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Abstract

A novel sequential tuning procedure for passive piezoelectric shunts targeting multiple structural
modes is proposed in this work. The control authority on each targeted mode can be quantita-
tively chosen ab initio and is shown to be limited by passivity requirements, which highlights the
fundamental limitations of multimodal piezoelectric shunts. Based on effective characteristics of
the piezoelectric system around resonance, electrical damping ratios and resonance frequencies are
derived using well-established single-mode formulae from the literature, thereby fully specifying
the characteristics of the shunt impedance. The proposed approach is numerically verified and
experimentally validated on piezoelectric beams by emulating the shunt with a digital vibration
absorber.

Keywords: Passive control law, Multimodal vibration mitigation, Piezoelectric shunt, Digital
control

1. Introduction

Piezoelectric shunt damping is a passive vibration control technique aiming to mitigate the
vibrations of a host structure [1]. A piezoelectric transducer bonded to this structure converts part
of its mechanical energy to electrical energy, which can then be dissipated into an electrical circuit
shunting the electrodes of the transducer. Shunts can be of resistive or resonant type, and are
traditionally optimized to reduce the vibrations around one specific mode [2–5]. Reviews on the
subject can be found in [6–8].

Several approaches were proposed to extend resonant piezoelectric shunt damping to the con-
trol of multiple modes. Among them, one consists in designing more complex shunts that resonate
with the inherent capacitance of the piezoelectric transducer at multiple frequencies. Several ad hoc
circuit topologies were proposed to fulfill this objective [9–13]. Some of these works proposed asso-
ciated tuning formulae for the electrical parameters, but these problems were shown to be rather
complex due to the interaction between the different resonant branches, and numerical optimization
was often called upon to tune these parameters [14–18]. Although numerical optimization is a pow-
erful tool and could even be used for real-time tuning of shunts [19], it is a time-consuming process
whose outcome may be a local optimum. To address this, a sequential tuning procedure based on
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effective characteristics associated with electrical resonances was proposed in [20]. However, this
procedure is specifically designed for a particular shunt topology, does not provide a quantitative
insight into the arbitrary choices made beforehand, and relies on an ad hoc identification procedure
which may fail for structures with, e.g., closely-spaced modes.

Focusing now on the realization of the control system, resonant piezoelectric shunts are seldom
implemented with passive elements, mainly because the required inductances are typically large.
Although it is possible to manufacture them [21], this problem remains challenging and a common
workaround consists in using synthetic inductors [22]. Alternatively, a digital vibration absorber
(DVA) can be used [23]. By combining a current source with a digital unit, virtually any circuit
can be emulated, which provides this approach with an exceptional versatility.

This work proposes a novel sequential specification procedure to tune passive and generic piezo-
electric shunts targeting multiple electrical resonances. Limitations on performance due to passivity
are highlighted, as well as trade-offs that must be made on the control authority on the targeted
modes. The resulting shunt is realized experimentally using a DVA. This article is organized as
follows. Section 2 first introduces models of piezoelectric structures and shunts targeting a single
resonant mode. Section 3 then presents a sequential specification procedure for shunts targeting
multiple modes. The realization of such shunts with a DVA is discussed in Section 4. Eventually,
the theoretical developments are numerically verified and experimentally validated in Sections 5
and 6, respectively. Conclusions on the present work are drawn in Section 7.

2. Modeling piezoelectric structures with a single piezoelectric transducer

Models of piezoelectric structures can be obtained, e.g., analytically [13], via a Rayleigh-Ritz
approach [24] or the finite element method [25]. The electrical variables associated with the con-
tinuous electrodes of the transducers are discretized by considering only their voltage and charge.
Structures with a single piezoelectric transducer are considered herein. Alternatively, one can also
consider structures with multiple transducers where the electrodes are connected either in series or
in parallel, resulting in an equivalent transducer with a single electrical port. Introducing the vec-
tor of N generalized mechanical degrees of freedom (DoFs) x, the vector of generalized mechanical
loading f of length N , the voltage across the electrodes of the transducer V and the charge flowing
through it q, the governing equations of the piezoelectric structure read

{
Mẍ + Kscx + γpV = f
γTp x− CεpV = q

. (1)

In these equations, M is the N ×N structural mass matrix, Ksc is the N ×N structural stiffness
matrix when the transducer is short-circuited, γp is a piezoelectric coupling vector of length N and
Cεp is the piezoelectric capacitance at constant strain. Alternatively, the piezoelectric voltage may
be used as independent variable. After inversion of the electrical equation, the governing equations
become 




Mẍ + Kocx− θpq = f

θTp x− 1

Cεp
q = V , (2)

where

Koc = Ksc +
1

Cεp
γpγ

T
p , θp =

1

Cεp
γp (3)

are the open-circuit stiffness matrix and a piezoelectric coupling vector, respectively.
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2.1. Short-circuit and open-circuit modes

The short-circuit modes are the resonant modes of the structure when the transducer is short-
circuited (V = 0). They satisfy the following generalized eigenvalue problem

KscΦsc = MΦscΩ
2
sc, Ωsc =



ωsc,1

. . .

ωsc,N


 (4)

where Φsc is the matrix of short-circuit mode shapes and Ωsc is a diagonal matrix containing the
short-circuit resonance frequencies ωsc,n. The mode shapes are usually mass-normalized, i.e.,

ΦT
scMΦsc = I, ΦT

scKscΦsc = Ω2
sc, (5)

where I is the identity matrix. If the generalized DoFs are expressed in terms of short-circuit
modal amplitudes ηsc as

x(t) = Φscηsc(t), (6)

then, Eq. (1) can be rewritten, after premultiplication of the mechanical equation by ΦT
sc, as

{
η̈sc + Ω2

scηsc + ΦT
scγpV = ΦT

scf
γTp Φscηsc − CεpV = q

. (7)

Similar developments can be made with the open-circuit modes, which are the resonant modes
of the structures with the transducer open-circuited (q = 0). They satisfy the following generalized
eigenvalue problem

KocΦoc = MΦocΩ
2
oc, Ωoc =



ωoc,1

. . .

ωoc,N


 (8)

where Φoc is the matrix of mass-normalized open-circuit mode shapes and Ωoc is a diagonal matrix
containing the open-circuit resonance frequencies ωoc,n. Using open-circuit modal amplitudes ηoc,
Eq. (2) can also be rewritten as





η̈oc + Ω2
ocηoc −ΦT

ocθpq = ΦT
ocf

θTp Φocηoc −
1

Cεp
q = V . (9)

2.2. Dynamic capacitance

Assuming that the structure is unforced (f = 0), taking the Laplace transform of the mechanical
equation in Eq. (7) and inserting it into the electrical equation gives a dynamic relation between
V and q, the dynamic capacitance Cp(s) [26]:

−
[
Cεp + γTp Φsc

(
s2I + Ω2

sc

)−1
ΦT

scγp

]
V = −Cεp

[
1 +

N∑

n=1

γ2φ,n
Cεp

1

s2 + ω2
sc,n

]
V = Cp(s)V = q, (10)

where s is Laplace’s variable and the modal coupling coefficients γφ,n are given by

γTp Φsc =
[
γφ,1 · · · γφ,N

]
. (11)
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Applying an identical procedure starting from the open-circuit configuration (Eq. (9)) yields
the inverse transfer function, the dynamic elastance Ep(s), as

−
[

1

Cεp
− θTp Φoc

(
s2I + Ω2

oc

)−1
ΦT

ocθp

]
q = − 1

Cεp

[
1−

N∑

n=1

Cεpθ
2
φ,n

s2 + ω2
oc,n

]
q = Ep(s)q = V, (12)

where the modal coupling coefficients θφ,n are given by

θTp Φoc =
[
θφ,1 · · · θφ,N

]
. (13)

Eqs. (10) and (12) show that the poles of the dynamic capacitance (elastance) are the short-
circuit (open-circuit) resonance frequencies. Furthermore, since the dynamic capacitance (elas-
tance) is the inverse of the dynamic elastance (capacitance), the zeros of the former are the poles
of the latter, i.e., the open-circuit (short-circuit) resonance frequencies. Therefore, an alternate
expression for the dynamic capacitance is

Cp(s) = −Cεp

N∏

n=1

(
s2 + ω2

oc,n

)

N∏

n=1

(
s2 + ω2

sc,n

)
=

1

Ep(s)
. (14)

Eq. (10) indicates that the coefficients γ2φ,n/C
ε
p can be thought of as residues associated with the

poles ±jωsc,n. The cover-up method [27] can be used to deduce them from the short- and open-
circuit resonance frequencies and the piezoelectric capacitance Cεp with Eq. (14). Indeed, equating
Eqs. (10) and (14), multiplying them by s2 + ω2

sc,r and equating their limit for s→ jωsc,r yields

γ2φ,r = Cεp

N∏

n=1

(
ω2
oc,n − ω2

sc,r

)

N∏

n=1,n 6=r

(
ω2
sc,n − ω2

sc,r

)
. (15)

Similar developments from Eq. (12) yield

θ2φ,r = − 1

Cεp

N∏

n=1

(
ω2
sc,n − ω2

oc,r

)

N∏

n=1,n6=r

(
ω2
oc,n − ω2

oc,r

)
. (16)

Eqs. (15) and (16) give a practical way to evaluate the modal coupling coefficients experi-
mentally from simple measurements of the resonance frequencies and the piezoelectric capacitance
Cεp . As shall be shown in the sequel, this is sufficient to tune a shunt with multiple resonance
frequencies.
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2.3. Electromechanical coupling factors

The electromechanical coupling between mode n and a piezoelectric transducer can be assessed
quantitatively with a dimensionless quantity called the modal electromechanical coupling factor
(MEMCF) [25]

K2
c,n =

ω2
oc,n − ω2

sc,n

ω2
sc,n

. (17)

This quantity can be used to predict the vibration reduction brought by resonant shunts (see, e.g.,
[28]). In general, the greater the MEMCF, the greater the attenuation.

2.4. Structures with piezoelectric shunts

Single-mode resonant shunts can be used to mitigate a specific mode, and their tuning will be
used as a baseline in Section 3.

2.4.1. Series RL shunt

Upon connecting the electrodes of a transducer to a series RL shunt, the voltage and charge
become related by

V =
(
Ls2 +Rs

)
q = sZs(s)q, (18)

where L, R and Zs are the shunt inductance, resistance and impedance, respectively. Closed-form
solutions leading to optimal amplitude reduction have been found in [4, 5] in the case of a single-
degree-of-freedom (SDoF) structure. Using these formulae (see Appendix A) for a shunt targeting
mode n and neglecting every other structural mode, the optimal inductance and resistance are

L =
1

δ2(Kc,n)ω2
oc,nC

ε
p

, R =
2ζ(Kc,n)

δ(Kc,n)ωoc,nCεp
, (19)

respectively, where δ and ζ are electrical frequency and damping ratios for the series RL case,
respectively. It is possible to enhance these tuning rules for multiple-degree-of-freedom structures
by accounting for the influence of non-resonant modes [29, 30], and this approach shall be adopted
hereafter when tuning circuits with multiple electrical resonances.

2.4.2. Parallel RL shunt

Alternatively to the series RL case, a parallel RL shunt can be employed, leading to the following
relation between charge and voltage

q =

(
B

s2
+
G

s

)
V =

Ys(s)

s
V, (20)

where B, G and Ys are the shunt reluctance, conductance and admittance, respectively. The
exact H∞-optimal solution for a SDoF structure was derived by Ikegame et al [5]. The optimal
single-mode reluctance B and conductance G for a shunt targeting mode n are given by

B = ν2 (Kc,n)ω2
sc,nC

ε
p , G = 2ς (Kc,n) ν (Kc,n)ωsc,nC

ε
p , (21)

respectively (see Appendix A). ν and ς are electrical frequency and damping ratios for the parallel
RL case, respectively.
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3. Specification method for multimodal control

It is now sought to generalize the piezoelectric shunt presented in Section 2.4 to the control
of multiple modes with a direct tuning method. A lossless shunt with the most general form of
immittance is first considered. It will then be demonstrated that the immittance of an equivalent
circuit resulting from the connection of the piezoelectric transducer with this lossless circuit takes
a specific form. This immittance can be expanded in partial fractions, where the resonance fre-
quencies of the circuit are directly identifiable. Associated with these frequencies are residues (that
can be seen as resonance amplitudes squared) which characterize the electromechanical coupling
existing between the mechanical and electrical resonances.

With this partial fraction expansion and a few simplifying assumptions, it is possible to show
that the problem can be put into a simpler form similar to the SDoF case. Specifically, effective
short- and open-circuit resonance frequencies can be evaluated to compute an effective MEMCF.
These effective frequencies may differ from those of the structure because the circuit itself influences
them. From there on, a specification procedure can be devised. The procedure takes as input
the resonance frequencies of the piezoelectric structure, the piezoelectric capacitance at constant
strain, a set of modes to be controlled and a set of associated residues, which characterize the
control authority on these modes. For each targeted mode, the tuning formuale presented in
Section 2.4 are used with the effective characteristics to sequentially specify the characteristics of
the immittance in terms of zeros frequencies and damping ratios. The determination of the shunt
admittance and its realization are discussed in the next section.

3.1. Admittance-based model

3.1.1. Norton’s equivalent admittance

The connection of a shunt of admittance Ys to the electrodes of the piezoelectric transducer
imposes the following voltage-to-charge relation

q =
Ys(s)

s
V. (22)

Inserting this relation into Eq. (7), the governing equations for the coupled system are obtained as




(
s2I + Ω2

sc

)
ηsc + ΦT

scγpV = ΦT
scf

YN (s)

s
V − γTp Φscηsc = 0

(23)

in which
YN (s) = sCεp + Ys(s) (24)

is Norton’s equivalent admittance of the parallel connection of the shunt with a capacitor of ca-
pacitance Cεp , as schematized in Fig. 1.

The problem described by Eq. 23 is equivalent to the feedback control one depicted in Fig. 1(c),
where sY −1N (s) plays the same role as a controller. Upon connecting an inductor of reluctance B
(i.e., a lossless RL shunt) to the transducer, the transfer function of this equivalent controller takes
the form

s

YN (s)
=

s

sCεp +
B

s

=
1

Cεp

s2

s2 + ω2
e

, (25)

whose resonance frequency is the electrical one given by ω2
e = B/Cεp .
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γT
p ẋ YsCε

p
V

q̇

(a)

γT
p ẋ YN

(b)

f
Φsc

(
s2I + Ω2

sc

)−1
ΦT

sc

x

γT
p

s

YN (s)

V

-
+

γp

(c)

Figure 1: Shunt connected to a piezoelectric transducer (a), Norton’s equivalent model (b) and equivalent feedback
control problem (c).

3.1.2. Implications of Foster’s reactance theorem

Considering now a more general shunt made up of passive reactive lossless elements, Foster’s
reactance theorem [31, 32] stipulates that its admittance must be of the form

Ys(s) = Ks

s

Nz∏

i=1

(s2 + z2s,i)

Np∏

i=1

(s2 + p2s,i)

(26)

with Ks > 0,
0 ≤ ps,1 < zs,1 < ps,2 < zs,2 < · · · (27)

and either Nz = Np − 1 or Nz = Np. Inserting Eq. (26) into Eq. (24) gives

s

YN (s)
=

s

sCεp + Ys(s)
=

Np∏

i=1

(s2 + p2s,i)

Cεp

Np∏

i=1

(s2 + p2s,i) +Ks

Nz∏

i=1

(s2 + z2s,i)

. (28)

The degree of the numerator and that of the denominator are equal given that Nz ≤ Np, and thus
this transfer function is always biproper. Moreover, it cannot possess a pole at s = 0 but may have
a double zero at s = 0 (if ps,1 = 0). Therefore, it takes the general form

s

YN (s)
=

1

Cεp

(
r0 +

Ns∑

i=1

ris
2

s2 + z2i

)
, (29)

where zi is a zero of Norton’s admittance, and ri is its associated residue. It can be noted that the
terms in the sum featured in Eq. (29), which correspond to electrical resonances, have the same
form as Eq. (25).
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3.1.3. Passivity constraints

Foster’s reactance theorem [31] can also be used to set limitations on the values that the residues
can take. First of all, because the parallel connection of a passive circuit with a capacitor makes
up a circuit which is itself passive, every residue ri must be positive. Second, by equating Eqs. (28)
and (29) for s→∞, it is remarked that

lim
s→∞

s

YN (s)
= lim

s→∞

Np∏

i=1

(s2 + p2s,i)

Cεp

Np∏

i=1

(s2 + p2s,i) +Ks

Nz∏

i=1

(s2 + z2s,i)

=
1

Cεp

Ns∑

i=0

ri. (30)

Hence, if Nz = Np − 1,

1

Cεp

Ns∑

i=0

ri =
1

Cεp
, (31)

and if Nz = Np,

1

Cεp

Ns∑

i=0

ri =
1

Cεp +Ks
∈
[
0,

1

Cεp

[
. (32)

The foregoing developments show that the residues must satisfy the passivity constraints

ri ≥ 0 ∀i ∈ [0, Ns], 0 ≤
Ns∑

i=0

ri ≤ 1. (33)

It shall be shown that the last constraint places fundamental limits on the performance of multi-
modal shunts.

3.1.4. Background contributions

In the remainder of this section, it is assumed that mode k of Norton’s admittance targets
resonance r of the structure. Non-resonant mechanical modes are identified by a subscript n
(n = 1, · · · , r − 1, r + 1, · · · , N). The external forcing is also assumed to be zero in order to
characterize the poles of the system. Since the structural matrices are diagonal, the non-resonant
modal coordinates may be expressed using Eq. (23) as a sole function of V

ηsc,n = − γφ,n
s2 + ω2

sc,n

V, (34)

which, inserted back into the electrical equation, yields





(
s2 + ω2

sc,r

)
ηsc,r + γφ,rV = 0

YN (s)

s
+

N∑

n=1,n6=r

γ2φ,n
s2 + ω2

sc,n


V − γφ,rηsc,r = 0

. (35)
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Finally, expressing V as a function of ηsc,r and substituting the resulting expression into the
mechanical equation, one gets



s2 + ω2

sc,r +
γ2φ,r
Cεp

Cεp
s

YN (s)

1 + Cεp
s

YN (s)

N∑

n=1,n 6=r

γ2φ,n
Cεp

1

s2 + ω2
sc,n



ηsc,r = 0. (36)

So far, no approximation was made. However, Eq. (36) is potentially of high order in s and
thus complicated to work with. Moreover, it also requires the knowledge of every characteristic
from Norton’s admittance (ri and zi for each electrical mode), which would not ease its use within
a specification procedure. Approximations shall thus be made to simplify the problem. The first
approximation is a classical one and regards the non-resonant mechanical modes [29]. From their
contribution given in Eq. (36), only the static contribution from modes with frequency higher than
ωsc,r is retained (the other contribution decaying in s−2). In other words,

N∑

n=1,n 6=r

γ2φ,n
Cεp

1

s2 + ω2
sc,n

≈
N∑

n=r+1

γ2φ,n
ω2
sc,nC

ε
p

. (37)

The second approximation consists in similarly simplifying the dynamics of non-resonant elec-
trical modes. Electrical modes whose frequency is lower and higher than zk are assumed to be
capacitively- and inductively-dominated, i.e.,

ris
2

s2 + z2i
≈ ri, i < k, and

ris
2

s2 + z2i
≈ ris

2

z2i
, i > k, (38)

respectively.
For conciseness, the following dimensionless quantities are introduced

κr =
N∑

n=r+1

γ2φ,n
ω2
sc,nC

ε
p

, κr =

N∑

n=r

γ2φ,n
ω2
sc,nC

ε
p

, (39)

representing the static influence from higher-frequency modes without and with mode r, respec-
tively, and

yl =

k−1∑

i=0

ri, yh =

Ns∑

i=k+1

riω
2
sc,r

z2i
, (40)

representing the influence of capacitively-dominated and inductively-dominated electrical modes,
respectively. It can be remarked that computing yl and yh requires the knowledge of all the
residues but only the zeros from higher-frequency modes. Using the simplifying assumptions
(Equations (37)-(38)) into Eq. (36), a dynamic equation of lower order including the background
contribution of non-resonant mechanical and electrical modes is obtained as


s

2 + ω2
sc,r + ω2

sc,r (κr − κr)
yl +

rks
2

s2 + z2k
+ yh

s2

ω2
sc,r

1 + κr

(
yl +

rks
2

s2 + z2k
+ yh

s2

ω2
sc,r

)


 ηsc,r = 0. (41)
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3.1.5. Effective short-circuit and open-circuit resonance frequencies

Going back to the single-mode case, Section 2.4 highlighted the relevance of short- and open-
circuit resonance frequencies for tuning. In these cases, associated Norton’s equivalent admittances
are, using Eq. (24),

s

YN,sc
=

s

YN

∣∣∣∣
Ys=∞

= 0,
s

YN,oc
=

s

YN

∣∣∣∣
Ys=0

=
1

Cεp
. (42)

By analogy, we define modal short circuit and modal open circuit Norton’s admittances by replacing
the resonant term by its asymptotic values for s→ 0 and s→∞, respectively. In other words, the
resonant electrical term can be replaced by

lim
s→0

rks
2

s2 + z2k
= 0 and lim

s→∞
rks

2

s2 + z2k
= rk, (43)

in the case of a modal short circuit and modal open circuit, respectively. Substituting these
expressions into Eq. (41) defines effective resonance frequencies. Based on their value, it is possible
to assess an MEMCF which will eventually be used to specify the characteristics of the shunt.

Substituting the electrical resonant term by zero in Eq. (41) gives a quadratic equation in
s2. The effective short-circuit resonance frequency ω̂sc,r can be found by solving this equation for
s = jω̂sc,r as

ω̂sc,r =
ωsc,r√√√√1 + ylκr + yhκr

2 + 2ylκr
+

√(
1 + ylκr + yhκr

2 + 2ylκr

)2

− yhκr
1 + ylκr

. (44)

Substituting the resonant term by rk, the effective open-circuit resonance frequency ω̂oc,r can be
estimated by

ω̂oc,r =
ωsc,r√√√√1 + (yl + rk)κr + yhκr

2 + 2(yl + rk)κr
+

√(
1 + (yl + rk)κr + yhκr

2 + 2(yl + rk)κr

)2

− yhκr
1 + (yl + rk)κr

. (45)

3.1.6. Coupling assessment

Eq. (17) can be replaced by an MEMCF based on the effective short- and open-circuit resonance
frequencies

K̂2
c,r =

ω̂2
oc,r − ω̂2

sc,r

ω̂2
sc,r

. (46)

We note the following particular cases

K̂2
c,r

∣∣∣
rk=0

= 0, K̂2
c,r

∣∣∣
rk=1

= K2
c,r (47)

and it is possible to show that ω̂oc,r is a growing function of rk, and thus so is K̂c,r.

A more explicit expression of K̂c,r as a function of rk can be obtained if one neglects the
influence of non-resonant terms (yl = yh = κr = 0). The MEMCF is then approximated by

K̂2
c,r ≈ rk

γ2φ,r
ω2
sc,rC

ε
p

≈ rkK2
c,r, (48)
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where K2
c,r is approximated under the same assumptions (i.e., starting from Eq. (7) and neglecting

the contribution from non-resonant mechanical modes [25]). Eq. (48) gives a remarkably concise
expression of the MEMCF as a function of the residue. It can be used as an approximate quanti-
tative guide to select a set of residues based on the performance desired for specific modes. In any
case, the greater the residue associated to one mode, the greater the MEMCF. From Eq. (33), it is
noted that a residue cannot be greater than unity, and in case it is unitary all the other residues are
zero. Thus, regarding a specific mode, a passive multimodal shunt can at best perform as well as a
single-mode shunt. When multiple modes are targeted, performance on one mode has to be traded
for performance on the other modes. This highlights a fundamental limitation in performance that
can be expected from passive multimodal shunts.

It can also be noted that the residue r0 in Eq. (29) is not associated to any mode, but still
intervenes in the passivity constraint (Eq. (33)). Hence, in terms of vibration reduction, r0 = 0 is
desirable to maximize the value of the other residues.

3.1.7. Specifications for the shunt

The previous developments can be assembled into a tuning procedure, which goes as follows.
The user first selects the modes to be controlled and their associated residues, knowing that the
latter will quantify the electromechanical coupling with the former, and ultimately the amplitude
reduction. Typically, Eq. (48) can be used at this stage to predict the MEMCF. The tuning
procedure then consists in defining the zeros of Norton’s equivalent admittance zk and to add
dissipation to the circuit through specification of associated damping ratios ζk in order to provide
nearly-optimal vibration reduction.

From the tuning formuale of the SDoF case, the electrical resonance frequency can be computed
from the MEMCF and the effective resonance frequencies as

ωe,k = δ
(
K̂c,r

)
ω̂oc,r or ωe,k = ν

(
K̂c,r

)
ω̂sc,r, (49)

depending on whether the circuit has to be tuned based on the series RL (Eq. (A.2)) or parallel RL
(Eq. (A.6)) SDoF baseline case, respectively1. From Eq. (41), the electrical resonance frequency
ωe,k of the lossless circuit creates a zero in the mechanical receptance if

1 + κr

(
yl +

rks
2

s2 + z2k
+ yh

s2

ω2
sc,r

)
= 0 (50)

for s = jωe,k. Solving for zk eventually yields

zk = ωe,k

√√√√√
1 +

rk

1

κr
+ yl − yh

ω2
e,k

ω2
sc,r

. (51)

In order to avoid the appearance of new undamped resonances in the mechanical compliance,
dissipative elements can be added to the shunt, similarly to the SDoF case [2, 3]. Herein, their
effect is modeled by electrical modal damping ratios. They can be determined as

ζk = ζ
(
K̂c,r

)
or ζk = ς

(
K̂c,r

)
, (52)

1Other tuning formuale for the series or parallel RL shunts [2, 3, 28, 33, 34] can also be used.
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depending on the baseline case: series RL (Eq. (A.3)) or parallel RL (Eq. (A.7)) SDoF, respectively.
In general, the best-suited baseline case will depend on the topology of the dissipative shunt.

From Eq. (38), it is seen that when tuning zk, zk+1 to zNs have to be known. In order to have
a sequential specification procedure where everything is known when considering resonance k, this
suggests that the electrical resonances have to be specified in descending order of frequency. Fig. 2
summarizes the proposed approach.

System characteristics: Cεp , ωsc,i, ωoc,i (i = 1, · · · , N)
Modes to be controlled r(k) and associated residues rk (k = 1, · · · , Ns)

Modal coupling coefficients
Compute γ2φ,i (i = 1, · · · , N)

Eq. (15)

k := Ns

r := r(k)

Background contributions
Compute κr, κr yl and yh

Eqs. (39) and (40)

Effective resonance frequencies
Compute ω̂sc,r, ω̂oc,r and K̂c,r

Eqs. (44) and (45) and (46)

Admittance specifications
Compute ωe,k(ω̂sc,r, ω̂oc,r, K̂c,r), ζk(ω̂sc,r, ω̂oc,r, K̂c,r) and zk

Eqs. (49), (52) and (51)

k = 1?

k := k − 1

End

No

Yes

Figure 2: Flowchart of the proposed admittance-based specification approach.

Ideally, the shunt admittance Ys should be chosen such that Norton’s dissipative admittance is
of the form

YN (s) = sCεp + Ys(s) = sCεp

(
r0 +

Ns∑

i=1

ris
2

s2 + 2ζizis+ z2i

)−1
. (53)

3.2. Impedance-based model

Similar developments to those of Section 3.1.1 can be made from Eq. (2). In this case,
Thévenin’s equivalent impedance of the series connection of the shunt with a capacitor of ca-
pacitance Cεp , given by

ZT (s) =
1

sCεp
+ Zs(s) (54)
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plays the same role here as Norton’s admittance. A similar approach (not fully exposed here for
brevity) can be followed to specify the characteristics of Thévenin’s equivalent impedance.

Following the same approach as in Section 3.1.1 from Eqs. (9) and (54), it can be shown that
the problem of a piezoelectric structure with a shunt can be cast as a feedback one where the
controller is s−1Z−1T (s). In the special case where only an inductor of inductance L (i.e., a lossless
RL shunt) is connected to the transducer, the transfer function of this equivalent controller takes
the form

1

sZT (s)
=

1
1

Cεp
+ Ls2

= Cεp
1

s2

ω2
e

+ 1

, (55)

whose electrical resonance frequency is given by ω−2e = LCεp .

3.2.1. Implications of Foster’s reactance theorem

Foster’s reactance theorem [31, 32] can be used to deduce several properties of ZT (s) with a
lossless shunt, namely, to show that it takes the general form

1

sZT (s)
= Cεp


r0 +

Ns∑

i=1

ri

s2

z2i
+ 1


 , (56)

where zi is a zero of Thévenin’s impedance, and ri is its associated residue. Again, Eq. (56) can
be seen as a generalization of Eq. (55) to multiple electrical resonances, the residues representing
their amplitudes. Analyzing the properties of Eq. (56) for s → 0 shows that the residues must
satisfy the passivity constraints

ri ≥ 0 ∀i ∈ [0, Ns], 0 ≤
Ns∑

i=0

ri ≤ 1. (57)

3.2.2. Effective short-circuit and open-circuit resonance frequencies and coupling assessment

It is assumed that mode k of Thévenin’s impedance targets resonance r of the structure, that
the lower- and higher-frequency electrical modes are inductively- and capacitively-dominated, i.e.,

ri

s2

z2i
+ 1

≈ riz
2
i

s2
, i < k, and

ri

s2

z2i
+ 1

≈ ri, i > k, (58)

respectively, and that the non-resonant mechanical modes contribute only through static response
of the higher-frequency modes. The following quantities are introduced

κr =
N∑

n=r+1

θ2φ,nC
ε
p

ω2
oc,n

, κr =
N∑

n=r

θ2φ,nC
ε
p

ω2
oc,n

, (59)

and

zl =

k−1∑

i=1

riz
2
i

ω2
oc,r

, zh = r0 +

Ns∑

i=k+1

ri. (60)
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Retaining a pair of mechanical and electrical resonant modes, and with the aforementioned ap-
proximations, the following equation is obtained




s2 + ω2
oc,r − ω2

oc,r(κr − κr)

zl
ω2
oc,r

s2
+

rk
s2

z2k
+ 1

+ zh

1− κr


zl

ω2
oc,r

s2
+

rk
s2

z2k
+ 1

+ zh







ηoc,r = 0. (61)

Effective short- and open-circuit resonance frequencies can be found from Eq. (61) as

ω̂sc,r = ωoc,r

√√√√1− zlκr − (zh + rk)κr
2− 2(zh + rk)κr

+

√(
1− zlκr − (zh + rk)κr

2− 2(zh + rk)κr

)2

+
zlκr

1− (zh + rk)κr
, (62)

and

ω̂oc,r = ωoc,r

√√√√1− zlκr − zhκr
2− 2zhκr

+

√(
1− zlκr − zhκr

2− 2zhκr

)2

+
zlκr

1− zhκr
, (63)

respectively. From the MEMCF given in Eq. (46), we note the following particular cases

K̂2
c,r

∣∣∣
rk=0

= 0, K̂2
c,r

∣∣∣
rk=1

= K2
c,r (64)

and it is possible to show that ω̂sc,r is a decreasing function of rk, and thus K̂c,r is a growing
function of rk.

A more explicit expression of K̂c,r as a function of rk can be obtained if one neglects the
influence of non-resonant terms (zl = zh = κr = 0). The effective short- and open-circuit resonance
frequencies are then estimated by

ω̂2
sc,r ≈ ω2

oc,r

(
1− rkθ2φ,rCεp

)
, ω̂2

oc,r ≈ ω2
oc,r. (65)

The MEMCF is

K̂2
c,r ≈

rkK
2
c,r

1 +K2
c,r − rkK2

c,r

K2
c,r�1
≈ rkK

2
c,r. (66)

Again, it can be observed that the MEMCF can be predicted from the residue with a rather simple
formula. This highlights the same performance trade-off as in the admittance-based models.

3.2.3. Specifications for the shunt

As in the admittance-based model case, it is possible to set an electrical resonance frequency
and associated damping ratio based on the effective modal characteristics of the electromechanical
system. The formuale from the SDoF baseline case can be used to specify the electrical resonance
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frequency ωe,k and damping ratio ζe,k, as in Section 3.1.7. To obtain a zero of the mechanical
receptance in Eq. (61), zk should satisfy

zk =
ωe,k√√√√√

1− rk

1

κr
+ zl

ω2
oc,r

ω2
e,k

− zh

. (67)

It is now possible to devise a specification procedure for the shunt’s characteristics. From a
set of modes to be controlled and associated residues, the zeros of Thévenin’s impedance and the
desired damping for optimal vibration reduction can be computed. Eq. (58) shows that in order to
tune zk, z1 to zk−1 have to be known, which suggests that the tuning must be done in ascending
order of frequency. Fig. 3 summarizes the proposed approach.

System characteristics: Cεp , ωsc,i, ωoc,i (i = 1, · · · , N)
Modes to be controlled r(k) and associated residues rk (k = 1, · · · , Ns)

Modal coupling coefficients
Compute θ2φ,i (i = 1, · · · , N)

Eq. (16)

k := 1

r := r(k)

Background contributions
Compute κr, κr, zl and zh

Eqs. (59) and (60)

Effective resonance frequencies
Compute ω̂sc,r, ω̂oc,r and K̂c,r

Eqs. (62) and (63) and (46)

Impedance specifications
Compute ωe,k(ω̂sc,r, ω̂oc,r, K̂c,r), ζk(ω̂sc,r, ω̂oc,r, K̂c,r) and zk

Eqs. (49), (52) and (67)

k = Ns?

k := k + 1

End

No

Yes

Figure 3: Flowchart of the proposed impedance-based specification approach.

With these specifications, the shunt impedance Zs should ideally be such that Thévenin’s
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dissipative impedance is

ZT (s) =
1

sCεp
+ Zs(s) =

1

sCεp


r0 +

Ns∑

i=1

ri

s2

z2i
+ 2ζi

s

zi
+ 1




−1

. (68)

3.3. Equivalence between the models

Two types of specification procedures were developed in the previous sections. They both yield
a set of frequencies zi and a set of associated damping ratios ζi. Whether the admittance-based or
impedance-based specification is used, these parameters will be very close provided they use the
same baseline case, but not rigorously identical. The small discrepancies come from the difference in
the frequencies around which the approximations are made (either short- or open-circuit resonance
frequencies), and are generally negligible in front of the other approximations.

It is now shown that the two approaches are equivalent in the lossless case (assuming identical
frequencies zi), but not in the dissipative case (assuming identical frequencies zi and damping
rations ζi).

The shunt admittance is the inverse of the shunt impedance, i.e.,

Ys(s) =
1

Zs(s)
. (69)

Thus, a relation between Norton’s admittance defined in Eq. (24) and Thévenin’s impedance defined
in Eq. (54) can be derived as

YN (s) =
sCεpZT (s)

ZT (s)− 1

sCεp

, ZT (s) =
YN (s)

sCεp(YN (s)− sCεp)
. (70)

3.3.1. Lossless case

In the lossless case, if Norton’s admittance is given by Eq. (24), then, by Eq. (70), one obtains

1

sZT (s)
= Cεp


1−

Ns∑

i=0

ri +

Ns∑

i=1

ri

s2

z2i
+ 1


 , (71)

which is of the same form as Eq. (54) (the only difference being the expression of r0). Specifically,
the zeros of ZT are identical to those of YN , and their associated residues are also identical. Thus,
the two approaches are equivalent in the lossless case. While passing from one model to the other,
it should be kept in mind that all the residues stay identical except for r0, which becomes

r0 := 1−
Ns∑

i=0

ri. (72)
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3.3.2. Dissipative case

If dissipative circuits are considered, Norton’s dissipative admittance would ideally be given
by Eq. (53), while Thévenin’s dissipative impedance would ideally be given by Eq. (68). Inserting
Eq. (53) into Eq. (70), the following expression is obtained after transforming Norton’s admittance
to Thévenin’s impedance:

1

sZT (s)
= Cεp


1− r0 −

Ns∑

i=1

ri

(
2ζi

s

zi
+ 1

)

s2

z2i
+ 2ζi

s

zi
+ 1


 . (73)

This shows that when dissipative circuits are considered (ζi 6= 0), the two approaches are no longer
completely equivalent, because Eqs. (68) and (73) do not have the same form. The damping ratios
are generally moderately small, so the discrepancy is moderate as well.

4. Shunt realization

4.1. Shunt admittance

If the shunt specifications come from an admittance-based approach (Section 3.1), the shunt
admittance can then be determined from Eqs. (24) and (53),

Ys(s) = YN (s)− sCεp = sCεp

1− r0 −
Ns∑

i=1

ris
2

s2 + 2ζizis+ z2i

r0 +

Ns∑

i=1

ris
2

s2 + 2ζizis+ z2i

. (74)

This model works best if the admittance is tuned with the parallel RL baseline. Conversely, if the
shunt specifications come from an impedance-based approach (Section 3.2), the shunt admittance
can then be determined from Eqs. (54) and (68) as

Ys(s) =
1

Zs(s)
=

1

ZT (s)− 1

sCεp

= sCεp

r0 +

Ns∑

i=1

ri

s2

z2i
+ 2ζi

s

zi
+ 1

1− r0 −
Ns∑

i=1

ri

s2

z2i
+ 2ζi

s

zi
+ 1

. (75)

This model works best if the admittance is tuned with the series RL baseline.
It is interesting to note that similar forms to Eqs. (74) and (75) were proposed by Moheimani

et al [13, 15, 35] by casting the passive control problem into a feedback one and using Youla’s
parametrization of all stabilizing controllers. However, the role of the residues was not as thoroughly
discussed as here, and the tuning procedure was different for zi (set equal to the corresponding
open-circuit resonance frequency therein) and ζi (tuned by an optimization algorithm therein),
which are tuned based on the SDoF formulae herein (see Appendix A).
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4.2. Digital vibration absorber

Eqs. (74) and (75) specify the shunt admittance by its transfer function but neither specify the
circuit topology, nor the associated electrical parameters. Similarly to [18], a synthesis method
such as Brune’s [36] could be used to realize the passive shunt. Alternatively, a DVA such as
depicted in Fig. 4 can enable the realization of virtually any shunt through programming of its
admittance as the transfer function of the digital unit [23].

Piezoelectric structure
q̇

f

V

x

Digital vibration absorber

Voltage
sensorMCU

Current
injector

Figure 4: General working principle of the DVA.

The passivity of the emulated circuit guarantees the unconditional stability of the control law.
However, the finite phase margin associated to this type of control may call for a method allowing
to prevent delay-induced instabilities [37].

5. Numerical verification

The cantilever beam that first appeared in Thomas et al [25] and was later studied in several
works [20, 28, 30, 38] is used as a first example to numerically demonstrate the proposed approach.
It is a clamped-free aluminum beam on which two PIC 151 piezoelectric patches are symmetrically
bonded, as depicted in Fig. 5. The geometrical and material properties of the system were taken
from [25] and are reported in Tables 1 and 2. The patches have opposite polarization, and they
are connected in series to form one equivalent piezoelectric transducer. A finite element model was
built with Euler-Bernoulli beam elements following the procedure described in [25]. The beam was
discretized with 1, 5 and 35 elements for x ∈ [0, x−], x ∈ [x−, x+] and x ∈ [x+, l], respectively.
Accounting for the clamped boundary condition, this resulted in a model with 123 mechanical
DoFs. The series connection of the patches adds one electrical DoF to the model.

l b t ρ E

170 mm 20 mm 2 mm 2800 kg m−3 72 GPa

Table 1: Parameters of the cantilever piezoelectric beam from [25].

The beam is transversely excited on its free end. Modal damping was set to 0.1% on all the
modes. The driving-point frequency response function (FRF) therefore exhibits lightly-damped
resonances which can be targeted by the above-mentioned shunts in order to reduce the vibratory
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Shunt
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tp
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l

Figure 5: Schematic representation of the cantilever piezoelectric beam from [25].

lp bp tp x− x+ ρp Ep d31 εε33
25 mm 20 mm 0.5 mm 0.5 mm 25.5 mm 8500 kg m−3 66.7 GPa -210 2068ε0

Table 2: Parameters of the piezoelectric patches from [25], where ε0=8.854 pF m−1.

amplitude. The three first bending modes frequencies of the beam with short-circuited patches are
68.89 Hz, 411.28 Hz and 1092.86 Hz, in accordance with [38] (but slightly differ from [25] because
a tip mass was added therein to agree with experimental results).

5.1. Control of two structural modes
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Figure 6: FRF of the beam with open-circuited patches ( ) and controlled with a circuit with ideal Thévenin’s
impedance (a) and ideal Norton’s admittance (b): r1 = 0.1, r2 = 0.9 ( ), r1 = 0.5, r2 = 0.5 ( ) and r1 = 0.9,
r2 = 0.1 ( ).

The first two bending modes of the beam are targeted at first to keep the exposition simple.
Fig. 6 presents the FRFs of the controlled beam with both approaches (yielding ideal Norton’s
admittance and Thévenin’s impedance), using various values of the residues associated with modes
1 (r1) and 2 (r2), while respecting the passivity constraint r1+r2 = 1. Both techniques yield similar
performance in terms of vibration reduction, given identical residues. As expected, the greater r1
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the greater the vibration attenuation on mode 1, but the smaller the vibration attenuation on
mode 2. The residues can thus be set to balance the control authority on specific modes, at the
expense of that on other modes.

The impact of the residues on the vibration reduction of the modes is also confirmed in Fig. 7,
where the attenuation on each mode (defined as the ratio of the uncontrolled FRF at ωsc,r to the
controlled FRF at the effective open-circuit resonance frequency ω̂oc,r) is plotted against the value
of the residue2 r1 (and r2 = 1 − r1). This attenuation is compared to the prediction formula
in [28] (Equation (35) therein), using the MEMCF predicted from the residues (Eq. (48) or (66)).
The prediction formula agrees well with the measured attenuation when the associated residue is
high. It underestimates the attenuation when the residue is low because it overlooks the action of
the non-resonant electrical modes on resonant mechanical modes. For instance, it can be seen in
Fig. 7(a) that a series RL shunt on mode 2 (the limit case when r2 = 1) can have a non-negligible
attenuation effect on mode 1 and the converse is also true for a parallel RL shunt. Although not
directly aimed at resonant shunts, this aspect is discussed more in depth in [39]. In any case,
the observed trends verify the relevance of using an MEMCF such as defined in Eq. (46), and its
predicted approximation Eq. (48) (or Eq. (66)) to guide the choice of the residues.
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Figure 7: Attenuation of the modes as a function of the first residue for a circuit with ideal Thévenin’s impedance (a)
and ideal Norton’s admittance (b): attenuation computed from the FRF ( : mode 1, : mode 2) and attenuation
predicted with [28] using a linearized MEMCF ( : mode 1, : mode 2).

5.2. Control of five structural modes

The proposed method can handle an arbitrary number of modes. To illustrate this, Fig. 8
compares the FRF of the beam with open-circuit patches to those with ideal shunts using identical
residues on each targeted mode (ri = 0.2, i = 1, · · · , 5). The five resonances are effectively
mitigated with both approaches. For comparison purposes, the tuning method from [15] was also
applied to that case. While similar performance is observed with the ideal Norton’s admittance, the

2The unusual scale for the abscissa in these figures is given by log10 (r1/(1 − r1)) in order to enlarge the regions
where r1 ≈ 0 and r1 ≈ 1.
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control authority over the last four modes is degraded with the ideal Thévenin’s impedance. This
comes from the optimization algorithm, which tries to minimize the H2 norm of the receptance
by focusing on the first mode, thereby neglecting the other modes. Hence, the outcome of the
proposed method is at worst comparable with the method from [15], and is much faster since it
does not rely on numerical optimization (there was a speedup factor of 200 in the computation of
the parameters of the shunt admittances between the method proposed herein and that proposed
therein).
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Figure 8: Mobility of the beam with open-circuited patches ( ) and controlled with a circuit with ideal Thévenin’s
impedance (a) and ideal Norton’s admittance (b) ( : proposed method, : method from [15]).

6. Experimental validation

The clamped-free piezoelectric beam shown in Fig. 9 and schematically represented in Fig. 10
was used as a host to experimentally validate the theoretical developments. The free end of the
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Shaker

Impedance head Power supply

Beam Digital vibration absorber

Figure 9: Picture of the experimental setup.

beam is attached to a thin lamina. This thin lamina can be responsible for a hardening behavior
of the beam (see, e.g., [40]), but the forcing levels in this experimental study were kept low enough
to make this nonlinear effect negligible. Details about the geometrical dimensions of the beam and
the patches are given in Tables 3 and 4, respectively. The beam was excited at mid-span by an
electrodynamic shaker, and an impedance head was used to measure the acceleration and force of
the structure. The two first bending modes of the beam were targeted for shunt damping. The steel
beam is covered by an array of ten pairs of uniformly distributed PSI-5A4E piezoelectric patches
(each pair consisting of two patches connected in parallel). Two of these pairs were connected in
parallel to form one equivalent piezoelectric transducer in order to balance the MEMCFs of these
modes. The other eight pairs were left in open circuit.

Shunt

ttl
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(a)

x0lp∆xplp∆xp· · ·
bp �

b �
tp
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(b)

Figure 10: Schematic representation of the clamped-free piezoelectric beam with a thin lamina: overall view (a) and
close-up on the patches close to the clamped end (b).

The approach to implement a multimodal shunt experimentally is fairly straightforward thanks
to its model-less nature. The peaks of the FRFs of the structure with short- and open-circuited
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l b t ll bl tl
700 mm 14 mm 14 mm 40 mm 14 mm 0.5 mm

Table 3: Parameters of the clamped-free piezoelectric beam with a thin lamina.

lp bp tp x0 ∆xp
67 mm 14 mm 2 mm 1 mm 3 mm

Table 4: Parameters of the piezoelectric patches of the clamped-free piezoelectric beam with a thin lamina.

patches were used to estimate the short- and open-circuit resonance frequencies, and the capaci-
tance of the patches was measured with a multimeter. All these parameters are reported in Table 5.
From there on, the approaches outlined in Figs. 2 and 3 were followed, and the obtained admit-
tances were emulated by a DVA. Delay-induced instabilities were also suppressed using the method
described in [37].

fsc,1 foc,1 Kc,1 fsc,2 foc,2 Kc,2 Cεp
31.36 Hz 31.49 Hz 0.091 144.55 Hz 144.92 Hz 0.072 99 nF

Table 5: Parameters of the experimental setup.
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Figure 11: Experimental FRF of the beam with open-circuited patches ( ) and controlled with a shunt with ideal
Thévenin’s impedance (a) and ideal Norton’s admittance (b): r1 = 0.1, r2 = 0.9 ( ), r1 = 0.5, r2 = 0.5 ( ) and
r1 = 0.9, r2 = 0.1 ( ). Thick gray lines indicate the FRF of the beam controlled with single-mode series (a) or
parallel (b) RL shunts.

The ideal impedance and admittance described in Section 4.1 were used to obtain the FRFs
featured in Fig. 11, obtained for various values of the residues r1 and r2 = 1−r1. These experimental
results validate the analysis presented in this paper: the DVA is able to control the two modes,
and the control authority over the modes can be traded off with the residues. Moreover, the
performance of the two shunt types is similar, and tends to a single-mode shunt of associated type
on a specific mode when the residue associated to that mode tends to one.
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Figure 12: Experimental attenuation of the two first modes of the beam with a shunt with ideal Thévenin’s
impedance (a) and ideal Norton’s admittance (b): mode 1 ( : prediction [28], -◦-: measurement) and mode 2
( : prediction [28], -◦-: measurement).

A more thorough analysis was pursued by measuring the FRFs for more values of the residues.
All these FRFs are not shown for brevity but Fig. 12 summarizes their information, by providing the
attenuation as a function of r1. The experimental results were compared to the theoretical formula
from [28]. To use this formula, the damping ratio on both modes was estimated from the short-
circuit FRF using the half-power method. Again, an excellent agreement with theory is obtained,
except for small r1. The attenuation in mode 2 is somewhat overestimated by the prediction, which
could be explained by the slightly underdamped appearance of the peaks associated with mode 2
in Fig. 11.

7. Conclusion

The generalization of classical RL shunts to circuits having multiple electrical resonances allows
for the control of multiple structural modes. After reviewing the dynamics of multiple-degree-of-
freedom piezoelectric structures, a sequential specification procedure was proposed to tune the
characteristics of a shunt. The cornerstone of this method consists in approximating the dynamics
of the controlled system by an effective one around a pair of mechanical and electrical resonances,
and leveraging the single-mode formulae. The shunt admittance can then be determined and
emulated by a DVA. The theoretical developments were numerically verified and experimentally
validated on piezoelectric beams.

The proposed approach provides effective mitigation of multiple resonances while being easy to
implement and usable with readily-obtainable experimental measurements. The free parameters
chosen by the designer, i.e., the residues, can also clearly be linked to the performance of the
resulting shunt.

Future works may involve the synthesis and realization of optimal shunts made out of passive
electrical components, as well as the generalization of this work to control with multiple piezoelec-
tric transducers.
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Appendix A. Tuning formulae for single-mode RL shunts

Appendix A.1. Series RL shunt

The optimal tuning of a series RL shunt has been found in [4, 5]. Introducing an intermediate
parameter

r =

√
64− 16K2

c − 26K4
c −K2

c

8
, (A.1)

the optimal frequency ratio is

δ(Kc) =

√
3K2

c − 4r + 8

4K2
c + 4

(A.2)

and the optimal damping ratio is

ζ(Kc) =

√
27K4

c + 80K2
c + 64− 16r (4 + 3K2

c )√
2 (5K2

c + 8)
. (A.3)

Appendix A.2. Parallel RL shunt

The optimal tuning of a parallel RL shunt has been found in [5]. The following parameters are
introduced:

b0 = 64 b1 = −16K2
c

b2 = −64 + 16K2
c + 11K4

c b3 = 2K2
c (8−K2

c )(2−K2
c )

b4 = −2K4
c (2−K2

c )
a6 = 27(b0b

2
3 + b21b4)− 9b2(b1b3 + 8b0b4) + 2b32 a5 = 12b0b4 − 3b1b3 + b22

a4 =
3

√√
a26 − 4a35 + a6

2
a3 =

1

2

√
b21
b20

+
4(a24 + a5 − 2b2a4)

3b0a4

a2 = −8b20b3 − 4b0b1b2 + b31
4b30a3

a1 =
3b21a4 − 2b0(4b2a4 + a24 + a5)

6b20a4

.

(A.4)
Eventually,

r = − b1
4b0

+
a3
2

+

√
a1 + a2

2
, (A.5)

the optimal reluctance frequency ratio is

ν (Kc) =

√
2r −K2

c +
√

16r2 − 4rK2
c +K4

c

6
(A.6)

and the optimal damping ratio is

ς (Kc) =

√√√√ (r − 1)
(
3r − 2K2

c

)

r
(

2r +K2
c −

√
16r2 − 4rK2

c +K4
c

) . (A.7)
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