angle θ. If l is the distance between these light rays, it is

meaningful to define the angular size distance Dxy as

Dxy =
l

θ
, (13)

since an object of projected length l at position y will subtend

an angle θ = l/Dxy (for small θ) at distance Dxy .

3.1.2. Proper motion distance

The proper motion distance is similar to the angular size dis-

tance, except that l is given by vt, where v is the tangential

velocity of an object and t the time during which the proper

motion is measured.

3.1.3. Parallax distance

Parallax distance is similar to the proper motion distance, except

that the angle π is at y instead of x, so that we have

Dπ
xy =

l

π
. (14)

In the canonical case, l = 1 AU.

3.1.4. Luminosity distance

Since the apparent luminosity L of an object at distance D is

proportional to 1/D2, one can define the luminosity distance as

DL = DL
0

√

L0

L
, (15)

where L0 is the luminosity at some fiducial distance DL
0 .

3.1.5. Proper distance

By proper distance DP we mean the distance measured with a

rigid ruler.

3.1.6. Distance by light travel time

Finally, from the time required for light to traverse a certain

distance, one can define a distance Dc by

Dc = ct (16)

where t is the so-called look-back time.

3.2. Cosmological distances

3.2.1. General considerations

In a static Euclidean space, which was used above when defining

the distances through a measurement description, these distance

measures are of course equivalent. In the general case in cos-

mology, where the 3-dimensional space need not be flat (k = 0)

but can be either positively (k = +1) or negatively (k = −1)

curved, and where the 3-dimensional space is scaled by R(t),
not only do the distances defined above differ, but also (in the

general case) Dxy /= Dyx. The definitions are still applicable,

but different definitions will result in different distances.

In reality, of course, the universe is neither perfectly homo-

geneous nor perfectly isotropic, as one assumes when deriv-

ing Eq. (1). However, as far as the usefulness of the Friedmann

equations in determining the global dynamics is concerned, this

appears to be a good approximation. (See, for example, Longair

(1993) and references therein for an interesting discussion.) The

approximation is certainly too crude when using the cosmologi-

cal model to determine distances as a function of redshift, since

the angles involved in such cases can have a scale comparable

to that of the inhomogeneities. In this paper, we assume that

these inhomogeneities can be sufficiently accurately described

by the parameter η, which gives the fraction of homogeneously

distributed matter. The rest (1 − η) of the matter is distributed

clumpily, where the scale of the clumpiness is by definition of

the same order of magnitude as the angles involved.

For example, a halo of compact MACHO type objects

around a galaxy in a distant cluster would be counted among the

homogeneously distributed matter if one were concerned with

the angular size distance to background galaxies further away,

but would be considered clumped on scales such as those im-

portant when considering microlensing by the compact objects

themselves. Since we don’t know exactly how dark matter is

distributed, different η values can be examined to get an idea as

to how this uncertainty affects whatever it is one is interested in.

If one has no selection effects, then, due to flux conservation,

the ‘average’ distance cannot change (Weinberg 1976); η intro-

duces an additional uncertainty when interpreting observations.

It is generally not possible to estimate this scatter by comparing

the cases η = 0 and η = 1, since, depending on the cosmolog-

ical parameters and the cosmological mass distribution, not all

combinations are self-consistent. For instance, if one looks at

scales where galaxies are compact objects, and the fraction of

Ω0 due to the galaxies is x, then η must be ≤ (1 − x).

We further assume that light rays from the object whose

distance is to be determined propagate sufficiently far from all

clumps. (See Schneider et al. (1992) – hereafter SEF – for a more

thorough discussion of this point.) Compared to the perfectly

homogeneous and isotropic case, the introduction of the η pa-

rameter will influence the angular size and luminosity distances

(as well as the proper motion and parallax distances) since these

depend on angles between light rays which are influenced by

the amount of matter in the beam, but not the proper distance

and only negligibly the light travel time. The last two distances

are discussed briefly in Sect. 3.2.2 and in Appendix B3 and B6.
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Since there is a simple relation between the angular size distance

and the luminosity distance (Sect. 3.2.2) which also holds for

the inhomogeneous case (see Appendix A), for the general case

it suffices to discuss the angular size distance, which we do in

Sect. 4.

3.2.2. Relationships between different distances

Without derivation3 we now discuss some important distance

measures, denoting the redshifts of the objects with the indices

x and y. Due to symmetry considerations (see Appendix A)

Dyx = Dxy

(

1 + zy
1 + zx

)

, (17)

where the term in parentheses takes account of, by way of

Eq. (10), the expansion of the universe. It is convenient, in keep-

ing with the meaning of angular size distance, to think of the

expansion of the universe changing the angle θ in Eq. (13) and

not l, if one identifies l as the (projected) size of an object. The

angle is defined at the time when the light rays intersect the

plane of the observer. Thus Dxy with the observer at x = 0

defines what one normally thinks of as an angular size distance.

On the other hand, Dxy and Dyx with x in general /= 0 can be

important in, for example, gravitational lensing.4

Although the angle between the rays (at the source) at the

time of reception of the light is important for the luminosity

distance, this distance is not simply Dyx, since in the cosmo-

logical case the observed flux is obtained by multiplying the

‘non-redshifted flux’ by the factor (1 + zx)2/(1 + zy)2. One fac-

tor of (1 + zx)/(1 + zy) occurs because a given wavelength is

increased by (1+zy)/(1+zx), which reduces the flux correspond-

ingly; an additional factor of (1 + zx)/(1 + zy) occurs because

the arrival rate of photons is also decreased. Therefore, since

DL is inversely proportional to the square root of the (observed,

‘redshifted’) flux the luminosity distance is

DL
xy = Dyx

(

1 + zy
1 + zx

)

. (18)

From this and Eq. (17) follows the relation

DL
xy = Dxy

(

1 + zy
1 + zx

)2

. (19)

This means that the surface brightness of a ‘standard candle’

is ∼ (1 + z)−4, a result independent of the cosmological model

3 See, e.g., Feige (1992) Berry (1986) or Bondi (1961) for a more

general discussion. What we present in the rest of this section is not

new, but is important in order to clarify the notation. The results are

obvious from the definitions introduced above.
4 Although not useful in cosmology or extragalactic astronomy,

for completeness we mention the fact that the proper motion dis-

tance is equivalent to Dyx and the parallax distance is equivalent to

Dyx/
√

1 − kσ2.

parameters, including η.5 (This result also holds for the inhomo-

geneous case, since Eq. (17) still holds (see Appendix A) and

the additional factor due to the expansion of the universe (given

by the term in parentheses in Eq. (18)) is of course present in

the inhomogeneous case as well.)

Of course, this applies only to the bolometric luminosity.

Observing in a finite band introduces two corrections. The so-

called K-correction as it is usually defined today (see, e.g.,

Coleman et al. (1980) or, for an interesting and thorough dis-

cussion, Sandage (1995)) takes account of these, both of which

come from the fact that the observed wavelength interval is

redshifted compared to the corresponding interval on emission.

This means that, first, for a flat spectrum, less radiation is ob-

served, because the bandwidth at the observer is (1 + z) times

larger than at the source. Second, the spectrum need not be flat,

in which case additional corrections based on the shape of the

spectrum have to be included.6 Thus,

m = M + 5 log

(

DL[pc]

10 pc

)

+ K (20)

where m is the apparent magnitude, M the absolute magnitude,

DL is the luminosity distance and K is the K-correction as

defined in Coleman et al. (1980). Perhaps more convenient is

m = M + 5 logDL + K + N (21)

where N is a normalisation term: N = −5 for DL in units of

1 pc, N = 25 for DL in units of 1 Mpc and N = x− 5 logh for

DL in units of the Hubble length7 c/H0, where

x = 5 log

(

Hubble length

1 pc

)

− 5 ≈ 42.384

and h is the Hubble constant in units of 100 km/s/Mpc. In

practice one has to add terms to correct for various sources of

extinction and consider the fact thatM is the absolute magnitude

of the object when the light was emitted, which of course could

be different from the present M of similar objects at negligible

redshift.

The light travel time (or lookback time) txy = tx − ty be-

tween zx and zy (where tx = t(zx) > ty = t(zy)) is given by

the integration of the reciprocal of Eq. (11):

txy =

zx
∫

zy

(

dz

dt

)−1

dz =
1

H0

zy
∫

zx

dz

(1 + z)
√
Q(z)

, (22)

5 Thus, a ‘surface brightness test’ can in principle show that cosmo-

logical redshifts are due to the expansion of the universe and not to

some other cause. See, e.g., Sect. 6 in Sandage (1995).
6 Since the observed objects generally evolve with time, and red-

shifted objects are necessarily observed as they were when the radi-

ation was emitted, some authors include an evolutionary term in the

K-correction. Still other authors prefer to absorb one or more of these

terms into the definition of the luminosity distance. Our luminosity

distance is a bolometric distance based on the geometry and includes

the unavoidable dimming due to the redshift. Our K-correction takes

account of both effects of a finite bandwidth. Evolutionary effects are

considered separately from distances.
7 For example, as given by our numerical implementation; see Sect. 5
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where the minus sign from Eq. (11) is equivalent to the swapped

limits of integration on the right-hand side so that the integral

gives tx − ty instead of ty − tx, making the light travel time

increase (for Ṙ > 0) with z; thus Dc
xy = ctxy .

Since the proper distance would be the same as Dc were

there no expansion, the former can be calculated by multiplying

the integrand in Eq. (22) by c(1 + z). Thus

DP
xy =

c

H0

zy
∫

zx

dz√
Q(z)

. (23)

This gives the proper distance at the present time. Since DP

scales linearly with the expansion of the universe, the proper

distance at some other time can be obtained by dividing Eq. (23)

with (1 + zi), where zi is the redshift at the corresponding time.

For homogeneous (η = 1) cosmological models,8 the propaga-

tion of light rays is determined by the global geometry, so that

there is a simple relation between DP and D and, thus, DL. This

is discussed in Sect. B3. Although not ‘directly’ observable, the

proper distance is nevertheless important in cosmological the-

ory, since it is the basic distance of general relativity. Although

not useful as a distance, the light travel time is of course impor-

tant when considering evolutionary effects.

For inhomogeneous models, where this relation between

global geometry and local light propagation does not exist, an-

other approach must be used, which takes account of both the

expansion of the universe as well as the local propagation of

light, when calculating angle-defined distances such as the an-

gular size distance.

4. The general differential equation for the angular size dis-

tance

In a series of papers Zeldovich (1964), Dashevskii and Zel-

dovich (1965) and Dashevskii and Slysh (1966) developed a

general differential equation for the distance between two light

rays on the boundary of a small light cone propagating far away

from all clumps of matter in an inhomogeneous universe:

l̈ = −4πGηρ l +
Ṙ

R
l̇ (24)

where η and ρ are functions of the time t (not the lookback time

of Eq. 22). The first term can be interpreted as Ricci focusing

due to the matter inside the light cone, and the second term is

due to the expansion of space during the light propagation. We

now have to transform this time dependent differential equation

8 This includes empty models (Ω0 = 0); although η has no meaning

here, the same arguments apply.

into a redshift dependent differential equation. From Eq. (11)

we obtain9

dt = −
(

H0(1 + z)
√

Q
)−1

dz, (25)

and thus

dl

dt
= −H0(1 + z)

√

Q
dl

dz
(26)

and

d2l

dt2
= H2

0 (1 + z)
√

Q
d

dz

(

(1 + z)
√

Q
dl

dz

)

(27)

= H2
0

((

(1 + z)Q + (1 + z)2 1

2

dQ

dz

)

dl

dz

+ (1 + z)2Q
d2l

dz2

)

. (28)

Furthermore, since R = R0/(1 + z) (Eq. (10)), we obtain, using

Eq. (25),

dR

dt
= −H0(1 + z)

√

Q
dR

dz
. (29)

From the definition of Ω (Eq. (4)) and matter conservation

(Eq. (8)) we obtain

4πGρ =
3

2
H2

0 Ω0(1 + z)3 . (30)

If we now insert Eqs. (26), (28), (29) and (30) into Eq. (24),

sort the terms appropriately and cancel H2
0 , which appears in

all terms, we obtain

Q l′′ +

(

2Q

1 + z
+

1

2
Q′

)

l′ +
3

2
ηΩ0(1 + z) l = 0 , (31)

where a prime denotes a derivative with respect to redshift and

from Eq. (12) follows

Q′(z) = 3Ω0(1 + z)2 − 2(Ω0 + λ0 − 1)(1 + z) . (32)

From the definition of the angular size distance (Eq. (13)) it is

obvious that it follows the same differential equation as l:

QD′′ +

(

2Q

1 + z
+

1

2
Q′

)

D′ +
3

2
ηΩ0(1 + z)D = 0 (33)

with special boundary conditions at the redshift zx where the

two considered light rays intersect. The first boundary condition

is trivially

D = 0 for z = zx , (34)

9 This transformation causes problems if the integration interval con-

tains a point where Ṙ = 0 and thus
√

Q changes sign. In this case the

integration interval (tx, ty) has to be transformed into two integration

intervals, namely (zx, zmax) and (zmax, zy), where zmax is the redshift at

Ṙ = 0, with the boundary conditions for the second integration interval

chosen appropriately.
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Fig. 1. The angular size distance from the observer (z1 = 0) and from

z1 = 2 (lower right) as a function of the redshift z2 for different cosmo-

logical models. Thin curves are for η = 0, thick for η = 1. The upper

curves near z = 0 (z = 2 at lower right) are for λ0 = 2, the lower for

λ0 = 0. Ω0 = 1 for all curves. The angular size distance D is given in

units of c/H0

and the second boundary condition follows from the Euclidean

approximation for small distances, i.e.

dD

dt

∣

∣

∣

∣

z=zx

= c sign(tx − ty), (35)

hence

D′ =
c

H0

1

(1 + zx)
√
Q(zx)

sign(ty − tx) for z = zx, (36)

where the sign has been chosen such that D is always > 0 lo-

cally. We denote these special solutions of Eq. (33) with Dx(z),

and, following the definition (Eq. (13)), the angular size distance

of an object at redshift zy is then given as

Dxy = Dx(zy) . (37)

Fig. 1 shows the influence of z, η and λ on the angular size

distance, calculated using Eq. (33) with our numerical imple-

mentation.

For completeness we note that after the original derivation

by Kayser (1985) an equivalent equation was derived by Lin-

der (1988) which, however, is difficult to implement due to the

cumbersome notation.

Special mention must be made of the so-called bounce mod-

els, which expand from a finite R after having contracted from

R = ∞. (See, e.g., Feige (1992).) A glance at Eq. (10) shows

that in these cosmological models there must be four distances

for an (ordered) pair of redshifts. If we denote the distances

by D12, D14, D34 and D32, where 1(2) und 3(4) refer to z1(z2)

during the expanding (contracting) phase, then symmetry con-

siderations dictate that D12 = D34 and D14 = D32 as long as

the dependence of η on z is the same during both phases. In

this case, there are two independent distances per (ordered) pair

of redshifts. If this is not the case, the degeneracy is no longer

present and there are four independent distances per (ordered)

pair of redshifts.

5. Numerics and practical considerations

For the actual numerical integration of the differential equation,

we have found the Bulirsch-Stoer method to be both faster and

more exact than other methods such as Runge-Kutta. However,

the conventional method of rational function extrapolation is

rather unstable in this particular case; fortunately, using polyno-

mial extrapolation solves the problem. Although programming

the integration is rather straightforward in theory, in numeri-

cal practice considerable effort is needed to determine combi-

nations of free parameters which work for all cases. We have

tested the finished programme intensively and extensively, for

example by comparing the results of calculations for η = 1 (the

value of η plays no special role in the integration of the dif-

ferential equation) with those in Refsdal et al. (1967) or given

by the method of elliptical integrals as outlined in Feige (1992)

and have used it in Kayser (1995), Helbig (1996) and Helbig &

Kayser (1996). For a general discussion of various methods of

integrating second-order differential equations, see Press et al.

(1992). Those interested in technical details can read the com-

ments in our source code and the accompanying user’s guide.

Since H0, in contrast to the other cosmological parameters,

merely inversely scales the angular size distance, our routine

actually calculates the angular size distance in units of c/H0.

This dimensionless quantity must be multiplied by c/H0 (in

whatever units are convenient) in order to obtain the actual dis-

tance. Other than reducing numerical overhead, this allows all

distances to be calculated modulo c/H0, which is convenient for

expressing quantities in anH0-independent manner. In practice,

H0 cancels out of many calculations anyway.

Apart from auxiliary routines which the user does not have

to be concerned with, our implementation consists of four

FORTRAN77 subroutines. The first, INICOS, calculates z-

independent quantities used by the other routines, some of which

are returned to the calling programme. ANGSIZ calculates the

angular size distance. Normally, η is used as a z-independent

cosmological parameter, on an equal footing with λ0 and Ω0. If

desired, however, the user can let INICOS know that a variable

(that is, z-dependent) η is to be used; this is given by the func-

tion VARETA. We supply an example; the user can modify this

to suit her needs. In particular, many different dependencies of

η on z can be included, and a decision made in the calling pro-

gramme about which one to use. This feature is also included

in our example. ANGSIZ returns only the distance D12; if one

is interested in the other distances in the bounce models, our

subroutine BNGSIZ returns all of these (though internally cal-

culating only the independent distances, of course, depending

on the dependence of η on z).
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Due to the fact that not everyone has a Fortran90 compiler

at his disposal, we have coded the routines in FORTRAN77.

Only standard FORTRAN77 features are used, and thus the rou-

tines should be able to be used on all platforms which support

FORTRAN77. Since standard FORTRAN77 is a subset of For-

tran90, the routines can be used without change in Fortran90 as

well.

With the exception ofDc, all distance measures can be easily

transformed into one another. Thus, it suffices to calculate the

angular size distance for a given case.10

When discussing the distance between two objects other

than the observer, rather than between the observer and one

object, in many cases one of two simplifying assumptions can

be made:

D(∆z) � D(β) In this case, the proper distance DP at the

time of emission between the two objects is βD0x ≈ βD0y ,

where β � 1 is the angle in radians between the two objects

on the sky.

D(β) � D(∆z) In this case, the angular size distance between

the two objects is Dxy .

D(∆z) (D(β)) refers to the distance due to ∆z (β) when setting

β (∆z) equal to zero. In the first case, where the two objects

are practically at the same redshift, one uses the angular size

distance to this redshift to transform the observed difference in

angular position on the sky into the proper distance between the

two objects at the time of emission. This follows directly from

the definition of the angular size distance. Since the distance

between the objects is much less than the distance from the ob-

server to the objects, the differently defined distances between

the objects are for practical purposes degenerate. A practical

example of this case would be the distance between individ-

ual galaxies in a galaxy cluster at large redshift. Naturally, one

should use one redshift, say, of the cluster centre; the individual

redshifts will in most cases be overlaid with the doppler redshift

due to the velocity dispersion of the cluster, so the difference

in cosmological redshifts is negligible. (Of course, the present

distance would be a factor of (1 + z) larger, due to the expan-

sion of the universe, were the objects comoving and not, as in

a galaxy cluster, bound.) In the second case, which is typical of

gravitational lensing, the angles on the sky between, for exam-

ple, source and lens, are small enough to be neglected, so that

the angular size distance between the objects is determined by

the difference in redshift. If neither of these assumptions can be

made, any sort of distance between the two objects is probably

of no practical interest. (Of course, there is the trivial case where

the redshifts are all � 1 in which case one can simply use α, δ
and cz/H0 as normal spherical coordinates.)

10 The proper distance, which is η-independent, can be calculated

from the angular size distance assuming η = 1, by making use of the

simple relation between proper distance and angular size distance in

this case. The result holds of course for all values of η.

6. Summary

After discussing cosmological distances with an emphasis on

practical distance measures for general use in cosmology and

extragalactic astronomy, we have obtained a new differential

equation, which gives the angular size distance for a class of

‘on average’ Friedmann-Lemaı̂tre cosmological models, that

is, models described not only by λ0 and Ω0 but also by η(z),

which describes the clumpiness of the distribution of matter. We

have also developed a practical numerical method of solving

this equation, which we have made publicly available. Since

the equation is valid for all cases, this offers for the first time

an efficient means of calculating distances in a large class of

cosmological models.

The numerical implementation (in FORTRAN77), user’s

guide and a copy of the latest version of this paper (includ-

ing appendices) can be obtained from either of the following

URLs:

http://www.hs.uni-hamburg.de/english/persons/helbig/

Research/Publications/Info/angsiz.html

ftp://ftp.uni-hamburg.de/pub/unihh/astro/angsiz.tar.gz
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2 Kayser et al.: Cosmological distanceswhere z0 is arbitrary. ThusDx(zy)Dy(zx) = � b(zx)b(zy) exp zxZzy a1(z)a2(z) dz (A17)and after inserting a0, a1 and a2 from Eqs. (A2), (A3)and (A4) as well as b(zx) and b(zy) from Eq. (A9) andintegration we �nally obtain for the angular size distances(cf. Eq. (37)) the relationDxyDyx = 1 + zx1 + zy : (A18)B. Special casesFor certain special cases the di�erential equation can besimpli�ed and sometimes analytically solved.B.1. 
0 = 0A glance at Eq. (33) shows that for 
0 = 0 the thirdterm on the left hand side of Eq. (33) vanishes; one thushas a �rst order di�erential equation for D0. (Of course� has no meaning for 
0 = 0.) Due to the fact that avanishing 
0 also simpli�es Q(z), it is possible to calcu-late the angular size distance analytically. Since in thiscase the angular size distance is determined exclusivelyby global e�ects, one can use an approach based on globalgeometry.1 Depending on the value of �0, one can use thefollowing expression to calculate �xy = �(y)��(x) (Feige1992)�(z) = 8>>>>>>>>>>>><>>>>>>>>>>>>:arccosh( ) for �0 < 0ln(1 + z) for �0 = 0arcsinh( ) for 0 < �0 < 1z for �0 = 1arcsin( ) for �0 > 1 ; (B1)where  := (1 + z)q j1��0jj�0j . The relationship between �and the angular size distance D isDxy = R0(1 + zy) 8<:sinh� for k = �1� for k = 0sin� for k = +1 ; (B2)as discussed below in Sect B.3.1 See the discussion in Sect. B.3.

B.2. � = 0In the case � = 0 the third term on the left hand sideof Eq. (33) vanishes; one thus has a �rst order di�erentialequation forD0. AssumingD0 6= 0, Eq. (33) can be writtenasD00D0 = � 21 + z � 12 Q0(z)Q(z) : (B3)This equation can be solved in two steps. ForD0 we obtainD0 = c1pQ(z) (1 + z)2 (B4)and consequently for DD = Z c1pQ(z) (1 + z)2 + c2 : (B5)The constants c1; c2 are determined by the appropriateboundary conditions (Eqs. (34) and (35)). We then �ndthe solution (see also Schneider et al. (1992) { hereafterSEF { for an equivalent discussion with �0 = 0)Dxy = cH0 (1 + zx)(!(zy)� !(zx)); (B6)where!(z) = zZ0 dz0(1 + z0)2p(1 + z0)2(
0z0 + 1� �0) + �0 ; (B7)or, perhaps more convenient,Dxy = cH0 (1 + zx) Z zyzx dz(1 + z)2pQ(z) : (B8)For �0 = 0 there is an analytic solution (see Sect. B.4).B.3. � = 1The case � = 1 has all matter distributed homogeneously.Due to homogeneity, the matter locally a�ecting the prop-agation of light is known when the global geometry isknown, so that the `classical' approach of relating globalgeometry to observable relations is a better approach thanusing (the simpli�ed form of) Eq. (33). This approach of-fers an analytic solution. Here, we simply sketch the mostimportant points; the interested reader can refer to Feige(1992) for a good description of this method.The angular size distance in this case isDxy = Ry�xy = R0�xy(1 + zy) ; (B9)where � is the radial coordinate in the Robertson-Walkermetric (cf. Eq. (1)) and thusDyx = R0�xy1 + zx = Dxy �1 + zy1 + zx� ; (B10)



Kayser et al.: Cosmological distances 3since this angle is inversely proportional to R for constant� and physical size. (The value of R at the time the lightrays de�ning the angle intersect is important.)Since � is given by� = F (�) = 8<:sinh� for k = �1� for k = 0sin� for k = +1 ; (B11)an expression for �(z) is su�cient for calculating the an-gular size distance D (and of course the luminosity dis-tance DL (via Eq. (19)) and the `coordinate distance' �(via Eq. (B11)). In general, �xy 6= �y � �x; however,�xy = �y � �x, so that�xy = F (�xy) (B12)where F is given by Eq. (B11). Using Eq. (23) one cancalculate�xy = DPR0 = cH0R0 zyZzx dzpQ(z) : (B13)In the general case, Eq. (23) can be solved by elliptic in-tegrals, as explained in Feige (1992). For the cases �0 = 0and 
0 = 0 the formulae using elliptic integrals breakdown; in these cases, easier analytic formulae, which for-tunately exist, can be used. The case 
0 = 0 has beendiscussed above. The case �0 = 0 will be discussed below.Again, we stress that the di�erential equation derived inSect. 4 is completely general and can be used in all cases.B.4. �0 = 0For �0 = 0, there is in general no simpler solution. Thiscase has been discussed by Dyer and Roeder for � = 0(1972) and for general � values (1973). They point outthe interesting result that the maximum in the angularsize distance from z1 = 0 to z2 increases monotonicallyfrom 1:25 to1 as � decreases from 1 to 0. See also the dis-cussion (with a di�ering notation!) in Sect. 4.5.3 in SEF.However, some solutions exist for special values of 
0 and�. The case 
0 = 0 has been discussed in Sect. B.1 above;the value of � is of course irrelevant in this case. With theexception of Sect B.4.3 below, in the following we simplyquote results from SEF in our notation.B.4.1. �0 = 0 and � = 0As discussed above, for � = 0 Eq. (33) is e�ectively a �rstorder equation for D0. For �0 = 0 Q(z) is su�ciently sim-pli�ed to allow an analytic solution. Recalling Eq. (B6),Dxy = cH0 (1 + zx)(!(zy)� !(zx));

Eq. (B7) simpli�es to!(z) = zZ0 dz0(1 + z0)3p
0z0 + 1 ; (B14)which has the solution:!(z) = 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: 3
204(
0�1)52 arctan( ) + 34(
0�1)2 �� (
0z+ 5
03 � 23 )p
0z+1(1+z)2 � 5
03 + 23� (I)25 �1� (
0z + 1)� 52 � (II)3
204(1�
0) 52 arctanh( ) + 34(1�
0)2 �� (
0z+ 5
03 � 23 )p
0z+1(1+z)2 � 5
03 + 23� (III) (B15)with = 8>><>>:�p
0�1(1+p
0z+1)
0�1+p
0z+1 � (I)�p1�
0(1+p
0z+1)
0�1+p
0z+1 � (III) (B16)andcase I: 
0 > 1case II: 
0 = 1case III: 0 < 
0 < 1 : (B17)Note that in SEF, the text at the top of page 137 isunclear|the expression in parentheses in the denomina-tor of the �rst term (
 � 1) for the 
 > 1 case has to bereplaced with (1 � 
) as well for 
 < 1. Note also that
 � 
0 and that after page 131 �0 = 0 is always assumed.B.4.2. �0 = 0 and 
0 = 1For 
0 = 1 and �0 = 0 (the Einstein-de Sitter model) wehave the solutionDxy = cH0 12�  (1 + zy)�� 54(1 + zx)�+ 14 � (1 + zx)�� 14(1 + zy)�+ 54 ! ; (B18)where� := 14p25� 24�: (B19)B.4.3. �0 = 0 and � = 1For � = 1 the special case of the expression for �(z) for�0 = 0 is (Feige 1992)�(z) = �28>>>>>>><>>>>>>>:arcsin�q 
0�1
0(1+z)� (
0 > 1)q 11+z (
0 = 1)arcsinh�q 1�
0
0(1+z)� (0 < 
0 < 1) ; (B20)



4 Kayser et al.: Cosmological distanceswhere �xy = �(y) � �(x). (It is obvious that in the case�0 = 
0 = 0 Eq. (B1) should be used.) From this, it ispossible to obtain a general expression for the angular sizedistance (see, e.g., SEF):Dxy = cH0 2
20 (1+zx) (R1(zy)R2(zx) �R1(zx)R2(zy)) ;(B21)withR1(z) = 
0z � 
0 + 2(1 + z)2 (B22)andR2(z) = p
0z + 1(1 + z)2 : (B23)For zx = 0 and zy = z one gets for the angular size dis-tanceD(z) = cH0 2
20(1 + z)2 ��
0z � (2�
0)�p
0z + 1� 1�� : (B24)valid for 
0 > 0. For 
0 = 0 one obtainsD = cH0 z �1 + z2�(1 + z)2 (B25)(Multiplying Eq. (B24) or Eq. (B25) with (1 + z)=R0 re-sults in the respective expression for � as a function of red-shift as �rst derived by Mattig (1958). See also Sandage(1995), Sect. 1.6.3). In this case, the volume element givenby Eq. (C4) reduces todV = 16�R30 (
0z � (2�
0)(p
0z + 1� 1)2)
40(1 + z)3p
0z + 1 (B26)Of course, for the physical, as opposed to comoving, den-sity, an additional factor of (1+ z)3 must be added to thedenominator.B.4.4. �0 = 0 and � = 23For � = 23 and �0 = 0 there is also an analytic solution(see SEF):Dxy = cH0 23
20 (1 + zx) �(R1(zx)R2(zy)� R2(zx)R1(zy)) ; (B27)withR1(z) = 1(1 + z)2 (B28)andR2(z) = p
0z + 1(
0z + 3
0 � 2)(1 + z)2 : (B29)

B.5. Other casesWe can o�er no proof that no other easier solutions, ei-ther reducing Eq. (33) to a more easily (numerically) in-tegrated form or even to an analytic solution, exist. Thisis left as an exercise to the interested reader. The authorsare of course interested in such solutions and are willingto verify them. As far as we know, Eq. (33) must be usedexcept in the special cases mentioned in this appendix.B.6. Light travel timeFeige (1992) not only gives the distance but also the lighttravel time by means of elliptic integrals. As for the dis-tance, and for the same reasons, simple analytic formulaecan and must be used for the special cases 
0 = 0 and�0 = 0. For k = 0, an analytic expression for the lighttravel time exists, although the elliptic integrals can alsobe used in this case. For completeness, we give these spe-cial cases here for the light travel time txy = tx � ty.For 
0 = 0 we have:t(z) = 1H0pj�0j8>>>>>>>>>>>>><>>>>>>>>>>>>>:arcsin( ) �0 < 0pj�0j(1+z) �0 = 0arcsinh( ) 0 < �0 < 1�pj�0j ln(1 + z) �0 = 1arccosh( ) �0 > 1 ; (B30)where  := 1(1+z)q j�0jj1��0jFor �0 = 0 we have:t(z) = A�8>>>>>>>>>>>>><>>>>>>>>>>>>>:p(
0z+1)(
0�1)
0(1+z) �arcsin�q 
0�1
0(1+z)� 
0 > 1�p
0�13
0 23 �q 11+z�3 
0 = 1arcsinh�q 1�
0
0(1+z)� �p(
0z+1)(1�
0)
0(1+z) 0 < 
0 < 1 ;(B31)whereA = � 
0H0(pj
0 � 1j)3(For 
0 = 0 the appropriate case from Eq. (B30) must beused.)



Kayser et al.: Cosmological distances 5For k = 0 we have:t(z) = 23H0�8>>>>>><>>>>>>: 1p
0�1 arcsin( ) 
0 > 1�q 11+z�3 
0 = 11p1�
0 arcsinh( ) 0 < 
0 < 1 ;(B32)where =8>><>>:q 
0�1
0(1+z)3 
0 > 1q 1�
0
0(1+z)3 0 < 
0 < 1 : (B33)(For 
0 = 0 the appropriate case from Eq. (B30) must beused.)C. Volume elementSometimes the distance is only a means of calculating thevolume element at a given redshift. In the static Euclideancase the volume element is of coursedV = 4�r2dr: (C1)In the cosmological case, the volume element is, with r =R0�,dV = 4�r2dDP = 4�r2 cH0 dzpQ(z) : (C2)R0�y is, for � = 1, simplyDy0 = (1+y)D0y ; see Sect B.3.Thus, the distance Dy0 is all that is needed to calculatethe volume; this �rst can be calculated by Eq. (33) with� = 1 (This applies even if one would calculate distanceswith another value of � since the volume element is aquantity related to the global geometry of the universe|alternatively, one can use elliptic integrals, as in Sect. B.3and Feige (1992).) If one has an expression for �(z), then,sincedDP = R0 d�p1� k�2 ; (C3)which follows directly from Eq. (1), one can writedV (�) = 4�R30 �Z0 �02d�0p1� k�02 : (C4)where R0 is given by Eq. (7) for the present values:R0 = cH0 1pj
0 + �0 � 1j : (C5)and� = Dy0(1 + zy)R0 (C6)

Integration givesV (�) =8>><>>:2�r3 �p1+�2�2 � arcsinh��3 � k = �143�r3 k = 02�r3 �arcsin ��3 � p1��2�2 � k = +1 (C7)Thus, for k = +1, the total volume of the universe is2�2R30. (See, e.g., Sandage (1995), Sect. 1.6.1; Sandage'sd is our DP and his r is our �.) Sinced� = d�p1� k�2Eq. (C7) can also be written as (cf. Feige (1992),Eq. (116); Feige's r is our �)V (�) = 2�R308<:sinh(�) cosh(�) � � k = �123�3 k = 0� � sin(�) cos(�) k = +1 (C8)Of course, all this refers to volumes now at the distancecorresponding to z = y. If the volume at another time isimportant, say at the time of emission of the light we seenow|for instance if one is concerned with the space den-sity of some comoving objects|then the volume elementmust be divided by (1 + z)3.ReferencesDyer C. C., Roeder R. C., 1972, ApJ 174, L115Dyer C. C., Roeder R. C., 1973, ApJ 180, L31Feige B., 1992, Astr. Nachr. 313, 139Kayser R., 1985, doctoral thesis, University of HamburgLinder E. V., 1988, A&A 206, 190Mattig W., 1958, Astr. Nachr. 284, 109Sandage A., 1995, Practical Cosmology: Inventing the Past. In:Binggeli B., Buser R. (eds.) The Deep Universe. Springer,BerlinSchneider P., Ehlers J., Falco E. E., 1992, Gravitational Lenses.Springer-Verlag, Heidelberg
This article was processed by the author using Springer-VerlagLaTEX A&A style �le L-AA version 3.



3.3. FOLLOW-UP 61

3.3 Follow-up

This paper is my fourth-highest-cited cosmology paper3; of the three with more
citations, two are major collaboration papers (Chae et al., 2002; Browne et al.,
2003, with 23 and 22 authors respectively). Most citations to our paper are
because the citing authors had used the code and/or as a reference for defini-
tions of cosmological distances. In particular, the Supernova Cosmology Project
(Perlmutter et al., 1999) made use of my code in their landmark paper for which
Saul Perlmutter, as leader of the Supernova Cosmology Project, was awarded the
2011 Nobel Prize in Physics. Other citations are from people refining the the-
ory, discussing (semi-)numerical implementations, presenting approximations,
or testing the ZKDR distance against numerical simulations or other schemes
for representing the mass distribution of a universe.

3My fourth-highest-cited paper overall deals with paleoclimatology, making this paper my
fifth-highest-cited overall.
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Chapter 4

ANGSIZ User’s Guide

4.1 Context

While Kayser, Helbig and Schramm (1997) discussed the theory behind and
some aspects of the implementation of the code, the User’s Guide is intended
for those who wish to actually use the publicly available code. It also includes
a λ0–Ω0 diagram to explain the classification of cosmological models which
corresponds to the σ0–q0 diagram in Stabell and Refsdal (1966), although as far
as the code itself is concerned it is necessary only to know if the cosmological
model has a maximum redshift in order to issue the appropriate error message
should someone try to calculate the distance for z > zmax.
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ANGSIZ User's Guide

Phillip Helbig

February 1996

Note: For more information, see the article `A general and practi-

cal method for calculating cosmological distances' by Rainer Kayser,

Phillip Helbig and Thomas Schramm in Astronomy and Astrophysics,

1996.

a. General description

The ANGSIZ routine calculates the angular size distance between two objects

as a function of their redshifts. (In world models which have no big bang,

but contract from in�nity to a �nite size before expanding, there are two or

four independent distances. In these cases, the �rst distance is returned by

ANGSIZ and the rest by the routine BNGSIZ.) The distance also depends on

the cosmological parameters �

0

, 


0

and �(z). These are not passed to ANGSIZ

but rather to an auxiliary routine, INICOS, which calculates all z-independent

information for a given world model.

The result is in units of cH

�1

0

. Multiply the result by 3 � 10

3

(actually

2:99792458�10

3

) to get the distance in Mpc for H

0

= 100 km �s

�1

�Mpc

�1

. One

can de�ne h to be H

0

in units of H

0

= 100 km �s

�1

Mpc

�1

. Thus, multiplying by

3� 10

9

corresponds to an h of 1. For other values of h, simply divide the result

by h, for example by 0.5 for H

0

= 50 km � s

�1

Mpc

�1

. (Be aware that h can be

and sometimes is de�ned as 1 for other values of H

0

, usually 50. Sometimes

this is indicated by a subscript, i.e. h

50

, h

100

and so on.)

The calling sequence is described below in section b.

All routines are in absolutely standard FORTRAN77 and have been tested on

a number of di�erent combinations of compiler/hardware/OS so essentially the

same numerical results should be obtained everywhere.

i. INICOS

The routine INICOS takes the cosmological parameters and `user wishes' as

input and calculates quantities needed by ANGSIZ|which are relayed internally

to ANGSIZ|and also returns these to the calling routine. In addition, as in

ANGSIZ itself, an error message is returned. INICOS can be used independently

of ANGSIZ of course, but not the other way around.

INICOS returns the INTEGER variable WMTYPE, world model type, which gives

a qualitative classi�cation of the cosmological model. The table shows the corre-

spondence between the value of WMTYPE and some standard classi�cations from

the literature, and also gives some brief information on the temporal and spatial

properties of the corresponding world model. The �gure shows the location of

the various world model types in the �

0

-


0

-plane.

1



WMTYPE t =1 R =1 9z

max

bounce name �

0

k 


0

�

0

q

0

SR HB

1 no yes no no < 0 �1 0 0 > 0 O(0) 1(iii)

2 no yes no no < 0 �1 > 0 > 0 > 0 O(1) 1(iii)

3 no yes no no < 0 0 > 0 > 0 >

1

2

O(2) 1(ii)

4 no no no no < 0 +1 > 0 > 0 >

1

2

O(3) 3(iv)

5 no no no no MTW 0 +1 > 1 > 0 >

1

2

O(4) 3(iv)

6 no no no no > 0 +1 > 


0;c

> �

0;c

>

1

2

O(5) 3(iii)(a)

7 yes yes no no Milne 0 �1 0 0 0 M

1

(1) 1(ii)

8 yes yes no no `LCDM' 0 �1 > 0 > 0 0 < q

0

<

1

2

M

1

(2) 1(ii)

9 (yes) yes no no Einstein-de Sitter 0 0 1

1

2

1

2

M

1

(3) 2(ii)

10 yes yes no no > 0 �1 0 0 �1 < q

0

< 0 M

1

(0) 1(i)

11 yes yes no no > 0 �1 > 0 > 0 �1 < q

0

<

1

2

M

1

(4) 1(i)

12 yes yes no no de Sitter 1 0 0 0 -1 S 2(i)

13 yes yes no no `�CDM' > 0 0 > 0 > 0 �1 < q

0

<

1

2

M

1

(5) 2(i)

14 yes no no no Lemâ�tre > 0 +1 note note note M

1

(6) 3(1)

15 (yes) no no no > 0 +1 


0;c

�

0;c

>

1

2

A

1

3(ii)(b)

16 (yes) no (yes) (no) Einstein > 0 +1 


0;c

=1 


0;c

=1 1 E 3(ii)(a)

17 yes no yes no Eddington > 0 +1 


0;c

�

0;c

< �1 A

2

3(ii)(c)

18 yes no yes yes bounce > 0 +1 0 < 


0

< 


0;c

0 < �

0

< �

0;c

< �1 M

2

(1) 3(iii)(b)

19 yes no yes yes Lanczos > 0 +1 0 0 < �1 M

2

(0) 3(iii)(b)

Table 1. Classi�cation of cosmological models as done by INICOS. Further information is provided in the text, particularly

concerning parenthetical expressions and when `note' appears instead of the expression in question.
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Figure 1. Location of various cosmological models in the �

0

-


0

-plane.

A given world model is either on a line or curve segment (bounded by at

least one vertex), on a vertex or in the space between the various lines and

curves. The diagonal line corresponds to k = 0, the vertical line to �

0

= 0,

the curve immediately to the right of this line divides models which will

eventually collapse (to the left) to those which will not (to the right) and

the curve at lower right divides world models with a big bang (to the left)

from those with no big bang (to the right).

WMTYPE refers to the classi�cation returned by INICOS as the value of the vari-

able WMTYPE. The following cosmological models are de�nitively ruled out

by observations: 1, 7, 10, 12, 16, 17, 18, 19. 16 is ruled out because it has

no expansion; the rest which aren't ruled out by the fact that they are

empty are ruled out by the fact that a z

max

which is at least as large as

the largest observed redshift implies a value for 


0

which is so low as to

be de�nitively ruled out.

t =1 answers the question whether the universe will expand forever or, more

precisely, is the opposite of the answer to the question `will the universe

collapse to R = 0 in the future'. The subtlety arises because of the fact

that WMTYPEs 9, 15 and 16, while not collapsing, don't necessarily `expand

3



forever' (perhaps depending on how this is precisely de�ned) although

they might `exist forever'. In the Einstein-de Sitter model WMTYPE 9, the

expansion rate asymtotically approaches 0; the value of the scale factor

R at t = 1 is, however, R = 1. Thus, the universe expands forever,

although at t = 1 the value of

_

R is 0. The Eddington universe, WMTYPE

15, expands forever, as well, but at t = 1 not only is the value of

_

R 0

but R reaches a �nite maximum as well. The Einstein universe, WMTYPE

16, is static. It exists forever, but doesn't really expand forever, since it

doesn't expand at all. R is �xed at a �nite value and

_

R is 0 at all times.

R =1 answers the question whether the 3-dimensional space is in�nite in ex-

tent. It is in�nite for k = �1 or k = 0 and �nite for k = +1 (assuming a

simple topology).

9z

max

If a z

max

exists, then there was no big bang. (In the de Sitter model

the big bang occurs at t = �1.) Rather, the universe expands from

a minimum value of R. The static Einstein universe (WMTYPE 16) has

a redshift of 0 for all objects, thus distance cannot be determined from

redshift in this case.

bounce If there has been a bounce, the universe is expanding after contracting

from R = 1 to R = R

min

. This means that there are four independent

distances for a given redshift, unless the dependence of � on z is the same

during the collapsing and expanding phases, in which case there are only

two independent distances. (In the Einstein static universe, WMTYPE 16,

there are an in�nite number of distances for the only possible redshift of

0.)

name refers to a commonly used term for the given world model. MTW refers

to the fact that this world model is discussed in Gravitation by Misner

et al. [1973] in x27.10 and Box 27.4 as an example of the type of cosmo-

logical model preferred by Einstein (� = 0 because Einstein preferred a

`simpler' universe without the cosmological constant after it became clear

that a) his static model cannot describe the real universe, not even as a 0

th

approximation and b) non-static solutions with a cosmological constant

exist; k = +1 in order to have no problems with boundary conditions at

1). This world model is noted as having been `investigated by Einstein' in

Stabell & Refsdal [1966]; the name `Einstein universe', although perhaps

more appropriate for this cosmological model, is historically irrevocably

associated with the static universe (WMTYPE 16). Milne's cosmological

model is not really our WMTYPE 7, although it is equivalent; Milne had

G = 0 in his kinematic relativity, and either G = 0 or � = 0 has the e�ect

of making the expansion independent of gravitation. `LCDM' refers to the

fact that these cosmological parameters are used in the typical `low density

standard cosmological model'; here CDM is an abbreviation for `cold dark

matter', which includes details on scales small enough where homogeneity

cannot be used as an approximation and doesn't concern us here. Nat-

urally, global properties of cosmological models are independent of such

local structure. Of course, the parameters are the same for LHDM (hot)

and LHCDM (or LMDM: mixed). `�CDM' refers to the fact that these

cosmological parameters are used in the typical `low density 
at standard

cosmological model with a cosmological constant'. Note: our `Edding-

ton model' (WMTYPE 17) is referred to as the Lemâ�tre model in Stabell

& Refsdal [1966] and as the Eddington-Lemâ�tre model in Bondi [1961].

Harrison [1981] also uses our term Eddington model for this case. Simi-

larly. our Lemâ�tre model (WMTYPE 14) is called the Eddington-Lemâ�tre in
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Berry [1986]. Bondi [1961] and Harrison [1981] also use our term Lemâ�tre

model for this case.

�

0

the range of �

0

.

k the sign of k.




0

the range of 


0

. 


0;c

= 2�

0;c

. In WMTYPE 14, 


0

, �

0

and q

0

can take on

all possible values, but not all combinations are possible. Speci�cally, for

�1 < q

0

<

1

2

, �

0;c

(


0;c

) has no meaning, and the range 0 < �

0;c

is

allowed. Otherwise, we must have 


0

> 


0;c

(�

0

> �

0;c

). (Of course,




0

= 2�

0

.)

�

0

the range of �

0

; � = 0:5� 


0

. �

0;c

is de�ned as

�

0;c

=

1

6

(q

0

+ 1)

 

q

0

+ 1�

s

(q

0

+ 1)

�

1

0

�

1

3

�

!

(SR Eq: 12)

In WMTYPE 14, 


0

, �

0

and q

0

can take on all possible values, but not all

combinations are possible. Speci�cally, for �1 < q

0

<

1

2

, �

0;c

(


0;c

) has

no meaning, and the range 0 < �

0;c

is allowed. Otherwise, we must have

�

0

> �

0;c

(


0

> 


0;c

).

q

0

the sign of q

0

; q

0

= �

0

� �

0

. In WMTYPE 14, 


0

, �

0

and q

0

can take on

all possible values, but not all combinations are possible. Speci�cally, for

�1 < q

0

<

1

2

, �

0;c

(


0;c

) has no meaning, and the range 0 < �

0;c

is

allowed. Otherwise, we must have �

0

> �

0;c

(


0

> 


0;c

).

SR refers to the description of cosmological models in Stabell & Refsdal [1966,

p. 383] where models are classi�ed with a scheme similar to that used by

INICOS.

HB Refers to the classi�cation in chapter IX of Bondi [1961]. Since Bondi

implicitly assumes 


0

> 0, this is not entirely correct in the cases where

there is a qualitative di�erence for 


0

= 0, as in WMTYPEs 7, 10 and 12.

In this case, q

0

is never positive, so the qualitative curves given by Bondi

should be extrapolated back to R = 0 without the negative curvature part

at the beginning.

ii. ANGSIZ

This routine calculates the angular size distance between two redshifts (just one

of the possible distances in the bounce models). This is done by the numerical

integration of a second order di�erential equation. (For details see Kayser, Hel-

big & Schramm [1996].) As far as we know, no analytic solution for the general

case exists. An advantage of using ANGSIZ even when an analytic solution for a

special case exists is that ANGSIZ always gives a valid result, i.e., the equation

holds for all cosmological models and no cases must be distinguished. (ANGSIZ

is not recommended for use in the Eddington model, WMTYPE 17. If the user

speci�cally wants to use the routines for this cosmological model, it is possible

to allow this by declaring the COMMON block ARTHUR in the calling routine, con-

taining a logical variable, which should be set to .TRUE. before calling ANGSIZ.

This will override the default behaviour.)
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iii. ETAZ

The variable � gives the fraction of homogeneously distributed matter in the cos-

mological model. On large scales, homogeneity is assumed, in accordance with

the Robertson-Walker metric, the Cosmological Principle, and so on. However,

on smaller scales, matter can of course be clumped. The fraction 1�� of matter

is in these clumps, which means that they are outside (and su�ciently far from)

the cone of light rays between source and observer. (If a clump of matter is near

or in the beam itself, one must take account of this explicitly as a gravitational

lens e�ect.)

It is important to remember that the value of �|for a �xed real situation|

depends on the angular scale involved. For example, a halo of compact MACHO

type objects around a galaxy in a distant cluster would be counted among the

homogeneously distributed matter if one were concerned with the angular size

distance to background galaxies further away, but would be considered clumped

on scales such as those important when considering microlensing by the compact

objects themselves. Thus, the clumps must have a scale comparable to the

separation of light rays from an extragalactic object or larger.

Since we don't know exactly how dark matter is distributed, di�erent � values

can be examined to get an ideas as to how this uncertainty a�ects whatever it

is one is interested in.

Of course, � can be a function of z. If the user wishes � to be constant for all

z, then the variable VARETA should be set to .FALSE. when calling INICOS. In

this case, the value of ETA passed to INICOS determines �. If VARETA ist .TRUE.,

then the value of ETA is irrelevant and is given by the REAL FUNCTION ETA(Z),

which the user can modify as needed. If a constant value of ETA is desired, this

can of course be achieved through de�ning the FUNCTION ETA(Z) appropriately,

but this will typically make the computing time 2{3 times longer than setting

VARETA to .FALSE. and using ETA to determine the value of �.

iv. BNGSIZ

This SUBROUTINE BNGSIZ is essentially the same as ANGSIZ except that it calcu-

lates the other three distances in bounce models. As long as ETAZ doesn't make

the value of � depend on whether the universe is expanding or contracting, there

is only one additional independent distance, D14; D34 is the same as D12 and

D32 is the same is D14. D12 is the distance returned by ANGSIZ, where both the

starting point and the end point of the integration are in the expansion phase.

D14 has its starting point Z1 in the expansion phase and its end point Z2 in the

contraction phase, thus the angular size distance is found by integrating from

Z1 to ZMAX and back to Z2. D34 has both boundaries in the contraction phase,

and D32 its starting point in the contraction phase and its end point in the

expansion phase.

If one is not interested in the bounce models, this routine isn't needed. If one

is only interested in the `primary' distance in bounce models, this is returned

by ANGSIZ, so also in this case BNGSIZ isn't needed.

BNGSIZ must be called after calling ANGSIZ: there are no input parameters;

these and other necessary information are obtained by BNGSIZ from ANGSIZ.
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b. Use as a black box: what the user needs to

know

In the descriptions of the input variables in the parameter lists to the routines

called by the user we also indicate a range of suggested values in square brackets.

Of course, others are possible, but the ones we suggest correspond to cosmolog-

ical models which are not �rmly ruled out by other arguments (and some which

are) and have been tested. Physically meaningless values should result in an

error message. We didn't think it meaningful to check the routines for correct-

ness for values outside these ranges. For output variables, the range indicates

possible values. The mathematical and physical meaning of the variables can

be found in Kayser et al. [1996].

i. INICOS

The interface to INICOS is

SUBROUTINE INICOS(LAMBDA,OMEGA,ETA,VARETA,DEBUG,

C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C in

C

$ WMTYPE,MAXZ,ZMAX,BOUNCE,ERROR)

C ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

C out

The input variables are:

REAL LAMBDA is the normalised cosmological constant. [�10,: : : ,+10]

REAL OMEGA is the density parameter. [0,: : : ,10]

REAL ETA is the homogeneity parameter. [0,: : : ,1]

LOGICAL VARETA if .TRUE. means that � is not given by ETA but by the value

returned by the REAL FUNCTION ETAZ.

LOGICAL DEBUG if .TRUE. means that error messages should be written to stan-

dard output.

The output variables are:

INTEGER WMTYPE gives some information about the cosmological model (see the

table). [1,: : : ,19]

LOGICAL MAXZ if .TRUE. indicates that a maximum redshift exists; only in this

case is the variable ZMAX correctly de�ned and only in this case should the

variable ZMAX be used.

REAL ZMAX gives the maximum redshift in the cosmological model, if LOGICAL

MAXZ is .TRUE.; otherwise, the maximum redshift is in�nite, and for con-

venience set to zero.

LOGICAL BOUNCE if .TRUE. indicates that we have a `bounce' model (see the

table); only in this case can the other distances be computed by BNGSIZ.

INTEGER ERROR indicates if an error has occurred and what this means (see sec-

tion vi.). [0,: : : ,13]
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ii. ANGSIZ

The interface to ANGSIZ is:

SUBROUTINE ANGSIZ(Z1,Z2, D12,ERROR)

C ^^^^^ ^^^^^^^^^

C in out

The input variables are:

REAL Z1 is a redshift; set Z1 to 0 for the common case of the `distance from a

normal observer'. [0,: : : ,5]

REAL Z2 is a redshift; set Z2 to the redshift of the object if one is interested

in the angular size distance from a `normal observer' to the object and

correspondingly Z1 has been set to 0. [0,: : : ,5]

The output variables are:

REAL D12 Is the angular size distance between Z1 and Z2. In bounce models

(and of course in big bang models) this corresponds to the distance such

that the universe has always been in a state of expansion between the

times of light emission and reception.

INTEGER ERROR indicates if an error has occurred and what this means (see sec-

tion vi.). [0,: : : ,13]

ANGSIZ is not recommended for WMTYPE 17, since distances can become arbitrar-

ily large, and the necessary overhead would complicate the routines to such a

degree that `normal' performance would be signi�cantly hampered. If the user

speci�cally wants to use the routines for this cosmological model, it is possible

to allow this by declaring the COMMON block ARTHUR with a logical variable, which

should be set to .TRUE. in the calling routine. This will override the default

behaviour.

iii. BNGSIZ

The interface to BNGSIZ is:

SUBROUTINE BNGSIZ(D14,D34,D32,ERROR)

C ^^^^^^^^^^^^^^^^^

C out

REAL D14 is the angular size distance between Z1 and Z2. This corresponds to

the distance such that the universe is not in a state of contraction at Z1

and not in state of expansion at Z2.

REAL D34 is the angular size distance between Z1 and Z2. This corresponds to

the distance such that the universe is in a state of expansion neither at Z1

nor at Z2.

REAL D32 is the angular size distance between Z1 and Z2. This corresponds to

the distance such that the universe is not in a state of expansion at Z1

and not in a state of contraction at Z2.

INTEGER ERROR indicates if an error has occurred and what this means (see sec-

tion vi.). [0,: : : ,13]
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iv. ETAZ

The interface to ETAZ is:

REAL FUNCTION ETAZ(Z)

which, being a function with no side e�ects, has no output variables. The one

input variable is:

REAL Z this is the redshift; � is a function of z and is given by this function

and not by the value of ETA supplied to INICOS if VARETA is .TRUE.; only

in this case will ETAZ be used.

The COMMON block WHICH contains the INTEGER variable CHOICE. If this COMMON

block is also in the calling routine, then a decision can be made there as to which

dependency of � on z is to be used; see the use of CHOICE in our example ETAZ.

This is initialised in our BLOCK DATA COSANG and so should not be initialised

by the user.

For bounce models, it is of course possible that the dependence of � on z

depends on whether the universe is expanding or contracting. Since VALUE2

is set to .TRUE. during the phase of contraction and otherwise to .FALSE. by

ANGSIZ and BNGSIZ, which can access VALUE2 through the COMMON block CNTRCT,

this variable can be used in ETAZ order to have two di�erent dependencies, as in

our example. Additionally, in this case, as in our example, the value of CHOICE

must be negative and otherwise must be positive. This distinction is needed by

BNGSIZ in order to avoid calculating D34 and D32 if these are not independent

of the other distances.

v. Calling sequence

Thus, one should call INICOS anew for each cosmological model tested, indi-

cating the cosmological model, whether or not � is to be a constant or is to

be calculated by ETAZ and whether or not error messages are to be displayed.

(ERROR is of course always appropriately set.) If one wants to calculate distances,

then ANGSIZ should be called with two redshifts, and the angular size distance is

returned. One should use the output variables of INICOS to determine whether

or not to call ANGSIZ. If desired, ETAZ can be used; it can also be modi�ed by

the user. The calling routine can also make use of the COMMON block WHICH to

enable di�erent z dependencies of � to be calculated without having to change

the code, recompile and relink for each case. BNGSIZ can be called after calling

ANGSIZ if one is interested in the additional distances in the case of the bounce

models.

vi. Error messages

There are fourteen possible `error states', namely the values [0,: : : ,13] of the

INTEGER variable ERROR. Errors 1{3 can occur in INICOS, 4{12 in ANGSIZ, 12{13

in BNGSIZ. (Thus, only one error variable is needed in the calling routine.) ERROR

is always appropriately set; the variable DEBUG merely controls whether or not

messages are written to standard output. With the exception of ERROR .EQ.

12, the message is just the information contained in the following overview.

0 No error was detected.

1 (OMEGA .LT. 0.0).
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2 ((ETA .LT. 0.0) .OR. (ETA .GT. 1.0)) (disabled if VARETA is .TRUE., in

which case the value of ETA is irrelevant.) ETAZ, however, checks to see if

ETA is within the allowed range.

3 The world model is so close to the A2 curve that the calculation of ZMAX

is numerically unstable. This usually happens|when it does|very near

the de Sitter model. However, it should be rare in practice, as noted

below. Even if one were able to calculate a good value for ZMAX, this

would probably lead to an error in ANGSIZ if Z1 or Z2 is near ZMAX.

4 The world model is WMTYPE 17. In this world model, the universe is in�nitely

old, and there is a �nite ZMAX. This means that distances (especially for

� = 0) can become arbitrarily large. The routines are not recommended

for calculation in this cosmological model, since enabling the detection of

over
ow would unnecessarily complicate the routines. Also, the practical

value of ZMAX, used internally, would have to be appreciable less than

the real ZMAX. If the user speci�cally wants to use the routines for this

cosmological model, it is possible to allow this by declaring the COMMON

block ARTHUR with a logical variable, which should be set to .TRUE. in the

calling routine. This will override the default behaviour.

5 (Z1 .LT. 0.0)

6 (Z2 .LT. 0.0)

7 (Z1 .GT. ZMAX)

8 The value of ZMAX returned by INICOS is the calculated value; however, in-

ternally a somewhat smaller ZMAX is sometimes necessary for numerical

stability. This internal value is close enough to the real ZMAX for all prac-

tical purposes (at worst it has an error of about 10

�3

). This message

means that Z1 is too large for numerical stability, being very near the real

ZMAX but slightly smaller.

9 (Z2 .GT. ZMAX)

10 The value of ZMAX returned by INICOS is the calculated value; however, in-

ternally a somewhat smaller ZMAX is sometimes necessary for numerical

stability. This internal value is close enough to the real ZMAX for all prac-

tical purposes (at worst it has an error of about 10

�3

). This message

means that Z2 is too large for numerical stability, being very near the real

ZMAX but slightly smaller.

11 Over
ow error is possible. Calculation can be continued but the result

might not be as exact as usual or subsequent calculation with the same

cosmological parameters might lead to an `unhandled exception'.

12 Very rare. This means an error has occurred deep down in the numerical

integration. If DEBUG is .TRUE. then a message will be printed identifying

where.

13 This means that BNGSIZ was called for a non-bounce world model.

When an error is returned, with the exception of 11, then none of the other

output variables of the routine should be used and all distances are set to 0.
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c. Inside the black box: description of all rou-

tines

Here is a short description of all of the SUBROUTINEs and FUNCTIONs:

BLOCK DATA COSANG initialises COMMON block variables.

SUBROUTINE INICOS is described above.

REAL FUNCTION QQ calculates Q

2

(z).

SUBROUTINE ANGSIZ is described above.

SUBROUTINE BNGSIZ is described above.

SUBROUTINE LOWLEV Performs the low-level integration, mainly calling ODEINT.

SUBROUTINE ASDRHS calculates the right hand sides of the di�erential equation

for the angular size distance

SUBROUTINE ODEINT is a `driver' routine for the numerical integration.

SUBROUTINE MMM is for the modi�ed midpoint method used by ODEINT.

SUBROUTINE POLEX performs polynomial extrapolation used by ODEINT.

SUBROUTINE BSSTEP performs one Bulirsch-Stoer integration step.

REAL FUNCTION ETAZ is described above.

i. Call tree

[COSANG]

[INICOS]

| [QQ]

[ANGSIZ]

| [LOWLEV]

| | [ODEINT]

| | | [ASDRHS]

| | | | [ETAZ]

| | | [BSSTEP]

| | | | [MMM]

| | | | | [ASDRHS]

| | | | | | [ETAZ]

| | | | [POLEX]

| [QQ]

[BNGSIZ]

| [LOWLEV]

| | [ODEINT]

| | | [ASDRHS]

| | | | [ETAZ]

| | | [BSSTEP]

| | | | [MMM]

| | | | | [ASDRHS]

| | | | | | [ETAZ]

| | | | [POLEX]

| [QQ]
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d. Caveats

The following COMMON block names are used and, since these are global names,

should not be used in a con
icting way in any other routines: COSMOL, ANGINI,

WHICH, BNCSIZ, LOWSIZ, CNTRCT, ARTHUR, MERROR and PATH. With the exception

of the optional WHICH, all of these are used internally and need not further

concern the user. The same is true of the SUBROUTINE and FUNCTION names

listed above (except for INICOS, ANGSIZ, BNGSIZ and ETAZ, of course.)

The rest of this section should be of absolutely no concern to almost all users,

since `incorrect' results due to the reasons discussed below should only occur

due to roundo� error corresponding to a ridiculous accuracy in the cosmological

parameters; in most of these cases this would only be in world models which

are uninteresting because they are ruled out conclusively (see the table).

The value of WMTYPE can di�er from the `real' value as calculated analytically

from �

0

and 


0

but only if one is so close to the boundary between two regions of

parameter space that this happens due to ordinary inexactness in the internal

representation of `real' numbers. The same goes for the values of MAXZ and

BOUNCE, since these are trivially related to WMTYPE. The A1 and A2 curves (see

Stabell & Refsdal [1966]), corresponding to WMTYPEs 15 and 17, have been `drawn

with a numerically thick pencil' but this should only be noticeable for LAMBDA

and OMEGA values precise to 10

�5

. This is also true of the endpoints of the

curves, WMTYPEs 9 and 12. WMTYPE 16 cannot be returned by INICOS, since this

corresponds to the static Einstein cosmological model, in which �

0

and 


0

are

both = 1. The value of ZMAX is probably exact in the third �gure after the

decimal point for world models extremely near the A1 or A2 curve; otherwise,

it is as good as any numerically calculated quantity.

The values of D12 and D34 returned should be correct in the third digit after

the decimal point and shouldn't be o� by more than one digit in the fourth.

The values of D14 and D32 are probably somewhat less precise, correct in the

second decimal digit.

e. Development and tests

The development and most testing of the routines was done on a Digital VAXStation

3100 Model 76 running VMS 5.5-2 and with DEC FORTRAN. To make sure

that numerical accuracy is monitored in a robust way, comparisons were made

to the following systems:

� DEC ALPHA 4000/710, VMS, DEC FORTRAN (FORTRAN 77)

� DEC ALPHA 4000/710, VMS, DEC FORTRAN 90

� Cray C916, UNICOS 8, native FORTRAN 77 compiler

� Convex C3840 and C220, Convex OS 11.0, native FORTRAN 77

� DSM In�nity 8000, SCO-UNIX, Green Hills Fortran Version 1.8.5

� Fujitsu/Siemens S100, UXP/M, UXP/M Fortran 77 EX/VP (V12)

� Hewlett-Packard 9000/735, HPUX, native FORTRAN 77 and Fortran90 com-

pilers

� IBM RS/6000, AIX, xlf90

� IBM RS/6000, AIX, xlf90, optimisation -qarch=pwr
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� IBM RS/6000, AIX, xlf90, optimisation -qarch=ppc

� IBM RS/6000, AIX, xlf90, optimisation -qarch=pwr2

� `generic InTel PC', Linux, f2c+gcc

� Intel Pentium, MS-DOS, Lahey Fortran90

� Apple PowerMac 6100/60, Macintosh OS D 7.5, Language Systems For-

tran PPC

� IBM 9121-440, MVS, VS FORTRAN

f. Updates

Corrections, updates and so on will be posted under the subject `ANGSIZ' in

the newsgroup sci.astro.research. Comments, bug reports, etc. should be sent

by email to phelbig@hs.uni-hamburg.de. Please put `ANGSIZ' in the subject

line.

g. Disclaimer

We've tested the routines to a greater degree than usual for serious scienti�c

work, though of course not as extensively as for (serious) commercial software.

To the best of our knowledge, they work as described, but of course we can

take no responsibility for the consequences of any errors in the code. As far as

possible we will correct any errors; in any case we will make them known in the

newsgroup posting.
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4.3 Follow-up

The Supernova Cosmology Project (Perlmutter et al., 1999) made use of my code
in their landmark paper for which Saul Perlmutter, as leader of the Supernova
Cosmology Project, was awarded the 2011 Nobel Prize in Physics.

The original code presented by Kayser, Helbig and Schramm (1997) was
written in Fortran77. I have trivially converted it to fixed-form Fortran95

and am in the process of converting it to free-form Fortran95 (or, if mean-
ingful, some later version) as well as replacing Fortran77-style constructs for
which there are now better alternatives. Plans are to include this in a larger
software package which will also include elliptic-integral calculations for special
values of η as well as the calculation of non-distance cosmological quantities.
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Chapter 5

Are the clumps at a redshift
of 2.39 really sub-galactic?

5.1 Context

Pascarelle et al. (1996) claimed to have detected ‘Sub-Galactic Clumps at a
Redshift of 2.39’; we pointed out that this implicitly assumes the standard
distance, and if η = 1 isn’t assumed, the evidence for the claim is substantially
weakened. We noted that the linear size could have been a factor of 4 larger
than claimed, which would correspond to a factor of 64 in volume.
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Are the clumps at a redshift of 2.39

really sub-galactic?

Phillip Helbig Rainer Kayser

Hamburger Sternwarte, Gojenbergsweg 112,

D-21029 Hamburg, Germany

Recently, Pascarelle et al. reported the discovery of `sub-galactic clumps' at a

redshift of 2:39. The physical size of the clumps was inferred from the angular

size assuming a `standard' cosmological model with H

0

= 80 km/s/Mpc and

q

0

= 0:5.

1

(This value for q

0

corresponds to 


0

= 1 with the assumption of

�

0

= 0 or k = 0 which the authors do not state but which is apparent from their

numerical values.) However, the in
uence of the adopted cosmological model on

the result is so large at this redshift that their conclusion does not necessarily

follow from their data, and thus this evidence for a particular scenario of galaxy

evolution is premature.

For constant angular size, the physical size is proportional to the angular size

distance, by de�nition. The angular size distance is a function of the Hubble

constant H

0

, the density parameter 


0

, the cosmological constant �

0

and the

degree of homogeneity of the matter distribution (for instance as described by

the smoothness parameter �).

2

We note that it is not unlikely that H

0

is smaller

than 80 km/s/Mpc,

3

that 


0

is less than one,

4

that �

0

is larger than zero

5

and/or that � (implicitly assumed to be 1 by Pascarelle et al.) is less than one

(corresponding to a distribution of matter in the universe clumped on scales

approximately equivalent to the angular size of a galaxy, which is more probable

if 


0

is appreciably less than 1).

2

It is interesting to note that each of these

possibilities increases (for z � 2:39) the angular size distance and thus the

inferred physical size. (The angular size distance is inversely proportional to

H

0

; the dependence on the other parameters is more complicated.)

We have calculated the physical size in kpc for an angular size of 0:11

00

(corresponding to the mean value of the continuum scale length of the objects

in Pascarelle et al.) for 6 representative cosmological models, all of which are

compatible with the current observational situation. The results are presented

in Table 1. It is clear that (the linear size of) the `sub-galactic clumps' could be

four times larger than Pascarelle et al. claim; until the observational status of

the cosmological parameters is clearer, we feel it is too early to extract detailed

conclusions about galaxy formation on the basis of the angular size of objects

at large redshift.

1. Pascarelle, S. M., Windhorst, R. A., Keel, W. C. & Odewahn, S. C. Nature

383, 45{50 (1996).

2. Kayser, R., Helbig, P., Schramm, T. A&A (in press).

3. Sandage, A. ApJ, 402, 3{14 (1993).

4. Coles, P., Ellis, R. Nature, 370, 609{615 (1994).

5. Carroll, S., Press, W. H., Turner, E. L. ARAA, 30, 499{542 (1992).

6. Ostriker, J. P., Steinhardt, P. J. Nature, 377, 600-602 (1995).



H

0

[km/s/Mpc] 


0

�

0

� r [kpc] t

0

[10

9

a]

80 1 0 1 0.54 8.15

50 1 0 1 0.86 13.04

50 0.1 0 1 1.34 17.56

50 0.1 1.1 1 1.70 29.53

50 0.1 1.1 0 2.14 29.53

70 0.35 0.65 1 0.86 15.71

Table 1. The physical size r of an object of angular size 0:11

00

for some

representative cosmological models

The �rst row corresponds to the model of Pascarelle et al.; the next four

rows successively change the value of one parameter in what is the probable

direction according to the current observational situation. The last row is

a currently popular `standard model' which is something of a `best �t'

to the current observational situation

6

among models which are 
at or without

a cosmological constant. Also shown is the age of the universe t

0

for each

cosmological model.
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5.3 Follow-up

This article was a direct response to Pascarelle et al. (1996) and submitted, as
was that paper, as a letter to Nature. In retrospect, it is not surprising that
Nature didn’t accept it; not only is the rejection rate high, but Nature also
tends to publish claims which are especially interesting or unexpected. While
there is nothing wrong with that (as long as there are other outlets for more
bread-and-butter work, which there are), Nature does not seem to be interested
in debunking especially interesting or unexpected claims, especially those which
have been published in Nature. As the point of our paper was obvious to us, and
should be, at least qualitatively, to everyone, it doesn’t make sense to publish
it elsewhere, as the simple point is worth making in this form only in direct
response to a contrary (though implicit) claim. (Nevertheless, we did submit
it as a letter to Astronomy & Astrophysics, but it was rejected.1). However,
it does serve as an easy-to-understand introduction to the effects of η on the
angular-size distance, so is included here.

The idea grew out of conversations with Rainer Kayser; I performed the
calculations and physically wrote the paper.

1I have had only two other papers rejected. In both cases I was the last of three authors on
the paper, the first author being a student in Hamburg who then moved on, in one case leaving
astronomy altogether. As we all had more important things to do, I didn’t follow those up,
though I think that both could have been published after some (not necessarily meaningful)
revision requested by the referees. One of those was the generalization to three dimensions of
the idea of using Poisson statistics in the context of large-source microlensing as developed by
Refsdal and Stabell (1991) for the one-lens-plane case. The other was an examination of the
claim by Liebscher et al. (1992) that the Lyman-α forest, under the assumption that there is no

evolution in the absorbing matter, supports a low-density Universe with a large cosmological
constant. Their paper was heavily criticized, with some critics claiming that their conclusions
didn’t follow from the data used and their assumptions. We showed that that criticism is false,
by repeating the entire analysis (including re-measuring original spectra), and that the same
conclusion is obtained using a different statistical method developed for another cosmological
test (Kayser, 1995). However, the corresponding cosmological model was already ruled out on
other grounds when their paper was written, but one could turn the argument around and use
the data to calculate the evolution in the Lyman-α forest for an assumed cosmological model,
which we did. The paper appeared on arXiv (astro-ph/9607117; note that my co-author
Liebscher is unrelated to the other Liebscher). It was even cited in a paper (Overduin and
Priester, 2001) on which one of the authors (Wolfgang Priester) was also on the paper by
Liebscher et al. (1992). While I have written several papers which debunk claims from the
literature (Helbig and Kayser, 1996a; Jackson et al., 1998; Helbig, 1998a; Zackrisson et al.,
2003; Helbig, 2012, 2020b,d, 2021), it is rare that they are acknowledged, much less that the
debunked author admits that I could be right.



Part IV

Gravitational lensing
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Chapter 6

Measuring the Hubble
Constant with lens time
delays in an inhomogeneous
universe

6.1 Context

In a gravitational-lens system with more than one image of the source, the
light-travel time can be different for each image. Since all other observables
(flux ratios, angles, etc.) are dimensionless1, measuring the time delay will thus
set a physical scale. Since distances are, to first order, inversely proportional to
H0, one can thus measure H0 by measuring the time delay (Refsdal, 1964), it
being proportional to the combination of angular-size distances: (DdDs)/Dds.
At higher order, distances depend on λ0 and Ω0, hence if one has more than
one such system and/or an independent measurement of H0, one can measure
those additional parameters (Refsdal, 1966). At even higher order, η plays a
role as well, so, especially with higher-redshift systems, one might hope to use
measurements of time delays to determine η (Kayser and Refsdal, 1983).

Kayser and Refsdal (1983) investigated the influence of η for several world
models with λ0 = 0 by comparing the η = 1 and η = 0 cases. For the double
quasar 0957+561 (Walsh et al., 1979), the cosmological correction factor (which
gives the influence of the cosmological model compared to the limiting low-
redshift case) was calculated for σ0 values2 ranging from 0 to 2 (corresponding
to 0 ≤ Ω0 ≤ 4) with q0 values of 1.0, 0.5, 0.0, and −1 (λ0 = σ0− q0). I repeated
the exercise for arbitrary combinations of λ0, Ω0, and η, again showing the
importance of η, which has become even more important now that the values
of λ0 and Ω0 are so well known. Those results were presented at a workshop
at Jodrell Bank which I helped organize while I was working there (Helbig and
Jackson, 1997).

1While the observables needed to model a gravitational-lens system are dimensionless, one
can of course obtain additional observations, such as the velocity dispersion of the lens, which
will also set an absolute scale.

2σ := Ω/2, not to be confused with σ as defined in Chap. 1.

87



Measuring the Hubble constant with lens time

delays in an inhomogeneous universe

Phillip Helbig

NRAL, University of Manchester, Jodrell Bank, Maccles�eld,

UK-Cheshire SK11 9DL, England

Abstract

The e�ects of a locally inhomogeneous uni-

verse on the uncertainty of the Hubble con-

stant as determined from measured time de-

lays in gravitational lens systems is discussed.

The e�ect has been described adequately in

the literature, but it is usually not taken into

account when discussing measurements of H

0

using gravitational lens time delays. Depend-

ing on the cosmological model and the red-

shifts of the particular lens system considered,

the e�ect of local inhomogeneity can signif-

icantly increase the uncertainty in the deter-

mination of H

0

, and in `probable' cosmological

models can be the dominant uncertainty.

a. Introduction

The idea of measuring the Hubble constant

H

0

using the time delay between images of

a source which is multiply imaged due to

the gravitational lens e�ect was introduced by

Refsdal (1964), who also discussed the higher-

order dependence on the other main cosmolog-

ical parameters, in modern notation the cos-

mological constant �

0

and the density param-

eter 


0

(Refsdal 1966). In particular, Refsdal

(1966) introduced the `cosmological correction

function' T which describes these higher-order

e�ects. Kayser & Refsdal (1983) showed that

this same formalism also applies in the case

of an arbitrary lens mass distribution and in

the extreme case of a locally inhomogeneous

universe, the so-called empty-cone approxima-

tion. Since the cosmological correction func-

tion depends only on the redshifts of the lens

and source and on the distances involved, it

is straightforward to generalise even further,

using the formalism and methods set out in

Kayser et al. (1997), to cases intermediate

between the traditional approach (which as-

sumes an idealised universe consisting of a per-

fect 
uid) and the empty-cone approximation.

Recently, not only has the general idea of

measuring H

0

by lens time delays become

more acceptable, but (partly the cause of this)

other uncertainties, such as measuring (and in-

terpreting!) the time delay itself (see Pelt et

al. (1996) and references therein) and mod-

elling the lens mass distribution have become

better understood, so that now the dominant

uncertainties are cosmological|the values of

�

0

and 


0

and the parameter � discussed be-

low, which describes local inhomogeneity.

b. Basic theory

i. Time delay

One can write an expression for the time delay

(cf. Kayser & Refsdal (1983))

H

0

= (�t)

�1

Tf (1)

where H

0

is the Hubble constant, �t the time

delay, T the cosmological correction function

and f is a function of observational quantities

and the mass distribution of the lens and will

not be further discussed here. The cosmologi-

cal correction function

T =

H

0

c

D

d

D

s

D

ds

(1 + z

D

)

z

s

� z

d

z

d

z

s

(2)

is de�ned so that T ! 0 for z

s

! 0.

1
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Figure 1 Dependence of the angular size

distance D on �

0

and �

The angular size distance from the observer

and from an object at z = 2 to another at

higher redshift as a function of the redshift

z for di�erent cosmological models. Thin

curves are for � = 0, thick for � = 1. The

upper curves near z = 0 (z = 2 at lower

right) are for �

0

= 2, the lower for �

0

= 0.




0

= 1 for all curves. The distances are

given in units of c=H

0

.

ii. Cosmological distances and

the e�ects of a locally inhomo-

geneous universe

See, e. g., Kayser et al. (1997) for an overview

of cosmological distances and for a method of

taking inhomogeneities into account when cal-

culating cosmological distances. Figures 1{3

show the dependence of the angular size dis-

tance (the relevant distance for gravitational

lensing) on the cosmological model and on

the inhomogeneity parameter �, which is the

fraction of smoothly distributed matter within

the light cone which determines the distance;

1� � is the fraction of the matter distributed

clumpily. Here it is assumed that all clumps

are outside the light cone (`clumps' inside hav-

ing been taken into account explicitly as a

gravitational lens e�ect) and far enough away

so that the e�ects of shear can be ignored.
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Figure 2 Dependence of D on �

0

and 


0

For � = 1 D(�

0

;


0

) is plotted. The source

redshift is z = 2. Starting from (�

0

;


0

) =

(1; 0) and spiraling clockwise, contours are

at 0:6; 0:5; 0:4; 0:3; 0:2; 0:1; b where b separates

the cosmological models with and without

a big bang (in the latter the distance is not

de�ned for z = 2).
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Figure 3 Dependence of D on �

0

and 


0

The same as Fig. 2 but for � = 0. From

upper left to lower right, contours are at

0:3; 0:4; 0:5; 0:6; b.
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Figure 4 Dependence of T on D

s

, D

ds

and

�

For a �xed cosmological model (�

0

= 0

and 


0

= 1, as indicated) T (z

s

) is plotted.

Thin curves correspond to � = 1, thick

to � = 0. From top to bottom, z

d

=z

s

=

0:7; 0:5; 0:3; 0:1; 0:1; 0:3; 0:5; 0:7.

c. The cosmological cor-

rection function

Figures 4{15 show the dependence of T on

the cosmological model. The parameter space

examined roughly corresponds to cosmological

models which cannot be ruled out observation-

ally. Thus, the spread of T gives an idea of

the uncertainty in H

0

when determined from a

measured time delay, in addition to any uncer-

tainties in (the interpretation of) the measure-

ment itself and the lens model. Alternatively,

if H

0

and the lens models are well-constrained

by other means, each lens system with a mea-

sured time delay provides an independent con-

straint on �

0

and 


0

. The dependence of T on

the cosmological parameters comes solely from

the in
uence of the latter on the angular size

distances. Since � = 0 is an extreme case,

one could then rule out world models above a

contour line such as in Fig. 11; this is inter-

esting since the direction of these contours is

such that a degeneracy present in many other

cosmological tests|lensing statistics, m-z re-

lation, age of the universe|can be broken.
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Figure 5 Dependence of T on D

s

, D

ds

and

�

The same as Fig. 4 but for a di�erent values

of �

0

and 


0

.
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s

, D
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�

The same as Fig. 4 but for a di�erent values

of �

0

and 


0

.
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thin curves correspond to � = 1, thick to

� = 0. The curves for which T < 0 for
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0

= 2; in this case lower val-

ues of 
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correspond to the so-called bounce

models (see, e.g., Kayser et al. (1997)). For

the other curves, from top to bottom �

0

=

1:0; 0:0; 0:0; 1:0.
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For �xed source and lens redshifts (z
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=

1:3 and z

d

= 0:9) T (�

0

;


0

) is plotted, here

for the case of � = 1. From (�

0

;


0

) =

(0; 0) spiraling clockwise, contours are at

1:1; 1:0; 0:9; 0:8; 0:7; b.
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0

and 


0

The same as Fig. 10 but for � = 0. From

lower left to upper right, contours are at

1:1; 1:2; 1:3; 1:4; 1:5. The contour at lower

right is b, the one next to it 1:1.

η

λ = 0  

Ω

0.2 0.4 0.6 0.8

0.
25

0.
50

0.
75

1.
00

1.
25

1.
50

1.
75
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For �xed source and lens redshifts (z

s

= 1:3

and z

d

= 0:9) T (�;


0

) is plotted, here for the

case of �

0

= 0. From left to right, contours

are at 1:25; 1:20; 1:15; 1:10; 1:05; 1:00; 0:95; 0:90.
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Figure 13 Dependence of T on � and 
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The same as Fig. 12 but for k = 0. Contours

as in Fig. 12.
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) is plotted, here for � = 1.

From lower left to upper right, contours are

at 0:99; 0:96; 0:93; 0:90; 0:87; 0:84.
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lower left to upper right, contours are at

1:1; 1:4; 1:7; 2:0; 2:3; 2:6; 2:9; 3:2.

d. Summary and conclu-

sions

The uncertainty due to cosmological consider-

ations, parametrised by the cosmological cor-

rection function T , in the value of H

0

as de-

rived from a measured time delay generally be-

haves as follows when the other parameters are

held constant:

1

� jT j increases with increasing z

d

� jT j increases with decreasing �

� T increases with z

s

for � = 1 and de-

creases for � = 0

� jT j increases with increasing 


0

� jT j increases with increasing �

0

except

when 


0

is small

in order of generally decreasing importance.

Thus, if one is interested in minimising this un-

certainty, one should measure the time delay

preferentially in systems where z

d

=z

s

is rela-

tively low and, less important, where z

s

itself is

small. Should � prove to be � 1 then the need

1

See also Kayser & Refsdal (1983)

for small source and (relatively) small lens red-

shifts is less urgent, and the dependence on �

0

would be made even smaller than it already

generally is. Similarly, a small value for 


0

would decrease the uncertainties due to � and

�

0

. Of course, if one knows H

0

already, then

the criteria for desirable source and lens red-

shifts and for desirable values of the other cos-

mological parameters are reversed, since then

one could use the observations to constrain �

0

and 


0

.

It is interesting to contrast the dependency

of T on the cosmological parameters �

0

, 


0

and � with that of the statistics of multiply-

imaged systems in surveys (see, e. g., Fukugita

et al. (1992)): the order of decreasing impor-

tance in the latter case is �

0

, 


0

and �, just

the opposite as for the case of T considered

here.
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6.3 Follow-up

Just 30 years ago, H0 was uncertain by a factor of two. Today, it is uncertain
by ≈ 6%, with formal uncertainties being much smaller, thus creating ‘tension’
between various measurements. While the effect of η on H0 is relatively small,
because ‘direct’ measurements ofH0 necessarily take place at low redshift where
the effect of η is small, one does not expect uncertainty in η to be an important
contributor to uncertainties in such measurements of H0 (e.g. Odderskov et al.,
2016). However, since many cosmological tests actually constrain combinations
of cosmological parameters, η can play a role, and indeed Fleury et al. (2013)
have suggested that taking η into account can explain the ‘tension’.

Since H0 can be determined by measuring time delays in gravitational-
lens systems because the time delay depends on the combination of distances
(DdDs)/Dds which in turn is inversely proportional toH0, η can potentially have
an influence (Kayser and Refsdal, 1983). While that is now largely appreciated,
measurements have become so precise that using just the single parameter η to
describe the inhomogeneity is too coarse an approximation, so that uncertainty
is taken into account by explicitly modelling the observed mass distribution
along the line of sight (e.g. Rusu et al., 2017; Bonvin et al., 2017). Neverthe-
less, investigating the influence of η on the derived value of H0 gives one an
estimate of the size of the effect.

At the time, that was a very hot topic. I was one of the main organizers of a
workshop at Jodrell Bank (Helbig and Jackson, 1997) to address some of those
issues.



Chapter 7

The image-separation–
source-redshift relation as a
cosmological test

7.1 Context

One-third of my refereed-journal papers point out mistakes in other papers; this
is one of them. Park and Gott (1997) claimed that there is an inverse correlation
between the image separation ∆θ and the source redshift zs for gravitational-
lens systems and noted that in a flat universe one expects no correlation at all,
e.g. the average image separation is independent of zs, as long as a singular
isothermal sphere is used to model the lens (while that is mathematically sim-
ple, it is also observationally motivated). That the flat universe exhibits this
property is not obvious and was probably new information to most readers. The
paper suggested two questions to me: Can one use the ∆θ–zs relation as a cos-
mological test? What happens to the ∆θ–zs relation if one does not use only the
standard distance, but allows for a universe with small-scale inhomogeneities?

The paper by Park and Gott (1997) was typical of many at the time: com-
plicated formalism which was new to many readers, but sparse data of perhaps
low quality. In my paper for MNRAS (Helbig, 1998a), I concentrated on the
effect of an inhomogeneous universe. It turns out that a negative correlation is
expected in the extreme η = 0 case, regardless of the values of the cosmological
parameters. That is even less obvious than the correlation itself, and I was the
first to see it. (With the standard distance, a negative correlation is expected
for a k = −1 universe and a positive one for k = +1.) However, at least with
the data available at the time, no interesting constraints on the cosmological pa-
rameters could be derived. Also, the negative correlation observed by Park and
Gott (1997) goes away if one additional gravitational-lens system is included,
showing that the test is not very robust. (I included one system which Park
and Gott (1997) had missed, 0218+357 (which is also the subject of a paper
by Biggs et al. (1999)); it had a published source redshift, though only in a
proceedings contribution.)

Helbig (1998a) plots the relationship for various cosmological models for the
extreme η = 1 and η = 0 cases, as well as all observational data in one plot (to
save space). For four samples (that used by Park and Gott (1997), that used by
Park and Gott (1997) with the addition of 0218+357, the JVAS/CLASS sample
(which includes 0218+357), and the union of all samples), relative probabilities
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in the λ–Ω plane were calculated, but to save space the plots were only discussed
by Helbig (1998a), not displayed. In a poster (Helbig, 1998b) for a cosmology
workshop in Potsdam (Müller et al., 1998), more space was available; in par-
ticular, the individual samples were plotted separately as well as the relative
probabilities in the λ–Ω plane for all four samples. Those are shown after the
paper. (Since the proceedings contribution (Helbig, 1998b) otherwise has con-
siderable overlap with the paper Helbig (1998a), I am not including the former
as a separate chapter, but rather including supplementary material from it in
this chapter.)
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A B S T R A C T
Recently, Park & Gott claimed that there is a statistically significant, strong, negative
correlation between the image separation Dv and source redshift zs for gravitational lenses.
This is somewhat puzzling if one believes in a flat (k ¼ 0) universe, since in this case the
typical image separation is expected to be independent of the source redshift, while one
expects a negative correlation in a k ¼ ¹1 universe and a positive one in a k ¼ þ1 universe.
Park & Gott explored several effects that could cause the observed correlation, but no
combination of these can explain the observations with a realistic scenario. Here, I explore this
test further in three ways. First, I show that in an inhomogeneous universe a negative
correlation is expected regardless of the value of k. Secondly, I test whether the Dv–zs relation
can be used as a test to determine l0 and Q0, rather than just the sign of k. Thirdly, I compare the
results of the test from the Park & Gott sample with those using other samples of gravitational
lenses, which can illuminate (unknown) selection effects and probe the usefulness of the Dv–zs

relation as a cosmological test.

Key words: cosmology: observations – cosmology: theory – gravitational lensing.

1 I N T RO D U C T I O N

Historically, there has been little interest in the Dv–zs relation
compared with other cosmological tests based on gravitational
lensing statistics, perhaps because the inflationary paradigm (e.g.
Guth 1981), which began about the same time as the discovery of
the first gravitational lens (Walsh, Carswell & Weyman 1979), has
become so influential. Since a flat (k ¼ 0) universe is a robust
prediction of inflation, many researchers assume this and consider
only flat universes (or, at most, k ¼ ¹1 cosmological models with
l0 ¼ 0). Owing to the fact that for the popular singular isothermal
sphere model for a single-galaxy lens the average image separation
Dv, integrated over the lens redshift zd from zd ¼ 0 to zd ¼ zs, is
completely independent of the source redshift zs in a flat universe,
there is little point in pursuing the Dv–zs relation if one is interested
primarily in flat cosmological models. If one is not committed to a
flat universe, then of course one should not assume k ¼ 0, but even
if one believes that the universe must be flat, it is still important to
test this belief observationally. The situation is somewhat worsened
by the fact that most ‘standard’ cosmological tests such as the m–z
(magnitude–redshift or ‘standard candle’) and v–z (angular size–
redshift or ‘standard rod’) relations, ‘conventional’ gravitational
lensing statistics and the age of the universe are relatively insensi-
tive to the radius of curvature of the universe [R0,
ðjQ0 þ l0 ¹ 1jÞ¹1=2], being degenerate in combinations of l0 and
Q0 in directions roughly perpendicular to lines of constant R0 in the
l0 –Q0 plane. A notable exception is the constraints derived from

CMB anisotropies (e.g. Scott, White & Silk 1995; Hu, Sugiyama &
Silk 1997).

2 T H E O RY

For a singular isothermal sphere lens, the angular image separation
is given by (e.g. Turner, Ostriker & Gott 1984)

Dv ¼ 8p
v
c

� �2Dds

Ds
; ð1Þ

where v is the velocity dispersion and D is the angular size distance
(see below). Even if the singular isothermal sphere is not a perfect
model for the gravitational lens systems considered, it is still a good
approximation when one is concerned only with the image separa-
tion. For a given v, by combining equations (5) and (6) of Gott, Park
& Lee (1989) and using the more appropriate and more general
angular size distances, one obtains an expression for the average
image separation Dv, by integrating over the lens redshift zd from
zd ¼ 0 to zd ¼ zs:

DvðzsÞ

Dvð0Þ
¼

�zs

0
dzd

D3
dsD

2
dð1 þ zdÞ

2

D3
s Q

� �
�zs

0
dzd

D2
dsD

2
dð1 þ zdÞ

2

D2
s Q

� � ; ð2Þ

where

Q ¼

�����������������������������������������������������������������������������������
Q0ð1 þ zdÞ

3 ¹ ðQ0 þ l0 ¹ 1Þð1 þ zdÞ
2 þ l0

q
: ð3Þ

The Dij (with Dk :¼ D0k) in equations (1) and (2) are angular size
distances, which are functions of the lens and source redshifts zd and
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zs, the cosmological parameters l0 and Q0 as well as the ‘homo-
geneity parameter’ h, which gives the fraction of smoothly, as
opposed to clumpily, distributed matter along the line of sight. Note
that equation (2) is valid for all combinations of l0, Q0 and h. The
angular size distances can be computed for arbitrary combinations
of these parameters by the method outlined in Kayser, Helbig &
Schramm (1997).

Figs 1 and 2 show Dv as a function of zs for various cosmological
models, for h ¼ 1 (the traditional case assuming a completely
homogeneous universe) and h ¼ 0 as extreme cases. Note in

Fig. 1 that the curve is a horizontal line for k ¼ 0, has positive
slope for k ¼ þ1 and negative slope for k ¼ ¹1, where
k :¼ signðQ0 þ l0 ¹ 1Þ. In Fig. 2, for h ¼ 0, the slope is negative
regardless of the value of k. Thus, at first sight it appears that an
inhomogeneous universe, a possibility not investigated by Park &
Gott (1997, hereafter PG), might be able to explain the puzzling
negative correlation between Dv and zs. However, it is shown in
Section 5 that even the extreme h ¼ 0 scenario produces an anti-
correlation which is much weaker than that found by PG. This effect
can be qualitatively understood by realizing how equation (2) is
affected by decreasing h: inspection shows that this might be
estimated by examining Dds=Ds. All other things being equal, the
angular size distance increases with decreasing h. Also, the effect of
h is more noticeable at large redshift differences. Since zs $ zs ¹ zd,
the denominator is the more important term, and so decreasing h

increases Ds and so decreases Dds=Ds and thus DvðzsÞ=Dvð0Þ:

3 DATA

PG used an inhomogeneous sample of gravitational lenses from the
literature. While this seems problematic at first sight, PG noted that
there is no reason to believe that this should influence the analysis.
Nevertheless, it is worth comparing the PG results with those
obtained from a better defined sample.

The observational data provided by the JVAS and CLASS
surveys offer an independent sample of gravitational lenses. JVAS
is the Jodrell Bank VLA Astrometric Survey (Patnaik et al. 1992);
CLASS is the Cosmic Lens All-Sky Survey (Myers et al., in
preparation). Even though the observational tasks are not yet
complete, the JVAS and CLASS surveys which constitute the
data base have already yielded sufficient gravitational lenses to
enable one to make an independent analysis. Table 1 shows the
current state of knowledge about the JVAS/CLASS gravitational
lenses. Note that the questionable source redshift for 2114 þ 022 is
probably the redshift of an additional lensing galaxy (this inter-
pretation is supported by several independent lines of evidence).

Although not all source redshifts in the JVAS/CLASS sample are
known, 8 out of 11 are, and based on our survey, discovery and
follow-up strategies there is no reason to suspect the unknown
source redshifts to be statistically different from those already
known. Fig. 3 shows the source redshifts and image separations
of the gravitational lens systems used in this paper: the PG sample
and the JVAS/CLASS sample.

4 C A L C U L AT I O N S

All calculations here implement the method of PG, which uses the
Spearman rank correlation test to generate a relative probability for
a given cosmological model. PG noted the fact that they always
obtained a low probability with their sample, even when allowing
for non-flat cosmological models (albeit in a limited area of
parameter space), galaxy evolution or departure from the singular
isothermal sphere model. As PG noted, allowing for these effects
increases the probability, since they all tend to create a negative
correlation in a flat universe, but the magnitude of the effect is not
large enough to explain the observations. Again as noted by PG, if
the lenses are parts of clusters, then this will work in the opposite
direction, making the observed negative correlation even more
puzzling.

Calculations were performed for four samples:

(i) the PG sample,
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Figure 1. Normalized image separation as a function of source redshift.
From the top, the (l0, Q0) values are (2, 4), (0, 4), k ¼ 0, (0, 0.7), (0, 0.3) and
(¹5, 1). For k ¼ 0 the result is valid for all (l0, Q0) values the sum of which
is 1. h ¼ 1.

Figure 2. The same as Fig. 1 except that here h ¼ 0.
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(ii) the PG sample with the addition of the system 0218 þ 357,
(iii) the JVAS/CLASS sample, and
(iv) the union of all samples.

Note that the source redshift of 0218 þ 357 had been published
before the PG analysis was performed (Lawrence 1996). Since
0218 þ 357 lies below and to the left of all other data points, it is
clear that including it will weaken the puzzling negative correlation
found by PG; this is discussed more quantitatively in Section 5.

5 R E S U LT S A N D D I S C U S S I O N

Since the PG test assigns a low probability to a k ¼ 0 universe, the
question arises as to whether it can be used as a general cosmolo-
gical test to determine the values of l0 and Q0. This is not the case.
For all four samples I have calculated the Spearman rank correlation

probability as a function of l0 and Q0 in a range of parameter space
(¹8 < l0 < 2 and 0 < Q0 < 10) much larger than that allowed even
by a generous interpretation of observations. This was done with a
resolution of 0.1 in both l0 and Q0 for both h ¼ 1 and h ¼ 0. The
Spearman rank correlation probability is essentially constant over a
wide range of parameter space; basically, either all cosmological
models are probable, or all are improbable, depending on the
sample used.

The probability is a weak function of the cosmological model,
with the sharpest transition occurring when crossing the k ¼ 0 line
in the l0 –Q0 plane. For all samples except the PG sample, the
probability is > 5 per cent in almost the entire parameter space;1

those cosmological models with a lower probability are among
those ruled out by current observations. Thus, the Spearman rank
correlation probability does not allow one to reject any otherwise
viable cosmological models, which shows both that there is no
reason to expect unknown effects in the gravitational lens samples
and that this probability is not very useful as a cosmological test.
For the PG sample, the 1 per cent contour corresponds almost
exactly to the k ¼ 0 line, with higher values for a negatively curved
universe. Thus, the PG sample is marginally compatible with a
k ¼ ¹1 cosmological model, although the probability values are
low throughout the l0 –Q0 plane, with values near the maximum
of 0.025 being attained only for small (but realistic) Q0 values and
large (in absolute value) negative values of l0. Since there are no
known selection effects that can account for the differences
between the PG sample and other samples, either the test is not
very useful and/or it is pointing to unknown selection effects in
the literature sample used by PG. The fact that the PG result
changes dramatically (probability <10–20 per cent in most of the
l0 –Q0 plane) by the inclusion of just one additional data point,
which could have been included in their analysis, argues in favour
of the former possibility.

The above discussion was for h ¼ 1. For h ¼ 0 the situation is
qualitatively the same and quantitatively involves only slightly
different values of probabilities derived from the Spearman rank
correlation test.

It is interesting to compare the probabilities from the Spearman
rank correlation test for the PG sample using the actual values of zs

and Dv as used by PG to those obtained using more up-to-date data
for the same lens systems. If two values are very near each other,
rounding them off to the same values produces a different result for
the rank correlation test than if they differed by even a small
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Table 1. The JVAS/CLASS gravitational lenses.

Name # images Dv lens galaxy type zd zs

[arcsec]

0218 þ 357 ring þ2 0.33 spiral 0.6847 0.96
0414 þ 0534 4 2.0 elliptical ? 2.62
0712 þ 472 4 1.2 ? 0.406 1.339
1030 þ 074 2 1.6 peculiar 0.599 1.535
1422 þ 231 4 1.2 ? 0.65 3.62
1600 þ 434 2 1.4 spiral 0.4144 1.589
1608 þ 656 4 2.2 spiral? 0.64 1.39
1933 þ 503 4 þ 4 þ 2 0.9 ? 0.755 ?
1938 þ 666 4 þ 2 0.9 ? ? ?
2045 þ 265 4 þ 1? 2.0 ? 0.87 1.28
2114 þ 022 2 þ 2? 2.4 ? 0.316 0.588?

Figure 3. Source redshifts zs and image separations Dv (in arcsec) for the
gravitational lens systems studied in this paper. Crosses represent the PG
sample (20 systems; note that two data points with Dv < 6 arcsec almost
coincide); diamonds represent the JVAS/CLASS sample (eight systems; of
course only those with known source redshifts are included). Note that there
is an overlap of four data points. The filled diamond represents the system
0218 þ 357, which was not used by PG although its source redshift had been
published before the PG analysis was carried out (Lawrence 1996).

1 For the JVAS/CLASS sample, the maximal probability is 0.955 and is
realized in almost the entire k ¼ þ1 area of the parameter space.
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amount. Using more up-to-date data, an even lower probability is
obtained for the PG sample, for h ¼ 1 and h ¼ 0, for a wide variety
of cosmological models.

6 C O N C L U S I O N S

Park & Gott (1997) pointed out that the image separations in
gravitational lens systems show a strong significant negative
correlation with the source redshift, while in a flat universe one
would expect no correlation (a negative correlation would be
expected in a universe with negative curvature and a positive one
in a universe of positive curvature). None of the possibilities they
examined was strong enough to explain the effect. A possibility
not examined by them, namely an inhomogeneous universe,
produces a negative correlation regardless of the sign of the
curvature, but it too is not strong enough to account for the
effect. As a general test for the values of l0 and Q0 the test is of
no use; all cosmological models are assigned roughly the same
probability, but which value they are assigned depends on the
sample used.

The strong dependence of the result on the sample used seems to
indicate that the result of Park & Gott (1997) is due not to some
physical cause but rather to unidentified selection effects in the
sample of gravitational lenses taken from the literature. The large
number of JVAS and CLASS lenses gives us an independent
comparison sample, thus demonstrating the need for discovering
a large number of lenses in a well-defined sample. As Park & Gott
(1997) point out, since many conclusions based on ‘conventional’
gravitational lensing statistics are based on essentially the same
lenses as in their literature sample, if this sample is for some
unknown reason atypical then conclusions drawn from statistical
analyses of it must be examined with care. It will thus be interesting
to see what conclusions can be drawn from a statistical analysis of
the JVAS/CLASS sample after the observational tasks have been
completed. (We expect to find more lenses, but have no qualms
about using the present incomplete sample in this analysis since
there is no reason to believe that a larger sample would show a
different Dv–zs relation.)
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N OT E A D D E D I N P R E S S

Since this work was completed, two other responses to Park & Gott
(1997) (apart from Helbig 1998) have appeared. The first (Williams
1997) is complementary to this work in that it assumes the effect is
real and explores the astrophysical consequences, while the second
(Cooray 1998) is more similar to this analysis, arriving at essentially
the same conclusions though using different observational data (and
exploring neither the question of usefulness as a general test for l0

and Q0 nor the effects of a locally inhomogeneous universe).
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Figure 7.1: The sample used by Park & Gott.

7.3 Further details and follow-up

I show each of the four samples used and the resulting relative probability in
the λ–Ω plane. As discussed by Helbig (1998a), the probability is more or less
the same for a wide range of cosmological parameters and thus not useful as a
cosmological test. (Although included in Helbig (1998a) (though with different
symbols for different samples), for clarity Fig. 7.7 is included below as well.)
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Figure 7.2: Spearman rank-correlation probabilities as a function of λ0 and Ω0

for the Park & Gott sample. The figures plotting the probability all utilize the
same linear grey scale with 0 being white and 1 black. The highest value on this
plot is 0.025, barely visible in the lower left corner. The diagonal line is the 1%
contour level. The area above contains smaller values; larger ones are below.
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Figure 7.3: The sample used by Park & Gott with the addition of the gravita-
tional lens system 0218 + 357.
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Figure 7.4: The same as Fig. 7.2 but for the Park & Gott sample with the
addition of 0218 + 357. The maximum is 0.184. The thin curve is the 1%
contour, the thick curve is the 5% contour.
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Figure 7.5: The CLASS sample of gravitational lenses.

Helbig (1998a) discussed the sensitivity of the Spearman rank probability to
roundoff error; in particular, if two values are very near each other, rounding
them off to the same values produces a different result for the rank-correlation
test than if they differ by even a small amount. Another aspect of round-off error
is seen in computing the Spearman rank probability for k = 0 models. Park
and Gott (1997) give a probability of 0.012 for a flat Universe. I can reproduce
that value by using λ0 = 0.5 and Ω0 = 0.5. Other values of λ0 and Ω0 (with
the sum of 1, corresponding to k = 0) result in values between 0.008 and 0.017,
while inserting k = 0 ‘by hand’ instead of doing the computations for explicit λ0

and Ω0 values (that is, using the fact that the ∆θ–zs relation is flat in this case
rather than computing it) results in a value of 0.011. That and the problem with
inexact observations mentioned above suggest that the probabilities computed
using the Spearman rank-correlation test should be taken with a grain of salt.

While the ∆θ–zs relation alone is not useful as a cosmological test, the image
separation is of course observational data which can be used, along with other
observational data, in ‘full-scale’ lens-statistics analyses (e.g. Quast and Helbig,
1999; Helbig et al., 1999; Helbig, 1999; Macias Perez et al., 2000; Chae et al.,
2002). The same is true of the lens redshift: not useful as a cosmological test
if used alone (Helbig and Kayser, 1996a), but such data are used in ‘full-scale’
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Figure 7.6: The same as Fig. 7.2 but for the CLASS sample. The maximum is
0.955.

lens-statistics analyses.
This paper (Helbig, 1998a) is one of my favourites among my own papers: it

corrects an erroneous claim, presents interesting new information, and is short
and to the point. Like many of my papers, it is theoretical though closely
connected with observations and is concerned with the intersection of cosmology,
gravitational lensing, and statistics.

As is often the case with papers which mainly point out errors in other pa-
pers, Helbig (1998a) has received only a handful of citations (Cooray, 1999; Zhu,
2000; Dev et al., 2004; McKean et al., 2004; Han and Park, 2015; Rana et al.,
2017a,b). Cooray (1999) cites it only for the incidental information which lens
systems have spiral galaxies as lenses. Zhu (2000) notes that (not stated, but
assuming η = 1) one can use the effect “to test directly the curvature of the
universe”. Dev et al. (2004) mention it as one example of using gravitational
lensing to study cosmology, and go on to look at other aspects of the image
separation in that context. McKean et al. (2004) report results from Keck spec-
troscopy of CLASS lens systems, noting that redshift information is necessary
for the test discussed by Helbig (1998a). Han and Park (2015) discuss my work
in a bit more detail, including the effect of η and the statistical problems with
a small sample, hence their work applying the test to the Sloan Digital Sky
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Figure 7.7: Combined sample: union of Park & Gott and CLASS samples.

Survey. Rana et al. (2017a), among other things, repeat the test with more
data, and also cite Kayser, Helbig and Schramm (1997) for mathematical ex-
pressions concerning cosmological distances. Rana et al. (2017b) mention my
work merely as an example of using gravitational lensing to study cosmology,
along with another of my papers (Helbig et al., 1999).
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Figure 7.8: The same as Fig. 7.2 but for the combined sample. The maximum
is 0.583.
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Chapter 8

The magnitude–redshift
relation for Type Ia
supernovae, locally
inhomogeneous
cosmological models, and
the nature of dark matter

8.1 Context

Although Perlmutter et al. (1999) had investigated the influence of η on the
values of λ0 and Ω0 obtained from the m–z relation for Type Ia supernovae,
using the code of Kayser, Helbig and Schramm (1997), in later studies that
was conspicuous by its absence. As a result, it had been in the back of my
mind to investigate that, because more and higher-redshift data had become
available, but the concrete motivation was something else. I had written a
Fortran program to reduce n-dimensional data cubes; given data on an n-
dimensional grid, one can reduce them to a grid of one dimension fewer in
various ways: marginalizing (averaging) over the dimension to be eliminated,
maximizing it (i.e. using the highest value rather than the average), or taking a
cut through the higher-dimensional cube at a specified value of the dimension
to be eliminated. The goal is often to obtain constraints in a two- or one-
dimensional parameter space, which can then be plotted. Another approach
is to calculate contours in the higher-dimensional space and project them onto
one with one dimension fewer. To test those procedures, I wanted to use real
data and also have a feel for the influence of the parameters on the calculated
quantity, so I chose the likelihood derived from the m–z relation for Type Ia
supernovae as a function of λ0, Ω0, and η, using publicly available data to
calculate a three-dimensional data cube as a starting point. Since the results
were scientifically interesting, I wrote them up (Helbig, 2015a).
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ABSTRACT
The m–z relation for Type Ia supernovae is one of the key pieces of evidence supporting the
cosmological ‘concordance model’ with λ0 ≈ 0.7 and �0 ≈ 0.3. However, it is well known
that the m–z relation depends not only on λ0 and �0 (with H0 as a scale factor) but also on the
density of matter along the line of sight, which is not necessarily the same as the large-scale
density. I investigate to what extent the measurement of λ0 and �0 depends on this density
when it is characterized by the parameter η (0 ≤ η ≤ 1), which describes the ratio of density
along the line of sight to the overall density. I also discuss what constraints can be placed on
η, both with and without constraints on λ0 and �0 in addition to those from the m–z relation
for Type Ia supernovae.

Key words: supernovae: general – cosmological parameters – cosmology: theory – dark
energy – dark matter.

1 IN T RO D U C T I O N

In the last 15 years or so, cosmological observations have improved
greatly and it also appears that the values are converging on their
true values.1 This allows us to answer such questions (provided, of
course, that ‘standard assumptions’ hold) as whether the Universe
will expand for ever (yes), how old it is, whether it is accelerating
now (yes), when it started accelerating, etc. (With the assumption
of a simple topology, the Universe is finite if λ0 + �0 > 1, but
since observations indicate that this value is very close to 1, we
cannot yet answer this question.) Among the most important of
these observations are those by the Supernova Cosmology Project
(e.g. Goobar & Perlmutter 1995; Perlmutter et al. 1995, 1998, 1999;
Amanullah et al. 2010; Suzuki et al. 2012) and the High-z Super-
nova Search team (e.g. Garnavich et al. 1998; Riess et al. 1998;
Riess et al. 2000) (see also the reviews by Riess 2000, Leibundgut
2001, 2008, and Goobar & Leibundgut 2001) which provide joint
constraints on λ0 and �0. Combined with other observations (e.g.
Komatsu et al. 2011; Planck Collaboration XVI, 2014), these lead to
quite well constrained values for the cosmological parameters (e.g.
fig. 5 in Suzuki et al. 2012). Although the supernova data alone

�E-mail: helbig@astro.multivax.de
1 The case for the ‘concordance model’ with λ0 ≈ 0.7 and �0 ≈ 0.3 was
already made by Ostriker & Steinhardt (1995); the values of the concordance
model thus do not need the supernova data, though of course adding more
data improves the constraints. While the corresponding uncertainties have
dramatically decreased (e.g. Komatsu et al. 2011; Planck Collaboration XVI,
2014), the values themselves have remained constant over the last twenty
years.

allow a relatively wide range of significantly different other mod-
els, it is interesting that the best-fitting values obtained from these
observations using the current data are quite close to the much bet-
ter constrained values using combinations of several observations
without the supernova data, at least under the assumptions with
which the former were calculated. However, since the m–z relation
depends not only on λ0 and �0 (with H0 as a scale factor) but also
on the distribution of matter along and near the line of sight, the
dependence of conclusions drawn from the m–z relation for Type Ia
supernovae on this matter distribution should be investigated. Al-
ternatively, these observations can perhaps tell us something about
this distribution.

The plan of this paper is as follows. Section 2 sketches the basic
theory used in this paper. In Section 3, I briefly review previous
investigations of the influence of a locally inhomogeneous universe
on the m–z relation. Section 4 describes the calculations done and
discusses the results. Summary, conclusions and outlook are pre-
sented in Section 5.

2 BA S I C T H E O RY

Kayser, Helbig & Schramm (1997, hereafter KHS) developed a
general and practical method for calculating cosmological distances
in the case of a locally inhomogeneous universe. See KHS for details
(and for a description of the notation, which is followed here); here
I repeat only the most important points for the purpose of this paper.

If the Universe is homogeneous, then the fact that light propagates
along null geodesics provides sufficient information to calculate
distances from redshift. If the Universe is locally inhomogeneous,
then distances which depend on angular observables related to the

C© 2015 The Author
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propagation of radiation will differ from the homogeneous case
because more or less convergence will change the angle involved
(the angle at the observer in the case of the angular-size distance,
that at the source in the case of the luminosity distance). The ba-
sic idea is that one considers a universe which is homogeneous
and isotropic on large scales, this determining the global dynam-
ics via the Friedmann–Lemaı̂tre equation. Local inhomogeneities
are modelled as clumps, where the extra matter in the clumps is
taken from the surrounding matter. Thus, a beam which propagates
between clumps will have only this thinned-out matter inside the
beam, while outside the beam the average density (taking both the
thinned-out background matter and the clumps into account) is ap-
proximately equal to the global density (precisely so in the limit of
an infinitesimal beam). Zeldovich (1964), Dashevskii & Zeldovich
(1965) and Dashevskii & Slysh (1966) developed a general dif-
ferential equation for the distance l between two light rays on the
boundary of a small light cone (the beam) propagating far away
from all clumps of matter in a locally inhomogeneous universe:

l̈ = −4πGηρ l + Ṙ

R
l̇, (1)

where G is the gravitational constant, R the scale factor, and η (de-
fined below) and the density ρ are functions of time (a dot indicates
differentiation with respect to time). The first term can be inter-
preted as Ricci focusing due to the matter inside the beam, and the
second term is due to the expansion of space during the light prop-
agation. The key assumption here is that while the density ρ within
the beam can differ from the overall density, the overall dynamics of
the universe is still described by the Friedmann–Lemaı̂tre equation.
The assumption that the light propagates far from all clumps means
that Weyl focusing (shear) can be neglected. In the case that the
densities inside the beam and outside the beam are the same, one of
course recovers the homogeneous case.

Since the angular-size distance is defined as D = l/θ , where θ

is the angle at the apex of the beam (at the observer, not at the ob-
served object), D follows the same differential equation as l. Making
use of this, one can derive a general equation for the angular-size
distance, valid for all (perturbed, in the sense described above)
Friedmann–Lemaı̂tre cosmological models and all reasonable (see
below) values of η. KHS described the inhomogeneity via the pa-
rameter 0 ≤ η ≤ 1, where η is ratio of the density inside the beam
to the global density or, alternatively, the fraction of matter which
is homogeneously distributed, as opposed to being clumped.2 This
leads to a second-order differential equation for the angular-size
distance (equation (33) in KHS) which can be efficiently integrated
numerically:

QD′′ +
(

2Q

1 + z
+ 1

2
Q′

)
D′ + 3

2
η �0(1 + z) D = 0, (2)

where

Q(z) = �0(1 + z)3 − (�0 + λ0 − 1)(1 + z)2 + λ0. (3)

In the locally inhomogeneous case as well the luminosity distance,
which is needed in this paper, is larger than the angular-size distance
by a factor of (1 + z)2.

This change, compared to the perfectly homogeneous case, is
essentially a negative gravitational-lensing effect. In a conventional

2 This is sometimes denoted by α. I, and some others, use η because locally
inhomogeneous cosmological models are often used in gravitational lensing
(which per se implies local inhomogeneities), where α is almost always used
to denote the deflection angle.

gravitational-lensing scenario, if the density at a given redshift be-
tween two light rays is higher than the overall density (the cor-
responding overdensity being ‘the lens’), then there will be more
convergence than in the case where the two densities are the same.
In the case of light propagating between clumps, as described above,
the situation is reversed, and the density between the light rays defin-
ing the distance-related angle is less than the overall density. This
means that there is (negative) Ricci focusing (and no Weyl focusing),
making objects appear fainter than they would be in the completely
homogeneous case. Of course, this is only a rough model, but can
be expected to be more realistic than the completely homogeneous
case and to determine not just the sign of the difference but also
give at least an estimate of its strength.

Obviously, one cannot have η < 0. However, it does not make
sense to have η > 1 either. While it is certainly possible that the
average density inside the beam could be greater than the global
density, such cases are either unrealistic or not useful. The limiting
case where the density in the beam is greater than the global density
by a constant factor at every redshift is unrealistic because this would
imply the existence of overdense regions with an extreme length-
to-width ratio which are aligned between us and the source, which
is incompatible with homogeneity and isotropy on large scales and
would also put us in a special position. The other limiting case
where a single compact object increases the density in the beam to
above the global density is certainly possible, but observationally
would show up as a gravitational-lens effect and should be analysed
as such (perhaps by adopting η ≈ 0 for the distance calculation and
explicitly calculating the amplification). Of course, cases between
these two extremes are possible, but it is clear that η must be between
0 and 1 if it is used as an additional parameter in the manner
described by KHS; lines of sight which, due to fluctuations, are
slightly denser than the overall density are certainly possible, but
are not usefully parametrized by η in the style of KHS. (But see
Lima, Busti & Santos 2014 for a toy model with an interesting
extension of the η concept.) Note that η does not have to be constant
as a function of redshift, and the code described in KHS supports
an arbitrary dependence of η on z. Also, it could be different for
different lines of sight. It was pointed out by Weinberg (1976)
that η must be 1 when averaged over all lines of sight (allowing
for the moment higher-than-global densities to be parametrized by
η > 1), which follows from flux conservation. However, in practice
lines of sight will probably avoid concentrations of matter, due to
selection effects or design: distant objects will be more difficult to
observed if there is luminous matter along the line of sight or if
there is absorbing matter along the line of sight.3 If these selection
effects do not exist, and if the sample is large enough, then the
‘Safety in Numbers’ effect (Holz & Linder 2005) allows one to
effectively assume η = 1, with inhomogeneity merely increasing

3 Matter along the line of sight can increase the apparent brightness and
thus make objects visible which otherwise would not be. This phenomenon,
known as ‘amplification bias’ in gravitational lensing, is relevant only if the
luminosity function is steep enough (since otherwise the magnification of
the area of sky observed, which reduces the number of objects per observed
area, will dominate, resulting in fewer objects in a flux-limited sample).
However, the whole point of the m–z relation for Type Ia supernovae is that
they are standard candles, or can be adjusted to behave as standard candles
with the help of other observations, which means that the differential (inte-
gral) luminosity function is essentially a delta (Heaviside) function, so the
amplification bias plays no role here. Also, since objects much fainter than
supernovae can be detected in the corresponding observations, no realistic
amplification would make an otherwise undetectable object visible.
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the dispersion, roughly linearly with redshift. However, Clarkson
et al. (2012) point out that most narrow-beam lines of sight are
significantly underdense, even for beams much thicker than those
considered in this paper. (On the other hand, they also point out
that this does not necessarily lead to a reduction in brightness if
one drops the assumption that inhomogeneities can be modelled
as perturbations on a uniformly expanding background, a point
also emphasized by Bolejko & Ferreira 2012; see also Bagheri &
Schwarz 2014.)

The situation discussed above corresponds to the situation where
the beam contains a density η times the global density at a given
redshift and outside the beam the density is equal to the global
density. In practice, this means that a fraction η of the mass in the
universe is smoothly distributed and a fraction 1 − η is contained
in clumps outside the beam. Of course, ‘smoothly’ depends on the
size of the beam; for example, small objects are part of the ‘smooth’
component, not only in the limiting case where the smooth com-
ponent consists of free elementary particles. The important point is
that their angular size is small compared to that of the beam. η is
thus also a function of angle: the larger the angle, the more repre-
sentative is the matter within the beam, so that η approaches 1 for
large enough angles. Since the beams of supernovae at cosmolog-
ical distances are extremely thin objects (the thinnest objects ever
studied by science), evidence for η < 1 should be most obvious in
the m–z relation for Type Ia supernovae.

A given value of η along a given line of sight does not imply that
this value does not change along the line of sight, although that is of
course a possibility, but rather that the influence on angle-dependent
distances can be described by an effective value of η which is some
appropriate average of a value which varies along the line of sight.
This means that it is possible for the density along the line of sight
to be larger than the global density at some points, but this is not
in contrast with the claim above that η > 1 is not useful as long as
the effective value ηeff ≤ 1. Another complication is that essentially
all lines of sight to supernovae will have a density higher than the
globally average cosmological density due to the overdensities as-
sociated with the Milky Way and with the supernova host galaxy
(and corresponding clusters).4 However, since the absolute magni-
tudes of supernovae are not known from first principles, but rather
calibrated from observations, this effect is, to a first approximation,
unobservable, since it is essentially a renormalization of the absolute
magnitude. Even if this extra matter associated with the galaxies at
the ends of the beam would increase the density inside the beam to
larger than the global density, it is not useful to think of this as η > 1,
since I want to compare the standard assumption (completely homo-
geneous Universe, at least as far as light propagation is concerned)
with that of a more realistic distribution. The point of comparison,
the m–z-relation for a homogeneous Universe, also contains extra
matter at each end of the beam, and hence extra convergence. As
far as I know, no-one has ever taken this into account and it is not
necessary if one is interested only in the differences. (This would
have to be taken into account, though, if the absolute magnitude
of objects at cosmological distances were known independently of
observation.)

Although the term ‘dark matter’ suggests something opaque, the
defining characteristic is lack of interaction with electromagnetic
radiation. Thus, not only does dark matter not glow, it is also trans-
parent. It is thus irrelevant whether dark-matter objects within the
beam significantly cover a source as seen by an observer. (Of course,

4 I thank Philip Bull for first pointing this out to me.

when comparing observed to calculated brightness, one must cor-
rect for extinction due to ‘conventional’ matter – it can also be dark
in the sense that it does not radiate, but it is not transparent.) Here, I
am using the term ‘dark matter’ to refer to the ‘missing matter’, i.e.
that responsible for the difference between the density due to bary-
onic matter (other non-baryonic but known particles (neutrinos) do
not increase this significantly) and the global density of the Uni-
verse, as measured on large scales. Of course, non-radiating bary-
onic matter does exist, but we know from constraints from big-bang
nucleosynthesis that this cannot be a significant fraction of the miss-
ing matter. This reflects current usage, e.g. the ‘DM’ in ‘	CDM’,
and is more convenient than ‘not yet identified non-baryonic
matter’.

Since we know that the Universe is not exactly homogeneous and
isotropic, η �= 1 is the most obvious departure from the simplest
cosmological model (the Einstein–de Sitter model with λ0 = 0,
�0 = 1, and η = 1, although the last item is often not stated
explicitly), but there is not much literature on this topic. (There are,
though, several recent papers investigating whether ‘dark energy’
could be something other than the traditional cosmological constant,
e.g. whether the equation of state w differs from −1, whether it
changes with time etc, even though there are no observations which
indicate this. Of course, that does not mean that one should not
look.)

If η is allowed to vary from one line of sight to another, one
could regard this as an additional contribution to the uncertainty
in the distance modulus, much the same as the uncertainty in the
absolute magnitude. Theoretically, fitting the observations for a
constant value of η would result in a worse fit for such cases if
this additional uncertainty is ignored or in a larger allowed region
of parameter space if it is included in the error budget. With some
assumptions, one could try to take this additional dispersion into
account and/or correct for it; see e.g. Amanullah, Mörtsell & Goobar
(2003), Gunnarsson et al. (2006), Jönsson et al. (2006), Jönsson,
Mörtsell & Sollerman (2009). In practice, with a large number of
objects and only a few variables, the difference in goodness of fit
is well within the expected range of values for the case in which
η is the same along all lines of sight. Alternatively, with current
data it is also a relatively small contribution to the error budget.
Thus, if observations suggest 0 < η < 1, it would be unclear if
this is evidence for the corresponding value of the global value of η

or whether this is a compromise between lines of sight with lower
and higher values. However, if observations indicate η = 0 or η =
1, then this would be evidence for the corresponding global value,
because these are the extreme values of η and cannot result from
averaging.

Of course, more complicated models are possible. In this paper,
I consider only models in which η is a constant function of redshift
and the same along all lines of sight5; also, in all cases but one, it
is independent of the other cosmological parameters. The variation
between these models, however, is certainly larger than the realistic
range of the possible influence of η on the m–z relation for Type Ia
supernovae.

3 BRI EF HI STORY

The effects of a locally inhomogeneous universe on quantities im-
portant for observational cosmology were first investigated in a

5 See Gunnarsson et al. (2006) for a discussion of a z-dependent η in the
context of the m–z relation for Type Ia supernovae.
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series of papers by Zeldovich (1964), Dashevskii & Zeldovich
(1965), and Dashevskii & Slysh (1966). Dyer & Roeder (1972)
discussed the special case of λ0 = 0 but with �0 as a free parameter
for η = 0 (where there is an analytic solution) and for general η

values (Dyer & Roeder 1973). As a result, the distance for η = 0 is
sometimes referred to as the Dyer–Roeder distance. KHS presented
a second-order differential equation and numerical implementation
valid for the general case (−∞ < λ0 < ∞, 0 ≤ �0 ≤ ∞, 0 ≤ η ≤ 1).
Kantowski and collaborators (Kantowski 1969, 1998, 2003;
Kantowski, Vaughan & Branch 1995; Kantowski, Kao & Thomas
2000; Kantowski & Thomas 2001) have stressed the importance of
η for the interpretation of the m–z relation for Type Ia supernovae
and have provided numerical implementations using elliptic inte-
grals for the special values of η of 0, 2

3 , and 1. Perlmutter et al.
(1999) considered the effect of η �= 1 on their results (see their
fig. 8) and concluded that, at least in the ‘interesting’ region of the
λ0–�0 parameter space, it had a negligible effect (see also Jönsson
et al. 2006). The reason for the current paper is that, with the larger
number of supernovae now available, this is no longer the case. Fur-
ther investigation has often been motivated by the m–z relation for
Type Ia supernovae (e.g. Goliath & Mörtsell 2000; Mörtsell, Goo-
bar & Bergström 2001). It has also been investigated, via com-
parison with explicit ray-tracing through mass distributions derived
from simulations or observations, whether η is a useful parametriza-
tion for local inhomogeneity (e.g. Bergström et al. 2000; Mörtsell
2002) (and the conclusion is that it is a useful approximation, at
least for cosmological models which are otherwise realistic).

There seem to be three schools with respect to the attitude taken
to the possible influence of inhomogeneities on cosmological pa-
rameters derived from the m–z relation for Type Ia supernovae.
One school ignores it completely, assuming a completely homoge-
neous Universe as far as the calculation of the luminosity distance
is concerned (e.g. Riess et al. 1998), or provides some limited jus-
tification for not considering it further (e.g. Betoule et al. 2014).
Another school emphasizes that the problem is not completely
understood, the amount of uncertainty is unknown, and even the
sign of some effects is unclear (e.g. Clarkson et al. 2012). A third
school uses some approximation to at least get an idea of the size
of possible effects (e.g. Mörtsell et al. 2001). (While Perlmutter
et al. 1999 did consider the possible influence of η, hence belong-
ing to the third school, at least at that time, with their data then
it was not a significant source of uncertainty in their main result.
One purpose of this paper is to show that this is no longer the
case.)

4 C A L C U L ATI O N S , R E S U LT S
AND DISCUSSION

I have used the publicly available ‘Union2.1’ sample of supernova
data (Suzuki et al. 2012) and calculated χ2 and the associated prob-
ability following Amanullah et al. (2010) on regularly-spaced grids
of various extents and resolutions in the λ0–�0–η parameter space.
This assumes, of course, that η is a free parameter on the same
footing as λ0 and �0. My goal is not to obtain the ‘best’ cosmo-
logical parameters, not even the ‘best’ ones from the supernova
data alone. Rather, it is to investigate the influence of η �= 1 on the
interpretation of the m–z relation for Type Ia supernovae. I have
thus intentionally made the supernova data as precise as possible,
by using only the statistical uncertainties (i.e. column 4 in the pub-
licly available data file) and fixing H0 at 70 km s−1 Mpc−1, which
implies M = −19.318 276 1161. Thus, all increase in the allowed

region of parameter space (at a given confidence level) is due only
to the influence of η.6

I have calculated χ2 and the corresponding probability on two
three-dimensional grids: a larger, lower-resolution grid

−5 < λ0 < 5 �λ0 = 0.02 (500 values)
0 < �0 < 10 ��0 = 0.02 (500 values)
0 < η < 1 �η = 0.01 (100 values)

and a smaller, higher-resolution grid

0 < λ0 < 1.5 �λ0 = 0.003 125 (480 values)
0 < �0 < 1.0 ��0 = 0.003 125 (320 values)
0 < η < 1.0 �η = 0.01 (100 values).

(This paper contains no plots based on the larger, lower-resolution
grid; the corresponding calculations were done to make sure that
there is no appreciable probability outside of the range of the
smaller, higher-resolution grid.) Since three-dimensional contours
cannot be fully represented in two dimensions, I present various
two- and one-dimensional visualizations in order to illustrate the
influence of η.

All contours in two (three) dimensions have been calculated as the
smallest-area closed curve (smallest-volume closed surface) which
encloses the corresponding fraction of the probability. I have used
the standard values 0.683, 0.954, and 0.997; these correspond to
1σ , 2σ , and 3σ in the Gaussian case. However, I have made no
assumption about Gaussianity, since I have calculated the contours
explicitly, rather than plotting them at the corresponding fraction of
the peak likelihood under the Gaussian assumption. For all plots, the
area outside of the plot has been assigned a probability of zero. Oth-
erwise, no priors other than those explicitly stated have been used.
In particular, no prior information on the values of the cosmological
parameters from other tests have been used; what I show, depends
on the supernova data only. Figs 1, 2, and 3 show projections of the
three-dimensional contours along one axis on to the plane spanned
by the other two axes for the smaller, higher-resolution grid. It can
be seen that the combination of λ0 and �0 is well constrained, as
are both individually, while η is hardly constrained at all. Note also
that λ0 and �0 are less constrained for lower values of η. (The
contours at 0.954 and 0.997 cannot be distinguished in these plots.)
The relatively sharp bend in the lower-right contours in Figs 1 and 2
is due to the fact that I have assigned a probability of 0 to models
which have no big bang (see the discussion of figs 1 and 2 in Helbig
2012 and references therein for an explanation).

Another way of visualizing these three-dimensional contours is
to make cuts through them for a fixed value of one of the param-
eters. Figs 4, 5, and 6 show cuts for η = 0.005, 0.455, 0.955. The
contours become smaller and move to lower values of λ0 and �0 as
η becomes larger. (Again, the contours at 0.954 and 0.997 cannot
be distinguished in these plots.) Fig. 6 is quite similar to standard
presentations of the supernova constraints (e.g. Suzuki et al. 2012),

6 Since the goal is not to obtain the best constraints on λ0 and �0, but rather to
investigate the influence of η on the constraints, I have retained the Union 2.1
sample with which I began this investigation, rather than updating it to use,
e.g., that used by Betoule et al. (2014). Those with better access to such data
will always have a better sample than that which is publicly available. Since
even Betoule et al. (2014) do not consider η at all, it is perhaps important
at the moment for a theorist to take a step back for a more general view in
order to contrast with continual updates using somewhat better samples. It
is important, though, that the Union 2.1 sample is significantly larger than
those used in the early works discussed in Section 1.
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Figure 1. Projection of three-dimensional probability distribution along the
η-axis.

but keep in mind that these contours are a cut through the three-
dimensional contours for a fixed value of η, not two-dimensional
contours. If η is substantially less than 1, then not only is the allowed
region much larger, but the ‘concordance model’ with λ0 ≈ 0.7 and
�0 ≈ 0.3 is ruled out. Qualitatively, this behaviour is easy to under-
stand: there is some degeneracy between η and λ0 + �0 since both
increase the amount of focusing in the beam, the former because
there is more matter in the beam and the latter because of the in-
crease in the global curvature, which is essentially λ0 + �0. When
there is essentially no matter in the beam, then the value of �0 is

Figure 2. Projection of three-dimensional probability distribution along the
�0-axis.

Figure 3. Projection of three-dimensional probability distribution along the
λ0-axis.

less important and hence not as well constrained. This means that
λ0 + �0 can be realized via a larger range of each parameter, making
the allowed region larger. The middle value of η is that of the global
maximum probability. (Since λ0 and �0 are better constrained, the
corresponding plots for fixed values of these parameters, not shown
here, are less interesting.)

The ‘standard procedure’ for reducing the number of parameters
shown in a plot is to marginalize over the less interesting or ‘nui-
sance’ parameters. This is shown in Figs 7, 8, and 9. Here, and in

Figure 4. Cut through the three-dimensional probability distribution per-
pendicular to the η-axis for η = 0.005.
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Figure 5. Cut through the three-dimensional probability distribution per-
pendicular to the η-axis for η = 0.455.

Figure 6. Cut through the three-dimensional probability distribution per-
pendicular to the η-axis for η = 0.955.

similar figures below, the grey-scale corresponds to the probability.7

These are qualitatively similar to the projections. Fig. 7 also contains
two straight lines corresponding to a flat universe with λ0 + �0 = 1

7 It has become fashionable to plot contours and have the regions between
the contours filled with a certain colour (or perhaps shade of grey). This
conveys no information in addition to the contours themselves. Of course,
the probability between two contours, or within the smallest contour, is not
everywhere the same, as is obvious from Fig. 7. I have chosen to display
this potentially important information in addition to the contour curves.

Figure 7. Two-dimensional probability distribution obtained by marginal-
izing over η.

Figure 8. Two-dimensional probability distribution obtained by marginal-
izing over �0.

(negative slope) and zero acceleration (q0 = �0
2 − λ0 = 0) (posi-

tive slope). Note that a flat universe is compatible with the data
but not required by them; in fact, the degeneracy in the constraints
is almost perpendicular to the flat-universe line. In this particular
plot, the degeneracy corresponds roughly to q0 ≈ −0.6; in many
of the other plots, the degeneracy in the λ0–�0 plane is closer to a
constant value of �0 − λ0 than to a constant value of q0 = �0

2 − λ0.
(q0 was important historically since the departure from the lin-
earity of the m–z relation at low redshift is proportional to q0;
nowadays quoting a value for q0 derived from the m–z relation for
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Figure 9. Two-dimensional probability distribution obtained by marginal-
izing over λ0.

higher-redshift objects is neither necessary nor sufficient nor, in
general, meaningful.)

Another approach is to maximize the ‘nuisance’ parameter, i.e.
for a given point in the plane of the plot, find the value of the
third parameter which maximizes the probability. This is shown in
Fig. 10. (For these data, such plots are very similar to those where
the third parameter has been marginalized over, so only this one
example is shown.)

Most discussion of the m–z relation for Type Ia supernovae has
concentrated not on contours of more than two dimensions, nor on
some reduction (projection, cut, marginalization, maximization) of

Figure 10. Two-dimensional probability distribution obtained by maximiz-
ing η.

Figure 11. Two-dimensional probability distribution for η = 0.

these higher-dimensional contours to two dimensions, but rather on
two-dimensional contours, i.e. with a δ-function prior on the nui-
sance parameters. Almost always, of course, the (often implicitly
assumed) prior is η = 1. For comparison, in Figs 11, 12, and 13 I
show constraints in the λ0–�0 plane for fixed values of η, namely
0, 0.455 (the value at the maximum of the three-dimensional prob-
ability distribution) and 1. The last should be compared with e.g.
fig. 11 in Kowalski et al. (2008), but keep in mind that, as mentioned
above, I have fixed H0 and use only the statistical uncertainties.
(See also figs 1a and 5a in Amanullah et al. 2003.) Thus, Fig. 13
has slightly smaller contours than similar plots elsewhere in the
literature. Again, this is intentional so that any deviations from this

Figure 12. Two-dimensional probability distribution for η = 0.455.
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Figure 13. Two-dimensional probability distribution for η = 1.

fiducial plot (larger and/or shifted contours) are due solely to the
influence of η.

Of course, little significance should be placed on variations in
the probability within the innermost contour, since the probability
that the point representing the true values of λ0 and �0 is only
about twice as likely to lie inside this contour than outside it. Nev-
ertheless, it is remarkable that the maximum of the probability in
Fig. 13 is at λ0 = 0.721 0938 and �0 = 0.277 3438, i.e. at the val-
ues of the concordance model (within the small uncertainties; these
are much smaller than even the 68.3 per cent contour in Fig. 13).8

Note that when fewer supernova data were available, the best-fitting
value was at much higher values of λ0 and �0; see e.g. fig. 1 in
Helbig (1999). (As mentioned above, the best-fitting value is often
not visible in modern versions of such plots, though of course it
can be easily found in the data used to make the plots.) If the best-
fitting value remains the same when significantly more supernova
data are available, then very probably the true value will have been
converged upon, even though the range of values allowed, even at
the 68.3 per cent level, would include values well outside what is
acceptable when other cosmological constraints are considered (i.e.
joint constraints from several cosmological tests). Normally, when
more data are available one expects the new best-fitting value to
be consistent with, but different from, the old best-fitting value, as
has been the case with the supernova data up until now. However,
looking towards the future, I don’t expect the best-fitting values for
λ0 and �0 to change significantly, but do expect the constraints from
the supernova data to improve, which appears somewhat puzzling.
A possible explanation for this is that the statistical errors in the
supernova data have been overestimated. Note, however, that the
best-fitting values for the supernova data correspond to the con-
cordance model only if one assumes η ≈ 1. For η = 0.455, the
concordance model lies very near the 95.4 per cent contour, and for

8 For completeness, I quote the exact position of the maximum as calculated
on the grid; of course, this does not imply that the maximum is known to
greater precision than the resolution of the grid.

Figure 14. Two-dimensional probability distribution for k = 0.

η = 0 it is even outside the 99.7 per cent contour. The plots above
illustrate that it is not possible to appreciably constrain η from the
supernova data alone. However, the fact that the supernova data
suggest the concordance model only for high values of η could be
seen as evidence that η ≈ 1.

A similar result is shown in Fig. 14, where a flat universe
(λ0 + �0 = 1) has been assumed. As in the other plots, λ0 is
reasonably well constrained, while η is quite weakly constrained.
(In this case, since �0 = 1 − λ0, �0 is just as well constrained; in
general, �0 is less well constrained than λ0.) However, note that the
best-fitting value is for η = 1 and λ0 ≈ 0.72; in other words, again
the best fit is for the concordance model with η = 1. (This plot also
shows the importance of plotting the probability and not just a few
contours.)

To illustrate the change in the effect of η now that more supernova
data are available, Fig. 15 shows the constraints where η is a function
of �0, namely η = 0 for �0 ≤ 0.25 and 1 − 0.25 for �0 ≥ 0.25.
This should be compared with fig. 8 in Perlmutter et al. (1999).
In that figure, the red contours were calculated in the same way
as those in Fig. 15. In the same figure, the green contours were
calculated in the same way as in Fig. 11. The comparison illustrates
vividly the fact that the effect of η can no longer be neglected. While
Perlmutter et al. (1999) concluded that, at least in the interesting
part of parameter space, the constraints on λ0 and �0 from the
supernova data did not depend heavily on the assumed value of η,
this is definitely no longer the case.

While the supernova data cannot usefully constrain η, as has been
shown above, the fact that they result in the concordance model if
one assumes η ≈ 1 suggests that η ≈ 1. Since there are many
cosmological tests completely independent of the supernova data,
and also independent of the value of η, which suggest the concor-
dance model (this is of course why it is called the concordance
model), one can assume the concordance values for λ0 and �0 and
calculate the probability of η from the supernova data with these ad-
ditional constraints; this is shown in Fig. 16. The best-fitting value is
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Figure 15. Two-dimensional probability distribution with η = f(�0).

Figure 16. One-dimensional probability distribution for the concordance
model.

η = 0.7485 while the formal statistical limits are

0.60 < η < 0.90 (68.3 per cent)

0.46 < η < 1.00 (95.4 per cent)

0.28 < η < 1.00 (99.7 per cent).

(This can be contrasted with Fig. 17 which shows the value of
η preferred by the supernova data alone; λ0 and �0 have been
marginalized over.) While η = 1 is not ruled out at high confi-
dence, lower values of η are ruled out at a high level of statistical

Figure 17. One-dimensional probability distribution after marginalizing
over λ0 and �0.

significance.9 This suggests that η is relatively large, even though
the beams of supernovae at cosmological distances are extremely
thin and this cosmological test should suggest a value of η lower
than that of any other cosmological test known today. One would
not expect to obtain η = 1 since some matter is associated with
galaxies which are outside the beam; such mass contributes about
0.1 to �0. Fig. 16 thus suggests that dark matter is distributed much
more smoothly than galaxies. While the beam of a supernova at
cosmological distance is almost a fair sample of the universe, it
is an even fairer sample of dark matter. Dark matter is thus not
significantly clumped at the scale of a supernova beam.

5 SU M M A RY, C O N C L U S I O N S , A N D O U T L O O K

The following conclusions were more or less expected.

(i) Constraints on λ0 and �0 are weaker if η is not constrained.
(ii) The concordance model is reasonably probable.
(iii) There is a degeneracy between η and the amount of spatial

curvature (λ0 + �0).
(iv) λ0 is constrained best, then �0, then η.

The following conclusion was neither expected nor surprising.

(i) Even when η is allowed to be a free parameter, the m–z relation
for Type Ia supernovae is not compatible with q0 = �0

2 − λ0 ≥ 0,

9 This can be contrasted with the location of the maximum of the three-
dimensional probability distribution, where the best-fitting values are λ0 =
0.860 9375, �0 = 0.501 5625, and η = 0.455. While this lies outside the
allowed region of parameter space as determined from cosmological tests
other than the m–z relation for Type Ia supernovae, the allowed region is
quite large and the concordance model with η = 1 is within the 68.3 per cent
contour. Even though the constraints on λ0 and �0 are of course weaker if η

is allowed to vary, a significant portion of the three-dimensional parameter
space can be ruled out, and portions of the λ0–�0 plane are also ruled out,
though no additional region is ruled out which is not already ruled out by
other cosmological tests.
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and thus implies that the universe is currently accelerating.10 (Even
though the m–z relation for Type Ia supernovae is one of the
key pieces of evidence supporting the cosmological ‘concordance
model’ with λ0 ≈ 0.7 and �0 ≈ 0.3, it is not an essential piece in
the sense that combinations of other tests still result in the same
concordance model. Nevertheless, it is still an important piece of
evidence in favour of the concordance model since it is the only
single test which, without additional assumptions, implies q0 < 0,
i.e. a universe which is currently accelerating.)

The following conclusions are somewhat surprising.

(i) The overall (in the three-dimensional parameter space) best-
fitting values for λ0 and �0 are ruled out by other cosmological
tests. Probably, this best-fitting point is the result of overfitting:
its probability is not significantly higher than elsewhere and the
allowed region is quite large.

(ii) If one assumes k = 0, then the best fit is very close to the
concordance model and has η = 1.

(iii) If one assumes η = 1, then the best fit is very close to the
concordance model.

(iv) If one assumes the concordance model, then one can prob-
ably rule out low values of η, even though the relevant scale is
extremely small, which implies that dark matter is much less clus-
tered than galaxies are.

(v) We cannot rule out η = 1, and there is some tentative evidence
for it.

To summarize, allowing η, which is otherwise only weakly con-
strained, as a free parameter significantly alters both the best fit in
the λ0–�0 plane and the allowed region of this plane. The concor-
dance model is, however, still allowed. There are hints that η ≈ 1,
though these are not statistically significant when examined in the
three- or two-dimensional parameter space. On the other hand, if
one assumes the concordance values for λ0 and �0, low values of
η can probably be ruled out, which is not obvious considering the
very small scales involved; this implies that dark matter is very
homogeneously distributed.

One might have thought that the increase in the number of data
points since Perlmutter et al. (1999) would allow some sort of useful
constraint to be placed on η from the supernova data without further
assumptions. This is not the case. Even worse, if η is allowed to vary,
then the conclusions about the cosmological model derived from the
m–z relation for Type Ia supernovae are not as robust. However, as
discussed in Section 1, current constraints from combinations of
cosmological tests without using the supernova data determine the
‘concordance model’ with λ0 ≈ 0.7 and �0 ≈ 0.3 to rather high pre-
cision. It is thus perhaps more interesting to assume the concordance
model and use the supernova data to constrain η, especially since η

is otherwise difficult to measure. Indeed, as shown in Fig. 16, cur-
rent data already provide interesting constraints. It is also extremely
interesting that the supernova data have the best-fitting values for
λ0 und �0 corresponding to those of the concordance model if and
only if η ≈ 1 is assumed. (Note that while the best-fitting value of η

assuming the concordance model is ≈0.75, the best-fitting values of
λ0 and �0 assuming η ≈ 0.75 are different from those of the concor-
dance model.) If this is not a statistical fluke, it could indicate that
η ≈ 1, which is somewhat surprising since the value of η as ‘felt’

10 Mörtsell & Clarkson (2009) have shown that this conclusion also holds
for a much wider class of models than the Friedmann–Lemaı̂tre models
considered here.

by the supernova might be expected to be somewhat less, because
the corresponding beams are extremely thin. The fact that even the
supernova data ‘want’ η ≈ 1 could indicate that dark matter is dis-
tributed extremely homogeneously. See Holz (1998) for a different
expression of the same idea. Alternatively, this could be evidence
that the ‘Safety in Numbers’ scenario mentioned in Section 2 is in
fact a valid approximation.

In contrast to the first useful determinations of λ0 and �0 from
the m–z relation for Type Ia supernovae (e.g. Garnavich et al. 1998;
Riess et al. 1998; Perlmutter et al. 1999), where the effect of η �=
1 had a negligible effect on the constraints derived, at least in the
‘interesting’ region of the λ0–�0 parameter space, with the larger
number of supernovae now available, this is no longer the case.
At the same time, current supernova data alone cannot usefully
constrain η (though this might be possible if other cosmological data
are taken into consideration, as discussed in the previous paragraph).
This should be taken into account in attempts to determine further
parameters, such as w, the equation-of-state parameter for dark
energy. When more supernova data become available, especially at
higher redshift, it might be possible to usefully constrain η and/or
discriminate between the effect of η and other parameters such
as w. (The difference in apparent magnitude for different values
of η increases with increasing redshift, while the difference due to
different values of λ0 and �0 is stronger (than that due to variation in
η) at lower redshift and, for some sets of models, decreases at higher
redshift.) While allowing η to be a free parameter, but constant as a
function of redshift and for different lines of sight, is certainly not
the last word with respect to the influence of locally inhomogeneous
cosmological models on the m–z relation for Type Ia supernovae, it
does demonstrate that care is needed when interpreting conclusions
derived from assuming η = 1. At least, the uncertainty in λ0 and
�0 must be correspondingly increased. While it might be possible
to decrease this with a more realistic model, it is no longer possible
to assume η = 1 and have confidence in the parameters and their
uncertainties resulting from an analysis of the m–z relation for
Type Ia supernovae.
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Goliath M., Mörtsell E., 2000, Phys. Lett. B, 486, 249
Goobar A., Leibundgut B., 2001, Annu. Rev. Nucl. Part. Sci., 61, 251
Goobar A., Perlmutter S., 1995, ApJ, 450, 14
Gunnarsson C., Dahlén T., Goobar A., Jönsson J., Mörtsell E., 2006, ApJ,
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8.3 Follow-up

Dhawan et al. (2018) carried out a similar study, but adding the equation of
state for dark energy, w, and a parameter describing its possible evolution,
but restricted to spatially flat models, and taking into consideration constraints
from the CMB and BAO1. They found a degeneracy between η and w, such
that a higher value of η implies a lower (i.e. more negative) value of w. If dark
energy is taken to be the cosmological constant, i.e. w = −1, then their result
is η = 0.81 ± 0.33 at the 68% confidence level. That can be compared to my
result of η = 0.75 ± 15 for λ0 and Ω0 fixed at the values of the concordance
model (λ0 = 0.7 and Ω0 = 0.3). Of course, fixing those parameters causes the
uncertainty to be smaller.

Important is the fact that, as in many other works (Yu et al., 2011; Busti
and Santos, 2011; Yang et al., 2013; Bréton and Montiel, 2013; Li et al., 2015;
Dhawan et al., 2018), it seems to be a robust result that η has a relatively
high value, and also that that conclusion weakens only slighly if w is allowed
to differ from −1 or even change with time. Assuming η = 1 Dhawan et al.
(2018) find w = −0.961 ± 0.055. In other words, if my suspicions are correct
that w = −1 exactly (i.e. dark energy is the cosmological constant2) and that,
effectively, η ≈ 1, as in the references above, then it is interesting that assuming
one implies the other.

I presented this work in seminar talks at the University of Oslo in May 2014,
the University of Uppsala in May 2014, and the University of Sussex in August
2015, as well as in a talk at the the 28th Texas Symposium on Relativistic
Astrophysics in Geneva in December 2015 (Helbig, 2015c), and in a talk at the
cosmology session at the Rencontres de Moriond in March 2016 (Helbig, 2016a).

1Baryon acoustic oscillations, along with the CMB and the m–z relation for Type Ia
supernovae, are now one of the most important cosmological tests, providing a standard ruler
at intermediate redshift, complementing that of the CMB at high redshift. In both cases,
relatively large angles are involved, so one can assume η ≈ 1.

2Despite many attempts, no-one has ever found a value of w inconsistent with −1.
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Chapter 9

The magnitude–redshift
relation for Type Ia
supernovae: safety in
numbers or safely without
worry?

9.1 Context

Having established that η ≈ 1 (Helbig, 2015a), I wanted to understand what
that means: does the Universe appear homogeneous only when averaged over all
lines of sight or over the celestial sphere—the two are not necessarily equivalent
(Kaiser and Peacock, 2016)— or is each line of sight a fair sample of the Universe,
in which case one might expect to observe η ≈ 1 along all lines of sight? In
the latter case, is the Universe really approximately homogeneous, or is it just
the case that the distance calculated from redshift is approximately the same
as that in a homogeneous universe?
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ABSTRACT
The m–z relation for Type Ia supernovae is compatible with the cosmological concordance
model if one assumes that the Universe is homogeneous, at least with respect to light prop-
agation. This could be due to the density along each line of sight being equal to the overall
cosmological density, or to ‘safety in numbers’, with variation in the density along all lines
of sight averaging out if the sample is large enough. Statistical correlations (or lack thereof)
between redshifts, residuals (differences between the observed distance moduli and those cal-
culated from the best-fitting cosmological model), and observational uncertainties suggest that
the former scenario is the better description, so that one can use the traditional formula for the
luminosity distance safely without worry.

Key words: supernovae: general – cosmological parameters – cosmology: observations –
cosmology: theory – dark energy – dark matter.

1 IN T RO D U C T I O N

I recently investigated the dependence of constraints on the cosmo-
logical parameters λ0 and �0 derived from the m–z relation for Type
Ia supernovae on the degree of local homogeneity of the Universe
(Helbig 2015). When deriving such constraints, it is often assumed
that the Universe is completely homogeneous, at least with regard
to light propagation. However, the constraints on the cosmological
parameters derived depend on this assumption. If the degree of local
inhomgeneity is parametrized by the parameter η giving the frac-
tion of homogeneously distributed matter on the scale of the beam
size such that the density at a given redshift is equal to the average
cosmological density ρ = 3H 2�

8πG
outside the beam and ηρ inside the

beam (see Kayser, Helbig & Schramm 1997, for definitions and dis-
cussion), and assuming that η is independent of redshift and the same
for all lines of sight, then only if η ≈ 1 do the constraints on the cos-
mological parameters λ0 and �0 derived from the m–z relation for
Type Ia supernova correspond to the ‘concordance model’ (e.g. Os-
triker & Steinhardt 1995; Komatsu et al. 2011; Planck Collaboration
2014).

Two important conclusions of Helbig (2015) are thus that the
values of λ0 and �0 derived from the m–z relation for Type Ia su-
pernovae depend on assumptions made about η, substantially so for
current data, and that only for η ≈ 1 are these values consistent
with other measurements of the cosmological parameters. Perlmut-
ter et al. (1999) considered the effect of η �= 1 on their results (see
their fig. 8 and the discussion in their section 4.3) and concluded

�E-mail: helbig@astro.multivax.de

that, at least in the ‘interesting’ region of the λ0–�0 parameter space
(i.e. �0 < 1; even at that time there was substantial evidence against
�0 > 1), it had a negligible effect. Not only is this effect no longer
negligible with newer data (both because there are more data points
altogether and because there are more data points at higher red-
shifts), but, especially since we now have good estimates of λ0 and
�0 from other tests, it allows one to use the supernova data to say
something about η. With a strong indication from the supernova
data that η ≈ 1, it is important to consider the question whether this
is true only when several lines of sight are averaged or is true for a
typical individual line of sight. Perlmutter et al. (1999) investigated
the influence of η on the values obtained for λ0 and �0 but could
draw no conclusions about its value from the supernova data alone.
Even though the ‘concordance model’ had already been postulated
at the time (though of course there was much less evidence in favour
of it than is the case today), assuming the corresponding values for
λ0 and �0 could not allow any statement to be made about η since
there was significant overlap in the allowed regions of parameter
space for the various η scenarios. (Also, in contrast to the case with
newer data, the best-fitting values of λ0 and �0 were far from the
concordance values, though the concordance values were allowed
even at 1σ .) This is consistent with their claim, based on simula-
tions, that the conclusions drawn from their data should not depend
heavily on η. Their robust conclusion that the m–z relation for Type
Ia supernovae implies that λ0 > 0, and the somewhat stronger claim
that q0 < 0 (i.e. the Universe is currently accelerating), regardless of
assumptions made about η, are of course the most interesting results
of Perlmutter et al. (1999) (and similar studies by the High-z Super-
nova Search Team and later papers by both groups). Interestingly,
both of these are still robust with current data.

C© 2015 The Author
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2 TWO S C E NA R I O S

There are two ways in which η ≈ 1 can be explained. One is
that η ≈ 1 holds for each individual line of sight. (This does not
necessarily imply that η is actually constant along the beam, but
only that the distance modulus calculated from the cosmological
parameters λ0, �0, and H0 and from the redshift z is the same
as that calculated assuming η ≈ 1. In other words, there could be
density variations along the beam (apart from the decrease in density
with decreasing redshift due to the expansion of the Universe) as
long as they appropriately average out.) The other is that η < 1 for
some lines of sight and η > 1 for others, such that η ≈ 1 when
averaged over all lines of sight, though of course density variations
along the beam as in the other case could also be present.1 This
has been dubbed the ‘safety in numbers’ effect by Holz & Linder
(2005).

In the first case, the residuals (the differences between the ob-
served distance moduli and those calculated from the best-fitting
cosmological parameters) should not depend on redshift per se,
while in the second case they should increase with redshift: all else
being equal, the lower η, the larger the distance modulus, and the
difference between this and that calculated using the traditional η =
1 assumption is a monotonically increasing function of redshift; see
e.g. fig. 1 in Kayser et al. (1997).2 In the first case, the residuals are
due only to uncertainties in the observed distance moduli, while in
the second case they are due also to variations in the actual distance
moduli as a result of different average densities along the line of
sight. Of course, in the first case there could be a dependence of
the residuals on redshift if the observational uncertainties depend
on redshift, and in the second case the residuals are due both to
variations in the actual distance moduli and to observational un-
certainties in them. One could call the first case ‘safely without
worry’, meaning that one can safely use the traditional formula for
the luminosity distance (corresponding to η = 1) when calculating
the distance modulus, without worry.

3 C A L C U L ATI O N S , R E S U LT S , A N D
DISCUSSION

For purposes of comparison and consistency, I work with the same
data as in Helbig (2015), namely the publicly available ‘Union2.1’
sample of supernova data (Suzuki et al. 2012). Fig. 1 shows the
residuals � (points) with respect to the best-fitting model assuming
η = 1 in Helbig (2015) (λ0 = 0.721 0938 and �0 = 0.277 3438) and
the uncertainties σ in the distance moduli (lines). These are shown
separately (both as points) in Figs 2 and 3. There appear to be a
positive correlation between the uncertainties and redshifts and a

1 The second case requires a more general definition of η than that used in
Kayser et al. (1997); see Lima, Busti & Santos (2014) and Helbig (2015)
for discussion. Strictly speaking, as pointed out by Weinberg (1976), it is
the magnification μ which averages to 1 over all lines of sight. Since η ∼ κ ,
where κ is the convergence, and μ ∼ (1 − κ)−1, the relation is linear only
in the limit of vanishing deviations, though approximately linear for the
small deviations considered here. The actual situation is quite complicated.
For example, the average angular-size distance 〈D〉, and hence the average
luminosity distance 〈DL〉, is biased even in the case of 〈μ〉 = 1. See Kaiser
& Peacock (2015) for discussion of this and many other details in the still
ongoing debate on this topic. I use the term ‘average’ here loosely; the
important point is that the average of an observed quantity is the same as in
the η = 1 case, not that η itself averages to 1.
2 There is of course a similar effect with opposite sign for η > 1, as discussed
in the previous footnote.

Figure 1. Residuals (differences between the observed distance moduli
and those calculated from the best-fitting cosmological model) (points) and
observational uncertainties (lines).

Figure 2. Residuals.

higher number of outliers at intermediate redshifts (though the fact
that there are fewer at high redshifts might be due to the smaller
number of objects there). If the first case discussed above holds,
then (the absolute value of) the quotient Q = �/σ of the residuals
and the uncertainties should show no trend with redshift, while if
the second case holds there should be a positive correlation. Fig. 4
shows this quotient and, indeed, there appears to be no trend with
redshift. Also, the width of the distribution seems to depend only on
the number of points in the corresponding redshift range, i.e. there
appear to be no outliers as such, or at least fewer.
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Figure 3. Observational uncertainties.

Figure 4. Quotients of residuals and observational uncertainties.

Figure 5. Absolute values of residuals.

In order to quantify the dependence of the magnitude of the
uncertainties on redshift, I have calculated various statistical
measures, shown in Table 1, to investigate the existence of a corre-
lation between the redshifts and the absolute values of the residuals
|�| (plotted in Fig. 5), the observational uncertainties σ (Fig. 3),
and the absolute value of the quotient of the residuals and the un-
certainties, |Q| (plotted in Fig. 6), as well as the corresponding
statistical significance. Note that Fig. 5, like Fig. 3, appears to show
a positive correlation between the absolute values of the residuals
and redshifts and a higher number of outliers at intermediate red-
shifts. Also included in Table 1 are the corresponding quantities
concerning the correlation between |�| and σ .

All three statistical tests agree about the sign of the correlation
and whether or not it is significant. (The values of the correlations
and the corresponding significance are not directly comparable.)
Both the absolute values of the residuals, |�|, and the observa-
tional uncertainties, σ , are positively correlated with redshift, but
their quotient is not. This suggests that the first scenario described
above, ‘safely without worry’, is the appropriate one, not the second
scenario, ‘safety in numbers’. If this is the case, then one would ex-
pect |�| and σ to be correlated, and indeed they are. (Note that this
last test is not sufficient to rule out the ‘safety in numbers’ scenario,
since even if the scatter in the actual distance moduli increased with

Table 1. Statistical quantities measuring the correlation between the redshifts z and the absolute values of
the residuals |�|, the observational uncertainties σ , and the quotient |Q| of these, as well as between |�| and
σ : r is Pearson’s product-moment correlation coefficient, rs is Spearman’s rank-order correlation coefficient,
and τ is Kendall’s non-parametric rank-order correlation coefficient. The corresponding p values give the
probability of getting a value as large as observed or larger in the case of the null hypothesis of no correlation.
All values have been rounded to two significant figures.

data set r p(r) rs p(rs) τ p(τ )

z, |�| 0.23 1.3 × 10−8 0.21 1.8 × 10−7 0.14 7.8 × 10−7

z, σ 0.41 1.5 × 10−25 0.44 4.5 × 10−29 0.28 2.6 × 10−23

z, |Q| 3.6 × 10−2 0.39 5.1 × 10−2 0.22 3.3 × 10−2 0.24
|�|, σ 0.62 0.00 0.42 1.3 × 10−25 0.29 1.7 × 10−25
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Figure 6. Quotients of absolute values of residuals and observational un-
certainties.

redshift, there could still be a correlation between |�| and σ in
addition to the one between |�| and z.)

Of course, this analysis takes the Union2.1 data set at face value,
and relies on the assumption that the observational uncertainties
have been correctly estimated. Also, η �= 1 describes just a dif-
ferent amount of Ricci focusing due to more or less matter within
the beam than in the standard case, as opposed to more general
gravitational lensing. Note that Suzuki et al. (2012) explicitly cor-
rect for the amplification of supernovae known to be gravitationally
lensed by galaxy clusters (see their section 2.1); in other words, the
magnitudes used for the cosmology analysis are those which would
have been observed in the absence of the corresponding galaxy
clusters. To be sure, Suzuki et al. (2012), following the procedure
described in section 7.3.5 of Amanullah et al. (2010), include as part
of the error estimate 0.093z to take the statistical uncertainty due
to gravitational lensing into account. If this were a significant part
of the uncertainty, then it could explain the correlation between the
uncertainties and redshifts, and thus favour the ‘safety in numbers’
scenario. This contribution to the error budget probably explains the
slope of the lower envelope in Fig. 3. However, it is clear from Figs 3
and 4 that the main cause of the correlation is the absence of both
large residuals and large uncertainties at low redshifts. The large
residuals – much larger than 0.093z – also have large uncertainties,
and occur mainly at intermediate redshifts. Finally, as described in
section 7.2 of Amanullah et al. (2010) and section 4.4 of Suzuki
et al. (2012), the Union2.1 data set was constructed by rejecting 3 σ

outliers, which would remove any strongly lensed supernovae from
the sample. Both this use of median statistics and the 0.093z contri-
bution contribute to the correlation at some level but, as explained
above, cannot explain all, or even most, of it.

Note that Yu et al. (2011), using observational data other than the
m–z relation for Type Ia supernovae, and assuming a flat Universe,
arrive at essentially the same conclusion as Helbig (2015): η ≈ 1
is favoured and low values of η can be ruled out.3 Some of the

3 Yu et al. (2011) usually refer to (Ruth) Daly et al. (2008) as ‘Ruth et al.’.

assumptions in Yu et al. (2011) were questioned by Busti & Santos
(2011), but even when these are corrected for, η ≈ 1 is still favoured.
As discussed in Helbig (2015), one expects to measure a larger
value of η when larger angular scales, such as those investigated
in Yu et al. (2011), are considered, so the result of Helbig (2015)
remains interesting because of the small angular scales of supernova
beams.

The Planck Collaboration (2015) measured the CMB lensing-
deflection power spectrum at 40 σ , showing it to agree with the
smooth �CDM amplitude (i.e. the η = 1 case) to within 2.5 per cent.
Since all forms of gravitating clumps contribute to this, such a mea-
surement of the power as a function of scale is fairly definitive about
the smoothness of the energy-density distribution. This should be
contrasted with the situation a few decades ago, when it was widely
believed that there was no dark matter other than that required for
flat rotation curves in spiral galaxies and for bound galaxy clusters;
η ≈ 0 was thought to be the best approximation even for objects as
large as large galaxies (e.g. Gott et al. 1974; Roeder 1975). To be
sure, most of the analysis done by the Planck Collaboration (2015)
deals with L ≤ 400, although L < 2048 is also investigated, where
L is the multipole. L = 400 corresponds to an angular scale of
somewhat less than a degree and L = 2048 to about 10 arcmin.
This means that the corresponding physical size in the concordance
model is about 5 Mpc at z = 1 (and about 40 kpc at the redshift of
the CMB). Thus, the m–z relation for Type Ia supernovae probes
much smaller scales, and indicates that even at these scales η ≈ 1
is appropriate, i.e. that the Universe is homogeneous at even these
very small scales.

4 C O N C L U S I O N S

There is a statistically significant correlation between the abso-
lute value of the residuals, i.e. the difference between the observed
distance moduli and those calculated from the best-fitting cosmo-
logical model, and the observational uncertainties in the Union2.1
sample of Type Ia supernova observations. Each of these quanti-
ties is also correlated with redshift but their quotients are not. This
suggests that each individual line of sight to these supernovae is a
fair sample of the Universe in the sense that the (average) density
is approximately the same as the overall density; in other words, it
is not necessary to average over several lines of sight in order to
recover the overall density. Since most of the matter in the Universe
is dark matter, it must be distributed smoothly enough so that most
lines of sight contain the same density as the overall average den-
sity. When the resolution of cosmological numerical simulations
becomes high enough to resolve the corresponding scale, this dis-
tribution must result. Rather than putting it in ‘by hand’, it would be
more interesting if it emerged from other assumptions or theoretical
considerations.
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9.3 Follow-up

Of course, the concept of describing the small-scale inhomogeneity of the Uni-
verse by a single parameter, η, is an approximation. In principle, it can vary
depending on line of sight and/or with redshift.1 (One could of course allow
for those effects in a more complex model, but one would need more data to
usefully constrain all parameters.) Nevertheless, it seems to be a robust result
that η ≈ 1 (Yu et al., 2011; Busti and Santos, 2011; Yang et al., 2013; Bréton
and Montiel, 2013; Li et al., 2015; Helbig, 2015a; Dhawan et al., 2018); the
question is what that means. It could mean that the Universe is approximately
homogeneous, which is presumably a possibility as long as we don’t know what
dark matter is, much less how it is distributed on the small scales relevant for
the m–z relation for Type Ia supernovae, or it could mean that, on average,
η ≈ 1 when several lines of sight are considered (Weinberg, 1976).

It occurred to me, on my way back to a hotel in Stockholm after having given
a talk in Uppsala about the work described in Helbig (2015a), that there is a
way to test that: If the second mechanism were responsible, one would expect
to see a dispersion, increasing with redshift, in the brightness of supernova
at a given redshift, while that would not be the case if the first mechanism
were responsible. One does indeed observe such an increasing dispersion with
redshift. On the other hand, the observational uncertainties also increase with
redshift. Interestingly, the quotient of the two (i.e. of the residuals compared
to the best-fit model and the observational uncertainties) does not vary with
redshift, which suggests that the first mechanism is responsible.

What does that mean? It could mean that the Universe actually is approxi-
mately homogeneous. On the other hand, it could also mean that the Universe
is far from homogeneous, but nevertheless the angular-size distance (and the re-
lated luminosity distance) calculated as a function of redshift is approximately
the same as in the homogeneous, η = 1, case. I suspect that the latter is the
case. Both observations and numerical simulations suggest that matter in the
Universe is distributed in a network of voids, filaments, sheets, and galaxy clus-
ters. In other words, the assumptions on which the ZKDR distance is based
are not valid in our Universe. Nevertheless, it could appear that η ≈ 1: at
low redshift, η makes little difference; at high redshift, a typical photon will
have traversed several voids, filaments, sheets, and perhaps galaxy clusters, so
that it has in fact traversed a fair sample of the Universe, resulting in the same
focussing effect as if the Universe were indeed approximately homogeneous on
small scales (Dyer and Roeder, 1976; Lima et al., 2014).

Thus, despite all the work which has gone into the ZKDR distance, Swiss-
cheese models, etc., it appears that, in most cases, one can simply use the
standard, η = 1 distance; Peel et al. (2014) arrived at a similar conclusion via
rather different arguments.

I presented this work together with that described in the previous chapter in
a seminar talk at the University of Sussex in August 2015, in a talk at the 28th
Texas Symposium on Relativistic Astrophysics in Geneva in December 2015
(Helbig, 2015c), and in a talk at at the cosmology session at the Rencontres de
Moriond in March 2016 (Helbig, 2016a). Despite the fact that I was extremely
ill the entire week, I somehow managed to give my talk in the second session
on Monday morning at the Moriond conference. A few days later, Cliff Burgess
told me that he thought that my talk was the best one of the entire conference.

1One would expect η to increase with redshift for two reasons: less structure at high redshift,
and, for a given angle at the observer, a larger volume sampled.



132 CHAPTER 9. THE MAGNITUDE–REDSHIFT RELATION. II



Part VI

Summary, conclusions, &
supplementary material

133





Chapter 10

Summary and conclusions

As can be seen from Chap. 2, there is an extensive literature on the ZKDR
distance. While there has been some debate from time to time, e.g. over the
appropriateness of approximations or concerning related topics such as the dif-
ference between averaging over the sky or over lines of sight, by and large there
is a consensus that the ZKDR distance is the appropriate distance measure to
use in a universe with the corresponding mass distribution, at least since Fleury
(2014) demonstrated with completely analytical arguments the equivalence of
the ZKDR distance and that calculated from a certain class of Swiss-cheese mo-
dels (which are exact solutions of the Einstein equations) at a well controlled
level of approximation. Perhaps somewhat surprising historically is the fact that
most cosmologists used the standard distances without even considering alter-
natives, despite the fact that important papers on this topic were published
by well known people such as Zel’dovich (1964a,b) and Weinberg (1976). (One
reason was perhaps the lack of efficient numerical implementation and of fast
computers, which was also a reason why cosmogical models with special values
of λ0 and Ω0 (and hence analytic distance formulae), such as the Einstein–
de Sitter model, were used for the calculation of the standard distance.) While
that didn’t matter when observations were limited to low redshift, it can matter
when computing the distance to higher-redshift sources. The first high-profile
work in observational cosmology to take the ZKDR distance into account was
that of the Supernova Cosmology Project (Perlmutter et al., 1999), though most
subsequent analyses used the standard distance; those that didn’t usually re-
analysed existing data, rather than taking the ZKDR distance into account in
the analysis of new observations.

My own work in this field, prompted by work in gravitational lensing (where
it is obvious that small-scale inhomogeneities, i.e. at least the gravitational
lenses themselves, exist), started with developing an efficient numerical imple-
mentation (Helbig, 1996; Kayser, Helbig and Schramm, 1997, Chaps. 3 & 4) for
the general form of the second-order differential equation for the ZKDR distance,
i.e. for arbitrary values of λ0, Ω0, and η. I later applied that to extragalactic
astronomy (Helbig and Kayser, 1996b, Chap. 5), to the calculation of the Hub-
ble constant from gravitational-lens time delays (Helbig, 1997, Chap. 6), to
the question of image separation in gravitational-lens systems (Helbig, 1998a,b,
Chap. 7), and to the determination of cosmological parameters from the m–z
relation for Type Ia supernovae (Helbig, 2015a,b, Chaps. 8 & 9). In particular,
the last arrives at the conclusion, also found by others, that our Universe be-
haves as if η ≈ 1. Although the nature of dark matter is unclear, it is probably
not the case that (dark) matter is distributed such that η ≈ 1 (and certainly not
the case for luminous matter). Rather, the ZKDR model, with one component
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smoothly distributed and the other clumpily with light propagating far from all
clumps, probably does not describe our Universe (though there is no debate that
the ZKDR distance is the correct distance for the ZKDR mass distribution). At
low redshift, η doesn’t much matter, so the ZKDR distance is essentially the
same as the standard distance. At higher redshift, light will have traversed
many voids as well as sheets and filaments in the large-scale structure where the
density is much higher than the average density of the Universe. Those under-
and overdense regions ‘average out’ in a sense, so that the resulting distance is
approximately the same as the standard distance, at least in most cases.

Does that mean that one can just use the standard distance in observational
cosmology? For a rough approximation, probably. For detailed analyses, prob-
ably not. Even if most lines of sight traverse a fair sample of the Universe, that
is not guaranteed. While the ZKDR distance for η = 0 gives the maximum
possible distance for a given redshift, it is possible that the apparent distance
is less than that given by the ZKDR distance for η = 1. In such cases, the as-
sumptions on which the ZKDR distance are based are invalid, though for η >∼ 1
a meaningful calculation is still possible. The proper way to deal with such
situations is to explicitly consider it as a gravitational-lens system, but that is
difficult when the lens(es) might not be visible. At the very least, one should
consider the appropriateness of all assumptions made when analysing data, not
only with regard to distance measures.
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Friedmann, A. A. 1924. Über die Möglichkeit einer Welt mit konstanter nega-
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