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Imagination is more important than knowledge.
Knowledge is limited, whereas imagination embraces the entire world,

stimulating progress, giving birth to evolution.
It is a real factor in scientific research.

Albert Einstein
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Forschungszentrum Jülich, and for giving me the opportunity to collaborate
with many people and institutions.

I also want to convey a special word of gratitude to Lutz Weihermüller for
his valuable help and expert advice throughout the PhD project. It was a
pleasure to work with him. His availability and his optimism always helped me
through difficulties that I encountered along the way. Many thanks for the time
spent discussing my work, solving problems, and supporting me with setting
up the field experiments at the TERENO test site in Selhausen.

I would like to thank Peggy O’Neill for welcoming me at NASA in the
Hydrological Sciences Branch of Goddard Space Flight Center in Greenbelt
(USA) during the period from March to June 2011. I enjoyed working with
her in the context of the upcoming Soil Moisture Active and Passive (SMAP)
mission. I look forward to continue collaboration with her in the future.

This PhD research has greatly benefitted from the expertise of Mike Schwank,
who introduced me to the microwave radiometry community. I thank him for
his formative support and for the interesting discussions during his visits to
Forschungszentrum Jülich.
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Chapter 1

Introduction

1.1 General context

Soil and groundwater resources are extremely important to maintain life on
Earth. Sustainable management of these resources is therefore a major global
challenge. Recent developments of agriculture, industry, and infrastructures
have significantly increased the pressure on our environment. In agriculture,
soil and water resources play a key role to sustain food production. Only 3% of
the water on Earth is fresh water, including about 2% of frozen water in glaciers
and polar ice caps. Irrigated agriculture, which represents 8% of cropland (i.e.,
about 277 million hectares) and 40% of the crop production throughout the
world, accounts for about 70–75% of global fresh water withdrawals (FAO,
2011). Irrigation of cropland has allowed us to greatly increase agricultural
productivity but has also lead to major environmental problems such as soil
erosion, groundwater depletion and pollution, and salinization. With the in-
creasing needs of the human population and the expected climate change, a
safe and effective use of the subsurface natural resources is the main challenge
for our society in the coming years. This could only be achieved by a better
understanding of the subsurface environment (Rubin and Hubbard, 2005).

Soil water content is a soil physical state variable which is defined as the
water contained in the unsaturated soil zone or vadose zone. Knowledge of soil
water content (SWC) is hereby essential as it represents a key variable in many
hydrological, climatological, and environmental processes. In hydrology, SWC
plays a major role in the water cycle by partitioning rainfall into runoff and
infiltration (Tramblay et al., 2010) and by controlling hydrological fluxes such
as groundwater recharge. SWC is also a key variable of the climate system as it
governs the energy fluxes between the land surface and the atmosphere trough
its impact on evapotranspiration (Seneviratne et al., 2006, 2010). In addition,
soil water availability influences plant transpiration and photosynthesis, and
therefore, has an important effect on the biogeochemical cycles (Jonard et al.,
2011a).

Determining the temporal and spatial variability of SWC is therefore es-
sential for many scientific issues and applications (Famiglietti et al., 2008). In
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2 Chapter 1. Introduction

that respect, a large number of SWC sensing techniques have been used and
developed in the last 50 years (Robinson et al., 2008b; Vereecken et al., 2008).
The standard reference method to determine SWC is the gravimetric technique,
which consists of extracting soil samples from the field. The samples are then
weighted before and after drying in an oven at 105◦C for 24 hours to derive
their water content. The amount of water in the soil is classically expressed
as volumetric (m3 of water per m3 of soil) or gravimetric (g of water per g of
soil) water content. The gravimetric method is the only direct measurement
technique but several indirect techniques are also available to measure SWC
(e.g., Wagner et al., 2007; Robinson et al., 2008b; Vereecken et al., 2008; Senevi-
ratne et al., 2010). The indirect methods can be distinguished according, for
instance, to their spatial extent, namely local scale, field scale, and regional or
global scale.

1.1.1 Local soil water content sensors

Local indirect methods include mainly electromagnetic sensors, namely time-
domain reflectometry (TDR) (Noborio, 2001; Topp et al., 2003; Robinson et al.,
2003) and capacitance sensors (Dean et al., 1987; Rosenbaum et al., 2010; Mit-
telbach et al., 2011). The TDR measurement principle is based on the prop-
agation velocity of guided electromagnetic waves along a probe through the
soil, which is dependant on the soil electromagnetic properties. As the dielec-
tric permittivity of liquid water dominates the dielectric permittivity of other
soil components, water is the principal factor governing electromagnetic wave
propagation in the soil. Such as TDR, capacitance sensors are also based on
the dependency of the soil dielectric permittivity on the SWC. Both TDR and
capacitance sensors can perform non-destructive measurements of SWC over a
wide range of soils and with a very high temporal resolution. However, these
instruments are invasive methods, which are restricted to local observation
areas (<1 m2) and are not expected to be representative of the within field
variability.

Other local methods are also available such as: neutron probes (Greacen,
1981; Yao et al., 2004), which are based on the estimation of the number of
hydrogen nuclei in soils; heat pulse sensors (Campbell et al., 1991), which
are based on the estimation of soil thermal properties; and fiber optic sensors
relying on the attenuation or reflection of a light signal in the soil (Garrido
et al., 1999) or the characteristics of hydrophilic polymers (Texier et al., 2005).
Recently, an emerging new technology, the wireless sensor network using cluster
of local sensors, appeared as a promising approach to monitor SWC over large
areas and with a high temporal resolution, which is particularly useful for
observing hydrological processes (Vereecken et al., 2008; Ritsema et al., 2009;
Bogena et al., 2010). However, given the small support scale of the sensors,
i.e., the area or volume integrated by an individual measurement, and the
relatively large spacing between them, these networks do not allow to reveal
the local-scale SWC patterns.
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1.1.2 Field-scale hydrogeophysical techniques

In the field of hydrogeophysics, electromagnetic induction (EMI) (McNeill,
1980; Pellerin, 2002; Reedy and Scanlon, 2003; Sherlock and McDonnell, 2003),
electrical resistance tomography (ERT) (Kemna et al., 2000; Michot et al.,
2003; Samouelian et al., 2005; Basso et al., 2011), and ground-penetrating radar
(GPR) (Huisman et al., 2003a; Annan, 2005; Lambot et al., 2008a; Slob et al.,
2010) are increasingly used for field-scale characterization. EMI and ERT use
an electric current to estimate the soil electrical conductivity (or resistivity),
which depends simultaneously on different factors including mainly SWC, clay
content, and salinity (Rhoades et al., 1976; Corwin and Lesch, 2005; Friedman,
2005). However, since these parameters vary independently within a field,
SWC can not be easily estimated from the electrical conductivity. GPR mea-
sures the travel time of electromagnetic waves through the ground to estimate
the soil dielectric permittivity. In contrast to the TDR technique which uses
guided electromagnetic waves along a probe, GPR uses unguided waves, which
has the main advantage of allowing noninvasive quantification of soil properties
and larger sampling volumes. However, the more complex behavior of unguided
waves has limited the interpretation of GPR data. New promising geophysical
technologies to characterize the SWC variability at the field scale have also been
recently investigated such as the use of ground-based GPS receivers (Larson
et al., 2008), cosmic ray probes (Zreda et al., 2008; Desilets et al., 2010), and
ground-based time-lapse relative gravity measurements (Naujoks et al., 2010;
Christiansen et al., 2011), but their operationally is not yet demonstrated.

Amongst the geophysical techniques, GPR is of major interest to charac-
terize the subsurface with a high resolution (Huisman et al., 2003a; Lambot
et al., 2008a). During the last years, several techniques were developed to de-
termine the SWC from GPR measurements. The most commonly used method
is based on the analysis of the ground wave propagation velocity. The ground
wave, which is the part of the radiated energy that travels from the transmitter
to the receiver antenna through the top of the soil, can be identified using a
multi-offset acquisition such as the wide angle reflection and refraction (WARR)
or the common-midpoint (CMP) method (Huisman et al., 2003a). In this case,
the GPR antennas have to be in contact with the soil (on-ground GPR). Al-
though the method has been extensively applied (van Overmeeren et al., 1997;
Grote et al., 2003a; Huisman et al., 2002; Grote et al., 2003b; Weihermüller
et al., 2007; Steelman and Endres, 2010), accurate SWC estimates were only
possible for relatively simple soil conditions (e.g., low clay content, absence
of near-surface layering) allowing a clear identification of the ground wave.
To overcome this limitation, Lambot et al. (2004c) proposed a full-wave for-
ward and inverse modeling approach for off-ground GPR. The electromagnetic
model is based on a three-dimensional (3D) solution of Maxwell’s equations for
waves propagating in multilayered media and on an antenna model based on
frequency-dependent transfer functions that also account for antenna-soil inter-
actions. Although this GPR model appeared to accurately reproduce the radar
measurements in laboratory experiments (Lambot et al., 2004c, 2006c) and was
successfully applied to identify and map surface SWC in the field (Weihermüller
et al., 2007; Minet et al., 2011, 2012), it still has to be further developed to
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account, for instance, for soil surface roughness and vegetation effects (Serbin
and Or, 2005). Recently, the GPR approach of Lambot et al. (2004c) was gen-
eralized to near-field conditions, including in particular ground-coupled radars
(Lambot and André, 2012; Lambot et al., 2012).

1.1.3 Large-scale microwave remote sensing

Airborne and spaceborne microwave remote sensing offers the potential to mon-
itor surface soil moisture over large areas (e.g., Schmugge et al., 2002; Wagner
et al., 2007; de Jeu et al., 2008; Crow et al., 2012; Shi et al., 2012). Like most
local- and field-scale techniques, microwave remote sensing sensors are mostly
sensitive to the soil electromagnetic properties. As the dependency of the soil
permittivity on SWC is the highest in the low-microwave region (<10 GHz),
SWC retrieval is mainly performed using microwave sensors operating in either
L-band (frequency f = 1–2 GHz, wavelength λ = 30–15 cm), C-band (f = 4–8
GHz, λ = 7.5–3.8 cm), or X-band (f = 8–12 GHz, λ = 3.8–2.5 cm). A major
asset of microwave remote sensing compared to optical remote sensing is its
capability to perform all-weather observations due to the low influence of the
atmospheric conditions on the microwave signal. Microwave sensors are also
able to operate day and night. However, remote sensing methods have several
drawbacks compared to ground-based techniques such as the low temporal res-
olution (few days), the shallow measurement depth (few centimeters), and the
difficulty to observe the soil water content below dense vegetation. An other
major disadvantage is that the within-pixel variability can not be estimated
(Famiglietti et al., 1999, 2008; Vereecken et al., 2008).

Microwave remote sensing sensors include active systems, which transmit
electromagnetic waves and monitor the backscattered energy from the land
surface and passive systems, which record the electromagnetic radiation natu-
rally emitted from the land surface (Wagner et al., 2007; de Jeu et al., 2008).
Since the late 1960s, numerous satellites carrying microwave instruments have
been launched which has lead to huge developments with respect to spatial and
temporal resolutions and microwave modeling. While scattering and emission
phenomena are closely related, active and passive systems have different char-
acteristics leading to different spatiotemporal resolutions and sensitivities to
land surface properties.

Active microwave remote sensing

Active microwave remote sensing instruments include scatterometer and radar.
Synthetic aperture radar (SAR) systems (e.g., ALOS PALSAR, RADARSAT,
ERS, ENVISAT ASAR, SIR-C/X SAR, TerraSAR-X) have been specifically
designed to provide fine spatial resolution data from space (<30 m). Like for
off-ground GPR, the radar backscattered signal is highly sensitive to the land
surface characteristics, such as the soil dielectric properties but also the soil
surface roughness and the vegetation layer (Verhoest et al., 2008; Shi et al.,
2012). Many efforts have been made over the last decades to develop radar
backscatter models which account for surface roughness, ranging from empir-
ical to physically-based models. On one hand, empirical scattering models
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(e.g., Oh et al., 1992; Dubois et al., 1995; Deroin et al., 1997; D’Urso and
Minacapilli, 2006) require site-specific calibrations, which need ground-truth
observations or other remote sensing products. These models does not require
surface roughness measurements, but are only valid for the same conditions
as the calibration. Discrepancies were however observed in several studies be-
tween measured and modeled radar backscattered signals (Zribi et al., 1997;
Baghdadi and Zribi, 2006). On the other hand, physically-based models use
surface roughness parameters which have to be estimated from field measure-
ments. The classical scattering models are the Kirchhoff Approximation (Beck-
mann and Spizzichino, 1987), the Small Perturbation Method (Beckmann and
Spizzichino, 1987), the Small Slope Approximation (Voronovich, 1985), and
the Integral Equation Model (IEM) (Fung et al., 1992). The IEM model and
its improved versions such as the Advanced Integral Equation Model (AIEM)
(Chen et al., 2003) are mostly used to retrieve SWC from SAR data. However,
further improvements are still needed in order to provide SWC estimations over
rough surface at accuracies that would satisfy typical hydrological application
requirements (Wagner et al., 2007; Lievens et al., 2011). The main difficulties
are to correctly model the complex natural surfaces and to accurately measure
the surface roughness parameters. Most physically-based models assume that
the surface roughness is a random stationary process, which is not correct for
many natural conditions such as agricultural fields, and field-measurements of
surface roughness parameters are often inaccurate (Lievens et al., 2011). As
already mentioned, remotely sensed radar data are also greatly affected by veg-
etation, whereby the plant parts can affect the measurements according to their
relative size with respect to the wavelength of the radar signal used (Jackson
et al., 1996; Chukhlantsev et al., 2003; Joseph et al., 2010b). A first attempt
to model the influence of vegetation on the radar backscattering is the semi-
empirical water cloud model treating the canopy as a uniform cloud of water
droplets (Attema and Ulaby, 1978; Serbin and Or, 2005). More complicated
models were then developed based on the radiative transfer theory describ-
ing the vegetation as an ensemble of discrete dielectric scatterers overlying an
homogeneous half-space, such as the Michigan Microwave Canopy Scattering
(MIMICS) model (Ulaby et al., 1990; Karam et al., 1992; Touré et al., 1994) and
the Tor Vergata model (Ferrazzoli and Guerriero, 1995; Bracaglia et al., 1995;
Della Vecchia et al., 2004). Phase-coherent scattering models were also devel-
oped in order to account for coherent effects caused by the interferences among
the different scatterers (Stiles and Sarabandi, 2000; Marliani et al., 2002). But
up to now, accurate modeling of scattering and absorption effects in vegetation
is not yet available at the spatial resolution of the remote sensing products.

Passive microwave remote sensing

Microwave radiometry is also a powerful remote sensing technique to monitor
SWC (e.g., Schmugge et al., 1974; Jackson et al., 1982; Schmugge et al., 2002;
Shi et al., 2012; Kerr et al., 2012). A major advantage of passive systems
(radiometers) compared to active systems is the lower sensitivity to surface
roughness and vegetation cover which allows a less complex data processing
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for soil moisture retrieval (Jackson et al., 1996; Shi et al., 2012). Spaceborne
radiometers (e.g., AQUA AMSR-E, Coriolis WindSAT, SMOS MIRAS) can
also provide higher temporal resolution data but with a lower spatial resolu-
tion (>5 km) compared to SAR systems (<30 m), which can therefore limit the
range of applications. Microwave radiometry in the L-band is a very promising
technique to estimate SWC because of its high sensitivity to the soil dielectric
permittivity, i.e., a large change in sensor signal (brightness temperature) in
response to a change in soil permittivity, and its capability to better pene-
trate vegetation. Indeed, at long wavelengths (≈21 cm) the soil emission depth
is relatively large and the vegetation canopies are semitransparent (Gugliel-
metti et al., 2008; Grant et al., 2009). In this context, the European Space
Agency (ESA) launched in November 2009 the Soil Moisture and Ocean Salin-
ity (SMOS) mission (Kerr et al., 2010). SMOS carries the first L-band radiome-
ter which can provide global SWC estimates at 50 km of spatial resolution and
with a 3-day revisiting time. As active and passive systems have complemen-
tary assets, the US National Aeronautics and Space Administration (NASA)
is scheduling the launch in 2014 of the Soil Moisture Active Passive (SMAP)
mission (Entekhabi et al., 2010). SMAP will combine L-band active and pas-
sive observations, through which the spatial resolution is expected to reach to
9 km.

The influence of surface roughness and vegetation cover, while less impor-
tant for passive compared to active soil moisture retrieval, has been investigated
by many scientists (Choudhury et al., 1979; Mo and Schmugge, 1987; Wigneron
et al., 2001; Lawrence et al., 2011; Mialon et al., 2012). The semi-empirical Q/H
model (Wang and Choudhury, 1981) has been widely used to account for rough-
ness and is currently applied in the SMOS soil moisture algorithm due to its
simplicity (Wigneron et al., 2007; Panciera et al., 2009; Joseph et al., 2010a).
This model is based on two fitting parameters (Q and H) which are calibrated
with in-situ data. Recent studies indicated possible relationships between the
empirical roughness parameters and the measurable surface roughness char-
acteristics, i.e., the standard deviation of the surface height, the correlation
length and the autocorrelation function (Mialon et al., 2012). However, sev-
eral scientists observed some discrepancies using this model (Shi et al., 2002).
Other approaches were developed such as the air-to-soil transition model intro-
duced by Schwank and Mätzler (2006) and the reflectivity model of Shi et al.
(2002) based on the IEM model. Algorithms for estimating surface SWC from
vegetated areas using radiometry are also available in the literature such as
the Tau-Omega model (Jackson, 1993; Wigneron et al., 1995, 2007) which has
been successfully applied in a wide range of conditions (Jackson et al., 1996;
Saleh et al., 2007; Guglielmetti et al., 2008; Schwank et al., 2012). In addition
to surface roughness and vegetation effects, several studies have analyzed the
impact of forest litter (Schwank et al., 2008; Lawrence et al., 2011), soil tem-
perature (Choudhury et al., 1982; Chanzy et al., 1997), freezing soil (Schwank
et al., 2004; Rautiainen et al., 2012), snow cover (Mätzler, 1994b; Pulliainen
and Hallikainen, 2001; Jiang et al., 2007), and topography (Mätzler and Stan-
dley, 2000; Monerris et al., 2008; Pierdicca et al., 2010; Pulvirenti et al., 2011;
Völksch et al., 2011) on the SWC retrieval from passive microwave data.
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Even if there are various experiments reported in literature analyzing the
effect of soil surface roughness and vegetation on the retrieved radiometer sig-
nal, ambiguous findings and explanations are reported. The reasons for this are
manifold. On one hand, the spatial scale of observation limited the understand-
ing of involved processes, which is especially the case if airborne or spaceborne
data were used. On the other hand, the experiments were performed under
non-controlled conditions, whereby especially the spatial horizontal and ver-
tical heterogeneity of the influencing factors (such as water content) are not
known. Therefore, ground-based radiometer has proven to be of particular in-
terest to improve and validate retrieval algorithms used for large-scale passive
remote sensing of SWC due to the ability of controlling and/or characterizing
the observed footprint.

1.2 Research objectives

In order to characterize the spatiotemporal variability of SWC at the field scale,
GPR and ground-based radiometer show particularly promising potentialities
for high-resolution mapping and monitoring. Yet, for both techniques, still
research is needed to further improve and validate SWC products.

In that context, the main objective of this research project is to develop
and evaluate new forward and inverse modeling approaches for surface SWC
retrieval using active and passive remote sensing. In particular, ground-based
microwave radiometer and ground-penetrating radar were investigated for SWC
sensing and mapping at the field scale. This is illustrated in Figure 1.1 showing
the key elements of the overall estimation problem around which this thesis is
organized. The soil dielectric properties and the related soil water content can
either be derived from radiometer signal by inverting a radiative transfer model
or from GPR signal by inverting an electromagnetic model. Both active and
passive microwave signals are affected by soil roughness and vegetation, which
have to be accounted for in the forward models. The soil hydraulic properties
are then estimated from time-lapse soil water content data using an appropriate
hydraulic model.

This research is expected to provide new insights into the development and
application of field-scale characterization techniques that can be used for char-
acterizing the within variability of field-scale SWC and also improving large-
scale SWC estimates obtained from, for instance, the SMOS or the upcoming
SMAP satellites. Within that framework, the key objectives of the thesis are:

� to test, validate, and apply existing modeling approaches for GPR and
radiometer SWC mapping;

� to improve GPR and radiometer retrieval algorithms in order to account
for soil surface roughness effects;

� to estimate soil hydraulic properties from GPR and radiometer data, and
evaluate the uncertainty associated with the estimations;
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� to investigate the effect of vegetation on the passive and active microwave
signals and the potential use of microwave remote sensing to characterize
vegetation.

GPR

Active systemsPassive systems
Radiometer

content
Soil water

content
Soil water

Dielectric permittivityDielectric permittivity

Radar

signaltemperature

Brightness

Electromagnetic modelRadiative transfer model

Soil hydraulic
properties properties

Soil hydraulic

Applications

Chapter IV

Chapter II
Chapter V

Validations

Soil roughness

Vegetation

Chapter IIIChapter II

Chapter VIChapter VI

Figure 1.1: General sketch of SWC retrieval using passive and active microwave sys-
tems, from which the thesis is structured. Black outlined boxes denote
geophysical data and variables inverted for, blue boxes denote geophysical
models, red outlined boxes represent investigated effects to account for
in geophysical models for accurate soil characterization, and grey boxes
represent activities to validate and apply both microwave systems.

1.3 Outline of the thesis

The thesis is organized in 7 chapters. In Chapter 2, we compare L-band ra-
diometer and off-ground GPR to map surface SWC at the field scale over bare
soil. The effect of soil roughness on the passive microwave signal is addressed
by using a semi-empirical roughness model and the sensitivity of the model pa-
rameters with respect to the number of ground truths is evaluated using Monte
Carlo simulations. The uncertainty related to radiometer and GPR estimates



1.3. Outline of the thesis 9

is also appraised and discussed by comparing both characterization techniques
to reference TDR.

Soil surface roughness constitutes a major source of noise in the GPR sig-
nal when roughness amplitude is relatively large with respect to wavelength,
which typically applies in the hyperfrequency range. In Chapter 3, we combine
the full-wave GPR model of Lambot et al. (2004c) with a roughness model
that we derived from the Kirchhoff scattering theory to retrieve surface SWC
through signal inversion. This approach is validated using laboratory data and
by performing numerical experiments.

In Chapter 4, we analyze the effects of tillage practices on the spatial vari-
ation of soil properties using GPR data. In addition, we also use EMI data to
provide insights into the variability of the soil properties within the entire root
zone. In particular, the tillage effects on surface SWC, bulk soil electrical con-
ductivity, and mechanical resistance are investigated. The spatial distribution
of the SWC is also analyzed using geostatistical approaches.

A crucial issue in soil science and hydrology is the characterization of the
vadose zone hydraulic properties. In this context, we experimentally investigate
in Chapter 5 the potential of GPR and L-band radiometer to remotely infer
the hydraulic properties of a sand subject to hydrostatic equilibrium with a
range of water table depths.

Vegetation constitutes an additional factor that affects both GPR and ra-
diometer measurements. In Chapter 6, we present a literature review of the
use of passive and active microwave remote sensing methods for characteriz-
ing crop canopies with specific attention to stress-related properties such as
vegetation water content and leaf water potential. Future avenues of research
related to water stress recognition in vegetation using microwave methods are
also formulated.

Finally, conclusions and perspectives are drawn in the last chapter, thereby
providing insights with respect to both future research needs and potential
applications.
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Chapter 2

Mapping field-scale soil
moisture with L-band
radiometer and
ground-penetrating radar
over bare soil∗

Abstract

Accurate estimates of surface soil moisture are essential in many research fields,
including agriculture, hydrology and meteorology. The objective of this study
was to evaluate two remote sensing methods for mapping the soil moisture of a
bare soil, namely L-band radiometry using brightness temperature and ground-
penetrating radar using surface reflection inversion. Invasive time-domain re-
flectometry measurements were used as a reference. A field experiment was
performed in which these three methods were used to map soil moisture after
heterogeneous irrigation that ensured a wide range of water content. The het-
erogeneous irrigation pattern was reasonably well reproduced by both remote
sensing techniques. However, significant differences in the absolute moisture
values retrieved were observed. This discrepancy was attributed to different
sensing depths and areas, and different sensitivities to soil surface roughness.
For GPR, the effect of roughness was excluded by operating at low frequencies
(0.2–0.8 GHz) that were not sensitive to the field surface roughness. The root
mean square error (RMSE) between soil moisture measured by GPR and TDR
was 0.038 m3 m−3. For the radiometer, the RMSE decreased from 0.062 (hor-

*This chapter is adapted from:
Jonard, F.; Weihermüller, L.; Jadoon, K. Z.; Schwank, M.; Vereecken, H. & Lambot, S.
Mapping field-scale soil moisture with L-band radiometer and ground-penetrating radar over
bare soil, in IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8), 2863–2875.

11
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izontal polarization) and 0.054 (vertical polarization) to 0.020 m3 m−3 (both
polarizations) after accounting for roughness using an empirical model that
required calibration with reference TDR measurements. Monte Carlo simula-
tions showed that around 20% of the reference data were required to obtain a
good roughness calibration for the entire field. It was concluded that relatively
accurate measurements were possible with both methods, although accounting
for surface roughness was essential for radiometry.

2.1 Introduction

Surface water content is a key variable for estimating water and energy fluxes
at the land surface. Knowledge of the spatial distribution and dynamics of
the soil water content is essential in agricultural, hydrological, meteorological,
and climatological research and applications. Soil sampling, time-domain re-
flectometry, as well as neutron and capacitance probes, are common methods
used to characterize soil water content at the point scale. In general, these
techniques are restricted to small observation areas and are tedious and time-
consuming. Furthermore, these techniques may disturb the soil structure and
may not allow repeated measurements at the same point. Finally, point mea-
surements are not expected to be representative of the within field variability
or even average field moisture (Western et al., 2002).

Airborne and spaceborne remote sensing techniques with either passive mi-
crowave radiometry or active radar instruments are the most promising meth-
ods for mapping surface soil moisture over larger areas (Ulaby et al., 1986;
Jackson et al., 1996; Huisman et al., 2003a; Wagner et al., 2007). Active radar
instruments, especially synthetic aperture radar, can provide high spatial res-
olution data from space (<30 m). However, the radar signal is highly sensitive
to the geometric structure of the soil surface (Verhoest et al., 2008). To account
for roughness effects, empirical radar scattering models have been developed
by several authors (Oh et al., 1992; Dubois et al., 1995; Deroin et al., 1997),
but all these models require site-specific calibrations (D’Urso and Minacapilli,
2006). Currently, no widely applicable radar model accounting for roughness
effects is able to provide soil moisture estimations at accuracies that would
satisfy typical hydrological application requirements (Wagner et al., 2007). In
addition, remote sensing radar measurements are greatly affected by vegetation
(Jackson et al., 1996). Active systems are therefore limited to flat areas with
bare soils or low vegetation. On the other hand, numerous studies have also
demonstrated the potential of passive microwave remote sensing to retrieve geo-
physical parameters such as soil moisture (Schmugge et al., 1974; Jackson et al.,
1982, 1995; Schmugge et al., 2002; Wagner et al., 2007). Passive methods pro-
vide coarser spatial resolution data (>5 km), but are less influenced by surface
roughness and vegetation cover (Jackson et al., 1996). Microwave radiometry
in the L-band (1 to 2 GHz) is a promising technique to estimate soil moisture
and has the advantage of being unaffected by cloud cover and independent of
solar radiation (Njoku and Entekhabi, 1996), which allows all-weather and con-
tinuous (day and night) observations. The frequency band 1.400–1.427 GHz
is a protected radio astronomy band thus reducing radiometric measurement
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errors due to radio frequency interferences (RFI). Additionally, at these wave-
lengths (≈21 cm) the soil emission depth is relatively large and the vegetation
canopies are semitransparent (Guglielmetti et al., 2008; Grant et al., 2009).

Few techniques are presently available to measure soil water content at
an intermediate scale between the local and remote sensing scales, namely,
the field scale. However, they are particularly necessary for improving and
validating large-scale remote sensing data products (Famiglietti et al., 1999). In
this respect, ground-penetrating radar and ground-based microwave radiometry
techniques are specifically suited for field-scale characterization.

Over the past decade, GPR technology has made significant progress and
has shown great potential for mapping surface soil moisture at the field scale
with high spatial resolution. Reviews on the use of GPR in soil and hydro-
logical sciences are given by Huisman et al. (2003a) and Annan (2005). As
the dielectric properties of water outweigh those of other soil components, the
spatial distribution of water decisively controls GPR wave propagation in the
subsurface. However, the forward model describing the radar backscatter mea-
surements is usually subject to relatively strong simplifications with respect
to electromagnetic wave propagation phenomena. This results in inherent er-
rors in the water content retrieval, and moreover, this does not permit the
exploitation of all the information contained in the radar data. To overcome
this limitation, it is necessary to resort to full-waveform forward and inverse
modeling of the GPR data, which has become the logical choice due to the
computing resources now available (Ernst et al., 2006; Gloaguen et al., 2007;
Soldovieri et al., 2007). Lambot et al. (2004c) proposed a full-waveform forward
and inverse modeling approach, which particularly applies to off-ground GPR.
The electromagnetic model is based on a solution of the 3D Maxwell equations
for waves propagating in multilayered media and correctly accounts for antenna
effects and antenna-soil interactions. The model was shown to accurately re-
produce the radar measurements, and model inversion was successfully applied
to identify and map surface soil moisture in the field (Weihermüller et al., 2007;
Lambot et al., 2008b).

In the past, several experiments were performed using ground-based and air-
borne L-band radiometers to better understand the effects of vegetation cover
(Ferrazzoli et al., 1992; Saleh et al., 2007; Wigneron et al., 2007; Schwank et al.,
2008), soil temperature (Choudhury et al., 1982; Chanzy et al., 1997), soil sur-
face roughness (Choudhury et al., 1979; Mo and Schmugge, 1987), snow cover
(Mätzler, 1994b), and topography (Mätzler and Standley, 2000) on the mi-
crowave emission from the Earth’s surface. These effects have to be considered
in the interpretation of the signatures measured, otherwise soil water content
retrieval becomes inaccurate. Algorithms for estimating surface soil moisture
from passive data are available in the literature (Jackson, 1993; Wigneron et al.,
1995). These models include corrections for the surface roughness as well as
for the vegetation cover and have been successfully applied in a wide range of
conditions in ground-based and airborne experiments (Jackson et al., 1996).

In this context, the further development of algorithms for soil moisture
retrievals based on passive and/or active remote sensing techniques is essen-
tial to fully benefit from ESA’s SMOS mission launched in November 2009
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and NASA’s upcoming SMAP mission scheduled for launch in 2014. For the
proper calibration of such algorithms, ground-truth measurements collected at
relevant scales are necessary. In this respect, both ground-based GPR and
radiometer show great promise for mapping spatiotemporal variations of soil
moisture at scales ranging from a few square meters to several hectares and
with a spatial resolution in the order of one meter (Vereecken et al., 2008).
These ground-based GPR and radiometer techniques overcome the limitations
of the present ground truths (point information, see above) and constitute a
promising solution for bridging the spatial scale gap between point information
and large-scale remote sensing data.

The objective of this chapter is to compare L-band radiometer and off-
ground ultra-wideband GPR (Lambot et al., 2004c, 2006c) to map surface soil
moisture at the field scale over bare soil. The effect of soil roughness on the
passive microwave signal is also addressed by using an empirical roughness
model. The uncertainty related to, respectively, radiometer, GPR, and TDR
estimates is appraised and discussed by comparing the three characterization
techniques, as absolute uncertainty quantification is relatively complex when
dealing with unknown heterogeneities over different scales. In addition, Monte
Carlo simulations were performed to evaluate the sensitivity of the roughness
parameters with respect to the number of ground truths used for the model
calibration, thereby providing valuable insights into the roughness calibration
uncertainty. To the best of our knowledge, this study represents the first at-
tempt to compare field-scale maps of soil moisture over a bare rough surface
using radiometer and advanced GPR.

2.2 Materials and methods

2.2.1 Experimental setup

The experiment was conducted on July 14, 2009 on an agricultural field at the
TERENO test site in Selhausen, Germany (latitude 50◦87 N, longitude 6◦45 E,
and elevation 105 m above sea level). The measurements were performed three
months after the last plowing event on a compacted bare soil. The test site
has a maximum inclination of 4 in the east-west direction. The ground water
depth shows seasonal fluctuations between 3 m and 5 m below the surface.
The soil type is a Haplic Luvisol developed in silt loam according to the USDA
textural classification. In the upper horizons of the soil (0–30 cm), the grain size
distribution is largely dominated by the silt fraction (mean value of 65.0%). The
mean clay and sand contents are 14.9 and 20.1%, respectively. In the upper part
of the field, stones are observed. Due to the geomorphology and soil texture
variation (around 5% within the experimental plot), a large natural variability
in surface soil water content is present (around 0.10 cm3 cm−3) (Weihermüller
et al., 2007).

GPR, radiometer and TDR data were collected on a 72 × 16 m2 experi-
mental plot located in the upper part of the test site (Figure 2.1). This plot
consists of 8 transects each consisting of 18 measurement points (measurement
spacing: 2 and 4 m in the x- and y-direction, respectively). In order to produce
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Figure 2.1: Sampling grid (72 × 16 m2) consisting of 8 transects, each comprising 18
measurement points (in total 144 measurement points). The delineated
areas correspond to areas with different levels of irrigation with a mean
of 8 l m−2 for the high irrigation (dark-gray) and a mean of 4 l m−2 for
the low irrigation (light-gray).



16 Chapter 2. Mapping field-scale soil moisture

a wide range of water contents, the plot was partially irrigated with different
quantities of water in two different areas using a fire hose one day before the
experiment. Figure 2.1 shows the location of the irrigated area. The dark-
gray area was irrigated with a mean of 8 l m−2, while the light-gray area was
irrigated with a mean of 4 l m−2.

Radiometer antenna

GPR antenna

Figure 2.2: GPR and L-band radiometer mounted on a truck to measure surface soil
relative dielectric permittivity.

Measurements were performed with a radiometer and a GPR mounted on
the back of a truck (see Figure 2.2). The truck moved backwards to avoid
the effects of the tracks on the radiometer and radar measurements. Single
radiometer and radar measurements were performed at each position. The
radiometer antenna aperture was situated about 2 m above the soil surface and
directed with an observation angle of ϑ = 53◦ relative to the vertical direction.
The GPR antenna aperture was about 1.2 m above the ground with normal
incidence. This setup resulted in an elliptic −3 dB footprint of approximately
3.2 × 1.9 m2 for the radiometer and a −3 dB footprint of approximately 1.8 ×
1.8 m2 for the GPR (see Section 2.3.3).

2.2.2 Ground-truth measurements

Subsequent to each GPR and radiometer measurement, four TDR and tem-
perature measurements were performed in the center of the GPR and the ra-
diometer antenna footprints, at distances of about 20 cm from each other. Only
four measurements were collected due to a time constraint during the mapping
experiment, in particular to avoid significant temporal variations of surface soil
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moisture (evaporation). Data measured within each footprint were averaged
for comparison with the permittivities derived from the GPR and radiome-
ter. TDR measurements of soil dielectric permittivity were performed using
a custom-made, three-rod probe with a length of 10 cm which was inserted
vertically into the soil. The TDR probe was connected to a TDR100 cable
tester (Campbell Scientific, Logan, Utah, USA). The raw data of the wave-
form were stored and automatically analyzed by the commonly used tangent
method in the time domain (Heimovaara and Bouten, 1990). Due to the low
clay content of the soil at the site, the frequencies of the TDR measurements
are expected to be in the frequency range of 200–1000 MHz (Robinson et al.,
2005), which is similar to the GPR frequency band. Soil temperature measure-
ments were performed using a temperature sensor (Testo110, Testo Industrial
Services, Lenzkirch, Germany) inserted vertically at a depth of 5 cm. This
sensor provides the soil temperature with an accuracy of ±0.2 K.

2.2.3 Remote sensing instruments

Ground-penetrating radar

The radar system was set up using a ZVL vector network analyzer (VNA, Rohde
& Schwarz, Munich, Germany), thereby providing an ultra-wideband (UWB)
stepped-frequency continuous-wave (SFCW) radar. The antenna system con-
sisted of a transverse electromagnetic (TEM), double-ridged broadband horn
antenna (BBHA 9120 F, Schwarzbeck Mess-Elektronik, Schönau, Germany).
The antenna was 95 cm long with a 68×96 cm2 aperture area and a −3 dB full
beamwidth in the E-plane and the H-plane of 46◦ (at 400 MHz). The antenna
nominal frequency range was 0.2–2 GHz and its isotropic gain ranged from
9–14 dBi.

The raw GPR data consist of the frequency-dependent complex ratio S11

between the backscattered electromagnetic field and the incident electromag-
netic field and were measured sequentially at 301 stepped operating frequencies
over the range 0.2–2 GHz with a frequency step of 6 MHz. Only lower frequency
data (0.2–0.8 GHz), which were not affected by soil surface roughness according
to Rayleigh’s criterion (hc = λ/8, where hc is the critical height of the surface
protuberances and λ is the wavelength), were used for the inversions.

Microwave radiometer

The L-band microwave radiometer JÜLBARA from Forschungszentrum Jülich
was designed for field-scale application in surface soil moisture experiments.
JÜLBARA is a Dicke-type radiometer which operates at the central frequency
of 1.414 GHz and is based on a similar concept (with respect to the filter
characteristics and calibration sources) as the ELBARA radiometer (Mätzler
et al., 2003). To distinguish interferences from natural thermal radiance, the ra-
diometer measured quasi-simultaneously at the two following frequency ranges:
1.400–1.414 GHz and 1.414–1.427 GHz. The radiometer was equipped with a
dual-mode conical horn antenna (aperture diameter = 60 cm, length = 67 cm)
with symmetrical and identical beams and a −3 dB full beamwidth in the
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far-field of 23◦, which allowed the received radiance to be confined to a well
defined and narrow footprint area. The radiometer was equipped with internal
cold (278 K) and hot (338 K) loads for calibration preceding each measurement.
The measurements were recorded with 10 s integration time. The estimated
absolute accuracy of the radiometer was ±1 K with a sensitivity better than
0.1 K. External calibration was done to correct for losses in the antenna cables
and for noise generated by the physical temperature of the antenna and cables.
This external calibration was performed by directing the radiometer towards
the sky with an elevation angle of 60◦ above the horizon and by correcting
the measured brightness temperature to the theoretical value as described by
Pellarin et al. (2003).

2.2.4 Signal processing

GPR full-waveform forward and inverse modeling

Assuming the distribution of the electromagnetic field measured by the antenna
to be independent of the scatterer, i.e., only the phase and amplitude of the field
change (plane wave approximation over the antenna aperture), the antenna can
be modeled using the following equation in the frequency domain, owing to the
linearity of Maxwell’s equations (Lambot et al., 2004c):

S11(ω) = Hi(ω) +
H(ω)G↑

xx(ω)

1−Hf(ω)G
↑
xx(ω)

(2.1)

where S11(ω) is the international standard quantity measured by the VNA,
Hi(ω) is the antenna return loss, H(ω) is the antenna transmitting-receiving
transfer function (H(ω) = Ht(ω)Hr(ω)), Hf(ω) is the antenna feedback loss,
G↑

xx(ω) is the transfer Green’s function of the air-soil system, and ω is the
angular frequency. The antenna transfer functions and the Green’s func-
tion are dimensionless. The Green’s function represents a solution of the 3D
Maxwell equations for electromagnetic waves propagating in multilayered me-
dia with smooth interfaces (Michalski and Mosig, 1997; Slob and Fokkema,
2002; Lambot et al., 2004c). The characteristic antenna transfer functions can
be determined by solving a system of equations such as Eq. (2.1) to the un-
knowns Hi(ω), H(ω), and Hf(ω) for different well-defined model configurations,
i.e., with the antenna at different heights above a perfect electrical conductor
(PEC). The Green’s functions can therefore be computed and S11(ω) can be
readily measured.

In order to identify the surface dielectric permittivity, inversion of the
Green’s function is performed in the time domain, focusing on a time win-
dow containing the surface reflection only (Lambot et al., 2006c). The inverse
problem is formulated in the least-squares sense and the objective function to
be minimized is accordingly defined as follows:

ϕ(b) =
(
g↑∗
xx − g↑

xx

)T ·
(
g↑∗
xx − g↑

xx

)
(2.2)

where
g↑∗
xx = g↑∗xx(t)

∣∣tmax

tmin
and g↑

xx = g↑xx(t)
∣∣tmax

tmin
(2.3)
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are the vectors containing, respectively, the observed and simulated time-
domain windowed Green’s functions, and b = [εr, ha] is the parameter vector
to be estimated with εr [–] being the surface soil relative dielectric permittivity
and ha [m] being the distance between the antenna phase center and the soil
surface. The antenna phase center represents the origin of the radiated field
from which the far-field spherical divergence is initiated (Jadoon et al., 2011).
Although the soil electrical conductivity, magnetic permeability, and soil layer-
ing can be taken into account in the inversion process, their effect was initially
assumed to be negligible for the estimation of εr (Lambot et al., 2006c).

The objective function (Eq. (2.2)) is minimized using the local Levenberg-
Marquardt algorithm. An initial guess for the antenna elevation ha is derived
from the surface reflection arrival time ti [s], which is automatically detected.
Given the simple topography of the objective function (not oscillating and
containing a single minimum) dealt with in this particular inverse problem, the
initial guess for εr can be made arbitrarily, and it was set as 5 in this study
(the solution found by the algorithm is independent of the initial guess). The
GPR methodology has been fully validated in previous studies, both in the
laboratory and in the field (Lambot et al., 2004c, 2006c, 2008b). However, a
validated ultra-wideband GPR model that accounts for soil surface roughness
is not yet available (Lambot et al., 2006a).

Passive microwave signal modeling

Radiative transfer model The basic principle of microwave radiometry is a
measurement of the thermal radiance emitted at the Earth’s surface in a given
frequency band (Njoku and Entekhabi, 1996). Planck’s radiation law describes
the radiation spectrum of a black body at a given physical temperature. At
microwave frequencies, and for temperatures typical of the Earth’s surface,
Planck’s law can be approximated by the Rayleigh-Jeans equation. According
to this equation, the radiance is proportional to the physical temperature, and
denoted as brightness temperature, TB [K] (Njoku and Entekhabi, 1996).

The brightness temperature of a soil surface observed by the L-band ra-
diometer can then be expressed as (Jackson, 1993; Wigneron et al., 2001):

TB,p = Ep Teff + (1− Ep)Tsky (2.4)

where E [–] is the surface emissivity, Tsky [K] is the sky radiometric temper-
ature calculated as in Pellarin et al. (2003), Teff [K] is the effective physical
temperature of the soil (Ulaby et al., 1986) and p refers to the polarization (H
or V). In this study, the effective soil temperature is assumed to be the tem-
perature at a depth of 5 cm. The impact of this assumption on the emissivity
values is negligible. Indeed, even if an error of 5 K is assumed for Teff, this
would result in an error for the emissivity of less than 3%.

Under local thermodynamic equilibrum, Kirchhoff’s law states that the
emissivity (E) of a given object is equal to its absorptivity. The soil emis-
sivity can then be related to the soil reflectivity, R [–] by:

E = 1−R (2.5)
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The reflectivity is described by the Fresnel equations that express the be-
havior of electromagnetic waves at a smooth dielectric boundary (Ulaby et al.,
1981; Kong, 1990). By solving the Fresnel equations, εr of the emitting layer
can be retrieved from the observed R at each polarization. However, the Fres-
nel equations are only valid for an ideal smooth air-soil interface which is never
found in typical agricultural fields. To include the effects of roughness in the
modeling of the microwave emission from soil surface, a simple model based on
the semi-empirical approach of Wang and Choudhury (Wang and Choudhury,
1981) was applied. This model is described below.

Roughness model The Wang and Choudhury model (Wang and Choud-
hury, 1981) expresses the rough surface reflectivity RR,p(ϑ) at a polarization
p (H or V) and an incidence angle ϑ in relation to the specular reflectivity
RF,p(ϑ) as:

RR,p(ϑ) = [(1−Q)RF,p(ϑ) +QRF,p(ϑ)] exp(−h cos(ϑ)n) (2.6)

where Q is the polarization mixing factor, n expresses the angular dependence
of roughness, and h is the roughness parameter.

In our study, only a single incidence angle is used (ϑ = 53◦), and thus the
angular dependence of roughness will then not be considered (n = 0). In most
studies, polarization crosstalk is assumed to be negligible at L-band, and thus
Q = 0 is used (Wigneron et al., 2001; Njoku et al., 2003). In Eq. (2.6), the
roughness parameter h is generally considered to be independent of polariza-
tion (Wigneron et al., 2001; Wang and Choudhury, 1981). However, various
studies have pointed out that the roughness affects the two polarizations dif-
ferently as a result of the anisotropy of the effective permittivity εr in the
air to soil transition zone (Shi et al., 2002; Schwank et al., 2010a). Several
studies have also shown that the roughness effect might change with soil mois-
ture. Wigneron et al. (2001), Schwank and Mätzler (2006), and Escorihuela
et al. (2007) did indeed observe a negative correlation between their estimated
roughness parameter and the surface soil moisture. The apparently increasing
roughness with decreasing soil moisture was explained by an increase of the
dielectric heterogeneity (dielectric roughness) as the soil dries out. However, a
recent study by Escorihuela et al. (2010) showed that the dependence of the
soil roughness parameter on soil moisture is due to the difference between the
L-band radiometer sensing depth and the ground-truth sampling depth used for
the calibration. Based on these assumptions, a simplified bare soil reflectivity
model accounting for roughness was derived:

RR,p = RF,p exp(−(ap + bp εr)) (2.7)

where a and b are the soil roughness model parameters depending on polar-
ization p. Parameter b is multiplied by εr instead of the volumetric soil water
content to avoid any inaccuracy due to the petrophysical relationship. Given
that the model parameters are determined by best fit, they include the mea-
surements errors and their physical meaning is not straightforward (Escorihuela
et al., 2007).
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Figure 2.3: Flowchart representing the calibration procedure for the roughness pa-
rameters a and b of Eq. (2.7) for estimating the soil relative dielectric
permittivity. Shaded boxes denote operators and white boxes denote vari-
ables.

The inversion procedure adopted for the estimation of the roughness param-
eters is depicted in Figure 2.3. In this optimization process, only radiometer
and reference TDR data are used. Inversion is composed of two sequential
optimization steps. The first inverse problem consists of solving a non-linear
least squares problem. In this case, the Gauss-Newton algorithm is used to
minimize the objective function:

Φ(εr) =
∑

(R∗
R −RR)

2 (2.8)

This objective function represents the cumulative squared error between the
measured and modeled reflectivity radiometer data (R∗

R and RR(a, b), respec-
tively). The measured reflectivity data are obtained from the brightness tem-
perature measurements by using the radiative transfer model presented above
(Eqs. (2.4) and (2.5)). The radiometer data from each polarization are used
separately in the inversion procedure to obtain specific roughness parameters
for each polarization. The second inverse problem consists in minimizing the
objective function:

Φ′(a, b) =
∑

(ε∗r − εr)
2 (2.9)

The objective function Φ′ represents the cumulative squared error between
the measured and modeled dielectric permittivity data (ε∗r and εr(a, b) respec-
tively) and is minimized by means of the global multilevel coordinate search
optimization algorithm combined with the local Nelder-Mead simplex algo-
rithm (GMCS-NMS, see Lambot et al. (2004b)). Measured permittivity data
are obtained from raw TDR data while modeled permittivity data are obtained
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from the solutions of the first inverse problem. At each iteration, new rough-
ness parameters are generated, which are used in the roughness model (Eq.
(2.7)) to produce new modeled reflectivity data and then new modeled dielec-
tric permittivity data. The optimal roughness parameters a and b are finally
obtained after numerous iterations. For the optimization convergence criteria,
the default values of the implementation of the Nelder-Mead Simplex algorithm
in Matlab (The MathWorks Inc.) were used (i.e., termination tolerance on the
function value set to 10−4 and termination tolerance on the optimized param-
eters set to 10−4). It has to be noted that more stringent conditions did not
affect the fitting results.

2.2.5 Petrophysical relationship

For each type of measurement (GPR, radiometer, and TDR), the model of
Topp et al. (1980) was used to relate the soil volumetric water content (θ [m3

m−3]) to the soil relative dielectric permittivity:

θ = −5.3 × 10−2 + 2.92 × 10−2 εr − 5.5 × 10−4 ε2r + 4.3 × 10−6 ε3r (2.10)

The Topp model is a widely used empirical relationship mainly applied for
TDR measurements with some restrictions for highly clayic and organic-rich
soils as well as soils with high bulk electrical conductivity. For our study site,
Topp’s model was shown to perform well by Weihermüller et al. (2007). The
authors found a root mean square error of 0.021 m3 m−3 between volumetric
soil samples and TDR estimates.

2.3 Results and discussion

2.3.1 Off-ground GPR

Figure 2.4 presents the frequency and time-domain GPR Green’s functions for
the 144 measurement points. The Green’s function is computed from the S11

scatter function using Eq. (2.1), thereby filtering antenna effects. In the fre-
quency domain, we observe that the amplitude of the Green’s function (G↑

xx)
increases monotonically up to approximately 0.8 GHz. This behavior indicates
that the surface reflection dominates the radar backscatter (this corresponds
to a single reflection in the time domain) (Lambot et al., 2006c). For higher
frequencies, G↑

xx presents a highly oscillating behavior. This is to be attributed
to the effect of soil surface roughness (Lambot et al., 2006a). Indeed, for this
particular radar setup, the frequency at which a surface appears to be smooth
agrees with the Rayleigh criterion (Chanzy et al., 1996). Accordingly, the crit-
ical height of the surface protuberances below which the soil surface can be
considered smooth corresponds to one eight of the wavelength. In our case, the
threshold frequency is around 0.8 GHz, corresponding to a maximum height
of the surface protuberances of about 0.047 m, which is consistent with the
conditions visually observed in the field. In the time domain (Figure 2.4b), the
Green’s function (g↑xx) does indeed present a single reflector (the soil surface).
The time zero corresponds to the antenna phase center. The variations of the
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reflection over time are due to the inherent variations of the antenna height
above the soil during the measurements. It is worth noting that the soil mois-
ture retrieved from the reflection at the air-soil interface is a surface property
and not a volume property (reflection coefficient)(Lambot et al., 2006c; Minet
et al., 2010). Hence, the retrieved soil moisture does not directly depend on the
penetration depth of the GPR electromagnetic waves. However, when dielectric
contrasts are present near the soil surface, and in particular at depths which
are a fraction of the wavelength (typically less than a quarter the wavelength),
constructive or destructive interferences occur and affect the results, leading
to, respectively, over- or underestimations of soil surface dielectric permittivity
(Lambot et al., 2006c; Minet et al., 2010).

2.3.2 Soil moisture maps

In the first step, off-ground GPR and radiometer data were analyzed with-
out taking soil roughness into account. Surface soil moisture estimated from
GPR (θGPR), radiometer (θMR), and TDR (θTDR) measurements are plotted
in Figure 2.5. As expected, the soil water content map based on the GPR
measurements (Figure 2.5a) shows the lowest water contents in the upper part
of the field, which was not irrigated. Intermediate water contents are observed
in the area of low irrigation and highest water contents in the area of high
irrigation (Figure 2.1). Although the left part of the field was not irrigated, a
water content gradient is detectable from the upper to the lower left part. This
is associated with the slope of the field. GPR-derived water content values
range between 0.12 and 0.26 m3 m−3.

In comparison to the GPR-derived water content map, the results of the
radiometer measurements, considering the average between the horizontal (sub-
script H) and vertical (subscript V) polarizations (θMR,HV) (Figure 2.5b), show

a smaller water content range (0.13–0.20 m3 m−3). However, a similar moisture
pattern to that of GPR is observed with the lowest water contents in the upper
non-irrigated area, intermediate water contents in the area of low irrigation,
and the highest water contents in the area of high irrigation. Additionally,
the spatial correlation is much higher compared to the GPR, with smoother
transitions between drier and wetter parts. This may partly be attributed to
the larger footprint of the radiometer, and as shown below, to the polarization
averaging.

The map based on the reference TDR measurements (θTDR, Figure 2.5c)
shows a large range of water contents over the entire field with values from
0.09 m3 m−3 in the upper non-irrigated area to a maximum of 0.23 m3 m−3

in the area of high irrigation. This is due to a significant local variability
at the GPR and radiometer footprint scales, as observed from the repeated
TDR measurements within the footprints (average standard deviation (STD)
of 0.02 m3 m−3). It is also worth noting that TDR measurements were affected
by the presence of numerous stones in the field, especially in the upper part,
thereby also leading to significant measurement errors (typically underestima-
tions). Nevertheless, the same general moisture pattern as for the GPR and
the radiometer is obtained.
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Figure 2.5: Volumetric water content maps obtained using (a) off-ground GPR, (b)
radiometer, and (c) TDR measurements at the TERENO test site in
Selhausen, Germany (July 14, 2009).
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As already stated above, two polarizations were measured by the radiome-
ter, namely horizontal and vertical. For the horizontal polarization, water
content values (θMR,H) range between 0.08 m3 m−3 and 0.15 m3 m−3, and for
the vertical polarization the water content values (θMR,V) range between 0.16
m3 m−3 and 0.25 m3 m−3 (data not shown). Radiometer measurements at
horizontal and vertical polarizations provide large differences in water content
estimations in terms of absolute values. This discrepancy can be ascribed to
the different sensitivities to the soil surface roughness with respect to the polar-
ization. Indeed, Mo et al. (1987) and Shi et al. (2002) showed that roughness
effects on the surface effective reflectivity differ at different polarizations for
the same roughness characteristics. For both polarizations, Figure 2.6 presents
the corresponding normalized water content value (θ∗MR,p) defined as follows:

θ∗MR,p =
θMR,p − θMR,p

θMR,p

(2.11)

where θMR,p is the water content estimated by the radiometer at polarization
p and spatially averaged over the entire field. This shows that although the
absolute water contents are under- or overestimated with the horizontal and
vertical polarizations, the spatial pattern is similar for the two normalized
maps (coefficient of determination R2 = 0.74) and consistent with the GPR
and TDR maps (wetter and drier zones). The remaining differences between
the two polarizations in the spatial distribution of the retrieved water content
may be attributed to variations in soil roughness within the field, which are
not fully removed by normalization (only the linear bias is removed).

2.3.3 Comparison of the measurement methods

For a direct comparison of the results obtained from the different measurement
methods, the GPR- and radiometer-derived water contents are plotted with
respect to the TDR results (Figure 2.7). To facilitate interpretation, the data
sets were divided into three classes, corresponding to the high (dark-gray), low
(light-gray), and non-irrigated (white) parts as plotted in Figure 2.1.

In Figure 2.7a, it can be observed that GPR-derived water contents system-
atically overestimate the TDR measurements. Additionally, the data points are
highly scattered resulting in a low coefficient of determination (R2) of 0.39 and
an RMSE in terms of water content of 0.038 m3 m−3 (see Table 2.1). However,
compared to the radiometer, the slope of the regression (0.63) is much closer
to 1. The relatively large STD (0.029) observed for the GPR measurements
with respect to the TDR reference measurements may be attributed to soil het-
erogeneity and the different support scales of the techniques (≈5 cm for TDR
compared to >1.5 m for GPR). In Lambot et al. (2004c), laboratory results
are presented for a quite homogeneous medium with two layers and the STD
is indeed much smaller (0.007). For field conditions, Lambot et al. (2008b)
obtained an STD of 0.023. The observed discrepancies are similar for the three
differently irrigated areas of the field. GPR data were analyzed using the sur-
face reflection analysis, which is sensitive mainly to the top few centimeters
of the soil. This shallow surface is inherently more heterogeneous in terms of
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water content than the deeper soil layers investigated by the TDR probe (up
to 10 cm depth). It is also worth noting that the GPR measurements may be
affected by dielectric layering near the soil surface, which may lead to construc-
tive and destructive interferences, and, thereby, to over- or underestimations of
the surface dielectric permittivity (Minet et al., 2010). The effect of roughness
on the radar backscatter could not be fully excluded by using low frequency
data (<0.8 GHz), and therefore contributes as well to the scattering of the
data points in Figure 2.7a. The apparent soil electrical conductivity (including
dielectric losses) can also affect the GPR measurements. As showed by Lambot
et al. (2006c), the effect of the soil electrical conductivity on the surface reflec-
tion and dielectric permittivity estimates is negligible for conductivity values
below 0.03 S m−1 which is larger than the apparent electrical conductivity ob-
served in the field during the experiment (<0.025 S m−1). Lastly, soil moisture
estimates from TDR measurements can be affected by measurement errors, in
particular due to the difficulties encountered in properly inserting the TDR
probe into the soil, especially in the drier and stone-rich non-irrigated part of
the field.

The comparison of averaged radiometer results (not accounting for rough-
ness) and TDR data presented in Figure 2.7b shows less scattering, with a
higher R2 of 0.67 and a lower RMSE of 0.022 m3 m−3. The slope of the
regression line is 0.4. Figures 2.7c and 2.7d clearly show that the radiometer-
derived water contents with horizontal polarization significantly underestimate
the TDR-derived values, while those with vertical polarization systematically
lead to an overestimation. These discrepancies can be attributed to the differ-
ent sensitivities of the two polarizations with respect to roughness. In general,
the horizontal polarization better predicts the lower water contents in the non-
irrigated areas compared to the higher water contents from the irrigated parts.
Indeed, in Figure 2.7c, the low water content data are closer to the 1:1 line
compared to the higher water content data, whereas the opposite is observed
in Figure 2.7d. However, the R2 is still 0.66 m3 m−3 for the horizontal and 0.59
m3 m−3 for the vertical polarizations, respectively, whereby the high RMSE of
0.062 and 0.054 m3 m−3 clearly indicate the systematical mismatch between
the two techniques. This explains the small RMSE obtained by averaging the
two polarizations.

The frequency dependence of the soil dielectric permittivity over the fre-
quency range covered by the three methods (GPR, radiometer, TDR) is ex-
pected to be rather small (Lambot et al., 2004c) as all methods operate at
frequencies well below the relaxation frequency of free water (approximately
16 GHz). However, as the soil is inherently heterogeneous, differences in soil
moisture retrieved by the three techniques can also be partly explained by the
different characterized soil volumes.
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2.3.4 Accounting for soil surface roughness for the ra-
diometer

As already stated, soil surface roughness plays an important role in the re-
trieval of soil water content from the radiometer data. In this section, soil sur-
face roughness is accounted for using the empirical roughness model (see Eq.
(2.7)). The optimal roughness parameters obtained by the inversion scheme in
Figure 2.3 are a = 0.1818 and b = 0.0013 for the horizontal polarization, and
a = −1.1480 and b = 0.0913 for the vertical polarization, respectively. The
value of b is close to 0 for the horizontal polarization, which means that the
model dependence on εr is negligible for this polarization. It is worth noting
that, as they are empirical, no constraint on the value of the estimated param-
eters during the inversion process was applied and their physical meaning is
not straightforward. The values of these parameters depend on all electromag-
netic phenomena that are not properly accounted for by the Fresnel model, in
particular roughness effects, and measurement errors.

Figure 2.8 shows the logarithm of the objective function (log10(Φ
′)) as a

function of the roughness parameters a and b. The aim of this analysis was
to verify that the adopted optimization approach was able to find the global
minimum of the parameter space correctly and accurately and also to analyze
the uniqueness of the inverse solution and the parameter sensitivities, as well
as the correlations between the two parameters. The objective function was
calculated on 122500 discrete points within the range [−5 ≤ a, b ≤ 5] and
plotted in Figure 2.8. For both polarizations, the objective function shows a
well-defined minimum (indicated by a white star), which is found by the global
optimization procedure. The model is much less sensitive to a than to b, in
particular for the vertical polarization, which may result in some uncertainty
in the estimation of a.

Based on the optimal parameter values, the RMSE between the TDR- and
radiometer-derived (accounting for roughness) soil water contents is 0.020 m3

m−3 for both polarizations. In general, the accuracy of the soil water content
retrieval is significantly improved by using the roughness model. In fact, the
RMSE significantly decreased compared to those obtained without the rough-
ness correction, namely, 0.062 m3 m−3 and 0.054 m3 m−3 for the horizontal
and vertical polarizations, respectively (see Table 2.1). The radiometer-derived
water contents corrected for the roughness effect are plotted with respect to the
TDR estimates in Figure 2.9. Compared to Figures 2.7c and 2.7d, the measure-
ments for both polarizations are much closer to the 1:1 line with a regression
slope of 0.6 for the horizontal polarization and 0.7 for the vertical polarization.
Without the roughness correction, the regression slope was around 0.4 for both
polarizations. However, the R2 of the regression has not improved with the
roughness model and the data scattering is similar. This means that random
errors are not removed by using the roughness model, showing that it does
not perfectly account for all propagation phenomena (not only due to rough-
ness but also to soil water content variability, measurement errors, calibration
errors, etc.).
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(a)

(b)

Figure 2.8: Logarithm of the objective function (log10(Φ
′)) as a function of the rough-

ness parameters a and b. (a) Horizontal polarization and (b) vertical po-
larization. The star represents the global minimum of Φ′. The optimal
roughness parameters are a = 0.1818 and b = 0.0013 for the horizontal
polarization, and a = −1.1480 and b = 0.0913 for the vertical polariza-
tion.
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Figure 2.9: Volumetric soil water content from (a) radiometer (horizontal polariza-
tion) versus TDR, and (b) radiometer (vertical polarization) versus TDR.
Radiometer-derived water contents were estimated by taking roughness
into account.
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2.3.5 Monte Carlo simulations

In most remote sensing applications, ground-truth measurements are sparse.
In general, only a few reference points are sampled for the estimation of the
roughness parameters, and those values are then used to estimate the soil di-
electric permittivity and/or water content for the rest of the area (Panciera
et al., 2009). To analyze the associated uncertainty, Monte Carlo simulations
were performed, whereby a certain percentage of calibration points were ran-
domly sampled from the total ensemble of reference measurements. In our
case, the percentage of calibration points varied from 1 to 100%. For each
percentage, 30 independent model runs were performed with randomly chosen
reference points. For all these runs, independent roughness parameters a and
b were fitted following the inversion procedure depicted in Figure 2.3, based on
the TDR measurements associated with the randomly sampled points. In the
next step, these roughness parameters were used to predict εr of all the remain-
ing points using the measured TB. The RMSE between radiometer-predicted
and the TDR-derived εr was then calculated. Finally, the arithmetic mean and
STD of the RMSE were obtained from the 30 model runs of each percentage.
The evolution of the mean and STD of the RMSE with increasing percentage
of calibration points is plotted in Figure 2.10 (note that the left ordinate is
split for better visualization).

The mean RMSE shows a sharp decrease with increasing number of cali-
bration points for both polarizations, whereby the decrease is largest between
1 and ≈20%. Beyond this threshold the mean RMSE changes only slightly
approaching the value of 0.95 for the horizontal polarization and 0.98 for the
vertical polarization. Additionally, the STD also decreases with the increasing
number of calibration points.

These results indicate that even for a relatively homogeneous soil without
any vegetation, a large number of calibration points are needed for a robust
estimation of the field-scale soil water content. These results indicate that
calibrating roughness parameters such as a and b for regional scales is expected
to require many more ground-truth measurements than reported above because
regional scales show a higher degree of heterogeneity in terms of soil properties
(texture, structure, chemical properties, etc.) and vegetation.

2.4 Summary and conclusion

Radiometer and GPR measurements were collected over an area of 72 × 16 m2

at the TERENO test site in Selhausen, Germany. As a reference ground truth,
additional TDR measurements were performed within the footprints of the
radiometer and the GPR. The overall moisture patterns were satisfactory re-
produced by the three techniques, whereby significant differences were observed
between the absolute estimations. The observed discrepancies were attributed
to different sensing depths and areas, and different sensitivities with respect to
soil surface roughness.

For GPR, the effect of roughness was excluded by operating at low frequen-
cies (0.2–0.8 GHz) that are not sensitive to the field surface roughness. The
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Figure 2.10: RMSE with respect to the percentage of randomly sampled measurement
points used for the calibration of the empirical roughness parameters a
and b of Eq. (2.7). The mean and STD of the RMSE in terms of dielectric
permittivity are estimated on the basis of 30 Monte Carlo runs (a) for
horizontal polarization and (b) for vertical polarization. Note that the
left ordinate is split for better visualization.
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RMSE between soil moisture measured by GPR and TDR was 0.038 m3 m−3.
For the radiometer, the RMSE significantly decreased from 0.062 (horizontal
polarization) and 0.054 (vertical polarization) to 0.020 m3 m−3 (both polariza-
tions) after accounting for roughness using an empirical model that required
calibration with reference TDR measurements.

Because it is common practice in field and regional radiometer applica-
tions to estimate empirical roughness parameters on relatively small numbers
of ground-truth measurements, Monte Carlo simulations were performed to es-
timate the associated uncertainty. These investigations showed that around
20% of the ground-truth information is required to obtain a good roughness
calibration to be applied to the entire field.

This study showed that relatively accurate soil moisture estimates were
possible with L-band radiometer and off-ground GPR, although accounting for
surface roughness was essential for the L-band radiometer. However, compar-
ing different characterization techniques operating at different scales remains
a difficult task in heterogeneous environments. The results of this study in
particular provide valuable insights into the development and application of
field-scale characterization techniques that could be used for improving remote
sensing data products for the retrieval of surface soil moisture. Future research
will focus on the potential radiometer and GPR synergies for improving soil
moisture estimates, to be applied, for instance, in the upcoming SMAP mission.



Chapter 3

Accounting for soil surface
roughness in the inversion
of ultra-wideband
off-ground GPR signal for
soil moisture retrieval∗

Abstract

We combined a full-waveform ground-penetrating radar model with a rough-
ness model to retrieve surface soil moisture through signal inversion. The pro-
posed approach was validated under laboratory conditions with measurements
performed above a sand layer subjected to seven different water contents and
four different surface roughness conditions. The radar measurements were per-
formed in the frequency domain in the range of 1–3 GHz and the roughness am-
plitude standard deviation was varied from 0 to 1 cm. Two inversion strategies
were investigated: (1) Full-waveform inversion using the correct model configu-
ration, and (2) inversion focused on the surface reflection only. The roughness
model provided a good description of the frequency-dependent roughness ef-
fect. For the full-waveform analysis, accounting for roughness permitted us to
simultaneously retrieve water content and roughness amplitude. However, in
this approach, information on soil layering was assumed to be known. For the
surface reflection analysis, which is applicable under field conditions, account-
ing for roughness only enabled water content to be reconstructed, but with an
RMSE in terms of water content of 0.034 m3 m−3 compared to an RMSE of

*This chapter is adapted from:
Jonard, F.; Weihermüller, L.; Vereecken, H. & Lambot, S. Accounting for soil surface rough-
ness in the inversion of ultrawideband off-ground GPR signal for soil moisture retrieval, in
Geophysics, 2012, 77(1), H1–H7.
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0.068 m3 m−3 for an analysis where roughness is neglected. However, this inver-
sion strategy required a priori information on soil surface roughness, estimated,
e.g., from laser profiler measurements.

3.1 Introduction

Knowledge of surface water content is essential in the fields of agricultural and
environmental engineering, hydrology, meteorology, and climatology (Vereecken
et al., 2008; Seneviratne et al., 2010). As the dielectric permittivity of liquid
water dominates the dielectric permittivity of other soil components, water is
the principal factor governing electromagnetic wave propagation in the soil.
This allows us to use geophysical techniques to indirectly measure the surface
water content of the soil (Ulaby et al., 1982b).

Many studies have investigated the potential of microwave radar systems to
monitor the spatiotemporal variation of the surface and subsurface soil water
content. Spaceborne and airborne synthetic aperture radars yield soil moisture
estimates on a large spatial scale (1–100 km), which are particularly relevant
for catchment-scale studies (Moran et al., 2004). At the field scale, ground-
penetrating radar has proven to be successful in many hydrological applications.
Reviews on the uses and recent developments of GPR are given by Huisman
et al. (2003a) and Slob et al. (2010). Compared to local measurements such
as soil sampling and time-domain reflectometry, GPR has the advantage of
allowing noninvasive quantification of soil properties with a high spatial resolu-
tion at the field scale. Lambot et al. (2004c) proposed a full-waveform forward
and inverse modeling approach which applies to off-ground GPR. The electro-
magnetic model is based on a solution of the 3D Maxwell equations for waves
propagating in multilayered media and correctly accounts for antenna effects
and antenna-soil interactions. The model was shown to be applicable for repro-
ducing the radar measurements, and model inversion was successfully applied
to identify and map surface soil moisture in the field (Jonard et al., 2011b).

Electromagnetic wave reflection on a bare soil is highly dependent on the
surface roughness. A distinction can be made between smooth and rough
surfaces with respect to the wavelength of the signal based on the Rayleigh
criterion (hc = λ/8 cos(γ), where hc is the critical height of the surface pro-
tuberances, γ is the incidence angle, and λ is the wavelength) (Ulaby et al.,
1982b). If the surface is smooth and homogeneous (in terms of electrical prop-
erties), most of the energy reflected will be in the specular direction (coherent
component), while if the surface is rough, diffuse reflections or scattering (in-
coherent component) can occur leading to less energy being recorded in the
specular direction. These diffuse reflections and the reduction of energy in the
specular direction should be accounted for to accurately retrieve the surface
soil moisture. Previous studies carried out with airborne and spaceborne re-
mote sensing radars also demonstrated the need to take surface roughness into
account in signal processing for soil moisture retrieval (Quesney et al., 2000;
Baghdadi et al., 2008; Verhoest et al., 2008). The roughness effect has also
been shown for GPR (Sai and Ligthart, 2004; Yarovoy et al., 2004; Lambot
et al., 2006a; Giannopoulos and Diamanti, 2008; van der Kruk et al., 2010).
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Nevertheless, the issue remains poorly investigated for the retrieval of the soil
electromagnetic properties by off-ground GPR and no GPR model accounting
for roughness is currently available in the literature.

In this chapter, we combine the full-waveform GPR model of Lambot et al.
(2004c) with the Ament roughness model derived from the Kirchhoff scattering
theory (Ament, 1953; Beckmann and Spizzichino, 1987) to retrieve surface soil
moisture through signal inversion. To account for surface roughness, the global
surface reflection coefficient is multiplied by a scattering loss factor. The pro-
posed approach was validated under laboratory conditions with measurements
performed above a sand layer subjected to seven different water contents and
four different surface roughness conditions. Numerical experiments were also
performed to analyze the well-posedness of the inverse problem.

3.2 Experiment

3.2.1 Experimental setup

Radar measurements were performed under laboratory conditions above a rect-
angular wooden container (1.45 x 1.30 m2 area) homogeneously filled with a
sand layer 0.09 m in thickness (Figure 3.1) (Lambot et al., 2006a). Below the
sand layer, a horizontal metal sheet was installed to control the bottom bound-
ary condition in the electromagnetic model. Indeed, materials underneath this
metal sheet have no influence on the measured backscattered signal. The sand
was subjected to seven different water contents ranging from dry to wet con-
ditions (θi with i = 1 to 7) and four different surface roughness heights (Rj

with j = 1 to 4), including a smooth surface (R1), resulting in 28 indepen-
dent configurations (θiRj). For each water content level, the sand was mixed
manually to obtain a homogeneous distribution of the water within the whole
sand layer and the desired roughness topographies were produced by pressing
a cylinder with stones randomly glued onto the surface over the smooth sand
surface. Independent surface roughness characterization was performed using
a 1 m long mechanical needle-like profiler.

3.2.2 Radar system

The radar system was set up using a vector network analyzer (VNA, ZVRE,
Rohde and Schwarz, Munich, Germany) as transmitter and receiver, thereby
providing an ultra-wideband stepped-frequency continuous-wave system. The
antenna system consisted of a linear polarized double-ridged broadband horn
antenna (BBHA 9120 D, Schwarzbeck Mess-Elektronik, Schönau, Germany).
Antenna dimensions are 22 cm length and 14 x 24 cm2 aperture area, and the
−3 dB full beamwidth of the antenna is 27◦ in the E-plane and 22◦ in the
H-plane (at 2 GHz). The antenna nominal frequency range is 1–18 GHz and
its isotropic gain ranges from 6–18 dBi. Measurements were performed with
the antenna aperture situated at an average height of 23 cm above the soil
surface with a normal incidence (Figure 3.1) and by operating frequencies over
the range 1–3 GHz (4 MHz step).
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Figure 3.1: Laboratory experimental setup including the sand box made of wood, the
off-ground horn antenna, the sand layer subject to different water content
and roughness conditions, and a metal sheet at the bottom to control the
boundary condition in the electromagnetic model (Lambot et al., 2006a).
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3.3 Models

3.3.1 Radar model

The raw GPR data consist of the frequency-dependent complex ratio S11(ω)
between the backscattered electromagnetic field (b(ω)) and the incident electro-
magnetic field (a(ω)), with ω being the angular frequency. Assuming the distri-
bution of the electromagnetic field measured by the antenna to be independent
of the scatterer, i.e., only the phase and amplitude of the field change (plane
wave approximation over the antenna aperture), Eq. (2.1) is applied to filter
out the antenna effects (Lambot et al., 2004c). We derived the specific Green’s
function using a recursive scheme to compute the transverse electric (TE) and
magnetic (TM) global reflection coefficients of the multilayered medium in the
spectral domain (Slob and Fokkema, 2002). The transformation back to the
spatial domain is performed by numerically evaluating a semi-infinite, complex
integral (Lambot et al., 2007).

Full-waveform inverse modeling of the GPR data was performed in the
frequency domain to identify the electromagnetic properties (i.e., the relative
dielectric permittivity εr [–] and the electrical conductivity σ [S m−1]) of the soil
(Lambot et al., 2004c). The inverse problem was formulated in the least-squares
sense and the objective function to be minimized was accordingly defined as
follows

ϕ1(b) =
∣∣G↑∗

xx −G↑
xx

∣∣T ∣∣G↑∗
xx −G↑

xx

∣∣ (3.1)

where G↑∗
xx(ω) and G↑

xx(b, ω) are, respectively, the measured and modeled
Green’s functions in the frequency domain, and b is the parameter vector to be
estimated (e.g., b = [εr, σ], depending on the unknowns). Because the Green’s
functions are complex vectors, the difference between observed and modeled
data is expressed by the magnitude of the errors in the complex plane, thereby
inherently accounting for both amplitude and phase information. Optimization
was performed using the global multilevel coordinate search algorithm (Huyer
and Neumaier, 1999) combined sequentially with the local Nelder-Mead sim-
plex algorithm (Lagarias et al., 1998) as proposed by Lambot et al. (2004b).
For this inversion, the distance between the soil surface and the metal sheet h
[m] was assumed to be known (Figure 3.1).

Inversion in the time domain also was performed by focusing on a time
window containing the surface reflection only (Lambot et al., 2006c; Jonard
et al., 2011b). The measured and modeled frequency domain Green’s functions
were first transformed in the time domain using the inverse Fourier transform.
The inverse problem consisted of finding the minimum of the objective function
defined as Eq. (2.2). Optimization was performed using the local Levenberg-
Marquardt algorithm (Marquardt, 1963).

A sand-specific empirical model (third-order polynomial) derived in Lambot
et al. (2006a) was used to relate GPR-derived relative dielectric permittivity
to the volumetric water content θ

θ = 2.30 × 10−4 ε3r − 6.28 × 10−3 ε2r + 7.50 × 10−2 εr − 1.51 × 10−1 (3.2)
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3.3.2 Surface roughness model

In general, the surface is assumed to be stationary with a random Gaussian
height distribution. The soil surface can therefore be described by the following
statistical quantities: the standard deviation of the surface height sr [m], the
spatial autocorrelation function, and the spatial correlation length (Fung et al.,
1992).

To account for roughness effects on radar electromagnetic wave propaga-
tion, the Ament model (Ament, 1953; Beckmann and Spizzichino, 1987) was
used. This model, which is derived from the Kirchhoff scattering theory, de-
scribes the scattering losses in the specular direction due to the reflection on a
rough interface. This model has been applied in several studies investigating
the roughness effect on electromagnetic wave scattering, e.g., by Pinel et al.
(2007) for radar reflection over sea surfaces and Landron et al. (1996) for radar
reflection on rough building materials. In this model, the global surface reflec-
tion coefficient is multiplied by a scattering loss factor (ρ), which is based on
the Rayleigh parameter as a function of frequency, namely,

ρ = e−
g
2 (3.3)

with

g = (
4π sr cos γi

λ
)2 (3.4)

where sr is the standard deviation of the surface height, γi is the angle of
incidence, and λ is the free space wavelength of the incident wave. The modified
reflection coefficient RR that models the reduction of the signal power in the
specular direction is then defined as

RR
TE = ρRF

TE (3.5)

RR
TM = ρRF

TM (3.6)

where RF
TE and RF

TM are, respectively, the global TE- and TM-mode surface
reflection coefficients for a smooth surface. Equations (3.5) and (3.6) assume
that the surface heights have a Gaussian distribution with negligible sharp
edge and shadowing effects. The model also assumes that there is no multiple
scattering (Beckmann and Spizzichino, 1987). In our case, the incidence is nor-
mal (γi = 0) and the model is applied to the spectral-domain global reflection
coefficients of the first interface (sand surface) of the 3D layered medium.

3.4 Results and discussion

3.4.1 Response surface analysis

To analyze the well-posedness of the inverse problem, we calculated response
surfaces of the objective function using synthetic error-free data and real data.
Real data correspond to intermediate water content and roughness conditions
(θ = 0.14 m3 m−3; sr = 0.49 cm), but similar results were obtained for the
other conditions. Inversions were performed in a relatively large parameter
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space (2 < εr < 12; 0 < h < 0.25 m; 1 × 10−5 < σ < 1 × 10−1 S m−1;
0 < sr < 0.025 m), which contained the exact solutions. The range of each
parameter was divided into 200 discrete values resulting in 40000 objective
function values for each contour plot.

Figures 3.2 and 3.3 show the response surfaces of the logarithm of the
objective function values in four parameter planes εr–h, h–sr, σ–sr, and εr–
sr and for the full-waveform inversion case (Eq. (3.1)). For the synthetic
data (left panel), each response surface shows a well-defined global minimum,
which reveals that sufficient information is contained in the inverse problem
to estimate the parameters of interest simultaneously. In the εr–h parameter
plane, the global minimum region exhibits a banana shape, which suggests
an important negative correlation between these parameters. A similar signal
can indeed be obtained for either a low dielectric permittivity with a high-layer
thickness, or a high dielectric permittivity with a low-layer thickness. The h–sr
and εr–sr response surfaces show an elliptical global minimum region parallel
to the sr axis. Additionally, local minima can also be observed. In general,
the response surfaces suggest that the two parameter pairs are uncorrelated.
Indeed, sr determines the attenuation of the wave while h and εr determine
the propagation time of the wave throughout the layer. These parameters then
independently determine the amplitude (sr) and the phase (h or εr) of the radar
electromagnetic waves propagating through the soil. In the σ–sr parameter
plane, no local minima can be observed and the parameters are negatively
correlated. In fact, a high σ will strongly attenuate the signal throughout the
layer as well as a high sr. Response surfaces pertaining to the real data (right
panel) exhibit the same general shape as the synthetic response surfaces. For
each parameter plane, the position of the global minimum is unchanged, which
demonstrates the stability of the inverse problem with respect to measurement
and modeling errors. As expected, the values of the objective function are
systematically higher and the global minimum regions are flatter for the real
data, resulting in an increase in parameter uncertainty (note that the color scale
differs for the single response surfaces). In the εr–h parameter plane, given the
negative correlation of the parameters and the larger global minimum region,
compared to the synthetic case, an accurate estimation of εr will require a priori
information about the layer thickness (h).

Figure 3.4 shows the response surfaces of the logarithm of the objective
function (Eq. (2.2)) in the εr–sr parameter plane for the surface reflection
inversion. Figures 3.4a and 3.4b show the response surface with synthetic data
and real data, respectively. The synthetic response surface shows a well-defined
minimum. However, for the real data, the values of the objective function are
higher and the global minimum region is flatter, resulting in larger uncertainty
in the estimation of the parameters. For both response surfaces, a significant
positive correlation between sr and εr can be observed. As a result, an increase
in sr has a similar effect on the objective function as a decrease in εr, which
increases parameter estimation uncertainty. In fact, the reflection coefficient
will decrease with an increase of the surface roughness or a decrease of the
water content/dielectric permittivity. An accurate estimation of εr is therefore
not possible without knowledge of any soil roughness parameters, especially
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(a) (b)

(c) (d)

Figure 3.2: Response surfaces of the objective function logarithm log10(ϕ1(b)) for the
full-waveform inversion in the εr –h and h–sr parameter planes. Left-hand
plots correspond to numerically generated error-free data (ϕ1(b)) and
right-hand plots correspond to real data (ϕ∗

1(b)). The asterisk represents
the global minimum of the objective function. Note that the color scale
differs for the single response surfaces.
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(a) (b)

(c) (d)

Figure 3.3: Response surfaces of the objective function logarithm log10(ϕ1(b)) for the
full-waveform inversion in the σ–sr and εr–sr parameter planes. Left-hand
plots correspond to numerically generated error-free data (ϕ1(b)) and
right-hand plots correspond to real data (ϕ∗

1(b)). The asterisk represents
the global minimum of the objective function. Note that the color scale
differs for the single response surfaces.
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for the real data case. Compared to the full-waveform inversion, this increase
in uncertainty comes from the lower information content in the radar data
when focusing on the surface reflection only. Indeed, for the surface reflection
inversion, εr and sr information is obtained from the surface reflection only. As
a consequence, information about εr and sr is correlated. For the full-waveform
inversion, similar information is obtained from the surface reflection. However,
information about εr is also obtained from the two-way travel time through
the soil layer. This additional information allows us to estimate εr with higher
accuracy and without a priori information about sr. The surface reflection
inversion strategy is particularly useful under field conditions for which layering
is a priori unknown.

3.4.2 Green’s functions

Figure 3.5 depicts the measured and modeled Green’s function in the frequency
domain for two different combinations of water content and roughness level
(Figure 3.5a: θ = 0.15 m3 m−3–sr = 0.33 cm; Figure 3.5b: θ = 0.20 m3

m−3–sr = 0.88 cm). Other scenarios are similar and show intermediate results.
Figures 3.5a and 3.5b show that the modeled amplitude of the Green’s function
does not fit measurements above 2 GHz if no roughness correction is applied
for both water content and roughness conditions. The modeled amplitude of
the Green’s function overestimates the measurements and this overestimation,
as expected, increases with frequency (Lambot et al., 2006a). We observe that
the roughness model describes this behavior relatively well, although some
discrepancies remain due to oscillations in the Green’s function amplitude that
cannot be described by the scattering loss factor (exponential behavior only).
Indeed, the scattering loss factor applied in this study accounts only for the
reduction of energy in the specular direction. As a result, only the coherent
component is assumed to contribute to the reflected signal. The remaining
Green’s functions oscillations could therefore be attributed to the contribution
of the incoherent components. In both cases, the phase of the Green’s function
is properly reproduced and corresponds to the propagation times in air and
sand layer.

3.4.3 Full-waveform inverse estimations

In Figure 3.6, the roughness standard deviation sr measured by the needle-like
profiler was compared to values inverted using the full-waveform inversion (Eq.
(3.1), b = [εr, σ, sr]). In total, twenty-one configurations (3 roughness levels
combined with 7 water content levels) were analyzed. Although the inversion
failed for one scenario (θ2R2), a relatively good agreement was obtained be-
tween the real and GPR-derived values (R2 = 0.55 and RMSE = 0.22 cm). In
general, inverted data slightly overestimated the measured sr. To estimate the
sand dielectric permittivity, the use of the roughness model did not improve
the estimations compared to the smooth model. This is due to the fact that
the permittivity information is not only contained in the surface reflection, but
also in the two-way travel time between the sand surface and the underlying
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(a)

(b)

Figure 3.4: Response surfaces of the objective function logarithm log10(ϕ2(b)) for
the surface reflection inversion in the εr–sr parameter plane using (a)
numerically generated error-free data (ϕ2(b)) and (b) real data (ϕ∗

2(b)).
The asterisk represents the global minimum of the objective function.
Note that the color scale differs for the two response surfaces.
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Figure 3.5: Measured (dashed black line) and modeled (Modeled-S: without using a
roughness correction and Modeled-R: with a roughness correction; solid
blue and red lines, respectively) amplitude and phase of the frequency-
domain Green’s function. Data are presented for two water content and
roughness height combinations (θ = 0.15 m3 m−3–sr = 0.33 cm (a), and
θ = 0.20 m3 m−3–sr = 0.88 cm (b)).
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perfect electrical conductor. Only the estimation of the electrical conductivity
was affected, which is due to energy loss by surface scattering.
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Figure 3.6: Standard deviation of the GPR-derived roughness amplitude with respect
to the real values.

3.4.4 Surface reflection inverse estimations

For this scenario, only the surface dielectric permittivity was inverted for (Eq.
(2.2), b = [εr]). The results for the largest roughness level (sr between 0.6 and
1.0 cm) are presented in Figure 3.7 and are expressed in terms of water content
using the sand-specific petrophysical relationship (Eq. (3.2)). The errors in
the estimation of water content are presented for both models. The errors
are defined as the absolute difference between the estimation of water content
using the smooth or roughness model and the GPR-derived water content for
the same water content level but with a smooth surface. Following the results
presented in Lambot et al. (2004c), the radar approach can indeed be used
as a reference to accurately estimate the medium permittivity for the smooth
case and this experimental setup. In all cases, the use of the roughness model
significantly decreases the estimation errors, with variable benefits depending
on actual water content. With the roughness model, the error is 1.2–13.2 times
smaller compared to the smooth model. The RMSE in terms of water content
is 0.068 m3 m−3 when considering the smooth model, while with the roughness
model the RMSE is only 0.034 m3 m−3. In this last case, the roughness was
known a priori.
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To evaluate the impact of the unknown roughness on the water content
retrieval, inversions were also performed using the roughness model and by as-
suming the roughness unknown (Eq. (2.2), b = [εr, sr]). The RMSE in terms
of water content is 0.057 m3 m−3, which is similar to the results obtained
without accounting for roughness, i.e., with the smooth model. The roughness
model significantly improves the retrieval of the water content compared to the
smooth model when roughness is known. However, without a priori knowledge
of the roughness, the accuracy of the retrieval does not differ significantly be-
tween the two models. Similar results were obtained for the lower roughness
levels, but with smaller effects.
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Figure 3.7: Error in the estimation of water content θ with the surface reflection
inversion using the roughness model (Model-R) and the smooth model
(Model-S).

3.5 Conclusions

The Ament model accounting for scattering losses in the specular direction
for rough surfaces was applied to invert off-ground GPR data using Lambot’s
model. Full-waveform inversion permitted simultaneous reconstruction of the
sand dielectric permittivity and the standard deviation of the surface rough-
ness. For this inversion, information about the soil layering was assumed to be
known. A practical field inversion strategy based on surface reflection permit-
ted the retrieval of the surface permittivity with a significantly higher accuracy
compared to a smooth model. However, in that case, roughness should be
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independently measured, e.g., by a laser profiler. The proposed method ap-
pears to be promising for surface soil moisture mapping in reasonably rough
environments (roughness amplitude < 1/4 of the wavelength).
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Chapter 4

Characterization of tillage
effects on the spatial
variation of soil properties
using GPR and EMI∗

Abstract

Tillage practices influence physical, chemical, and biological soil properties,
which also affect soil quality and consequently plant growth. In this study, the
main objective was to evaluate the effects of different tillage systems on soil
physical properties by using geophysical methods, namely, ground-penetrating
radar and electromagnetic induction. Additional measurements such as soil
sampling, capacitance probes, and soil penetrometer data were acquired as
ground truths. The study was performed on three contrasting tillage systems,
i.e., conventional tillage (CT), deep loosening tillage (DL), and reduced tillage
(RT), implemented on different plots of an agricultural field. The data showed
that tillage influences the soil resistance in the shallow soil layers (deeper tillage
decreases soil resistance), which could be partly seen in the on-ground GPR
data. In addition, reference soil water content measurements (capacitance
probes and soil sampling) were in fairly good agreement with the water content
estimates from off-ground GPR. We also observed that the tillage influences
shallow surface SWC, while deeper SWC seems to be unaffected by tillage.
Mean surface SWC was significantly lower for CT than for DL and RT, which
was partly explained by lower pore connectivity between the topsoil and the
deeper layers after conventional tillage. Moreover, the variance of the SWC

*This chapter is adapted from:
Jonard, F.; Mahmoudzadeh, M.; Roisin, C.; Weihermüller, L.; André, F.; Minet, J.;
Vereecken, H. & Lambot, S. Characterization of tillage effects on the spatial variation of
soil properties using ground-penetrating radar and electromagnetic induction, in Geoderma,
2012, under review.
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within the conventional tillage plots was larger than within the other plots.
This larger SWC variability could be explained by a larger soil heterogeneity
induced by the plowing process. Overall, this study confirms the potential of
GPR and EMI for the determination of the soil physical properties at the field
scale and for the assessment of agricultural management practices.

4.1 Introduction

Agricultural management practices can affect soil physical, chemical, and bio-
logical properties with consequences for the movement of water, nutrients, and
pollutants in the vadose zone, and for plant growth (Strudley et al., 2008). Al-
ternative management practices such as conservation tillage or reduced tillage
are encouraged to prevent environmental risks like soil erosion, flooding, and
pesticide leaching in the groundwater. However, these practices are weakly
adopted by the producers as their effects on soil and crop production are not
yet well-understood (Alletto et al., 2011). The impact of tillage practices on
soil hydraulic properties (Sauer et al., 1990; Ndiaye et al., 2007; Strudley et al.,
2008; Schwen et al., 2011a,b) and their consequences on preferential flow (Ku-
lasekera et al., 2011; Elliott et al., 2000), soil state-variables (soil water content
and soil temperature) (Kovar et al., 1992; Tan et al., 2002), soil physical prop-
erties (soil penetration resistance, soil bulk density, soil porosity) (Jabro et al.,
2009), and plant growth (Alletto et al., 2011; Zhang et al., 2011) has been
subject to more intensive research over the last decade. However, according
to the recent review of Strudley et al. (2008), experimental results from field
and laboratory studies do not show consistent effects of tillage practices on
soil properties. Moreover, to get information about the soil properties, most of
these studies have used invasive methods such as time-domain reflectometry,
capacitance sensor, or soil sampling, which are time-consuming and offer only
local information. Therefore, these techniques are limited to a small spatial
extent. In addition, time-lapse measurements are not feasible within agricul-
tural fields, which would provide valuable insights into the changes of the state
variables (e.g., soil water content and soil temperature) or processes involved.

In that respect, ground-penetrating radar and electromagnetic induction are
non-invasive geophysical techniques which can be used for the characterization
of the shallow subsurface properties at the field scale and with high temporal
and spatial resolutions (Huisman et al., 2003a; Slob et al., 2010; Jonard et al.,
2011b; André et al., 2012). EMI is sensitive to soil electrical conductivity, which
is mainly affected by soil water content, clay content, and salinity (Corwin and
Lesch, 2005; Friedman, 2005), while GPR is sensitive to both soil electrical
conductivity and dielectric permittivity, the latest primarily depending on SWC
(Huisman et al., 2003a). Yet, until now, very few studies have used geophysical
techniques to investigate the impact of tillage practices (e.g., Oleschko et al.,
2008; Richard et al., 2010; Basso et al., 2011). Recently, Müller et al. (2009)
compared different geophysical techniques to characterize tillage effects on SWC
and electrical resistivity. However, their sampling scheme was limited to two
transects, which did not permit to fully explain their observations. Basso et al.
(2011) used electrical resistivity tomography applied to an entire field area,
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which permitted to study spatiotemporal dynamics of soil physical properties.
Nevertheless, a high resolution could not be achieved, especially at the soil
surface.

The general objective of this study is to analyze the effects of tillage prac-
tices on the spatial variation of soil properties by using geophysical techniques.
In particular, we focused on surface soil water content, bulk soil electrical
conductivity, and mechanical resistance. The study was conducted on an agri-
cultural field in the loess belt of central Belgium (Gentinnes). GPR and EMI
measurements were performed over three contrasting tillage systems, i.e., con-
ventional tillage, deep loosening tillage, and reduced tillage. In this chapter, we
first present on-ground GPR images and soil strength maps to characterize the
tillage effects on soil penetration resistance. Soil electrical conductivity and
SWC maps from EMI and off-ground GPR data, respectively, are then pre-
sented and interpreted in the light of in-situ observations. Finally, the tillage
effects on SWC and its spatial distribution are discussed.

4.2 Materials and methods

4.2.1 Experimental site

The study was conducted on an agricultural field in Gentinnes, located in
the loess belt of central Belgium (50◦35’ N 4◦35’ E). The soil is a loam soil
classified as an Orthic Luvisol according to the FAO classification. Elevation
varies between 137 and 145 m above sea level. The silt fraction dominates
largely the clay and sand fractions (20.0, 74.5, and 5.5% for clay, silt, and
sand, respectively) in the topsoil (0–25 cm) and the organic carbon content
was 8.67 g kg−1. The exact water table depth is unknown, but is in general
deeper than 2 m. Since fall 2005, a soil tillage experiment was implemented
on the field to compare three contrasting tillage systems: (1) conventional
tillage with mouldboard ploughing to ≈27 cm depth, (2) deep loosening tillage
with a heavy tine cultivator to ≈30 cm depth, and (3) reduced tillage with
a spring tine cultivator to ≈10 cm depth (Figure 4.1). The field was divided
into 20 plots of 30 × 18 m2 and each plot was characterized by one of the
three tillage systems (Figure 4.2). Only 12 plots were used for the geophysical
measurements (4 replications per tillage) and 3 other plots were used for the
soil strength measurements. These 3 plots were located next to the 12 other
plots, at about 15 m on the south-western part of the field (not shown in Figure
4.2). The geophysical measurements were performed on April 13, 2010, while
the soil strength measurements were performed on April 27, 2010. Average
monthly rainfall recorded at a meteorological station located about 7 km apart
from the field, was 75.3 mm in February, 36.0 mm in March, and 23.4 mm in
April 2010. No rain was observed during the two measurement days and the
daily reference evapotranspiration was close to 3 mm for both dates (Figure
4.3).
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(a)

(b)

(c)

Figure 4.1: Tillage systems implemented at the Gentinnes study site : (a) conven-
tional tillage with mouldboard ploughing, (b) deep loosening tillage with a
heavy tine cultivator, and (c) reduced tillage with a spring tine cultivator.
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Figure 4.2: Study site of Gentinnes, Belgium. Sampling points for the ground-truth
measurements and the off-ground GPR data acquisition are shown. Back-
ground colors represent the three tillage systems: conventional tillage,
deep loosening tillage, and reduced tillage.
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Figure 4.3: Daily rainfall (P ) and daily reference evapotranspiration (ETo) in mm
measured at the Ernage-Gembloux weather station during April 2010.
Arrows indicate the first (A) and second (B) measurement day.

4.2.2 Agricultural practices

Initially, the study field was entirely ploughed for several decades. Since 2005,
it has been divided according to three tillage systems (CT, DL, and RT) and
the same tillage treatment was implemented every year at the same plot, ex-
cepted in 2006 and 2008, where the tillage systems DL was replaced by the
tillage system RT. In 2006 and 2008, sugar beet was planted in April after
seed bed preparation (with rotary harrow and drill), while winter wheat was
sown in November (also with rotary harrow and drill). The wheat straws were
chopped during the harvest and then mixed within the top soil layer by a stub-
ble harrowing. White mustard was used as cover crop for all the plots during
three fallow periods (2005–2006, 2007–2008, 2009–2010), i.e., before sugar beet
planting. White mustard was always sown in September by using rotary harrow
and drill. The three tillage treatments (CT, DL, and RT) were systematically
implemented before white mustard or winter wheat sowing. In April 2010, one
day before the geophysical measurements, a minimum tillage was implemented
to all the plots with a disc harrow (depth to 5 cm) in order to reduce soil
surface roughness for the radar measurements (Jonard et al., 2012). The day
after the geophysical measurements, the whole field was prepared for seed bed
with disc harrow (depth to 3 cm) and flax was sown.

4.2.3 Reference soil water content measurements

Undisturbed soil samples (100 cm3 Kopecky-rings) were used as reference mea-
surement for the volumetric SWC. Soil samples were collected between 0–5 cm
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depth on a regular grid in each plot (5× 3 m spacing, i.e., 35 samples per plot
and 420 samples in total). Soil samples were also taken at two locations in
each plot between 0–75 cm depth at 5 cm step. The volumetric water content
of the soil samples was obtained by the weight loss after oven-drying at 105◦C
for at least 48h. At each sampling point, dielectric permittivity was mea-
sured using two capacitance water content sensors, namely, the ThetaProbe
ML2x sensor (Delta-T Devices Ltd, Cambridge, England) and the 5TE sensor
(Decagon Devices, Inc., Pullman, Washington, USA). The soil water content
was then determined from the soil dielectric permittivity using Topp’s model
(Eq. (2.10)).

4.2.4 Geophysical measurements

Ground-penetrating radars

Two different ground-penetrating radar systems were used in this study: (1)
monostatic off-ground radar for SWC retrieval and (2) bistatic common on-
ground radar for soil stratigraphy imaging, whereby both radar systems were
carried by an all-terrain vehicle (Figure 4.4).

Off-ground GPR The radar system was set up using a ZVL vector network
analyzer (VNA, Rohde & Schwarz, Munich, Germany), thereby providing an
UWB SFCW radar. The antenna system consisted of a transverse electromag-
netic, double-ridged broadband horn antenna (BBHA 9120 F, Schwarzbeck
Mess-Elektronik, Schönau, Germany) and the antenna aperture was situated
at 1.1 m above the ground. The antenna was 95 cm long with a 68 × 96 cm2

aperture area and a −3 dB full beamwidth in the E-plane and the H-plane of
46◦ (at 400 MHz). The antenna nominal frequency range was 0.2–2 GHz and
its isotropic gain ranged from 9–14 dBi.

With this radar system, the raw data consist of the frequency-dependent
complex ratio S11 between the backscattered electromagnetic field (b(ω)) and
the incident electromagnetic field (a(ω)), with ω being the angular frequency.
The raw GPR data were performed sequentially at 301 stepped operating fre-
quencies over the range 0.2–2 GHz with a frequency step of 6 MHz. Only
lower frequency data (0.2–0.4 GHz), which were not affected by soil surface
roughness, were used for the inversions. Assuming the distribution of the elec-
tromagnetic field measured by the antenna to be independent of the scatterer,
i.e., only the phase and amplitude of the field change (plane wave approxima-
tion over the antenna aperture), Eq. (2.1) is applied to filter out the antenna
effects (Lambot et al., 2004c).

In order to identify the surface dielectric permittivity, inversion of the
Green’s function is performed in the time domain, focusing on a time win-
dow containing the surface reflection only (Lambot et al., 2006c). The inverse
problem is formulated in the least-squares sense and the objective function to
be minimized is accordingly defined as Eq. (2.2). As for the capacitance water
content sensors, the soil water content was then derived from the soil dielectric
permittivity using Topp’s model (Eq. (2.10)).
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Figure 4.4: Off-ground GPR (horn antenna linked to a vector network analyser, D-
GPS device, and a PC), on-ground GPR, and EM38 sensor mounted on
an all-terrain vehicle as well as Profiler sensor carried manually.

On-ground GPR We used a time-domain GPR system (model SIR-20, Geo-
physical Survey Systems, Inc., Salem, Massachusetts, USA) combined with
a transmitting (Tx) and receiving (Rx) 400 MHz center-frequency shielded
bowtie antenna with a Tx and Rx offset of 0.16 m. GPR data were collected
with a sampling interval of 5 cm and 512 samples per scan were recorded with
16 bits per sample. The GPR produces a Ricker-type pulse with frequency
bandwidth of 100–800 MHz. The gain function was enabled in 5 points in
order to highlight deeper reflections. Time window was limited to 50 ns.

Electromagnetic induction

Electromagnetic induction data were acquired with the Profiler EMP-400 (Geo-
physical Survey Systems, Inc., Salem, Massachusetts, USA) and the EM38
(Geonics Limited, Mississauga, Ontario, Canada) sensors. The Profiler was
manually carried (at about 0.10 m above the ground surface) and allowed to
perform measurements simultaneously at three different frequencies (5, 10, and
15 kHz). The data were recorded every second, corresponding to an average
sampling interval of about 0.80 m. In contrast, the EM38 was mounted on the
front of the all-terrain vehicle (at about 0.30 m above the ground surface) (see
Figure 4.4) and the data were only recorded at one frequency (14.7 kHz). Pro-
filer data were collected with horizontal and vertical dipole orientations, while
EM38 measurements were performed with vertical dipole orientation only. The
use of different frequencies and dipole orientations permitted to investigate dif-
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ferent soil depths. All equipments (GPR and EMI sensors) were georefferenced
by means of a differential GPS (D-GPS).

4.2.5 Soil strength measurements

The soil strength measurements were performed in three plots characterized
by the three tillage methods and located just next to the investigated plots.
These measurements were performed two weeks after the geophysical measure-
ments. A fully automated penetrometer (30◦ angle cone with a base area of
1 cm2) mounted on a small vehicle was used as described by Roisin (2007)
(Figure 4.5). Two areas of 80 × 80 cm2 placed side by side were investigated.
These two squares were divided along a 16× 16 lattice (with 5-cm spacing be-
tween neighboring points) yielding a total of 256 nodes each. At each node, a
penetration was performed, and data were collected every centimeter from the
surface down to a depth of 45 cm. This procedure resulted in a 32× 32 matrix
of resistance values at each of 45 depth levels.

Figure 4.5: Fully automated penetrometer used for the soil strength measurements.

4.3 Results and discussion

4.3.1 Shallow soil stratigraphy imaging

First, we analyzed the shallow soil stratigraphy using the 2D soil strength
maps as depicted in Figure 4.6 obtained by the penetrometer for the three
different tillage systems (CT, DL, and RT). It has to be noted that the 2D
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vertical profiles were calculated by averaging the data collected in 3D over
one direction (y-axis) for better visualization. For all cases, the profiles are
depicted in the perpendicular direction of the tillage practice to highlight the
tillage effects on soil resistance. Figure 4.6a clearly shows two distinct layers
for the CT, whereby the first layer (0–25 cm depth) is characterized by lower
resistance values (<2.5 MPa) compared to the second layer with resistance
values exceeding 2.5 MPa. The lower resistance value of the first layer can
be explained by the plowing which generally reduces soil compaction in the
top layer. In general, the resistance of the first layer is quite homogeneous
but on the top left (between 20 and 80 cm distance) two blocks with higher
resistance can be observed which correspond to areas of compaction below
the tractor tracks. The second layer with generally higher compaction values
indicates a clear stratigraphic increase of resistance over depth. The map of the
DL (Figure 4.6b) also shows two distinct layers but with less clear separation
and larger heterogeneity. The uneven separation of the layering can also be
explained by the tillage practice, whereby the two main prongs of the heavy tine
cultivator caused the local changes during the deep loosening. Nevertheless, a
layer separation can be detected between 20 and 25 cm depth. In comparison
to CT and DL, RT (Figure 4.6c) shows a much finer top layer (≈10 cm depth),
which can be related to the smaller penetration depth of the tine cultivator used
for the reduced tillage. Additionally, the top layer is highly homogeneous. The
irregularities observed in the second layer at ≈20 cm depth can be attributed to
the historical tillage practices before 2005. These irregularities are not visible
in the CT and DL plots because the plowing and the deep loosening are both
below 20 cm depth. In general, penetrometer can be used to clearly distinguish
the different tillage practices and their effects on soil strength, but due to the
time consuming data acquisition only a small area (or volume) can be sampled.

On the other hand, on-ground GPR allows non-invasive data acquisition
over large areas within relative short time. As an example, Figure 4.7 shows
selected radargrams for the three tillage practices. Hereby, each radargram cor-
responds to a transect over one plot (CT, DL, and RT) in the tillage direction.
Although some slight variability could be observed, comparable results were
obtained between the different transects within one tillage practice (results are
not shown). In general, all transects show a clear reflection at 4 ns indicating
the soil surface as well as a clear reflection at 9–10 ns indicating the inter-
face between the disturbed surface layer and deeper soil. In the case of CT,
a deeper soil layer at 14–15 ns can also be clearly observed which corresponds
to a sharp transition between two different horizons. Unfortunately, this layer
is less visible for DL and RT. For RT plotted in Figure 4.7c, the first interface
becomes much clearer, which may be attributed to the shallower interface and
larger contrast between the loose and compacted soil layers. Additionally to
the major reflections at the interface between tilled and non-tilled soil layers,
local heterogeneities can be observed at greater depths (>20 ns), which may
be caused by the presence of stones, or variations of local water content due to
textural changes.

In the next step, we calculated the actual depth of the reflectors using the
travel times and the first layer averaged dielectric permittivity obtained from
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Figure 4.6: 2D soil strength maps obtained by penetrometer after (a) conventional
tillage, (b) deep loosening tillage, and (c) reduced tillage.
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the SWC information. Classically, the water content of the shallow (tilled) layer
can be also calculated directly from the radar data using the direct ground wave
as proposed by Huisman et al. (2003a,b) and Galagedara et al. (2005). Unfor-
tunately, the direct ground wave was not always separable from the radargram
which was already observed for silty or clayic soil by other authors such as
Huisman et al. (2001) and Weihermüller et al. (2007). Therefore, we decided
to use auxiliary water content data from in-situ measurements. Consequently,
we averaged all water content data for all plots of the same tillage practice
from ThetaProbe readings (mean θThetaProbe = 0.23, 0.26, and 0.27 m3 m−3

for CT, DL, and RT, respectively) and finally calculated the reflector depth. It
is worth noting that some uncertainty is introduced by this procedure because
only the mean surface water content for each tillage is used for each point in
space. The first reflection interface (observed at 9–10 ns) in addition to the
surface interface (observed at 4 ns) is estimated to occur at a depth of ≈22 cm
for CT, 20 cm for DL, and 19 cm for RT which is in a good agreement with the
penetrometer maps. This interface is expected to result from the tillage which
affects shallow soil density. The second interface observed at 14–15 ns in CT
plots is estimated to occur at a depth of ≈43 cm and can be explained by the
presence of a more compacted soil layer below this depth. It is worth noting
that the interpretation of the radargrams with respect to the tillage practices is
hampered by the relatively low depth resolution obtained by the used 400 MHz
antenna (λ/4 ∼= 5 cm, assuming a mean SWC of 0.25 m3 m−3). In conclusion,
on-ground GPR seems to be a helpful tool for easy and timeless imaging of
larger areas with respect of identifying shallow soil layers induced by different
tillage practices. As shown, a large variability was already observed between
the different treatments, whereby better results are expected to be obtained us-
ing higher frequencies or multi-channel GPR systems (e.g., Westermann et al.,
2010; Wollschläger et al., 2010).

4.3.2 Apparent soil electrical conductivity

Apparent soil electrical conductivity mainly depends on soil clay content, SWC,
soil salinity, soil temperature, and indirectly on soil compaction due to changes
on SWC (Corwin and Lesch, 2005; Friedman, 2005). As already stated, two
different EMI sensors (Profiler and EM38) were used to map the apparent
soil electrical conductivity to provide insights into the spatial variability of
the soil properties within the root zone. In general, EMI sensors measure a
depth-weighted average of the electrical conductivity (EC), referred as apparent
electrical conductivity (ECa). Figure 4.8 shows ECa maps retrieved by the
Profiler and the EM38 sensors. Figures 4.8a and 4.8b are obtained from Profiler
operating with horizontal and vertical dipoles, respectively, at a frequency of
15 kHz and with a coil separation of 1.22 m. Figure 4.8c is obtained from
EM38 at 14.7 kHz with vertical dipoles and a coil separation of 1 m. The
different frequencies and dipole orientations provide different nominal depths
of investigation, which is defined as the depth to which approximately 70% of
the measured response is generated. For the Profiler, the nominal depth of
investigation is 1.9 m and 0.9 m when operated in the vertical and horizontal
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Figure 4.7: Time-domain representation (b-scan) of the amplitude of the reflected sig-
nal measured by the on-ground GPR on a 30 m transect for each tillage
system: (a) conventional tillage, (b) deep loosening tillage, and (c) re-
duced tillage. IS indicates the reflection at the soil surface. I1 and I2
indicate a reflection at the interface between two distinct soil layers.
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modes, respectively, while the EM38 nominal depth of investigation is 1.6 m
(McNeill, 1980; Reedy and Scanlon, 2003). The EM38 data were collected in
one direction only while the Profiler data were collected in two perpendicular
directions.

In general, a decline trend in ECa from the lower left to the upper right
corner (from south to north) can be observed (Figure 4.8), whereby this trend
is independent of the underlying soil tillage practice of the different plots. This
suggests that the tillage does not significantly affect the deeper SWC. For the
entire field ECa varies between 10 to 30 mS m−1, which is a relatively small
range of variation for agricultural fields (Brosten et al., 2011). This small vari-
ability of the EMI derived ECa can be explained by the small variability of clay
content over the entire field (15.8–22.7 mass %). The ECa derived from vertical
dipole orientation of the Profiler significantly shows higher values compared to
the horizontal dipole measurements, which indicates an increase of ECa with
depth. Indeed, the sensitivity of the measurements in horizontal dipole orien-
tation is mostly affected by ECa changes within the near surface layer (<0.40
m), whereas the vertical dipole mode shows a maximum sensitivity at deeper
layers (0.8–1.0 m) (McNeill, 1980). On the other hand, the EM38 derived
ECa map is relatively similar to the Profiler map measured at vertical dipole
orientation, which is expected as both instruments are operating at similar fre-
quencies (15 kHz and 14.7 kHz) and dipole orientations. Unfortunately, both
measurements (Profiler and EM38) were not performed at the same location
because the EM38 was mounted on the all-terrain vehicle and the Profiler was
moved manually (see Figure 4.2), and therefore, a straight forward comparison
was not possible. To overcome this drawback, all Profiler data points within
a neighborhood of 1 m to each consecutive EM38 data point were averaged.
Even though, a significant correlation (R2 = 0.5) between both data sets exists,
whereby the RMSE is relatively low with 2.14 mS m−1 (Figure 4.9). As indi-
cated by the regression, Profiler data tend to slightly overestimate the EM38
data. One explanation may be the difference in coil separation (1.22 m for
the Profiler and 1 m for EM38) leading to a slightly deeper sensitivity of the
Profiler.

To analyze the spatial variability of the apparent electric conductivity mea-
sured by the EMI sensors, we computed the corresponding semivariograms. We
used a class distance from 0 to 120 m with a step of 5 m, and we fitted an expo-
nential model. Figure 4.10 shows the semivariogram for the apparent electrical
conductivity obtained by the Profiler operating at 15 kHz with vertical dipoles.
Similar semivariograms were observed for the data collected by the EM38 and
the Profiler with horizontal dipole orientation. It can be seen in Figure 4.10
that the semivariogram raises over distance and never levels off, which results
in a correlation length larger than the field size. The nugget effect is relatively
large (3.6 [mS m−1]2) and the nugget/sill ratio is equal to 23%, which indicates
a relatively strong spatial dependence (Cambardella et al., 1994). This spatial
correlation is to be attributed to the relatively smooth variations of soil texture
and water content within the field. The tillage effects on the bulk soil electrical
conductivity within the root zone are not visible.
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Figure 4.8: Map of the apparent soil electrical conductivity retrieved by Profiler using
(a) horizontal dipoles (15 kHz), and (b) vertical dipoles (15 kHz), and (c)
by EM38 using vertical dipoles (14.7 kHz) at the Gentinnes study site
(13th April 2010).
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4.3.3 Root zone water content

Figure 4.11 depicts the gravimetric SWC profiles obtained for each plot. Soil
samples were collected at every 5 cm from the surface to 75 cm depth and at
two locations for each plot. It is worth noting that gravimetric water content
instead of volumetric water content were measured for these profiles as some
uncertainties arose in the estimation of the sample volumes. The gravimetric
water content profiles obtained within the plots characterized by a conventional
tillage show the same trends (Figure 4.11a). In particular, the profiles show a
sharp increase of the water content between the surface and 10–15 cm depth.
The water content is then decreasing up to a depth of 30 cm, and below, water
content is relatively constant. The water content profiles observed within the
plots characterized by a deep loosening tillage show an opposite behavior within
the top layers (Figure 4.11b) with decreasing values from the surface to 20–30
cm depth. The water content at deeper locations stays then fairly constant. For
the reduced tillage system, the water content profiles are more heterogeneous
(Figure 4.11c). In general, water content decreases from the soil surface to
15–25 cm depth and then stays constant below. For all tillages, the deep SWC
variation range is relatively small and the absolutes values are very similar
(mean SWC below 40 cm depth is equal to 0.23 g g−1 for each tillage). This
confirms that the electrical conductivity variations originate mainly from clay
content and not from differences in water content. In addition, SWC in the
deeper horizons seems to be unaffected by tillage practices.

4.3.4 Surface soil water content

Figure 4.12 presents SWC maps retrieved by (a) volumetric soil sampling, (b)
ThetaProbe, (c) 5TE, and (d) off-ground GPR. To allow for a better com-
parison between the different techniques all maps have the same color scale
ranging from 0.12 to 0.41 m3 m−3. In general, all four SWC maps show similar
spatial patterns irrespectively of the different sensing depths. The SWC map
derived from 5TE shows however lower SWC values with a mean of 0.21 m3

m−3 compared to mean SWC of 0.27, 0.25, and 0.25 m3 m−3 for soil sampling,
ThetaProbe, and off-ground GPR, respectively. It is worth noting that differ-
ent numbers of data points were used: 420 measurement points for the invasive
methods (soil sampling, ThetaProbe, and 5TE) while 927 measurements were
collected by the off-ground GPR. Although some trends can be observed, the
spatial correlation of surface SWC (see below) is much smaller than for the EMI
images (see Section 4.4.2). This can be attributed to (1) the effect of the shal-
low tillage practices (see below) and (2) to inherent local heterogeneities. The
EMI sensors are less sensitive to local heterogeneities due to the larger sensing
volume (1–3 m3). In comparison, for the GPR and the invasive techniques, the
sampling volume is below 0.1 m3.

For a direct comparison of the results obtained from the different measure-
ment methods, off-ground GPR-derived water content is plotted versus water
content derived from ThetaProbe, 5TE, and volumetric soil sampling (Figures
4.13 and 4.14). As the GPR measurements were continuously performed at
predefined transects with high density, all GPR data points within a neighbor-
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Figure 4.11: Gravimetric soil water content profiles from surface down to 75 cm depth
(5 cm step). Each depicted profile consists of a mean of two measured
SWC profiles. Four SWC profiles per tillage system are shown: (a)
conventional tillage, (b) deep loosening tillage, and (c) reduced tillage.
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Figure 4.12: Soil water content maps obtained using (a) volumetric soil sampling,
(b) ThetaProbe capacitance sensor, (c) 5TE capacitance sensor, and (d)
off-ground GPR at the Gentinnes study site (13th April 2010).
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hood of 1 m to the invasive measurement points were averaged. In general,
GPR-derived water contents are much better correlated to the soil sensors de-
rived water contents θThetaProbe (R

2 = 0.31, RMSE = 0.040 m3 m−3) and θ5TE

(R2 = 0.39, RMSE = 0.045 m3 m−3) than to the soil sampling (θSampling) data
(R2 = 0.10, RMSE = 0.060 m3 m−3). Not only the correlation between θGPR

and θSampling is weak but also the scattering is high and the regression is far
off the 1:1 line. Additionally, the range of SWC values is much smaller for the
5TE sensor (0.14–0.28 m3 m−3) compared to the other methods with 0.15–0.34,
0.16–0.41, and 0.13–0.36 m3 m−3 for the ThetaProbe, soil sampling, and GPR,
respectively.

The intention of using three different ground-truth measurement techniques
was to provide insights into the effect of the sensors specific measurement vol-
ume and/or measurement accuracy. Therefore, we also analyzed the correlation
between the sensors (Figure 4.15). The correlation between θThetaProbe and
θSampling is relatively weak with a R2 of 0.24, and the correlation between θ5TE

and θSampling is also weak with a R2 of 0.13. Additionally, both correlations
are far off the 1:1 line with a slope of 0.35 for the θThetaProbe and θSampling,
and 0.19 for the θThetaProbe and θSampling relationship. In contrast, correlation
between θ5TE and θThetaProbe shows fairly good agreement with an R2 of 0.50
(RMSE = 0.046) and only a parallel shift to the 1:1 line indicating a system-
atic overestimation of the ThetaProbe data. The differences between the three
methods can be partly explained by the different sensing volumes (100 cm3 for
the soil sampling, ≈75 cm3 for the ThetaProbe, and ≈50 cm3 for the 5TE sen-
sor) as well as differences in the sensing depths with 5, 6, and 5.2 cm for the soil
sampling, ThetaProbe, and 5TE sensor, respectively. Nevertheless, it is still
questionable why the method integrating over the largest volume (namely, soil
sampling) deviates so much from the sensor based data. On the other hand, it
seems now logical that also the correlation between θGPR and θSampling is weak
(Figure 4.14), because the soil samples do show a clear difference compared to
the sensor based data.

4.3.5 Tillage effects on surface soil water content

To get a better insight on the tillage effects on surface SWC as measured by the
invasive methods as well as the off-ground GPR system, the mean SWC and
the associated confidence interval (αt = 0.05) have been computed and plotted
in Figure 4.16. As shown, a significantly lower mean SWC was observed in
the conventional tillage plots compared to all other plots, irrespectively of the
measurement techniques used, whereby the 5TE data generally indicate the
lowest mean water contents and the soil sampling data indicate the largest.
In-between are the ThetaProbe and the off-ground GPR data with comparable
results as already indicated above. This lower mean water content in the CT
plots can be partly explained by lower pore connectivity between the topsoil and
the deeper layers after plowing, which reduces capillary upward water flow from
the deeper wetter layers. This is in agreement with the findings of Mahboubi
et al. (1993) and Kosutic et al. (2001) who observed a higher soil water retention
with no-tillage treatment compared with conventional tillage treatment. On
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Figure 4.13: Volumetric soil water content from (a) ThetaProbe capacitance sen-
sor and (b) 5TE capacitance sensor versus off-ground GPR. For each
method, water content estimates were derived from the dielectric per-
mittivity measurements using Topp’s model.
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Figure 4.14: Volumetric soil water content from soil sampling versus off-ground GPR-
dervied water content.

the other hand, DL and RT show no significant difference in surface soil water
content with the three invasive methods and a very slight difference with the
off-ground GPR system, which indicates a comparable evaporation loss and/or
infiltration capacity.

In the next step, we plotted the mean SWC of each plot for all sensors versus
the STD of the measurements (Figure 4.17). In general, the STD increases with
increasing mean SWC in the observed range of variation. This general trend is
in good agreement with observations of Ryu and Famiglietti (2005) and Choi
and Jacobs (2007) who showed that the spatial variability of SWC increases
from very dry to wet conditions, reaches a maximum at specific water contents,
and then decreases with further wetting until saturation. Vereecken et al.
(2007) found that the soil hydraulic properties itself control the shape of this
curve and the point where the maximum will occur. Unfortunately, the SWC
values observed are probably below the critical value (maximum STD point)
described by the authors, and therefore, a detailed analysis of the differences
in terms of soil hydraulic properties due to the tillage systems is restricted.
Nevertheless, each tillage system shows a distinct shape of the curve (Figure
4.17), which could be a hint of different hydraulic properties and/or different
spatial variabilities of water content within the surface layer.

Finally, we analyzed the spatial variability of the surface SWC measured
by off-ground GPR for the different tillage systems. Semivariograms were com-
puted using GPR-derived SWC estimates from cluster of plots characterized by
the same tillage system. The resulting semivariograms are depicted in Figure
4.18 for the conventional tillage, deep loosening tillage, and reduced tillage.
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Figure 4.15: Volumetric soil water content from (a) volumetric soil sampling ver-
sus ThetaProbe and 5TE capacitance sensors and (b) 5TE capacitance
sensor versus ThetaProbe capacitance sensor. For the two capacitance
sensors, water content estimates were derived from the dielectric permit-
tivity measurements using Topp’s model.
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Figure 4.16: Mean soil water content per tillage θT (conventional tillage, deep loos-
ening tillage, and reduced tillage). Error bars represent confidence in-
terval (αt = 0.05) between the four plots for each tillage. Colors repre-
sent the measurement techniques (red: volumetric soil sampling, green:
ThetaProbe capacitance sensor, black: 5TE capacitance sensor, and
blue: off-ground GPR).

Each semivariogram was computed with a class distance from 0 to 60 m by a
step of 5 m and fitted with an exponential model. In general, the quality of
the fit is reasonable with a R2 between 0.54 and 0.62. These graphs point out
distinct spatial behavior of the SWC within the three tillage systems. SWC
within reduced tillage plots appears to have less spatial structure compared
to conventional tillage plots as illustrated by the smaller nugget effect and the
smaller range of its semivariogram (see Table 4.1). The nugget effect can be at-
tributed to measurement errors and/or spatial sources of variation at distances
smaller than the shortest sampling interval while the range is the distance be-
yond which two SWC values can be considered as statistically independent
and the sill is the level at which the variogram flattens out (Goovaerts, 1999;
De Lannoy et al., 2006). For each semivariogram, the range is larger than the
plot size (>30 m) and the spatial correlation is moderate, with nugget/sill ra-
tios of 49, 61, and 40% for the CT, DL, and RT, respectively (Cambardella
et al., 1994). The larger sill of the conventional tillage semivariogram indicates
that the variance of the SWC within the conventional tillage plots is larger
than within the other plots. This larger SWC variability could be explained
by a larger soil heterogeneity induced by the plowing process. Indeed, using a
mold board plough, soil blocks from deeper layers characterized by higher bulk
densities (in general, the soil bulk density increases with depth) are locally
transferred to the surface, and therefore, increase the variability in SWC. Ad-
ditionally, the plowing creates also local compaction which modifies the SWC



4.3. Results and discussion 77

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
0

0.01

0.02

0.03

0.04

0.05

0.06

θ
P

[m
3

m
−3

]

S
T

D
[m

θ
3

m
−

3
]

Soil sampling - CT

ThetaProbe - CT

5TE - CT

GPR - CT

Soil sampling - DL

ThetaProbe - DL

5TE - DL

GPR - DL

Soil sampling - RT

ThetaProbe - RT

5TE - RT

GPR - RT

Figure 4.17: Soil water content standard deviation, STD θ, with respect to mean
soil water content per plot, θP, obtained from measurements made us-
ing volumetric soil sampling (circles), ThetaProbe capacitance sensor
(squares), 5TE capacitance sensor (triangle), and off-ground GPR (filled
triangles) at the Gentinnes study site (13th April 2010). Colors represent
tillage systems (red: conventional tillage, blue: deep loosening tillage,
and green: reduced tillage). Dashed lines represent linear regression
lines for each tillage system.
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distribution. An intermediate sill value is observed for the deep loosening tillage
which could be explained by lower soil mixing compared to the conventional
tillage (especially between the tines), but higher soil mixing compared to the
reduced tillage (on the tines ways).
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Figure 4.18: Semivariograms for off-ground GPR-derived soil water content computed
for the plots prepared with conventional tillage (red), deep loosening
tillage (blue), and reduced tillage (black). All semivariograms were com-
puted with a class distance from 0 to 60 m by a step of 5 m and fitted
with an exponential model.

Table 4.1: Semivariogram parameters for off-ground GPR-derived SWC computed
for the plots prepared with conventional tillage, deep loosening tillage,
and reduced tillage.

Nugget Sill Nugget/Sill Range R2

[m3 m−3]2 [m3 m−3]2 [%] [m]

Conventional Tillage 0.00144 0.00294 49 38 0.62
Deep Loosening Tillage 0.00129 0.00212 61 65 0.61
Reduced Tillage 0.00042 0.00106 40 32 0.54

4.4 Summary and conclusion

In this study, we used geophysical methods to analyze the effects of tillage
on surface soil water content, bulk soil electrical conductivity, and mechanical
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resistance. GPR and EMI data were collected on three contrasting tillage sys-
tems implemented on an agricultural field: (1) conventional tillage, (2) deep
loosening tillage, and (3) reduced tillage. As additional measurements, soil sam-
pling, capacitance probes, and soil penetrometer data were acquired as ground
truth. The data showed that tillage influences the soil resistance (deeper tillage
decreases soil resistance), which could be partly seen in the GPR data. Addi-
tionally, reference SWC measurements (capacitance probes and soil sampling)
were in a relatively good agreement with the water content estimates from
off-ground GPR. We also observed that the tillage influences shallow surface
water content, while deeper SWC seems to be unaffected. Surface soil water
retention was significantly larger in the reduced tillage and the deep loosening
tillage compared to the conventional tillage, which was partly explained by
lower pore connectivity between the topsoil and the deeper layers after con-
ventional tillage, which reduces capillary upward water flow from the deeper
wetter layers. The variance of the SWC within the conventional tillage plots
was larger than within the other plots. This larger SWC variability could be
explained by a larger soil heterogeneity induced by the plowing process. This
study confirms the potential of GPR and EMI sensors for soil physical proper-
ties determination at the field scale and for the characterization of agricultural
management practices. These geophysical techniques could also help us to ap-
ply precision agricultural practices for efficient resource management and crop
yield enhancement.
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Chapter 5

Estimation of the hydraulic
properties of a sandy soil
using passive and active
microwave remote sensing∗

Abstract

In this study, we experimentally analyzed the feasibility of estimating the soil
hydraulic properties from L-band radiometer and ground-penetrating radar
data. L-band radiometer and ultra-wideband off-ground GPR measurements
were performed above a sand box in hydrostatic equilibrium with a water table
located at different depths. The results of the inversions showed that the radar
and radiometer signals contain sufficient information to estimate the soil wa-
ter retention curve and its related hydraulic parameters with a relatively good
accuracy compared to time-domain reflectometry estimates. However, an accu-
rate estimation of the hydraulic parameters was only obtained by considering
the saturated water content parameter as known during the inversion.

5.1 Introduction

Soil hydraulic properties are of major interest for estimating water and energy
fluxes at the land surface. In general, estimation of these properties relies on
the measurement of soil water content within the soil profile usually performed
by soil sampling or with in-situ sensors such as time-domain reflectometry or
capacitance probes. Unfortunately, these methods do not account for the high

*This chapter is adapted from:
Jonard, F.; Weihermüller, L.; Schwank, M.; Jadoon, K. Z.; Vereecken, H. & Lambot, S.
Estimation of the hydraulic properties of a sandy soil using passive and active microwave
remote sensing, in Remote Sensing of Environment, in preparation.
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spatial variability, especially over large areas. On the other hand, proximal
sensors such as ground-based microwave radiometer and ground-penetrating
radar can be used to obtain information at the field scale with high spatial
resolution, but these measurements may be biased by confounding factors such
as soil surface roughness (Lambot et al., 2004; Jonard et al., 2011; Jonard et
al., 2012).

The objective of this study is to experimentally analyze the feasibility of
measuring a soil water content profile using off-ground GPR and L-band ra-
diometer data. In particular, we investigated the potential of GPR and ra-
diometer to identify the hydraulic properties of a sandy soil in hydrostatic
equilibrium with a water table at different depths. In this condition, the soil
water content profile corresponds to the soil water retention curve, which can
be related to the soil hydraulic parameters by using a simple soil hydraulic
model. The uncertainty related to the estimation of the soil hydraulic param-
eters from GPR, radiometer, and TDR will be also addressed. To the best of
our knowledge, this study represents a first attempt to compare the estimation
of soil hydraulic parameters from active and passive microwave remote sensing
data.

5.2 Experimental setup

The experiment was conducted at the TERENO test site in Selhausen, Ger-
many (latitude 50◦87 N, longitude 6◦45 E, and elevation 105 m above sea level).
L-band radiometer and off-ground GPR measurements were performed over a
1.00-m-deep and 2.00 x 2.00 m2 area wooden box filled with sand. The L-band
radiometer was fixed on an aluminium arc at 4 m height above the ground and
the antenna was pointed towards the sand box with an observation angle of
36◦ relative to the vertical direction (Figure 5.1). The off-ground GPR antenna
was fixed above the sand box on a wooden frame and the GPR antenna aper-
ture was situated at about 0.35 to 0.40 m above the soil surface with normal
incidence (Figure 5.2). To avoid interferences between the two instruments,
the radiometer and GPR were not operated simultaneously.

The sides of the wooden box were covered with aluminium foils as well as
a PVC sheet to avoid transmission of electromagnetic waves and water fluxes.
To increase the sensitivity of the radiometer to radiations emitted from the
sand within the box and reduce the influence of radiance originating from
areas outside, the surrounding soil surface was covered by a metal grid (area of
116 m2) with a mesh size of 0.5 cm (Figure 5.1), thereby setting up a perfect
electrical reflector. In that respect, the mesh size was significantly smaller than
the operating L-band microwave wavelength (≈21 cm).

Radiometer and GPR measurements were performed with the water table
at 7 different depths, ranging from the bottom of the box to the sand surface.
For each water table depth, hydrostatic equilibrium was waited for during 6
to 11 days in order to produce a vertical water content profile above the water
table in agreement with the sand water retention curve. Distilled water was
used to saturate the sand in order to limit the electrical conductivity of the
medium and therefore electrical losses. Precipitation and evaporation at the
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Figure 5.1: (a) Picture of the experimental setup including a radiometer fixed on an
arc and a sand box in the centre of a metal grid at the TERENO test site
in Selhausen (Germany), (b) detailed sketch of the experimental setup
showing the location and dimensions of the sand box and the metal grid.
Dashed ellipses indicate the radiometer footprints at −3, −6, and −10
dB.
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Figure 5.2: Picture of the VNA and radar antenna fixed at about 0.35–0.40 m above
the sand surface.

sand surface were prevented using a metal cover that was just removed during
measurements.

5.2.1 TDR and capacitance sensors

Time-domain reflectometry and capacitance sensors were inserted at 7 depths,
i.e., 5, 10, 20, 30, 40, 60, and 80 cm depth of two opposite sides of the box to
measure the dielectric permittivity and bulk electrical conductivity within the
sand box (Figure 5.3). TDR measurements were performed every 20 min using
custom-made three-rod probes with a length of 20 cm that were inserted hori-
zontally into the sand. TDR probes were connected to a TDR100 cable tester
(Campbell Scientific, Logan, Utah, USA). The raw data of the waveform were
stored and automatically analyzed by the commonly used tangent method in
the time domain (Heimovaara and Bouten, 1990). Capacitance measurements
were performed every 15 min using 5TE sensors (Decagon Devices, Inc., Pull-
man, Washington, USA) composed of 3 prongs of 5.2 cm length and that were
inserted horizontally into the sand. Additionally, soil temperature was also
recorded by the capacitance sensors. A piezometer and 5 tensiometers were
used to monitor the water level in the box (Figure 5.3). Unfortunately, the
tensiometers did not work properly during the experiment, and therefore, the
ground water level was only measured by the piezometer.
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the piezometer.
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5.2.2 Remote sensing systems

L-band radiometer The L-band radiometer ELBARA II operating at the
TERENO test site in Selhausen (Germany) is an identical copy of the three
ELBARA II radiometers deployed by ESA for calibration and validation activi-
ties related to the SMOS mission. ELBARA II is sensitive within the protected
frequency band 1400–1424 MHz of the microwave L-band. The internal cal-
ibration used to derive brightness temperature from raw radiometer data is
performed by periodically switching between two instrument internal reference
noise sources: a resistive noise source (hot reference noise temperature) and an
active cold source (cold reference noise temperature). The noise temperature
measured at the radiometer input ports was also corrected for the noise added
by the lossy feed cables. A detailed description of the ELBARA II system
and the calibration procedure is given in Schwank et al. (2010b). Every day
of measurement, the radiometer was calibrated by measuring sky radiance at
an elevation angle of 55◦ above the horizon and oriented approximately toward
the north. Each radiometer measurement was recorded with 3 s integration
time. The accuracy of the measured brightness temperature is estimated to be
lower than 1 K (Schwank et al., 2012). Simultaneously to each radiometer mea-
surement, air temperature at the height of the radiometer was also recorded.
The radiometer was equipped with a dual-mode conical horn antenna (aper-
ture diameter = 60 cm, length = 67 cm) with symmetrical and identical beams
(Figure 5.4) and a −3 dB full beamwidth of 23◦ in the far-field. The antenna
directivity was derived from time series of brightness temperatures measured
with the sun passing through the antenna field of view as described in Schwank
et al. (2010b) (Figure 5.5).

Ground-penetrating radar The radar system was set up using a vec-
tor network analyzer (VNA, ZVRE, Rohde and Schwarz, Munich, Germany)
as transmitter and receiver, thereby providing a monostatic ultra-wideband
stepped-frequency continuous-wave system (Lambot et al., 2004c; Jonard et al.,
2012). The antenna system consisted of a linear polarized double-ridged broad-
band horn antenna (BBHA 9120 A, Schwarzbeck Mess-Elektronik, Schönau,
Germany). Antenna dimensions are 22 cm length and 14 x 24 cm2 aperture
area, and the −3 dB full beamwidth of the antenna is 26◦ in the E-plane and
20◦ in the H-plane (at 2 GHz). The antenna nominal frequency range is 0.8–
5.2 GHz and its isotropic gain ranges from 4.4–10.5 dBi. Measurements were
performed between 0.8–2.6 GHz and with a frequency step of 8 MHz.

5.3 Modeling approach

5.3.1 Soil hydraulic model

In this study, radiometer and radar measurements were only performed when
the sand was in hydrostatic equilibrium with a water table located at a position
zw [m]. In hydrostatic conditions, the water content profile can be described
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by the water retention curve of the soil, which was modeled in this study using
the van Genuchten model (van Genuchten, 1980):

θ(h) =

{
θr + (θs − θr) [1 + |αh|n]−m

for h < 0
θs for h ≥ 0

(5.1)

where θ [m3 m−3] is the volumetric water content, θr and θs [m3 m−3] are
the residual and saturated water contents, respectively, h [m] is the pressure
head and is related to the vertical position z [m] by h = z− zw, α [m−1] and n
[–] are curve shape parameters which are, respectively, inversely related to the
air entry value and the width of the pore size distribution, and m is restricted
by the Mualem condition with m = 1− 1/n and n > 1.

5.3.2 Petrophysical relationships

To relate soil water content θ to soil relative dielectric permittivity εr, the
model of Ledieu et al. (1986) was used:

εr =

(
θ − b

a

)2

(5.2)

where a and b are soil specific empirical parameters. In this study, we used the
parameters a = 12.64× 10−2 and b = −19.33× 10−2 as determined by Lambot
et al. (2004c) for a very similar sandy soil.

Additionally, the model of Rhoades et al. (1976) was used to relate soil
water content to apparent soil electrical conductivity σ [S m−1], namely:

σ =
(
cθ2 + dθ

)
σw + σs (5.3)

where c and d are soil specific empirical parameters, σw [S m−1] is the soil
solution electric conductivity, and σs [S m−1] is the electric conductivity of the
dry sand. In this study, we set c = 1.85, d = 3.85× 10−2, and σs = 5.89× 10−4

S m−1 which are characteristic values for sandy soils. The soil solution electric
conductivity σw was computed using the DC electrical conductivity measured
in the top part of the piezometer (3.88 × 10−2 S m−1 at 9◦C) and the Debye
model (Debye, 1929) to account for frequency dependent dielectric losses.

5.3.3 Radiative transfer model

Brightness temperature The thermal L-band emission, also called bright-
ness temperature TB, is classically expressed using a zero-order radiative ap-
proach (Mätzler, 2006). In this study, TB is assumed to be a linear combination
of the radiance emitted from the sand box and the radiance emitted from the
surrounding area. Consequently, TB can be expressed by:

T p
B = ηp[(1−Rp

s )Ts + Rp
s Tsky] + (1− ηp)[(1−Rp

0)T0 + Rp
0 Tsky] (5.4)

where η is the fractional amount of the measured radiance which was emitted
from the sand box, Rs [–] is the reflectivity of the sand box, R0 [–] is the reflec-
tivity of the surrounding area, Tsky [K] is the sky radiance (≈4.8 K according
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to Pellarin et al. (2003)), Ts [K] is the effective physical temperature of the soil
in the box, T0 [K] is the effective physical temperature of the ground surround-
ing the box, and p refers to the polarization (H or V). Under thermodynamic
equilibrium, (1−Rs) and (1−R0) represent the emissivity of the sand box (Es)
and the surrounding area (E0), respectively (Kirchhoff’s law).

In this study, Ts was estimated as the mean value between the soil tem-
perature at 5 cm depth and 40 cm depth while T0 was approximated by the
air temperature at the radiometer height. The values for ηp were determined
from TB measurements with the sand box successively covered by a reflector
(copper sheet) (TB,refl) and an absorber (TB,abs). The reflector is characterized
by a reflectivity (Rs,refl) of 1 while the absorber is characterized by a reflec-
tivity (Rs,abs) of 0 (Figure 5.6). Considering TB = TB,refl and Rs = Rs,refl

in Eq. (5.4) provides ηp as a function of R0. In a similar way, considering
TB = TB,abs and Rs = Rs,abs in Eq. (5.4) provides a second equation with ηp

as a function of R0. Solving these two equations for the two unknowns yielded
ηH = ηV = 0.54, RH

0 = 0.94, and RV
0 = 0.90. Finally, Rs can be computed

from TB measurements.

Reflectivity model Rs represents the soil reflectivity from the sand box
and can be modeled using two different approaches: a non-coherent approach
considering the sand box system as a homogeneous soil with a constant wa-
ter content over depth or a coherent approach considering the sand box sys-
tem as planar layered medium (N horizontal layers). As stated above, in the
non-coherent approach, the soil is characterized by a single permittivity/water
content and the reflectivity can be simply modeled using the Fresnel equations
as the sand surface is assumed to be smooth. In the coherent approach, the
medium of the nth layer is homogeneous and characterized by the dielectric per-
mittivity εn, the electric conductivity σn, and the thickness hn (Figure 5.7).
The reflectivity model is based on a matrix formulation of the boundary con-
ditions at the layer interfaces derived from Maxwell’s equations (Dobrowolski,
1995). To derive the reflectivity of the layer stack, the model was evaluated
for dielectric layers with a thickness of 1 cm, which is much smaller than the
wavelength. The soil permittivity/water content profiles were described using
the van Genuchten model (Eq. (5.1)).

5.3.4 GPR model

Radar equation The radar signal S(ω) can be expressed as the ratio between
the backscattered field b(ω) and incident field a(ω) at the radar transmission
line reference plane, with ω being the angular frequency. In far-field conditions,
the spatial distribution of the backscattered electromagnetic field measured by
the antenna can be assumed to be independent of the layered medium, i.e.,
only the phase and amplitude of the field change (plane wave approximation
over the antenna aperture). In that case, the following radar equation applies
(Lambot et al., 2004c; Lambot and André, 2012):

S(ω) =
b(ω)

a(ω)
= R0(ω) +

T (ω)G↑
xx(ω)

1−Rs(ω)G
↑
xx(ω)

(5.5)
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(a)

(b)

(c)

Figure 5.6: (a) Metallic mesh grid used to cover the surroundings of the sand box
with a mesh-size of 0.5 cm, (b) electromagnetic absorber, and (c) perfect
reflector (copper plate) placed on the top of the sand box.
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Figure 5.7: Three-dimensional planar layered medium with a radar point source and
receiver or a radiometer point receiver (S). Each layer is characterized by
the dielectric permittivity εn, the electric conductivity σn, the magnetic
permeability µn, and the thickness hn.

where R0(ω) is the global reflection coefficient of the antenna in free space,
T (ω) = Ti(ω)Ts(ω), Ti(ω) is the global transmission coefficient for fields inci-
dent from the radar reference plane onto the point source, Ts(ω) is the global
transmission coefficient for fields incident from the field point onto the radar
reference plane, Rs(ω) is the global reflection coefficient for the field incident
from the layered medium onto the field point, and G↑

xx(ω) is the planar layered
medium Green’s function.

The global reflection and transmission coefficients (R0(ω), T (ω), and Rs(ω))
are determined by solving a system of equations (Eq. (5.5)) for different model
configurations. We used several well-defined configurations with the antenna
at different heights above a copper plane playing the role of an infinite perfect
electrical conductor. The Green’s functions can therefore be computed from
S(ω) measurements.

Green’s function The radar model used to inverse the GPR signal consists
of a 3D planar layered medium (N horizontal layers) with a point source and
receiver (Figure 5.7). The use of a 3D model is essential to take into account
spherical divergence (geometric spreading) in wave propagation. The medium
of the nth layer is homogeneous and characterized by the dielectric permittivity
εn, the electric conductivity σn, and the thickness hn. In this study, the thick-
ness of the layers was set to 1 cm as for the radiometer (reflectivity model). The
magnetic permeability (µ) is considered constant and equal to the permeability
of free space (µ0 = 4π10−7 H m−1). The Green’s function, i.e., the solution of
the 3D Maxwell equations for electromagnetic waves propagating in multilay-
ered media, is derived by computing with a recursive scheme the TE and TM
global reflection coefficients of the multilayered medium in the spectral domain
(Slob and Fokkema, 2002). The transformation back to the spatial domain is
performed by numerically evaluating a semi-infinite, complex integral (Lambot
et al., 2007).
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5.3.5 Inversion procedure

Inversion of the radiometer and GPR data was performed to identify the van
Genuchten hydraulic parameters (θr, θs, α, and n) of the soil, which define the
water content profile. θr, which is defined as the residual water content with
a pressure head h of −∞, was used as fixed parameter set to 0. The water
table level was also assumed to be known and used as fixed parameter during
the inversions. Inversions were performed in a relatively large parameter space
given by [0.25 ≤ θs ≤ 0.45; 1 ≤ α ≤ 20; 1.1 ≤ n ≤ 10]. The inverse problem
was formulated in the least-squares sense and the objective function to be
minimized was accordingly defined for the different sensing methods.

For the radar (GPR), the objective function is:

ϕGPR(b) =
∣∣G↑∗

xx(ω)−G↑
xx(b, ω)

∣∣T ∣∣G↑∗
xx(ω)−G↑

xx(b, ω)
∣∣ (5.6)

where G↑∗
xx(ω) and G↑

xx(b, ω) are, respectively, the measured and modeled
complex Green’s functions in the frequency domain, and b is the parameter
vector to be estimated (b = [θs, α, n]). Both measured and modeled Green’s
functions are vectors containing values for each frequency (from 0.8 to 2.6 GHz
with a step of 8 MHz, i.e, 1101 frequencies) and each water table depth (7),
resulting in 7707 complex values.

To limit the dimensionality of the inverse problem, the distance between
the soil surface and the GPR antenna phase center h0 [m] was previously esti-
mated by performing inversion of the electromagnetic model in the time domain
(Lambot et al., 2006c; Jonard et al., 2011b). The vector h0 was then used as
a fixed parameter during the inversion.

For the radiometer (MR), the objective function is:

ϕMR(b) = (R∗
s −Rs(b))

T (R∗
s −Rs(b)) (5.7)

where R∗
s and Rs(b) are, respectively, the measured and modeled reflec-

tivity and b is the parameter vector to be estimated. The fractional amount
of the measured radiance which was emitted from the sand box (η) was also
estimated during the inversion (b = [θs, α, n, η]). For this inversion, we used
the coherent approach (see above) to model the soil reflectivity. Both measured
and modeled reflectivities are vectors containing values for each polarization
(H and V) and each water table depth (7), resulting in 14 real values.

Hydraulic parameters were also estimated in the same way from TDR and
capacitance probes water content data. The respective objective functions are:

ϕ(b) = (θ∗ − θ(b))T (θ∗ − θ(b)) (5.8)

where θ∗ and θ(b) are, respectively, the measured and modeled water con-
tents from TDR or capacitance probes, and b is the parameter vector to be
estimated (b = [θs, α, n]). Both measured and modeled water contents are vec-
tors containing values for each measurement depth (7 depths) and each water
table depth (7), resulting in 49 real values.

The objective functions were minimized using the GMCS algorithm com-
bined sequentially with the NMS algorithm as introduced by Lambot et al.
(2002).
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5.4 Results and discussion

5.4.1 TDR and capacitance sensors data

Although only TDR- and capacitance-derived soil water content at the time of
radar and radiometer measurements are considered in this study, continuous
measurements were performed to analyze the behavior of the in-situ sensors
and confirm the hydrostatic equilibrium of the sand box at the times of radar
and radiometer measurements. The water table level measured at hydrostatic
equilibrium by using the piezometer was at 0.86 m depth on DOY 294, 0.57 m
depth on DOY 304, 0.50 m depth on DOY 311, 0.41 m depth on DOY 319, 0.30
m depth on DOY 325, 0.18 m depth on DOY 332, and 0.17 m depth on DOY
343. Figure 5.8 represents the SWC as a function of time monitored by capac-
itance sensors at different depths. The times where the radar and radiometer
were performed are also shown and correspond to hydrostatic equilibrium. We
can clearly observe the successive water content increases in relation to the
water table increases. As expected, the water content increases faster at the
deeper depths. We can also observe that in fully saturated conditions, the sen-
sors do not provide the same saturated water content. This may be attributed
to inherent heterogeneities in the medium and artefact related to both sensor
calibration and installation. The observed saturated water content ranges from
about 0.33 to 0.38.

Figure 5.9 depicts the SWC readings from TDR versus capacitance sensors.
Only data collected during the radar and radiometer measurements were used.
In general, SWC derived from capacitance probes slightly overestimates SWC
derived from TDR sensors below 0.20 m3 m−3 and underestimate TDR-derived
SWC above 0.20 m3 m−3. Yet, the regression line between both SWC is close
to the 1:1 line with a R2 of 0.95.

5.4.2 Brightness temperature

Figure 5.10 shows the brightness temperature (TB) measured by the L-band
radiometer above the experimental setup with the free sand surface (TB,sand),
the sand surface covered by an absorber (TB,abs), and the sand surface covered
by a perfect reflector (TB,refl). Each TB,sand value corresponds to a mean of
at least 20 measurements performed over 45 min. The STD of the repeated
TB,sand measurements is systematically lower than 0.3 K, which confirms the
repeatability of the measurements and the stability of the instrument and the
experimental setup during the measurement period. TB,sand decreases with
increasing water table level from 150 K to 112 K for V-pol and from 138 K
to 88 K for H-pol, which results from the progressive wetting of the sand. As
shown, TB,sand at H-pol is systematically lower than at V-pol. TB,refl and TB,abs

measurements were performed twice, at the beginning and in the middle of
the measurement campaign, to characterize the setup. TB,refl measured above
the entirely grid covered setup (including the sand box covered by a copper
sheet) shows similar values (15–17 K at V-pol and 12 K at H-pol) to the sky
brightness temperature (≈4.8 K), which confirms that the metal grid used as
reflector to block the emission from the surrounding area of the sand box worked
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Figure 5.8: Soil water content as a function of time monitored by capacitance sensors
at different depths in the sand box. Black arrows indicate the radiometer
and radar measurement times.
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properly. The remaining difference between TB,refl and Tsky may come from (1)
influences from areas not covered by the metal grid, and (2) multiple refections
and emissions from the aluminium arc. Additionally, TB,refl stayed relatively
constant between the two calibration periods, with a difference of 0.6 K and 2.1
K for H- and V-pol, respectively. This confirms that the setup did not change
significantly between the two calibrations. TB,abs shows the largest brightness
temperature values with 167–168 K for V-pol and 161–162 K for H-pol. The
similar TB,abs values retrieved for the two calibration periods are explained by
a similar physical temperature of the absorber, as the radiation of an absorber
is only driven by its physical temperature, and a similar emission from areas
surrounding the sand box. Finally, the large differences between TB,refl, TB,abs,
and TB,sand proves that the size of the sand box (2.00 x 2.00 m2 area) was large
enough to significantly detect different L-band radiation from the sand box for
different configurations (reflector, absorber, and sand) and, therefore different
soil water contents of the sand within the box.
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Figure 5.10: Brightness temperature TB measured by the L-band radiometer above
the free sand surface (triangles) for both horizontal and vertical polar-
izations as a function of water table depth (depth scale is not linear). TB

measurements above the sand surface covered by an absorber (circles)
and a reflector (squares) are also shown for two calibration periods. Note
that the STD of the TB measurements is not shown as the STD values
are too small (<0.3K) to be visible on the graph.
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5.4.3 Radar data

Figure 5.11 represents the observed radar Green functions in the frequency do-
main (G↑

xx) for 2 water table depths and Figure 5.12 shows the observed radar
Green functions in the time domain (g↑xx) for the 7 water table depths. The
Green’s function is computed from the S scatter function for frequencies be-
tween 0.8–2.6 GHz using Eq. (5.5) to filter out antenna effects. As expected for
the frequency range used, the frequency dependence of the Green function am-
plitude is linear. In the time domain, the time zero corresponds to the antenna
phase center. The reflection from the soil surface is clearly visible between
2–3 ns. The remaining oscillations on the time-domain signal are caused by
the inverse Fourier transform, since only the signal frequencies between 0.8–
2.6 GHz were measured. The surface reflection does not exactly occur at the
same time for each measurement as the height of the antenna (0.35 to 0.40
m) was slightly different for the different measurements. The amplitude of the
reflection is increasing with increasing water table level, which means that the
dielectric contrast between the air layer and the surface soil layer increased.
No clear reflection can be observed below the surface reflection and the water
table interface is also not detectable. This means that the sand dielectric profile
is continuous for the frequencies used and that the electromagnetic waves are
almost totally attenuated in the unsaturated zone. The assumption of a contin-
uous dielectric profile for the unsaturated zone and an infinite lower half-space
for the saturated zone in the electromagnetic model can therefore be confirmed.
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Figure 5.11: Green’s function in the frequency domain for measurements performed
in the frequency range 0.8–2.6 GHz and for two water table depths, 0.57
(blue) and 0.17 m (green), respectively.
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frequency range 0.8–2.6 GHz and for the seven water table depths (depth
scale is not linear).
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5.4.4 Surface soil water content

In a first step, we derived surface SWC from radiometer and radar data. For
the radiometer, the surface soil layer was considered as homogeneous and the
Fresnel equations were used to compute the dielectric permittivity of the sur-
face soil layer. For the radar, the data were analyzed using full-wave inversion
in the time domain of the surface reflection. Figure 5.13 shows radiometer-
, GPR-, and TDR-derived surface SWC for the 7 water table depths. Sur-
face SWC from radiometer was derived from both polarizations. V-pol-derived
SWC shows slightly higher SWC compared to H-pol derived SWC. The fre-
quency range 0.8–2.0 GHz was used to derive SWC from GPR data in order
to have the same central frequency (1.4 GHz) as for radiometer. For TDR, we
used the measurements performed at 5 cm depth. In general, radiometer- and
GPR-derived SWC are in close agreement with TDR estimates for lower water
contents but the GPR estimates differ substantially for higher water contents.
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Figure 5.13: Radiometer- and GPR-derived surface soil water content θ as a function
of water table depth (depth scale is not linear).

5.4.5 Water content profile and hydraulic parameters

In a second step, the objective was to retrieve the SWC profile and the re-
lated hydraulic parameters of the van Genuchten model. Figures 5.14 and 5.15
represent the water content measured by the TDR and capacitance sensors,
respectively, at different depths and for different water table levels as well as
the directly fitted SWC profile using the van Genuchten model.
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The inversely estimated hydraulic parameters for the four measurement
techniques, namely, TDR, capacitance probes, radiometer, and GPR, and their
corresponding confidence intervals are presented in Table 5.1. As TDR is widely
recognized in hydrology as a reference for SWC measurement, TDR-derived
parameters are considered in this study as reference parameters. For the ca-
pacitance probes, parameter θs is significantly underestimated with a value of
0.36 considering the information from all sensors installed in the sand box.
The α parameter is slightly larger compared to the TDR estimate and the n
parameter slightly lower. The value of θs obtained from the inversion of the
radiometer data is 0.37 m3 m−3, which is slightly smaller compared to the
value of 0.40 m3 m−3 obtained from the inversion of the TDR data. As the
confidence interval is relatively large, inversion of the hydraulic parameters was
also performed by fixing θs to 0.40 m3 m−3 in order to reduce the number of
unknowns. Radiometer-derived α and n show slightly different values com-
pared to TDR-derived parameters but the confidence intervals are relatively
small (±0.6 m−1 for α and ±0.7 for n). Parameter η, which is the fractional
amount of the measured radiance emitted from the sand box, was also inverted
simultaneously with the hydraulic parameters. The estimated value of η is
0.49 ± 0.0013. This value is relatively close to the one obtained using the
absorber and reflector measurements (0.54) and the confidence interval is very
small. The value of θs obtained from the inversion of GPR data is 0.27 m3

m−3, which is significantly lower compared to the reference value. As for the
radiometer data, inversion of the hydraulic parameters from GPR data was also
performed by fixing θs to 0.40 m3 m−3. GPR-derived α and n are slightly closer
to TDR-derived parameters compared to radiometer-derived parameters and
the confidence intervals are also smaller. This can be explained by the larger
information contained in the GPR signal (1101 frequencies x 1 polarization)
compared to the radiometer signal (1 frequency x 2 polarizations). However,
the differences in terms of accuracy for the parameter retrieval are relatively
small compared to the large differences in terms of information contained in
the radar and radiometer data. In addition, θs was much better estimated by
the radiometer compared to GPR. This is to be attributed to the absence of
significant radar reflection from the saturated zone due to the smooth transi-
tion zone within the water profile. A correct estimate could have been achieved
for saturated conditions at the soil surface.

Figure 5.16 compares the soil water retention curves retrieved by the differ-
ent techniques. To compute these curves, results considering θs as fixed param-
eter for the inversion of the GPR and radiometer data were used. As shown,
GPR- and radiometer-derived water retention curves are in close agreement
with the reference TDR-derived water retention curve with a maximum water
content difference of 0.04 and 0.05 for, respectively, GPR- and radiometer-
derived water content with respect to TDR-derived water content.
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Table 5.1: Inversely estimated van Genuchten parameters. Confidence intervals are
presented in brackets (αt = 0.05).

θs α n

m3 m−3 m−1 –

TDR - Profile 1 0.398 (0.012) 5.740 (0.666) 3.166 (0.495)
TDR - Profile 2 0.400 (0.018) 6.717 (1.123) 3.274 (0.745)
TDR - All sensors 0.399 (0.011) 6.258 (0.694) 3.160 (0.456)

Capacitance sensors - Profile 1 0.360 (0.013) 6.233 (1.388) 2.135 (0.307)
Capacitance sensors - Profile 2 0.365 (0.012) 7.896 (1.578) 2.237 (0.288)
Capacitance sensors - All sensors 0.362 (0.009) 7.025 (1.112) 2.177 (0.220)

Radiometer 0.371 (0.183) 4.778 (2.403) 3.945 (2.175)
Radiometer 0.400 (fixed) 5.106 (0.551) 3.746 (0.679)

GPR 0.272 (0.072) 5.133 (1.317) 3.714 (0.616)
GPR 0.400 (fixed) 7.142 (0.436) 3.247 (0.200)

5.5 Summary and conclusion

In this study, we investigated the feasibility of measuring a continuous dielec-
tric profile in a sandy soil using off-ground GPR and L-band radiometer data.
In particular, measurements were performed above a sand box in hydrostatic
equilibrium with a water table located at different depths. The results of the
inversions showed that the radar and radiometer signals contain sufficient in-
formation to estimate the sand water retention curve and its related hydraulic
parameters with a relatively good accuracy compared to TDR estimates. How-
ever, an accurate estimation of the hydraulic parameters was only obtained
by considering the saturated water content parameter as known during the
inversion.

Additionally, further issues still need to be investigated such as the esti-
mation of the hydraulic parameters of the sand from laboratory measurements
in order to have a sensor-independent information, and the application of a
dielectric mixing model to account for the imaginary part of the dielectric per-
mittivity in the radar as well as in the radiometer model. Further research will
also focus on the inversion of GPR and radiometer data at transient conditions
which are much more natural-like conditions. Finally, the setup also allows
us to study the impact of soil surface roughness and vegetation on the radar
and radiometer signal and its influence on the retrieval of the soil hydraulic
properties.
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Chapter 6

Characterization of crop
canopies and water stress
related phenomena using
microwave remote sensing
methods: A review∗

Abstract

In this chapter we reviewed the use of microwave remote sensing methods for
characterizing crop canopies and vegetation water-stress related phenomena.
Our analysis includes both active and passive systems that are ground-based,
airborne, or spaceborne. Most of the published results that have examined crop
canopy characterization and water stress have used active microwave systems.
In general, quantifying the effect of dynamic vegetation properties and particu-
larly water-stress related processes on the measured microwave signals can still
benefit from improved models and more observational data. Integrated data
sets providing information on both soil status and plant status are lacking,
which has hampered the development and validation of mathematical models.
There is a need to link 3D functional-structural crop models with radiative
transfer models in order to better understand the effect of environmental and
related physiological processes on microwave signals and to better quantify the
impact of water stress on microwave signals. Such modeling approaches should
incorporate both passive and active microwave methods. Studies that combine
different sensor technologies that cover the full-spectral range from optical to

*This chapter is adapted from:
Vereecken, H.; Weihermüller, L.; Jonard, F. & Montzka, C. Characterization of crop canopies
and water stress related phenomena using microwave remote sensing methods: A review, in
Vadose Zone Journal, 2012, 11(2). My contributions to this chapter are Sections 6.2–6.3–6.4.
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microwave have the potential to move forward our knowledge on the status of
crop canopies and particularly water related stress phenomena. Assimilation
of remotely sensed properties such as backscattering coefficients or brightness
temperature in terms of estimating biophysical crop properties using mathe-
matical models is also an unexplored avenue.

6.1 Introduction

Over the last three decades there has been a growing awareness of the impor-
tance of land surface processes and their value in predicting climate change and
its subsequent impact on the terrestrial system, managing water resources, and
predicting and monitoring floods and droughts. Remote sensing from Earth ob-
servation platforms has played a key role by providing valuable data from local
to global scales and at different time scales to the scientific community. Given
the importance of the land surface for terrestrial processes and for agricultural
activity, the characterization and monitoring of vegetation and crops has been
an important focus area in the remote sensing of the Earth surface. Histori-
cally, remote sensing of vegetation has focused primarily on the use of spectral
measurements in the visible, near infrared, and shortwave infrared region of
the spectrum. This region is important because the reflectance measurements
are governed primarily by the scattering and absorption characteristics of the
leaf internal structure and biochemical constituents. Overviews of the satellite-
based results can be found in Lu (2006) for biomass estimation, Moskal and
Zheng (2009) for leaf area (LAI) index retrieval, Govender et al. (2009) for
multispectral detection of plant water stress, and Pinter et al. (2003) for crop
management.

During the last decade, satellite and spaceborne SAR systems (i.e., ALOS
PALSAR, RADARSAT-1 and 2, ERS-1 and 2, ENVISAT ASAR, SIR-C/X
SAR, TerraSAR-X) and microwave radiometers (i.e., AQUA AMSR-E, Cori-
olis WindSAT, SMOS MIRAS) have been available. A list of spaceborne mi-
crowave sensors is given in Table 6.1 and a list of microwave frequency bands
is given in Table 6.2. In the near future combined active and passive systems,
such as AQUARIUS (launched in June 2011) and SMAP (planned launch in
2014), will offer new opportunities in microwave remote sensing. Passive and
active measurements in the microwave region of the spectrum have mainly been
used to characterize biophysical parameters of the plant canopy, such as shape,
size and distribution of plant elements, water content, height of the vegetation,
LAI, above ground biomass, and number of plants (Chukhlantsev et al., 2003;
Della Vecchia et al., 2007; Moran et al., 1997; Paloscia and Pampaloni, 1988).
In addition, passive microwave methods at low frequencies (X-, C-, and L-band)
have typically been used to detect bare or vegetated surface soil moisture con-
tent (Calvet et al., 2011; Guglielmetti et al., 2008; Jackson and Schmugge,
1989; Jackson et al., 1982; Jonard et al., 2011b; Njoku and Entekhabi, 1996;
Schmugge et al., 1974; Wigneron et al., 2003). Additionally, low frequency ac-
tive systems have been used to study the effect of vegetation on the retrieval of
land surface properties. The effect of vegetation on the recovery of soil mois-
ture was studied by Mätzler (1990), Serbin and Or (2005), Joseph et al. (2008),
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and Joseph et al. (2010b). O’Neill et al. (1996) used both active and passive
microwave sensors for soil moisture estimation through vegetation. Vegetation
transmissivity and scattering were characterized by using L-band radar data.
The vegetation parameters were then used for soil moisture retrieval based on
a radiative transfer approach utilizing passive microwave data. However, lim-
ited attention has been given to the use of microwave methods to detect water
stress in agricultural canopies despite the advantages of these methods com-
pared to optical and infra-red (IR) multi or hyperspectral sensors (Detar et al.,
2006). These include the ability of providing time critical remotely sensed ob-
servations, such as at night time or when cloud cover is present (McNairn and
Brisco, 2004) and the ability to sense the entire canopy as opposed to just
the leaves. Ferrazzoli (2002) briefly reviewed the use of SAR for agricultural
purposes. In addition to describing the historical evolution from ground-based
measurements, to airborne measurements, and finally satellite platforms he ad-
dressed and discussed the identification of useful radar configurations and the
development of relationships between backscattering and variables for seven
selected crops.

Despite the extensive body of literature available on the subject of remote
sensing and vegetation, no attempt has been made to evaluate and analyze in
depth the use of active and passive microwave methods to characterize crop
canopies, specifically in relation to stress phenomena. This review has three
main objectives:

� to review the use of microwave methods to characterize crop canopies with
specific attention to stress-related properties such as vegetation water
content and leaf water potential;

� to analyze the effect of confounding factors on the retrieval of drought
conditions or water stress in crop canopies;

� to formulate future avenues of research related to water stress recognition
in vegetation using microwave methods.

The chapter is organized in 8 sections. In section two, we will present
an overview of the theory and models that were developed to interpret sig-
nal propagation of microwave systems (passive and active) in above ground
agricultural vegetation properties. Section three addresses the characteriza-
tion of crop canopies using ground-based measurements with specific attention
to diurnal and seasonal dynamics of backscattering in canopies. Section four
mainly deals with the characterization of crop canopies from air- and space-
borne remote sensing observations. In section five, we discuss the relationship
between dielectric properties of the vegetation and soil plant water relation-
ships, whereby these relationships are essential for the interpretation of the
diurnal and seasonal changes in emissivity and backscattering. Section six dis-
cusses the factors controlling microwave signals obtained from crop canopies
with a specific focus on water stress phenomena. Finally, we end our review
with the topic of multi-sensor measurements and an outlook section presenting
conclusions and avenues for further research needs.
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Table 6.2: Standard IEEE microwave frequencies and nomenclature.

Band Frequency Wavelength in
designator (GHz) free space (cm)
L 1–2 30–15
S 2–4 15–7.5
C 4–8 7.5–3.8
X 8–12 3.8–2.5
Ku 12–18 2.5–1.7
K 18–27 1.7–1.1
Ka 27–40 1.1–0.75
V 40–75 0.75–0.40
W 75–110 0.40–0.27

6.2 Measurements principles and general mod-
eling approaches

This section provides a general overview of the measurement principles of pas-
sive and active systems, and a brief description of electromagnetic wave prop-
agation, attenuation, and scattering in vegetation canopies. Specific attention
will be given to models specifically designed to predict emission or backscat-
tered signals from crop canopies. Only a brief overview of the theory and the
various models is provided. For more detailed information the reader will be
referred to the original citations. In the presentation, we make a distinction
between passive and active systems as each system measures different proper-
ties of the canopy. Microwave radiometers provide the brightness temperature,
TB, of the surface whereas active radar systems measure the backscattering
coefficient, σ0.

6.2.1 Passive systems

For land surfaces low frequency microwave radiometry can be used as an in-
direct method to measure the complex dielectric permittivity ε = ε′ + iε′′ of
a bare soil, which can be used as a proxy for the estimation of the soil mois-
ture content (e.g., Hong and Shin, 2011; Hornbuckle et al., 2003; Saleh et al.,
2007; Schneeberger et al., 2004; Wigneron et al., 1995). The determination
of the permittivity, ε, is typically based on the measurement of thermal ra-
diance emitted from the Earth surface in a given frequency band (Njoku and
Entekhabi, 1996). At specific frequency, the intensity of the received radiation
(thermal emission) is proportional to the thermodynamic temperature Ts [K]
and the emissivity ES of the soil, which can be expressed by the Rayleigh-Jeans
approximation of Planck’s law. According to this equation, the radiance is pro-
portional to the physical temperature of the object, and therefore, denoted as
brightness temperature, TB [K] (Njoku and Entekhabi, 1996; Wigneron et al.,
2001). As a consequence, the brightness temperature of a soil surface observed
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for example by a radiometer operating at L-band can then be expressed as Eq.
(2.4) (Jackson, 1993; Wigneron et al., 2001).

However, in the presence of vegetation, Eq. (2.4) is no longer applicable
because absorption, emission, and scattering by the vegetation canopy need
to be considered in the formulation of the radiative transfer model (see also
Figure 6.1). Therefore, TB for one polarization of a soil-vegetation system can
be expressed by:

TB = Tv(1−Rv − γ) + Es Ts γ + Ts(1−Rv − γ)(1− Es)γ (6.1)

where Tv is the vegetation temperatures [K], Rv is the vegetation canopy re-
flectivity, γ is the transmissivity of the vegetation canopy, Es is the surface
emissivity, Ts [K] is the effective physical temperature of the soil, and p refers
to the polarization (horizontal or vertical) (Chukhlantsev et al., 2003).

At low frequencies (L-band) and for low vegetation, a zero-order solution
of radiative transfer equation, called Tau-Omega model, can be used and is
expressed by:

TB,p = (1− ωp)(1− γp)(1 + γp Rs,p)Tv + (1−Rs,p)γp Ts (6.2)

where Rs is the soil reflectivity and ω the single scattering albedo. The
attenuation in the vegetation layer as described by the vegetation attenuation
factor γ (or vegetation transmissivity) can be defined in terms of the optical
depth (τ) and incidence angle (ϑ) by (Wigneron et al., 2007):

γp = exp(−τp/cosϑ) (6.3)

Jackson and O’Neill (1990) showed that a linear relationship between the
optical depth (τ) and the vegetation water content (VWC [kg m−2]) exists:

τp = bp VWC (6.4)

where b is a regression coefficient which is frequency and polarization depen-
dent and characteristic for the type of canopy (Jackson and Schmugge, 1991;
Van de Griend and Wigneron, 2004).

In general, the Tau-Omega model is a good approximation at low fre-
quencies such as L-band and has been intensively used to model microwave
emissions from uniformly vegetated land surface at this frequency (Hornbuckle
et al., 2003; Joseph et al., 2010b; O’Neill et al., 1996; Wigneron et al., 2004).
Within the SMOS and SMAP communities, a modified version of the Tau-
Omega model is used and is called the L-band Microwave Emission of the
Biosphere (L-MEB) model (Wigneron et al., 2007).

Only few physically based radiative transfer models were developed which
account for the vegetation explicitly. These models are mainly used to correct
for the vegetation influence in order to improve soil moisture observations in
forest stands (Della Vecchia et al., 2006; Ferrazzoli and Guerriero, 1996). Only
few approaches were made to physically model agricultural crops such as the
explicit model presented by Schwank et al. (2005) who showed that changes in
the plant geometry (here induced by a hail storm over glover grass) will greatly
influence measured brightness temperatures.



6.2. Measurements principles and general modeling approaches 111

Figure 6.1: Schematic illustration of the different components of the passive and ac-
tive signals measured by radiometer and radar, respectively. TB is the
brightness temperature measured by the radiometer, σ0 is the backscat-
tering coefficient measured by the radar, Ta is the temperature profile of
the atmosphere layer, Tv is the temperature profile of the vegetation layer,
τ is the vegetation optical depth, ω is the single scattering albedo of the
vegetation layer, Ts(z) is the temperature profile in the soil, and ε(z) is the
dielectric permittivity profile in the soil. 1 represents the signal emitted
by the radar and reflected on the vegetation canopy, 2 is the radar signal
reflected by the vegetation stems to the radar antenna, 3 is the radar
signal reflected by the soil surface and then the vegetation to the radar
antenna, A is the passive microwave signal emitted from the atmosphere,
B is the microwave emission from the atmosphere and reflected by the
soil to the radiometer antenna, C is the microwave emission from the soil,
D is the microwave emission from soil transmitted to the radiometer an-
tenna through the vegetation layer, E is the microwave emission from the
vegetation canopy, and F is the microwave emission from the vegetation
canopy reflected by the soil to the radiometer antenna.
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6.2.2 Active systems

Active systems such as radars or scatterometers are typically used to define the
backscattering coefficient of the land surface. The backscattering coefficient,
which is the effective scattering area of the target per unit area, is directly
proportional to the ratio of the backscattered to the emitted energy. For a
soil-vegetation system (Figure 6.1), the backscattering coefficient is generally
expressed as:

σ0 = σ0
s γ

2 + σ0
v(1− γ2) + σ0

sv (6.5)

where σ0
s and σ0

v are the backscattering coefficients of the soil and vegetation
canopy, respectively, and σ0

sv is the backscattering coefficient of the vegetation
layer including the reflection from the soil and the attenuation by the vegetation
(Chukhlantsev et al., 2003).

In the early years of radar application over vegetation, empirical models
were developed using regression analysis of the radar backscattering on plant
moisture, plant height, and the moisture content of the underlying soil (Bush
and Ulaby, 1976; Ulaby and Bush, 1976a,b). However, no knowledge about the
physical processes was assumed or incorporated into the empirical models.

During the last decades physically based models were developed to describe
the propagation, scattering, and attenuation of the electromagnetic waves in
the vegetation layer. A detailed treatment and overview of models and mi-
crowave remote sensing theories is given by Ulaby et al. (1986) and Fung (1994).
Chukhlantsev et al. (2003) distinguished two fundamentally different types of
model approaches: (1) the continuous layer models with a randomly distributed
dielectric constant (the so-called cloud models) and (2) models assuming a set
of randomly distributed lossy scatters representing the different constituents of
the vegetation such as leaves, stalks, branches, and trunks.

In 1978, Attema and Ulaby (1978) developed a cloud model for radar
backscattering from vegetation. In this model, it is assumed that the vege-
tation is mainly composed of water which is surrounded by a large air volume.
Therefore, the vegetation water can be represented by a water cloud whose
water droplets are held in place by the vegetation. The model is based on the
assumption that the canopy ”cloud” contains identical water droplets which
are randomly distributed within the canopy. The model was successfully ap-
plied by Paris (1986), Prevot et al. (1993), Taconet et al. (1994), Wigneron
et al. (2002), Maity et al. (2004), and Serbin and Or (2005) for different ap-
plications and crop stands. It has to be noted that various authors modified
the ”simple cloud model” to increase the complexity and as a consequence the
overall performance of the model (Paris, 1986). Ulaby et al. (1990) developed
the Michigan Microwave Canopy scattering model for forest systems which
is a widely used model in active microwave remote sensing. This model was
successfully adapted to agricultural crops by Touré et al. (1994).

Eom and Fung (1984) developed a scatter model based on the matrix dou-
bling method for volume scattering and the Kirchhoff method for rough surface
scattering. They assumed that the scattering from the vegetation is dominated
by the leaves and therefore single leaves can be modeled by thin dielectric discs.
Finally, the vegetation layer was modeled as a layer of leaves above an irregular
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soil surface. Additionally, the phase function for a single leaf was computed
by approximating an integral equation for the electric field. In order to obtain
closed form equations strong assumptions have to be made. These include:
(1) the field variation across the thickness of the leaf is negligible, and (2) the
phase change across the surface of the leaf can be accounted for by integrat-
ing the static field. Thus, the model is a static approximation generalized to
include phase changes across the leaf surface. Finally, the closed form solution
for the scattering coefficient contains three terms. One term represents volume
scattering, another term ground surface scattering attenuated by the vegeta-
tion, and the last term which accounts for surface-volume interactions. Further
research included various modifications and improvements in order to increase
the physical representation of the model for different crops and frequencies. For
example, Della Vecchia et al. (2004) modeled the radar backscattering from a
canopy with leaves described as curved rectangular dielectric sheets based on
the Tor Vergata model (Bracaglia et al., 1995). Stiles and Sarabandi (2000)
developed a fully phase coherent scattering models for grassland and Marliani
et al. (2002) for crops such as sunflower and wheat. For fully developed crops
the canopy may become dense and multiple scatter effects may occur (Picard
et al., 2003), which needs an improved description of the radiative transfer
by taking into account higher order effects (Ferrazzoli and Guerriero, 1996).
Additionally, resolving radiative interactions with complex multi-layer objects
often requires an explicit 3D modeling of radiation pathways via ray tracing
methods (Battaglia et al., 2006).

6.3 Characterization of crop canopies using
ground-based measurements

6.3.1 Combined crop and microwave measurements

To gain information about the biophysical crop parameters, three different
types of retrieval algorithms are in use either for passive or active systems.
The first type is based on empirical functions (e.g., regression equations) be-
tween the quantity measured (emission or backscattering coefficient) and the
biophysical parameter investigated, whereby these empirical equations are of-
ten only valid for the test site, the region, or the crop investigated. The second
type of retrieving algorithms is based on neural network predictions. In this
approach it is necessary to train the corresponding neural network by sta-
tistically representative sampling. In many cases such training is not always
feasible. The third type of algorithms is based on the inversion of radiation
models and it is most widely used. In this approach, the models relate the ra-
diation parameters to environmental parameters such as the vegetation canopy
(Chukhlantsev et al., 2003). In the subsequent we will give a literature overview
of studies that provide both microwave data obtained from ground-based sys-
tems and crop data. Additionally, we organized the discussion along the two
major measurement systems.
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Active systems

Table 6.3 gives an overview of literature studies which provide information on
ground-based radar backscattering measurements, crop canopy properties, and
soil moisture content. Table 6.4 also provides information on the use of air-
and spaceborne microwave platforms which are discussed in Section 6.4. In
general, our analysis of literature dealing with crop characterization and stress
detection showed that most studies used active systems. This is especially the
case for the analysis of diurnal and seasonal dynamics observed in crop canopies
as discussed in Sections 6.3.2 and 6.3.3. Although active and passive systems
have both their advantages and disadvantages, active radar systems on air- and
spaceborne platforms provide higher spatial resolution than passive systems.
One reason could be the fact that mapping and characterizing canopies as well
as detecting water stress phenomena typically requires a high spatial resolution
due to the inherent heterogeneity of land cover. In case of soil moisture mapping
this picture might look different. Due to the limited number of studies using
passive systems, we refrained from including an explicit table in the text but
referred to the relevant references in two separate subsections (Sections 6.3.1
and 6.3.2).

The majority of the experiments using active systems were conducted on
cereals (wheat, sorghum), corn, soybean, alfalfa, ladyfinger, and tomato with
frequencies ranging from L to X-band. Most experiments were performed un-
der field conditions with natural rainfall or eventually irrigation. Typical bio-
physical parameters that were measured include leaf area index, biomass of the
whole plant and its components, crop height, vegetation stage, vegetation water
content, and soil moisture. In the 1970s, Ulaby and Bush (1976b) used a scat-
terometer in the frequency range of 8–18 GHz to monitor corn growth over a 4
month period. The authors found a good correlation between normalized plant
water content (i.e., the ratio of mass of water in the plant to plant height) and
the radar backscattering coefficient at incidence angles of 40◦ or more. Higher
frequencies typically showed better correlations. Bush and Ulaby (1976) used
the same setup to analyze the backscattering from alfalfa. They found that, at
nadir, the backscattering coefficient was dependent on variations in plant height
and soil moisture. Ulaby and Wilson (1985) used L-, C-, and X-band radars
mounted on a boom truck to investigate canopy attenuation of winter wheat
and soybeans. Attenuation data were acquired at 1.55, 4.75, and 10.2 GHz
for HH- and VV-polarization at incidence angles of 20◦ and 50◦. With radar
systems, HH indicates co-polarized horizontal transmit and horizontal receive,
whereas VV indicates co-polarized vertical transmit and vertical receive of the
signal. The authors found that vegetation canopies are highly non-uniform and
anisotropic at microwave frequencies. They also observed large differences be-
tween the HH- and VV-polarization measurements of canopy attenuation which
indicated that the relative importance of ground emission and backscattering
was polarization dependent. Recently, Prasad (2009) showed that the angular
variation of scattering coefficient at X-band for the crop ladyfinger decreases
as the plant grows since the effects of soil was masked by developing vegeta-
tion. The author also observed that scattering coefficients increased with LAI
both for VV- and HH-polarization and that LAI and biomass are highly corre-
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lated with backscattering (more than for plant height). As already observed by
Ulaby and Bush (1976a) for corn crop, the author also noticed that at X-band,
the effect of crop covered soil moisture in the retrieval of crop variables could
be neglected at incidence angle of about 45◦ or higher.

In general, no specific attention was paid in determining parameters or
variables that provide information on the water stress status of the canopy.
Typical indicators such as soil water potential, leaf water potential, or chloro-
phyll content have only been measured sporadically. The study of Singh et al.
(2003) is the only one available in literature that provides information between
chlorophyll content of the leaves and backscattering measured in X-band. The
wheat chlorophyll was shown to be sensitive to the radar backscattering co-
efficient at 40◦ incidence angle, and this sensitivity was higher for VV- than
for HH-polarization. Forster et al. (1991) observed changes in X-band radar
backscattering in water-stressed tomato canopies over several days. The dy-
namics in radar backscattering were correlated to the changes in leaf water
potential observed during the recovery of the plant after wilting. Colpitts and
Coleman (1997) also determined leaf water potential to identify the water sta-
tus of the potato canopy and leaves in combination with diurnal measurements
of backscattering.

Passive systems

For passive systems the vegetation cover attenuates soil emission and adds its
own contribution to the emitted radiation, whereby the contribution of the
vegetation depends on the vegetation characteristics (density and vegetation
water content) and the frequency used for observation. For frequencies rang-
ing between 1 to 5 GHz, the vegetation is semitransparent, and therefore, its
influence on the soil moisture retrieval is reduced (Guglielmetti et al., 2007;
Wigneron et al., 1995).

Numerous studies have shown the potential of microwave radiometers to
estimate soil moisture and vegetation biomass (e.g., Jackson and Schmugge,
1989; Wegmüller, 1993). Soil moisture content and vegetation biomass were
both retrieved over the growing season of soybean and wheat by Wigneron
et al. (1995). The authors used multiple angle measurements of brightness
temperature at L- and C-band and found that the retrieval process was more
accurate and stable if both bands are analyzed simultaneously and if multi-
ple observation angles (10 to 40◦) were included in the analysis. Liu et al.
(2002) investigated the retrieval of vegetation water content from the com-
bined brightness temperatures at X-band and L-band using the crane-based
PORTOS radiometer and an error propagation learning back propagation neu-
ral network. The combined use of both frequencies significantly outperformed
the accuracy of single channel analysis.
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So far our knowledge about the sensitivity of the microwave measurements
to the plant water stress is very limited. Paloscia and Pampaloni (1984) ob-
served that microwave measurements at Ka-band were sensitive to plant stress.
They found a correlation between a polarization index based on vertical and
horizontal microwave measurements at Ka-band and a measured crop water
stress index over corn. A correlation coefficient (R) of 0.92 was obtained for
measurements performed with an incidence angle of 50◦. Other authors treated
the vegetation canopy more or less as an ”interference factor” which hinders
direct estimation of the soil moisture from microwave emission (e.g., Jackson
and Schmugge, 1991; Joseph et al., 2010b; Wigneron et al., 1993, 2004).

6.3.2 Diurnal dynamics of backscattering in crop canopies

Since the late 1970s, various studies reported diurnal variations in the backscat-
tering coefficient of crop canopies. This was attributed to variations in the di-
electric properties of the canopy caused by changes in the vegetation moisture
status (Brisco et al., 1990; Ulaby and Batlivala, 1976) and to changes in the
geometrical properties related to leaf orientation (Brisco et al., 1990). A diur-
nal pattern in backscattering in a wheat canopy was observed by Brisco et al.
(1990) using a truck-mounted L-, C-, and Ku-band scatterometer. However,
these patterns were dependent on the frequencies investigated. The difference
in patterns was explained by an increased geometric effect in the backscattering
at higher frequency. The diurnal changes in backscattering were also depen-
dent on the status of the crop. In the vegetative stage (June), diurnal changes
were mostly controlled by the vegetation water content whereas at the senesc-
ing stage (July, August), diurnal backscattering changes were controlled by
soil backscattering. They also observed that cross-polarization measurements
(VH, HV) resulted in smaller diurnal changes of the backscattering than the co-
polarized channels (HH, VV), especially for C- and L-band frequencies. Forster
et al. (1991) observed that the diurnal changes in X-band radar backscattering
from water-stressed tomato canopy plants were dependent on frequency and
incidence angles. Brakke et al. (1981) measured diurnal backscattering from
ground-based microwave radar at Ku-band (13 GHz), VV-polarization and 50◦

incidence angle for wheat, corn, and sorghum. Surprisingly, they did not found
any correlation between the backscattering and either leaf water potential or
wind speed. However, their data set was relatively limited.

6.3.3 Seasonal dynamics of backscattering in crop
canopies

Seasonal variations in the backscattering coefficient in crop canopies were also
investigated by several authors. The backscattering coefficients of sugar beet
and potato were determined by Bouman and van Kasteren (1990a) using X-
band radar over a period of six years. They observed a saturation level in
backscattering coefficients when crops reached a soil cover of 80%. Changes in
the geometry of crop-soil system caused by strong winds, thinning of plants,
as well as architecture of individual plants were found to affect backscattering.
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The authors concluded that radar backscattering across the various years was
highly variable due to interplay of different environmental factors influencing
canopy geometry. Paris (1986) presented results of combined backscattering
and biophysical parameters obtained during the growing season of corn. He
found a clear power law relationship between the backscattering cross section
of a corn leaf and its LAI. Peak values of canopy LAI coincided with measured
backscattering coefficients observed at a 50◦ incidence angle both in HH- and
VV-polarization. The time of the onset of the reproductive process in the
corn plant was clearly detected in the temporal evolution of the backscattering
coefficient. The surface soil moisture effect on the backscattering coefficient
was insignificant at Ku-band (17 GHz) except at the end of the season when
the corn was nearly transparent to the radiation.

6.4 Characterization of crop canopies using air-
and spaceborne remote sensing

6.4.1 Active systems

Table 6.4 provides an overview of remotely sensed backscattering using aircraft
and satellite platforms for agricultural crops. Most of these studies were con-
ducted in the framework of large measurement campaigns operated at regional
scale. A major difference with the experiments conducted using ground-based
equipment is the fact that the obtained backscattering is typically related to
averaged ground-based measurements of soils and vegetation obtained at dif-
ferent fields. Often the timing of ground-truth sampling shows a time lag with
respect to the overpasses. This might not be a problem for quantities that differ
only slightly in time lag such as LAI, biomass, and plant height. Evidence from
diurnal measurements however shows that this might be different for vegetation
water content and canopy structure. Latter may be strongly affected by stress
effects and wind conditions and may lead to additional noise on measured sig-
nals which cannot be related to a specific process. Ferrazzoli (2002) concluded
on the basis of a literature review, that correlations between backscattering and
vegetation parameters obtained from airborne campaigns were not as good as
the ones obtained from multi-temporal single-field ground-based observations.

A main motivation for using radar remote sensing is crop classification
(Bouman and van Kasteren, 1990a) which is primarily based on the charac-
terization of crop geometry. Hereby, differences in phenological development
of, e.g., wheat, barley, and oats may lead to different temporal signatures in
the backscattering. Skriver et al. (1999) found that the correlation between
HH- and VV-polarization backscattering from C- and L-band SAR was suit-
able for discriminating between winter and spring crops, especially for C-band.
Discrimination at early stages between both types of crops may help in further
distinguishing individual crops belonging to one of these categories based on
the temporal evolution of such correlations. Recently, Skriver et al. (2011) used
short-revisit multi-temporal C- and L-band SAR data for crop classification.
They found that multi-temporal acquisitions are very important for single- and
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dual-polarization modes, and that cross-polarized backscattering provided best
results.

Airborne and spaceborne radars have also been used to better understand
the influence of vegetation on the signal backscattering. Brown et al. (1992)
used airborne SAR data of different frequencies (L-, C-, and X-band) to mea-
sure backscattering from different canopies and found that correlation between
C- and L-band and between X- and L-band data were very low indicating that
the radar backscattering at the different frequencies was caused by different
mechanisms. Especially, for vertical oriented crops such as wheat, a low corre-
lation was found for X- and C-band, whereas the correlation was found to be
acceptable for broad-leaved plants such as canola and field peas. Additionally,
the backscattering determined at L-band was found to be more sensitive to the
soil moisture content.

Several studies investigated the potential use of spaceborne radar for agri-
cultural purpose, such as crop type mapping, crop condition assessment, soil
tillage, crop residue mapping, soil moisture estimation, and to monitor crop
growth (McNairn and Brisco, 2004). In the past, spaceborne SAR sensors
(e.g., ERS-1, ERS-2, JERS-1, RADARSAT-1) were limited to a single fre-
quency and polarization. In order to obtain enough information for agriculture
applications, multi-channel radar observations were required.

Recently several improvements were made to increase the information con-
tent in the SAR data sets, such as the addition of polarizations (ASAR/
ENVISAT, RADARSAT-2), the use of additional frequencies (TerraSAR-X,
COSMO-SkyMed, and PALSAR/ALOS), and the integration of SAR data with
other frequencies and optical sensors which can provide additional crop and
soils information (Clevers and vanLeeuwen, 1996; McNairn and Brisco, 2004).
Nevertheless, information on the sensitivity of SAR measurements to crop con-
dition indicators is still limited (McNairn and Brisco, 2004). Wigneron et al.
(2002) found limitations in the retrieval of vegetation biomass of sunflower us-
ing ERS-2/SAR C-band data. This was attributed to the long revisit period
(35 days) which was deemed not sufficient for monitoring of the sunflower vege-
tation cycle. In addition, accuracy of retrievals of the parametric growth curve
was low. Recently, Baghdadi et al. (2009) examined the potential of three
SAR sensors (TerraSAR-X, ASAR/ENVISAT, PALSAR/ALOS) operating at
different frequencies (X-, C-, and L-band) for mapping the harvest of sugar-
cane. The authors showed a high correlation between backscattering coefficient
and Normalized Difference Vegetation Index (NDVI) independently estimated
from SPOT-4/5 images over the same fields. The best discrimination between
ploughed and vegetated sugarcane fields was obtained by TerraSAR-X data.
They also showed that cross-polarization channels have more potential than
co-polarization channels for the detection of the sugarcane harvest.

A correct assessment of vegetation water content is essential for the accurate
prediction of backscattering and emission from crop canopies as well as for the
exact assessment of surface soil moisture content. In addition, vegetation water
content could be an important indicator for the presence of water stress in crop
canopies as well as the phenological stage of the canopy. Taconet et al. (1994)
found a negative correlation between X-band backscattering and vegetation
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water content in wheat from airborne radar with no dependency on the soil
moisture content. Additionally, accuracies in estimated crop water content
were the same at 20◦ and 40◦ incidence angle and higher for HH-polarization
compared to VV-polarization. A saturation effect of the radar cross section
was observed as the canopy becomes denser. Saatchi et al. (1994) developed an
algorithm to retrieve canopy water content of natural grassland and pastures
from airborne SAR data. Le Vine and Karam (1996) analyzed the dependence
of attenuation in a vegetation canopy on frequency and plant water content
in a synthetic study to examine the hypothesis that attenuation in vegetation
is proportional to the water content of the canopy. Therefore, they used the
concept of optical depth (τ) with τ = b V WC (see Eq. (6.4)). The results
indicated that the hypothesis is not unreasonable for canopies whose structure
are small (leaves, stalks, stems, branches, etc.) compared to wavelength. This
study was performed to find an appropriate correction of the measured signal
for the vegetation canopy to retrieve soil moisture information instead of using
the information for canopy characterization.

6.4.2 Passive systems

In the past, most of the studies carried out with air- or spaceborne radiome-
ters were focused on the retrieval of soil moisture. The vegetation was sys-
tematically considered as an attenuation factor in the soil moisture retrieval
(Njoku et al., 2000; Wigneron et al., 2004). Recently, several authors used
spaceborne radiometer data to characterize the vegetation mostly based on
vegetation indices which were derived from the data. These vegetation indices
include Microwave Polarization Difference Temperatures (MPDT) (Choudhury
and Tucker, 1987), Microwave Polarization Difference Index (MPDI) (Kirdya-
shev et al., 1979; Becker and Choudhury, 1988), and Microwave Vegetation In-
dices (MVIs) (Shi et al., 2008). Shi et al. (2008) developed a set of MVIs based
on data from the Advanced Microwave Scanning Radiometer on the Earth Ob-
serving System (AMSR-E). The microwave vegetation indices were defined as
the intercept (a) and slope (b) derived from a linear relationship between the
brightness temperatures observed at two adjacent radiometer frequencies. The
MVIs were correlated to the NDVI derived from Moderate Resolution Imag-
ing Spectroradiometer (MODIS) data. They found that the MVIs can provide
additional information on crop status since the microwave measurements were
sensitive not only to the leafy part of the vegetation but also to the properties
of the overall vegetation canopy. Similarly, Chen et al. (2009) found a new
MVI for SMOS through the analysis of simulations by the AIEM model. The
polarization difference for the bare surface emission signals at different view
angles can be well characterized by a linear function with parameters that are
dependent on the pair of view angles to be used. This makes it possible to
minimize the surface emission signal and maximize the vegetation signal when
using multi-angular SMOS measurements. Zhang et al. (2011) found that the
MVIs are a function of vegetation water content or vegetation transmissivity.
The b parameter of MVIs decreased with increased vegetation water content
but increased with increased vegetation transmissivity. Finally, the authors
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used the MVIs for the correction of vegetation effects in soil moisture retrieval
over areas with sparse vegetation in the Tibet Plateau. Li et al. (2010) ana-
lyzed the relationship between MPDT, MPDI, and MVIs for the case of cotton.
They showed that MPDT and MPDI were negatively correlated to vegetation
water content. For the specific case of cotton, they showed that MVIs are
more suitable to retrieve vegetation water content. Jones et al. (2011) used
passive microwave information from AMSR-E (Ku-band) to quantify global
patterns and seasonal variability in vegetation optical depth (VOD) over a 6
year record (2003–2008). The VOD parameter showed significant correlation
with vegetation indices and LAI obtained from MODIS optical-infrared data,
and phenology cycles over 82% of the global domain. It has to be noted that
dual-polarized and multi-angular L-band data from SMOS also have the ability
to gain information on both soil moisture and VOD.

6.5 Canopy dielectric and plant water proper-
ties

6.5.1 Vegetation dielectric properties

As already stated above, backscattering and emission retrieved by active and
passive systems are directly affected by the dielectric properties of the soil-
plant system, and might therefore be used for early water stress detection in
crop stands, because the amount of water in the crop canopy is generally the
dominant factor controlling the dielectric properties (Nelson, 1991). Unfortu-
nately, the dielectric properties also depend on measurement frequency, canopy
and soil temperature, density and structure of the vegetation (Nelson, 1991),
and on the salinity of the plant water (Ulaby and Jedlicka, 1984). Therefore,
the relationship between dielectric permittivity and canopy water content is
not straight forward. Amongst the first who systematically analyzed the de-
pendency of dielectric permittivity and canopy water content were Ulaby and
Jedlicka (1984) who treated the wet vegetation as a two-component mixture
of bulk water (including air) and water. Based on these assumptions they de-
veloped two phase mixing models where the dielectric permittivity of the veg-
etation mixture (namely the stalk material), water, and bulk vegetation was
assumed to differ in total amounts (and therefore differ in total influence to the
overall signal). Unfortunately, none of the developed two-phase mixing mod-
els could describe measured data at X-band (8 GHz). As a consequence they
increased the complexity of the models by using a three-component random-
needle mixing model, where the bulk vegetation was used as a host material
and the air and water as randomly orientated needle-like inclusions. This ap-
proach already agreed well with measured data at X-band (8 GHz). Finally,
they proposed a four phase refractive mixing model consisting of the bulk veg-
etation as a host, and three additional types of inclusion such as (1) air, (2)
free water with a fixed dielectric permittivity for the frequency range used, and
(3) bound water with an ice-like dielectric permittivity. Applying this complex
model the measured data were fitted as good as with the simpler three-phase
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mixing model. Therefore, the authors concluded, that the problem of modeling
the dielectric properties of water contained in a given material was not well un-
derstood at this times. Based on the work presented above, Ulaby and Elrayes
(1987) developed a Debye-Cole dual-dispersion dielectric model consisting of
a component that accounts for the volume fraction occupied by water in free
form and another that accounts for the volume fraction occupied by the mix-
ture comprised of water molecules bound to bulk-vegetation molecules. The
model was again tested against measured data and showed excellent agreement
over a wide range of moisture conditions and within the frequency range 0.2 to
20 GHz. Additionally, Ulaby and Elrayes (1987) found that the bound water
content increases with decreasing total water content. In the following, varies
authors developed mixing models for specific purposes or vegetation compart-
ments such as the dielectric model for leaves as proposed by Mätzler (1994a)
and for various plants such as Shrestha et al. (2005) and Shrestha et al. (2007).

6.5.2 Diurnal changes in plant water and dielectric prop-
erties

Within the biological and agronomy community it is widely known that diurnal
changes of plant water content might occur as a consequence of water stress
induced by high temperatures and/or shortening of available soil water. Ackley
(1954) observed diurnal and seasonal changes in crop water content and water
deficit of crops. He clearly demonstrated that leave water content drops to
its minimum in the early afternoon and recovered during night time. In the
following years various studies indicated that not only the water content but
also the turgor pressure changed during the day (e.g., Acevedo et al., 1979;
Ackerson et al., 1977; Allen et al., 1998; Dutt and Gill, 1978; Ehrler et al., 1978;
Olsson and Milthorpe, 1983; Turner, 1974), whereby the changes were highly
dependent on the crop type (Turner, 1974). From a plant physiological point
of view it is also clear that the turgor pressure is much more sensitive to stress
conditions than the total plant water content. This has been proven by studies
from, e.g., Dutt and Gill (1978) who showed that even small changes in water
content correspond to relatively large changes in turgor pressure. Additionally,
Ehrler et al. (1978), Forster et al. (1991), and Olsson and Milthorpe (1983)
showed the existence of a diurnal hysteretic effect in the leaf water potential
as a function of the induced water stress in the soil. Hereby, the recovery of
plant water potential tended to be slower for plants that are undergoing water
stress compared to non-stressed plants.

Backscattering coefficients were also found to be sensitive to changes in
leaf water potential as reported by Forster et al. (1991), Martin et al. (1989),
and Siddique et al. (2000). However further research is needed to explore
dependencies between canopy properties such as leaf water potential, leaf water
content, and canopy geometry and radar backscattering. To complement the
information from plant observations these dependencies need to be related to
the observed water status in soil using soil moisture and soil matric potential
measurements. In addition, the value of combined passive and active microwave
measurements in characterizing the dynamics of canopy geometry needs to be
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explored. There is evidence in literature that changes in canopy geometry may
strongly contribute to the observed backscattering (see sections below). In
addition geometric effects appear to be more important in backscattering from
active microwave systems than in signals obtained by passive systems.

6.6 Factors controlling microwave signals of
crop canopies

In this section, we will discuss the various factors that may lead to changes
in the structure and function of crop canopies, and that therefore, may affect
the observed microwave emission and backscattered signals. Some of these fac-
tors have already been addressed in previous sections and will only be briefly
touched upon. The presentation below shows that many environmental factors
may influence the observed microwave signals and that disentangling their in-
fluence needs both monitoring of these factors but also quantification of their
effect on microwave signals. Especially, the identification of water stress phe-
nomena may be confounded by other effects also inducing changes in canopy
structure and function. Also, environmental controls such as soil moisture
status and microclimatology may affect microwave signals. Identification of
water stress may therefore require monitoring of all relevant parameters and
properties affecting microwave emission and backscattering.

6.6.1 Water stress phenomena

The relation between water stress and microwave emissions and backscatter-
ing was already partly addressed in Section 6.3. In this sub-section we will
mainly focus on the effect of water stress on crop canopy structure and func-
tion. It is well-known from crop physiology that water or drought stress in
plants may lead to changes in the structure and function of the canopy, and
thereby, affect the observed microwave emission or backscattering coefficient.
Depending on the intensity and severity of this stress, the effects may range
from fully reversible to irreversible. Despite this effect of plant water status on
microwave emission of its canopy due to changes in its structural properties,
there are practically no studies available in literature that allow relating water
stress, the related changes in geometrical properties of the canopy, and, e.g.,
backscattering coefficients or microwave emission. Water stress effects that
may be detected by microwave techniques include: (1) loss of turgor pressure
in the leaves leading to the droop of leaves (Singh et al., 2006), (2) reduced cell
division and thus reduced stem elongation leading to changes in LAI and plant
height (Song et al., 2008), (3) changes in leaf structure to reduce transpiration
losses (Moran et al., 1989), and (4) reduced capability in tracking sun light
(Moran et al., 1989). Most of these effects, however, have typically been stud-
ied with optical and near-infrared sensors (Colwell, 1974; Moran et al., 1989).
Droop of ears in spring barley was observed by Cookmartin et al. (2000) us-
ing microwave methods. This droop of ears led to a substantial increase in
their radar cross section. Most likely this effect was caused by stress conditions
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but no clear evidence was given by the authors. The study by Colpitts and
Coleman (1997) analyzed drought stress of a potato leaf using measurements
in L-, C-, and Ku-band. Drought stress could directly be related to reduced
leaf gravimetric water content and leaf thickness. They found only weak statis-
tical relationships between complex relative permittivity and the gravimetric
water content of a leaf, because the water-to-air ratio within the leaf remained
nearly constant with changing water content (see also Section 6.5). In contrast,
correlations were found between leaf permittivity and leaf thickness across the
wavelengths used. The leaf thickness was found to be directly related to rela-
tive leaf water content, osmotic potential, water potential, and turgor pressure.
These findings suggest that the canopy architecture will have a much stronger
effect on radar backscattering than the permittivity.

6.6.2 Wind strength

It appears that the effect of wind strength on radar backscattering is important
for measurements performed at high frequencies. These findings and the impor-
tance for retrieving canopy water stress from backscattering measurements of
wind strength need however to be further validated. In early publications such
as Brakke et al. (1981) no effect of wind speed on the radar backscattering mea-
sured at Ku-band and two different polarizations was found for corn, sorghum,
and wheat. Wu et al. (1985b) observed strong fading of the backscattering
signal in milo due to wind effects using X-band. Bouman and van Kasteren
(1990a) used X-band to analyze factors that influence backscattering coeffi-
cient of potato and sugar beet and found that the architecture of individual
beet plants and their distribution in space affected the radar backscattering.
Especially, strong winds led to changes in canopy architecture, and therefore,
will affect radar backscattering and may confound the quantification of water
stress phenomenon.

6.6.3 Saturation effect

The quantification of saturation effect is mainly an issue for active systems,
especially at higher frequencies. Saturation implies that the backscattering co-
efficient becomes insensitive to changes in canopy structure and function (Blaes
et al., 2006; Cookmartin et al., 2000; Liu et al., 2006; Taconet et al., 1994). Oc-
currence of saturation effects have been related to the type of crop (Bouman
and van Kasteren, 1990a; Ferrazzoli et al., 1997), crop biomass (Bouman and
van Kasteren, 1990a), crop cover (Bouman, 1991), crop height (McNairn et al.,
2000), and LAI (Blaes et al., 2006; Ferrazzoli et al., 1992) and may mask poten-
tial correlation between crop parameters and backscattering coefficient (Chen
et al., 2009). In addition, saturation has been observed at different polariza-
tions and incidence angles (Chen et al., 2009; Ferrazzoli et al., 1992; McNairn
and Brisco, 2004).

Only a few studies analyzed the effect of vegetation water content on the
occurrence of saturation. Taconet et al. (1994) used the airborne scatterom-
eter ERASME in C- and X-band, HH- and VV-polarization, and incidence
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angles 15 to 45◦. Backscattering coefficients were obtained for two years under
different soil moisture conditions for wheat. Backscattering values obtained
with X-band using HH-polarization saturated at vegetation water contents
larger than 3 kg m−2 and became highly variable for values larger than 4
kg m−2. A similar pattern was observed for values observed in X-band using
VV-polarization. Bouman (1991) used radar backscattering data at X-band to
derive crop parameter from beet, potato, barley, and wheat. In case of beet,
the backscattering coefficients obtained saturation values at a fraction cover of
0.8 with values ranging between 0 and −2 dB. Backscattering coefficients for
potato were found to saturate at a similar fraction cover but with values rang-
ing between −2 and −4 dB. For wheat and barley no saturation level could
be observed. For beet, crop water content at the fraction cover of 0.8 was
about 0.5 kg m−2, whereby between 0.8 and full cover the crop water content
increased up to 6 kg m−2 and more indicating that radar backscattering no
longer corresponded to changes in vegetation water content (their Figure 1 and
Figure 7a). Therefore, the presence of saturation effect may mask the detection
of water stress in plant canopies. Saturation effects may also be observed for
microwave signals obtained from radiometers. Wigneron et al. (1993) used a
multi-frequency radiometer (PORTOS) to monitor the microwave emission of
a soybean field. Both soil moisture and biomass which was parameterized by
the vegetation volume fraction were found to have a very significant effect on
the evolution of the microwave signal. Increase in biomass led to saturation
of the observed emissions at 5.05 GHz and 36.5 GHz but this effect was less
pronounced at 1.4 GHz showing a continuous increase of the microwave signal.

6.6.4 Surface soil moisture content

Surface soil water content is a key variable in understanding mass and energy
transfer processes between the land surface and the atmosphere, whereby pas-
sive and active microwave systems have extensively been used to determine
its spatial and temporal dynamics. However, exact estimation of soil moisture
content from emission or backscattering is hampered by the presence of a veg-
etation canopy. To overcome the problem of the confounding signal from the
vegetation canopy, radiative transfer models were developed and applied which
account for the all processes within the vegetation canopy (Hunt et al., 2011;
Joseph et al., 2010b). The derivation of crop parameters from microwave meth-
ods may be hampered by the influence of the underlying soil and more explicit,
by changes in the soil moisture content, especially for frequencies lower than
C-band. In this respect, vegetation canopy models may be extremely valuable
to derive properties that can provide information on the status of the canopy
and more specifically of its water status.

Several findings have shown that the surface soil water status determines
the intensity of the observed radar backscattering of cropped soil. For example,
Ulaby et al. (1982a) found that at 50% of field capacity the backscattering of a
radar operating at 4.25 to 4.75 GHz (10◦ incidence angle) was dominated by the
vegetation. Additionally, radar backscattering seemed to be dominated by the
return from the soil at higher moisture contents. Airborne scatterometer (X-
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band with HH-polarization) data of wheat fields showed no clear dependence of
the backscattering signal on soil water content (Taconet et al., 1994). Addition-
ally, a negative correlation between radar backscattering and vegetation water
content was found for the frequency used. They found that at lower frequencies
(C-band) and steep to medium incidence angles the radar backscattering comes
from the underlying soil attenuated through the vegetation above. Similarly,
Baghdadi et al. (2009) showed that for L-band measurements performed at
20◦ incidence angle over a fully grown sugarcane crop (50 cm high) the radar
signal was no longer sensitive to surface roughness and the sensitivity to soil
moisture content was low (around 0.04 dB/vol.%). Detecting crop emergence
may be masked by dips and peaks in the backscattering caused by changes in
soil moisture content (Bouman and van Kasteren, 1990a). Joseph et al. (2008)
used the ratio between modeled bare soil backscattering and the vegetation
water content to estimate surface soil moisture using dual-polarized L-band
measurements (1.6 GHz). The authors also reported that the retrieval of soil
moisture was found to be dependent on the view angle and polarization used,
whereby they found best agreement at 35◦ view angle and VV-polarization.
Encouraged by the positive results, Joseph et al. (2010b) used also success-
fully C-band data to estimate soil moisture. Contradictory to these findings,
Schoups et al. (1998) reported that for S- and even C-band, radar signal be-
comes less sensitive to soil moisture content and surface roughness and more
sensitive to canopy parameters.

Also the characterization of vegetation canopy using passive microwave mea-
surements is affected by the surface soil moisture status. Hornbuckle and Eng-
land (2004), e.g., reported that there was still a radiometric sensitivity in L-
band to soil moisture even under corn having a biomass of 8.0 kg m−2. One way
to exclude the effect of soil moisture on the total emission and radar backscat-
tering was the installation of a perfect reflector above the ground. Brunfeldt
and Ulaby (1984) analyzed the effect of vegetation on microwave emission and
radar backscattering in a systematical sense by applying this technique. There-
fore, the soil between the crop rows was covered by a perfect reflector to block
emissions from the soil and reflect downwelling radiation from the vegetation.
Additionally, uncovered reference fields were used to validate their simplified
radiative transfer model. Overall, the model performed well but the authors
also clearly indicated that more research is needed to understand emission and
reflection from crop stands. Calvet et al. (2011) analyzed the sensitivity of
passive microwave observations to soil moisture content and vegetation water
content for frequencies ranging between L- and W-band. They showed that for
frequencies higher than L-band a larger sensitivity was observed to vegetation
water content than to surface soil water content.

6.6.5 Biophysical crop parameter

Microwave methods have extensively been used to characterize biophysical crop
parameter. Most of this work has been done by relating backscattering coef-
ficients from active microwave methods to observed crop parameters under
field conditions. In the subsequent, we will briefly present some major find-
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ings regarding key parameters such as crop biomass, LAI, and plant geometry.
Biomass and LAI will be discussed together as typically most microwave studies
provide information on both quantities (Tables 6.3 and 6.4). Other properties
such as plant height, crop cover, and growing stage will be referred to as we
present these key parameters.

Crop biomass and LAI

Many studies have shown that there is a clear interdependence between biomass,
LAI and observed backscattering coefficients from active microwave systems. A
large number of these studies are listed in Tables 6.3 and 6.4 and they provide
regression equations and correlation coefficients to express the performance of
the derived relationships. Rather than presenting in detail these relationships
we would like to highlight some issues that are of importance when conducting
microwave experiments to derive such dependencies. Analysis of these studies
showed that canopy properties other than biomass and LAI may confound the
expected relationship between both properties and the observed backscattering.
These properties included the growing stage of the crop (Bouman and Hoek-
man, 1993; Bouman and van Kasteren, 1990a), the canopy structure and geom-
etry (Bouman and Hoekman, 1993; Bouman and van Kasteren, 1990a), but also
the soil moisture status (Brakke et al., 1981; Brown et al., 1992; Martin et al.,
1989; Mattia et al., 2003), environmental conditions (Hoekman and Bouman,
1993), and management properties (Paris, 1983). It is therefore mandatory to
monitor these confounding factors when trying to relate biomass and LAI to
observed backscattering coefficients.

The specific growing stage of the crop has been shown to be an important
factor determining the relationship between biomass, LAI and backscatter-
ing. The effect of growth stage was often related to geometry and satura-
tion effects. C-band HH backscattering data from ASAR obtained over winter
wheat was found to correlate very well with biomass (R > 0.65), LAI and
other parameters such plant water content, leaf water content per unit leaf
area, and specific growing stages such as regreening (Liu et al., 2006). In the
same study backscattering signals from VV-polarization were also analyzed but
typically showed less correlation than values obtained with HH-polarization,
independently of the growth stage. During booting and milking stages tem-
poral changes in the correlation were observed with lower correlations both
for HH and VV-polarization. On the other hand, pooling of regreening and
booting data resulted in high correlations between C-band HH backscattering,
biomass and LAI. Negative correlations between biomass and C-band HH and
VV backscattering (R = -0.52 and −0.44) were found at booting. This was
explained by changes in the canopy structure. The low correlations between
biomass and also LAI observed from the C-band HH backscattering may be
due to saturation. Blaes et al. (2006) showed that VV/HH polarization ratios
obtained at incidence angles between 35 and 45◦ were able to assess the crop
growth until saturation of the signal was reached (LAI of 4.6).

Several studies specifically focused on the analysis between LAI and backscat-
tering coefficients. Ulaby and Jedlicka (1984) for example, studied the relation-
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ship between LAI and backscattering measured at frequencies ranging between
8.6 and 35.6 GHz over corn, sorghum, and wheat. Most of the observed vari-
ation in canopy backscattering could be explained through variations in green
LAI for cases where the LAI was greater than 0.5. For the wheat crop, the
correlation was only good before head formation started. Again the authors
observed an important contribution of the soil backscattering at early growth
stages with low LAI (<0.5). The relationship between LAI of rice and C-band
VV/HH backscattering ratio was analyzed by Chen et al. (2009) who found
highest correlation for LAI values ranging between 1.7 and 3.5.

The above discussion of confounding factors showed that the effect of these
parameters on backscattering depends also on the type of polarization and the
incidence angles used. Singh (2006) performed ground-based X-band measure-
ments at different angles and polarizations to analyze the relationship between
biophysical parameters of soybean such as plant height, biomass, LAI, and crop
covered soil moisture. He found the highest correlation between biomass and
backscattering for incidence angles larger than 40◦ and VV-polarization. Lower
angles were more affected by dynamics in soil moisture. Brown et al. (2003)
used C- and X-band measurements to estimate the biomass of an outdoor wheat
canopy. They showed that a two-channel C-band operating at moderate inci-
dence angles was most appropriate to estimate biomass. The authors argued
that biomass was expressed through its effect on extinction, rather than by its
contribution to backscattering. Differential attenuation of soil backscattering
by the HH- and VV-polarization, i.e., the difference between both polariza-
tions, was found to best relate to biomass. However, the period with a large
biomass increase was not captured. Mattia et al. (2003) used ground-based
C-band backscattering measurements on wheat fields to derive relationship be-
tween wheat biomass and soil moisture. They showed that biomass could not
be retrieved using VV-polarization with an incidence angle of 23◦ due to mod-
ulation from soil moisture. Better results were obtained for biomass prediction
from backscattering when using the VV/HH ratio with an incidence angle of
40◦. Maity et al. (2004) assumed a linear relationship between LAI and crop
height for analysis with RADARSAT, whereby the increase in LAI and plant
height led to an increase in backscattering. All studies analyzed suggest that
the derivation of relationships between biomass and backscattering coefficient
was most successful for larger incidence angles and that lower frequencies may
result in better estimates.

Effects of leaves, stems, and branches

Most of the work on the effects of geometry and related plant parts on mi-
crowave signals has been done using active measurements systems and has fo-
cused on specific parts of the plants such as leaves, stems, and branches. Char-
acterizing of these elements in terms of electromagnetic properties and shapes
is essential for any mathematical modeling of backscattering coefficients. Sev-
eral studies have shown that the leaf size and leaf geometry greatly influence
the observed backscattering coefficients (Brown et al., 2003; Karam and Fung,
1989; Wu et al., 1985b). Paris (1986) was one of the first to include the leaf size
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in a modified water cloud model to predict backscattering from a corn canopy
and obtained an excellent fit between modeled and observed backscattering at
a frequency of 17.5 GHz. Paloscia (1998) showed that the change in backscat-
tering with vegetation water content was different for wide-leaf crops (grains)
and crops with circular leaves (sunflowers). She concluded that crops with the
same vegetation water content may result in different backscattering due to
the geometry of the leaves. Cookmartin et al. (2000) showed that nonplanarity
of leaves in oilseed rape was a considerable source of error in the physically-
based radiative transfer model RT2. An additional mechanisms was observed
by Della Vecchia et al. (2006) who reported that leaf curvature of maize and
stem hollowness of wheat led to a reduction of backscattering and stem atten-
uation from C-band, respectively. Further theoretically analysis showed that
these effects seem to be dependent on the growth stage of the crop. In ad-
dition to leaf shape and size, stem, ear, and branch properties also influence
backscattering of radar signals. To overcome these problems and to allow in-
terpretation of ERS-2 backscattering data, Cookmartin et al. (2000) developed
an equivalent integrable first-order radiative transfer model which included a
correct representation of attenuation by the stems and scattering by ears in
cereals crops.

Management practices

Finally, also management practices may play an important role in analyzing
backscattering signals. Paris (1983) found that radar backscattering coefficients
were affected by row-directions among fields cropped with corn, soybean, al-
falfa, and wood when using like-polarization at look angles between 5 and 25◦.
No effects were found for cross-polarization or look angles greater than 25◦ in-
dependent of the polarization. Additionally, wet surface soil water conditions,
typical for irrigated crop systems, were less favorable than dry surface condi-
tions to separate between crop types. The effect of row direction of, e.g., wheat
and barley was smaller than the effect of row spacing. A close row spacing of
12.5 cm for wheat and barley resulted in relatively high backscattering values
during early vegetative growth and low backscattering values at grain filling
and ripening compared to larger row spacing. This effect of row spacing was
only observed at low and medium frequencies. Even the removal or leaving-
behind of crop residues as well as ploughing and harrowing of the stubble will
influence the backscattering coefficient of X-band measurements as reported by
Bouman and van Kasteren (1990a).

6.7 Multi-sensors measurements

For the characterization of crop conditions, i.e., type, status, height, etc., the
utilization of more than one sensor type gives valuable information. Data ac-
quired over the same site by different sensors are partially redundant, since
they represent the same scene, and partially complementary, since the sen-
sors have different characteristics and the physical mechanisms of diffusion are
different (Le Hegarat-Mascle et al., 2000). Several approaches have been pub-
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lished to combine microwave data from several frequencies, active with passive
microwave, or microwave data with optical data from visible, near infrared, and
thermal spectra. These methods are discussed in the following. We will focus
on the combination of active and passive systems and on the combination of mi-
crowave with optical/multispectral systems. However, real fusion techniques of
disparate data which contributes to the understanding of the objects observed,
as reviewed by Dong et al. (2009) and Pohl and van Genderen (1998), are rare.

6.7.1 Active and passive microwave sensors

In several early studies, passive and active microwave signatures of various agri-
cultural crops were measured, e.g., by Brunfeldt and Ulaby (1984) and Hüppi
(1987). At this stage, a strong focus was on the estimation of soil moisture,
considering vegetation as a confounding factor only for soil moisture retrieval
(Jackson et al., 1982). Saatchi et al. (1994) developed an active/passive mi-
crowave scattering model for a grass canopy in order to explain the behavior of
reduction in sensor sensitivity to soil moisture in the presence of a (wet) thatch
layer. Chauhan (1997) used NASA’s Airborne Synthetic Aperture Radar (AIR-
SAR) to estimate the vegetation opacity and surface roughness, whereas the
brightness temperature was received by the Push-Broom Microwave Radiome-
ter (PBMR). Hereby the study was mainly focused on the estimation of soil
moisture, but they nicely showed the synergistic effect of active and passive
microwave sensors to gain information about the status of cropped agricultural
fields. As a consequence of the upcoming SMAP mission (Entekhabi et al.,
2010), a combined use of active and passive microwave data gains more at-
traction, whereby the focus of SMAP lies in the estimation of near surface soil
moisture (Dorigo et al., 2010).

An exception from the focus on soil moisture retrieval is the work of
Wigneron et al. (1999), who simulated active and passive observations to in-
vestigate the surface characteristics over a soybean field. Soil and vegetation
effects were best described by combining passive microwave data at L-band
with multi-angle active microwave data at C-band. Similarly, Jin and Huang
(1996) developed a model considering an agricultural crop stand as a layer of
continuous random media with an underlying rough surface. They analyzed
the correlations of active and passive microwave signatures for different crops
and compared them to real measurements at 1.2 GHz. The results showed
that simultaneous radar and radiometer observations can be efficiently used
to monitor the development of agricultural crops. Moreover, they identified
clusters in emissivity and backscattering which were used to separate differ-
ent vegetation types. Oza et al. (2008) used SSM/I (passive) and QuickSCAT
(active) data for the identification of rice growing stages from transplanting to
maturity. While SSM/I was better able to identify the transplantation period,
Quickscat was better able to predict the heading phase. Unfortunately, a real
fusion of active and passive microwave data was not performed. A study us-
ing the ground-based radiometer-scatterometer system RASAM (Hüppi, 1987),
and a feed forward neural network for biomass estimation of oat and wheat was
presented by Jin and Liu (1997). This was also not a real data fusion, but they
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jointly used active and passive microwave signals for the retrieval of biomass
characteristics including canopy height, canopy water content, and dry matter
fraction in an adequate accuracy.

6.7.2 Microwave and optical/multispectral sensors

While the microwave scattering process is influenced by the structural elements
of the land cover, optical sensors provide either information on the chemical
composition (hyperspectral sensors) or physical temperature (IR-sensors) of
the scene. Therefore, a fusion of these two data sets is feasible, especially for
characterization of the plant status (Huang et al., 2010). Important fusion
techniques are the principal component analysis (PCA) and the intensity-hue-
saturation (IHS) transform. Additive Integration, Component Substitution and
Intensity Modulation are fusion methods tested by Chibani (2006) using SPOT
and RADARSAT-1 data. However, most studies just compared the microwave
signals to vegetation indices (Baghdadi et al., 2009; Hunt et al., 2011; Jones
et al., 2011; Rosenthal et al., 1985; Svoray and Shoshany, 2002).

Real combination or fusion of microwave and optical signals for the charac-
terization of crop canopies are rare, but would provide reasonable information.
In general, two categories of microwave and optical data fusion techniques are
reported:

The first category includes approaches aiming at an enhanced land cover
and land use discrimination. Hereby, methods such as IHS transform and PCA
transfer the remote sensing data into a new system, which introduces severe
radiometric distortions or where they even lose their physical meaning, but
enhance the spatial separability of land cover classes. Wavelet-based methods
(Amolins et al., 2007) –and even the simplest– tend to produce better results
than standard fusion schemes such as IHS and PCA. Typically, wavelet fu-
sion schemes have been proposed to import detailed information from SAR
into multispectral imagery. The advantage is that the multispectral informa-
tion remains almost unchanged and the texture information from SAR will
be transferred. For classification approaches, a significant change in the data
characteristics can be accepted, because a classification traditionally makes use
of the relative differences between the classes only. Horgan et al. (1992) as well
as Vescovi and Gomarasca (1999) fused shuttle imaging radar and Landsat
data for enhanced classification. Similarly, Smara et al. (1998) and Michelson
et al. (2000) found higher class separabilities when Landsat TM and ERS-1
data were combined. Alparone et al. (2004) presented a similar study on the
succession satellites Landsat ETM+ and ERS-2 data with a wavelet transform.
Le Hegarat-Mascle et al. (2000) fused multi-temporal ERS images and multi-
spectral Landsat images by the Dempster-Shafer evidence theory for unsuper-
vised classification in order to use their complementarity in reducing confusion
by getting more complete description of the land cover type features. Haack
and Khatiwada (2010) applied a spectral signature extraction and Transformed
Divergence approach for SIR-C and Landsat data. Hong et al. (2009) devel-
oped a combined IHS-Wavelet Fusion algorithm. Finally, McNairn et al. (2009)



6.8. Outlook 135

analyzed the performance of different classification algorithms on fused data
sets of Radarsat-1, ASAR, SPOT, and Landsat.

The second category includes approaches which aim at a more detailed
identification of absolute crop conditions. A combined use of optical and radar
remote sensing is presented in the paper by Dente et al. (2008), who assimilated
LAI derived from MERIS and ASAR into a crop growth model for yield esti-
mation. It has to be mentioned that the combination of microwave and optical
data was only used for gap filling of time series within the study. Mangia-
rotti et al. (2008) used a bi-objective optimization method to assimilate ASAR
backscattering and SPOT-Vegetation NDVI into a vegetation dynamics model
to improve its predictions on biomass and LAI, whereas Hadria et al. (2010)
performed a comparative analysis using time series of both FORMOSAT-2 and
ASAR images for the monitoring of irrigated wheat crops in a semi-arid re-
gion in Morocco. Hereby, FORMOSAT-2 images were used to characterize the
spatiotemporal variations of green LAI, which was incorporated into a simple
canopy functioning model to provide spatial estimates of above-surface biomass
and top-soil moisture. They found evidence that the signal reaches a satura-
tion level from intermediate values of biomass water content (about 2000 g
m−2). Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) and Air-
SAR data were fused by Huang et al. (2010) for the estimation of fractions
of non-photosynthetic vegetation (grass and shrub). This approach may also
give feasible information on the conditions of dried crops, e.g., cereals before
harvest.

In general, the utilization of multi-sensor and multi-frequency information
leads to a better characterization of the crop status. The mentioned approaches
may be feasible to identify plant stress related differences to the normal crop
growth. However, for this aim more work is needed on the development of new
sensors and fusion algorithms in an applicable way.

6.8 Outlook

In this chapter we reviewed the use of microwave methods to characterize crop
canopies using microwave methods and with specific focus on their ability to
identify the presence of water-stress related phenomena. Our analysis of liter-
ature showed that practically no data set are available which provide both mi-
crowave measurements of the plant canopy (e.g., backscattering, optical depth)
and detailed measurements of the physiological properties of the canopy, the soil
moisture status, and the micro-climatic conditions in the canopy, and therefore,
allow evaluating observed microwave signals in relation to stress phenomena.
Measurements presented in literature and related to analyzing the effect of wa-
ter stress on, e.g., microwave signals were typically conducted on single plants
under lab conditions with little information on the soil and plant water sta-
tus. Moreover, there are no data available that provide information on soil
and plant water status in combination with microwave measurements at the
field scale. Detailed temporal and spatially distributed information about the
soil and plant water status is in our opinion essential when evaluating any re-
mote sensing method used to assess the occurrence and presence of water stress
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in plants. Microwave measurements should therefore be combined with mea-
surements of soil water potential and soil moisture content in the root zone,
micro-meteorological measurements within and above the canopy as well as
physiological properties and quantities of the plant such as volume-pressure
curves, vegetation water content, leaf water potential, and transpiration rate
of the plant. The characterization of geometrical and structural properties of
the canopy and their dynamical behavior is another essential element to assess
the effect of water stress phenomena on microwave signals. Interpretation of
such integrated data sets in combination with 3D functional-structural plant
canopy models including the effects of physiological processes on the radiative
transfer properties of the canopy will enable to improve early identification of
stress and will help to disentangle the factors influencing observed microwave
signals. It will help to better evaluate the importance of mapping the dynam-
ics and spatial distribution of surface soil moisture in terms of identifying the
occurrence of plant water stress at the field scale. Up to now it is not clear
in how far information on surface soil moisture status is relevant in assessing
early plant water stress.

A combination of different sensor technologies covering the full spectral
range from optical to microwave will open new perspectives and generate new
knowledge about the status of vegetation and more specifically crop canopies.
A first attempt to combine this spectral range on one platform which was
suitable for crop science applications was ESA’s ENVISAT mission, launched
in 2002. For future satellites there is a trend to develop specialized sensors
on individual platforms, such as the 5 planned ESA Sentinels (1: C-Band
SAR, 2: Superspectral, 3: Ocean, 4/5: Atmospheric Chemistry) will continue
the work of actual missions. Moreover, German activities around TerraSAR-
X, TanDEM-X, RapidEye, EnMAP and Tandem-L provides and will provide
sound knowledge about plant conditions and will in combination be able to
identify crop stress. Myneni and Choudhury (1993) already pointed at the po-
tential of combining different sensor technologies. They stated that combining
optical and microwave techniques will allow observing different responses of the
plants due to water stress such as the diurnal response of water stress detectable
by microwave methods but which does not occur in the pigment concentration.
Moreover, a combination of optical and microwave data can be synergistically
used to infer land surface properties and crop status. Also, optical data and
their deduced parameters can be used for correction and interpretation of mi-
crowave observations.

Here a close cooperation between the soil, plant, and remote sensing com-
munities may lead to new results. In addition, validation of these novel model
approaches will require data which are presently not available in literature as
already outlined above.

Assimilation of remotely sensed properties such as backscattering coefficient
or brightness temperature may provide a unique opportunity to improve the
estimate of biophysical properties as crop canopies such as LAI, dry matter,
plant water content, and related leaf potential and others. First studies that
use assimilation of remotely sensed microwave data have been developed re-
cently in the field of hydrology (Draper et al., 2011; Montzka et al., 2011),
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meteorology (Rasmy et al., 2011), or for optical remote sensed data and the
assimilation in crop functioning models (e.g., Weiss et al., 2001). This av-
enue has, however, not been really pursued in the past for vegetation canopy
properties for microwave frequencies but it provides a huge potential for re-
motely sensed data, especially for microwave data as they are available for
almost all weather conditions. Within the field of microwave measurements,
acquisition of backscattering data at different frequency bands may provide
additional information on the status of the crop. Lopez-Sanchez and Ballester-
Berman (2009) stated that a combination of low and high microwave bands,
allows determining different properties of the plants and different scales of their
component such as leaves, stems, and heads. Additionally, multipolarization
(dual- and full-polarization), data exploits the sensitivity of the wave polariza-
tion to the orientation, shape, and dielectric properties of the elements in the
scene. Therefore, polarimetry SAR interferometry (such as PolInSAR) seems
to be the most promising tool to gain information for agricultural crop stands
(Lopez-Sanchez and Ballester-Berman, 2009). Finally, PolInSAR yields infor-
mation not only about the dielectric properties, shape and orientation of the
whole plant constituents, but also about the vertical structure of the plant by
means of information about the localization of the scattering centers.
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Chapter 7

Conclusions and
perspectives

7.1 Conclusions

Soil water content is widely recognized as a key component of the water, en-
ergy, and carbon cycles. In order to assess the spatiotemporal dynamics of
SWC at the field scale, which typically corresponds to the management scale
in agriculture, ground-penetrating radar and ground-based radiometer appear
to be very promising tools for high-resolution mapping and monitoring. In this
thesis, we investigated and further improved GPR and radiometer forward and
inverse modeling approaches for SWC retrieval at the field scale. In particular,
we focused on the improvement of the GPR and radiometer models by includ-
ing roughness corrections and the validation of the methods in laboratory and
field conditions.

In Chapter 2, an L-band radiometer and an off-ground GPR instrument
were mounted on a mobile platform to map SWC over an agricultural bare field
with a relatively high spatial variability in SWC. Additionally, ground-truth
SWC was recorded by time-domain reflectometry within each radar and ra-
diometer footprint. The results of the field survey indicated that high-resolution
SWC mapping was feasible using radiometer and GPR data, whereby both in-
struments showed reliable SWC estimates compared to TDR measurements.
Nevertheless, discrepancies were observed for both instruments, which were at-
tributed to different sensing depths and areas as well as different sensitivities
with respect to soil surface roughness. For GPR, we operated at sufficiently
low frequencies (<0.8 GHz) for which the radar reflections were not affected by
roughness. The RMSE between SWC measured by GPR and TDR was 0.038
m3 m−3 while the RMSE between radiometer and TDR SWC estimates was
0.020 m3 m−3 after accounting for roughness using an empirical model that
required calibration with reference TDR measurements, whereby only one ef-
fective parameter set was used for the entire field. Additionally, Monte Carlo
simulations were performed to evaluate the sensitivity of the roughness parame-
ters with respect to the number of ground truths used for the model calibration.

139
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The results of the Monte Carlo simulations indicated that around 20% of the
ground-truth information is required to obtain a good roughness calibration
to be applied for the entire field, which is much larger than the number of
reference points reported in all field studies dealing with the calibration of
large-scale remote sensing products. Overall, this study represents the first
work comparing field-scale SWC maps over a bare rough surface using ground-
based radiometer and advanced off-ground GPR simultaneously, and therefore,
provides an essential step for the understanding of combined use of passive and
active sensors for planed satellite missions such as SMAP and/or for calibration
and validation purposes for such missions.

As stated above, the classical approach to deal with soil surface roughness
for the advanced off-ground GPR is to focus on low frequency data only, which
are less or not sensitive to roughness effects (see Chapter 2). Yet, limiting the
GPR frequency range to low frequencies also limits the information content in
the radar data and, hence, limits soil characterization capabilities such as range
resolution. To partly overcome this issue, soil roughness effects can be directly
accounted for in the electromagnetic model. In that respect, in Chapter 3, the
full-wave GPR model of Lambot et al. (2004c) was combined with a roughness
model derived from Kirchhoff scattering theory for the retrieval of surface SWC
through signal inversion. For the validation of the extended model, radar data
measured over a sandy soil with known roughness and water content were
used. Additionally, soil surface roughness and soil water content were varied
to cover a wide range of experimental conditions. For this setup the radar
measurements were performed in the full frequency range between 1–3 GHz and
the roughness amplitude standard deviation varied from 0 to 1 cm. The results
showed that full-waveform inversion permits simultaneous reconstruction of
the medium dielectric permittivity and the standard deviation of the surface
roughness, but only when the layer thicknesses are known. Unfortunately,
this is typically not the case in field applications. Nevertheless, we proposed
a specific inversion strategy for field conditions, which is based on a surface
reflection focused inversion, and which permitted the retrieval of the surface
permittivity with an RMSE in terms of SWC of 0.034 m3 m−3 compared to an
RMSE of 0.068 m3 m−3 for an analysis where roughness was neglected. In that
case, roughness parameters should be independently determined, e.g., using a
laser profiler. The proposed method appears to be promising for surface SWC
mapping in reasonably rough environments with a roughness amplitude < 1/4
of the wavelength and constitutes a step forward for far-field radar applications
in rough environments.

In Chapter 4, we analyzed in particular the effects of tillage practices on
the spatial variation of soil properties such as surface soil water content, bulk
soil electrical conductivity, and mechanical resistance using on-ground and off-
ground GPR as well as electromagnetic induction (EMI). Hereby, the EMI
was used to provide insights into the variability of the soil properties of the
deeper layer (up to 2 m depth). Reference SWC measurements were performed
using two different capacitance probes and reference soil sampling. The soil
resistance was independently measured at three locations using an automated
penetrometer. The data showed that tillage influences soil resistance (deeper
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tillage decreases soil resistance), which could be partly seen in the on-ground
GPR data. Additionally, reference SWC measurements (capacitance probes
and soil sampling) were in a reasonable agreement with the water content es-
timates from off-ground GPR. The correlations between the GPR and capaci-
tance probe data (RMSE between 0.040–0.045 m3 m−3, R2 between 0.31–0.39)
were very similar to the correlation observed in Chapter 2 between GPR and
TDR data (RMSE of 0.038 m3 m−3, R2 of 0.39). These limited agreements
were attributed to the relatively large variability of surface SWC at the m2 scale
while the different characterization supports were inherently different. We ob-
served as well that the tillage type influenced shallow surface water content,
while deeper SWC seemed to be unaffected. Surface SWC was significantly
larger in the reduced and the deep loosening tillages compared to the conven-
tional tillage, which was partly explained by lower pore connectivity between
the topsoil and the deeper layers after conventional tillage. Finally, the spatial
distribution of the SWC was analyzed using geostatistical approaches. The
spatial analysis showed that the variance of the SWC within the conventional
tillage plots was larger than within the other plots, which was explained by a
larger soil heterogeneity induced by the plowing process. In conclusion, this
study confirms the potential of GPR and EMI for fast determination of the
soil state variables at the field scale and for the characterization of agricultural
management practices.

We evidenced in Chapters 2 and 4 the potential of GPR and radiometer to
map the spatial variability of surface SWC at the field scale. However, given
the large temporal variability of SWC, time-lapse measurements should be per-
formed to satisfy the characterization needs of most environmental and agricul-
tural applications. Yet, accurate modeling of water flow and solute transport
in heterogeneous subsurface can also be obtained from detailed characteriza-
tion of the soil hydraulic properties which are known to vary much slowly over
time (Lambot et al., 2004a; Vereecken et al., 2010). In Chapter 5, we investi-
gated the potential of GPR and L-band radiometer to identify the hydraulic
properties (water retention curve) of a sand subject to hydrostatic equilibrium
with a range of water table depths. At hydrostatic equilibrium, the vertical
water content profile exhibits a continuous variation corresponding to the water
retention curve of the soil. For both GPR and radiometer, all measurements
were aggregated in an inversion scheme to reconstruct the vertical water con-
tent profiles, which were constrained using the van Genuchten water retention
equation. The results showed that both active and passive microwave data
contain sufficient information to estimate the sand water retention curve and
its related hydraulic parameters. The results were in close agreement with ref-
erence TDR measurements. This study represents a first comparison between
active and passive microwave systems to characterize the shallow soil hydraulic
properties.

In Chapter 6, the use of microwave remote sensing methods for characteriz-
ing crop canopies and vegetation water-stress related phenomena was reviewed.
The analysis includes both active and passive systems that are ground-based,
airborne, or spaceborne. The meta-analysis indicated that the vast majority
of studies used active microwave systems to characterize the crop canopy and
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to identify water stress related phenomena. It was also shown that for the
quantification of the effect of dynamic vegetation properties and particularly
water-stress related processes improved models and more observational data
are urgently needed to understand and interpret the microwave data. Inte-
grated data sets providing the full information on both soil and plant status
are still lacking, which has hampered the development and validation of math-
ematical models. Additionally, there is a need to link 3D-functional-structural
crop models with radiative transfer models in order to better understand the
effects of environmental and related physiological processes on microwave data
and to better quantify the impact of water stress on microwave propagation and
attenuation. Such modeling approaches should also incorporate both passive
and active microwave methods due to their different sensitivities to structural
elements within the crop canopy. Especially, the combination of different sen-
sor technologies covering a wide spectral range from optical to the microwave
region will have the potential to move forward our knowledge on the status of
crop canopies and particularly water related stress phenomena. Finally, data
assimilation schemes of remotely sensed properties such as backscattering coef-
ficients or brightness temperature will help to improve the estimation and the
understanding of the biophysical crop properties.

In conclusion, GPR and radiometer methods were successfully validated for
high-resolution mapping and monitoring of SWC at the field scale. The prob-
lem of soil surface roughness on the retrieved signal was accounted for by using
an optimized roughness model in the data processing scheme of the radiometer.
For the advanced off-ground GPR, soil surface roughness was also accounted
for in the GPR full-waveform inversion of laboratory data. This permitted to
improve SWC estimations under laboratory conditions for reasonably rough
environments. In addition, the GPR methodology was applied at the field
scale to assess different agricultural management practices, whereby the high
sensitivity of the off-ground GPR to the surface SWC allowed us to distinguish
the effects of different tillage practices on the soil surface. Finally, GPR and
radiometer data collected above a sand box were used to infer the soil water
retention function. The estimated values from both techniques were in close
agreement with reference TDR measurements. Although all field surveys per-
formed in this thesis were on bare soils, the effect of vegetation on active and
passive microwave signals was intensively discussed in the last chapter. Taking
into account that a major part of the land surface is covered by vegetation, the
effect of vegetation on microwave propagation remains a challenging issue in
remote sensing of SWC.

7.2 Further perspectives

7.2.1 Potential applications

The studies presented in this thesis proved the valuable potential of GPR and
radiometer for characterizing the variability of soil properties and state vari-
ables at the field scale. Environmental and agricultural applications such as
precision agriculture could greatly benefit from these non-invasive, low cost,
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and high-resolution characterizing techniques. GPR and radiometer mounted
on a mobile platform can both accurately map and monitor the surface soil
moisture (see Chapters 2 and 4) which is, for instance, particularly important
during seedbed preparation and at the beginning of the growing season. These
techniques can be used to guide precision irrigation and/or soil management
practices in order to optimize crop productivity and maintain sustainability of
soils. Combined with EMI and/or soil resistance measurements (see Chapter
4), information about the root zone could also be acquired, which is particu-
larly interesting for water stress detection. Some improvement could however
be performed for a better applicability of the GPR and radiometer systems to
precision agriculture. For instance, the GPR setup investigated in this thesis
was used with the antenna fixed at about 1.2 meter off the ground in far-field
conditions. Lambot and André (2012) recently developed a new GPR model al-
lowing to use the antenna in near-field conditions or on-ground, which permits
to increase the penetration depth and the spatial resolution. For radiometer,
the antenna can not be used close to the ground as the self-emission of the an-
tenna would be reflected on the soil surface and added to the natural radiance
emitted from the soil. For agricultural soil with relatively low and sparse veg-
etation and small soil roughness, the GPR technique seems to be more easily
applicable for soil characterization due to its potential to be used close to the
soil surface (better spatial resolution, larger penetration depth) and its shorter
measurement integration time for real-time mapping (less than 1 ms for GPR
compared to 3–10 s for radiometer). However, for agricultural soil with denser
vegetation and larger surface roughness, the radiometer technique could be
preferably used given the smaller influence of the vegetation and soil roughness
on the measured radiance. Yet, some improvements still have to be performed
to accurately account for these influences on the soil moisture retrieval (see
section below).

As Robinson et al. (2008a) pointed out, soil water content information at the
catchment scale is also highly important to understand hydrologic processes.
Given the high SWC variability, SWC information over a large area with a high
temporal and spatial resolution is needed for accurate hydrological modeling.
An emergent technology at the catchment scale is the wireless sensor network.
These networks can provide soil moisture information with a high temporal
resolution over large areas (Bogena et al., 2010). However, SWC information
between sensors is missing as each sensor provides only very local measure-
ments. GPR and radiometer measurements could then be combined to sensor
networks for an optimal spatial and temporal resolution at the catchment scale
(Minet, 2011).

At the global scale, spaceborne microwave measurements provide soil mois-
ture information particularly relevant for climate prediction. Spaceborne re-
mote sensing products are usually validated using ground-based observations
such as sparse point data from manual sampling or sensor networks. Given the
high spatial variability of SWC, the large contrast in support scales between
spaceborne remote sensing and in-situ methods makes them hardly comparable
(Minet et al., 2012; Crow et al., 2012). The two methods investigated in this
thesis could be used to improve the validation of spaceborne data. For active
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spaceborne data such as SAR data, GPR and radiometer can provide soil mois-
ture maps with a spatial extent in the same order as the footprint of the SAR
instrument (e.g., 3–100 m for RADARSAT-2). For passive spaceborne data,
the comparison with ground-based GPR and radiometer data is more compli-
cated due to the much larger footprint of the spaceborne radiometers (e.g.,
50 km for SMOS) and could be performed, for instance, in combination with
airborne measurements. In that framework, an attempt to validate the SMOS
satellite data by using airborne and truck-mounted radiometers has recently
been performed by Montzka et al. (2012). The radar and radiometer meth-
ods investigated in this thesis will be further applied for systematic spaceborne
active and passive remote sensing product validation.

7.2.2 Future research

Vegetation effect on soil moisture retrieval An important challenge for
SWC estimation using active and passive microwave remote sensing remains
for the effect of vegetation. In this thesis, we did not investigate this problem
but the different issues related to vegetation were presented in Chapter 6. In
general for passive remote sensing systems, the soil moisture retrieval algo-
rithms used over vegetated areas are based on a simplified zero-order radiative
transfer equation called the tau-omega model. This model includes vegetation
parameters which are known to be depend on vegetation structure, observation
incidence angle, and polarization (Wigneron et al., 2004). Sparse information
about these parameters such as the vegetation optical depth (tau parameter)
can be found in literature but only few vegetation types have already been
investigated and, generally, only over limited times during the growing season.
Therefore, the temporal evolution of the vegetation parameters, in particular
the b parameter used to describe the vegetation optical depth (see Eq. (6.4)),
should be further investigated for different crop types to improve the accuracy
of the SWC estimates. Tower-based radiometer measurements over different
kinds of vegetation growing through a wire-grid are valuable experiments to
be performed. The wire grid being used to shield the soil emission in order to
separate the radiance originating from the soil and the vegetation. Such exper-
iments will provide important information on how the seasonal development of
various vegetation types affects the microwave signatures. Furthermore, diurnal
variabilities of vegetation emission can be quantified accurately, and artificial
conditioning of the vegetation, such as wetting, could be performed. In order
to improve the interpretation of L-band signatures emitted from forests, which
cover a significant part of the land surface, studies regarding the effect of the
litter on the soil moisture retrieval from active/passive microwave sensors are
needed. The sand box setup developed in this thesis is well suited to mea-
sure the emission and scattering of organic litter layers at various conditions in
terms of water content, density, structure, and composition.

Roughness effect on soil moisture retrieval The roughness modeling
problem was addressed in this thesis for both active and passive microwave
systems. For GPR, we used a physically-based roughness model. The rela-
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tively good agreement between the model and the laboratory measurements
confirms the ability of the investigated model to describe the roughness ef-
fect on the radar signal. In a further step, the proposed approach should be
validated in field conditions. However, the model is expected to provide less sat-
isfactory results as the use of only one roughness parameter, i.e., the standard
deviation in surface height, does not allow to accurately describe the com-
plex surface roughness distributions observed in agricultural fields. Additional
statistical parameters such as the autocorrelation function and the associated
correlation length could then be added in the model for a better description of
the roughness. Furthermore, as for most physically-based models (e.g., IEM),
the investigated model assumes that surface roughness is a random stationary
process, characterized through a unique spatial scale (Davidson et al., 2000).
However, surface roughness in agricultural fields generally exhibits periodic and
oriented structures such as furrows (Völksch et al., 2011; Völksch, 2011). Sev-
eral attempts have already been made to enhance conventional models using
for instance multiscale approaches (Beaudoin et al., 1990; Mattia and Le Toan,
1999). Nevertheless, the higher complexity and number of parameters of such
models will probably limit their operational use. An alternative strategy with
an increasing interest is the use of calibrated or effective roughness parameters
(Lievens et al., 2011). This approach has already been successfully applied in
this thesis to model the roughness effect for radiometer (see Chapter 2), us-
ing a relatively simple equation including two effective roughness parameters
calibrated with soil moisture observations. This permits to keep a practical
modeling concept and avoid issues with respect to field measurements of the
surface roughness (Jester and Klik, 2005). A similar strategy could then be
developed for roughness modeling in GPR data processing algorithms.

Active and passive data fusion New avenues of research have been re-
cently opened by combining active and passive microwave data. As shown in
this thesis, the influence of surface roughness on soil moisture retrieval is differ-
ent for radar and radiometer and depends also on wavelength and incidence an-
gle. The two microwave methods lead also to different characterization depths,
which therefore results in different soil moisture products. Over cropped areas,
for common remote sensing operating frequencies, radar data are also typically
more sensitive to vegetation compared to radiometer data (Kurum et al., 2009).
This inherently leads to larger uncertainties in the soil moisture retrieval, but
this high sensitivity can be used to characterize the vegetation itself. To over-
come the individual limitations of the two approaches and benefit from their
different sensitivities, the combined use of these two technologies seems to be
a promising solution for soil moisture retrieval. For instance, information on
the vegetation structure obtained from active systems could be used in the
processing of passive microwave data to improve SWC retrieval (O’Neill et al.,
1996). Based on the higher accuracy of spaceborne radiometer soil moisture
estimates and the finer spatial resolution obtained for radar observations, the
NASA is preparing the launch of a new satellite (SMAP) combining both radar
and radiometer instruments. Several algorithms have recently been proposed
to merge L-band radiometer and radar data to obtain high-resolution soil mois-
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ture estimates (Zhan et al., 2006; Piles et al., 2009; Das et al., 2011). However,
these methods only improve the spatial resolution of the radiometer soil mois-
ture estimates and not the retrieval accuracy. New research should investigate
the feasibility to merge radar and radiometer for increased resolution and ac-
curacy in soil moisture retrieval using, for instance, a Bayesian data fusion
framework (Bogaert and Fasbender, 2007; Fasbender et al., 2008) which allows
to account for several information sources about a same variable of interest
such as the soil moisture in order to provide an optimal spatial prediction.

Data assimilation in hydrological models In Chapter 5, we showed that
the soil hydraulic properties can be retrieved by combining the GPR/radiometer
electromagnetic model with a soil hydraulic model. This was performed at hy-
drostatic equilibrium in a relatively homogeneous soil (sand box). Further
research could also focus on the inversion of GPR and radiometer data for dy-
namic conditions, which inherently permit to retrieve more information from
a system (e.g., hydraulic conductivity function). For GPR, Lambot et al.
(2006b) and Jadoon et al. (2008) recently proposed a hydrogeophysical inver-
sion method to retrieve soil hydraulic properties from time-lapse GPR data. A
similar approach could be tested for time-lapse radiometer data. Over the last
years, numerous studies have also focused on the improvement of hydrological
model results through the assimilation of soil moisture data (Walker et al., 2002;
Pauwels et al., 2002; De Lannoy et al., 2007; Reichle et al., 2008; Reichle, 2008).
For spaceborne remote sensing, data assimilation systems with the ensemble
Kalman filter have been successfully used to merged satellite active/passive
surface soil moisture retrievals with information from a land surface model
and antecedent meteorological data to provide better soil moisture estimates
(Montzka et al., 2011; Draper et al., 2012). In a similar way, high-resolution
GPR and radiometer soil moisture retrievals could be, for instance, assimilated
in hydrological models for a better estimation of the hydrologic fluxes at the
micro-catchment/field scale.
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Lambot, S., André, F., Slob, E. C., and Vereecken, H. 2012. Effect of antenna-
medium coupling in the analysis of ground-penetrating radar data. Near Surface
Geophysics, In Press.

Landron, O., Feuerstein, M. J., and Rappaport, T. S. 1996. A comparison of the-
oretical and empirical reflection coefficients for typical exterior wall surfaces in
a mobile radio environment. IEEE Transactions on Antennas and Propagation,
44(3):341–351.

Larson, K. M., Small, E. E., Gutmann, E. D., Bilich, A. L., Braun, J. J., and Za-
vorotny, V. U. 2008. Use of GPS receivers as a soil moisture network for water
cycle studies. Geophysical Research Letters, 35(24):5.

Lawrence, H., Demontoux, F., Wigneron, J. P., Paillou, P., Wu, T. D., and Kerr,
Y. H. 2011. Evaluation of a numerical modeling approach based on the finite-
element method for calculating the rough surface scattering and emission of a soil
layer. IEEE Geoscience and Remote Sensing Letters, 8(5):953–957.

Le Hegarat-Mascle, S., Quesney, A., Vidal-Madjar, D., Taconet, O., Normand, M.,
and Loumagne, C. 2000. Land cover discrimination from multitemporal ERS im-
ages and multispectral Landsat images: a study case in an agricultural area in
France. International Journal of Remote Sensing, 21(3):435–456.

Le Vine, D. M. and Karam, M. A. 1996. Dependence of attenuation in a vegetation
canopy on frequency and plant water content. IEEE Transactions on Geoscience
and Remote Sensing, 34(5):1090–1096.

Ledieu, J., De Ridder, P., De Clercq, P., and Dautrebande, S. 1986. A method
of measuring soil moisture by time domain reflectometry. Journal of Hydrology,
88:319–328.

Li, Y., Zhang, L., Jiang, L., Zhang, Z., and Zhao, T. 2010. Evaluation of vegeta-
tion indices based on microwave data by simulation and measurements. In IEEE
International Symposium on Geoscience and Remote Sensing (IGARSS), pages
3311–3314.

Lievens, H., Verhoest, N. E. C., De Keyser, E., Vernieuwe, H., Matgen, P., Alvarez-
Mozos, J., and De Baets, B. 2011. Effective roughness modelling as a tool for soil
moisture retrieval from C-and L-band SAR. Hydrology and Earth System Sciences,
15(1):151–162.

Liu, L. Y., Wang, J. J., Bao, Y. S., Huang, W. J., Ma, Z. H., and Zhao, C. J. 2006.
Predicting winter wheat condition, grain yield and protein content using multi-
temporal EnviSat-ASAR and Landsat TM satellite images. International Journal
of Remote Sensing, 27(4):737–753.

Liu, S. F., Liou, Y. A., Wang, W. J., Wigneron, J. P., and Lee, J. B. 2002. Retrieval
of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness
temperatures. IEEE Transactions on Geoscience and Remote Sensing, 40(6):1260–
1268.

Lopez-Sanchez, J. M. and Ballester-Berman, J. D. 2009. Potentials of polarimetric
SAR interferometry for agriculture monitoring. Radio Science, 44.

Lu, D. S. 2006. The potential and challenge of remote sensing-based biomass estima-
tion. International Journal of Remote Sensing, 27(7):1297–1328.



BIBLIOGRAPHY 161

Macelloni, G., Paloscia, S., Pampaloni, P., and Ruisi, R. 2001. Airborne multifre-
quency L- to Ka-band radiometric measurements over forests. IEEE Transactions
on Geoscience and Remote Sensing, 39(11):2507–2513.

Mahboubi, A. A., Lal, R., and Faussey, N. R. 1993. 28 years of tillage effects on 2
soils in Ohio. Soil Science Society of America Journal, 57(2):506–512.

Maity, S., Patnaik, C., Chakraborty, M., and Panigrahy, S. 2004. Analysis of temporal
backscattering of cotton crops using a semiempirical model. IEEE Transactions on
Geoscience and Remote Sensing, 42(3):577–587.

Mangiarotti, S., Mazzega, P., Jarlan, L., Mougin, E., Baup, F., and Demarty, J.
2008. Evolutionary bi-objective optimization of a semi-arid vegetation dynamics
model with NDVI and sigma(0) satellite data. Remote Sensing of Environment,
112(4):1365–1380.

Marliani, F., Paloscia, S., Pampaloni, P., and Kong, J. A. 2002. Simulating coher-
ent backscattering from crops during the growing cycle. IEEE Transactions on
Geoscience and Remote Sensing, 40(1):162–177.

Marquardt, D. W. 1963. An algorithm for least-squares estimation of nonlinear pa-
rameters. Journal of the Society for Industrial and Applied Mathematics, 11:431–
441.

Martin, R. D., Asrar, G., and Kanemasu, E. T. 1989. C-band scatterometer mea-
surements of a tallgrass prairie. Remote Sensing of Environment, 29(3):281–292.

Mattia, F. and Le Toan, T. 1999. Backscattering properties of multi-scale rough
surfaces. Journal of Electromagnetic Waves and Applications, 13(4):493–527.

Mattia, F., Le Toan, T., Picard, G., Posa, F. I., D’Alessio, A., Notarnicola, C., Gatti,
A. M., Rinaldi, M., Satalino, G., and Pasquariello, G. 2003. Multitemporal C-
band radar measurements on wheat fields. IEEE Transactions on Geoscience and
Remote Sensing, 41(7):1551–1560.

Mätzler, C. 1990. Seasonal evolution of microwave-radiation from an oat field. Remote
Sensing of Environment, 31(3):161–173.

Mätzler, C. 1994a. Microwave (1-100 GHz) dielectric model of leaves. IEEE Trans-
actions on Geoscience and Remote Sensing, 32(4):947–949.

Mätzler, C. 1994b. Passive microwave signatures of landscapes in winter. Meteorology
and Atmospheric Physics, 54(1-4):241–260.

Mätzler, C. 2006. Thermal microwave radiation: Applications for remote sensing . IET
Electromagnetic Waves series 52. The Institution of Engeneering and Technology,
London.

Mätzler, C. and Standley, A. 2000. Relief effects for passive microwave remote sensing.
International Journal of Remote Sensing, 21(12):2403–2412.

Mätzler, C., Weber, D., Wuthrich, M., Schneeberger, K., Stamm, C., Wydler, H.,
and Flühler, H. 2003. ELBARA, the ETH L-band radiometer for soil-moisture
research. In IEEE International Symposium on Geoscience and Remote Sensing
(IGARSS), pages 3058–3060.



162 BIBLIOGRAPHY

McNairn, H. and Brisco, B. 2004. The application of C-band polarimetric SAR for
agriculture: a review. Canadian Journal of Remote Sensing, 30(3):525–542.

McNairn, H., van der Sanden, J. J., Brown, R. J., and Ellis, J. 2000. The potential
of RADARSAT-2 for crop mapping and assessing crop condition. In Second Inter-
national Conference on Geospatial Information in Agriculture and Forestry . Lake
Buena Vista, Florida.

McNairn, H., Shang, J. L., Jiao, X. F., and Champagne, C. 2009. The contribution
of ALOS PALSAR multipolarization and polarimetric data to crop classification.
IEEE Transactions on Geoscience and Remote Sensing, 47(12):3981–3992.

McNeill, J. D. 1980. Electromagnetic terrain conductivity measurement at low in-
duction numbers. Technical Note TN-6, Geonics Limited, Ontario.

Mialon, A., Wigneron, J. P., de Rosnay, P., Escorihuela, M. J., and Kerr, Y. H.
2012. Evaluating the L-MEB model from long-term microwave measurements over
a rough field, SMOSREX 2006. IEEE Transactions on Geoscience and Remote
Sensing, 50(5):1458–1467.

Michalski, K. A. and Mosig, J. R. 1997. Multilayered media Green’s functions in
integral equation formulations. IEEE Transactions on Antennas and Propagation,
45(3):508–519.

Michelson, D. B., Liljeberg, B. M., and Pilesjo, P. 2000. Comparison of algorithms
for classifying Swedish landcover using Landsat TM and ERS-1 SAR data. Remote
Sensing of Environment, 71(1):1–15.

Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., and Tabbagh,
A. 2003. Spatial and temporal monitoring of soil water content with an irrigated
corn crop cover using surface electrical resistivity tomography. Water Resources
Research, 39(5):20.

Minet, J. 2011. High resolution soil moisture mapping by a proximal ground penetrat-
ing radar - A numerical, laboratory and field evaluation. Ph.D. thesis, Université
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Summary

Soil water content is widely recognized as a key component of the water, energy and
carbon cycles and knowledge of its spatiotemporal distribution is in particular needed
for developing optimal and sustainable environmental and agricultural management
strategies. In that context, we analyzed and further developed advanced ground-
penetrating radar (GPR) and microwave radiometry techniques for high-resolution
mapping and monitoring of shallow soil water content at the field scale.

First, far-field ultra-wideband GPR and L-band radiometer were used for mapping
soil water content over two test sites with bare soils and the results were compared
to reference ground truths. For GPR, soil water content was derived from full-wave
inversion focusing on the surface reflection while for radiometer a radiative transfer
model was used. Both techniques provided relatively good results, especially for re-
constructing spatial moisture patterns in relation to topography and forced conditions
(differential irrigation and soil tilth). Nevertheless, absolute estimates were subject
to inherent discrepancies that were attributed to the different characterization scales
and local variability.

Second, we addressed the roughness modeling problem. For GPR, we combined
the full-wave GPR model with a roughness model derived from the Kirchhoff scat-
tering theory. Laboratory experiments showed that this approach performs well for
roughness amplitudes reaching up to one fourth the wavelength. For the radiome-
ter, we used an empirical equation which requires calibrating ground truths. This
approach was successfully validated in field conditions.

Finally, GPR and radiometer measurements were performed over a sand box
subject to hydrostatic equilibrium with a range of water table depths. For each
technique, all measurements were aggregated in an inversion scheme to reconstruct
the vertical water content profiles, which were constrained using the van Genuchten
water retention equation. The results were in close agreement with reference time-
domain reflectometry measurements.

Our results open promising research and application perspectives for the joint use
of active and passive microwave remote sensing for soil moisture retrieval. In that
respect, we addressed new avenues for characterizing crop canopies and water-stress
related phenomena.
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