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Abstract

Despite eradication and control measures applied across Europe, bovine tuberculosis

(bTB) remains a constant threat. In Belgium, after several years of official bTB-free

status, routine movement testing, as currently practiced, revealed itself inadequate

to detect some herds affected by sporadic breakdowns. The aim of this study was to

assess different surveillance system components that strike a balance between cost

and effectiveness and to identify sustainable alternatives, which substantiate a bTB-

free claim while ensuring early detection and acceptance by various animal health

stakeholders. For this pupose, a stochastic iteration model was used to simulate the

current surveillance system’s expected performance in terms of detection sensitivity

and specificity. These results were then descriptively compared with observed field

results. Second, the cost and effectiveness of simulated alternative surveillance com-

ponentswere quantified. Sensitivity analyseswere performed tomeasure key assump-

tions’ impacts (i.e. regarding diagnostic tests and true prevalence). The results con-

firmed discrepancies between the observed and simulated expected performance of

bTB surveillance in Belgium. Second, simulated alternatives showed that interferon

gamma (IFN-γ) and serological testing with antibody-enzyme linked immunosorbent

assay (Ab-ELISA) targeting at-risk herds would enable an increase in the overall cost

effectiveness (sensitivity and specificity) of the Belgian bTB surveillance system. Sen-

sitivity analyses showed that results remained constant despite the modification of

some key assumptions. While the performance of the ongoing bTB surveillance sys-

tem in Belgiumwas questionable at the time of the study, this exercise highlighted that

not only sensitivity but specificity also are key drivers of surveillance performance. The

quantitative approach, taking into consideration various stakeholders’ needs and pri-

orities, revealed itself to be a useful tool in allowing evidence-based decision making

for future tuberculosis surveillance in Belgium, in linewith the international standards.
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1 INTRODUCTION

Bovine tuberculosis (bTB) is caused by Mycobacterium bovis, which

affects humans, cattle and other domesticated animals as well as

wildlife species. Despite efforts made over the last decades to eradi-

cate thedisease, bTB is still (re-)emerging in someEuropeanUnion (EU)

Member States (MS) and worldwide (EFSA, 2018; Quadri et al., 2021;

Visavet, 2019). The specific characteristics and complex epidemiology

of the etiological agent together with limitations of current diagnos-

tic assays and the lack of disease awareness (i.e. after several bTB-free

years)make surveillanceandcontrol of bTBconstant andevolving chal-

lenges (Downs, Parry, et al, 2018; Downs, More, et al., 2018; Humblet

et al., 2009; King et al., 2015; Shiller et al., 2010, 2011). In addition, bTB

control accounts for a large share of Belgium’s animal health expen-

ditures, which requires the search for a cost-effective and sustainable

surveillance programme (Drewe et al., 2014).

Following a successful eradication campaign and the constant

decrease in the total number of bTB-cases since the end of the 1990s,

Belgiumwas officially declared bTB-free in 2003 (EC, 2003). From that

time, the status of the cattle population was maintained as bTB-free,

with annual herd prevalence below 0.1%, corresponding to minimum

European legal requirements (EC, 1964, 2003).

Several studies assessing Belgian national registration systems of

animal identification and movement (SANITEL), coupled to historical

surveillance data, have revealed that themain risk factors for bTB spo-

radic breakdown herds in Belgium were a previous bTB infection and

animal movements, as indicated by observations made elsewhere in

the world (Conlan et al., 2012; Humblet et al., 2010; Guta et al., 2014;

More et al., 2015; Palisson et al., 2016). However, over the last decade

in Belgium,mandatory testing of newly introduced cattle (i.e. following

purchase) did not detect infected cattle. Nonetheless, when sporadic

breakdown herds are only detected at later stages of infection (e.g.

at slaughter houses), assessment of earlier data and additional trac-

ing have highlighted probable discrepancies in test results (Calba et al.,

2016; Humblet et al., 2010, Humblet,Walravens, et al., 2011; Humblet,

Moyen, et al., 2011; Welby et al., 2012). In addition, the within-herd

high prevalence of reactor cattle detected at times in breakdown, com-

bined with the chronic stage of infection in infected cattle (generalised

lesions found on slaughtered animals) raised serious doubts about the

current ‘early warning’ aspect of testing at purchase and/or slaughter

house visual inspection (FASFC, 2020).

While there is a clear need for sustainable cost and effective surveil-

lance systems to detect (re-) emerging diseases to ensure public health,

safe animal trade and welfare, criteria and tools to evaluate these sys-

tems and to foster mutual trust among stakeholders are still lacking

(Calba et al., 2015, 2016; Drewe et al., 2012; Stärk & Häsler, 2015).

Following a request from the Belgian scientific food safety committee

(FASFC, 2016), a task force, comprising different animal health stake-

holders (farmers, veterinarians, agricultural food sector, regional and

central laboratories, animal health control and policy makers, relevant

authorities andpaymasters)was set to evaluate theperformanceof the

current surveillance system and explore possible surveillance alterna-

tives. Thus, the current study, mandated by the task force, intended to

allow for evidence-based decision in the future bTB surveillance sys-

tem to substantiate free-status claim and to detect cases early on. For

this purpose, a stochastic simulation model was developed to evaluate

theperformanceof surveillance components in termsof cost andeffec-

tiveness.

2 MATERIALS AND METHODS

2.1 Input data

At the time of the current study, the surveillance of cattle in Belgium

was implemented and coordinated at the national level by the Federal

Agency for the Safety of the Food Chain (FASFC) in accordance with

the guidelines laid down in Council Directive 64/432/EEC and in the

Royal Decree 17.10.2002 (EC, 1964; Moniteur Belge, 2003). The four

on-going surveillance components of bTB surveillance system in Bel-

giumwere as follows (Figure 1):

(i) Slaughterhouse (SLGH): It includes post-mortem inspection at

slaughterhouses of all slaughtered cattle.

The three other components, using a single intradermal tuberculin

test (SIT) as first-line screening were as follows:

(ii) Importation (IMP): It means testing of all imported cattle from

non-officially and officially bTB-free MS at the import stage. This

excludes young fattening calves (FC), which are sent to slaughter-

house at the age of 6months.

(iii) Purchase (PUR): It includes testingof all purchased cattle (national

trade), except for FC.

(iv) Winter screening (WS):

a. Testing during five consecutive years of all cattle older than

6 months from herds identified during tracing-on and tracing-

back investigation as linked to an outbreak.

b. Testing during three consecutive years for all imported cattle

from non-officially bTB-freeMS.

c. Testing of all females older than 24months belonging to farms

with direct ‘rawmilk-sales’ to consumers.

A single intradermal comparative test (SICT) was performed 6

weeks after each non-negative SIT and the reactor cattle was isolated

from the rest of the herd. In case of non-negative SICT result, the

reactor animal is slaughtered and the whole herd is under movement

restriction. Suspected gross lesions (identified by inspection, palpa-

tion, incision of organs and tissues) and selected lymph nodes from the

slaughtered cattle were sent to the National Reference Laboratory for

tuberculosis culture and identification. If these tissues were also con-

firmed bTB-positive at the laboratory, the whole herd was screened

with an SIT test and all reactor animals were slaughtered. Depending

on epidemiological investigation, the whole herd could be slaughtered.

Once bTB was detected in a herd, a thorough tracing-on and tracing-

back investigationof all contact animals andherdswould be carried out
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F IGURE 1 Themain components of bTB surveillance in Belgium.
Abbreviations: MS,Member State; NRL: national reference national laboratory; SIT, single intradermal test; SICT, single intradermal comparative
test; bTB: bovine tuberculosis

and those contact herds would be tested for five consecutive years by

SIT inWS.

Since it is critical for early detection to rapidly and effectively iden-

tify potential infection before it spreads, it was suggested to increase

detection sensitivity in cattle and herds identified by tracing on and

back and/or imported from non-officially bTB-freeMS. It was assumed

that to increase detection sensitivity, not only should the diagnostic

test characteristics be more sensitive but also they should be more

reliable in results interpretation without compliance issues. Hence,

antibody-enzyme linked immunosorbent assay (Ab-ELISA) and inter-

feron gamma (IFN-γ) were identified as interesting alternatives, in con-
trast to SIT that requires a second on-farm visit and more subjective

nature of result interpretation. To estimate yearly potential impact

(in terms of detection sensitivity but also false and true positives and

negative results) of these alternative testing schemes targeting cattle

herds identified after tracing-on and -back of bTB breakdown(s) and/or

having an introduction of cattle originating from a non-officially bTB-

free MS, additional scenarios were simulated. The different simulated

scenarioswere for comparing the different testing schemes: interferon

SIT, (IFN-γ) test, Ab-ELISA alone or alongside IFN-γ.
To feed the simulationmodels (further description hereafter), yearly

data regarding all on-farm cattle censuses and movements from 1 Jan-

uary 2010 to 31 December 2015 (births, slaughters, purchases and

imports) were collected from SANITEL. For each individual cattle and

herd, the following variables were compiled: cattle identification (ID),

herd of origin ID, herd of destination ID, birth date, movement date,

movement type (birth, purchase, import, export, slaughter, rendering

plant and market), cattle type 1 (fattening calves vs. others), cattle

type 2 (mixed, meat and dairy). Dataweremerged and concatenated at

surveillance component level to get the annual population and tested

numbers of cattle and herds tested in each surveillance component.

Datamanagement and analysis was carried out in SAS 9.2.

Annual on-going surveillance data were obtained from the FASFC

and regional laboratories in Belgium (named DGZ and ARSIA) for the

years 2010–2015. Data regarding costs of surveillance procedures

were obtained from the FASFC and the Sanitary Funds for cattle indus-

try for the years 2010–2015.

The simulated herd level design prevalence was set as that of the

official herd level design bTB prevalence (0.1% as indicated in Direc-

tive 64/432/CEE (EC, 2003). Due to the absence of exact information

on within herd prevalence, an arbitrary prevalence of 0.01% at animal

level and 10% level within herd (as seen in breakdown herds in Belgium

over last decade) was simulated. The same prevalence across all com-

ponents was simulated, as this would represent the worst-case sce-

nario. If the relative risk of infection was higher in the IMP component,

the sensitivity of detection would also increase. In addition, given the
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TABLE 1 Model parameters and assumptions values and sources

Parameter definition Valuea Sources

Average yearly cattle herd population size 24,000(22,000–25,000) National animal identification and

movement registration system,

Federal Agency Food Safety Chain,

Sanitary Fund

Average yearly cattle population size 2,500,000(2,200,000–2,700,000)

Average yearly herd size 53(8–143)

Average yearly number of purchased cattle 345,298(338,392–352,066)

Average yearly number of slaughtered cattle 501,189 (491,165–511,012)

Average yearly number of tracing outbreak cattle

tested during winter screening

216,643(212,310–220,889)

Average yearly number of tracing import and dairy

tested cattle during winter screening

81,653(80,021–83,253)

Simulated number of herds in alternative component 215

Simulated number of cattle in alternative component:

number of cattle

13000

Sensitivity Ab-ELISA 0.56(0.04–0.98) Bezos et al., 2014; Casal et al., 2017;

EFSA, 2013; Garcia-Saenz et al.,

2015 ; Schiller et al., 2010, 2011
Specificity Ab-ELISA 0.92(0.81–0.97)

Sensitivity tuberculin skin test 0.94(0.49–1)

Specificity tuberculin skin test 0.91(0.7–1)

Sensitivity IFN-γ 0.77(0.61–0.89)

Specificity IFN-γ 0.98(0.95–0.99)

Sensitivity slaughterhouse inspection 0.71(0.38–0.92)

Specificity slaughterhouse inspection 1(0.99–1)

Cost Ab-ELISA (€) 4(3–5) Federal Food Safety Agency, Sanitary

FundCost tuberculin skin test (€) 2(1–3)

Cost IFN-γ (€) 17(15–25)

Cost of farm visit by the vet (€) 30.13

Animal Prevalence 0.0001 Simulated

Herd prevalence 0.0010 64/432/CEE

Within-herd prevalence 0.100 Simulated

aPert probability distribution functions with most likely (minimum-maximum) values were used for some parameters reflecting uncertainty and variability

around the input data estimates.

fact that cattle exported fromnon-officially free countries should com-

ply with strict sanitary and additional testing requirements, it can be

assumed that the likelihood of infection is similar for those cattle then

those of the importing country.

The diagnostic test characteristics (sensitivity and specificity) of the

SIT at purchase and visual slaughterhouse post-mortem inspection, as

well as alternative diagnosticmethodswereobtained from targeted lit-

erature reviews with data lock point of September 2017 (Bezos et al.,

2014; Casal et al., 2017; EFSA,2013; Garcia-Saenz et al., 2015; Schiller

et al., 2010, 2011).

Table 1 displays the different input parameters and assumptions,

together with respective values and sources. Pert probability dis-

tribution functions, with most likely (minimum-maximum) estimated

averaged values, were attributed to all parameters, reflecting the

uncertainty and variability of source data (i.e. population and surveil-

lance herd and cattle population, test characteristics, as well as mini-

mum legal requirements). These inputs parameters were fed into the

stochastic models—further description below.

2.2 Model

First, the simulated expected negative andpositive results in the tested

cattle population given testing schemes applied in different on-going

bTB surveillance components (SLGH, IMP, PUR,WS), in Belgium at the

time of the study, were computedwith the following equations:

TP = Se × P × n (1)

TN = Sp × (1 − P) × n (2)

FP = (1 − Sp) × (1 − P) × n (3)

FN = (1 − Se) × P × n (4)

where TP is the number of simulated expected true positive, TN is true

negative, FP is false positive and FN is false negative depend on the
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sensitivity (Se) and the specificity (Sp) of the tests used, the animal

level prevalence (P) as well as the number of cattle tested (n).

Second, the simulated expected numbers of positive reactors (TP

+ FP) were used as a benchmark to compare with observed annual

surveillance results data obtained from FASFC and regional animal

health organisations in Belgium during the years 2010 until 2015.

Third, a simple stochastic model was built to simulate on-going and

alternative surveillance components to examine and determine the

most optimal scenario considering its costs and effectiveness.

The effectiveness of each simulated alternative surveillance compo-

nent was estimated by its sensitivity of detection (probability of posi-

tive result in the component given that the population is infected at the

specified design prevalence), as it is the sensitivity which in turn would

trigger interventions in case of unfavourable results and thereby limit

the spread of infection. This was computed using the following equa-

tions below, adapted fromMartin et al. (2007).

CSe = 1 −

(
1 − SeHerd ×

(
nHerd
NHerd

))(NHerd×PH)

(5)

SeHerd = 1 −

(
1 − SeTest ×

(
nCattleinHerd
NCattleinHerd

))(NCattleinHerd×PA)

(6)

Component sensitivity (CSe) (probability of positive result in the

component given that the population is infected at the specified design

prevalence) for each component (i) was estimated taking into account

the number of herds present in the population (NHerd), the number

of herds tested (nHerd), the expected prevalence at herd level (PH)

and mean herd sensitivity (SeHerd), in the given component. The mean

SeHerd estimate, for each component, was based on the average distri-

bution of the number of cattle in a herd (NCattleinHerd), the number of

cattle tested (nCattleinHerd), the expected prevalence atwithin herd level

(PA) andwithin herd test sensitivity (SeTest).

The potential risk of missing an infected animal was estimated by

computing the expected total FN results at animal level for each given

component (Equation 4).

The cost of each simulated alternative scenario (CostSi) was derived

by considering the number of cattle tested (nAnimalTested), the cost of the

diagnostic test (CostTest) and the number of visited herds for testing

(nHerdsVisited) as well as the cost of a veterinary visit (CostVetVisit; times

one for serological assays and IFN-γ and times two for tuberculin skin

testing) (Equation 7).

CostSi = [nAnimalTested × CostTest] + [nHerdsVisited × CostVetVisit] (7)

Additional costs incurred by confirmation testing (with IFN-γ and
Ab-ELISA in parallel) of each true and false positive resultwas also con-

sidered by using the same equation (Equation 7), where nAnimalTested

and nHerdsVisited represented the numbers of true and false positive

reactors and herds.

The outputs generated for each simulated surveillance components

were obtained by a stochastic iteration process in @Risk 5.0, with

10,000 iterations per simulation to ensuremodel convergence.

2.3 Sensitivity analysis

Tounderstand the impact of someof the assumptions used in the above

modelling exercise, different sensitivity analyses were carried out.

It was argued that the apparent prevalence of bTB in Belgium may

be underestimated because of current diagnostic constraints. There-

fore, a sensitivity analysis was carried out to measure the impact

of prevalence (1 infected in 100,000 cattle; 1 infected in 10,000; 1

infected in1000) on thepurchase testing resultswhile keeping all other

parameters unchanged.

Since serological tests target humoral immune responses (i.e. Ab-

ELISA), the probability of detection will vary depending on the infec-

tion stage (acute infection or chronic infection) and prevalence, dif-

ferent scenarios were therefore simulated reflecting varying diag-

nostic Ab-ELISA test sensitivities (Casal et al., 2017), using conven-

tional proteins, specific immune mediated proteins or with no prior

knowledge of diagnostic test sensitivity values. Also, to understand

the impact of prior probability distribution functions, different func-

tions were used. The beta is a continuous probability distribution char-

acterised by two shape parameters (α, β) and often used for random

behaviour percentages and proportions such as diagnostic tests char-

acteristics (sensitivity and specificity). Hence, simulationswere carried

out with Pert distribution 0.56(0.04–0.98); beta distribution (79,62)

corresponding to a mean (min–max) value of 0.56 (0–1); beta distri-

bution (11,29) corresponding to a mean (min–max) value of 0.93 (0–

1); beta distribution (2,2) corresponding to a mean (min–max) value of

0.5 (0–1).

3 RESULTS

3.1 Model output

The simulated expected results (mean estimate, minimum and max-

imum) of different on-going surveillance components were com-

pared with the annual surveillance results (Table 2). The simulated

expected SIT positive reactors (TP + FP) at purchase (38,006 (224–

101,042)) were more than 1000 times higher than observed (9(2–14)).

While the observed SIT false positive reactors during winter screen-

ing (390(65–498)) were lying within the expected positive reactors

lower range (23,846(140–63,335)), observed slaughterhouse inspec-

tion lesion notification number (16(2–86)), though not as high as

expected, was lying within the simulated expected range (870(26–

4684)).

Second, scenarios simulating different testing schemes were tested

(Table 3). Regardless of the diagnostic test used, the number of

false negative results remained constantly low (0(0–3). The simulated

expected component sensitivity of each alternative testing scenario

remained within the same range, regardless of their respective test

sensitivity values, which means that the overall expected sensitivity of

the surveillance would not drastically change given the chosen strat-

egy and testing scheme. However, the number of false positives was

much lowerusing IFN-γ. Similar overall costswereobserved for SIT and
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TABLE 2 Number of observed and simulated expected positive reactors (true+ false positives) within the different bovine tuberculosis
surveillance components on-going in Belgium using the single intradermal tuberculin test or post mortem visual inspection at slaughterhouse
(mean (min–max) values)

Components Observeda Simulated expected

Purchase 9(2–14) 38,006 (224–101,042)

Slaughter 16(2–86) 870(26–4684)

Winter screeningb:
∙ Follow up of tracing on back of breakdown herds and import from

non-officially bTB-freeMS

390(65–498) 23,846(140–63,335)

∙ On farm delivery dairy farms 817(172–1486) 8987(52–23,816)

aFASFC 2010–2015.
bIn the available data sources, it was not possible to clearly disentangle the reason of cattle and herds tested during winter screening.

TABLE 3 Scenarios simulation results of yearly alternative bovine tuberculosis (bTB) surveillance testing schemes (IFN-γ test, SIT, Ab-ELISA
alone or in parallel with IFN-γ)): reactors at cattle level, component sensitivity, screening and confirmation testing price (mean (min–max) values)

Screeningwith

tuberculin skin testa Screeningwith IFN-γ test
Screeningwith Ab-ELISA

test

Screeningwith IFN-γ+
Ab-ELISA test

TP 1(0–3) 1(0–3) 1(0–2) 1(0–3)

FN 0(0–1) 0(0–1) 1(0–2) 1(0–3)

FP 1434(5–7055) 303(28–1136) 1172(82–4667) 1448(132–5302)

TN 11,572(1679–27,232) 12,703(1856–28,692) 11,834(1746–26,486) 11,572(1679–27,232)

Component

sensitivity

0.14(0.03–0.19) 0.11(0.02–0.18) 0.08(0.01–0.19) 0.14(0.03–0.19)

Price screening (€) 38,951(16,114–88,874) 240,753(36,622–625,026) 58,519(13,576–138,831) 292,794(43,719–713,194)

Price confirmation

testing (€)
74,848(315–370,670) 15,841(1425–60,708) 61,141(4430–235,328) 75,530(7138–267,419)

Abbreviations: Ab-ELISA, antibody-enzyme linked immunosorbent assay; FN, false negatives; FP, false positives; IFN-γ, interferon gamma; TN, true negatives;

TP, true positives.
aIf tuberculin test is carried out in accordancewith gold standard.

Ab-ELISA (€113,799 and €119,660), whereas cost for IFN-γ (€256,594)
was substantially higher because of higher test costs. For a similar

cost, the Ab-ELISA provided effective results in the same range as

the SIT.

3.2 Sensitivity analysis

The impacts of different simulated animal prevalence (1/1,000;

1/10,000; 1/100,000 infected) during purchase testing are shown in

Figures 2. This graph indicates that regardless of the design prevalence

(very low in disease freedom situations), most of the test results will be

truenegative (around90%); the false negative rates remaining very low

(around 0.01%). However, the expected rate of false positive results

was high (around 10%).

Table 4 shows the impact of the use of different Ab-ELISA test sensi-

tivity values. Component sensitivity remained constant and low (given

the limited number of cattle herds tested compared with its corre-

sponding herd population size) 0.09(0.00–0.19).

4 DISCUSSION

The model developed for the purpose of this study has revealed itself

to be an interesting tool to evaluate surveillance from different stake-

holders’ perspectives. Indeed, it has allowed the quantification of the

system’s performance in detecting and demonstrating freedom as well

as its associated costs and potential risks (due to missed cases). This

study highlighted the importance and interplay between sensitivity

and specificity when evaluating surveillance performance in terms of

costs and effectiveness. Computed simulated expected positive reac-

tors (TP+FP) given the specificity of diagnostic testing procedures and

tested cattle population, as well as prevalence, enabled a benchmark

of expected results for the different surveillance components. Given

expected prevalence of bTB in Belgium,most if not all positive reactors

would be false positive and the simulated expected positive reactors

corresponded to results published elsewhere (i.e. USDA publishes a

minimum expected false positive results rate of 1% using SIT (USDA,

2017)). This current study simulated that a yearly minimum of 224

positive reactors are expected among the SIT tested cattle during
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F IGURE 2 Simulated results (abbreviations: FN, false negatives; FP, false positives; TN, true negatives; TP, true positives) for varying
prevalence during purchase testing with tuberculin skin test

TABLE 4 Impact of using different distributions and values of Ab-ELISA test sensitivity on bovine tuberculosis random cross-sectional
surveillance: expected test results (component sensitivity, testing cost (screening+ confirmation) (mean (min–max) values)

Pert distribution

(0.04,0.56,0.98) Beta distribution (79,62) Beta distribution (112,9) Beta distribution (2,2)

TP 1(0–2) 1(0–2) 1(0–3) 1(0–2)

FN 1(0–2) 1(0–2) 0(0–0) 1(0–2)

FP 1172(82–4667) 1170(99–4292) 1172(98–4465) 1172(96–4713)

TN 11,834(1746–26,486) 11,836(1733–27,290) 11,834(1614–27,865) 11,834(1790–27,298)

Component

sensitivity

0.08(0.00–0.19) 0.08(0.018–0.15) 0.15(0.04–0.19) 0.07(0.00–0.19)

Price screening (€) 58,519(13,576–138,831) 58,539(14,074–13,4450) 58,524(13,510–141,338) 58,515(13,292–144,526)

Price confirmation

testing (€)
61,141(4430–235,328) 61,065(5352–243,202) 61,144(5151–239,445) 61,141(4814–238,972)

Abbreviations: FN, false negatives; FP, false positives; TN, true negatives; TP, true positives.

purchase, whereas in practice, over the last decade, between 2 (in

2011) and 14 (in 2013) only were reported yearly. Poor compliance

with SIT testing procedure, because of a lack of disease awareness, of

the fear of negative repercussions following notification, of logistical

constraints (high number of cattle tested, containment of cattle not

always appropriate), of biological variability or age (less likely to be

infected and/or lower test sensitivity) could explain these discrepan-

cies (Elbers et al., 2010; Humblet, Walravens, et al., 2011; Humblet,

Moyen, et al., 2011;More et al., 2015; Schiller et al., 2010, 2011).

The current study revealed that SIT testing at purchase (in Belgian

real-life field experience) showed a lower observed rate of detection

than expected, more than a 1000-fold on average, and corroborated

previous findings (Welby et al., 2012; Humblet et al., 2010). In this

simulation exercise, minimum and maximum simulated expected val-

ues were purposely shown to reflect the range of all possible scenar-

ios. This shows that in the very best-case scenario, 16-fold difference

between the minimum expected number of positive reactors and the

maximum observed and at purchase is found in the current Belgian

field settings. If only the 95% confidence intervals were displayed, the

discrepancy between the expected and observed number of reactors

would only be greater. The estimated yearly costs of purchase testing,

(€1,177,462; FASFC, personal communication, 2016), together with

the overall indirect costs generated by compensation for slaughtered

cattle in breakdown herds (€500,000/herd; FASFC, personal communi-

cation, 2016;Moniteur belge, 2003), appearing at a rather late stage of

infection only, led to the search for a sustainable alternative.

For slaughterhouse visual inspection, the model simulated that a

yearly number of suspect lesions between 26 and 4684 would be

expected among slaughtered cattle. However, only 16 suspect gross

lesions are spontaneously reported yearly. Considering historical data

of early 2000, suspicious lesions submission rate was much higher

(0.01%–0.08% of slaughtered cattle) and closer to expected results
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simulated in the current study (C. Saegerman, personal communica-

tion, 2016). This has been an issue for TB surveillance throughout the

world for both cattle and humans, with several interesting solutions

such as, incentives, setting baseline targets of lesions to be detected,

among others (Beith et al., 2009; EFSA, 2014; Kadota et al., 2021;

Kaneene et al., 2006; More et al., 2015). In the United States, per-

formance awards for detection of bTB-like lesions during slaughter

have shown to have a significant impact on the detection of bTB cases

(Kaneene et al., 2006). Another area of improvement in bovine tuber-

culosis surveillance is the rate of successful tracing back investigations

of bovine tuberculosis-positive animals. In Belgium and Europe, the

mandatory systematic registration and identification of animal origins,

movement and status provide a wealth of data and information. Data

quality, often considered as an asset, is critical to improve surveillance

systems as value of informationwould be hampered by poor data qual-

ity (FAO, 2011; Stärk & Häsler, 2015). At the time of the study, in Bel-

gium, while conventional laboratory samples (i.e. blood samples) data

(i.e. animal ID, herd ID, test date, test motive and test result) are elec-

tronically, centralised and standardised recorded (similarly as for ani-

mal identification and movement data), lack of standardised and cen-

tralised SIT, SICT and slaughter samples could constitute a challenge

and impact the rate of bTB notification. In addition, for theWS compo-

nent, in the available data sources, it was not possible to clearly disen-

tangle the reason of cattle and herds tested (i.e. five yearly follow up

testing of cattle and herds identified following tracing-on and -back of

bTB breakdown(s) and/or the three yearly follow up testing of cattle

and herds due to introduction of cattle originating from a non-officially

bTB-free MS). A centralised or integrated database with standardised

data sets allowing for the merger of various data sources (i.e. between

laboratory data and animal origins, movement and status) is critical to

ensure rapid and efficient tracing on and back (Humphrey et al., 2014;

Kaneene et al., 2006).

Diagnostics assays, such as Ab-ELISA and IFN-γ, gain increasing

interest. These tests allow for individual testing as well as for general

laboratory testing and would entail decreasing tester variability asso-

ciated with pen-side tests such as the SIT (due to influences such as

cattle calmness, the standard of the facilities, the interest and care of

the veterinarian, etc.), thereby diminishing any pressure from owners

on the veterinarian. With a single visit only, the overall financial cost

could be potentially reduced. Over the last years, the initial low sen-

sitivity and specificity of these assays were greatly improved (Bezos

et al., 2014; Casal et al., 2017; Saegerman et al., 1995). Current diag-

nostic tests included in bTB control programmes focus mostly on cell

mediated immune response, aiming at the prevention of an early stage

spreading of the infection. However, as disease progresses, immunity

slowly shifts from cell mediated to antibody response. Therefore, ani-

mals missed by current tests, which target cellular response (as imple-

mented under current practices), would remain in the herd and could

contribute to a spread of the disease, with significant economic losses

as anoutcome.Hence, usingAb-ELISAand IFN-γ (either aloneor in par-
allel) in high-risk herds to increase the sensitivity of the surveillance

scheme, to ensure the identification of latent infections and poten-

tially silent bTB-spreading animals would be an interesting alterna-

tive. This approach would ensure breakdown management and rapid

bTB eradication. The simulation exercise is performed in the current

study, aiming at the assessment of impact, using these alternative test-

ing schemes in specific surveillance components (i.e. monitor or tracing

back contact herds andmonitor cattle that originate fromnon-officially

bTBMS). While the overall cost of parallel testing IFN-γ and Ab-ELISA
is high in comparison with an SIT testing alone, the incremental effec-

tiveness gained (given the current low prevalence setting in Belgium

and poor performance of SIT in Belgian field setting) proved to be an

interesting alternative. The IFN-γ test specificity values (0.98(0.95–

0.99)) used to carry out simulation in this study were derived from

existing literature at the time of the study. A recent meta-analysis cor-

roborates these values, but it also highlights that caution should be

taken given the variability that can be observed under certain condi-

tions (Nuñez-Garcia et al., 2018). If the IFN-γ specificity were to be

lower, because of the low prevalence and high number of cattle in the

disease-free group, a 1%change in the number of non-diseased individ-

uals correctly identified as negative, or the specificity, will have much

bigger impact than a 1% change in the number of diseased individu-

als that correctly test positive, or the sensitivity. However, a pilot study

evaluating the performance of the IFN-γ under field conditions in Bel-
gium, proved comparable to the data in the literature (97%–98%), con-

firming thereby that assumptions used in other currentmodelling exer-

cises are plausible in Belgium (FASFC, 2021). Nevertheless, further val-

idation of these tests under field condition are warranted as suggested

by Nuñez-Garcia et al. (2018).

To understand the impact of design prevalence on outputs from our

simulation models, a sensitivity analysis was performed. The results

show that if the true prevalence were to be higher than the current

apparent prevalence, the number of potentially missed cases would

remain in the same range. And that low disease prevalence situa-

tion, specificity of the test has a strong impact on surveillance sys-

temresults. Tomeasure impact fromdifferentAb-ELISAdiagnostic test

sensitivity values on surveillance performance, additional simulations

were carried out. Surprisingly, the impact was not significantly differ-

ent. The large number of tested cattle and herds probably compen-

sated for the varying values of sensitivity. The number of false nega-

tive test results, reflecting the probability of missing infected animals,

remained substantially low regardless of the simulated diagnostic test

sensitivity. Asmentioned above, since the bTB prevalence is low in Bel-

gium, given the bTB-free status of the country, a change in sensitivity

will not have a big impact compared with a change in specificity. The

beta probability distribution function is useful in modelling diagnostic

test characteristics. The consistency in simulations results observed in

the current study shows, however, that pert distribution function is a

good approximation,when there is limited information about the shape

of the distribution.

A prerequisite for securing public and animal health and welfare

is cost-effective and sustainable surveillance systems. In addition, to

ensure acceptability, surveillance systems should be tailored to answer

to the needs and priorities of different animal health stakeholders. In

Belgium, to ensure ownership and to involve farmers in a bottom-up

approach for an ultimately sustainable decision-making process,
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associating veterinarians, the agricultural food sector, regional and

central laboratories, animal health control and policy making bodies,

relevant authorities, paymasters is a common practice (Calba et al.,

2016; Dehove et al., 2012; Hallet, 2003). The model developed in

the current study enabled evidence-based decision and maintained a

balance between cost and effectiveness, while providing assuredness

in both a context of freedom and for disease detection. Simulation

enabled us to quantify the impact of change in terms of cost and effec-

tiveness andwas a useful tool to facilitate the decision-making process

regarding future tuberculosis surveillance in Belgium. It was agreed

that testing at purchase, using the SIT test as currently performed

in Belgium, was not cost-effective in detecting bTB cases in Belgium.

Implementing a targeted use of the Ab-ELISA and IFN-γ tests was

identified as an interesting alternative to mitigate the observed weak

performance of the SIT in current Belgian real-life field experience

(FASFC, 2020). Following this study, bTB surveillance was modified

and Ab-ELISA and IFN-γ testing was implemented as the first-line

screening test in all surveillance components (either sequentially or

in parallel depending on which component), while purchase of cattle

should comply with safe sanitary measures, the systematic testing

with SIT of all purchased cattle was revised and centralised data epi-

demiological data base was set up (MB, 2021). The model framework

developed in the current study proved to be an interesting tool for

quantitative decision making regarding the (re)design of surveillance

systems taking into account heterogeneity in local characteristics and

different priorities and needs among stakeholders and in the light of

evolving national and international regulations (EFSA, 2013, 2014;

More et al., 2015;Welby et al., 2012).
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