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Behavioral assessments could not suffice to provide accurate diagnostic information in

individuals with disorders of consciousness (DoC). Multimodal neuroimaging markers

have been developed to support clinical assessments of these patients. Here we

present findings obtained by hybrid fludeoxyglucose (FDG-)PET/MR imaging in three

severely brain-injured patients, one in an unresponsive wakefulness syndrome (UWS),

one in a minimally conscious state (MCS), and one patient emerged from MCS

(EMCS). Repeated behavioral assessment by means of Coma Recovery Scale-Revised

and neurophysiological evaluation were performed in the two weeks before and after

neuroimaging acquisition, to ascertain that clinical diagnosis was stable. The three

patients underwent one imaging session, during which two resting-state fMRI (rs-fMRI)

blocks were run with a temporal gap of about 30min. rs-fMRI data were analyzed

with a graph theory approach applied to nine independent networks. We also analyzed

the benefits of concatenating the two acquisitions for each patient or to select for

each network the graph strength map with a higher ratio of fitness. Finally, as for

clinical assessment, we considered the best functional connectivity pattern for each

network and correlated graph strength maps to FDG uptake. Functional connectivity

analysis showed several differences between the two rs-fMRI acquisitions, affecting in

a different way each network and with a different variability for the three patients, as

assessed by ratio of fitness. Moreover, combined PET/fMRI analysis demonstrated a

higher functional/metabolic correlation for patients in EMCS andMCS compared to UWS.

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2018.00861
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2018.00861&domain=pdf&date_stamp=2018-10-18
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:ccavaliere@sdn-napoli.it
https://doi.org/10.3389/fneur.2018.00861
https://www.frontiersin.org/articles/10.3389/fneur.2018.00861/full
http://loop.frontiersin.org/people/111410/overview
http://loop.frontiersin.org/people/199878/overview
http://loop.frontiersin.org/people/580247/overview
http://loop.frontiersin.org/people/507062/overview
http://loop.frontiersin.org/people/534485/overview
http://loop.frontiersin.org/people/80550/overview
http://loop.frontiersin.org/people/35162/overview
http://loop.frontiersin.org/people/9400/overview
http://loop.frontiersin.org/people/259092/overview


Cavaliere et al. FC Variability in DoC

In conclusion, we observed for the first time, through a test-retest approach, a

variability in the appearance and temporal/spatial patterns of resting-state networks in

severely brain-injured patients, proposing a new method to select the most informative

connectivity pattern.

Keywords: PET/MRI, unresponsive wakefulness syndrome, minimally conscious state, diagnosis, brain

connectivity, resting-state fMRI, graph theory, glucose metabolism

INTRODUCTION

The improvements of medical interventions in the acute
and post-acute phase of severe acquired brain injury and
the failure of treatments to restore brain functions keep
increasing the number of patients with prolonged disorders
of consciousness (DoC) (1). These severe clinical conditions
entail heavy ethical and social implications, impact health
care policies and determine strong psychological distress in
patients’ families (2–4). Distinguishing patients in unresponsive
wakefulness syndrome, UWS [i.e. patients showing eyes opening
but no behavioral evidence of consciousness (5)] from patients in
minimally conscious state, MCS [i.e., patients showing minimal,
inconsistent but clearly discernible intentional behaviors (6)]
is pivotal for decision making in the entire care pathway of
patients with DoC. Indeed, patients in MCS are more likely
to have a better outcome (7, 8) and a higher probability of
clinical response to therapeutic interventions than patients in
UWS (9–11). However, in spite of the evolution of neuroscientific
and medical understanding on DoC, the clinical recognition of
volitional behavior still remains a very difficult task (8, 12).

Patients’ clinical signs of consciousness are frequently variable
across days and even within the same day (13). These
inconsistencies have been often linked to temporal fluctuations
of vigilance/awareness. For this reason, at least five repeated
behavioral assessments by means of validated assessment tools,
such as Coma Recovery Scale-Revised (CRS-R) (14), are strongly
recommended for improving diagnostic accuracy (15).

However, behavioral assessment might be complicated by
possible co-existing severe visuo-perceptual, motor or language
disabilities that limit clinical expression of consciousness (7, 16).
In this context, a multimodal diagnostic approach, combining
clinical and instrumental evaluations, could help detecting
signs of consciousness and making a correct diagnosis (17–
19). Neuroimaging methods, particularly those not requiring
patients’ active response, such as resting-state functional MRI
(rs fMRI) or 18F FDG-PET, can recognize residual neural
activity and functional connectivity into resting state networks
(RSNs), such as the default-mode network (DMN), specifically
associated with awareness level in such patients, independently
from their abilities to produce overt purposeful behaviors (20–
22). Moreover, multimodal imaging integration allows collecting
a plethora of information undetectable at patients’ bedside, but

Abbreviations: DoC, disorder of consciousness; UWS, unresponsive wakefulness

syndrome; MCS, minimally conscious state; CRS-R, Coma Recovery Scale-

Revised; PET, positron emission tomography; FDG, fludeoxyglucose; fMRI,

functional magnetic resonance imaging.

only simultaneous acquisition of neuroimaging data can assure
inter-modality comparability of the findings extracted within
the same temporal framework, thus reducing the influence of
clinically fluctuations typical of patients with DoC. Additionally,
the simultaneous acquisition of structural and functional data
by hybrid imaging techniques like PET/MR can improve
the patient’s compliance, by shortening imaging sessions and
reducing logistic issues (23).

The present clinical and neuroimaging pilot study aimed
at: (1) investigating possible variability in brain functional
connectivity in two distinct fMRI acquisitions within one
neuroimaging exam through a test-retest approach; (2)
evaluating the relationships of spontaneous functional
brain activity with metabolic activity in different levels of
consciousness.

For these purposes we combined simultaneous neuroimaging
methods (fMRI and PET) and repeated rs-fMRI acquisition in
a sample of three severely brain-injured patients with different
level of consciousness in stabilized clinical diagnosis of UWS,
MCS and emergence from MCS [EMCS, i.e., patient who
recovered functional communication or/and functional object
use; (5, 6)].

MATERIALS AND METHODS

Participants
We screened for the study severely brain-injured patients
consecutively admitted to the neurorehabilitation Unit at
Maugeri Clinical and Scientific Institutes, in Telese Terme (Italy)
from February 2017 to July 2017, fulfilling the following inclusion
criteria: (i) clinical diagnosis of UWS, MCS or EMCS according
to standard diagnostic criteria (5, 6); (ii) time from onset
longer than 1 month; (iii) traumatic, vascular or anoxic brain
injury. We excluded from the study patients with: (i) severe
pathologies independent from the brain injury (e.g., premorbid
history of psychiatric or neurodegenerative diseases); (ii) mixed
etiology (e.g., both traumatic and anoxic); (iii) not stabilized and
severe general clinical conditions; (iv) contra-indication for MRI
(e.g., ferromagnetic aneurysm clips, pacemaker); (v) large brain
damage (>50% of total brain volume), as stated by a certified
neuroradiologist, and motion parameters >3mm in translation
and 3◦ in rotation. Patients were also excluded if their clinical
diagnosis had changed in the week before the neuroimaging
acquisition.

The study was approved by the local Ethics Committee
of IRCCS Pascale (Protocol number: 3/15), and performed
according to the ethical standards laid down in the 1964 Helsinki
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Declaration and its later amendments. Written informed consent
was obtained from the legal guardian of patient.

Experimental Procedures
Clinical Assessment
One week before and one week after neuroimaging recording,
all enrolled patients underwent at least five clinical evaluations,
using the Italian version of the CRS-R (24), in order to confirm
stabilized clinical diagnosis of UWS, MCS or EMCS and to
gather the best CRS-R total score. Patients’ consciousness level
(measured by CRS-R total and sub-scores) was also assessed
in the “neuroimaging” day by one skilled psychologist (OM)
(Table S1).

Neurophysiological Evaluation
Standard EEG and event related potentials (ERP) were recorded
to complement behavioral assessment and to reduce risk of
misdiagnosis. For this purpose we acquired neurophysiological
exams at patients’ bed in 2 days in the week before PET/MRI
session and in 2 days in the week after neuroimaging exam, and
the best organization of EEG background activity and reactivity
was considered for classification of neurophysiological patterns,
complementing patients’ clinical diagnosis. In the presence
of artifacts in more than 50% of EEG recording time, EEG
acquisition was repeated in the day after. Two skilled clinical
neurophysiologists (VL and SF, blinded to patients’ etiology,
clinical diagnosis and CRS-R score) reviewed neurophysiological
exams.

Standard EEG was recorded by 19 electrodes placed on the
scalp, according to international 10–20 system (O1, O2, Pz, P3,
P4, T5, T6, C3, C4, Cz, T3, T4, Fz, F3, F4, F7, F8, Fp1, and Fp2).
We recorded EEG for (at least) 35min, according to standard
procedure of eye-closed waking rest, with filter settings 0.53–
70Hz, and notch filter on. For the analysis of predominant
activity, forced eye closing was obtained by cotton wool in awake
patient (spontaneous eye opening). To analyse EEG reactivity,
eye opening and (forced) eye closing were alternated three times
during EEG recording. We classified EEG background activity
on the basis of frequency and amplitude of predominant cortical
activity present in >50% of recordings, into one of five severity
categories, according to criteria recently proposed for patients
with prolonged DoC [(25), Appendix 1].

ERP were obtained by means of a simple “oddball” paradigm
using auditory stimulation and classified as “present” when P300
cortical response was recorded; in presence of N100 component
the exam ERP was considered “absent,” whereas lack of N100 was
considered as a not reliable exam (26).

PET/MRI Acquisition Protocol
PET/MRI data were simultaneously acquired in the resting
state using a Biograph mMR tomograph (Siemens Healthcare,
Erlangen, Germany) designed with a multi-ring LSO detector
block embedded into a 3 T magnetic resonance scanner.
Vacuumed pillows were used to minimize head movements
within the scanner. The PET/MRI was acquired in the
morning after customary nursing procedures. Moreover, we used
some strategies to ensure patients’ best vigilance state by: (i)

stopping possible sedative drugs (such as benzodiazepine) 15 h
before scanning; (ii) administering CRS-R vigilance protocol
(14) before PET/MRI acquisition and during neuroimaging
exam at the end of first resting state MRI acquisition; (iii)
monitoring eyes opening by means of a video camera located
into MRI scanner. In case of appearance of clinical signs
of possible drowsiness (i.e., persistence of eye closing), MRI
acquisition was stopped and CRS-R vigilance protocol was
administered.

Nominal axial and transverse resolution of the PET system
was 4.4 and 4.1mm FWHM, respectively, at 1 cm from the
isocenter. Additional technical details on the scanner are
reported elsewhere (27).

A dynamic brain PET study was performed after the
intravenous bolus administration of 18F-fluorodeoxyglucose
(18F-FDG) tracer. PET and rs-fMRI data acquisition started
simultaneously following the i.v.injection of 5 MBq/Kg of 18F-
FDG.

No food or sugar were administered to the subjects for at
least 6 h prior to FDG injection. Blood glucose was measured at
arrival at the PET center in all cases, and FDG was injected only
if glycaemia was below 120 mg/dl.

The PET data were acquired in list mode for 60min; matrix
size was 256 × 256. PET emission data were reconstructed
with ordered subset-expectation maximization (OSEM)
algorithm (21 subsets, 4 iterations) and post-filtered with a
three-dimensional isotropic gaussian of 4mm at FWHM.
Attenuation correction was performed using MR-based
attenuation maps derived from a dual echo (TE = 1.23–2.46ms)
Dixon-based sequence (repetition time 3.60ms), allowing for
reconstruction of fat-only, water-only and of fat–water images
(28).

During PET acquisition, the following MRI sequences were
sequentially run:

(i) First rs-fMRI acquisition (named “T1”) by a T2∗-weighted
single-shot EPI sequence (voxel-size 4 × 4 × 4 mm3, TR/TE
= 1000/21.4ms, flip angle = 82◦, 480 time points, FOV read
= 256mm, multiband factor = 2, distance factor = 0, TA =

8′06′′);
(ii) Three-dimensional T1-weighted magnetization-prepared

rapid acquisition gradient-echo sequence (MPRAGE, 240
sagittal planes, 256 × 214mm field of view, voxel size 0.8 ×

0.8 × 0.8 mm3, TR/TE/TI 2400/2.25/1000ms, flip angle 8◦,
TA= 6′18′′);

(iii) Three-dimensional T2-weighted sequence (240 sagittal planes,
256 × 214mm field of view, voxel size 0.8 × 0.8 × 0.8 mm3,
TR/TE 3370/563ms, TA= 6′46′′);

(iv) Three-dimensional fluid attenuation inversion recovery
(FLAIR, 160 sagittal planes, 192× 192mm field of view, voxel
size 1 × 1 × 1 mm3, TR/TE/TI 5000/334/1800ms, TA =

6′42′′);
(v) Second rs-fMRI acquisition (named “T2”) by a T2∗-weighted

single-shot EPI sequence (voxel-size 4 × 4 × 4 mm3, TR/TE
= 1000/21.4ms, flip angle = 82◦, 480 time points, FOV read
= 256mm, multiband factor = 2, distance factor = 0, TA =

8′06′′).
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In addition, during the same scanning session, axial diffusion
weighted images were also acquired for clinical purpose. The two
rs-fMRI acquisitions (T1 and T2) were separated by a 30min
interval.

fMRI and FDG-PET Processing
Resting state fMRI analysis was performed based on a
methodology fully described by Ribeiro and colleagues (29).
Independent component analysis (ICA) (30) followed by
template matching to identify RSNs and machine learning
classification to automatically recognize a neuronal source was
used. We extracted the weighted graphs for each of the nine
networks of interest as described in the paper (29) and calculated
the graph strength (GS) for each of the 1015 nodes. Finally, for
each network we calculated the correlation between the GS and
the metabolic values.

Nine RSNs of interest are recognized: auditory, default
mode network (DMN), extrinsic-control network left (ECNL),
extrinsic-control network right (ECNR), salience, sensorimotor,
visual lateral (VL), visual medial (VM) and visual occipital
(VO). The RSNs are assigned as the components with
maxima goodness-of-fit (similarity test) when compared to a
binary predefined template while considering all the RSNs
simultaneously. The templates for each RSN were selected by
an expert after visual inspection from a set of spatial maps
resulting from a Group ICA decomposition performed on 12
independently assessed controls and were confirmed by another

expert for accuracy of structural labeling (31). Subsequently a
classifier trained on an 11-dimensional space called “fingerprint,”
that provides both spatial (i.e., degree of clustering, skewness,
kurtosis, spatial entropy) and temporal information (i.e., one-
lag autocorrelation, temporal entropy, power of five frequency
bands: 0–008Hz, 0.008–0.02Hz, 0.02–0.05Hz, 0.05–0.1Hz, and
0.1–0.25Hz) of the ICs, is used to select only the neuronal
components from the extracted networks (31). Signals arising
from changes in local hemodynamics which result solely from
alterations in neuronal activity represented by low-frequency
(0.01–0.05Hz) are called neuronal signals. Non-neuronal signals
for fMRI data represents cardiovascular signal dominated by
higher frequency and head movement.

Once the neuronal components are identified, a graph
theoretical approach was applied on the ICs (GraphICAr,
BraiNet-Brain Imaging Solution Inc.-Sarnia, ON, Canada) to
visualize and calculate the graph properties of each network
(30, 32, 33). GraphICAr is a software in which single-subject ICA
with 30 components was ordered using the infomax algorithm
as implemented in the Group-ICA of fMRI toolbox (RRID:
SCR-001953; http://mialab.mrn.org/software/gift/). Instead of
working at the voxel level (around 100,000 voxels) for the
analysis, the cortex was parcellated into 1015 regions of interests
(ROIs) with anatomical meaning, using the Lausanne 2008 Atlas
with functions from the ConnectomeMapping Toolkit (34). Each

ROI is considered as a node of a graph; the edges connecting
the nodes typically carry weights describing the correlation, or
the degree of connectivity between each pair of nodes. After
decomposing the whole brain to components using ICA, the
weighted matrices (wij) for each of the nine components are
obtained by calculating the edge weights using the Equation (1):

wij = |zi| +
∣

∣zj
∣

∣ −
∣

∣zi − zj
∣

∣ (1)

where wij represents the edge weight between nodes “i” and “j,”
and zi, zj are the z-values which are obtained from the scalar map
of the independent component of interest for the nodes “i” and
“j,” respectively.

Furthermore, the two fMRI acquisitions which were obtained
for all three patients within a time interval of 30min and the
FDG-PET data, were manually co-registered with their structural
images. These data, along with the concatenated data (combined
T1 and T2), underwent an automated pipeline in GraphICAr,
which includes further minute realignment and adjustment for
movement-related effects, fine co-registration, segmentation of
the structural and FDG-PET image, and spatial normalization
into standard stereotactic Montreal Neurological Institute (MNI)
space as performed in SPM8. Considering the relevance of
motion for these dataset, as already reported in Soddu et al.
(32), motion parameters such as the mean displacement (1)
and the displacement speed (6) during the full acquisition were
calculated using the equations explicitly given by Equations 2,
and 3,

1 =

〈
√

TraX2 + TraY2 + TraZ2 + RotX2 + RotY2 + RotZ2
〉

(2)

6 =

〈

√

1TRTraX2 + 1TRTraY2 + 1TRTraZ2 + 1TRRotX2 + 1TRRotY2 + 1TRRotZ2
〉

(3)

Where 1TR represents the variation of a parameter over a TR.
Motion curves were regressed out from the fMRI data

when performing the preprocessing using Art repair
(RRID:SCR-005990; http://cibsr.stanford.edu/tools/human-
brain-project/artrepair-software.html), but not the motion
parameters. Instead these parameters were just calculated to
estimate how much the patients have moved in the scanner
during each acquisition.

Segmentation of the images in GraphICAr was performed at
the subject level to create its own segmentation (35). Following
these preprocessing steps, ICA was applied and wij matrices for
each of the nine networks were obtained. Simultaneously the
scalar maps of the FDG-PET for the 1015 parcellated regions of
the cortex were obtained.

The wij matrices which have the dimensions of 1015 × 1015
were thresholded such that the wij values that are less than the
threshold were set to zero while the values greater than the
threshold were kept as it is. Thresholds were selected from 0 to 1
in steps of 0.01 and the mean over the thresholded wij matrices
were obtained. The graph strengths (Si) for each of the 1015
regions for all three subjects and for the nine networks were
calculated from the thresholded wij, using the Equation (4):

Si =

N
∑

j=1

Wij (4)
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where “N” is the total number of regions.
Graph strength (GS) was tested at the network level for

proportionality with metabolic activity. In particular, only
regions with GS values greater than the thresholded GS (values
greater than half of the maximum GS value for the network of
interest) were visualized and selected for subsequent calculations.

Non-neuronal networks were removed and the networks
classified as neuronal were chosen for the analysis. Using the GS
values, the regions belonging to each network (mask), regions
outside the network and regions missing in the network for
patients in EMCS, MCS and UWS were plotted in different
colors for T1, T2 and concatenated data. In the case where the
networks from both acquisitions were neuronal, the ratio of fit
(ROF) (Equation 5), a measure assessing accuracy of network
representation in the analysis, was calculated (Table 1).

ROF =
(regions inside the mask− regions outside the mask)

(total number of regionswhich should belong to the mask)
(5)

Positive value of ROF indicates a high resemblance of the
network (higher the value, better the resemblance), while a
negative valuemeans a distorted network. The difference between
ROF (1ROF) values for T1 and T2 acquisitions of each RSN was
used to assess IC variability.

Scalar maps representing the GS for each network were
presented by choosing the acquisition with the highest ROF value
(best finding) between the two acquisitions and was used for
further analysis.

As recalled above, DMN includes several cortical regions
whose metabolic activity is thought to be related to level of
consciousness (20–22).We believe that presenting the GS directly
on the normalized structural images, especially for the DMN
has relevance, because it shows the anatomical pattern of the
network and permits to visualize the level of disruption or
completeness. However, we believe it would be too redundant to
present the GS for all networks in the samemodality. To ascertain
whether the concatenated data or the data corresponding to the
acquisition with the best network between T1 and T2 provided
the best representation of the network, both concatenated and
best acquisition data were plotted.

Statistical Analysis
Correlation between FDG-PET and GS was performed to
measure the similarity between the FDG-PET metabolic maps
and the GS activity maps for the whole brain. In order to get the
most representative value of the GS for each region from all the
networks, the maximum value out of all the neuronal networks
for that region was chosen. The z-scores of the GS and PET
for each region were calculated and the scatter plots of FDG-
PET versus GS were presented for the best and concatenated
data for the three patients. “Corrcoeff” function as implemented
in MATLAB, which returns the Pearson correlation value (r)
between the FDG-PET and GS of the 1015 parcellated ROI
was calculated and presented along with the statistical p value
for testing the null-hypothesis of no correlation. The p-value
is computed by transforming the correlation into a t-statistical

variable having N−2 degrees of freedom, with N the number of
data points. Furthermore, the distribution of the GS for the best
and concatenated data and FDG-PET were estimated.

RESULTS

Clinical Features
From a sample of nine severely brain-injured patients, we could
consider for PET/fMRI analysis two representative patients with
prolonged DoC and one patient emerged from MCS (Figure 1).
Detailed descriptions of patients’ clinical features are provided in
Appendix and the CRS-R total and subscores in Supplemental
Material (Table S1). In synthesis, one anoxic patient was in UWS
(F, 43 year old; time since injury: 8 months; best CRS-R total
score: 6; CRS-R total score at neuroimaging study: 6), 1 traumatic
patient in MCS (M, 18 year old; time since injury: 3 months;
best CRS-R total score: 11; CRS-R total score at neuroimaging
study: 11), and 1 anoxic patient emerged from MCS 25 days
before the neuroimaging study (M, 57 year old; time since injury:
10 months; best CRS-R total score: 22; CRS-R total score at
neuroimaging study: 22). The best CRS-R total scores collected
in each patient in the weeks before and after the neuroimaging
session and in the PET/MRI day are described in Figure 2.

Neurophysiological Findings
The best neurophysiological findings out of 4 EEGs and 4 ERPs
recorded in each patient are summarized in Figure 2. In the
patient in UWS we observed a poor organization of cortical
activity with predominant EEG delta activity with amplitude
less than 20 µV over most brain regions, not reactive to eye
closing (i.e., Low Voltage, LV category) and lack of P300. In
the patient in MCS we observed predominant reactive posterior
theta EEG activity (amplitude >20 µV), with frequent posterior
alpha rhythm (i.e., mildly abnormal, MiA category) in 3 out of 4
EEG recordings. A P300 cortical response was recorded at least
following “oddball” paradigm in 3 out of 4 exams. In the patient
in EMCS, a predominant reactive posterior theta EEG activity
(amplitude≥20 µV), with frequent posterior alpha rhythms (i.e.,
mildly abnormal, MiA EEG category) was recorded in 2 out of 4
EEG recordings. In all EEG acquisitions, the background activity
showed reactivity to eye opening and closing. The “oddball”
paradigm evoked a positive cortical component (i.e., P300) in 3
out of 4 exams.

Within-Session fMRI Variability
In the patient in EMCS, the DMN appeared spatially preserved
during the first (T1) rs-fMRI acquisition (ROF= 0.19 vs. ROF=

0.01 at T2), with a main neuronal component (Figure 3, Table 1).
The ECN was well preserved in both acquisitions on the left,
although in the T2 rs-fMRI there was some superposition due
to other regions, as shown by the negative value of ROF (−0.08
vs. ROF = 0.12 atT1), while it appeared inconsistent on the
right, and not neuronal in T1 acquisition. Auditory and salience
networks were partially preserved and evident only in the T2
scan. Moreover, the auditory appeared more lateralized to the
left (Figure 3, Table 1). Sensorimotor was spatially preserved in
T1, where it appeared wider for the co-activation of many nodes
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TABLE 1 | ROF values calculated from regions belonging to the GS values, separated into the regions belonging to the network itself and outside the network.

Networks EMCS MCS UWS

T1 T2 T1 T2 T1 T2

In Out ROF In Out ROF 1ROF In Out ROF In Out ROF 1ROF In Out ROF In Out ROF 1ROF

Auditory 85 87 −0.01 0.01 41 26 0.06 36 9 0.10 −0.04 108 162 −0.20 0.20

DMN 81 13 0.19 78 76 0.01 0.18 82 8 0.21 107 44 0.18 0.03 53 123 −0.20 −0.20

ECNL 46 27 0.12 57 70 −0.08 0.20 20 142 −0.80 48 88 −0.26 −0.54 29 158 −0.84 −0.84

ECNR 11 0 0.08 −0.08 30 49 −0.15 46 125 −0.60 0.45

Salience 30 108 −0.67 0.67 58 303 −2.11 46 228 −1.57 −0.54 16 52 −0.31 37 235 −1.71 1.40

Sensorimotor 39 213 −1.71 2 27 −0.25 −1.46 42 30 0.12 41 13 0.27 −0.15 36 69 −0.32 −0.32

VL 35 179 4 79 −0.56 10 75 −0.49 −0.07 42 108 −0.50 0.50

VM 125 37 0.32 37 22 0.05 0.27 93 21 0.26 48 53 −0.02 0.28

VO 41 54 −0.07 93 57 0.20 −0.27 6 14 −0.04 0.04

“In” and “Out” represent the total number of regions belonging to and outside of the network. Values of the non-neuronal networks are not presented.

FIGURE 1 | Flow chart of patient selection in each step of the study.

outside the network (ROF=−1.71). VL andVOwere recognized
as not neuronal in both scans, while VM appeared well preserved
with a better spatial pattern in T1 acquisition (ROF = 0.32 vs.
0.05 at T2) (Figure 3, Table 1).

In the patient in MCS, the preservation of DMN was clear
in both acquisitions (T1 and T2), with ROF values of 0.21 and
0.18, respectively. The ECN was partially recognized for both
hemispheres in both acquisitions although the number of nodes
outside the network was high as highlighted by the negative
values of ROF (Figure 3, Table 1). Auditory and sensorimotor
networks appeared well preserved in both acquisitions, with
a complementary mirrored visualization for the auditory one
between T1 and T2. On the other hand, the salience network

was evident in both acquisitions, but with a spread co-activation
of nodes outside the network (ROF = −2.11 and −1.57 at T1
and T2, respectively) (Figure 3, Table 1). As for the three visual
networks, while the VL was recognized as neuronal in both T1
and T2, but with a poor spatial representation, both VM and
VO appeared temporal and spatially preserved with a better
visualization of VM at T1 (ROF = 0.26 vs. −0.02 at T2), and of
VO at T2 (ROF= 0.20 vs.−0.07 at T1) (Figure 3, Table 1).

In the patient in UWS, ECNR was not found in both
acquisitions, while the DMN and ECNL were partially detected
in T1, although with high number of regions outside the
networks revealed by negative values of ROF (−0.20 and
−0.84 respectively) (Figure 3, Table 1). In the same manner,
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FIGURE 2 | Coma Recovery Scale-Revised total score and neurophysiological (EEG and evoked related potential) evaluations recorded in the 3rd and 5th day before

PET/fMRI exam and in the 7th and 9th day after the PET/fMRI exam. The green arrow marks the day of neuroimaging acquisition. The blue diamond and line denote

the patient in unresponsive wakefulness syndrome (UWS). The orange square and line denote the patient in minimally conscious state (MCS). The gray triangle and

line denote the patient emerged from MCS (EMCS). CRS-R, Coma Recovery Scale-Revised; P, presence of P300 on evoked related potential; A, absence of P300 on

evoked related potential; +, presence of EEG reactivity to eye opening and closing; – , absence of EEG reactivity to eye opening and closing; MiA, mildly abnormal EEG

background activity; MoA, moderately abnormal EEG background activity; DS, Diffuse slowing EEG background activity; LV, Low voltage EEG background activity.

the salience network was detected in both acquisitions along
with more regions outside the network (ROF = −0.31 and
−1.71 respectively). Auditory and sensorimotor networks were
identified only in one acquisition, with a higher number of
regions belonging outside of the network (ROF = −0.20, −0.32)
(Figure 3, Table 1). Finally, out of the three visual networks,
contrary to the other two patients, VM was not identified in
either acquisition. VL and few regions of VO were detected in
the second acquisition (Figure 3, Table 1).

Summarizing, a wider variability was found for ICs
representation in the patient in EMCS (mean |1ROF| =

0.32) and in UWS (mean |1ROF| = 0.39) than in MCS case
(mean |1ROF|= 0.26).

Mutual fMRI Findings
When considering the best finding between the two rs-fMRI
acquisitions (T1 and T2) for each network, ICA components
classified as neuronal networks were 61, 100, and 44% for patients
in EMCS,MCS, andUWS (Figure S1), respectively. In the patient
in EMCS, the DMN and VM networks were fully preserved, and
most regions of ECN and sensorimotor were detected as well
(Figure S1). Regions belonging to the spatial pattern and extra
regions were identified in the auditory network, while mainly
regions that did not belong to the salience network were detected.
Out of the three visuals, only the VM was identified as neuronal
with a good spatial representation of the network. In the patient
in MCS (Figure S1), almost all the networks except the salience
network seem to be well preserved, despite ECNR being spread

out to both hemispheres and VL being lateralized. In the patient
in UWS, the spatial patterns of most of the networks (except the
sensorimotor and VM) were not well defined (Figure S1).

The head displacement of the patient in EMCS in the scanner
during both T1 and T2 acquisitions was 0.09, whereas for the
patient in MCS they were 0.03 and 0.06, respectively. Overall the
lowest displacement was observed for the patient in UWS with
the values of 0.02 and 0.04 respectively (Figure S2). The speed
of the patients in the scanner for the T1 and T2 acquisitions of
patient in EMCS were 2.0 × 10−4 and 3.7 × 10−4, for patient in
MCS: 2.9 × 10−5 and 1.9 × 10−4, and for patient in UWS: 6.3 ×
10−4 and 5.6× 10−5 respectively (Figure S2).

Looking at the spatial distribution of the three most
representative axial slices of the GS implemented on the
normalized structure of the DMNnetwork, in the best acquisition
of both EMCS and MCS, this network was preserved throughout
the brain, while in the patient in UWS, the GS seems to be
highlighted mostly in the areas outside the network (Figure S3).
In the concatenated case, the network was present only in the
patient in MCS, but in the patient in EMCS, only the frontal
part was found while in the patient in UWS, the network was not
even recognized. In this figure, the GS values from 0.5 to 1 were
represented in the jet color notation.

Functional-Metabolic Correlation
Considering the functional-metabolic correlation in these
patients, a significant positive correlation (p < 0.05) existed
between the FDG-PET and GS for all three patients when
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FIGURE 3 | A visual representation of the regions highlighted by the thresholded GS (values greater than half of the maximum GS value for the network), separated by

the regions within and outside the network for patients in EMCS, MCS and UWS for nine RSNs. Regions belonging to the network and having GS values greater than

the thresholded GS are represented by green, regions which should be in the network but do not have GS values greater than the thresholded GS are represented by

blue, regions outside the network but have GS values greater than the thresholded GS are represented by red color. NN represents non-neuronal networks. Here the

size of the circle doesn’t represent the value of the GS, all the regions with a GS value are plotted evenly.

Frontiers in Neurology | www.frontiersin.org 8 October 2018 | Volume 9 | Article 861

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cavaliere et al. FC Variability in DoC

considering the whole brain (Figure S4). In the best ICs pattern,
EMCS had the highest correlation (r = 0.19, p < 0.01), whereas
in the concatenated case, the MCS had the highest correlation
(r = 0.21, p < 0.01). This implies that, when both results
are reasonably good, concatenated data seems to give a better
representation. It’s evident that overall the patient in UWS had
the lowest correlation out of all three patients with correlation
values of 0.08 (p = 0.02) and 0.10 (p < 0.01) for the best and
concatenated data respectively. The positive skewness value of
0.31 for the FDG-PET distribution (Figure S5) of the patient
in EMCS indicated that there were many regions metabolically
more active than themean PET value. In theUWS instance, many
regions were lower or similar in activity to the mean value, as
confirmed by the negative skewness value of−0.01.

DISCUSSION

In the present pilot study, we investigated variability within
a period of about 30min in brain functional connectivity in
three severely brain-injured patients (two patients still with
DoC and one patient emerged from DoC). Moreover, we
employed a methodological approach based on the graph theory
and independent component analysis, to decompose brain
connectivity maps in different networks and to correlate it to
glucose metabolic activity simultaneously acquired through a
PET/MRI scanner. We could demonstrate several differences
between the two rs-fMRI acquisitions affecting in a different way
each network and with a different variability in the three patients.

Functional connectivity assessed among the nodes belonging
to different resting-state networks is sensitive to normal aging
(36) and levels of consciousness (37–40), representing a potential
biomarker of disease in longitudinal studies (41). Although being
quite variable during pathological conditions, RSNs examined
with a test-retest approach are thought to be highly reproducible
within the same sample (42, 43). In a recent paper (44), co-
activation patterns approach has been used in DoC patients,
demonstrating heterogeneous spatial reconfiguration of DMN
but also similar fluctuations of the BOLD signal in patients
compared to control individuals. While these authors referred
to BOLD signal oscillations during a single resting-state fMRI
session, we scheduled two resting-state acquisitions with a
30-min interval, to investigate through a test-retest approach
possible variability in functional connectivity within RSNs.
Several differences were found between T1 and T2 session,
with higher variability for the EMCS and the UWS case,
compared to the patient in MCS. These findings apparently
did not fit the substantial stability in the clinical diagnosis
demonstrated by repeated behavioral assessments in the present
brain-injured patients. However, we could speculate that this
novel methodological approach is suitable to detect minimal
fluctuations in brain connectivity not sufficient to determine
relevant behavioral changes (i.e., by changes in clinical diagnosis),
but nonetheless likely related to the variations detected by
multiple CRS-R total scores and neurophysiological assessments.
However, the nature and clinical significance of the fluctuations
of the functional connectivity observed here remain to be

established. Furthermore, multimodal investigations, possibly
combining neuroimaging and neurophysiological assessment,
are necessary to ascertain if variability in brain connectivity is
associated to temporal variability of EEG activity characterizing
patients with high probability of vigilance fluctuations (45).

On the basis of these considerations, we suggest that
this innovative approach for neuroimaging analysis could
permit clinicians to better identify the best functional brain
performance, needed for the diagnostic classification of patients
with high likelihood of clinical misdiagnosis. These findings
could be extremely interesting, mainly for patients who are
clinically diagnosed as UWS, where possible minimal and
inconsistent signs of consciousness may not be recognized by
behavioral assessments, leading to possible misdiagnosis (12, 46–
48), and for detecting subtle signs of recovery of consciousness
(8, 49, 50).

The same methodology should be applied to larger patient
samples, also including a high number of patients without
fluctuations of CRS-R total score, to comprehend which
variations of functional connectivity might be related to
substantial clinical fluctuations or to a basic variability of
neuronal network.

The differences in spatial patterns observed in the two
acquisitions within the same patient might be due to motion
and artifacts. These artifacts affect the nine networks in different
manner (32). However, the present findings suggest that not
necessarily one acquisition is capable of detecting spared or
impaired networks reliably. This observation suggests acquiring
more than one acquisition during the scanning interval and to
develop a gold standard for choosing the best one.

The GS scalar maps of most networks were more similar to the
standard template of the networks in the patients in EMCS and
MCS than in the patient in UWS. Specifically, all the networks
of the patient in MCS and the important networks (but VL
and VO) of the patient in EMCS were recognized. This implies
that the brain functional organization was relatively preserved
for the patients in EMCS and MCS. However, the auditory and
salience networks had higher GS in regions outside the network
likely in relation to the brain lesion. In the patient in MCS,
although the salience network behaved as neuronal, the spatial
pattern was not well-defined, suggesting that this network was
distorted and metabolically impaired. Although seven out of the
nine networks could be recognized in the patient in UWS, they
had hyper-connectivity (confirmed by the negative ROF values),
resembling non-normal condition. This might be related to the
severe pathological condition of the patient in UWS affecting the
spatial patterns of most networks (32).

A significant positive correlation was observed between the
FDG-PET and GS for all three patients, although the r values
were small. Overall, a higher correlation was observed for the
patient in EMCS and MCS compared to the UWS case while
using the concatenated data. The negative skewness value for
the FDG-PET of the patient in UWS (FDG-PET values region
by region were normalized by the global signal or mean all over
the 1015 regions), is explained by the fact that there are only
few regions with metabolic activity above the mean value. In
the patient in EMCS, the distribution of the FDG-PET is tailed
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toward the left with a positive skewness value showing that there
are several regions more metabolically active than the average,
favoring conscious behavior.

Limitations of the Study
The present study had several limitations. First, we acknowledge
that the low number of patients was a major limitation. We
selected three patients with different clinical diagnosis (i.e.,
UWS, MCS and EMCS), to preliminarily investigate possible
variability in fMRI connectivity in patients with different level
of consciousness. The small sample size did not allow any
generalization, but we hope that our preliminary study could
serve as a starting point for devising multicenter studies on
larger samples, comparing data of patients with different levels
of consciousness, different etiologies and in different disease
phases. Second, we could not calculate rigorous associations
between patients’ behavioral profiles (measured by repeated CRS-
R assessments) and their possible brain connectivity variability,
since the two features could not be measured in the same
time window. Also, we did not perform clinical assessments
immediately before and at the end of MRI acquisition since it
could not ensure a strictly closed evaluation of possible patients’
fluctuation in the two fMRI acquisitions.

May be the best tool to quantitatively assess even sub-
clinical variations of cortical activity that could be correlated
with repeated resting state fMRI seems to be prolonged EEG
monitoring (45). However, we would underline that we enrolled
patients in stabilized clinical diagnosis (even though in slightly
fluctuated CRS-R scores), as demonstrated by repeated clinical
assessments in the weeks before and after neuroimaging day,
and with time from brain injury more than 1 month in order
to minimize possible biases related to spontaneous clinical
changes in the two different resting MRI acquisitions. Third,
a lack of specific alertness level monitoring (such as EEG
recording) during scanning acquisition could be a limit for the
analysis within and between subjects, since we could not exclude
variations in wakefulness as confounders for intrinsic functional
connectivity analysis (51). However, we used some strategies to
ensure patients’ best vigilance state as described above.

Finally, the lack of a control group was a limitation
of the present study, although the choice of the best
reference group for patients with DoC is still debated (healthy
subjects vs. injured patients that recovered consciousness,
like for EMCS). Nevertheless, rs-fMRI functional connectivity
metrics, mainly extracted by ICA, have demonstrated a high
test-retest reproducibility (42). Moreover, other studies have
demonstrated the potential of rs-fMRI functional-metabolic
correlation assessed by simultaneous PET/MRI in healthy
subjects (52), and in other neurological conditions, like
Alzheimer disease (53).

CONCLUSIONS

Since repeated acquisitions within 30min showed relevant
variability through a test-retest fMRI approach, we suggest
performing multiple acquisitions within the same session to
pick the best findings and possibly to compare these findings

in longitudinal acquisitions. This procedure, together with the
combined simultaneous acquisition of fMRI and PET, could
provide useful information for improving characterization of
patients with DoC. In a not well-defined number of patients
with clinical diagnosis of unresponsive wakefulness syndrome,
paraclinical testing (such as fMRI by active task or acquisition in
resting state) could reveal cortically mediated cognitive functions
(the so-called covert cognition). In this context our approach (i.e.,
double resting fMRI acquisitions combined with PET scanner)
could help clinicians to increase the probability of detecting
(spared) functional connectivity, which might provide diagnostic
and prognostic information.
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Figure S1 | GS scalar maps of the nine RSNs of patients in EMCS, MCS, and

UWS. From the two acquisitions, only the networks classified as neuronal are

shown. When both acquisitions had neuronal components, the highest ROF value

was used to choose the best spatial pattern of the network. The size of the circle

represents the strength of the GS. The darker the circle, the higher the GS. Only

the GS values greater than 0.5 of the maximum GS value of that network are

plotted.

Figure S2 | Motion curves illustrate translation (in mm) for x (blue), y (red), and z

(orange) and rotation (in ◦) for pitch (blue), roll (red), and yaw (orange) parameters,

and the time courses of each the nine RSNs (auditory, DMN, ECNL, ECNR,

salience, sensorimotor, VL, VM, and VO) over 480 s.
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Figure S3 | Three most representative axial slices of the GS implemented on the

normalized structure of the DMN network are presented for the three patients for

the best functional pattern and concatenated data.

Figure S4 | Scatter plots for the EMCS, MCS and patients in UWS showing the

correlation between the FDG-PET and GS of the 1015 parcellated ROI. Solid line

indicates the best linear fit to the data and on the northeast corner of each scatter

plot the linear correlation value is reported along with its statistical p-value.

Figure S5 | Distribution plots of GS for the best acquisition, concatenated data

and FDG-PET for patients in EMCS, MCS and UWS.

Table S1 | Coma Recovery Scale-Revised total and subscores in the three

patients collected in the day of neuroimaging and 5 days in 1 week before and

after.

Appendix 1 | Classification criteria for visual analysis of EEG background activity.
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