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specification of the present-value model. To estimate this new high-dimensional model, 

we develop an efficient Markov chain Monte Carlo sampler to simulate from the joint pos- 

terior distribution. We find that real-world stock price bubbles show significant Markov- 

switching structure. Further, the results indicate that dividend growth rates are highly pre- 

dictable. Finally, we find that bubble variation explains a large share of the variation in the 

price-dividend ratio and unexpected return. 
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1. Introduction 

The 2008 meltdown of the global financial market has attracted renewed attention on speculative bubbles among aca- 

demics and policy-makers. Speculative bubbles might be the answer to the question posed by Shiller (1980) : If not dividend

growth or expected returns, what does move prices? When investors share the belief that a variable or a group of variables,

not related to fundamentals, influences prices, it is rational to include this piece of information into prices ( Diba and Gross-

man, 1988 ). In this context, an explosive behaviour of stock prices is still consistent with a rational behaviour of economic

agents. Experimental evidence has also confirmed that bubbles are fueled by symmetrically informed traders ( Asako et al., 

2020 ). Recently, Zheng (2020) has found that investors’ coordination on fundamental strategy impacts the occurrence and 

burst of the bubble. This paper aims at detecting speculative bubbles in stock-price data by jointly studying the return and

dividend dynamics. Specifically, we want to capture the information in the present-value relations among price-dividend 

ratios, expected returns, expected dividend growth rates and an eventual rational bubble. Thus, we contribute to both the 
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present-value literature in the spirit of Campbell and Shiller (1988) , and the literature on the identification of speculative

bubbles. 

Variation through time in the price-dividend ratio on corporate stocks conveys essential information about expected 

returns or expected dividend growth rates ( Campbell and Shiller, 1988 ). Recently, Binsbergen and Koijen (2010) have pio-

neered a latent variables approach to estimate the expected returns and expected dividend growth rates of the aggregate 

stock market. They find that returns and dividend growth rates are predictable with R 2 values ranging from 8.2% to 8.9%

for returns and 13.9% to 31.6% for dividend growth rates. More recently, Choi et al. (2017) have shown that incorporating

regime shifts in the mean of price-dividend ratios into the present value model of Binsbergen and Koijen (2010) increases

in-sample predictability. Another extension of Binsbergen and Koijen (2010) is considered by Piatti and Trojani (2017) , who 

use a latent variables approach to estimate a present-value model with time-varying risk. 

Despite the relevance of the phenomenon of periodically collapsing bubbles in stock prices, present-value approaches 

above do not account for it. This paper proposes to incorporate a speculative bubble subject to a surviving and a collapsing

regime into the state space framework by Binsbergen and Koijen (2010) . Specifically, we contribute to the literature on the

present-value model in the spirit of Campbell and Shiller (1988) by allowing prices to deviate from fundamentals because 

of a latent rational bubble component subject to a surviving and a collapsing regime. Our framework allows us to estimate

expected returns and expected dividend growth rates, as well as to identify bubble’s collapse dates. 

This paper also contributes to the literature on the identification of speculative bubbles. Within the field, empirical papers 

have mainly proposed two different approaches for the detection of bubbles: indirect and direct bubble tests. 1 

The first group of studies is based on the so-called indirect bubble tests. Here, the authors apply sophisticated cointegra- 

tion and unit-root tests to a dividend-price relationship (see, e.g., Bohl, 2003; Bohl and Siklos, 2004; Cerqueti and Costantini,

2011; Chen et al., 2016; Diba and Grossman, 1988; Evans, 1991; Froot and Obstfeld, 1991; Hall et al., 1999; Jiang and Lee,

20 07; Kanas, 20 05; McMillan, 20 07; Phillips et al., 2011; Sarno and Taylor, 2003 ). Among the indirect tests to detect bubbles,

some researchers have proposed a Bayesian approach (see, e.g., Check, 2014; Fulop and Yu, 2017; Li and Xue, 2009; Miao

et al., 2015; Shi and Song, 2014 ). 

The second group of studies, which are more relevant to this work, implements direct tests for speculative bubbles by 

explicitly formulating the existence of a bubble in the alternative hypothesis (see Al-Anaswah and Wilfling, 2011; Balke and 

Wohar, 2009; Lammerding et al., 2013; West, 1987; Wu, 1997 ). The basic idea in the seminal paper of West (1987) is to com-

pare two alternative estimators for the set of parameters needed to compute the expected present discounted values of a 

stock’s dividend stream, where expectations is conditional on current and past dividends. Specifically, West (1987) constructs 

one set of estimates by regressing the stock price on a suitable set of lagged dividends. Instead, the other set of estimates is

obtained using a pair of equations with one being an arbitrage equation yielding the discount rate, and the other being the

ARIMA equation of the dividend process. Then the Hansen and Sargent (1980) formulas may be applied to this pair of equa-

tions to obtain a second set of estimates of the expected present discounted value parameters. Under the null hypothesis of

no-bubble, the two sets of estimates should be the same, apart from sampling error. West (1987) finds that the test usually

rejects the null hypothesis of no bubbles for the US market. More recently, Wu (1997) suggests a state space representation

of the deviations of stock prices from the present-value model in which the bubble is included as an unobservable com-

ponent. In Wu (1997) , dividends are assumed to follow an autoregressive process. The analysis attributes large portions of 

stock price movements to speculative bubbles in the S&P 500. Al-Anaswah and Wilfling (2011) ; Lammerding et al. (2013) ex-

tend the state space model in Wu (1997) by allowing the bubble to switch between two alternative regimes, namely an

explosive and a stationary regime. Al-Anaswah and Wilfling (2011) adopt the methodology of Kim and Nelson (1999) to 

identify regime-switching of speculative bubbles in stock price monthly data. Differently, Lammerding et al. (2013) propose 

a Bayesian approach to estimate the Markov-switching state space model of speculative bubbles in oil price data. This paper 

extends the state space model in Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013) by adding a bubble to the

state space framework of Binsbergen and Koijen (2010) which model expected returns and expected dividend growth rates 

as latent variables. Thus, our state space model includes three latent variables namely, expected returns, expected dividend 

growth rates, and a rational bubble as opposed to one ( Al-Anaswah and Wilfling, 2011; Lammerding et al., 2013; Wu, 1997 ).

Moreover, we adopt a Markov-switching approach to identify the bubble’s collapsing and surviving regimes. In contrast to 

Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013) , we allow regime-switching also in fundamentals. 

Markov-switching models ( Hamilton, 1989 ) have been used extensively in the bubble literature. Driffill and Sola (1998) al-

low fundamentals to switch between alternative regimes in a stock price model which includes an intrinsic bubble. 

Hall et al. (1999) propose a univariate Markov-switching Augmented-Dickey-Fuller test to detect bubble episodes, later ex- 

tended by Shi (2013) to allow for heteroskedasticity. Further, Brooks and Katsaris (2005) show that a three-regime model 

that allows for dormant, explosive and collapsing speculative behaviour can explain the dynamics of the S&P 500. Shi and

Song (2014) propose an infinite hidden Markov model, which allows for an infinite number of regimes to detect, date stamp

and estimate speculative bubbles. In a recent contribution, Fulop and Yu (2017) have developed a new model for real time

bubbles detection where the dynamic structure of the asset price, after the fundamental value is removed, is subject to two

different regimes. 
1 Readers are referred to Gürkaynak (2008) for a survey of econometric tests on asset price bubbles. 
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A common drawback of the bubble literature is that rejection of the present-value model that are interpreted as evidence 

of the presence of bubbles can still be explained by alternative structures of the fundamentals. In this paper we mitigate

this issue in two ways. First, we restrict our analysis to rational bubbles which impose fairly strong restrictions on the

dynamics of the bubble component. Hence these restrictions can help us identify the non-fundamental component in the 

data. Second, we use a less restrictive fundamentals model. Indeed, our econometric procedure allows us to analyse a more 

complex model with time-varying discount rates and regime-switching in fundamentals and the bubble. In doing so, we 

allow the fundamentals part to fit the data better, leaving less room for a bubble. This is an improvement with respect

to the model in Al-Anaswah and Wilfling (2011) , which allows regime-switching only in the bubble process and assumes 

constant return rates. Moreover, in their specification the dividend process follows a pure random walk. 

In line with previous research on the identification of speculative bubbles, we employ artificial as well as real-world 

datasets. The artificial bubble processes are defined in the sense of Evans (1991) , whereas the real-world datasets are drawn

from Datastream. We consider 20 years of monthly data (November 1997–October 2017) for the price index, the dividend 

yield and the market value. We use data for five countries: United States, United Kingdom, Malaysia, Japan and Brazil. We

choose this set of countries because of their economic relevance and the severe bubble episodes experienced in the past 

( Kindleberger and Aliber, 2003 ). The advantage of the artificial datasets with respect to real-world data is that the bubbles’

collapse dates are known, hence they allow us to assess the accuracy of our bubble-detection method. For the real-world 

datasets, we rely on what economic historians have classified as bubble periods ( Kindleberger and Aliber, 2003 ). 

In order to estimate this new high-dimensional model, we adopt the Bayesian approach and use Markov chain Monte 

Carlo (MCMC) methods to simulate from the joint posterior distribution. Indeed, when the number of model parameters 

is large, standard maximum likelihood estimation tends to be numerically unstable and may result in estimates that are 

locally, but not globally, maximal. In contrast, MCMC methods are numerically more robust and can handle a large number 

of parameters and latent variables. In addition, one novel feature of our implementation is that it builds upon the band

and sparse matrix algorithms for state space models developed in Chan and Jeliazkov (2009) , McCausland et al. (2011) and

Chan (2013) , which are shown to be more efficient than the conventional Kalman filter-based algorithms. 

We find that our new bubble-detection method is able to correctly identify 92.27% of all the bubble collapsing dates 

in the artificial datasets. Moreover, it never signals a bubble when there is none in the price process. These results rep-

resent an improvement with respect to the methodology discussed in Al-Anaswah and Wilfling (2011) which correctly 

identifies around 50% of all the bubble collapsing dates. Also, we find that our framework is able to identify most of the

bubble periods classified as such by Kindleberger and Aliber (2003) . Consistent with Al-Anaswah and Wilfling (2011) and 

Lammerding et al. (2013) , we document the existence of statistically significant Markov-switching in the data-generating 

process of real-world stock price bubbles. 

Our framework is also able to predict dividend growth rates as well as returns with R 2 values ranging from 74.07% to

78.89% for dividend growth rates and 4.04% and 20.71% for returns in the artificial datasets. In the real-world datasets, the

R 

2 values for dividend growth rates are quite high, the highest value is recorded for the US where it is equal to 70.49% 

while the lowest value is registered for Brazil where it is equal to 49.10%. However, the R 2 values for returns are less than

1% with the exception of Brazil where it is above 3%. 

We show that present-value models should not ignore the bubble component of stock prices. Indeed, we find that in 

the surviving bubble regime most of the variation in the price-dividend ratio is related to the bubble variation. Specifically, 

bubble variation accounts for more than 50% of the price-dividend variation in all the countries under study with the ex- 

ception of Brazil where it accounts for about 36%. Further, bubble variation explains also a large share of unexpected return

variation in the surviving bubble regime. 2 

The paper is structured as follows: next section reviews the present-value model by Campbell and Shiller (1988) . In

Section 3 , we present the econometric model, and Section 4 discusses the posterior sampler. In Section 5 , we present the

data sources and some descriptive statistics. Section 6 discusses the results, and Section 7 concludes. 

2. Economic model 

In this section we briefly review the log-linearized present-value model in the spirit of Campbell and Shiller (1988) in

which both expected returns and expected dividend growth rates are treated as latent variables as suggested by 

Binsbergen and Koijen (2010) . 

Let denote with pd t and �d t+1 respectively the log price-dividend ratio and the log dividend growth rate 

pd t ≡ log 

(
P t 
D t 

)
, 

�d t+1 ≡ log 

(
D t+1 

D t 

)
. 
2 This result is consistent with Balke and Wohar (2009) which find that the bubble component is substantially important in explaining fluctuations in 

the log price-dividend ratio when there are no permanent components in market fundamentals. 

3 
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The log gross return, denoted as r t+1 , is defined as follows 

r t+1 ≡ log 

(
P t+1 + D t+1 

P t 

)
= log 

(
P t+1 + D t+1 

)
− log 

(
P t 
)
. (1) 

Eq. (1) is nonlinear since it involves the log of the sum of price and dividend. However, using the first order Taylor

expansion it can be well approximated by 

r t+1 � κ + ρpd t+1 + �d t+1 − pd t , (2) 

where κ and ρ are parameters of linearizations, κ = log (1 + exp( p̄d )) − ρ p̄d and ρ = 

exp( ̄pd ) 

1+ exp( ̄pd ) 
, p̄d = E [ pd] ( Campbell and 

Shiller, 1988 ). 

Iterating forward Eq. (2) and imposing the transversality condition, we obtain the unique no-bubble solution 

pd f t = 

κ

1 − ρ
+ 

∞ ∑ 

j=1 

ρ j−1 E t [�d t+ j − r t+ j | �t ] , (3) 

where �t denotes the economic agents’ information set at time t . Similar to Binsbergen and Koijen (2010) , we assume that

both expected returns ( μt ≡ E t [ r t+1 | �t ] ) and expected dividend growth rates ( g t ≡ E t [�d t+1 | �t ] ) follow an AR(1) process

μt+1 = δ0 + δ1 (μt − δ0 ) + εμ
t+1 

, (4) 

g t+1 = γ0 + γ1 (g t − γ0 ) + εg 
t+1 

. (5) 

The dividend growth rate and the return rate are respectively equal to their expected value plus an orthogonal shock: 

�d t+1 = g t + εd 
t+1 , (6) 

r t+1 = μt + εr 
t+1 . (7) 

Assuming that lim j→∞ 

ρ j pd t+ j = 0 and taking expectations conditional upon time t we obtain the fundamental price- 

dividend ratio: 

pd f t = 

κ
1 −ρ + 

∑ ∞ 

j=1 ρ
j−1 E t 

[
�d t+ j − r t+ j 

∣∣�t 

]
= 

κ
1 −ρ + 

∑ ∞ 

j=1 ρ
j−1 E t 

[
g t+ j−1 − μt+ j−1 

∣∣�t 

]
= 

κ
1 −ρ + 

∑ ∞ 

j=0 ρ
j E t 

[
g t+ j − μt+ j 

∣∣�t 

]
= 

κ
1 −ρ + 

∑ ∞ 

j=0 ρ
j E t 

[
γ0 + γ j 

1 ( g t − γ0 ) − δ0 − δ j 
1 ( μt − δ0 ) 

∣∣�t 

]
= 

κ
1 −ρ + 

γ0 −δ0 

1 −ρ + 

∑ ∞ 

j=0 ρ
j E t 

[
γ j 

1 ( g t − γ0 ) − δ j 
1 ( μt − δ0 ) 

∣∣�t 

]
= 

κ
1 −ρ + 

γ0 −δ0 

1 −ρ + 

g t −γ0 

1 −ργ1 
− μt −δ0 

1 −ρδ1 
, 

(8) 

which uses 

E t [ x t+ j ] = α0 + α j 
1 
(x t − α0 ) , (9) 

provided that 

x t+1 = α0 + α j 
1 
(x t − α0 ) + εt+1 . (10) 

Finally, the fundamental price-dividend ratio can be written 

pd f t = A − B 1 ̂  μt + B 2 ̂  g t , (11) 

where A = 

κ−δ0 + γ0 
1 −ρ , B 1 = 

1 
1 −ρδ1 

, B 2 = 

1 
1 −ργ1 

, ˆ μt = μt − δ0 , and ˆ g t = g t − γ0 . 

It is important to stress that if the transversality solution does not hold, the no-bubble solution pd f in (11) represents

only a particular solution to the difference Eq. (2) , and the general solution has the form 

pd t = pd f t + b t . (12) 

where b t is a rational speculative bubble, that is a deviation of the stock price from fundamentals generated by extraneous

factors or rumors and driven by self-fulfilling expectations. The bubble component of the price-dividend ratio satisfies the 

homogeneous difference equation 

E t [ b t+ i | �t ] = 

b t 

ρ i 
. (13) 

In line with the literature (i.e., Al-Anaswah and Wilfling, 2011; Lammerding et al., 2013; Wu, 1997 ), we assume that the

bubble component follows a linear AR(1) process 

b t+1 = 

b t 

ρ
+ εb 

t+1 , εb � N(0 , σ 2 
b ) . (14) 
4 
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When estimating the price-dividend Eq. (12) , we are confronted with the problem that expected returns, expected div- 

idend growth rates, and the bubble component are unobservables. Hence, we have to express our model in state space 

form. 

3. Econometric model 

Bubbles are empirically plausible only if they are likely to collapse after reaching high levels. For instance, Al- 

Anaswah and Wilfling (2011) and Lammerding et al. (2013) allow the bubble in the present-value model in Wu (1997) to

switch between two alternative regimes: an explosive and a stationary regime. Using both stock and oil price data, they 

document statistically significant Markov-switching between these two regimes. Their findings motivate us to extend the 

present-value model of Binsbergen and Koijen (2010) to incorporate a speculative bubble that switches between two 

regimes. The two regimes aim to represent the two distinct phases in the bubble process, namely, one in which the bubble

survives and one in which it collapses. 

Differently from Al-Anaswah and Wilfling (2011) , we allow all the model parameters in the bubble and fundamentals 

equations to switch between two distinct regimes S t ∈ { 1 , 2 } . The regime indicator S t , which is independent of all the other

shocks in our model, is governed by a first-order Markov process with constant transition probabilities, 

� = 

(
p 11 1 − p 11 

1 − p 22 p 22 

)
, 

where p 11 = P (S t = 1 | S t−1 = 1) and p 22 = P (S t = 2 | S t−1 = 2) are between 0 and 1. 

By the end of time t or at the beginning of time t + 1 , economic agents observe S t but not future states. Thus, economic

agents’ information set at the end of time t is specified as 

�t = { I t ; S t } , (15) 

where I t consists of the observed data up to time t . 

The model transition equations can be written as: 

ˆ g t = γ1 ,S t+1 ̂
 g t−1 + εg 

t , 

ˆ μt = δ1 ,S t+1 
ˆ μt−1 + εμ

t , 

b t = 1 /ρS t+1 
b t−1 + εb 

t . 

(16) 

The dividend growth rate is then equal to 

�d t+1 = γ0 ,S t+1 
+ 

ˆ g t + εd 
t+1 , (17) 

and the price-dividend equation is 

pd t+1 = A S t+1 
+ B 2 ,S t+1 ̂

 g t+1 − B 1 ,S t+1 
ˆ μt+1 + b t+1 

= A S t+1 
+ B 2 ,S t+1 ̃

 γ1 ,S t+1 ̂
 g t − B 1 ,S t+1 

˜ δ1 ,S t+1 
ˆ μt + 1 / ̃  ρS t+1 

b t + B 2 ,S t+1 
εg 

t+1 

−B 1 ,S t+1 
εμ

t+1 
+ εb 

t+1 + εe 
t+1 , 

(18) 

where, for i, j ∈ { 1 , 2 } and j � = i, we have defined: 

˜ γ1 ,S t+1 
= E t+1 [ γ1 ,S t+2 

| S t+1 = i ] = p ii γ1 ,i + (1 − p ii ) γ1 , j , 

˜ δ1 ,S t+1 
= E t+1 [ δ1 ,S t+2 

| S t+1 = i ] = p ii δ1 ,i + (1 − p ii ) δ1 , j , 

˜ ρS t+1 
= E t+1 [ ρS t+2 

| S t+1 = i ] = p ii ρ1 ,i + (1 − p ii ) ρ1 , j . 

(19) 

Notice that we have added to the equation for the price-dividend an orthogonal error εe 
t+1 

. Indeed when we substitute 

the transition variables at t + 1 , we are confronted with the fact that next period regime is unknown. Hence, we use their

expectation conditioned on the information available at time t + 1 which generate an error, measured by εe 
t+1 

. 

In line with Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013) , we express the price-dividend equation in

first difference to circumvent nonstationarity problems: 

�pd t+1 = A S t+1 
− A S t + (B 2 ,S t+1 ̃

 γ1 ,S t+1 
− B 2 ,S t ) ̂  g t − (B 1 ,S t+1 

˜ δ1 ,S t+1 
− B 1 ,S t ) ̂  μt + 

(1 / ̃  ρS t+1 
− 1) b t + B 2 ,S t+1 

εg 
t+1 

− B 1 ,S t+1 
εμ

t+1 
+ εb 

t+1 + εe 
t+1 . 

(20) 

Concerning the return process, approximation (2) together with Eq. (12) imply that the return shock has the following 

form: 

εr 
t+1 = εd 

t+1 + ρε pd 
t+1 

, (21) 

where εpd 
t+1 

= B 2 ε
g 
t+1 

− B 1 ε
μ
t+1 

+ εb 
t+1 

. Since the series of market returns is fully described by the dividend growth rates and

the price-dividend ratio, we omit it from our state space specification. Let αt denote the 7 × 1 vector of unobservable vari-

ables, and y t be the 2 × 1 vector of observable variables: 

αt+1 = 

(
ˆ g t ˆ μt b t εg 

t+1 
εμ

t+1 
εd 

t+1 εb 
t+1 

)′ 
, y t+1 = 

(
�d t+1 �pd t+1 

)′ 
. 
5 
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We can now express the model in matrix form: 

αt+1 = G S t+1 
αt + �ξt+1 , 

y t+1 = M S t+1 ,S t + Z S t+1 ,S t αt+1 + ηt+1 . 
(22) 

where α1 ∼ N(0 , �V 1 �
′ ) , G, M, and Z are time invariant matrices of the appropriate dimensions, and ξt and ηt are (4 × 1)

and (2 × 1) vector of disturbances, respectively 

ξt+1 = 

(
εg 

t+1 
εμ

t+1 
εd 

t+1 εb 
t+1 

)′ 
, ηt+1 = 

(
0 εe 

t+1 

)′ 
, 

with 

ξt ∼ N(0 , V S t ) , 

ηt ∼ N(0 , R S t ) . 

The model matrices are defined as follows: 

G S t = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

γ1 ,S t 0 0 1 0 0 0 

0 δ1 ,S t 0 0 1 0 0 

0 0 1 /ρS t 0 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, � = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, �S t = 

⎛ 

⎝ 

σ 2 
g,S t 

σgμ,S t σgd,S t 

σgμ,S t σ 2 
μ,S t 

σμd,S t 

σgd,S t σμd,S t σ 2 
d,S t 

⎞ 

⎠ , 

V S t = 

(
�S t 0 

0 σ 2 
b,S t 

)
, R S t = 

(
0 

σ 2 
e,S t 

)
, M S t ,S t−1 

= 

(
γ0 ,S t 

A S t − A S t−1 

)
, 

Z S t ,S t−1 
= 

(
1 0 0 0 0 1 0 

B 2 ,S t ˜ γ1 ,S t − B 2 ,S t−1 
−B 1 ,S t 

˜ δ1 ,S t + B 1 ,S t−1 
1 / ̃  ρS t − 1 B 2 ,S t −B 1 ,S t 0 1 

)
. 

Given that the bubble process is exogenous, we have assumed σgb = σμb = σdb = 0 . 

4. Bayesian estimation 

In this section we describe a Bayesian approach for estimating our Markov-switching state space model. Since the num- 

ber of model parameters is quite large, standard maximum likelihood estimation tends to be numerically unstable and may 

result in estimates that are locally, but not globally, maximal. For this reason we apply MCMC methods which are numer-

ically more robust. A key novel feature of our approach is that it builds upon the band and sparse matrix algorithms for

state space models developed in Chan and Jeliazkov (2009) , McCausland et al. (2011) and Chan (2013) , which are shown to

be more efficient than conventional Kalman filter-based algorithms. 

In what follows we use the index i to denote the regime, i ∈ { 1 , 2 } . There are two sets of regime-specific parameters.

When it does not cause confusion, we would drop the regime index i . For estimation, we split the latent states and model

parameters into 7 blocks: states α, covariance matrices �i , variances ( σ 2 
b,i 

, σ 2 
e,i 

), parameters �1 = (γ0 , 1 , δ0 , 1 , γ0 , 2 , δ0 , 2 ) , �2 =
(ρ1 , γ1 , 1 , δ1 , 1 , ρ2 , γ1 , 2 , δ1 , 2 ) , 

3 regime indicators S, and Markov regime-switching probabilities p 11 and p 22 . 

We assume the following prior distributions: i. �i ∼ IW (ν01 , S 01 ) ; ii. σ
2 
k,i 

∼ IG (ν02 , S 0 k ) , k = { b, e } ; iii. �1 ∼ N( �1 , V �1 
) ;

iv. �2 ∼ N( �2 , V �2 
) ; v. p 11 ∼ Beta (u 11 , u 12 ) , and p 22 ∼ Beta (u 22 , u 21 ) . For brevity, we use � to denote the vector (�1 , �2 ) . 

We define Regime 1 as the bubble surviving regime, while Regime 2 represents the bubble collapsing regime. The main 

model parameter is ρ, which governs the growth rate of the bubble process. When ρ increases, the bubble’s growth rate 

decreases. In particular, when ρ ≤ 1 , the bubble is explosive; when ρ > 1 , the bubble follows a stationary AR(1) process. We

assume a Normal prior for ρ with mean equal to 0.75 in Regime 1 and 1.25 in Regime 2. For other parameters we assume

the same priors across the two regimes. The values of the hyperparameters are informed by the the estimation results of

previous studies ( Binsbergen and Koijen, 2010; Choi et al., 2017; Piatti and Trojani, 2017 ). Finally, we adopt a conjugate prior

Beta (15 , 1) for the transition probabilities p 11 and p 22 . Table 1 summarizes the priors and starting values for the MCMC

algorithm. 

We implement the following 7-block Metropolis-within-Gibbs sampler to simulate from the joint posterior distribution: 

1. Sample from f (α| Y, �, �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ) . 

It can be shown that the full conditional distribution of α is Gaussian. As a first step, we rewrite the transition and the

measurement equations in matrix form: 

H G α = 

˜ �ξ, ˜ �ξ ∼ N(0 , W ) , (23) 
3 The parameter of linearization κ is expressed as a function of ρ; κ(ρ) = log (1 + exp( p̄d )) − ρ p̄d , where p̄d is the unconditional expected price-dividend 

ratio. We set it equal to the sample average of the price-dividend ratio of each dataset. 
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Table 1 

Priors and Starting values. 

Parameters Regime 1 Regime 2 

Prior Starting value Prior Starting value 

� IW (3 + 2 , 0 . 01 ∗ I 3 ) 0 . 001 ∗ I 3 IW (3 + 2 , 0 . 01 ∗ I 3 ) 0 . 001 ∗ I 3 
σ 2 

b 
IG (5 , 0 . 04) 0.001 IG (5 , 0 . 04) 0.001 

σ 2 
e IG (5 , 0 . 0 0 04) 0.001 IG (5 , 0 . 0 0 04) 0.001 

ρ N(0 . 75 , 0 . 05 2 ) 0.900 N(1 . 25 , 0 . 05 2 ) 1.100 

γ0 N(0 . 00 , 0 . 05 2 ) 0.000 N(0 . 00 , 0 . 05 2 ) 0.000 

γ1 N(0 . 50 , 0 . 05 2 ) 0.500 N(0 . 50 , 0 . 05 2 ) 0.500 

δ0 N(0 . 02 , 0 . 05 2 ) 0.000 N(0 . 02 , 0 . 05 2 ) 0.000 

δ1 N(0 . 80 , 0 . 05 2 ) 0.800 N(0 . 80 , 0 . 05 2 ) 0.800 

p 11 , p 22 Beta (15 , 1) 0.800 

 

 

 

 

Y = 

˜ M + H Z α + η, η ∼ N(0 , �) , (24) 

where H G = ( 

I 7 
−G S 2 

I 7 
. . . 

. . . 

−G S T 
I 7 

) , W = ( 

�V S 1 �
’ 

�V S 2 �
’ 

. . . 

�V S T �
’ 

) 

H Z = 

⎛ 

⎜ ⎜ ⎝ 

Z S 1 ,S 0 
Z S 2 ,S 1 

. . . 

Z S T ,S T−1 

⎞ 

⎟ ⎟ ⎠ 

, � = 

⎛ 

⎜ ⎜ ⎝ 

R S 1 

R S 2 

. . . 

R S T 

⎞ 

⎟ ⎟ ⎠ 

α = 

⎛ 

⎝ 

α1 

. . . 
αT 

⎞ 

⎠ , ˜ � = 

⎛ 

⎝ 

�
. . . 
�

⎞ 

⎠ , ξ = 

⎛ 

⎝ 

ξ1 

. . . 
ξT 

⎞ 

⎠ , Y = 

⎛ 

⎝ 

y 1 
. . . 

y T 

⎞ 

⎠ , ˜ M = 

⎛ 

⎝ 

M S 1 ,S 0 

. . . 
M S T ,S T−1 

⎞ 

⎠ , η = 

⎛ 

⎝ 

η1 

. . . 
ηT 

⎞ 

⎠ . 

Then, 4 the conditional posterior [ α| Y, �, �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ] ∼ N( ̂  α, P −1 ) , where 

P = H 

′ 
G W 

−1 H G + H 

′ 
Z �

−1 H Z , 

ˆ α = P −1 (H 

′ 
Z �

−1 
(
Y − ˜ M 

)
) . 

(25) 

To simulate from N( ̂  α, P −1 ) , we first obtain the Cholesky factor C of P such that C ′ C = P . Then, given u ∼ N(0 , I) , we

solve Cx = u for x by back substitution and take α = ˆ α + x . It can be shown that α ∼ N( ̂  α, P −1 ) ; see, e.g., Chan and

Jeliazkov (2009) . 

2. Sample from f (�| y, α, �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ) . This step is standard as � follows an Inverse-Wishart distribution: 

[
�i 

∣∣y, α, �, σ 2 
b , σ

2 
e , S, p 11 , p 22 

]
∼ IW 

( 

ν01 + 

T ∑ 

t=1 

I ( S t = i ) , S 01 + 

T ∑ 

t=1 

(
e t e 

’ 
t 

)
I ( S t = i ) 

) 

, 

where IW stands for the Inverse-Wishart distribution, e t = (εg 
t , ε

μ
t , ε

d 
t ) . 

3. Sample from f (σ 2 
k 
| y, α, �, �, S, p 11 , p 22 ) , k = { b, e } . This step is standard as each of the variances follows an Inverse-

Gamma distribution: 

[ σ 2 
k,i | y, α, �, �, S, p 11 , p 22 ] ∼ IG 

(
ν02 + 

∑ T 
t=1 I (S t = i ) 

2 

, S 0 k + 

∑ T 
t=1 (ε

k 
t ) 

2 
I (S t = i ) 

2 

)
, 

where IG stands for the Inverse-Gamma distribution. 

4. Sample from f ( �1 | y, α, �2 , �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ) . This step is also standard as �1 follows a Normal distribution. To see

that, we first write the measurement equation as 

y t = M S t ,S t−1 
+ (Z S t ,S t−1 

G S t ) αt−1 + Z S t ,S t−1 
�ξt + ηt . (26) 
4 Note that the first three diagonal elements of �V S t �
′ are zero, hence matrix W is singular. We substitute the zero elements with 10 −8 in order to 

preserve the invertibility of W . 
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We can then express the constant term M S t ,S t−1 
as M S t ,S t−1 

= C S t ,S t−1 
+ X S t ,S t−1 

�1 , where C S t ,S t−1 
= (

0 , κ(ρS t ) / (1 − ρS t ) − κ(ρS t−1 
) / (1 − ρS t−1 

) 
)′ 

, 

X 1 , 1 = 

(
1 0 0 0 

0 0 0 0 

)
, X 1 , 2 = 

(
1 0 0 0 

1 
1 −ρ1 

− 1 
1 −ρ1 

− 1 
1 −ρ2 

1 
1 −ρ2 

)
, 

X 2 , 2 = 

(
0 0 1 0 

0 0 0 0 

)
, X 2 , 1 = 

(
0 0 1 0 

− 1 
1 −ρ1 

1 
1 −ρ1 

1 
1 −ρ2 

− 1 
1 −ρ2 

)
. 

Using standard linear regression results, one can show that the conditional posterior is 

[�1 | y, α, �2 , �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ] ∼ N( ̂  �1 , K �1 
) , where 

K �1 
= 

(
V 

−1 
�1 

+ 

˜ X 

’ �−1 ˜ X 

)−1 
, 

ˆ �1 = K �1 

(
V 

−1 
�1 

�1 + 

˜ X 

’ �−1 
(
Y − ˜ C − H ZG α

))
. 

(27) 

The matrix ˜ X is a 2 T × 4 matrix ˜ X = (X S 1 ,S 0 , ..., X S T ,S T−1 
) ′ , ˜ C = (C S 1 ,S 0 , ..., C S T ,S T−1 

) ′ , and Y, α are the stacked vectors of y t 
and αt respectively, H ZG and � are defined as: 

H ZG = 

⎛ 

⎜ ⎜ ⎝ 

0 

Z S 2 ,S 1 G S 2 0 

. . . 
. . . 

Z S T ,S T−1 
G S T 0 

⎞ 

⎟ ⎟ ⎠ 

, 

� = 

⎛ 

⎜ ⎝ 

(
Z S 1 ,S 0 

(
�V S 1 �

’ 
)
Z ’ S 1 ,S 0 + R S 1 

)
. . . (

Z S T ,S T−1 

(
�V S T �

’ 
)
Z ’ S T ,S T−1 

+ R S T 

)
⎞ 

⎟ ⎠ 

. 

5 

5. Sample from f ( �2 | Y, α, �1 , �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ) . Since this conditional distribution is nonstandard, we sample �2 us-

ing an adaptive Random Walk Metropolis-Hastings algorithm ( Roberts and Rosenthal, 2009 ). In particular, we update 

each element of �2 at a time. Given the current draw �(s ) 
2 

, we update the j-th variable by adding a normal random

variable centered at zero to obtain the candidate draw �∗
2 
. 6 The candidate is then accepted with probability 

a (�(s ) 
2 

;�∗
2 ) = min 

{ f (�2 = �∗
2 | Y, α, �1 , �, σ 2 

b 
, σ 2 

e , S, p 11 , p 22 ) 

f ( �2 = �(s ) 
2 

| Y, α, �1 , �, σ 2 
b 
, σ 2 

e , S, p 11 , p 22 ) 
, 1 

} 

. (28) 

We impose stationarity conditions for expected dividend growth rates and expected returns, i.e., −1 < γ1 < 1 , −1 < δ1 <

1 . 

6. Sample from f (S| Y, α, �, �, σ 2 
b 
, σ 2 

e , p 11 , p 22 ) . This step can be done using the algorithm proposed by Chib (1996) ; see

also Kim and Nelson (1999) . Specifically, we use the following decomposition of the joint conditional density: 7 

f (S| Y, α) = f (S T | Y, α) 
T −1 ∏ 

t=1 

f (S t | S t+1 , Y 1: t , α1: t ) , (29) 

where Y 1: t denotes all the data up to time t, and α1: t is similarly defined. 

To compute each of these conditional distributions, we first run the Hamilton filter ( Hamilton, 1989 ) to get the filtered

distributions f (S t | Y 1: t , α1: t ) , t = 1 , 2 , ..., T . The last iteration of the filter provides f (S T | Y, α) . More specifically, these fil-

tered distributions are defined by 

f (S t | Y 1: t , α1: t ) ∝ f (y t | S t , αt−1 , y t−1 ) f (S t | Y 1: t−1 , α1: t−1 ) , 

where f (y t | S t , αt−1 , y t−1 ) is a multivariate normal distribution defined by the model. 

Then, the conditional distribution f (S t | S t+1 , Y 1: t , α1: t ) can be computed by using: 

f (S t | S t+1 , Y 1: t , α1: t ) ∝ f (S t+1 | S t ) f (S t | Y 1: t , α1: t ) , 
5 The matrix �V S t �
′ is singular as the first three diagonal elements are zero. To avoid numerical problems, we substitute them with 10 −8 . 

6 For the first batch of 50 iterations, we update each variable j by adding a N(0 , 0 . 1 2 ) distributed random variable. Then, after the lth batch of 50 

iterations, we update the logarithm of the standard deviation of the proposed normal increment log (s j ) , by adding or subtracting an adaptation amount 

δ(l) = min (0 . 01 , l −1 / 2 ) . Specifically, if the fraction of acceptances of variable j was greater than 0.44 on the lth batch, we increase log (s j ) by δ(l) ; otherwise 

we decrease it by the same amount. Note that Roberts et al. (1997) and Roberts et al. (2001) show that in various one-dimensional settings the optimal 

acceptance rate is around 0.44. 
7 For notational convenience, in what follows we suppress the dependence on the model parameters. 
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where f (S t+1 | S t ) is the transition probability and f (S t | Y 1: t , α1: t ) is calculated using the Hamilton filter as described above.

Note that the probability P r(S t = 2 | S t+1 , Y 1: t , α1: t ) can be obtained after the normalization: 

P r(S t = 2 | S t+1 , Y 1: t , α1: t ) = 

f (S t+1 | S t = 2) f (S t = 2 | Y 1: t , α1: t ) ∑ 2 
j=1 f (S t+1 | S t = j) f (S t = j| Y 1: t , α1: t ) 

. (30) 

Finally, to obtain a draw from f (S t | S t+1 , Y 1: t , α1: t ) , we generate a random number from a uniform distribution between

0 and 1. If the generated number is less than P r(S t = 2 | S t+1 , Y 1: t , α1: t ) , we set S t = 2 ; otherwise we set it equal to 1. 

7. Sample from f (p 11 , p 22 | Y, α, �, �, σ 2 
b 
, σ 2 

e , S) . 

Conditional on S, the transition probabilities p 11 and p 22 are independent of the data y, the state variables α, and other

model parameters. 

Since we choose conjugate priors for both p 11 and p 22 , we only need to calculate the number of switches between the

regimes in order to derive the posterior distributions of p 11 and p 22 . The posterior distributions are two independent

beta distributions: 

p 11 ∼ Beta (u 11 + n 11 , u 12 + n 12 ) , p 22 ∼ Beta (u 22 + n 22 , u 21 + n 21 ) , 

where n i j refers to the transitions from state i to j; i, j ∈ { 1 , 2 } . 
5. Data and descriptive statistics 

We apply our two-regime Markov-switching state space model to artificial as well as real-world datasets. The artificial 

bubble processes are defined in the sense of Evans (1991) , whereas the real-world datasets are drawn from Datastream. For

computational reasons we focus our analysis on the last 20 years of monthly data (November 1997–October 2017) for the 

price index (PI), the dividend yield (DY) and the market value (MV). 8 We use data for five countries: United States (US),

United Kingdom (UK), Malaysia (MY), Japan (JP) and Brazil (BR). We choose this set of countries because of their economic

relevance and the severe bubble episodes experienced in the past ( Kindleberger and Aliber, 2003 ). Moreover, this allow us

to compare our results with those of previous studies. The model can also be used to study bubbles in investment styles

such as industry, size and value, and in individual stocks. The model can be applied to stocks not paying dividends, however

it needs to use alternative measures of fundamentals such as earnings. 

5.1. Simulated datasets 

Evans (1991) considers a class of rational bubbles that are positive and periodically collapsing defined as follows: 

B t+1 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

B t 
1+ r u t+1 if B t ≤ λ

(
δ + 

1+ r 
π

(
B t − δ

1+ r 
)
θt+1 

)
u t+1 if B t > λ, 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(31) 

where δ and λ are real positive parameters such that 0 < δ < λ(1 + r) . The variable u t is assumed to be independent and

identically distributed (iid) lognormally with unit mean. Specifically, we assume u t = exp (x t − τ 2 / 2) with x t iid N(0 , τ 2 ) .

The process θt is an exogenous iid Bernoulli process which assumes the value 1 with probability π and the value 0 with

probability 1 − π, 0 < π ≤ 1 . The parameters δ, λ, and π govern the frequency with which bubbles erupt, the scale of the

bubble and the average length of time before collapse. 

As long as the bubble process is below λ, the bubble grows at the mean rate 1 + r. When B t > λ the bubble grows at the

faster mean rate (1 + r) π−1 and it can collapse with a probability 1 − π in each period. Whenever the bubble collapses, it

falls to δ and the process starts again. For the sake of comparison, we use the parameter specifications of the Evans-bubble

process adopted by Al-Anaswah and Wilfling (2011) (see Panel A of Table 2 ). 

We simulate expected returns and expected dividend growth rates according to Eqs. (4) and (5) respectively. We use 

Eqs. (6) and (11) to generate the dividend growth rate and the fundamental price-dividend ratio series. We generate the 

bubble stock price-dividend ratio by adding the logarithm of the Evans-bubble (31) to the fundamental price-dividend ratio: 

pd t = pd f t + log (B t ) . (32) 

Fig. 1 shows a realization for the log-price-dividend ratio and the log-Evans-bubble. 

Finally, the time series of returns is built from the series of the dividend growth rate and the price-dividend ratio using

approximation (2) . In Panel B of Table 2 we present the parameters used for generating the time-series of our state space

model. We generate five artificial datasets with either 100 or 200 observations, for space constraint we report only the 

results for the biggest datasets of 200 observations. 
8 We use monthly data as we aim to also identify bubble episodes with a duration shorter than a year, which could not be identified with annual 

data. However, we refrain from using data at a higher frequency because they are generally more noisy, making it more difficult to identify the two 

bubble regimes. Moreover, historical bubble episodes documented by economic historians have typically lasted for at least a few months ( Kindleberger and 

Aliber, 2003 ). 
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Table 2 

Parameter specification for artificial datasets. 

Parameters Values 

Panel A: Evans-bubble process parameters 

λ 1.000 

τ 2 0.0025 

r 0.0500 

δ 0.5000 

B 0 0.5000 

π 0.5000 

# observations 100 or 200 

Panel B: state space model parameters 

Regime 1 Regime 2 

γ0 0.0500 0.0100 

δ0 0.0100 0.0500 

κ 1.8600 0.1500 

ρ 0.5000 1.0500 

γ1 0.6000 0.5000 

δ1 0.9000 0.7000 

σ 2 
g 0.0010 0.0020 

σ 2 
μ 0.0020 0.0010 

σ 2 
d 

0.0015 0.0015 

σgμ 0.0013 0.0013 

σgd 0.0009 0.0012 

σμd 0.0009 0.0006 

Panel A reports the parameter specification for the Evans-bubble in (31) . Panel B reports the parameters used for gen- 

erating the time-series from Eqs. (4) –(6) , and (11) . 

Fig. 1. Artificial dataset 1. 

 

 

5.2. Real-world datasets 

In line with the literature, we use monthly data on the price index (PI), the dividend yield (DY) and the market value

(MV) for the Datastream country indices for: United States (US), United Kingdom (UK), Malaysia (MY), Japan (JP), and Brazil 

(BR). 9 We consider data from November 1997 to October 2017, a total of 20 years of monthly data. All the data are sourced 

from Datastream (see Appendix Appendix A for further details on the data used). 

Table 3 reports some descriptive statistics for the log-price-dividend ratio of the country indices. The US, the UK and 

Japan have an average log-price-dividend ratio of about 6.50, while the average for Malaysia is 5.08 and 4.26 for Brazil,
9 Datastream country indices include a representative list of stocks for each country. The sample covers a minimum of 75 - 80% of total market capitali- 

sation. Suitability for inclusion is determined by market value and availability of data. 
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Table 3 

Descriptive Statistics of the Log-Price-Dividend ratio. 

United States United Kingdom Malaysia Japan Brazil 

Panel A: Summary statistics 

Mean 6.5562 6.5585 5.0764 6.6452 4.2627 

Std 0.3225 0.2980 0.4924 0.4847 0.8850 

Range 1.9831 1.6619 2.8625 2.4947 3.4539 

Num.obs. 240 240 240 240 240 

Panel B: Correlation matrix 

US 1.0000 

UK 0.7563 1.0000 

MY 0.3726 0.4361 1.0000 

JP 0.5911 0.5195 0.1743 1.0000 

BR 0.0257 0.3348 0.5490 0.3843 1.0000 

This table presents summary statistics and correlations for the price-dividend ratio 

(in log) of the United States, United Kingdom, Malaysia, Japan and Brazil. 

Fig. 2. Price-dividend ratio by country. 

 

 

 

 

 

 

 

 

 

 

with the latter being more volatile. The correlations among the developed countries (US, UK and Japan) are quite high, and

they range from 0.75 between the US and the UK, to 0.52 between Japan and the UK. The price-dividend ratio of Malaysia

is positively correlated with the other countries with the exception for Japan where the correlation is negative. The price- 

dividend ratio of Brazil is negatively correlated to Japan and it shows almost no correlation with the US. 

Fig. 2 shows the time series plot of the price-dividend ratio for the five country indices. The series for Japan hits a

maximum in year 20 0 0, then it decreases and it maintains levels comparable to those of the US and the UK. The price-

dividend ratio for Malaysia and Brazil is lower compared to those of the other economies, and they are highly correlated.

We can observe that all the countries have experienced a sharp drop in the price-dividend ratio in 2008 in correspondence

with the Global Financial Crises. 

6. Results 

We estimate the present-value model in Eqs. (16) to (18) using the MCMC method described in Section 4 . We run a

total of 1,0 0 0,0 0 0 iterations, and discard the first 10 0,0 0 0 as burn-in. To improve the efficiency of the sampler, we perform

thinning every 100 draws. 10 Using the sample of the posterior draws, we report the sample means as point estimates. 95%

credible intervals are constructed using the 2.50% and 97.50% sample quantiles. 

The parameter ρ is the main variable of interest, indeed 1 /ρ is the autoregressive parameter of the bubble process. A 

value of ρ less than one implies that the bubble is explosive, while a value greater than one means that the bubble process
10 Appendix B discusses the efficiency of the Metropolis-within-Gibbs sampler. 
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Table 4 

Parameter estimates – Artificial datasets. 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

Regimes 1 2 1 2 1 2 1 2 1 2 

γ0 0.0469 0.0360 0.0027 0.0039 0.0027 0.0021 0.0305 0.0567 0.0566 0.0454 

δ0 0.0272 0.0159 0.0169 0.0180 0.0175 0.0178 0.0112 0.0369 0.0368 0.0258 

ρ 0.7673 1.3224 0.7619 1.3132 0.7920 1.3296 0.7865 1.2557 0.7716 1.3216 

γ1 0.5793 0.4947 0.5772 0.5249 0.6058 0.5075 0.6062 0.4943 0.5909 0.4868 

δ1 0.8014 0.8552 0.7811 0.8025 0.7546 0.8583 0.8055 0.8316 0.7960 0.8491 

p 11 , p 22 0.8972 0.6750 0.8779 0.6903 0.9170 0.7179 0.9095 0.6784 0.8960 0.6341 

σ 2 
g 0.0012 0.0019 0.0012 0.0016 0.0014 0.0025 0.0013 0.0020 0.0012 0.0018 

σ 2 
μ 0.0017 0.0032 0.0014 0.0037 0.0026 0.0036 0.0015 0.0028 0.0015 0.0030 

σ 2 
d 

0.0039 0.0067 0.0031 0.0073 0.0043 0.0061 0.0043 0.0159 0.0063 0.0101 

σ 2 
b 

0.0115 0.8209 0.0069 0.1200 0.0084 0.0348 0.0090 0.5212 0.0106 0.7752 

σgμ 0.0001 0.0001 0.0002 0.0000 0.0002 0.0001 0.0001 0.0000 0.0001 0.0001 

σgd 0.0005 0.0006 0.0004 0.0006 0.0006 0.0006 0.0005 0.0006 0.0005 0.0008 

σμd 0.0003 0.0002 0.0001 0.0003 0.0000 0.0001 0.0000 0.0001 0.0001 0.0004 

σ 2 
e 0.0018 0.0014 0.0009 0.0012 0.0010 0.0018 0.0014 0.0042 0.0016 0.0026 

We present the estimation results of the present-value model in Eqs. (16) to (18) for the five artificial datasets. The 

model is estimated according to the procedure described in Section 4 . Note that 1 /ρ is the autoregressive parameter of 

the bubble process. When ρ is less than one the bubble is explosive, when it is greater than one the bubble is stable. 

p 11 = P(S t = 1 | S t−1 = 1) and p 22 = P(S t = 2 | S t−1 = 2) are the transition probabilities of the two-regime Markov-switching 

model. 

Table 5 

95% credible intervals - Artificial datasets. 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

ρ1 0.6966 0.8274 0.6710 0.8478 0.6776 0.9310 0.6761 0.8936 0.6979 0.8468 

ρ2 1.2157 1.4234 1.1453 1.4439 1.1516 1.4618 1.0544 1.4300 1.2249 1.4331 

We present the 95% credible intervals for the bubble parameter ρ in Regime 1 ( ρ1 ) and Regime 2 ( ρ2 ). The 95% 

credible intervals consists of the 2.50% and 97.50% quantiles of the posterior distribution of ρ1 and ρ2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is stable. p 11 = P (S t = 1 | S t−1 = 1) and p 22 = P (S t = 2 | S t−1 = 2) are the transition probabilities of the two-regime Markov

process. If p 11 > p 22 , then the bubble surviving regime is more persistent than the bubble collapsing regime. 

Table 4 reports the posterior estimates of the parameters for our state space model for the artificial datasets. The main

variables are presented in bold characters. Table 5 shows the bubble 95% credible intervals for the parameters ρ1 and ρ2 , we

can observe that the two parameters are statistically significant and significantly different from each other. In particular, ρ1 

is significantly less than one, while ρ2 is significantly greater than one, meaning that we correctly find significant regime- 

switch in our artificial datasets. Moreover, in Regime 1 the bubble is explosive while in Regime 2 it collapses. The transition

probability p 11 is always greater than p 22 , suggesting that the surviving bubble regime is more persistent than the collapsing

bubble regime. 

Table 6 reports the posterior estimates of the real-world datasets, while Table 7 shows the 95% credible intervals for the

autoregressive bubble parameter ρ . Again, we observe ρ to be significantly different in the two regimes for all the real-world 

datasets except Malaysia. Moreover, we find that ρ1 is not significantly greater than one and ρ2 is significantly greater than 

one at the 5%-level for the US, the UK, Japan and Brazil. Instead, in Malaysia ρ1 does not appear to be significantly smaller

than 1 at 5%-level, meaning that we do not find statistical significance of an explosive behaviour of the bubble process in this

country. Consistent with Al-Anaswah and Wilfling (2011) , and Lammerding et al. (2013) , we find that the transition probabil-

ity p 11 is always greater than p 22 , meaning that the surviving bubble regime is more persistent than the collapsing bubble

regime in all the real-world datasets. In particular, the probability of remaining in Regime 1 ( p 11 ) is higher than 99% in the

US, the UK and Japan, while in Malaysia it is 98.40% and it equals 97.23% in Brazil. The estimates of the transition prob-

ability p 22 , instead, vary between 80.29% (Brazil) and 92.89% (Japan). These results also imply that the expected duration 

of the surviving regime 1 / (1 − p 11 ) is higher than the expected duration of the collapsing regime 1 / (1 − p 22 ) . Concerning

the remaining model parameters, we find that they are not significantly different across the two regimes. The uncondi- 

tional expected log dividend growth rate ( γ0 ) and the unconditional expected log return ( δ0 ) are not significantly different

from zero. Consistently with Fama and French (1988) , Campbell and Cochrane (1999) , Ferson et al. (2003) , Pástor and Stam-

baugh (2009) , Binsbergen and Koijen (2010) and others, we find expected returns to be highly persistent with a monthly

persistence coefficient ( δ1 ) of above 0.75 for all the datasets. The estimated persistence of expected dividend growth rates 

( γ1 ) instead is generally lower, it ranges between 0.49 and 0.56. Furthermore, shocks to expected dividend growth rates and

expected returns are generally positively correlated. 

We next examine the identification of speculative bubbles, the prediction of returns and dividend growth rates, and the 

variance decomposition of the price-dividend ratio and unexpected returns in Sections 6.1 –6.3 , respectively. 
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Table 6 

Parameter estimates - Real-world datasets. 

United States United Kingdom Malaysia Japan Brazil 

Regimes 1 2 1 2 1 2 1 2 1 2 

γ0 0.0025 0.0007 0.0031 0.0021 0.0011 0.0000 0.0007 0.0003 0.0032 0.0018 

δ0 0.0167 0.0193 0.0161 0.0192 0.0192 0.0195 0.0188 0.0195 0.0170 0.0182 

ρ 0.9331 1.2458 0.9236 1.2385 0.9990 1.2487 0.9407 1.2503 0.8732 1.2182 

γ1 0.5661 0.4911 0.5573 0.4921 0.5536 0.5133 0.5650 0.5007 0.5382 0.5065 

δ1 0.7723 0.7870 0.7527 0.7761 0.8649 0.7926 0.7949 0.7989 0.8331 0.7485 

p 11 , p 22 0.9915 0.9159 0.9905 0.9061 0.9840 0.8777 0.9948 0.9289 0.9723 0.8029 

σ 2 
g 0.0004 0.0069 0.0004 0.0059 0.0004 0.0025 0.0004 0.0085 0.0006 0.0024 

σ 2 
μ 0.0004 0.0072 0.0004 0.0067 0.0004 0.0034 0.0004 0.0098 0.0006 0.0037 

σ 2 
d 

0.0030 0.0115 0.0031 0.0173 0.0044 0.0391 0.0040 0.0117 0.0067 0.1130 

σ 2 
b 

0.0035 0.0106 0.0039 0.0116 0.0047 0.0314 0.0047 0.0103 0.0081 0.0162 

σgμ 0.0001 0.0000 0.0002 0.0005 0.0001 0.0001 0.0001 0.0005 0.0002 0.0002 

σgd 0.0001 0.0000 0.0000 0.0004 0.0000 0.0004 0.0000 0.0002 0.0000 0.0001 

σμd 0.0002 0.0000 0.0002 0.0005 0.0001 0.0002 0.0002 0.0013 0.0003 0.0007 

σ 2 
e 0.0009 0.0011 0.0009 0.0012 0.0012 0.0019 0.0012 0.0010 0.0056 0.0958 

We present the estimation results of the present-value model in Eqs. (16) to (18) for the five real-world datasets. The 

model is estimated according to the procedure described in Section 4 . Note that 1 /ρ is the autoregressive parameter of 

the bubble process. When ρ is less than one the bubble is explosive, when it is greater than one the bubble is stable. 

p 11 = P(S t = 1 | S t−1 = 1) and p 22 = P(S t = 2 | S t−1 = 2) are the transition probabilities of the two-regime Markov-switching 

model. 

Table 7 

95% credible intervals – Real-world datasets. 

United States United Kingdom Malaysia Japan Brazil 

ρ1 0.8254 0.9977 0.8199 0.9918 0.7881 1.2441 0.8591 0.9999 0.7756 0.9960 

ρ2 1.1096 1.3766 1.1010 1.3746 1.0930 1.4092 1.1456 1.3571 1.0323 1.3682 

We present the 95% credible intervals for the bubble parameter ρ in Regime 1 ( ρ1 ) and Regime 2 ( ρ2 ). The 95% 

credible intervals consists of the 2.50% and 97.50% quantiles of the posterior distribution of ρ1 and ρ2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Bubble identification 

In this section, we analyze the smoothed surviving-probabilities P (S t = 1 | �T ) that the bubble process has been in Regime

1 at time t, (t = 1 , ..., T ) , in order to distinguish between dates on which either the surviving bubble Regime 1 or the

collapsing bubble Regime 2 has been in force. The business-cycle literature generally suggests using the following decision 

rule: Regime 1 has been in force if P (S t = 1 | �T ) > 0.50, while Regime 2 has been in force if P (S t = 1 | �T ) ≤ 0.50 (see for

instance Goodwin, 1993 ). However, we expect the bubble process to be in the surviving Regime 1 most of the time, and in

the collapsing Regime 2 only for few short periods. This intuition is confirmed by our results which show that the expected

duration of the surviving Regime 1 is higher than the expected duration of the collapsing Regime 2, moreover it is confirmed

by the findings of Al-Anaswah and Wilfling (2011) , and Lammerding et al. (2013) . Hence, the threshold value of 0.50 may fail

to correctly identify regime switch dates. We follow Al-Anaswah and Wilfling (2011) who suggest to take into consideration 

the first two moments of P (S t = 1 | �T ) . They adopt the threshold value m − 2 sd, where m and sd are respectively the sample

mean and sample standard deviation of { P (S t = 1 | �T ) } (t=1 , ... ,T ) . 

Figs. 3 and 4 display the time series of the smoothed surviving-probabilities and the log-price-dividend for the artificial 

datasets, shaded areas denote bubble collapsing regime dates. Fig. 3 refers to the artificial datasets 1–4. For datasets 1 and

2 our procedure is able to identify eleven out of twelve bubbles. In dataset 3 (third panel Fig. 3 ) we identify twelve out of

fourteen bubbles. The bottom panel of Fig. 3 refers to dataset 4, in this case all the bubbles are detected correctly, and in

dataset 5 ( Fig. 4 ) we can identify twelve out of thirteen bubbles. 

Summing up, as can be seen from the figures above, our methodology correctly identifies 57 out of 62 (92.27%) of all the

bubble collapsing dates in the five artificial datasets. We also observe that our procedure may fail to recognize bubbles of

smaller size, in particular we may fail to identify those bubbles which emerge after a bubble of a bigger size. Further, our

procedure never signals a bubble which has no counterpart in the price process. 

We now turn our attention to the results for the real-world datasets. Fig. 5 graphs the smoothed surviving-probabilities 

and the log-price-dividend ratio for the US. We identify only one collapsing period from October 2008, that is after the

collapse of the investment bank Lehman Brothers, until May 2009. The smoothed surviving-probabilities slightly decrease 

in two episodes at the beginning of the series and again after the 2008 collapse, however the decrease is not sharp enough

to be signaled as a bubble collapse. Consistent with Balke and Wohar (2009) , we cannot say that the decline in stock prices

in the 20 0 0s has been caused by a bubble bursting. Similar comments apply to the United Kingdom ( Fig. 6 ) for which the

series of the price-dividend ratio is strongly correlated with that of the US. 
13 
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Fig. 3. Smoothed Surviving-probabilities and Log-price-dividend - Artificial datasets 1 to 4. 
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Fig. 4. Smoothed Surviving-probabilities and Log-price-dividend - Artificial dataset 5. 

Fig. 5. Smoothed Surviving-probabilities and Log-price-dividend - United States. 

 

 

 

 

For Malaysia ( Fig. 7 ), we observe three clusters of smoothed probabilities indicating collapsing regimes. The first lasts 

from November 1997 until December 1998, the second from May 1999 until October 1999, and the third is in January 20 0 0

which reflect the Asian financial crisis. By end of 1997, Malaysian ratings fell from investment grade to junk. In January

1998, the Malaysian currency (the ringgit) had already lost 50% of its value to the US dollar. The economy started to recover

in 1999. 

Japan ( Fig. 8 ) was affected less significantly by the Asian financial crises. The smoothed surviving-probabilities signal 

collapsing regimes in November 1997 and April 1999. Further, like the US and the United Kingdom, Japan experiences a 

collapse from October to November 2008 in correspondence of the 2008 global financial crises. 

Fig. 9 display the results for Brazil. The smoothed probabilities exhibit some clusters signaling a collapsing regime from 

November 1997 until April 1998, from July 1998 until September 1998, and from December 1999 until January 20 0 0. These
15 
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Fig. 6. Smoothed Surviving-probabilities and Log-price-dividend - United Kingdom. 

Fig. 7. Smoothed Surviving-probabilities and Log-price-dividend - Malaysia. 

 

 

 

episodes reflect the Brazilian stock-market and currency crisis which culminated in a sharp devaluation of the Brazilian 

currency (the real) to the US dollar in 1999. The effect was caused by the 1997 Asian financial crisis which led Brazil to

increase interest rates and to institute spending cuts and tax increases in an attempt to maintain the value of its currency.

The devaluation also precipitated fears that the ongoing economic crisis in Asia would spread to South America, as many 

South American countries were heavily dependent on industrial exports from Brazil. We register also a drop in the smoothed 

surviving-probabilities in May 2001 in correspondence of the Brazil energy crises, and in November 2008, one month after 

the US, the United Kingdom and Japan collapse for the 2008 global financial crises. However, we do not detect a collapsing

regime associated with the 2014 Brazilian economic crises. 
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Fig. 8. Smoothed Surviving-probabilities and Log-price-dividend - Japan. 

Fig. 9. Smoothed Surviving-probabilities and Log-price-dividend - Brazil 

 

6.2. Prediction of returns and dividend growth rates 

We now investigate the in-sample predictability of our state space model. We use the estimated series of expected 

dividend growth rates ( ̂ ˆ g t ) and expected returns ( ̂  ˆ μt ) as if they were observables and we regress them on realized dividend

growth rates and realized returns. 

�d t+1 = αd + βd ̂
 ˆ g t + εd∗

t+1 , 

r t+1 = αr + βr ̂
 ˆ μt + εr∗

t+1 . 
(33) 
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Table 8 

Regression results - Artificial datasets. 

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 

�d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 

Constant 0.0473 ∗∗ 0.1948 ∗∗ 0.001 0.1415 ∗∗ 0.0021 0.1148 ∗∗ 0.0381 ∗∗ 0.0777 ∗∗ 0.0586 ∗∗ 0.0571 

(0.0027) (0.0612) (0.0029) (0.0221) (0.0031) (0.0179) (0.0028) (0.0303) (0.0031) (0.0464) 
ˆ ˆ g t 2.0699 ∗∗ 2.0522 ∗∗ 1.8021 ∗∗ 1.8918 ∗∗ 2.0773 ∗∗

(0.0785) (0.0763) (0.0686) (0.0695) (0.0873) 
ˆ ˆ μt 6.8698 ∗∗ 6.5605 ∗∗ 3.6952 ∗∗ 3.5828 ∗∗ 4.4319 ∗∗

(1.5246) (0.9837) (0.5139) (1.1197) (1.5355) 

R 2 0.7783 0.093 0.7853 0.1834 0.7771 0.2071 0.7889 0.0492 0.7407 0.0404 

Adj. R 2 0.7772 0.0884 0.7842 0.1793 0.776 0.2031 0.7879 0.0444 0.7394 0.0355 

We report regression results for respectively dividend growth rates and returns on their estimated expected values represented by ˆ ˆ g t and 
ˆ ˆ μt . Standard errors are reported in parenthesis. Note: ∗∗ p ≤ 0 . 05 , ∗ p ≤ 0 . 1 . 

Table 9 

Regression results - Real-world datasets. 

United States United Kingdom Malaysia Japan Brazil 

�d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 �d t+1 r t+1 

Constant 0.0041 ∗∗ 0.0062 ∗∗ 0.0069 ∗∗ 0.0032 0.0021 0.0099 ∗ 0.0004 0.0026 0.0136 ∗∗ 0.024 ∗∗

(0.0017) (0.0031) (0.002) (0.0033) (0.0033) (0.0052) (0.002) (0.0034) (0.0057) (0.0066) 
ˆ ˆ g t 3.8308 ∗∗ 3.9518 ∗∗ 4.9302 ∗∗ 4.4305 ∗∗ 6.4918 ∗∗

(0.1606) (0.1851) (0.2481) (0.1896) (0.4284) 
ˆ ˆ μt 0.2511 0.2636 -0.0834 0.0901 0.5914 ∗∗

(0.1722) (0.1784) (0.3721) (0.1468) (0.2136) 

R 2 0.7049 0.0089 0.6569 0.0091 0.6239 0.0002 0.6964 0.0016 0.4910 0.0312 

Adj. R 2 0.7037 0.0047 0.6554 0.0049 0.6223 -0.004 0.6951 -0.0026 0.4889 0.0271 

We report regression results for respectively dividend growth rates and returns on their estimated expected values represented by ˆ ˆ g t and 
ˆ ˆ μt . Standard errors are reported in parenthesis. Note: ∗∗ p ≤ 0 . 05 , ∗ p ≤ 0 . 1 . 

 

 

 

 

 

 

 

 

Table 8 shows the results for the artificial datasets, for dividend growth rates the R 2 ranges from 74.07% to 78.89% while

for returns it is between 4.04% and 20.71%. 

Expected dividend growth rates explains a large fraction of actual dividend growth, while the fraction of explained return 

variability is lower. Also, given that the goodness-of-fit measures of returns vary substantially in the five datasets, we argue 

that the return predictability features of this model are less robust with respect to the dividend predictability features. 

Figs. 10 , and 11 plot the realized and estimated expected dividend growth rates on the left, and the realized and esti-

mated expected returns on the right for the five artificial datasets. The realized and expected dividend growth series are 

strongly correlated, however the latter series is more stable. Concerning returns, their expectation is less volatile than the 

series of realized returns. Further, the correlation between realized and expected returns is lower than that for dividend 

growth rates. 

Table 9 reports the results for the real-world datasets. The R 2 values for dividend growth rates are quite high in all the

datasets, the highest value is recorded for the US where it is equal to 70.49% while the lowest value is registered for Brazil

where it is equal to 49.10%. 11 Instead, the coefficient βr in the regressions for returns is significant only for Brazil and the

goodness-of-fit measure is equal to 3.12%. In the other countries the R 2 values for returns are less than 1% meaning that the

estimated series of expected returns ( ̂  ˆ μt ) do not help in predicting stock returns. 

Visual inspection of Figs. 12–16 confirms what we have observed in the regression results. 

6.3. Variance decomposition 

In this section we derive the variance decomposition of both the price-dividend ratio and unexpected returns. The vari- 

ance decomposition of the price-dividend ratio is given by 

V ar(pd t ) = B 

2 
2 V ar(g t ) + B 

2 
1 V ar(μt ) + V ar(b t ) − 2 B 1 B 2 Cov (g t μt ) − 2 B 1 Cov (b t μt )+ 

2 B 2 Cov (g t b t ) . 
(34) 

The first term, B 2 
2 
V ar(g t ) , represents the variation in the price-dividend ratio due to expected dividend growth rate variation.

The second term, B 2 V ar(μt ) , measures the variation in the price-dividend ratio due to expected return variation. The third
1 

11 Since the dividend growth predictability we find may be driven by the seasonality in dividend payments, we apply a stable seasonal filter to estimate 

the seasonal component in the series of dividend growth rates and expected dividend growth rates. Then we estimate the regression equation using the 

deseasonalized series. The dividend growth predictability is confirmed and the results are available upon request. 
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Fig. 10. Realized and Expected series Artificial datasets 1 to 3. The solid lines represent the realized time series of dividend growth rates (left) and returns 

(right), while the dashed lines represent the estimated series of expected dividend growth rates (left) and expected returns (right). 
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Fig. 11. Realized and Expected series - Artificial datasets 4 to 5. The solid lines represent the realized time series of dividend growth rates (left) and returns 

(right), while the dashed lines represent the estimated series of expected dividend growth rates (left) and expected returns (right). 

 

 

 

 

term, V ar(b t ) , accounts for the variation in the price-dividend ratio due to bubble variation. The remaining terms represent

the covariation among these three components. The unexpected returns can be written as 

r t+1 − μt = ρB 2 ε
g 
t+1 

− ρB 1 ε
μ
t+1 

+ ρεb 
t+1 + εd 

t+1 . (35) 

As before, we decompose the unexpected return variation into the influence of dividend growth variation, discount rate 

variation, bubble variation and the covariance among these terms. 

Table 10 summarizes the results for the variance decomposition of the price dividend ratio and unexpected returns for 

the real-world datasets. We use sample covariances and we standardize all terms so that the sum is equal to 100%. We find

that in the surviving bubble regime, most of the variation in price-dividend ratio is related to the bubble variation. Specifi-

cally, bubble variation accounts for more than 50% of the price-dividend variation in all the countries under study with the
20 
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Fig. 12. Realized and Expected series - United States. The solid lines represent the realized time series of dividend growth rates (left) and returns (right), 

while the dashed lines represent the estimated series of expected dividend growth rates (left) and expected returns (right). 

Fig. 13. Realized and Expected series - United Kingdom 

 

 

exception of Brazil where it accounts for about 36%. Instead, consistent with Binsbergen and Koijen (2010) , in the collaps-

ing bubble regime discount rate variation accounts for most of the variation in the price-dividend ratio. Again, consistent 

with Binsbergen and Koijen (2010) we document that dividend growth plays a major role in explaining unexpected returns 

variation in the surviving bubble regime, while discount rate variation accounts most of the variation in unexpected returns 

in the collapsing bubble regime with the exception for Brazil. Also, bubble variation explains a large share of unexpected 

return variation in the surviving bubble regime. These results are consistent with Balke and Wohar (2009) which find that

the bubble component is substantially important in explaining fluctuations in the log price-dividend ratio when there are 

no permanent components in market fundamentals. 
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Fig. 14. Realized and Expected series - Malaysia 

Fig. 15. Realized and Expected series - Japan The solid lines represent the realized time series of dividend growth rates (left) and returns (right), while the 

dashed lines represent the estimated series of expected dividend growth rates (left) and expected returns (right). 

 

 

7. Conclusions 

We have shown that in the surviving bubble regime, most of the variation in the price-dividend ratio is related to the

bubble variation. Specifically, bubble variation accounts for more than 50% of the price-dividend variation in all the countries 

under study with the exception of Brazil where it accounts for about 36%. Further, bubble variation explains also a large

share of unexpected return variation in the surviving bubble regime. 

These results suggest that present-value models should not ignore the bubble component of stock prices. This paper 

proposes to incorporate a speculative bubble subject to a surviving and a collapsing regime into the present-value model by 
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Fig. 16. Realized and Expected series - Brazil The solid lines represent the realized time series of dividend growth rates (left) and returns (right), while 

the dashed lines represent the estimated series of expected dividend growth rates (left) and expected returns (right). 

Table 10 

Variance decomposition – Real-world datasets. 

United States United Kingdom Malaysia Japan Brazil 

Regimes 1 2 1 2 1 2 1 2 1 2 

Panel A: Price-dividend ratio 

Discount rate 7.5399 96.2946 7.8771 88.2220 45.2701 84.2113 10.7564 99.9907 18.2560 50.4675 

Div. growth 0.8436 0.4624 1.0325 0.9127 2.6420 1.0683 0.5748 0.0028 0.8314 2.3222 

Bubble 63.4978 0.8138 52.7685 3.2424 56.4073 10.1861 51.2994 0.0064 35.9414 27.2425 

Covariances 28.1188 2.4292 38.3219 7.6229 4.3193 4.5343 37.3695 0.0002 44.9711 19.9677 

Panel B: Unexpected returns 

Discount rate 124.1429 100.6786 82.1027 121.5784 80.4225 93.3425 111.9314 99.9597 79.6270 234.0628 

Div. growth 171.6528 0.7922 150.0561 12.2131 267.8176 4.5416 160.3030 0.0015 201.7372 424.8113 

Bubble 94.6137 0.4122 92.0662 1.2156 103.1748 1.8223 95.5578 0.0016 58.0041 13.6928 

Covariances −290 . 4094 −1 . 8830 −224 . 2250 −35 . 0071 −351 . 4148 0.2935 −267 . 7922 0.0372 −239 . 3683 −572 . 5669 

We report the decomposition of the price-dividend variation and the unexpected returns variation into discount rate variation, dividend growth variation, 

bubble variation and the covariances among these three terms. 

Table 11 

Datastream Country Indices. 

Country Time span 

United States February 1973–October 2017 

United Kingdom January 1965–October 2017 

Malaysia February 1986–October 2017 

Japan January 1973–October 2017 

Brazil August 1994 - October 2017 

This Table reports the time span of the country indices available on Datastream. 

 

 

Binsbergen and Koijen (2010) , who adopts a latent variables approach to estimate expected returns and expected dividend 

growth rates. Further, we suggest an econometrically robust Bayesian MCMC methodology to estimate our model. 

This study applies our two-regime Markov-switching state space model to artificial as well as real-world datasets. The 

artificial bubble processes are defined in the sense of Evans (1991) , we show that our bubble-detection methodology is able

to identify 92.27% of all the bubble collapsing dates in the artificial datasets, moreover it never signals a bubble which has

no counterpart in the price process. These results represent an improvement with respect to the approach discussed in 

Al-Anaswah and Wilfling (2011) which correctly identifies around 50% of all the bubble episodes. The real-world datasets 
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Table 12 

Autocorrelation of Posterior Draws - No Thinning. 

i + 1 i + 10 i + 100 Inefficiency Factors 

Regimes 1 2 1 2 1 2 1 2 

γ0 0.3319 0.2981 0.1597 0.1507 0.0969 0.0882 339.8204 281.9305 

δ0 0.3341 0.3010 0.1634 0.1532 0.0983 0.0889 373.7996 300.7588 

ρ 0.9331 0.9451 0.5648 0.6362 0.0992 0.1366 329.7122 649.0314 

γ1 0.7376 0.7431 0.0875 0.1381 0.0208 0.0301 20.0032 19.4034 

δ1 0.8884 0.9740 0.4278 0.8062 0.1347 0.3214 357.6982 1160.8113 

σ 2 
g 0.0782 0.0398 0.0034 0.0087 0.0005 0.0021 1.1804 1.0529 

σ 2 
μ 0.5578 0.0975 0.2621 0.0194 0.0160 0.0027 18.5462 1.4797 

σ 2 
d 

0.5842 0.1167 0.2849 0.0500 0.1949 0.0293 832.6511 32.4101 

σ 2 
b 

0.8850 0.7013 0.3447 0.2434 0.0037 0.0191 19.5314 18.1775 

σgμ 0.0570 0.0297 0.0006 0.0008 0.0002 0.0005 1.0668 1.0275 

σgd 0.0784 0.0375 0.0008 0.0017 0.0004 0.0005 1.1569 1.0532 

σμd 0.2826 0.0592 0.0263 0.0079 0.0024 0.0021 2.6347 1.1085 

σ 2 
e 0.9284 0.8122 0.5055 0.3544 0.0344 0.0388 38.8663 37.3296 

We present the average autocorrelation of the posterior draws of the model in Eqs. (16) to (18) for the 

artificial datasets. The model is estimated according to the procedure described in Section 4 . The last two 

columns report the inefficiency factors. 

Table 13 

Autocorrelation of Posterior Draws - Thinning every 100 draws. 

i + 1 i + 10 i + 100 Inefficiency factors 

Regimes 1 2 1 2 1 2 1 2 

γ0 0.0930 0.0946 0.0433 0.0385 0.0010 0.0065 4.4284 3.7236 

δ0 0.0945 0.1010 0.0488 0.0364 0.0102 0.0025 4.6193 3.7973 

ρ 0.1024 0.1385 0.0412 0.0374 0.0020 0.0204 4.1054 6.6608 

γ1 0.0219 0.0226 0.0063 0.0097 0.0024 0.0140 1.1690 1.1190 

δ1 0.1327 0.3178 0.0416 0.0577 0.0085 0.0282 4.3552 11.8271 

σ 2 
g 0.0009 0.0012 0.0068 0.0162 0.0017 0.0043 1.0000 1.0000 

σ 2 
μ 0.0188 0.0005 0.0023 0.0000 0.0086 0.0003 1.0228 1.0000 

σ 2 
d 

0.1876 0.0396 0.0709 0.0157 0.0135 0.0001 9.2677 1.4590 

σ 2 
b 

0.0034 0.0202 0.0011 0.0097 0.0006 0.0073 1.0000 1.0245 

σgμ 0.0082 0.0009 0.0027 0.0045 0.0076 0.0017 1.0000 1.0000 

σgd 0.0120 0.0051 0.0027 0.0071 0.0040 0.0009 1.0000 1.0000 

σμd 0.0012 0.0055 0.0055 0.0062 0.0047 0.0028 1.0000 1.0000 

σ 2 
e 0.0268 0.0364 0.0117 0.0071 0.0094 0.0102 1.0794 1.1165 

We present the average autocorrelation of the posterior draws with thinning every 100 draws of 

the model in Eqs. (16) to (18) for the artificial datasets. The model is estimated according to the 

procedure described in Section 4 . The last two columns report the inefficiency factors. 

 

 

 

 

 

 

 

 

consist of the monthly time series data for the price index, the dividend yield and the market value for the United States,

United Kingdom, Malaysia, Japan and Brazil. We find that our framework is able to identify most of the bubble periods

classified as such by Kindleberger and Aliber (2003) . 

In line with Al-Anaswah and Wilfling (2011) and Lammerding et al. (2013) , we document the existence of statistically sig-

nificant Markov-switching in the data-generating process of real-world stock price bubbles. Furthermore, our methodology 

is also able to predict dividend growth rates as well as returns with R 2 values ranging from 74.07% to 78.89% for dividend

growth rates and 4.04% and 20.71% for returns in the artificial datasets. In the real-world datasets, we find that dividend

growth rates are predictable with R 

2 values ranging from 70.49% for the US to 49.10% for Brazil. However, the R 2 values for

returns are less than 1% with the exception of Brazil where it is above 3%. 

A common drawback of the bubble literature is that rejection of the present-value model that are interpreted as evidence 

of the presence of bubbles can still be explained by alternative structures of the fundamentals. In this paper we mitigate

this issue in two ways. First, we restrict our analysis to rational bubbles which impose fairly strong restrictions on the

dynamics of the bubble component. Hence these restrictions can help us to identify the non-fundamental component in the 

data. Second, we use a less restrictive fundamentals model, indeed our econometric procedure allows us to analyse a more 

complex model with time-varying discount rates and regime-switching in fundamentals and the bubble. Doing so, we allow 

the fundamentals part to fit better the data, leaving less room for a bubble. 

In sum, our setup allows to model jointly expected dividend growth rates, expected returns and the bubble component 

of stock prices. As such it may improve conventional methods for the detection of real-time stock-price bubbles allowing 

an early detection of future bubbles. Moreover, this methodology allows for hypothesis testing of some features of expected 

dividend growth rates and expected returns such as their persistence. 
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Appendix A. Datastream data 

Datastream country indices include a representative list of stocks for each country. The sample covers a minimum of 75–

80% of total market capitalisation. Suitability for inclusion is determined by market value and availability of data. Table 11 re-

ports the time span available on Datastream for the country indices used. The aggregate price index (PI), dividend yield (DY),

and market value (MV) for each country index are calculated as follows: 

P I t = P I t−1 ∗
∑ M 

i =1 P i,t N i,t ∑ M 
i =1 P i,t−1 N i,t f 

, P I 0 = 100 , 

DY t = 

∑ M 
i =1 D i,t N i,t ∑ M 
i =1 P i,t N i,t 

∗ 100 , 

MV t = 

∑ M 

i =1 P i,t N i,t , 

(36) 

where P i,t is the unadjusted price of asset i in month t, N t is the number of shares in issue on month t, f adjustment factor

for capital actions, D i,t is dividend per share of asset i in month t, and M is the number of constituents in index. We use

the above variables to compute the log price-dividend ratio ( pd t ), dividend growth rate ( �d t ) and returns ( r t ). 

Appendix B. Efficiency of the metropolis-within-Gibbs sampler 

Since the Metropolis-within-Gibbs sampler used to simulate from the joint posterior distribution may produce parameter 

draws that are highly autocorrelated, in Table 12 we report the average autocorrelation of the i th parameter draw with the

(i + 1) th draw, (i + 10) th draw, and (i + 100) th draw. To further assess the efficiency of the sampler, in the last two columns

we report the average inefficiency factors of the posterior draws which are defined as follow 

1 + 2 

L ∑ 

l=1 

Cor r (θi , θi + l ) , (37) 

where Cor r (θi , θi + l ) is the sample autocorrelation of parameter θ at lag length l, L is the maximum lag and it is chosen to

be large enough so that the autocorrelation tapers off. The inefficiency factor measures the number of extra draws needed 

to obtain results equivalent to the ideal case of independent draws. Consider for example an inefficiency factor of 50, this

means that around 50 0 0 posterior draws are needed to have the same information of 100 independent draws. The ineffi-

ciency factor of independent draws is one. 

From Table 12 we can observe that some of the parameters show high autocorrelations, with large inefficiency factors as 

well. The maximum inefficiency factor is reported for the parameter δ1 in regime 2 and it is equal to 1160.8113. 

To improve the efficiency of the sampler we perform thinning of the posterior draws and keep only every 100th draws.

Table 13 reports the average autocorrelation of the posterior draws and the inefficiency factors after performing thinning of 

the draws. We can see that thinning significantly reduce the inefficiency factors. 
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